The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/advansys/adwlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Low level routines for Second Generation
    3  * Advanced Systems Inc. SCSI controllers chips
    4  *
    5  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions, and the following disclaimer,
   13  *    without modification.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. The name of the author may not be used to endorse or promote products
   18  *    derived from this software without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
   24  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 /*-
   33  * Ported from:
   34  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   35  *     
   36  * Copyright (c) 1995-1998 Advanced System Products, Inc.
   37  * All Rights Reserved.
   38  *   
   39  * Redistribution and use in source and binary forms, with or without
   40  * modification, are permitted provided that redistributions of source
   41  * code retain the above copyright notice and this comment without
   42  * modification.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/6.1/sys/dev/advansys/adwlib.c 146734 2005-05-29 04:42:30Z nyan $");
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/bus.h>
   51 
   52 #include <machine/bus.h>
   53 
   54 #include <cam/cam.h>
   55 #include <cam/cam_ccb.h>
   56 #include <cam/cam_sim.h>
   57 #include <cam/cam_xpt_sim.h>
   58 #include <cam/scsi/scsi_all.h>
   59 
   60 #include <dev/advansys/adwlib.h>
   61 
   62 const struct adw_eeprom adw_asc3550_default_eeprom =
   63 {
   64         ADW_EEPROM_BIOS_ENABLE,         /* cfg_lsw */
   65         0x0000,                         /* cfg_msw */
   66         0xFFFF,                         /* disc_enable */
   67         0xFFFF,                         /* wdtr_able */
   68         { 0xFFFF },                     /* sdtr_able */
   69         0xFFFF,                         /* start_motor */
   70         0xFFFF,                         /* tagqng_able */
   71         0xFFFF,                         /* bios_scan */
   72         0,                              /* scam_tolerant */
   73         7,                              /* adapter_scsi_id */
   74         0,                              /* bios_boot_delay */
   75         3,                              /* scsi_reset_delay */
   76         0,                              /* bios_id_lun */
   77         0,                              /* termination */
   78         0,                              /* reserved1 */
   79         0xFFE7,                         /* bios_ctrl */
   80         { 0xFFFF },                     /* ultra_able */   
   81         { 0 },                          /* reserved2 */
   82         ADW_DEF_MAX_HOST_QNG,           /* max_host_qng */
   83         ADW_DEF_MAX_DVC_QNG,            /* max_dvc_qng */
   84         0,                              /* dvc_cntl */
   85         { 0 },                          /* bug_fix */
   86         { 0, 0, 0 },                    /* serial_number */
   87         0,                              /* check_sum */
   88         {                               /* oem_name[16] */
   89           0, 0, 0, 0, 0, 0, 0, 0,
   90           0, 0, 0, 0, 0, 0, 0, 0
   91         },
   92         0,                              /* dvc_err_code */
   93         0,                              /* adv_err_code */
   94         0,                              /* adv_err_addr */
   95         0,                              /* saved_dvc_err_code */
   96         0,                              /* saved_adv_err_code */
   97         0                               /* saved_adv_err_addr */
   98 };
   99 
  100 const struct adw_eeprom adw_asc38C0800_default_eeprom =
  101 {
  102         ADW_EEPROM_BIOS_ENABLE,         /* 00 cfg_lsw */
  103         0x0000,                         /* 01 cfg_msw */
  104         0xFFFF,                         /* 02 disc_enable */
  105         0xFFFF,                         /* 03 wdtr_able */
  106         { 0x4444 },                     /* 04 sdtr_speed1 */
  107         0xFFFF,                         /* 05 start_motor */
  108         0xFFFF,                         /* 06 tagqng_able */
  109         0xFFFF,                         /* 07 bios_scan */
  110         0,                              /* 08 scam_tolerant */
  111         7,                              /* 09 adapter_scsi_id */
  112         0,                              /*    bios_boot_delay */
  113         3,                              /* 10 scsi_reset_delay */
  114         0,                              /*    bios_id_lun */
  115         0,                              /* 11 termination_se */
  116         0,                              /*    termination_lvd */
  117         0xFFE7,                         /* 12 bios_ctrl */
  118         { 0x4444 },                     /* 13 sdtr_speed2 */
  119         { 0x4444 },                     /* 14 sdtr_speed3 */
  120         ADW_DEF_MAX_HOST_QNG,           /* 15 max_host_qng */
  121         ADW_DEF_MAX_DVC_QNG,            /*    max_dvc_qng */
  122         0,                              /* 16 dvc_cntl */
