The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/age/if_age.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #include <sys/endian.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/rman.h>
   43 #include <sys/module.h>
   44 #include <sys/queue.h>
   45 #include <sys/socket.h>
   46 #include <sys/sockio.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/taskqueue.h>
   49 
   50 #include <net/bpf.h>
   51 #include <net/if.h>
   52 #include <net/if_var.h>
   53 #include <net/if_arp.h>
   54 #include <net/ethernet.h>
   55 #include <net/if_dl.h>
   56 #include <net/if_media.h>
   57 #include <net/if_types.h>
   58 #include <net/if_vlan_var.h>
   59 
   60 #include <netinet/in.h>
   61 #include <netinet/in_systm.h>
   62 #include <netinet/ip.h>
   63 #include <netinet/tcp.h>
   64 
   65 #include <dev/mii/mii.h>
   66 #include <dev/mii/miivar.h>
   67 
   68 #include <dev/pci/pcireg.h>
   69 #include <dev/pci/pcivar.h>
   70 
   71 #include <machine/bus.h>
   72 #include <machine/in_cksum.h>
   73 
   74 #include <dev/age/if_agereg.h>
   75 #include <dev/age/if_agevar.h>
   76 
   77 /* "device miibus" required.  See GENERIC if you get errors here. */
   78 #include "miibus_if.h"
   79 
   80 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   81 
   82 MODULE_DEPEND(age, pci, 1, 1, 1);
   83 MODULE_DEPEND(age, ether, 1, 1, 1);
   84 MODULE_DEPEND(age, miibus, 1, 1, 1);
   85 
   86 /* Tunables. */
   87 static int msi_disable = 0;
   88 static int msix_disable = 0;
   89 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
   90 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
   91 
   92 /*
   93  * Devices supported by this driver.
   94  */
   95 static struct age_dev {
   96         uint16_t        age_vendorid;
   97         uint16_t        age_deviceid;
   98         const char      *age_name;
   99 } age_devs[] = {
  100         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
  101             "Attansic Technology Corp, L1 Gigabit Ethernet" },
  102 };
  103 
  104 static int age_miibus_readreg(device_t, int, int);
  105 static int age_miibus_writereg(device_t, int, int, int);
  106 static void age_miibus_statchg(device_t);
  107 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
  108 static int age_mediachange(struct ifnet *);
  109 static int age_probe(device_t);
  110 static void age_get_macaddr(struct age_softc *);
  111 static void age_phy_reset(struct age_softc *);
  112 static int age_attach(device_t);
  113 static int age_detach(device_t);
  114 static void age_sysctl_node(struct age_softc *);
  115 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  116 static int age_check_boundary(struct age_softc *);
  117 static int age_dma_alloc(struct age_softc *);
  118 static void age_dma_free(struct age_softc *);
  119 static int age_shutdown(device_t);
  120 static void age_setwol(struct age_softc *);
  121 static int age_suspend(device_t);
  122 static int age_resume(device_t);
  123 static int age_encap(struct age_softc *, struct mbuf **);
  124 static void age_start(struct ifnet *);
  125 static void age_start_locked(struct ifnet *);
  126 static void age_watchdog(struct age_softc *);
  127 static int age_ioctl(struct ifnet *, u_long, caddr_t);
  128 static void age_mac_config(struct age_softc *);
  129 static void age_link_task(void *, int);
  130 static void age_stats_update(struct age_softc *);
  131 static int age_intr(void *);
  132 static void age_int_task(void *, int);
  133 static void age_txintr(struct age_softc *, int);
  134 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
  135 static int age_rxintr(struct age_softc *, int, int);
  136 static void age_tick(void *);
  137 static void age_reset(struct age_softc *);
  138 static void age_init(void *);
  139 static void age_init_locked(struct age_softc *);
  140 static void age_stop(struct age_softc *);
  141 static void age_stop_txmac(struct age_softc *);
  142 static void age_stop_rxmac(struct age_softc *);
  143 static void age_init_tx_ring(struct age_softc *);
  144 static int age_init_rx_ring(struct age_softc *);
  145 static void age_init_rr_ring(struct age_softc *);
  146 static void age_init_cmb_block(struct age_softc *);
  147 static void age_init_smb_block(struct age_softc *);
  148 #ifndef __NO_STRICT_ALIGNMENT
  149 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
  150 #endif
  151 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
  152 static void age_rxvlan(struct age_softc *);
  153 static void age_rxfilter(struct age_softc *);
  154 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
  155 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  156 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
  157 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
  158 
  159 static device_method_t age_methods[] = {
  160         /* Device interface. */
  161         DEVMETHOD(device_probe,         age_probe),
  162         DEVMETHOD(device_attach,        age_attach),
  163         DEVMETHOD(device_detach,        age_detach),
  164         DEVMETHOD(device_shutdown,      age_shutdown),
  165         DEVMETHOD(device_suspend,       age_suspend),
  166         DEVMETHOD(device_resume,        age_resume),
  167 
  168         /* MII interface. */
  169         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
  170         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
  171         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
  172         { NULL, NULL }
  173 };
  174 
  175 static driver_t age_driver = {
  176         "age",
  177         age_methods,
  178         sizeof(struct age_softc)
  179 };
  180 
  181 DRIVER_MODULE(age, pci, age_driver, 0, 0);
  182 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
  183     nitems(age_devs));
  184 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
  185 
  186 static struct resource_spec age_res_spec_mem[] = {
  187         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  188         { -1,                   0,              0 }
  189 };
  190 
  191 static struct resource_spec age_irq_spec_legacy[] = {
  192         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  193         { -1,                   0,              0 }
  194 };
  195 
  196 static struct resource_spec age_irq_spec_msi[] = {
  197         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  198         { -1,                   0,              0 }
  199 };
  200 
  201 static struct resource_spec age_irq_spec_msix[] = {
  202         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  203         { -1,                   0,              0 }
  204 };
  205 
  206 /*
  207  *      Read a PHY register on the MII of the L1.
  208  */
  209 static int
  210 age_miibus_readreg(device_t dev, int phy, int reg)
  211 {
  212         struct age_softc *sc;
  213         uint32_t v;
  214         int i;
  215 
  216         sc = device_get_softc(dev);
  217 
  218         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  219             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  220         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
  221                 DELAY(1);
  222                 v = CSR_READ_4(sc, AGE_MDIO);
  223                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  224                         break;
  225         }
  226 
  227         if (i == 0) {
  228                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
  229                 return (0);
  230         }
  231 
  232         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  233 }
  234 
  235 /*
  236  *      Write a PHY register on the MII of the L1.
  237  */
  238 static int
  239 age_miibus_writereg(device_t dev, int phy, int reg, int val)
  240 {
  241         struct age_softc *sc;
  242         uint32_t v;
  243         int i;
  244 
  245         sc = device_get_softc(dev);
  246 
  247         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  248             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  249             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  250         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
  251                 DELAY(1);
  252                 v = CSR_READ_4(sc, AGE_MDIO);
  253                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  254                         break;
  255         }
  256 
  257         if (i == 0)
  258                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
  259 
  260         return (0);
  261 }
  262 
  263 /*
  264  *      Callback from MII layer when media changes.
  265  */
  266 static void
  267 age_miibus_statchg(device_t dev)
  268 {
  269         struct age_softc *sc;
  270 
  271         sc = device_get_softc(dev);
  272         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
  273 }
  274 
  275 /*
  276  *      Get the current interface media status.
  277  */
  278 static void
  279 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  280 {
  281         struct age_softc *sc;
  282         struct mii_data *mii;
  283 
  284         sc = ifp->if_softc;
  285         AGE_LOCK(sc);
  286         mii = device_get_softc(sc->age_miibus);
  287 
  288         mii_pollstat(mii);
  289         ifmr->ifm_status = mii->mii_media_status;
  290         ifmr->ifm_active = mii->mii_media_active;
  291         AGE_UNLOCK(sc);
  292 }
  293 
  294 /*
  295  *      Set hardware to newly-selected media.
  296  */
  297 static int
  298 age_mediachange(struct ifnet *ifp)
  299 {
  300         struct age_softc *sc;
  301         struct mii_data *mii;
  302         struct mii_softc *miisc;
  303         int error;
  304 
  305         sc = ifp->if_softc;
  306         AGE_LOCK(sc);
  307         mii = device_get_softc(sc->age_miibus);
  308         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  309                 PHY_RESET(miisc);
  310         error = mii_mediachg(mii);
  311         AGE_UNLOCK(sc);
  312 
  313         return (error);
  314 }
  315 
  316 static int
  317 age_probe(device_t dev)
  318 {
  319         struct age_dev *sp;
  320         int i;
  321         uint16_t vendor, devid;
  322 
  323         vendor = pci_get_vendor(dev);
  324         devid = pci_get_device(dev);
  325         sp = age_devs;
  326         for (i = 0; i < nitems(age_devs); i++, sp++) {
  327                 if (vendor == sp->age_vendorid &&
  328                     devid == sp->age_deviceid) {
  329                         device_set_desc(dev, sp->age_name);
  330                         return (BUS_PROBE_DEFAULT);
  331                 }
  332         }
  333 
  334         return (ENXIO);
  335 }
  336 
  337 static void
  338 age_get_macaddr(struct age_softc *sc)
  339 {
  340         uint32_t ea[2], reg;
  341         int i, vpdc;
  342 
  343         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
  344         if ((reg & SPI_VPD_ENB) != 0) {
  345                 /* Get VPD stored in TWSI EEPROM. */
  346                 reg &= ~SPI_VPD_ENB;
  347                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
  348         }
  349 
  350         if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
  351                 /*
  352                  * PCI VPD capability found, let TWSI reload EEPROM.
  353                  * This will set ethernet address of controller.
