The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/advansys/adwlib.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Low level routines for Second Generation
    3  * Advanced Systems Inc. SCSI controllers chips
    4  *
    5  * Copyright (c) 1998, 1999, 2000 Justin Gibbs.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions, and the following disclaimer,
   13  *    without modification.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. The name of the author may not be used to endorse or promote products
   18  *    derived from this software without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
   24  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 /*-
   33  * Ported from:
   34  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   35  *     
   36  * Copyright (c) 1995-1998 Advanced System Products, Inc.
   37  * All Rights Reserved.
   38  *   
   39  * Redistribution and use in source and binary forms, with or without
   40  * modification, are permitted provided that redistributions of source
   41  * code retain the above copyright notice and this comment without
   42  * modification.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/9.2/sys/dev/advansys/adwlib.c 251164 2013-05-30 21:54:48Z scottl $");
   47 
   48 #include <sys/param.h>
   49 #include <sys/conf.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/systm.h>
   53 #include <sys/bus.h>
   54 #include <sys/rman.h>
   55 
   56 #include <machine/bus.h>
   57 
   58 #include <cam/cam.h>
   59 #include <cam/cam_ccb.h>
   60 #include <cam/cam_sim.h>
   61 #include <cam/cam_xpt_sim.h>
   62 #include <cam/scsi/scsi_all.h>
   63 
   64 #include <dev/advansys/adwlib.h>
   65 
   66 const struct adw_eeprom adw_asc3550_default_eeprom =
   67 {
   68         ADW_EEPROM_BIOS_ENABLE,         /* cfg_lsw */
   69         0x0000,                         /* cfg_msw */
   70         0xFFFF,                         /* disc_enable */
   71         0xFFFF,                         /* wdtr_able */
   72         { 0xFFFF },                     /* sdtr_able */
   73         0xFFFF,                         /* start_motor */
   74         0xFFFF,                         /* tagqng_able */
   75         0xFFFF,                         /* bios_scan */
   76         0,                              /* scam_tolerant */
   77         7,                              /* adapter_scsi_id */
   78         0,                              /* bios_boot_delay */
   79         3,                              /* scsi_reset_delay */
   80         0,                              /* bios_id_lun */
   81         0,                              /* termination */
   82         0,                              /* reserved1 */
   83         0xFFE7,                         /* bios_ctrl */
   84         { 0xFFFF },                     /* ultra_able */   
   85         { 0 },                          /* reserved2 */
   86         ADW_DEF_MAX_HOST_QNG,           /* max_host_qng */
   87         ADW_DEF_MAX_DVC_QNG,            /* max_dvc_qng */
   88         0,                              /* dvc_cntl */
   89         { 0 },                          /* bug_fix */
   90         { 0, 0, 0 },                    /* serial_number */
   91         0,                              /* check_sum */
   92         {                               /* oem_name[16] */
   93           0, 0, 0, 0, 0, 0, 0, 0,
   94           0, 0, 0, 0, 0, 0, 0, 0
   95         },
   96         0,                              /* dvc_err_code */
   97         0,                              /* adv_err_code */
   98         0,                              /* adv_err_addr */
   99         0,                              /* saved_dvc_err_code */
  100         0,                              /* saved_adv_err_code */
  101         0                               /* saved_adv_err_addr */
  102 };
  103 
  104 const struct adw_eeprom adw_asc38C0800_default_eeprom =
  105 {
  106         ADW_EEPROM_BIOS_ENABLE,         /* 00 cfg_lsw */
  107         0x0000,                         /* 01 cfg_msw */
  108         0xFFFF,                         /* 02 disc_enable */
  109         0xFFFF,                         /* 03 wdtr_able */
  110         { 0x4444 },                     /* 04 sdtr_speed1 */
  111         0xFFFF,                         /* 05 start_motor */
  112         0xFFFF,                         /* 06 tagqng_able */
  113         0xFFFF,                         /* 07 bios_scan */
  114         0,                              /* 08 scam_tolerant */
  115         7,                              /* 09 adapter_scsi_id */
  116         0,                              /*    bios_boot_delay */
  117         3,                              /* 10 scsi_reset_delay */
  118         0,                              /*    bios_id_lun */
  119         0,                              /* 11 termination_se */
  120         0,                              /*    termination_lvd */
  121         0xFFE7,                         /* 12 bios_ctrl */
  122         { 0x4444 },                     /* 13 sdtr_speed2 */
  123         { 0x4444 },                     /* 14 sdtr_speed3 */
  124         ADW_DEF_MAX_HOST_QNG,           /* 15 max_host_qng */
  125         ADW_DEF_MAX_DVC_QNG,            /*    max_dvc_qng */
  126         0,                              /* 16 dvc_cntl */