  123         { 0x4444 } ,                    /* 17 sdtr_speed4 */
  124         { 0, 0, 0 },                    /* 18-20 serial_number */
  125         0,                              /* 21 check_sum */
  126         {                               /* 22-29 oem_name[16] */
  127           0, 0, 0, 0, 0, 0, 0, 0,
  128           0, 0, 0, 0, 0, 0, 0, 0
  129         },
  130         0,                              /* 30 dvc_err_code */
  131         0,                              /* 31 adv_err_code */
  132         0,                              /* 32 adv_err_addr */
  133         0,                              /* 33 saved_dvc_err_code */
  134         0,                              /* 34 saved_adv_err_code */
  135         0,                              /* 35 saved_adv_err_addr */
  136         {                               /* 36 - 55 reserved */
  137           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  138           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  139         },
  140         0,                              /* 56 cisptr_lsw */
  141         0,                              /* 57 cisprt_msw */
  142                                         /* 58-59 sub-id */
  143         (PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
  144 };
  145 
  146 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT    0
  147 #define ADW_MC_SDTR_OFFSET_ULTRA2       1
  148 #define ADW_MC_SDTR_OFFSET_ULTRA        2
  149 const struct adw_syncrate adw_syncrates[] =
  150 {
  151         /*   mc_sdtr              period      rate */
  152         { ADW_MC_SDTR_80,           9,       "80.0"  },
  153         { ADW_MC_SDTR_40,           10,      "40.0"  },
  154         { ADW_MC_SDTR_20,           12,      "20.0"  },
  155         { ADW_MC_SDTR_10,           25,      "10.0"  },
  156         { ADW_MC_SDTR_5,            50,      "5.0"   },
  157         { ADW_MC_SDTR_ASYNC,        0,       "async" }
  158 };
  159 
  160 const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
  161 
  162 static u_int16_t        adw_eeprom_read_16(struct adw_softc *adw, int addr);
  163 static void             adw_eeprom_write_16(struct adw_softc *adw, int addr,
  164                                             u_int data);
  165 static void             adw_eeprom_wait(struct adw_softc *adw);
  166 
  167 int
  168 adw_find_signature(struct adw_softc *adw)
  169 {
  170         if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
  171          && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
  172                 return (1);
  173         return (0);
  174 }
  175 
  176 /*
  177  * Reset Chip.
  178  */
  179 void
  180 adw_reset_chip(struct adw_softc *adw)
  181 {
  182         adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
  183         DELAY(1000 * 100);
  184         adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
  185 
  186         /*
  187          * Initialize Chip registers.
  188          */
  189         adw_outw(adw, ADW_SCSI_CFG1,
  190                  adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
  191 }
  192 
  193 /*
  194  * Reset the SCSI bus.
  195  */
  196 int
  197 adw_reset_bus(struct adw_softc *adw)
  198 {
  199         adw_idle_cmd_status_t status;
  200 
  201         status =
  202             adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
  203         if (status != ADW_IDLE_CMD_SUCCESS) {
  204                 xpt_print_path(adw->path);
  205                 printf("Bus Reset start attempt failed\n");
  206                 return (1);
  207         }
  208         DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
  209         status =
  210             adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
  211         if (status != ADW_IDLE_CMD_SUCCESS) {
  212                 xpt_print_path(adw->path);
  213                 printf("Bus Reset end attempt failed\n");
  214                 return (1);
  215         }
  216         return (0);
  217 }
  218 
  219 /*
  220  * Read the specified EEPROM location
  221  */
  222 static u_int16_t
  223 adw_eeprom_read_16(struct adw_softc *adw, int addr)
  224 {
  225         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
  226         adw_eeprom_wait(adw);
  227         return (adw_inw(adw, ADW_EEP_DATA));
  228 }
  229 
  230 static void
  231 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
  232 {
  233         adw_outw(adw, ADW_EEP_DATA, data);
  234         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
  235         adw_eeprom_wait(adw);
  236 }
  237 
  238 /*
  239  * Wait for and EEPROM command to complete
  240  */
  241 static void
  242 adw_eeprom_wait(struct adw_softc *adw)
  243 {
  244         int i;
  245 
  246         for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
  247                 if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
  248                         break;
  249                 DELAY(1000);
  250         }
  251         if (i == ADW_EEP_DELAY_MS)
  252                 panic("%s: Timedout Reading EEPROM", adw_name(adw));
  253 }
  254 
  255 /*
  256  * Read EEPROM configuration into the specified buffer.