  354                  */
  355                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
  356                     TWSI_CTRL_SW_LD_START);
  357                 for (i = 100; i > 0; i--) {
  358                         DELAY(1000);
  359                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
  360                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  361                                 break;
  362                 }
  363                 if (i == 0)
  364                         device_printf(sc->age_dev,
  365                             "reloading EEPROM timeout!\n");
  366         } else {
  367                 if (bootverbose)
  368                         device_printf(sc->age_dev,
  369                             "PCI VPD capability not found!\n");
  370         }
  371 
  372         ea[0] = CSR_READ_4(sc, AGE_PAR0);
  373         ea[1] = CSR_READ_4(sc, AGE_PAR1);
  374         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
  375         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
  376         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
  377         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
  378         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
  379         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
  380 }
  381 
  382 static void
  383 age_phy_reset(struct age_softc *sc)
  384 {
  385         uint16_t reg, pn;
  386         int i, linkup;
  387 
  388         /* Reset PHY. */
  389         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
  390         DELAY(2000);
  391         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
  392         DELAY(2000);
  393 
  394 #define ATPHY_DBG_ADDR          0x1D
  395 #define ATPHY_DBG_DATA          0x1E
  396 #define ATPHY_CDTC              0x16
  397 #define PHY_CDTC_ENB            0x0001
  398 #define PHY_CDTC_POFF           8
  399 #define ATPHY_CDTS              0x1C
  400 #define PHY_CDTS_STAT_OK        0x0000
  401 #define PHY_CDTS_STAT_SHORT     0x0100
  402 #define PHY_CDTS_STAT_OPEN      0x0200
  403 #define PHY_CDTS_STAT_INVAL     0x0300
  404 #define PHY_CDTS_STAT_MASK      0x0300
  405 
  406         /* Check power saving mode. Magic from Linux. */
  407         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
  408         for (linkup = 0, pn = 0; pn < 4; pn++) {
  409                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
  410                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
  411                 for (i = 200; i > 0; i--) {
  412                         DELAY(1000);
  413                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
  414                             ATPHY_CDTC);
  415                         if ((reg & PHY_CDTC_ENB) == 0)
  416                                 break;
  417                 }
  418                 DELAY(1000);
  419                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
  420                     ATPHY_CDTS);
  421                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
  422                         linkup++;
  423                         break;
  424                 }
  425         }
  426         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
  427             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
  428         if (linkup == 0) {
  429                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  430                     ATPHY_DBG_ADDR, 0);
  431                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  432                     ATPHY_DBG_DATA, 0x124E);
  433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  434                     ATPHY_DBG_ADDR, 1);
  435                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
  436                     ATPHY_DBG_DATA);
  437                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  438                     ATPHY_DBG_DATA, reg | 0x03);
  439                 /* XXX */
  440                 DELAY(1500 * 1000);
  441                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  442                     ATPHY_DBG_ADDR, 0);
  443                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  444                     ATPHY_DBG_DATA, 0x024E);
  445     }
  446 
  447 #undef  ATPHY_DBG_ADDR
  448 #undef  ATPHY_DBG_DATA
  449 #undef  ATPHY_CDTC
  450 #undef  PHY_CDTC_ENB
  451 #undef  PHY_CDTC_POFF
  452 #undef  ATPHY_CDTS
  453 #undef  PHY_CDTS_STAT_OK
  454 #undef  PHY_CDTS_STAT_SHORT
  455 #undef  PHY_CDTS_STAT_OPEN
  456 #undef  PHY_CDTS_STAT_INVAL
  457 #undef  PHY_CDTS_STAT_MASK
  458 }
  459 
  460 static int
  461 age_attach(device_t dev)
  462 {
  463         struct age_softc *sc;
  464         struct ifnet *ifp;
  465         uint16_t burst;
  466         int error, i, msic, msixc, pmc;
  467 
  468         error = 0;
  469         sc = device_get_softc(dev);
  470         sc->age_dev = dev;
  471 
  472         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  473             MTX_DEF);
  474         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
  475         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
  476         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
  477 
  478         /* Map the device. */
  479         pci_enable_busmaster(dev);
  480         sc->age_res_spec = age_res_spec_mem;
  481         sc->age_irq_spec = age_irq_spec_legacy;
  482         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
  483         if (error != 0) {
  484                 device_printf(dev, "cannot allocate memory resources.\n");
  485                 goto fail;
  486         }
  487 
  488         /* Set PHY address. */
  489         sc->age_phyaddr = AGE_PHY_ADDR;
  490 
  491         /* Reset PHY. */
  492         age_phy_reset(sc);
  493 
  494         /* Reset the ethernet controller. */
  495         age_reset(sc);
  496 
  497         /* Get PCI and chip id/revision. */
  498         sc->age_rev = pci_get_revid(dev);
  499         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
  500             MASTER_CHIP_REV_SHIFT;
  501         if (bootverbose) {
  502                 device_printf(dev, "PCI device revision : 0x%04x\n",
  503                     sc->age_rev);
  504                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  505                     sc->age_chip_rev);
  506         }
  507 
  508         /*
  509          * XXX
  510          * Unintialized hardware returns an invalid chip id/revision
  511          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
  512          * unplugged cable results in putting hardware into automatic
  513          * power down mode which in turn returns invalld chip revision.
  514          */
  515         if (sc->age_chip_rev == 0xFFFF) {
  516                 device_printf(dev,"invalid chip revision : 0x%04x -- "
  517                     "not initialized?\n", sc->age_chip_rev);
  518                 error = ENXIO;
  519                 goto fail;
  520         }
  521 
  522         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
  523             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
  524             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
  525 
  526         /* Allocate IRQ resources. */
  527         msixc = pci_msix_count(dev);
  528         msic = pci_msi_count(dev);
  529         if (bootverbose) {
  530                 device_printf(dev, "MSIX count : %d\n", msixc);
  531                 device_printf(dev, "MSI count : %d\n", msic);
  532         }
  533 
  534         /* Prefer MSIX over MSI. */
  535         if (msix_disable == 0 || msi_disable == 0) {
  536                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
  537                     pci_alloc_msix(dev, &msixc) == 0) {
  538                         if (msic == AGE_MSIX_MESSAGES) {
  539                                 device_printf(dev, "Using %d MSIX messages.\n",
  540                                     msixc);
  541                                 sc->age_flags |= AGE_FLAG_MSIX;
  542                                 sc->age_irq_spec = age_irq_spec_msix;
  543                         } else
  544                                 pci_release_msi(dev);
  545                 }
  546                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
  547                     msic == AGE_MSI_MESSAGES &&
  548                     pci_alloc_msi(dev, &msic) == 0) {
  549                         if (msic == AGE_MSI_MESSAGES) {
  550                                 device_printf(dev, "Using %d MSI messages.\n",
  551                                     msic);
  552                                 sc->age_flags |= AGE_FLAG_MSI;
  553                                 sc->age_irq_spec = age_irq_spec_msi;
  554                         } else
  555                                 pci_release_msi(dev);
  556                 }
  557         }
  558 
  559         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
  560         if (error != 0) {
  561                 device_printf(dev, "cannot allocate IRQ resources.\n");
  562                 goto fail;
  563         }
  564 
  565         /* Get DMA parameters from PCIe device control register. */
  566         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
  567                 sc->age_flags |= AGE_FLAG_PCIE;
  568                 burst = pci_read_config(dev, i + 0x08, 2);
  569                 /* Max read request size. */
  570                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
  571                     DMA_CFG_RD_BURST_SHIFT;
  572                 /* Max payload size. */
  573                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
  574                     DMA_CFG_WR_BURST_SHIFT;
  575                 if (bootverbose) {
  576                         device_printf(dev, "Read request size : %d bytes.\n",
  577                             128 << ((burst >> 12) & 0x07));
  578                         device_printf(dev, "TLP payload size : %d bytes.\n",
  579                             128 << ((burst >> 5) & 0x07));
  580                 }
  581         } else {
  582                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
  583                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
  584         }
  585 
  586         /* Create device sysctl node. */
  587         age_sysctl_node(sc);
  588 
  589         if ((error = age_dma_alloc(sc)) != 0)
  590                 goto fail;
  591 
  592         /* Load station address. */
  593         age_get_macaddr(sc);
  594 
  595         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
  596         if (ifp == NULL) {
  597                 device_printf(dev, "cannot allocate ifnet structure.\n");
  598                 error = ENXIO;
  599                 goto fail;
  600         }
  601 
  602         ifp->if_softc = sc;
  603         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  604         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  605         ifp->if_ioctl = age_ioctl;
  606         ifp->if_start = age_start;
  607         ifp->if_init = age_init;
  608         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
  609         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  610         IFQ_SET_READY(&ifp->if_snd);
  611         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
  612         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
  613         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
  614                 sc->age_flags |= AGE_FLAG_PMCAP;
  615                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
  616         }
  617         ifp->if_capenable = ifp->if_capabilities;
  618 
  619         /* Set up MII bus. */
  620         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
  621             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
  622             0);
  623         if (error != 0) {
  624                 device_printf(dev, "attaching PHYs failed\n");
  625                 goto fail;
  626         }
  627 
  628         ether_ifattach(ifp, sc->age_eaddr);
  629 
  630         /* VLAN capability setup. */
  631         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
  632             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
  633         ifp->if_capenable = ifp->if_capabilities;
  634 
  635         /* Tell the upper layer(s) we support long frames. */
  636         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
  637 
  638         /* Create local taskq. */
  639         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
  640             taskqueue_thread_enqueue, &sc->age_tq);
  641         if (sc->age_tq == NULL) {
  642                 device_printf(dev, "could not create taskqueue.\n");
  643                 ether_ifdetach(ifp);
  644                 error = ENXIO;
  645                 goto fail;
  646         }
  647         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
  648             device_get_nameunit(sc->age_dev));
  649 
  650         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
  651                 msic = AGE_MSIX_MESSAGES;
  652         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
  653                 msic = AGE_MSI_MESSAGES;
  654         else
  655                 msic = 1;
  656         for (i = 0; i < msic; i++) {
  657                 error = bus_setup_intr(dev, sc->age_irq[i],
  658                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
  659                     &sc->age_intrhand[i]);
  660                 if (error != 0)
  661                         break;
  662         }
  663         if (error != 0) {
  664                 device_printf(dev, "could not set up interrupt handler.\n");
  665                 taskqueue_free(sc->age_tq);
  666                 sc->age_tq = NULL;
  667                 ether_ifdetach(ifp);
  668                 goto fail;
  669         }
  670 
  671 fail:
  672         if (error != 0)
  673                 age_detach(dev);
  674 
  675         return (error);
  676 }
  677 
  678 static int
  679 age_detach(device_t dev)
  680 {
  681         struct age_softc *sc;
  682         struct ifnet *ifp;
  683         int i, msic;
  684 
  685         sc = device_get_softc(dev);
  686 
  687         ifp = sc->age_ifp;
  688         if (device_is_attached(dev)) {
  689                 AGE_LOCK(sc);
  690                 sc->age_flags |= AGE_FLAG_DETACH;
  691                 age_stop(sc);
  692                 AGE_UNLOCK(sc);
  693                 callout_drain(&sc->age_tick_ch);
  694                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
  695                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
  696                 ether_ifdetach(ifp);
  697         }
  698 
  699         if (sc->age_tq != NULL) {
  700                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
  701                 taskqueue_free(sc->age_tq);
  702                 sc->age_tq = NULL;
  703         }
  704 
  705         if (sc->age_miibus != NULL) {
  706                 device_delete_child(dev, sc->age_miibus);
  707                 sc->age_miibus = NULL;
  708         }
  709         bus_generic_detach(dev);
  710         age_dma_free(sc);
  711 
  712         if (ifp != NULL) {
  713                 if_free(ifp);
  714                 sc->age_ifp = NULL;
  715         }
  716 
  717         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
  718                 msic = AGE_MSIX_MESSAGES;
  719         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
  720                 msic = AGE_MSI_MESSAGES;
  721         else
  722                 msic = 1;
  723         for (i = 0; i < msic; i++) {
  724                 if (sc->age_intrhand[i] != NULL) {
  725                         bus_teardown_intr(dev, sc->age_irq[i],
  726                             sc->age_intrhand[i]);
  727                         sc->age_intrhand[i] = NULL;
  728                 }
  729         }
  730 
  731         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
  732         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
  733                 pci_release_msi(dev);
  734         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
  735         mtx_destroy(&sc->age_mtx);
  736 
  737         return (0);
  738 }
  739 
  740 static void
  741 age_sysctl_node(struct age_softc *sc)
  742 {