  127         { 0x4444 } ,                    /* 17 sdtr_speed4 */
  128         { 0, 0, 0 },                    /* 18-20 serial_number */
  129         0,                              /* 21 check_sum */
  130         {                               /* 22-29 oem_name[16] */
  131           0, 0, 0, 0, 0, 0, 0, 0,
  132           0, 0, 0, 0, 0, 0, 0, 0
  133         },
  134         0,                              /* 30 dvc_err_code */
  135         0,                              /* 31 adv_err_code */
  136         0,                              /* 32 adv_err_addr */
  137         0,                              /* 33 saved_dvc_err_code */
  138         0,                              /* 34 saved_adv_err_code */
  139         0,                              /* 35 saved_adv_err_addr */
  140         {                               /* 36 - 55 reserved */
  141           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  142           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  143         },
  144         0,                              /* 56 cisptr_lsw */
  145         0,                              /* 57 cisprt_msw */
  146                                         /* 58-59 sub-id */
  147         (PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
  148 };
  149 
  150 #define ADW_MC_SDTR_OFFSET_ULTRA2_DT    0
  151 #define ADW_MC_SDTR_OFFSET_ULTRA2       1
  152 #define ADW_MC_SDTR_OFFSET_ULTRA        2
  153 const struct adw_syncrate adw_syncrates[] =
  154 {
  155         /*   mc_sdtr              period      rate */
  156         { ADW_MC_SDTR_80,           9,       "80.0"  },
  157         { ADW_MC_SDTR_40,           10,      "40.0"  },
  158         { ADW_MC_SDTR_20,           12,      "20.0"  },
  159         { ADW_MC_SDTR_10,           25,      "10.0"  },
  160         { ADW_MC_SDTR_5,            50,      "5.0"   },
  161         { ADW_MC_SDTR_ASYNC,        0,       "async" }
  162 };
  163 
  164 const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
  165 
  166 static u_int16_t        adw_eeprom_read_16(struct adw_softc *adw, int addr);
  167 static void             adw_eeprom_write_16(struct adw_softc *adw, int addr,
  168                                             u_int data);
  169 static void             adw_eeprom_wait(struct adw_softc *adw);
  170 
  171 int
  172 adw_find_signature(struct adw_softc *adw)
  173 {
  174         if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
  175          && adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
  176                 return (1);
  177         return (0);
  178 }
  179 
  180 /*
  181  * Reset Chip.
  182  */
  183 void
  184 adw_reset_chip(struct adw_softc *adw)
  185 {
  186         adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
  187         DELAY(1000 * 100);
  188         adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
  189 
  190         /*
  191          * Initialize Chip registers.
  192          */
  193         adw_outw(adw, ADW_SCSI_CFG1,
  194                  adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
  195 }
  196 
  197 /*
  198  * Reset the SCSI bus.
  199  */
  200 int
  201 adw_reset_bus(struct adw_softc *adw)
  202 {
  203         adw_idle_cmd_status_t status;
  204 
  205         if (!dumping)
  206                 mtx_assert(&adw->lock, MA_OWNED);
  207         status =
  208             adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
  209         if (status != ADW_IDLE_CMD_SUCCESS) {
  210                 xpt_print_path(adw->path);
  211                 printf("Bus Reset start attempt failed\n");
  212                 return (1);
  213         }
  214         DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
  215         status =
  216             adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
  217         if (status != ADW_IDLE_CMD_SUCCESS) {
  218                 xpt_print_path(adw->path);
  219                 printf("Bus Reset end attempt failed\n");
  220                 return (1);
  221         }
  222         return (0);
  223 }
  224 
  225 /*
  226  * Read the specified EEPROM location
  227  */
  228 static u_int16_t
  229 adw_eeprom_read_16(struct adw_softc *adw, int addr)
  230 {
  231         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
  232         adw_eeprom_wait(adw);
  233         return (adw_inw(adw, ADW_EEP_DATA));
  234 }
  235 
  236 static void
  237 adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
  238 {
  239         adw_outw(adw, ADW_EEP_DATA, data);
  240         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
  241         adw_eeprom_wait(adw);
  242 }
  243 
  244 /*
  245  * Wait for and EEPROM command to complete
  246  */
  247 static void
  248 adw_eeprom_wait(struct adw_softc *adw)
  249 {
  250         int i;
  251 
  252         for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
  253                 if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
  254                         break;
  255                 DELAY(1000);
  256         }
  257         if (i == ADW_EEP_DELAY_MS)
  258                 panic("%s: Timedout Reading EEPROM",
  259                     device_get_nameunit(adw->device));
  260 }
  261 
  262 /*
  263  * Read EEPROM configuration into the specified buffer.