  257  *
  258  * Return a checksum based on the EEPROM configuration read.
  259  */
  260 u_int16_t
  261 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
  262 {
  263         u_int16_t *wbuf;
  264         u_int16_t  wval;
  265         u_int16_t  chksum;
  266         int        eep_addr;
  267 
  268         wbuf = (u_int16_t *)eep_buf;
  269         chksum = 0;
  270 
  271         for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
  272              eep_addr < ADW_EEP_DVC_CFG_END;
  273              eep_addr++, wbuf++) {
  274                 wval = adw_eeprom_read_16(adw, eep_addr);
  275                 chksum += wval;
  276                 *wbuf = wval;
  277         }
  278 
  279         /* checksum field is not counted in the checksum */
  280         *wbuf = adw_eeprom_read_16(adw, eep_addr);
  281         wbuf++;
  282         
  283         /* Driver seeprom variables are not included in the checksum */
  284         for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
  285              eep_addr < ADW_EEP_MAX_WORD_ADDR;
  286              eep_addr++, wbuf++)
  287                 *wbuf = adw_eeprom_read_16(adw, eep_addr);
  288 
  289         return (chksum);
  290 }
  291 
  292 void
  293 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
  294 {
  295         u_int16_t *wbuf;
  296         u_int16_t  addr;
  297         u_int16_t  chksum;
  298 
  299         wbuf = (u_int16_t *)eep_buf;
  300         chksum = 0;
  301 
  302         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
  303         adw_eeprom_wait(adw);
  304 
  305         /*
  306          * Write EEPROM until checksum.
  307          */
  308         for (addr = ADW_EEP_DVC_CFG_BEGIN;
  309              addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
  310                 chksum += *wbuf;
  311                 adw_eeprom_write_16(adw, addr, *wbuf);
  312         }
  313 
  314         /*
  315          * Write calculated EEPROM checksum
  316          */
  317         adw_eeprom_write_16(adw, addr, chksum);
  318 
  319         /* skip over buffer's checksum */
  320         wbuf++;
  321 
  322         /*
  323          * Write the rest.
  324          */
  325         for (addr = ADW_EEP_DVC_CTL_BEGIN;
  326              addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
  327                 adw_eeprom_write_16(adw, addr, *wbuf);
  328 
  329         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
  330         adw_eeprom_wait(adw);
  331 }
  332 
  333 int
  334 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
  335 {
  336         u_int8_t            biosmem[ADW_MC_BIOSLEN];
  337         const u_int16_t    *word_table;
  338         const u_int8_t     *byte_codes;
  339         const u_int8_t     *byte_codes_end;
  340         u_int               bios_sig;
  341         u_int               bytes_downloaded;
  342         u_int               addr;
  343         u_int               end_addr;
  344         u_int               checksum;
  345         u_int               scsicfg1;
  346         u_int               tid;
  347 
  348         /*
  349          * Save the RISC memory BIOS region before writing the microcode.
  350          * The BIOS may already be loaded and using its RISC LRAM region
  351          * so its region must be saved and restored.
  352          */
  353         for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
  354                 biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
  355 
  356         /*
  357          * Save current per TID negotiated values if the BIOS has been
  358          * loaded (BIOS signature is present).  These will be used if
  359          * we cannot get information from the EEPROM.
