The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/acpica/acpi_timer.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000, 2001 Michael Smith
    3  * Copyright (c) 2000 BSDi
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_acpi.h"
   32 #include <sys/param.h>
   33 #include <sys/bus.h>
   34 #include <sys/eventhandler.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/sysctl.h>
   38 #include <sys/timetc.h>
   39 
   40 #include <machine/bus.h>
   41 #include <machine/resource.h>
   42 #include <sys/rman.h>
   43 
   44 #include <contrib/dev/acpica/include/acpi.h>
   45 #include <contrib/dev/acpica/include/accommon.h>
   46 
   47 #include <dev/acpica/acpivar.h>
   48 #include <dev/pci/pcivar.h>
   49 
   50 /*
   51  * A timecounter based on the free-running ACPI timer.
   52  *
   53  * Based on the i386-only mp_clock.c by <phk@FreeBSD.ORG>.
   54  */
   55 
   56 /* Hooks for the ACPI CA debugging infrastructure */
   57 #define _COMPONENT      ACPI_TIMER
   58 ACPI_MODULE_NAME("TIMER")
   59 
   60 static device_t                 acpi_timer_dev;
   61 static struct resource          *acpi_timer_reg;
   62 static bus_space_handle_t       acpi_timer_bsh;
   63 static bus_space_tag_t          acpi_timer_bst;
   64 static eventhandler_tag         acpi_timer_eh;
   65 
   66 static u_int    acpi_timer_frequency = 14318182 / 4;
   67 
   68 /* Knob to disable acpi_timer device */
   69 bool acpi_timer_disabled = false;
   70 
   71 static void     acpi_timer_identify(driver_t *driver, device_t parent);
   72 static int      acpi_timer_probe(device_t dev);
   73 static int      acpi_timer_attach(device_t dev);
   74 static void     acpi_timer_resume_handler(struct timecounter *);
   75 static void     acpi_timer_suspend_handler(struct timecounter *);
   76 static u_int    acpi_timer_get_timecount(struct timecounter *tc);
   77 static u_int    acpi_timer_get_timecount_safe(struct timecounter *tc);
   78 static int      acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS);
   79 static void     acpi_timer_boot_test(void);
   80 
   81 static int      acpi_timer_test(void);
   82 static int      acpi_timer_test_enabled = 0;
   83 TUNABLE_INT("hw.acpi.timer_test_enabled", &acpi_timer_test_enabled);
   84 
   85 static device_method_t acpi_timer_methods[] = {
   86     DEVMETHOD(device_identify,  acpi_timer_identify),
   87     DEVMETHOD(device_probe,     acpi_timer_probe),
   88     DEVMETHOD(device_attach,    acpi_timer_attach),
   89 
   90     DEVMETHOD_END
   91 };
   92 
   93 static driver_t acpi_timer_driver = {
   94     "acpi_timer",
   95     acpi_timer_methods,
   96     0,
   97 };
   98 
   99 DRIVER_MODULE(acpi_timer, acpi, acpi_timer_driver, 0, 0);
  100 MODULE_DEPEND(acpi_timer, acpi, 1, 1, 1);
  101 
  102 static struct timecounter acpi_timer_timecounter = {
  103         acpi_timer_get_timecount_safe,  /* get_timecount function */
  104         0,                              /* no poll_pps */
  105         0,                              /* no default counter_mask */
  106         0,                              /* no default frequency */
  107         "ACPI",                         /* name */
  108         -1                              /* quality (chosen later) */
  109 };
  110 
  111 static __inline uint32_t
  112 acpi_timer_read(void)
  113 {
  114 
  115     return (bus_space_read_4(acpi_timer_bst, acpi_timer_bsh, 0));
  116 }
  117 
  118 /*
  119  * Locate the ACPI timer using the FADT, set up and allocate the I/O resources
  120  * we will be using.