  264  *
  265  * Return a checksum based on the EEPROM configuration read.
  266  */
  267 u_int16_t
  268 adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
  269 {
  270         u_int16_t *wbuf;
  271         u_int16_t  wval;
  272         u_int16_t  chksum;
  273         int        eep_addr;
  274 
  275         wbuf = (u_int16_t *)eep_buf;
  276         chksum = 0;
  277 
  278         for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
  279              eep_addr < ADW_EEP_DVC_CFG_END;
  280              eep_addr++, wbuf++) {
  281                 wval = adw_eeprom_read_16(adw, eep_addr);
  282                 chksum += wval;
  283                 *wbuf = wval;
  284         }
  285 
  286         /* checksum field is not counted in the checksum */
  287         *wbuf = adw_eeprom_read_16(adw, eep_addr);
  288         wbuf++;
  289         
  290         /* Driver seeprom variables are not included in the checksum */
  291         for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
  292              eep_addr < ADW_EEP_MAX_WORD_ADDR;
  293              eep_addr++, wbuf++)
  294                 *wbuf = adw_eeprom_read_16(adw, eep_addr);
  295 
  296         return (chksum);
  297 }
  298 
  299 void
  300 adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
  301 {
  302         u_int16_t *wbuf;
  303         u_int16_t  addr;
  304         u_int16_t  chksum;
  305 
  306         wbuf = (u_int16_t *)eep_buf;
  307         chksum = 0;
  308 
  309         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
  310         adw_eeprom_wait(adw);
  311 
  312         /*
  313          * Write EEPROM until checksum.
  314          */
  315         for (addr = ADW_EEP_DVC_CFG_BEGIN;
  316              addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
  317                 chksum += *wbuf;
  318                 adw_eeprom_write_16(adw, addr, *wbuf);
  319         }
  320 
  321         /*
  322          * Write calculated EEPROM checksum
  323          */
  324         adw_eeprom_write_16(adw, addr, chksum);
  325 
  326         /* skip over buffer's checksum */
  327         wbuf++;
  328 
  329         /*
  330          * Write the rest.
  331          */
  332         for (addr = ADW_EEP_DVC_CTL_BEGIN;
  333              addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
  334                 adw_eeprom_write_16(adw, addr, *wbuf);
  335 
  336         adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
  337         adw_eeprom_wait(adw);
  338 }
  339 
  340 int
  341 adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
  342 {
  343         u_int8_t            biosmem[ADW_MC_BIOSLEN];
  344         const u_int16_t    *word_table;
  345         const u_int8_t     *byte_codes;
  346         const u_int8_t     *byte_codes_end;
  347         u_int               bios_sig;
  348         u_int               bytes_downloaded;
  349         u_int               addr;
  350         u_int               end_addr;
  351         u_int               checksum;
  352         u_int               scsicfg1;
  353         u_int               tid;
  354 
  355         /*
  356          * Save the RISC memory BIOS region before writing the microcode.
  357          * The BIOS may already be loaded and using its RISC LRAM region
  358          * so its region must be saved and restored.
  359          */
  360         for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
  361                 biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
  362 
  363         /*
  364          * Save current per TID negotiated values if the BIOS has been
  365          * loaded (BIOS signature is present).  These will be used if
  366          * we cannot get information from the EEPROM.