  743         int error;
  744 
  745         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
  746             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
  747             "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
  748             sc, 0, sysctl_age_stats, "I", "Statistics");
  749 
  750         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
  751             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
  752             "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
  753             &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
  754             "age interrupt moderation");
  755 
  756         /* Pull in device tunables. */
  757         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
  758         error = resource_int_value(device_get_name(sc->age_dev),
  759             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
  760         if (error == 0) {
  761                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
  762                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
  763                         device_printf(sc->age_dev,
  764                             "int_mod value out of range; using default: %d\n",
  765                             AGE_IM_TIMER_DEFAULT);
  766                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
  767                 }
  768         }
  769 
  770         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
  771             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
  772             "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
  773             &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
  774             "max number of Rx events to process");
  775 
  776         /* Pull in device tunables. */
  777         sc->age_process_limit = AGE_PROC_DEFAULT;
  778         error = resource_int_value(device_get_name(sc->age_dev),
  779             device_get_unit(sc->age_dev), "process_limit",
  780             &sc->age_process_limit);
  781         if (error == 0) {
  782                 if (sc->age_process_limit < AGE_PROC_MIN ||
  783                     sc->age_process_limit > AGE_PROC_MAX) {
  784                         device_printf(sc->age_dev,
  785                             "process_limit value out of range; "
  786                             "using default: %d\n", AGE_PROC_DEFAULT);
  787                         sc->age_process_limit = AGE_PROC_DEFAULT;
  788                 }
  789         }
  790 }
  791 
  792 struct age_dmamap_arg {
  793         bus_addr_t      age_busaddr;
  794 };
  795 
  796 static void
  797 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  798 {
  799         struct age_dmamap_arg *ctx;
  800 
  801         if (error != 0)
  802                 return;
  803 
  804         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  805 
  806         ctx = (struct age_dmamap_arg *)arg;
  807         ctx->age_busaddr = segs[0].ds_addr;
  808 }
  809 
  810 /*
  811  * Attansic L1 controller have single register to specify high
  812  * address part of DMA blocks. So all descriptor structures and
  813  * DMA memory blocks should have the same high address of given
  814  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
  815  */
  816 static int
  817 age_check_boundary(struct age_softc *sc)
  818 {
  819         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
  820         bus_addr_t cmb_block_end, smb_block_end;
  821 
  822         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
  823         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
  824         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
  825         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
  826         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
  827         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
  828 
  829         if ((AGE_ADDR_HI(tx_ring_end) !=
  830             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
  831             (AGE_ADDR_HI(rx_ring_end) !=
  832             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
  833             (AGE_ADDR_HI(rr_ring_end) !=
  834             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
  835             (AGE_ADDR_HI(cmb_block_end) !=
  836             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
  837             (AGE_ADDR_HI(smb_block_end) !=
  838             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
  839                 return (EFBIG);
  840 
  841         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
  842             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
  843             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
  844             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
  845                 return (EFBIG);
  846 
  847         return (0);
  848 }
  849 
  850 static int
  851 age_dma_alloc(struct age_softc *sc)
  852 {
  853         struct age_txdesc *txd;
  854         struct age_rxdesc *rxd;
  855         bus_addr_t lowaddr;
  856         struct age_dmamap_arg ctx;
  857         int error, i;
  858 
  859         lowaddr = BUS_SPACE_MAXADDR;
  860 
  861 again:
  862         /* Create parent ring/DMA block tag. */
  863         error = bus_dma_tag_create(
  864             bus_get_dma_tag(sc->age_dev), /* parent */
  865             1, 0,                       /* alignment, boundary */
  866             lowaddr,                    /* lowaddr */
  867             BUS_SPACE_MAXADDR,          /* highaddr */
  868             NULL, NULL,                 /* filter, filterarg */
  869             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  870             0,                          /* nsegments */
  871             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  872             0,                          /* flags */
  873             NULL, NULL,                 /* lockfunc, lockarg */
  874             &sc->age_cdata.age_parent_tag);
  875         if (error != 0) {
  876                 device_printf(sc->age_dev,
  877                     "could not create parent DMA tag.\n");
  878                 goto fail;
  879         }
  880 
  881         /* Create tag for Tx ring. */
  882         error = bus_dma_tag_create(
  883             sc->age_cdata.age_parent_tag, /* parent */
  884             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
  885             BUS_SPACE_MAXADDR,          /* lowaddr */
  886             BUS_SPACE_MAXADDR,          /* highaddr */
  887             NULL, NULL,                 /* filter, filterarg */
  888             AGE_TX_RING_SZ,             /* maxsize */
  889             1,                          /* nsegments */
  890             AGE_TX_RING_SZ,             /* maxsegsize */
  891             0,                          /* flags */
  892             NULL, NULL,                 /* lockfunc, lockarg */
  893             &sc->age_cdata.age_tx_ring_tag);
  894         if (error != 0) {
  895                 device_printf(sc->age_dev,
  896                     "could not create Tx ring DMA tag.\n");
  897                 goto fail;
  898         }
  899 
  900         /* Create tag for Rx ring. */
  901         error = bus_dma_tag_create(
  902             sc->age_cdata.age_parent_tag, /* parent */
  903             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
  904             BUS_SPACE_MAXADDR,          /* lowaddr */
  905             BUS_SPACE_MAXADDR,          /* highaddr */
  906             NULL, NULL,                 /* filter, filterarg */
  907             AGE_RX_RING_SZ,             /* maxsize */
  908             1,                          /* nsegments */
  909             AGE_RX_RING_SZ,             /* maxsegsize */
  910             0,                          /* flags */
  911             NULL, NULL,                 /* lockfunc, lockarg */
  912             &sc->age_cdata.age_rx_ring_tag);
  913         if (error != 0) {
  914                 device_printf(sc->age_dev,
  915                     "could not create Rx ring DMA tag.\n");
  916                 goto fail;
  917         }
  918 
  919         /* Create tag for Rx return ring. */
  920         error = bus_dma_tag_create(
  921             sc->age_cdata.age_parent_tag, /* parent */
  922             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
  923             BUS_SPACE_MAXADDR,          /* lowaddr */
  924             BUS_SPACE_MAXADDR,          /* highaddr */
  925             NULL, NULL,                 /* filter, filterarg */
  926             AGE_RR_RING_SZ,             /* maxsize */
  927             1,                          /* nsegments */
  928             AGE_RR_RING_SZ,             /* maxsegsize */
  929             0,                          /* flags */
  930             NULL, NULL,                 /* lockfunc, lockarg */
  931             &sc->age_cdata.age_rr_ring_tag);
  932         if (error != 0) {
  933                 device_printf(sc->age_dev,
  934                     "could not create Rx return ring DMA tag.\n");
  935                 goto fail;
  936         }
  937 
  938         /* Create tag for coalesing message block. */
  939         error = bus_dma_tag_create(
  940             sc->age_cdata.age_parent_tag, /* parent */
  941             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
  942             BUS_SPACE_MAXADDR,          /* lowaddr */
  943             BUS_SPACE_MAXADDR,          /* highaddr */
  944             NULL, NULL,                 /* filter, filterarg */
  945             AGE_CMB_BLOCK_SZ,           /* maxsize */
  946             1,                          /* nsegments */
  947             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
  948             0,                          /* flags */
  949             NULL, NULL,                 /* lockfunc, lockarg */
  950             &sc->age_cdata.age_cmb_block_tag);
  951         if (error != 0) {
  952                 device_printf(sc->age_dev,
  953                     "could not create CMB DMA tag.\n");
  954                 goto fail;
  955         }
  956 
  957         /* Create tag for statistics message block. */
  958         error = bus_dma_tag_create(
  959             sc->age_cdata.age_parent_tag, /* parent */
  960             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
  961             BUS_SPACE_MAXADDR,          /* lowaddr */
  962             BUS_SPACE_MAXADDR,          /* highaddr */
  963             NULL, NULL,                 /* filter, filterarg */
  964             AGE_SMB_BLOCK_SZ,           /* maxsize */
  965             1,                          /* nsegments */
  966             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
  967             0,                          /* flags */
  968             NULL, NULL,                 /* lockfunc, lockarg */
  969             &sc->age_cdata.age_smb_block_tag);
  970         if (error != 0) {
  971                 device_printf(sc->age_dev,
  972                     "could not create SMB DMA tag.\n");
  973                 goto fail;
  974         }
  975 
  976         /* Allocate DMA'able memory and load the DMA map. */
  977         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
  978             (void **)&sc->age_rdata.age_tx_ring,
  979             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  980             &sc->age_cdata.age_tx_ring_map);
  981         if (error != 0) {
  982                 device_printf(sc->age_dev,
  983                     "could not allocate DMA'able memory for Tx ring.\n");
  984                 goto fail;
  985         }
  986         ctx.age_busaddr = 0;
  987         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
  988             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
  989             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
  990         if (error != 0 || ctx.age_busaddr == 0) {
  991                 device_printf(sc->age_dev,
  992                     "could not load DMA'able memory for Tx ring.\n");
  993                 goto fail;
  994         }
  995         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
  996         /* Rx ring */
  997         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
  998             (void **)&sc->age_rdata.age_rx_ring,
  999             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1000             &sc->age_cdata.age_rx_ring_map);
 1001         if (error != 0) {
 1002                 device_printf(sc->age_dev,
 1003                     "could not allocate DMA'able memory for Rx ring.\n");
 1004                 goto fail;
 1005         }
 1006         ctx.age_busaddr = 0;
 1007         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
 1008             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
 1009             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
 1010         if (error != 0 || ctx.age_busaddr == 0) {
 1011                 device_printf(sc->age_dev,
 1012                     "could not load DMA'able memory for Rx ring.\n");
 1013                 goto fail;
 1014         }
 1015         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
 1016         /* Rx return ring */
 1017         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
 1018             (void **)&sc->age_rdata.age_rr_ring,
 1019             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1020             &sc->age_cdata.age_rr_ring_map);
 1021         if (error != 0) {
 1022                 device_printf(sc->age_dev,
 1023                     "could not allocate DMA'able memory for Rx return ring.\n");
 1024                 goto fail;
 1025         }
 1026         ctx.age_busaddr = 0;
 1027         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
 1028             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
 1029             AGE_RR_RING_SZ, age_dmamap_cb,
 1030             &ctx, 0);
 1031         if (error != 0 || ctx.age_busaddr == 0) {
 1032                 device_printf(sc->age_dev,
 1033                     "could not load DMA'able memory for Rx return ring.\n");
 1034                 goto fail;
 1035         }
 1036         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
 1037         /* CMB block */
 1038         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
 1039             (void **)&sc->age_rdata.age_cmb_block,
 1040             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1041             &sc->age_cdata.age_cmb_block_map);
 1042         if (error != 0) {
 1043                 device_printf(sc->age_dev,
 1044                     "could not allocate DMA'able memory for CMB block.\n");
 1045                 goto fail;
 1046         }
 1047         ctx.age_busaddr = 0;
 1048         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
 1049             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
 1050             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
 1051         if (error != 0 || ctx.age_busaddr == 0) {
 1052                 device_printf(sc->age_dev,
 1053                     "could not load DMA'able memory for CMB block.\n");
 1054                 goto fail;
 1055         }
 1056         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
 1057         /* SMB block */
 1058         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
 1059             (void **)&sc->age_rdata.age_smb_block,
 1060             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1061             &sc->age_cdata.age_smb_block_map);
 1062         if (error != 0) {
 1063                 device_printf(sc->age_dev,
 1064                     "could not allocate DMA'able memory for SMB block.\n");
 1065                 goto fail;
 1066         }
 1067         ctx.age_busaddr = 0;
 1068         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
 1069             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
 1070             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
 1071         if (error != 0 || ctx.age_busaddr == 0) {
 1072                 device_printf(sc->age_dev,
 1073                     "could not load DMA'able memory for SMB block.\n");
 1074                 goto fail;
 1075         }
 1076         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
 1077 
 1078         /*
 1079          * All ring buffer and DMA blocks should have the same
 1080          * high address part of 64bit DMA address space.