  121  */
  122 static void
  123 acpi_timer_identify(driver_t *driver, device_t parent)
  124 {
  125     device_t dev;
  126     rman_res_t rlen, rstart;
  127     int rid, rtype;
  128 
  129     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  130 
  131     if (acpi_disabled("timer") || (acpi_quirks & ACPI_Q_TIMER) ||
  132         acpi_timer_dev || acpi_timer_disabled ||
  133         AcpiGbl_FADT.PmTimerLength == 0)
  134         return_VOID;
  135 
  136     if ((dev = BUS_ADD_CHILD(parent, 2, "acpi_timer", 0)) == NULL) {
  137         device_printf(parent, "could not add acpi_timer0\n");
  138         return_VOID;
  139     }
  140     acpi_timer_dev = dev;
  141 
  142     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
  143     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
  144         rtype = SYS_RES_MEMORY;
  145         break;
  146     case ACPI_ADR_SPACE_SYSTEM_IO:
  147         rtype = SYS_RES_IOPORT;
  148         break;
  149     default:
  150         return_VOID;
  151     }
  152     rid = 0;
  153     rlen = AcpiGbl_FADT.PmTimerLength;
  154     rstart = AcpiGbl_FADT.XPmTimerBlock.Address;
  155     if (bus_set_resource(dev, rtype, rid, rstart, rlen))
  156         device_printf(dev, "couldn't set resource (%s 0x%jx+0x%jx)\n",
  157             (rtype == SYS_RES_IOPORT) ? "port" : "mem", rstart, rlen);
  158     return_VOID;
  159 }
  160 
  161 static int
  162 acpi_timer_probe(device_t dev)
  163 {
  164     char desc[40];
  165     int i, j, rid, rtype;
  166 
  167     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  168 
  169     if (dev != acpi_timer_dev)
  170         return (ENXIO);
  171 
  172     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
  173     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
  174         rtype = SYS_RES_MEMORY;
  175         break;
  176     case ACPI_ADR_SPACE_SYSTEM_IO:
  177         rtype = SYS_RES_IOPORT;
  178         break;
  179     default:
  180         return (ENXIO);
  181     }
  182     rid = 0;
  183     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
  184     if (acpi_timer_reg == NULL) {
  185         device_printf(dev, "couldn't allocate resource (%s 0x%lx)\n",
  186             (rtype == SYS_RES_IOPORT) ? "port" : "mem",
  187             (u_long)AcpiGbl_FADT.XPmTimerBlock.Address);
  188         return (ENXIO);
  189     }
  190     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
  191     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
  192     if (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER)
  193         acpi_timer_timecounter.tc_counter_mask = 0xffffffff;
  194     else
  195         acpi_timer_timecounter.tc_counter_mask = 0x00ffffff;
  196     acpi_timer_timecounter.tc_frequency = acpi_timer_frequency;
  197     acpi_timer_timecounter.tc_flags = TC_FLAGS_SUSPEND_SAFE;
  198     if (testenv("debug.acpi.timer_test"))
  199         acpi_timer_boot_test();
  200 
  201     /*
  202      * If all tests of the counter succeed, use the ACPI-fast method.  If
  203      * at least one failed, default to using the safe routine, which reads
  204      * the timer multiple times to get a consistent value before returning.
  205      */
  206     j = 0;
  207     if (bootverbose)
  208         printf("ACPI timer:");
  209     for (i = 0; i < 10; i++)
  210         j += acpi_timer_test();
  211     if (bootverbose)
  212         printf(" -> %d\n", j);
  213     if (j == 10) {
  214         acpi_timer_timecounter.tc_name = "ACPI-fast";
  215         acpi_timer_timecounter.tc_get_timecount = acpi_timer_get_timecount;
  216         acpi_timer_timecounter.tc_quality = 900;
  217     } else {
  218         acpi_timer_timecounter.tc_name = "ACPI-safe";
  219         acpi_timer_timecounter.tc_get_timecount = acpi_timer_get_timecount_safe;
  220         acpi_timer_timecounter.tc_quality = 850;
  221     }
  222     tc_init(&acpi_timer_timecounter);
  223 
  224     sprintf(desc, "%d-bit timer at %u.%06uMHz",
  225         (AcpiGbl_FADT.Flags & ACPI_FADT_32BIT_TIMER) != 0 ? 32 : 24,
  226         acpi_timer_frequency / 1000000, acpi_timer_frequency % 1000000);
  227     device_set_desc_copy(dev, desc);
  228 
  229     /* Release the resource, we'll allocate it again during attach. */