  367          */
  368         addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
  369         bios_sig = biosmem[addr]
  370                  | (biosmem[addr + 1] << 8);
  371         if (bios_sig == 0x55AA
  372          && (adw->flags & ADW_EEPROM_FAILED) != 0) {
  373                 u_int major_ver;
  374                 u_int minor_ver;
  375                 u_int sdtr_able;
  376 
  377                 addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
  378                 minor_ver = biosmem[addr + 1] & 0xF;
  379                 major_ver = (biosmem[addr + 1] >> 4) & 0xF;
  380                 if ((adw->chip == ADW_CHIP_ASC3550)
  381                  && (major_ver <= 3
  382                   || (major_ver == 3 && minor_ver <= 1))) {
  383                         /*
  384                          * BIOS 3.1 and earlier location of
  385                          * 'wdtr_able' variable.
  386                          */
  387                         adw->user_wdtr =
  388                             adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
  389                 } else {
  390                         adw->user_wdtr =
  391                             adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
  392                 }
  393                 sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
  394                 for (tid = 0; tid < ADW_MAX_TID; tid++) {
  395                         u_int tid_mask;
  396                         u_int mc_sdtr;
  397 
  398                         tid_mask = 0x1 << tid;
  399                         if ((sdtr_able & tid_mask) == 0)
  400                                 mc_sdtr = ADW_MC_SDTR_ASYNC;
  401                         else if ((adw->features & ADW_DT) != 0)
  402                                 mc_sdtr = ADW_MC_SDTR_80;
  403                         else if ((adw->features & ADW_ULTRA2) != 0)
  404                                 mc_sdtr = ADW_MC_SDTR_40;
  405                         else
  406                                 mc_sdtr = ADW_MC_SDTR_20;
  407                         adw_set_user_sdtr(adw, tid, mc_sdtr);
  408                 }
  409                 adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
  410         }
  411 
  412         /*
  413          * Load the Microcode.
  414          *
  415          * Assume the following compressed format of the microcode buffer:
  416          *
  417          *      253 word (506 byte) table indexed by byte code followed
  418          *      by the following byte codes:
  419          *
  420          *      1-Byte Code:
  421          *              00: Emit word 0 in table.
  422          *              01: Emit word 1 in table.
  423          *              .
  424          *              FD: Emit word 253 in table.
  425          *
  426          *      Multi-Byte Code:
  427          *              FD RESEVED
  428          *
  429          *              FE WW WW: (3 byte code)
  430          *                      Word to emit is the next word WW WW.
  431          *              FF BB WW WW: (4 byte code)
  432          *                      Emit BB count times next word WW WW.
  433          *
  434          */
  435         bytes_downloaded = 0;
  436         word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
  437         byte_codes = (const u_int8_t *)&word_table[253];
  438         byte_codes_end = adw->mcode_data->mcode_buf
  439                        + adw->mcode_data->mcode_size;
  440         adw_outw(adw, ADW_RAM_ADDR, 0);
  441         while (byte_codes < byte_codes_end) {
  442                 if (*byte_codes == 0xFF) {
  443                         u_int16_t value;
  444 
  445                         value = byte_codes[2]
  446                               | byte_codes[3] << 8;
  447                         adw_set_multi_2(adw, ADW_RAM_DATA,
  448                                         value, byte_codes[1]);
  449                         bytes_downloaded += byte_codes[1];
  450                         byte_codes += 4;
  451                 } else if (*byte_codes == 0xFE) {
  452                         u_int16_t value;
  453 
  454                         value = byte_codes[1]
  455                               | byte_codes[2] << 8;
  456                         adw_outw(adw, ADW_RAM_DATA, value);
  457                         bytes_downloaded++;
  458                         byte_codes += 3;
  459                 } else {
  460                         adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
  461                         bytes_downloaded++;
  462                         byte_codes++;
  463                 }
  464         }
  465         /* Convert from words to bytes */
  466         bytes_downloaded *= 2;
  467 
  468         /*
  469          * Clear the rest of LRAM.
  470          */
  471         for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
  472                 adw_outw(adw, ADW_RAM_DATA, 0);
  473 
  474         /*
  475          * Verify the microcode checksum.