  360          */
  361         addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
  362         bios_sig = biosmem[addr]
  363                  | (biosmem[addr + 1] << 8);
  364         if (bios_sig == 0x55AA
  365          && (adw->flags & ADW_EEPROM_FAILED) != 0) {
  366                 u_int major_ver;
  367                 u_int minor_ver;
  368                 u_int sdtr_able;
  369 
  370                 addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
  371                 minor_ver = biosmem[addr + 1] & 0xF;
  372                 major_ver = (biosmem[addr + 1] >> 4) & 0xF;
  373                 if ((adw->chip == ADW_CHIP_ASC3550)
  374                  && (major_ver <= 3
  375                   || (major_ver == 3 && minor_ver <= 1))) {
  376                         /*
  377                          * BIOS 3.1 and earlier location of
  378                          * 'wdtr_able' variable.
  379                          */
  380                         adw->user_wdtr =
  381                             adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
  382                 } else {
  383                         adw->user_wdtr =
  384                             adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
  385                 }
  386                 sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
  387                 for (tid = 0; tid < ADW_MAX_TID; tid++) {
  388                         u_int tid_mask;
  389                         u_int mc_sdtr;
  390 
  391                         tid_mask = 0x1 << tid;
  392                         if ((sdtr_able & tid_mask) == 0)
  393                                 mc_sdtr = ADW_MC_SDTR_ASYNC;
  394                         else if ((adw->features & ADW_DT) != 0)
  395                                 mc_sdtr = ADW_MC_SDTR_80;
  396                         else if ((adw->features & ADW_ULTRA2) != 0)
  397                                 mc_sdtr = ADW_MC_SDTR_40;
  398                         else
  399                                 mc_sdtr = ADW_MC_SDTR_20;
  400                         adw_set_user_sdtr(adw, tid, mc_sdtr);
  401                 }
  402                 adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
  403         }
  404 
  405         /*
  406          * Load the Microcode.
  407          *
  408          * Assume the following compressed format of the microcode buffer:
  409          *
  410          *      253 word (506 byte) table indexed by byte code followed
  411          *      by the following byte codes:
  412          *
  413          *      1-Byte Code:
  414          *              00: Emit word 0 in table.
  415          *              01: Emit word 1 in table.
  416          *              .
  417          *              FD: Emit word 253 in table.
  418          *
  419          *      Multi-Byte Code:
  420          *              FD RESEVED
  421          *
  422          *              FE WW WW: (3 byte code)
  423          *                      Word to emit is the next word WW WW.
  424          *              FF BB WW WW: (4 byte code)
  425          *                      Emit BB count times next word WW WW.
  426          *
  427          */
  428         bytes_downloaded = 0;
  429         word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
  430         byte_codes = (const u_int8_t *)&word_table[253];
  431         byte_codes_end = adw->mcode_data->mcode_buf
  432                        + adw->mcode_data->mcode_size;
  433         adw_outw(adw, ADW_RAM_ADDR, 0);
  434         while (byte_codes < byte_codes_end) {
  435                 if (*byte_codes == 0xFF) {
  436                         u_int16_t value;
  437 
  438                         value = byte_codes[2]
  439                               | byte_codes[3] << 8;
  440                         adw_set_multi_2(adw, ADW_RAM_DATA,
  441                                         value, byte_codes[1]);
  442                         bytes_downloaded += byte_codes[1];
  443                         byte_codes += 4;
  444                 } else if (*byte_codes == 0xFE) {
  445                         u_int16_t value;
  446 
  447                         value = byte_codes[1]
  448                               | byte_codes[2] << 8;
  449                         adw_outw(adw, ADW_RAM_DATA, value);
  450                         bytes_downloaded++;
  451                         byte_codes += 3;
  452                 } else {
  453                         adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
  454                         bytes_downloaded++;
  455                         byte_codes++;
  456                 }
  457         }
  458         /* Convert from words to bytes */
  459         bytes_downloaded *= 2;
  460 
  461         /*
  462          * Clear the rest of LRAM.
  463          */
  464         for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
  465                 adw_outw(adw, ADW_RAM_DATA, 0);
  466 
  467         /*
  468          * Verify the microcode checksum.