 1081          */
 1082         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1083             (error = age_check_boundary(sc)) != 0) {
 1084                 device_printf(sc->age_dev, "4GB boundary crossed, "
 1085                     "switching to 32bit DMA addressing mode.\n");
 1086                 age_dma_free(sc);
 1087                 /* Limit DMA address space to 32bit and try again. */
 1088                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1089                 goto again;
 1090         }
 1091 
 1092         /*
 1093          * Create Tx/Rx buffer parent tag.
 1094          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
 1095          * so it needs separate parent DMA tag.
 1096          * XXX
 1097          * It seems enabling 64bit DMA causes data corruption. Limit
 1098          * DMA address space to 32bit.
 1099          */
 1100         error = bus_dma_tag_create(
 1101             bus_get_dma_tag(sc->age_dev), /* parent */
 1102             1, 0,                       /* alignment, boundary */
 1103             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
 1104             BUS_SPACE_MAXADDR,          /* highaddr */
 1105             NULL, NULL,                 /* filter, filterarg */
 1106             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1107             0,                          /* nsegments */
 1108             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1109             0,                          /* flags */
 1110             NULL, NULL,                 /* lockfunc, lockarg */
 1111             &sc->age_cdata.age_buffer_tag);
 1112         if (error != 0) {
 1113                 device_printf(sc->age_dev,
 1114                     "could not create parent buffer DMA tag.\n");
 1115                 goto fail;
 1116         }
 1117 
 1118         /* Create tag for Tx buffers. */
 1119         error = bus_dma_tag_create(
 1120             sc->age_cdata.age_buffer_tag, /* parent */
 1121             1, 0,                       /* alignment, boundary */
 1122             BUS_SPACE_MAXADDR,          /* lowaddr */
 1123             BUS_SPACE_MAXADDR,          /* highaddr */
 1124             NULL, NULL,                 /* filter, filterarg */
 1125             AGE_TSO_MAXSIZE,            /* maxsize */
 1126             AGE_MAXTXSEGS,              /* nsegments */
 1127             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1128             0,                          /* flags */
 1129             NULL, NULL,                 /* lockfunc, lockarg */
 1130             &sc->age_cdata.age_tx_tag);
 1131         if (error != 0) {
 1132                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
 1133                 goto fail;
 1134         }
 1135 
 1136         /* Create tag for Rx buffers. */
 1137         error = bus_dma_tag_create(
 1138             sc->age_cdata.age_buffer_tag, /* parent */
 1139             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
 1140             BUS_SPACE_MAXADDR,          /* lowaddr */
 1141             BUS_SPACE_MAXADDR,          /* highaddr */
 1142             NULL, NULL,                 /* filter, filterarg */
 1143             MCLBYTES,                   /* maxsize */
 1144             1,                          /* nsegments */
 1145             MCLBYTES,                   /* maxsegsize */
 1146             0,                          /* flags */
 1147             NULL, NULL,                 /* lockfunc, lockarg */
 1148             &sc->age_cdata.age_rx_tag);
 1149         if (error != 0) {
 1150                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
 1151                 goto fail;
 1152         }
 1153 
 1154         /* Create DMA maps for Tx buffers. */
 1155         for (i = 0; i < AGE_TX_RING_CNT; i++) {
 1156                 txd = &sc->age_cdata.age_txdesc[i];
 1157                 txd->tx_m = NULL;
 1158                 txd->tx_dmamap = NULL;
 1159                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
 1160                     &txd->tx_dmamap);
 1161                 if (error != 0) {
 1162                         device_printf(sc->age_dev,
 1163                             "could not create Tx dmamap.\n");
 1164                         goto fail;
 1165                 }
 1166         }
 1167         /* Create DMA maps for Rx buffers. */
 1168         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
 1169             &sc->age_cdata.age_rx_sparemap)) != 0) {
 1170                 device_printf(sc->age_dev,
 1171                     "could not create spare Rx dmamap.\n");
 1172                 goto fail;
 1173         }
 1174         for (i = 0; i < AGE_RX_RING_CNT; i++) {
 1175                 rxd = &sc->age_cdata.age_rxdesc[i];
 1176                 rxd->rx_m = NULL;
 1177                 rxd->rx_dmamap = NULL;
 1178                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
 1179                     &rxd->rx_dmamap);
 1180                 if (error != 0) {
 1181                         device_printf(sc->age_dev,
 1182                             "could not create Rx dmamap.\n");
 1183                         goto fail;
 1184                 }
 1185         }
 1186 
 1187 fail:
 1188         return (error);
 1189 }
 1190 
 1191 static void
 1192 age_dma_free(struct age_softc *sc)
 1193 {
 1194         struct age_txdesc *txd;
 1195         struct age_rxdesc *rxd;
 1196         int i;
 1197 
 1198         /* Tx buffers */
 1199         if (sc->age_cdata.age_tx_tag != NULL) {
 1200                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
 1201                         txd = &sc->age_cdata.age_txdesc[i];
 1202                         if (txd->tx_dmamap != NULL) {
 1203                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
 1204                                     txd->tx_dmamap);
 1205                                 txd->tx_dmamap = NULL;
 1206                         }
 1207                 }
 1208                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
 1209                 sc->age_cdata.age_tx_tag = NULL;
 1210         }
 1211         /* Rx buffers */
 1212         if (sc->age_cdata.age_rx_tag != NULL) {
 1213                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
 1214                         rxd = &sc->age_cdata.age_rxdesc[i];
 1215                         if (rxd->rx_dmamap != NULL) {
 1216                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
 1217                                     rxd->rx_dmamap);
 1218                                 rxd->rx_dmamap = NULL;
 1219                         }
 1220                 }
 1221                 if (sc->age_cdata.age_rx_sparemap != NULL) {
 1222                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
 1223                             sc->age_cdata.age_rx_sparemap);
 1224                         sc->age_cdata.age_rx_sparemap = NULL;
 1225                 }
 1226                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
 1227                 sc->age_cdata.age_rx_tag = NULL;
 1228         }
 1229         /* Tx ring. */
 1230         if (sc->age_cdata.age_tx_ring_tag != NULL) {
 1231                 if (sc->age_rdata.age_tx_ring_paddr != 0)
 1232                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
 1233                             sc->age_cdata.age_tx_ring_map);
 1234                 if (sc->age_rdata.age_tx_ring != NULL)
 1235                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
 1236                             sc->age_rdata.age_tx_ring,
 1237                             sc->age_cdata.age_tx_ring_map);
 1238                 sc->age_rdata.age_tx_ring_paddr = 0;
 1239                 sc->age_rdata.age_tx_ring = NULL;
 1240                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
 1241                 sc->age_cdata.age_tx_ring_tag = NULL;
 1242         }
 1243         /* Rx ring. */
 1244         if (sc->age_cdata.age_rx_ring_tag != NULL) {
 1245                 if (sc->age_rdata.age_rx_ring_paddr != 0)
 1246                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
 1247                             sc->age_cdata.age_rx_ring_map);
 1248                 if (sc->age_rdata.age_rx_ring != NULL)
 1249                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
 1250                             sc->age_rdata.age_rx_ring,
 1251                             sc->age_cdata.age_rx_ring_map);
 1252                 sc->age_rdata.age_rx_ring_paddr = 0;
 1253                 sc->age_rdata.age_rx_ring = NULL;
 1254                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
 1255                 sc->age_cdata.age_rx_ring_tag = NULL;
 1256         }
 1257         /* Rx return ring. */
 1258         if (sc->age_cdata.age_rr_ring_tag != NULL) {
 1259                 if (sc->age_rdata.age_rr_ring_paddr != 0)
 1260                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
 1261                             sc->age_cdata.age_rr_ring_map);
 1262                 if (sc->age_rdata.age_rr_ring != NULL)
 1263                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
 1264                             sc->age_rdata.age_rr_ring,
 1265                             sc->age_cdata.age_rr_ring_map);
 1266                 sc->age_rdata.age_rr_ring_paddr = 0;
 1267                 sc->age_rdata.age_rr_ring = NULL;
 1268                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
 1269                 sc->age_cdata.age_rr_ring_tag = NULL;
 1270         }
 1271         /* CMB block */
 1272         if (sc->age_cdata.age_cmb_block_tag != NULL) {
 1273                 if (sc->age_rdata.age_cmb_block_paddr != 0)
 1274                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
 1275                             sc->age_cdata.age_cmb_block_map);
 1276                 if (sc->age_rdata.age_cmb_block != NULL)
 1277                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
 1278                             sc->age_rdata.age_cmb_block,
 1279                             sc->age_cdata.age_cmb_block_map);
 1280                 sc->age_rdata.age_cmb_block_paddr = 0;
 1281                 sc->age_rdata.age_cmb_block = NULL;
 1282                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
 1283                 sc->age_cdata.age_cmb_block_tag = NULL;
 1284         }
 1285         /* SMB block */
 1286         if (sc->age_cdata.age_smb_block_tag != NULL) {
 1287                 if (sc->age_rdata.age_smb_block_paddr != 0)
 1288                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
 1289                             sc->age_cdata.age_smb_block_map);
 1290                 if (sc->age_rdata.age_smb_block != NULL)
 1291                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
 1292                             sc->age_rdata.age_smb_block,
 1293                             sc->age_cdata.age_smb_block_map);
 1294                 sc->age_rdata.age_smb_block_paddr = 0;
 1295                 sc->age_rdata.age_smb_block = NULL;
 1296                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
 1297                 sc->age_cdata.age_smb_block_tag = NULL;
 1298         }
 1299 
 1300         if (sc->age_cdata.age_buffer_tag != NULL) {
 1301                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
 1302                 sc->age_cdata.age_buffer_tag = NULL;
 1303         }
 1304         if (sc->age_cdata.age_parent_tag != NULL) {
 1305                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
 1306                 sc->age_cdata.age_parent_tag = NULL;
 1307         }
 1308 }
 1309 
 1310 /*
 1311  *      Make sure the interface is stopped at reboot time.