  476          */
  477         checksum = 0;
  478         adw_outw(adw, ADW_RAM_ADDR, 0);
  479         for (addr = 0; addr < bytes_downloaded; addr += 2)
  480                 checksum += adw_inw(adw, ADW_RAM_DATA);
  481 
  482         if (checksum != adw->mcode_data->mcode_chksum) {
  483                 device_printf(adw->device, "Firmware load failed!\n");
  484                 return (EIO);
  485         }
  486 
  487         /*
  488          * Restore the RISC memory BIOS region.
  489          */
  490         for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
  491                 adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
  492 
  493         /*
  494          * Calculate and write the microcode code checksum to
  495          * the microcode code checksum location.
  496          */
  497         addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
  498         end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
  499         checksum = 0;
  500         adw_outw(adw, ADW_RAM_ADDR, addr);
  501         for (; addr < end_addr; addr += 2)
  502                 checksum += adw_inw(adw, ADW_RAM_DATA);
  503         adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
  504 
  505         /*
  506          * Tell the microcode what kind of chip it's running on.
  507          */
  508         adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
  509 
  510         /*
  511          * Leave WDTR and SDTR negotiation disabled until the XPT has
  512          * informed us of device capabilities, but do set the desired
  513          * user rates in case we receive an SDTR request from the target
  514          * before we negotiate.  We turn on tagged queuing at the microcode
  515          * level for all devices, and modulate this on a per command basis.
  516          */
  517         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
  518         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
  519         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
  520         adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
  521         adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
  522         for (tid = 0; tid < ADW_MAX_TID; tid++) {
  523                 /* Cam limits the maximum number of commands for us */
  524                 adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
  525                                  adw->max_acbs);
  526         }
  527         adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
  528 
  529         /*
  530          * Set SCSI_CFG0 Microcode Default Value.
  531          *
  532          * The microcode will set the SCSI_CFG0 register using this value
  533          * after it is started.
  534          */
  535         adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
  536                           ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
  537                           ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
  538 
  539         /*
  540          * Tell the MC about the memory size that
  541          * was setup by the probe code.
  542          */
  543         adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
  544                           adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
  545 
  546         /*
  547          * Determine SCSI_CFG1 Microcode Default Value.
  548          *
  549          * The microcode will set the SCSI_CFG1 register using this value
  550          * after it is started below.
  551          */
  552         scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
  553 
  554         /*
  555          * If the internal narrow cable is reversed all of the SCSI_CTRL
  556          * register signals will be set. Check for and return an error if
  557          * this condition is found.
  558          */
  559         if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
  560                 device_printf(adw->device, "Illegal Cable Config!\n");
  561                 device_printf(adw->device, "Internal cable is reversed!\n");
  562                 return (EIO);
  563         }
  564 
  565         /*
  566          * If this is a differential board and a single-ended device
  567          * is attached to one of the connectors, return an error.
  568          */
  569         if ((adw->features & ADW_ULTRA) != 0)  {
  570                 if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
  571                  && (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
  572                         device_printf(adw->device, "A Single Ended Device is "
  573                             "attached to our differential bus!\n");
  574                         return (EIO);
  575                 }
  576         } else {
  577                 if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
  578                         device_printf(adw->device,
  579                             "A High Voltage Differential Device "
  580                             "is attached to this controller.\n");
  581                         device_printf(adw->device,
  582                             "HVD devices are not supported.\n");
  583                         return (EIO);
  584                 }
  585         }
  586 
  587         /*
  588          * Perform automatic termination control if desired.
  589          */
  590         if ((adw->features & ADW_ULTRA2) != 0) {
  591                 u_int cable_det;
  592 
  593                 /*
  594                  * Ultra2 Chips require termination disabled to
  595                  * detect cable presence.
  596                  */
  597                 adw_outw(adw, ADW_SCSI_CFG1,
  598                          scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
  599                 cable_det = adw_inw(adw, ADW_SCSI_CFG1);
  600                 adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
  601 
  602                 /* SE Termination first if auto-term has been specified */
  603                 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
  604 
  605                         /*
  606                          * For all SE cable configurations, high byte
  607                          * termination is enabled.
  608                          */
  609                         term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
  610                         if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
  611                          || (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
  612                                 /*
  613                                  * If either cable is not present, the
  614                                  * low byte must be terminated as well.