  469          */
  470         checksum = 0;
  471         adw_outw(adw, ADW_RAM_ADDR, 0);
  472         for (addr = 0; addr < bytes_downloaded; addr += 2)
  473                 checksum += adw_inw(adw, ADW_RAM_DATA);
  474 
  475         if (checksum != adw->mcode_data->mcode_chksum) {
  476                 printf("%s: Firmware load failed!\n", adw_name(adw));
  477                 return (EIO);
  478         }
  479 
  480         /*
  481          * Restore the RISC memory BIOS region.
  482          */
  483         for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
  484                 adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
  485 
  486         /*
  487          * Calculate and write the microcode code checksum to
  488          * the microcode code checksum location.
  489          */
  490         addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
  491         end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
  492         checksum = 0;
  493         adw_outw(adw, ADW_RAM_ADDR, addr);
  494         for (; addr < end_addr; addr += 2)
  495                 checksum += adw_inw(adw, ADW_RAM_DATA);
  496         adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
  497 
  498         /*
  499          * Tell the microcode what kind of chip it's running on.
  500          */
  501         adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
  502 
  503         /*
  504          * Leave WDTR and SDTR negotiation disabled until the XPT has
  505          * informed us of device capabilities, but do set the desired
  506          * user rates in case we receive an SDTR request from the target
  507          * before we negotiate.  We turn on tagged queuing at the microcode
  508          * level for all devices, and modulate this on a per command basis.
  509          */
  510         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
  511         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
  512         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
  513         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
  514         adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
  515         for (tid = 0; tid < ADW_MAX_TID; tid++) {
  516                 /* Cam limits the maximum number of commands for us */
  517                 adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
  518                                  adw->max_acbs);
  519         }
  520         adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
  521 
  522         /*
  523          * Set SCSI_CFG0 Microcode Default Value.
  524          *
  525          * The microcode will set the SCSI_CFG0 register using this value
  526          * after it is started.
  527          */
  528         adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
  529                           ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
  530                           ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
  531 
  532         /*
  533          * Tell the MC about the memory size that
  534          * was setup by the probe code.
  535          */
  536         adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
  537                           adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
  538 
  539         /*
  540          * Determine SCSI_CFG1 Microcode Default Value.
  541          *
  542          * The microcode will set the SCSI_CFG1 register using this value
  543          * after it is started below.
  544          */
  545         scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
  546 
  547         /*
  548          * If the internal narrow cable is reversed all of the SCSI_CTRL
  549          * register signals will be set. Check for and return an error if
  550          * this condition is found.
  551          */
  552         if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
  553                 printf("%s: Illegal Cable Config!\n", adw_name(adw));
  554                 printf("%s: Internal cable is reversed!\n", adw_name(adw));
  555                 return (EIO);
  556         }
  557 
  558         /*
  559          * If this is a differential board and a single-ended device
  560          * is attached to one of the connectors, return an error.
  561          */
  562         if ((adw->features & ADW_ULTRA) != 0)  {
  563                 if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
  564                  && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
  565                         printf("%s: A Single Ended Device is attached to our "
  566                                "differential bus!\n", adw_name(adw));
  567                         return (EIO);
  568                 }
  569         } else {
  570                 if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
  571                         printf("%s: A High Voltage Differential Device "
  572                                "is attached to this controller.\n",
  573                                adw_name(adw));
  574                         printf("%s: HVD devices are not supported.\n",
  575                                adw_name(adw));
  576                         return (EIO);
  577                 }
  578         }
  579 
  580         /*
  581          * Perform automatic termination control if desired.
  582          */
  583         if ((adw->features & ADW_ULTRA2) != 0) {
  584                 u_int cable_det;
  585 
  586                 /*
  587                  * Ultra2 Chips require termination disabled to
  588                  * detect cable presence.
  589                  */
  590                 adw_outw(adw, ADW_SCSI_CFG1,
  591                          scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
  592                 cable_det = adw_inw(adw, ADW_SCSI_CFG1);
  593                 adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
  594 
  595                 /* SE Termination first if auto-term has been specified */
  596                 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
  597 
  598                         /*
  599                          * For all SE cable configurations, high byte
  600                          * termination is enabled.
  601                          */
  602                         term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
  603                         if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
  604                          || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
  605                                 /*
  606                                  * If either cable is not present, the
  607                                  * low byte must be terminated as well.