 1312  */
 1313 static int
 1314 age_shutdown(device_t dev)
 1315 {
 1316 
 1317         return (age_suspend(dev));
 1318 }
 1319 
 1320 static void
 1321 age_setwol(struct age_softc *sc)
 1322 {
 1323         struct ifnet *ifp;
 1324         struct mii_data *mii;
 1325         uint32_t reg, pmcs;
 1326         uint16_t pmstat;
 1327         int aneg, i, pmc;
 1328 
 1329         AGE_LOCK_ASSERT(sc);
 1330 
 1331         if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
 1332                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
 1333                 /*
 1334                  * No PME capability, PHY power down.
 1335                  * XXX
 1336                  * Due to an unknown reason powering down PHY resulted
 1337                  * in unexpected results such as inaccessbility of
 1338                  * hardware of freshly rebooted system. Disable
 1339                  * powering down PHY until I got more information for
 1340                  * Attansic/Atheros PHY hardwares.
 1341                  */
 1342 #ifdef notyet
 1343                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1344                     MII_BMCR, BMCR_PDOWN);
 1345 #endif
 1346                 return;
 1347         }
 1348 
 1349         ifp = sc->age_ifp;
 1350         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1351                 /*
 1352                  * Note, this driver resets the link speed to 10/100Mbps with
 1353                  * auto-negotiation but we don't know whether that operation
 1354                  * would succeed or not as it have no control after powering
 1355                  * off. If the renegotiation fail WOL may not work. Running
 1356                  * at 1Gbps will draw more power than 375mA at 3.3V which is
 1357                  * specified in PCI specification and that would result in
 1358                  * complete shutdowning power to ethernet controller.
 1359                  *
 1360                  * TODO
 1361                  *  Save current negotiated media speed/duplex/flow-control
 1362                  *  to softc and restore the same link again after resuming.
 1363                  *  PHY handling such as power down/resetting to 100Mbps
 1364                  *  may be better handled in suspend method in phy driver.
 1365                  */
 1366                 mii = device_get_softc(sc->age_miibus);
 1367                 mii_pollstat(mii);
 1368                 aneg = 0;
 1369                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1370                         switch IFM_SUBTYPE(mii->mii_media_active) {
 1371                         case IFM_10_T:
 1372                         case IFM_100_TX:
 1373                                 goto got_link;
 1374                         case IFM_1000_T:
 1375                                 aneg++;
 1376                         default:
 1377                                 break;
 1378                         }
 1379                 }
 1380                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1381                     MII_100T2CR, 0);
 1382                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1383                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
 1384                     ANAR_10 | ANAR_CSMA);
 1385                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1386                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1387                 DELAY(1000);
 1388                 if (aneg != 0) {
 1389                         /* Poll link state until age(4) get a 10/100 link. */
 1390                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1391                                 mii_pollstat(mii);
 1392                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1393                                         switch (IFM_SUBTYPE(
 1394                                             mii->mii_media_active)) {
 1395                                         case IFM_10_T:
 1396                                         case IFM_100_TX:
 1397                                                 age_mac_config(sc);
 1398                                                 goto got_link;
 1399                                         default:
 1400                                                 break;
 1401                                         }
 1402                                 }
 1403                                 AGE_UNLOCK(sc);
 1404                                 pause("agelnk", hz);
 1405                                 AGE_LOCK(sc);
 1406                         }
 1407                         if (i == MII_ANEGTICKS_GIGE)
 1408                                 device_printf(sc->age_dev,
 1409                                     "establishing link failed, "
 1410                                     "WOL may not work!");
 1411                 }
 1412                 /*
 1413                  * No link, force MAC to have 100Mbps, full-duplex link.
 1414                  * This is the last resort and may/may not work.
 1415                  */
 1416                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1417                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1418                 age_mac_config(sc);
 1419         }
 1420 
 1421 got_link:
 1422         pmcs = 0;
 1423         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1424                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1425         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
 1426         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 1427         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
 1428         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
 1429         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1430                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1431         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1432                 reg |= MAC_CFG_RX_ENB;
 1433                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 1434         }
 1435 
 1436         /* Request PME. */
 1437         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
 1438         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1439         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1440                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1441         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1442 #ifdef notyet
 1443         /* See above for powering down PHY issues. */
 1444         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1445                 /* No WOL, PHY power down. */
 1446                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1447                     MII_BMCR, BMCR_PDOWN);
 1448         }
 1449 #endif
 1450 }
 1451 
 1452 static int
 1453 age_suspend(device_t dev)
 1454 {
 1455         struct age_softc *sc;
 1456 
 1457         sc = device_get_softc(dev);
 1458 
 1459         AGE_LOCK(sc);
 1460         age_stop(sc);
 1461         age_setwol(sc);
 1462         AGE_UNLOCK(sc);
 1463 
 1464         return (0);
 1465 }
 1466 
 1467 static int
 1468 age_resume(device_t dev)
 1469 {
 1470         struct age_softc *sc;
 1471         struct ifnet *ifp;
 1472 
 1473         sc = device_get_softc(dev);
 1474 
 1475         AGE_LOCK(sc);
 1476         age_phy_reset(sc);
 1477         ifp = sc->age_ifp;
 1478         if ((ifp->if_flags & IFF_UP) != 0)
 1479                 age_init_locked(sc);
 1480 
 1481         AGE_UNLOCK(sc);
 1482 
 1483         return (0);
 1484 }
 1485 
 1486 static int
 1487 age_encap(struct age_softc *sc, struct mbuf **m_head)
 1488 {
 1489         struct age_txdesc *txd, *txd_last;
 1490         struct tx_desc *desc;
 1491         struct mbuf *m;
 1492         struct ip *ip;
 1493         struct tcphdr *tcp;
 1494         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
 1495         bus_dmamap_t map;
 1496         uint32_t cflags, hdrlen, ip_off, poff, vtag;
 1497         int error, i, nsegs, prod, si;
 1498 
 1499         AGE_LOCK_ASSERT(sc);
 1500 
 1501         M_ASSERTPKTHDR((*m_head));
 1502 
 1503         m = *m_head;
 1504         ip = NULL;
 1505         tcp = NULL;
 1506         cflags = vtag = 0;
 1507         ip_off = poff = 0;
 1508         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
 1509                 /*
 1510                  * L1 requires offset of TCP/UDP payload in its Tx
 1511                  * descriptor to perform hardware Tx checksum offload.
 1512                  * Additionally, TSO requires IP/TCP header size and
 1513                  * modification of IP/TCP header in order to make TSO
 1514                  * engine work. This kind of operation takes many CPU
 1515                  * cycles on FreeBSD so fast host CPU is needed to get
 1516                  * smooth TSO performance.
 1517                  */
 1518                 struct ether_header *eh;
 1519 
 1520                 if (M_WRITABLE(m) == 0) {
 1521                         /* Get a writable copy. */
 1522                         m = m_dup(*m_head, M_NOWAIT);
 1523                         /* Release original mbufs. */
 1524                         m_freem(*m_head);
 1525                         if (m == NULL) {
 1526                                 *m_head = NULL;
 1527                                 return (ENOBUFS);
 1528                         }
 1529                         *m_head = m;
 1530                 }
 1531                 ip_off = sizeof(struct ether_header);
 1532                 m = m_pullup(m, ip_off);
 1533                 if (m == NULL) {
 1534                         *m_head = NULL;
 1535                         return (ENOBUFS);
 1536                 }
 1537                 eh = mtod(m, struct ether_header *);
 1538                 /*
 1539                  * Check if hardware VLAN insertion is off.
 1540                  * Additional check for LLC/SNAP frame?
 1541                  */
 1542                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1543                         ip_off = sizeof(struct ether_vlan_header);
 1544                         m = m_pullup(m, ip_off);
 1545                         if (m == NULL) {
 1546                                 *m_head = NULL;
 1547                                 return (ENOBUFS);
 1548                         }
 1549                 }
 1550                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1551                 if (m == NULL) {
 1552                         *m_head = NULL;
 1553                         return (ENOBUFS);
 1554                 }
 1555                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1556                 poff = ip_off + (ip->ip_hl << 2);
 1557                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1558                         m = m_pullup(m, poff + sizeof(struct tcphdr));
 1559                         if (m == NULL) {
 1560                                 *m_head = NULL;
 1561                                 return (ENOBUFS);
 1562                         }
 1563                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1564                         m = m_pullup(m, poff + (tcp->th_off << 2));
 1565                         if (m == NULL) {
 1566                                 *m_head = NULL;
 1567                                 return (ENOBUFS);
 1568                         }
 1569                         /*
 1570                          * L1 requires IP/TCP header size and offset as
 1571                          * well as TCP pseudo checksum which complicates
 1572                          * TSO configuration. I guess this comes from the
 1573                          * adherence to Microsoft NDIS Large Send
 1574                          * specification which requires insertion of
 1575                          * pseudo checksum by upper stack. The pseudo
 1576                          * checksum that NDIS refers to doesn't include
 1577                          * TCP payload length so age(4) should recompute
 1578                          * the pseudo checksum here. Hopefully this wouldn't
 1579                          * be much burden on modern CPUs.