  615                                  */
  616                                 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
  617                         }
  618                 }
  619 
  620                 /* LVD auto-term */
  621                 if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
  622                  && (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
  623                         /*
  624                          * If both cables are installed, termination
  625                          * is disabled.  Otherwise it is enabled.
  626                          */
  627                         if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
  628                          || (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
  629 
  630                                 term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
  631                         }
  632                 }
  633                 term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
  634         } else {
  635                 /* Ultra Controller Termination */
  636                 if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
  637                         int cable_count;
  638                         int wide_cable_count;
  639 
  640                         cable_count = 0;
  641                         wide_cable_count = 0;
  642                         if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
  643                                 cable_count++;
  644                                 wide_cable_count++;
  645                         }
  646                         if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
  647                                 cable_count++;
  648 
  649                         /* There is only one external port */
  650                         if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
  651                                 cable_count++;
  652                                 wide_cable_count++;
  653                         } else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
  654                                 cable_count++;
  655 
  656                         if (cable_count == 3) {
  657                                 device_printf(adw->device,
  658                                     "Illegal Cable Config!\n");
  659                                 device_printf(adw->device,
  660                                     "Only Two Ports may be used at a time!\n");
  661                         } else if (cable_count <= 1) {
  662                                 /*
  663                                  * At least two out of three cables missing.
  664                                  * Terminate both bytes.
  665                                  */
  666                                 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
  667                                               |  ADW_SCSI_CFG1_TERM_CTL_L;
  668                         } else if (wide_cable_count <= 1) {
  669                                 /* No two 16bit cables present.  High on. */
  670                                 term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
  671                         }
  672                 }
  673         }
  674 
  675         /* Tell the user about our decission */
  676         switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
  677         case ADW_SCSI_CFG1_TERM_CTL_MASK:
  678                 printf("High & Low SE Term Enabled, ");
  679                 break;
  680         case ADW_SCSI_CFG1_TERM_CTL_H:
  681                 printf("High SE Termination Enabled, ");
  682                 break;
  683         case ADW_SCSI_CFG1_TERM_CTL_L:
  684                 printf("Low SE Term Enabled, ");
  685                 break;
  686         default:
  687                 break;
  688         }
  689 
  690         if ((adw->features & ADW_ULTRA2) != 0
  691          && (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
  692                 printf("LVD Term Enabled, ");
  693 
  694         /*
  695          * Invert the TERM_CTL_H and TERM_CTL_L bits and then
  696          * set 'scsicfg1'. The TERM_POL bit does not need to be
  697          * referenced, because the hardware internally inverts
  698          * the Termination High and Low bits if TERM_POL is set.
  699          */
  700         if ((adw->features & ADW_ULTRA2) != 0) {
  701                 term_scsicfg1 = ~term_scsicfg1;
  702                 term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
  703                               |  ADW2_SCSI_CFG1_TERM_CTL_LVD;
  704                 scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
  705                              |ADW2_SCSI_CFG1_TERM_CTL_LVD
  706                              |ADW_SCSI_CFG1_BIG_ENDIAN
  707                              |ADW_SCSI_CFG1_TERM_POL
  708                              |ADW2_SCSI_CFG1_DEV_DETECT);
  709                 scsicfg1 |= term_scsicfg1;
  710         } else {
  711                 term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
  712                 scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
  713                 scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
  714                 scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
  715         }
  716 
  717         /*
  718          * Set SCSI_CFG1 Microcode Default Value
  719          *
  720          * The microcode will set the SCSI_CFG1 register using this value
  721          * after it is started below.
  722          */
  723         adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
  724 
  725         /*
  726          * Only accept selections on our initiator target id.
  727          * This may change in target mode scenarios...
  728          */
  729         adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
  730                           (0x01 << adw->initiator_id));
  731 
  732         /*
  733          * Tell the microcode where it can find our
  734          * Initiator Command Queue (ICQ).  It is
  735          * currently empty hence the "stopper" address.
  736          */
  737         adw->commandq = adw->free_carriers;
  738         adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
  739         adw->commandq->next_ba = ADW_CQ_STOPPER;
  740         adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
  741 
  742         /*
  743          * Tell the microcode where it can find our
  744          * Initiator Response Queue (IRQ).  It too
  745          * is currently empty.