  608                                  */
  609                                 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
  610                         }
  611                 }
  612 
  613                 /* LVD auto-term */
  614                 if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
  615                  && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
  616                         /*
  617                          * If both cables are installed, termination
  618                          * is disabled.  Otherwise it is enabled.
  619                          */
  620                         if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
  621                          || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
  622 
  623                                 term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
  624                         }
  625                 }
  626                 term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
  627         } else {
  628                 /* Ultra Controller Termination */
  629                 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
  630                         int cable_count;
  631                         int wide_cable_count;
  632 
  633                         cable_count = 0;
  634                         wide_cable_count = 0;
  635                         if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
  636                                 cable_count++;
  637                                 wide_cable_count++;
  638                         }
  639                         if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
  640                                 cable_count++;
  641 
  642                         /* There is only one external port */
  643                         if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
  644                                 cable_count++;
  645                                 wide_cable_count++;
  646                         } else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
  647                                 cable_count++;
  648 
  649                         if (cable_count == 3) {
  650                                 printf("%s: Illegal Cable Config!\n",
  651                                        adw_name(adw));
  652                                 printf("%s: Only Two Ports may be used at "
  653                                        "a time!\n", adw_name(adw));
  654                         } else if (cable_count <= 1) {
  655                                 /*
  656                                  * At least two out of three cables missing.
  657                                  * Terminate both bytes.
  658                                  */
  659                                 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
  660                                               |  ADW_SCSI_CFG1_TERM_CTL_L;
  661                         } else if (wide_cable_count <= 1) {
  662                                 /* No two 16bit cables present.  High on. */
  663                                 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
  664                         }
  665                 }
  666         }
  667 
  668         /* Tell the user about our decission */
  669         switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
  670         case ADW_SCSI_CFG1_TERM_CTL_MASK:
  671                 printf("High & Low SE Term Enabled, ");
  672                 break;
  673         case ADW_SCSI_CFG1_TERM_CTL_H:
  674                 printf("High SE Termination Enabled, ");
  675                 break;
  676         case ADW_SCSI_CFG1_TERM_CTL_L:
  677                 printf("Low SE Term Enabled, ");
  678                 break;
  679         default:
  680                 break;
  681         }
  682 
  683         if ((adw->features & ADW_ULTRA2) != 0
  684          && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
  685                 printf("LVD Term Enabled, ");
  686 
  687         /*
  688          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
  689          * set 'scsicfg1'. The TERM_POL bit does not need to be
  690          * referenced, because the hardware internally inverts
  691          * the Termination High and Low bits if TERM_POL is set.
  692          */
  693         if ((adw->features & ADW_ULTRA2) != 0) {
  694                 term_scsicfg1 = ~term_scsicfg1;
  695                 term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
  696                               |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
  697                 scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
  698                              |ADW2_SCSI_CFG1_TERM_CTL_LVD
  699                              |ADW_SCSI_CFG1_BIG_ENDIAN
  700                              |ADW_SCSI_CFG1_TERM_POL
  701                              |ADW2_SCSI_CFG1_DEV_DETECT);
  702                 scsicfg1 |= term_scsicfg1;
  703         } else {
  704                 term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
  705                 scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
  706                 scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
  707                 scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
  708         }
  709 
  710         /*
  711          * Set SCSI_CFG1 Microcode Default Value
  712          *
  713          * The microcode will set the SCSI_CFG1 register using this value
  714          * after it is started below.
  715          */
  716         adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
  717 
  718         /*
  719          * Only accept selections on our initiator target id.
  720          * This may change in target mode scenarios...
  721          */
  722         adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
  723                           (0x01 << adw->initiator_id));
  724 
  725         /*
  726          * Tell the microcode where it can find our
  727          * Initiator Command Queue (ICQ).  It is
  728          * currently empty hence the "stopper" address.
  729          */
  730         adw->commandq = adw->free_carriers;
  731         adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
  732         adw->commandq->next_ba = ADW_CQ_STOPPER;
  733         adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
  734 
  735         /*
  736          * Tell the microcode where it can find our
  737          * Initiator Response Queue (IRQ).  It too
  738          * is currently empty.