 1580                          * Reset IP checksum and recompute TCP pseudo
 1581                          * checksum as NDIS specification said.
 1582                          */
 1583                         ip = (struct ip *)(mtod(m, char *) + ip_off);
 1584                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1585                         ip->ip_sum = 0;
 1586                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1587                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1588                 }
 1589                 *m_head = m;
 1590         }
 1591 
 1592         si = prod = sc->age_cdata.age_tx_prod;
 1593         txd = &sc->age_cdata.age_txdesc[prod];
 1594         txd_last = txd;
 1595         map = txd->tx_dmamap;
 1596 
 1597         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
 1598             *m_head, txsegs, &nsegs, 0);
 1599         if (error == EFBIG) {
 1600                 m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
 1601                 if (m == NULL) {
 1602                         m_freem(*m_head);
 1603                         *m_head = NULL;
 1604                         return (ENOMEM);
 1605                 }
 1606                 *m_head = m;
 1607                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
 1608                     *m_head, txsegs, &nsegs, 0);
 1609                 if (error != 0) {
 1610                         m_freem(*m_head);
 1611                         *m_head = NULL;
 1612                         return (error);
 1613                 }
 1614         } else if (error != 0)
 1615                 return (error);
 1616         if (nsegs == 0) {
 1617                 m_freem(*m_head);
 1618                 *m_head = NULL;
 1619                 return (EIO);
 1620         }
 1621 
 1622         /* Check descriptor overrun. */
 1623         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
 1624                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
 1625                 return (ENOBUFS);
 1626         }
 1627 
 1628         m = *m_head;
 1629         /* Configure VLAN hardware tag insertion. */
 1630         if ((m->m_flags & M_VLANTAG) != 0) {
 1631                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
 1632                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
 1633                 cflags |= AGE_TD_INSERT_VLAN_TAG;
 1634         }
 1635 
 1636         desc = NULL;
 1637         i = 0;
 1638         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1639                 /* Request TSO and set MSS. */
 1640                 cflags |= AGE_TD_TSO_IPV4;
 1641                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
 1642                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
 1643                     AGE_TD_TSO_MSS_SHIFT);
 1644                 /* Set IP/TCP header size. */
 1645                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
 1646                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
 1647                 /*
 1648                  * L1 requires the first buffer should only hold IP/TCP
 1649                  * header data. TCP payload should be handled in other
 1650                  * descriptors.
 1651                  */
 1652                 hdrlen = poff + (tcp->th_off << 2);
 1653                 desc = &sc->age_rdata.age_tx_ring[prod];
 1654                 desc->addr = htole64(txsegs[0].ds_addr);
 1655                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
 1656                 desc->flags = htole32(cflags);
 1657                 sc->age_cdata.age_tx_cnt++;
 1658                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
 1659                 if (m->m_len - hdrlen > 0) {
 1660                         /* Handle remaining payload of the 1st fragment. */
 1661                         desc = &sc->age_rdata.age_tx_ring[prod];
 1662                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
 1663                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
 1664                             vtag);
 1665                         desc->flags = htole32(cflags);
 1666                         sc->age_cdata.age_tx_cnt++;
 1667                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
 1668                 }
 1669                 /* Handle remaining fragments. */
 1670                 i = 1;
 1671         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
 1672                 /* Configure Tx IP/TCP/UDP checksum offload. */
 1673                 cflags |= AGE_TD_CSUM;
 1674                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
 1675                         cflags |= AGE_TD_TCPCSUM;
 1676                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
 1677                         cflags |= AGE_TD_UDPCSUM;
 1678                 /* Set checksum start offset. */
 1679                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
 1680                 /* Set checksum insertion position of TCP/UDP. */
 1681                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1682                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
 1683         }
 1684         for (; i < nsegs; i++) {
 1685                 desc = &sc->age_rdata.age_tx_ring[prod];
 1686                 desc->addr = htole64(txsegs[i].ds_addr);
 1687                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1688                 desc->flags = htole32(cflags);
 1689                 sc->age_cdata.age_tx_cnt++;
 1690                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
 1691         }
 1692         /* Update producer index. */
 1693         sc->age_cdata.age_tx_prod = prod;
 1694 
 1695         /* Set EOP on the last descriptor. */
 1696         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
 1697         desc = &sc->age_rdata.age_tx_ring[prod];
 1698         desc->flags |= htole32(AGE_TD_EOP);
 1699 
 1700         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
 1701         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1702                 desc = &sc->age_rdata.age_tx_ring[si];
 1703                 desc->flags |= htole32(AGE_TD_TSO_HDR);
 1704         }
 1705 
 1706         /* Swap dmamap of the first and the last. */
 1707         txd = &sc->age_cdata.age_txdesc[prod];
 1708         map = txd_last->tx_dmamap;
 1709         txd_last->tx_dmamap = txd->tx_dmamap;
 1710         txd->tx_dmamap = map;
 1711         txd->tx_m = m;
 1712 
 1713         /* Sync descriptors. */
 1714         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1715         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 1716             sc->age_cdata.age_tx_ring_map,
 1717             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1718 
 1719         return (0);
 1720 }
 1721 
 1722 static void
 1723 age_start(struct ifnet *ifp)
 1724 {
 1725         struct age_softc *sc;
 1726 
 1727         sc = ifp->if_softc;
 1728         AGE_LOCK(sc);
 1729         age_start_locked(ifp);
 1730         AGE_UNLOCK(sc);
 1731 }
 1732 
 1733 static void
 1734 age_start_locked(struct ifnet *ifp)
 1735 {
 1736         struct age_softc *sc;
 1737         struct mbuf *m_head;
 1738         int enq;
 1739 
 1740         sc = ifp->if_softc;
 1741 
 1742         AGE_LOCK_ASSERT(sc);
 1743 
 1744         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1745             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
 1746                 return;
 1747 
 1748         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1749                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1750                 if (m_head == NULL)
 1751                         break;
 1752                 /*
 1753                  * Pack the data into the transmit ring. If we
 1754                  * don't have room, set the OACTIVE flag and wait
 1755                  * for the NIC to drain the ring.
 1756                  */
 1757                 if (age_encap(sc, &m_head)) {
 1758                         if (m_head == NULL)
 1759                                 break;
 1760                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1761                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1762                         break;
 1763                 }
 1764 
 1765                 enq++;
 1766                 /*
 1767                  * If there's a BPF listener, bounce a copy of this frame
 1768                  * to him.
 1769                  */
 1770                 ETHER_BPF_MTAP(ifp, m_head);
 1771         }
 1772 
 1773         if (enq > 0) {
 1774                 /* Update mbox. */
 1775                 AGE_COMMIT_MBOX(sc);
 1776                 /* Set a timeout in case the chip goes out to lunch. */
 1777                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
 1778         }
 1779 }
 1780 
 1781 static void
 1782 age_watchdog(struct age_softc *sc)
 1783 {
 1784         struct ifnet *ifp;
 1785 
 1786         AGE_LOCK_ASSERT(sc);
 1787 
 1788         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
 1789                 return;
 1790 
 1791         ifp = sc->age_ifp;
 1792         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
 1793                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
 1794                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1795                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1796                 age_init_locked(sc);
 1797                 return;
 1798         }
 1799         if (sc->age_cdata.age_tx_cnt == 0) {
 1800                 if_printf(sc->age_ifp,
 1801                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
 1802                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1803                         age_start_locked(ifp);
 1804                 return;
 1805         }
 1806         if_printf(sc->age_ifp, "watchdog timeout\n");
 1807         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1808         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1809         age_init_locked(sc);
 1810         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1811                 age_start_locked(ifp);
 1812 }
 1813 
 1814 static int
 1815 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1816 {
 1817         struct age_softc *sc;
 1818         struct ifreq *ifr;
 1819         struct mii_data *mii;
 1820         uint32_t reg;
 1821         int error, mask;
 1822 
 1823         sc = ifp->if_softc;
 1824         ifr = (struct ifreq *)data;
 1825         error = 0;
 1826         switch (cmd) {
 1827         case SIOCSIFMTU:
 1828                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
 1829                         error = EINVAL;
 1830                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1831                         AGE_LOCK(sc);
 1832                         ifp->if_mtu = ifr->ifr_mtu;
 1833                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1834                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1835                                 age_init_locked(sc);
 1836                         }
 1837                         AGE_UNLOCK(sc);
 1838                 }
 1839                 break;
 1840         case SIOCSIFFLAGS:
 1841                 AGE_LOCK(sc);
 1842                 if ((ifp->if_flags & IFF_UP) != 0) {
 1843                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1844                                 if (((ifp->if_flags ^ sc->age_if_flags)
 1845                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1846                                         age_rxfilter(sc);
 1847                         } else {
 1848                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
 1849                                         age_init_locked(sc);
 1850                         }
 1851                 } else {
 1852                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1853                                 age_stop(sc);
 1854                 }
 1855                 sc->age_if_flags = ifp->if_flags;
 1856                 AGE_UNLOCK(sc);
 1857                 break;
 1858         case SIOCADDMULTI:
 1859         case SIOCDELMULTI:
 1860                 AGE_LOCK(sc);
 1861                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1862                         age_rxfilter(sc);
 1863                 AGE_UNLOCK(sc);
 1864                 break;
 1865         case SIOCSIFMEDIA:
 1866         case SIOCGIFMEDIA:
 1867                 mii = device_get_softc(sc->age_miibus);
 1868                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1869                 break;
 1870         case SIOCSIFCAP:
 1871                 AGE_LOCK(sc);
 1872                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1873                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1874                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1875                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1876                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1877                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
 1878                         else
 1879                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
 1880                 }
 1881                 if ((mask & IFCAP_RXCSUM) != 0 &&
 1882                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
 1883                         ifp->if_capenable ^= IFCAP_RXCSUM;
 1884                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 1885                         reg &= ~MAC_CFG_RXCSUM_ENB;
 1886                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 1887                                 reg |= MAC_CFG_RXCSUM_ENB;
 1888                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 1889                 }
 1890                 if ((mask & IFCAP_TSO4) != 0 &&
 1891                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 1892                         ifp->if_capenable ^= IFCAP_TSO4;