  230     bus_release_resource(dev, rtype, rid, acpi_timer_reg);
  231     return (0);
  232 }
  233 
  234 static int
  235 acpi_timer_attach(device_t dev)
  236 {
  237     int rid, rtype;
  238 
  239     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
  240 
  241     switch (AcpiGbl_FADT.XPmTimerBlock.SpaceId) {
  242     case ACPI_ADR_SPACE_SYSTEM_MEMORY:
  243         rtype = SYS_RES_MEMORY;
  244         break;
  245     case ACPI_ADR_SPACE_SYSTEM_IO:
  246         rtype = SYS_RES_IOPORT;
  247         break;
  248     default:
  249         return (ENXIO);
  250     }
  251     rid = 0;
  252     acpi_timer_reg = bus_alloc_resource_any(dev, rtype, &rid, RF_ACTIVE);
  253     if (acpi_timer_reg == NULL)
  254         return (ENXIO);
  255     acpi_timer_bsh = rman_get_bushandle(acpi_timer_reg);
  256     acpi_timer_bst = rman_get_bustag(acpi_timer_reg);
  257 
  258     /* Register suspend event handler. */
  259     if (EVENTHANDLER_REGISTER(power_suspend, acpi_timer_suspend_handler,
  260         &acpi_timer_timecounter, EVENTHANDLER_PRI_LAST) == NULL)
  261         device_printf(dev, "failed to register suspend event handler\n");
  262 
  263     return (0);
  264 }
  265 
  266 static void
  267 acpi_timer_resume_handler(struct timecounter *newtc)
  268 {
  269         struct timecounter *tc;
  270 
  271         tc = timecounter;
  272         if (tc != newtc) {
  273                 if (bootverbose)
  274                         device_printf(acpi_timer_dev,
  275                             "restoring timecounter, %s -> %s\n",
  276                             tc->tc_name, newtc->tc_name);
  277                 (void)newtc->tc_get_timecount(newtc);
  278                 timecounter = newtc;
  279         }
  280 }
  281 
  282 static void
  283 acpi_timer_suspend_handler(struct timecounter *newtc)
  284 {
  285         struct timecounter *tc;
  286 
  287         /* Deregister existing resume event handler. */
  288         if (acpi_timer_eh != NULL) {
  289                 EVENTHANDLER_DEREGISTER(power_resume, acpi_timer_eh);
  290                 acpi_timer_eh = NULL;
  291         }
  292 
  293         if ((timecounter->tc_flags & TC_FLAGS_SUSPEND_SAFE) != 0) {
  294                 /*
  295                  * If we are using a suspend safe timecounter, don't
  296                  * save/restore it across suspend/resume.
  297                  */
  298                 return;
  299         }
  300 
  301         KASSERT(newtc == &acpi_timer_timecounter,
  302             ("acpi_timer_suspend_handler: wrong timecounter"));
  303 
  304         tc = timecounter;
  305         if (tc != newtc) {
  306                 if (bootverbose)
  307                         device_printf(acpi_timer_dev,
  308                             "switching timecounter, %s -> %s\n",
  309                             tc->tc_name, newtc->tc_name);
  310                 (void)acpi_timer_read();
  311                 (void)acpi_timer_read();
  312                 timecounter = newtc;
  313                 acpi_timer_eh = EVENTHANDLER_REGISTER(power_resume,
  314                     acpi_timer_resume_handler, tc, EVENTHANDLER_PRI_LAST);
  315         }
  316 }
  317 
  318 /*
  319  * Fetch current time value from reliable hardware.
  320  */
  321 static u_int
  322 acpi_timer_get_timecount(struct timecounter *tc)
  323 {
  324     return (acpi_timer_read());
  325 }
  326 
  327 /*
  328  * Fetch current time value from hardware that may not correctly
  329  * latch the counter.  We need to read until we have three monotonic
  330  * samples and then use the middle one, otherwise we are not protected
  331  * against the fact that the bits can be wrong in two directions.  If
  332  * we only cared about monosity, two reads would be enough.
  333  */
  334 static u_int
  335 acpi_timer_get_timecount_safe(struct timecounter *tc)
  336 {
  337     u_int u1, u2, u3;
  338 
  339     u2 = acpi_timer_read();
  340     u3 = acpi_timer_read();
  341     do {
  342         u1 = u2;
  343         u2 = u3;
  344         u3 = acpi_timer_read();
  345     } while (u1 > u2 || u2 > u3);
  346 
  347     return (u2);
  348 }
  349 
  350 /*
  351  * Timecounter freqency adjustment interface.