  739          */
  740         adw->responseq = adw->free_carriers;
  741         adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
  742         adw->responseq->next_ba = ADW_CQ_STOPPER;
  743         adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
  744 
  745         adw_outb(adw, ADW_INTR_ENABLES,
  746                  ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
  747 
  748         adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
  749 
  750         return (0);
  751 }
  752 
  753 void
  754 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
  755 {
  756         adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
  757         adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
  758             mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
  759 }
  760 
  761 u_int
  762 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
  763 {
  764         u_int mc_sdtr;
  765 
  766         mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
  767         mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
  768         mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
  769         return (mc_sdtr);
  770 }
  771 
  772 void
  773 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
  774 {
  775         u_int mc_sdtr_offset;
  776         u_int mc_sdtr;
  777 
  778         mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
  779         mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
  780         mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
  781         mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
  782         mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
  783         adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
  784 }
  785 
  786 u_int
  787 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
  788 {
  789         u_int mc_sdtr_offset;
  790         u_int mc_sdtr;
  791 
  792         mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
  793         mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
  794         mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
  795         mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
  796         mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
  797         return (mc_sdtr);
  798 }
  799 
  800 u_int
  801 adw_find_sdtr(struct adw_softc *adw, u_int period)
  802 {
  803         int i;
  804 
  805         i = 0;
  806         if ((adw->features & ADW_DT) == 0)
  807                 i = ADW_MC_SDTR_OFFSET_ULTRA2;
  808         if ((adw->features & ADW_ULTRA2) == 0)
  809                 i = ADW_MC_SDTR_OFFSET_ULTRA;
  810         if (period == 0)
  811                 return ADW_MC_SDTR_ASYNC;
  812 
  813         for (; i < adw_num_syncrates; i++) {
  814                 if (period <= adw_syncrates[i].period)
  815                         return (adw_syncrates[i].mc_sdtr);
  816         }       
  817         return ADW_MC_SDTR_ASYNC;
  818 }
  819 
  820 u_int
  821 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
  822 {
  823         int i;
  824 
  825         for (i = 0; i < adw_num_syncrates; i++) {
  826                 if (mc_sdtr == adw_syncrates[i].mc_sdtr)
  827                         break;
  828         }       
  829         return (adw_syncrates[i].period);
  830 }
  831 
  832 u_int
  833 adw_hshk_cfg_period_factor(u_int tinfo)
  834 {
  835         tinfo &= ADW_HSHK_CFG_RATE_MASK;
  836         tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
  837         if (tinfo == 0x11)
  838                 /* 80MHz/DT */
  839                 return (9);
  840         else if (tinfo == 0x10)
  841                 /* 40MHz */
  842                 return (10);
  843         else
  844                 return (((tinfo * 25) + 50) / 4);
  845 }
  846 
  847 /*
  848  * Send an idle command to the chip and wait for completion.
  849  */
  850 adw_idle_cmd_status_t
  851 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
  852 {
  853         u_int                 timeout;
  854         adw_idle_cmd_status_t status;
  855         int                   s;
  856 
  857         s = splcam();   
  858 
  859         /*
  860          * Clear the idle command status which is set by the microcode
  861          * to a non-zero value to indicate when the command is completed.
  862          */
  863         adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
  864 
  865         /*
  866          * Write the idle command value after the idle command parameter
  867          * has been written to avoid a race condition. If the order is not
  868          * followed, the microcode may process the idle command before the
  869          * parameters have been written to LRAM.
  870          */
  871         adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
  872         adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
  873 
  874         /*
  875          * Tickle the RISC to tell it to process the idle command.
  876          */
  877         adw_tickle_risc(adw, ADW_TICKLE_B);
  878 
  879         /* Wait for up to 10 seconds for the command to complete */
  880         timeout = 5000000;
  881         while (--timeout) {
  882                 status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
  883                 if (status != 0)
  884                         break;
  885                 DELAY(20);
  886         }
  887 
  888         if (timeout == 0)
  889                 panic("%s: Idle Command Timed Out!\n", adw_name(adw));
  890         splx(s);
  891         return (status);
  892 }

Cache object: a6671e71b2840b8ed536ae74b17201f4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.