 1893                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 1894                                 ifp->if_hwassist |= CSUM_TSO;
 1895                         else
 1896                                 ifp->if_hwassist &= ~CSUM_TSO;
 1897                 }
 1898 
 1899                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 1900                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 1901                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 1902                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 1903                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 1904                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1905                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 1906                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 1907                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 1908                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 1909                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 1910                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 1911                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 1912                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 1913                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 1914                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 1915                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 1916                         age_rxvlan(sc);
 1917                 }
 1918                 AGE_UNLOCK(sc);
 1919                 VLAN_CAPABILITIES(ifp);
 1920                 break;
 1921         default:
 1922                 error = ether_ioctl(ifp, cmd, data);
 1923                 break;
 1924         }
 1925 
 1926         return (error);
 1927 }
 1928 
 1929 static void
 1930 age_mac_config(struct age_softc *sc)
 1931 {
 1932         struct mii_data *mii;
 1933         uint32_t reg;
 1934 
 1935         AGE_LOCK_ASSERT(sc);
 1936 
 1937         mii = device_get_softc(sc->age_miibus);
 1938         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 1939         reg &= ~MAC_CFG_FULL_DUPLEX;
 1940         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
 1941         reg &= ~MAC_CFG_SPEED_MASK;
 1942         /* Reprogram MAC with resolved speed/duplex. */
 1943         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1944         case IFM_10_T:
 1945         case IFM_100_TX:
 1946                 reg |= MAC_CFG_SPEED_10_100;
 1947                 break;
 1948         case IFM_1000_T:
 1949                 reg |= MAC_CFG_SPEED_1000;
 1950                 break;
 1951         }
 1952         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 1953                 reg |= MAC_CFG_FULL_DUPLEX;
 1954 #ifdef notyet
 1955                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 1956                         reg |= MAC_CFG_TX_FC;
 1957                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 1958                         reg |= MAC_CFG_RX_FC;
 1959 #endif
 1960         }
 1961 
 1962         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 1963 }
 1964 
 1965 static void
 1966 age_link_task(void *arg, int pending)
 1967 {
 1968         struct age_softc *sc;
 1969         struct mii_data *mii;
 1970         struct ifnet *ifp;
 1971         uint32_t reg;
 1972 
 1973         sc = (struct age_softc *)arg;
 1974 
 1975         AGE_LOCK(sc);
 1976         mii = device_get_softc(sc->age_miibus);
 1977         ifp = sc->age_ifp;
 1978         if (mii == NULL || ifp == NULL ||
 1979             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1980                 AGE_UNLOCK(sc);
 1981                 return;
 1982         }
 1983 
 1984         sc->age_flags &= ~AGE_FLAG_LINK;
 1985         if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1986                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1987                 case IFM_10_T:
 1988                 case IFM_100_TX:
 1989                 case IFM_1000_T:
 1990                         sc->age_flags |= AGE_FLAG_LINK;
 1991                         break;
 1992                 default:
 1993                         break;
 1994                 }
 1995         }
 1996 
 1997         /* Stop Rx/Tx MACs. */
 1998         age_stop_rxmac(sc);
 1999         age_stop_txmac(sc);
 2000 
 2001         /* Program MACs with resolved speed/duplex/flow-control. */
 2002         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
 2003                 age_mac_config(sc);
 2004                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2005                 /* Restart DMA engine and Tx/Rx MAC. */
 2006                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
 2007                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
 2008                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2009                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 2010         }
 2011 
 2012         AGE_UNLOCK(sc);
 2013 }
 2014 
 2015 static void
 2016 age_stats_update(struct age_softc *sc)
 2017 {
 2018         struct age_stats *stat;
 2019         struct smb *smb;
 2020         struct ifnet *ifp;
 2021 
 2022         AGE_LOCK_ASSERT(sc);
 2023 
 2024         stat = &sc->age_stat;
 2025 
 2026         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
 2027             sc->age_cdata.age_smb_block_map,
 2028             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2029 
 2030         smb = sc->age_rdata.age_smb_block;
 2031         if (smb->updated == 0)
 2032                 return;
 2033 
 2034         ifp = sc->age_ifp;
 2035         /* Rx stats. */
 2036         stat->rx_frames += smb->rx_frames;
 2037         stat->rx_bcast_frames += smb->rx_bcast_frames;
 2038         stat->rx_mcast_frames += smb->rx_mcast_frames;
 2039         stat->rx_pause_frames += smb->rx_pause_frames;
 2040         stat->rx_control_frames += smb->rx_control_frames;
 2041         stat->rx_crcerrs += smb->rx_crcerrs;
 2042         stat->rx_lenerrs += smb->rx_lenerrs;
 2043         stat->rx_bytes += smb->rx_bytes;
 2044         stat->rx_runts += smb->rx_runts;
 2045         stat->rx_fragments += smb->rx_fragments;
 2046         stat->rx_pkts_64 += smb->rx_pkts_64;
 2047         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 2048         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 2049         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 2050         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 2051         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 2052         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 2053         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 2054         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 2055         stat->rx_desc_oflows += smb->rx_desc_oflows;
 2056         stat->rx_alignerrs += smb->rx_alignerrs;
 2057         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 2058         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 2059         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 2060 
 2061         /* Tx stats. */
 2062         stat->tx_frames += smb->tx_frames;
 2063         stat->tx_bcast_frames += smb->tx_bcast_frames;
 2064         stat->tx_mcast_frames += smb->tx_mcast_frames;
 2065         stat->tx_pause_frames += smb->tx_pause_frames;
 2066         stat->tx_excess_defer += smb->tx_excess_defer;
 2067         stat->tx_control_frames += smb->tx_control_frames;
 2068         stat->tx_deferred += smb->tx_deferred;
 2069         stat->tx_bytes += smb->tx_bytes;
 2070         stat->tx_pkts_64 += smb->tx_pkts_64;
 2071         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 2072         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 2073         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 2074         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 2075         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 2076         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 2077         stat->tx_single_colls += smb->tx_single_colls;
 2078         stat->tx_multi_colls += smb->tx_multi_colls;
 2079         stat->tx_late_colls += smb->tx_late_colls;
 2080         stat->tx_excess_colls += smb->tx_excess_colls;
 2081         stat->tx_underrun += smb->tx_underrun;
 2082         stat->tx_desc_underrun += smb->tx_desc_underrun;
 2083         stat->tx_lenerrs += smb->tx_lenerrs;
 2084         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 2085         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 2086         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 2087 
 2088         /* Update counters in ifnet. */
 2089         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
 2090 
 2091         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
 2092             smb->tx_multi_colls + smb->tx_late_colls +
 2093             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
 2094 
 2095         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
 2096             smb->tx_late_colls + smb->tx_underrun +
 2097             smb->tx_pkts_truncated);
 2098 
 2099         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
 2100 
 2101         if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
 2102             smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
 2103             smb->rx_fifo_oflows + smb->rx_desc_oflows +
 2104             smb->rx_alignerrs);
 2105 
 2106         /* Update done, clear. */
 2107         smb->updated = 0;
 2108 
 2109         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
 2110             sc->age_cdata.age_smb_block_map,
 2111             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2112 }
 2113 
 2114 static int
 2115 age_intr(void *arg)
 2116 {
 2117         struct age_softc *sc;
 2118         uint32_t status;
 2119 
 2120         sc = (struct age_softc *)arg;
 2121 
 2122         status = CSR_READ_4(sc, AGE_INTR_STATUS);
 2123         if (status == 0 || (status & AGE_INTRS) == 0)
 2124                 return (FILTER_STRAY);
 2125         /* Disable interrupts. */
 2126         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
 2127         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
 2128 
 2129         return (FILTER_HANDLED);
 2130 }
 2131 
 2132 static void
 2133 age_int_task(void *arg, int pending)
 2134 {
 2135         struct age_softc *sc;
 2136         struct ifnet *ifp;
 2137         struct cmb *cmb;
 2138         uint32_t status;
 2139 
 2140         sc = (struct age_softc *)arg;
 2141 
 2142         AGE_LOCK(sc);
 2143 
 2144         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 2145             sc->age_cdata.age_cmb_block_map,
 2146             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2147         cmb = sc->age_rdata.age_cmb_block;
 2148         status = le32toh(cmb->intr_status);
 2149         if (sc->age_morework != 0)
 2150                 status |= INTR_CMB_RX;
 2151         if ((status & AGE_INTRS) == 0)
 2152                 goto done;
 2153 
 2154         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
 2155             TPD_CONS_SHIFT;
 2156         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
 2157             RRD_PROD_SHIFT;
 2158         /* Let hardware know CMB was served. */
 2159         cmb->intr_status = 0;
 2160         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 2161             sc->age_cdata.age_cmb_block_map,
 2162             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2163 
 2164         ifp = sc->age_ifp;
 2165         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2166                 if ((status & INTR_CMB_RX) != 0)
 2167                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
 2168                             sc->age_process_limit);
 2169                 if ((status & INTR_CMB_TX) != 0)
 2170                         age_txintr(sc, sc->age_tpd_cons);
 2171                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2172                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2173                                 device_printf(sc->age_dev,
 2174                                     "DMA read error! -- resetting\n");
 2175                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2176                                 device_printf(sc->age_dev,
 2177                                     "DMA write error! -- resetting\n");
 2178                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2179                         age_init_locked(sc);
 2180                 }
 2181                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2182                         age_start_locked(ifp);
 2183                 if ((status & INTR_SMB) != 0)
 2184                         age_stats_update(sc);
 2185         }
 2186 
 2187         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
 2188         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 2189             sc->age_cdata.age_cmb_block_map,
 2190             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2191         status = le32toh(cmb->intr_status);
 2192         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
 2193                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
 2194                 AGE_UNLOCK(sc);
 2195                 return;
 2196         }
 2197 
 2198 done:
 2199         /* Re-enable interrupts. */
 2200         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
 2201         AGE_UNLOCK(sc);
 2202 }
 2203 
 2204 static void
 2205 age_txintr(struct age_softc *sc, int tpd_cons)
 2206 {
 2207         struct ifnet *ifp;
 2208         struct age_txdesc *txd;
 2209         int cons, prog;
 2210 
 2211         AGE_LOCK_ASSERT(sc);
 2212 
 2213         ifp = sc->age_ifp;
 2214 
 2215         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 2216             sc->age_cdata.age_tx_ring_map,
 2217             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2218 
 2219         /*
 2220          * Go through our Tx list and free mbufs for those
 2221          * frames which have been transmitted.