  746          */
  747         adw->responseq = adw->free_carriers;
  748         adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
  749         adw->responseq->next_ba = ADW_CQ_STOPPER;
  750         adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
  751 
  752         adw_outb(adw, ADW_INTR_ENABLES,
  753                  ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
  754 
  755         adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
  756 
  757         return (0);
  758 }
  759 
  760 void
  761 adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
  762 {
  763         adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
  764         adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
  765             mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
  766 }
  767 
  768 u_int
  769 adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
  770 {
  771         u_int mc_sdtr;
  772 
  773         mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
  774         mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
  775         mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
  776         return (mc_sdtr);
  777 }
  778 
  779 void
  780 adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
  781 {
  782         u_int mc_sdtr_offset;
  783         u_int mc_sdtr;
  784 
  785         mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
  786         mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
  787         mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
  788         mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
  789         mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
  790         adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
  791 }
  792 
  793 u_int
  794 adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
  795 {
  796         u_int mc_sdtr_offset;
  797         u_int mc_sdtr;
  798 
  799         mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
  800         mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
  801         mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
  802         mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
  803         mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
  804         return (mc_sdtr);
  805 }
  806 
  807 u_int
  808 adw_find_sdtr(struct adw_softc *adw, u_int period)
  809 {
  810         int i;
  811 
  812         i = 0;
  813         if ((adw->features & ADW_DT) == 0)
  814                 i = ADW_MC_SDTR_OFFSET_ULTRA2;
  815         if ((adw->features & ADW_ULTRA2) == 0)
  816                 i = ADW_MC_SDTR_OFFSET_ULTRA;
  817         if (period == 0)
  818                 return ADW_MC_SDTR_ASYNC;
  819 
  820         for (; i < adw_num_syncrates; i++) {
  821                 if (period <= adw_syncrates[i].period)
  822                         return (adw_syncrates[i].mc_sdtr);
  823         }       
  824         return ADW_MC_SDTR_ASYNC;
  825 }
  826 
  827 u_int
  828 adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
  829 {
  830         int i;
  831 
  832         for (i = 0; i < adw_num_syncrates; i++) {
  833                 if (mc_sdtr == adw_syncrates[i].mc_sdtr)
  834                         break;
  835         }       
  836         return (adw_syncrates[i].period);
  837 }
  838 
  839 u_int
  840 adw_hshk_cfg_period_factor(u_int tinfo)
  841 {
  842         tinfo &= ADW_HSHK_CFG_RATE_MASK;
  843         tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
  844         if (tinfo == 0x11)
  845                 /* 80MHz/DT */
  846                 return (9);
  847         else if (tinfo == 0x10)
  848                 /* 40MHz */
  849                 return (10);
  850         else
  851                 return (((tinfo * 25) + 50) / 4);
  852 }
  853 
  854 /*
  855  * Send an idle command to the chip and wait for completion.
  856  */
  857 adw_idle_cmd_status_t
  858 adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
  859 {
  860         u_int                 timeout;
  861         adw_idle_cmd_status_t status;
  862 
  863         if (!dumping)
  864                 mtx_assert(&adw->lock, MA_OWNED);
  865 
  866         /*
  867          * Clear the idle command status which is set by the microcode
  868          * to a non-zero value to indicate when the command is completed.
  869          */
  870         adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
  871 
  872         /*
  873          * Write the idle command value after the idle command parameter
  874          * has been written to avoid a race condition. If the order is not
  875          * followed, the microcode may process the idle command before the
  876          * parameters have been written to LRAM.
  877          */
  878         adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
  879         adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
  880 
  881         /*
  882          * Tickle the RISC to tell it to process the idle command.
  883          */
  884         adw_tickle_risc(adw, ADW_TICKLE_B);
  885 
  886         /* Wait for up to 10 seconds for the command to complete */
  887         timeout = 5000000;
  888         while (--timeout) {
  889                 status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
  890                 if (status != 0)
  891                         break;
  892                 DELAY(20);
  893         }
  894 
  895         if (timeout == 0)
  896                 panic("%s: Idle Command Timed Out!",
  897                     device_get_nameunit(adw->device));
  898         return (status);
  899 }

Cache object: d2d4b5ac951e983fd1bfc4248792c65c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.