  352  */ 
  353 static int
  354 acpi_timer_sysctl_freq(SYSCTL_HANDLER_ARGS)
  355 {
  356     int error;
  357     u_int freq;
  358 
  359     if (acpi_timer_timecounter.tc_frequency == 0)
  360         return (EOPNOTSUPP);
  361     freq = acpi_timer_frequency;
  362     error = sysctl_handle_int(oidp, &freq, 0, req);
  363     if (error == 0 && req->newptr != NULL) {
  364         acpi_timer_frequency = freq;
  365         acpi_timer_timecounter.tc_frequency = acpi_timer_frequency;
  366     }
  367 
  368     return (error);
  369 }
  370 
  371 SYSCTL_PROC(_machdep, OID_AUTO, acpi_timer_freq,
  372     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
  373     acpi_timer_sysctl_freq, "I",
  374     "ACPI timer frequency");
  375 
  376 /*
  377  * Some ACPI timers are known or believed to suffer from implementation
  378  * problems which can lead to erroneous values being read.  This function
  379  * tests for consistent results from the timer and returns 1 if it believes
  380  * the timer is consistent, otherwise it returns 0.
  381  *
  382  * It appears the cause is that the counter is not latched to the PCI bus
  383  * clock when read:
  384  *
  385  * ] 20. ACPI Timer Errata
  386  * ]
  387  * ]   Problem: The power management timer may return improper result when
  388  * ]   read. Although the timer value settles properly after incrementing,
  389  * ]   while incrementing there is a 3nS window every 69.8nS where the
  390  * ]   timer value is indeterminate (a 4.2% chance that the data will be
  391  * ]   incorrect when read). As a result, the ACPI free running count up
  392  * ]   timer specification is violated due to erroneous reads.  Implication:
  393  * ]   System hangs due to the "inaccuracy" of the timer when used by
  394  * ]   software for time critical events and delays.
  395  * ]
  396  * ] Workaround: Read the register twice and compare.
  397  * ] Status: This will not be fixed in the PIIX4 or PIIX4E, it is fixed
  398  * ] in the PIIX4M.
  399  */
  400 #define N 2000
  401 static int
  402 acpi_timer_test(void)
  403 {
  404     uint32_t last, this;
  405     int delta, max, max2, min, n;
  406     register_t s;
  407 
  408     /* Skip the test based on the hw.acpi.timer_test_enabled tunable. */
  409     if (!acpi_timer_test_enabled)
  410         return (1);
  411 
  412     TSENTER();
  413 
  414     min = INT32_MAX;
  415     max = max2 = 0;
  416 
  417     /* Test the timer with interrupts disabled to get accurate results. */
  418     s = intr_disable();
  419     last = acpi_timer_read();
  420     for (n = 0; n < N; n++) {
  421         this = acpi_timer_read();
  422         delta = acpi_TimerDelta(this, last);
  423         if (delta > max) {
  424             max2 = max;
  425             max = delta;
  426         } else if (delta > max2)
  427             max2 = delta;
  428         if (delta < min)
  429             min = delta;
  430         last = this;
  431     }
  432     intr_restore(s);
  433 
  434     delta = max2 - min;
  435     if ((max - min > 8 || delta > 3) && vm_guest == VM_GUEST_NO)
  436         n = 0;
  437     else if (min < 0 || max == 0 || max2 == 0)
  438         n = 0;
  439     else
  440         n = 1;
  441     if (bootverbose)
  442         printf(" %d/%d", n, delta);
  443 
  444     TSEXIT();
  445 
  446     return (n);
  447 }
  448 #undef N
  449 
  450 /*
  451  * Test harness for verifying ACPI timer behaviour.
  452  * Boot with debug.acpi.timer_test set to invoke this.
  453  */
  454 static void
  455 acpi_timer_boot_test(void)
  456 {
  457     uint32_t u1, u2, u3;
  458 
  459     u1 = acpi_timer_read();
  460     u2 = acpi_timer_read();
  461     u3 = acpi_timer_read();
  462 
  463     device_printf(acpi_timer_dev, "timer test in progress, reboot to quit.\n");
  464     for (;;) {
  465         /*
  466          * The failure case is where u3 > u1, but u2 does not fall between
  467          * the two, ie. it contains garbage.
  468          */
  469         if (u3 > u1) {
  470             if (u2 < u1 || u2 > u3)
  471                 device_printf(acpi_timer_dev,
  472                               "timer is not monotonic: 0x%08x,0x%08x,0x%08x\n",
  473                               u1, u2, u3);
  474         }
  475         u1 = u2;
  476         u2 = u3;
  477         u3 = acpi_timer_read();
  478     }
  479 }

Cache object: a459428eedb0c380ce8bc5fef7993298


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.