 2222          */
 2223         cons = sc->age_cdata.age_tx_cons;
 2224         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
 2225                 if (sc->age_cdata.age_tx_cnt <= 0)
 2226                         break;
 2227                 prog++;
 2228                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2229                 sc->age_cdata.age_tx_cnt--;
 2230                 txd = &sc->age_cdata.age_txdesc[cons];
 2231                 /*
 2232                  * Clear Tx descriptors, it's not required but would
 2233                  * help debugging in case of Tx issues.
 2234                  */
 2235                 txd->tx_desc->addr = 0;
 2236                 txd->tx_desc->len = 0;
 2237                 txd->tx_desc->flags = 0;
 2238 
 2239                 if (txd->tx_m == NULL)
 2240                         continue;
 2241                 /* Reclaim transmitted mbufs. */
 2242                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
 2243                     BUS_DMASYNC_POSTWRITE);
 2244                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
 2245                 m_freem(txd->tx_m);
 2246                 txd->tx_m = NULL;
 2247         }
 2248 
 2249         if (prog > 0) {
 2250                 sc->age_cdata.age_tx_cons = cons;
 2251 
 2252                 /*
 2253                  * Unarm watchdog timer only when there are no pending
 2254                  * Tx descriptors in queue.
 2255                  */
 2256                 if (sc->age_cdata.age_tx_cnt == 0)
 2257                         sc->age_watchdog_timer = 0;
 2258                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 2259                     sc->age_cdata.age_tx_ring_map,
 2260                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2261         }
 2262 }
 2263 
 2264 #ifndef __NO_STRICT_ALIGNMENT
 2265 static struct mbuf *
 2266 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
 2267 {
 2268         struct mbuf *n;
 2269         int i;
 2270         uint16_t *src, *dst;
 2271 
 2272         src = mtod(m, uint16_t *);
 2273         dst = src - 3;
 2274 
 2275         if (m->m_next == NULL) {
 2276                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 2277                         *dst++ = *src++;
 2278                 m->m_data -= 6;
 2279                 return (m);
 2280         }
 2281         /*
 2282          * Append a new mbuf to received mbuf chain and copy ethernet
 2283          * header from the mbuf chain. This can save lots of CPU
 2284          * cycles for jumbo frame.
 2285          */
 2286         MGETHDR(n, M_NOWAIT, MT_DATA);
 2287         if (n == NULL) {
 2288                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2289                 m_freem(m);
 2290                 return (NULL);
 2291         }
 2292         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
 2293         m->m_data += ETHER_HDR_LEN;
 2294         m->m_len -= ETHER_HDR_LEN;
 2295         n->m_len = ETHER_HDR_LEN;
 2296         M_MOVE_PKTHDR(n, m);
 2297         n->m_next = m;
 2298         return (n);
 2299 }
 2300 #endif
 2301 
 2302 /* Receive a frame. */
 2303 static void
 2304 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
 2305 {
 2306         struct age_rxdesc *rxd;
 2307         struct ifnet *ifp;
 2308         struct mbuf *mp, *m;
 2309         uint32_t status, index, vtag;
 2310         int count, nsegs;
 2311         int rx_cons;
 2312 
 2313         AGE_LOCK_ASSERT(sc);
 2314 
 2315         ifp = sc->age_ifp;
 2316         status = le32toh(rxrd->flags);
 2317         index = le32toh(rxrd->index);
 2318         rx_cons = AGE_RX_CONS(index);
 2319         nsegs = AGE_RX_NSEGS(index);
 2320 
 2321         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
 2322         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
 2323                 /*
 2324                  * We want to pass the following frames to upper
 2325                  * layer regardless of error status of Rx return
 2326                  * ring.
 2327                  *
 2328                  *  o IP/TCP/UDP checksum is bad.
 2329                  *  o frame length and protocol specific length
 2330                  *     does not match.
 2331                  */
 2332                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
 2333                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
 2334                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
 2335                         return;
 2336         }
 2337 
 2338         for (count = 0; count < nsegs; count++,
 2339             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
 2340                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
 2341                 mp = rxd->rx_m;
 2342                 /* Add a new receive buffer to the ring. */
 2343                 if (age_newbuf(sc, rxd) != 0) {
 2344                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2345                         /* Reuse Rx buffers. */
 2346                         if (sc->age_cdata.age_rxhead != NULL)
 2347                                 m_freem(sc->age_cdata.age_rxhead);
 2348                         break;
 2349                 }
 2350 
 2351                 /*
 2352                  * Assume we've received a full sized frame.
 2353                  * Actual size is fixed when we encounter the end of
 2354                  * multi-segmented frame.
 2355                  */
 2356                 mp->m_len = AGE_RX_BUF_SIZE;
 2357 
 2358                 /* Chain received mbufs. */
 2359                 if (sc->age_cdata.age_rxhead == NULL) {
 2360                         sc->age_cdata.age_rxhead = mp;
 2361                         sc->age_cdata.age_rxtail = mp;
 2362                 } else {
 2363                         mp->m_flags &= ~M_PKTHDR;
 2364                         sc->age_cdata.age_rxprev_tail =
 2365                             sc->age_cdata.age_rxtail;
 2366                         sc->age_cdata.age_rxtail->m_next = mp;
 2367                         sc->age_cdata.age_rxtail = mp;
 2368                 }
 2369 
 2370                 if (count == nsegs - 1) {
 2371                         /* Last desc. for this frame. */
 2372                         m = sc->age_cdata.age_rxhead;
 2373                         m->m_flags |= M_PKTHDR;
 2374                         /*
 2375                          * It seems that L1 controller has no way
 2376                          * to tell hardware to strip CRC bytes.
 2377                          */
 2378                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
 2379                             ETHER_CRC_LEN;
 2380                         if (nsegs > 1) {
 2381                                 /* Set last mbuf size. */
 2382                                 mp->m_len = sc->age_cdata.age_rxlen -
 2383                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
 2384                                 /* Remove the CRC bytes in chained mbufs. */
 2385                                 if (mp->m_len <= ETHER_CRC_LEN) {
 2386                                         sc->age_cdata.age_rxtail =
 2387                                             sc->age_cdata.age_rxprev_tail;
 2388                                         sc->age_cdata.age_rxtail->m_len -=
 2389                                             (ETHER_CRC_LEN - mp->m_len);
 2390                                         sc->age_cdata.age_rxtail->m_next = NULL;
 2391                                         m_freem(mp);
 2392                                 } else {
 2393                                         mp->m_len -= ETHER_CRC_LEN;
 2394                                 }
 2395                         } else
 2396                                 m->m_len = m->m_pkthdr.len;
 2397                         m->m_pkthdr.rcvif = ifp;
 2398                         /*
 2399                          * Set checksum information.
 2400                          * It seems that L1 controller can compute partial
 2401                          * checksum. The partial checksum value can be used
 2402                          * to accelerate checksum computation for fragmented
 2403                          * TCP/UDP packets. Upper network stack already
 2404                          * takes advantage of the partial checksum value in
 2405                          * IP reassembly stage. But I'm not sure the
 2406                          * correctness of the partial hardware checksum
 2407                          * assistance due to lack of data sheet. If it is
 2408                          * proven to work on L1 I'll enable it.
 2409                          */
 2410                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2411                             (status & AGE_RRD_IPV4) != 0) {
 2412                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
 2413                                         m->m_pkthdr.csum_flags |=
 2414                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
 2415                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
 2416                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
 2417                                         m->m_pkthdr.csum_flags |=
 2418                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2419                                         m->m_pkthdr.csum_data = 0xffff;
 2420                                 }
 2421                                 /*
 2422                                  * Don't mark bad checksum for TCP/UDP frames
 2423                                  * as fragmented frames may always have set
 2424                                  * bad checksummed bit of descriptor status.
 2425                                  */
 2426                         }
 2427 
 2428                         /* Check for VLAN tagged frames. */
 2429                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2430                             (status & AGE_RRD_VLAN) != 0) {
 2431                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
 2432                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
 2433                                 m->m_flags |= M_VLANTAG;
 2434                         }
 2435 #ifndef __NO_STRICT_ALIGNMENT
 2436                         m = age_fixup_rx(ifp, m);
 2437                         if (m != NULL)
 2438 #endif
 2439                         {
 2440                         /* Pass it on. */
 2441                         AGE_UNLOCK(sc);
 2442                         (*ifp->if_input)(ifp, m);
 2443                         AGE_LOCK(sc);
 2444                         }
 2445                 }
 2446         }
 2447 
 2448         /* Reset mbuf chains. */
 2449         AGE_RXCHAIN_RESET(sc);
 2450 }
 2451 
 2452 static int
 2453 age_rxintr(struct age_softc *sc, int rr_prod, int count)
 2454 {
 2455         struct rx_rdesc *rxrd;
 2456         int rr_cons, nsegs, pktlen, prog;
 2457 
 2458         AGE_LOCK_ASSERT(sc);
 2459 
 2460         rr_cons = sc->age_cdata.age_rr_cons;
 2461         if (rr_cons == rr_prod)
 2462                 return (0);
 2463 
 2464         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
 2465             sc->age_cdata.age_rr_ring_map,
 2466             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2467         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
 2468             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
 2469 
 2470         for (prog = 0; rr_cons != rr_prod; prog++) {
 2471                 if (count-- <= 0)
 2472                         break;
 2473                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
 2474                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
 2475                 if (nsegs == 0)
 2476                         break;
 2477                 /*
 2478                  * Check number of segments against received bytes.
 2479                  * Non-matching value would indicate that hardware
 2480                  * is still trying to update Rx return descriptors.
 2481                  * I'm not sure whether this check is really needed.
 2482                  */
 2483                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
 2484                 if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
 2485                         break;
 2486 
 2487                 /* Received a frame. */
 2488                 age_rxeof(sc, rxrd);
 2489                 /* Clear return ring. */
 2490                 rxrd->index = 0;
 2491                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
 2492                 sc->age_cdata.age_rx_cons += nsegs;
 2493                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
 2494         }
 2495 
 2496         if (prog > 0) {
 2497                 /* Update the consumer index. */
 2498                 sc->age_cdata.age_rr_cons = rr_cons;
 2499 
 2500                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
 2501                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
 2502                 /* Sync descriptors. */
 2503                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
 2504                     sc->age_cdata.age_rr_ring_map,
 2505                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2506 
 2507                 /* Notify hardware availability of new Rx buffers. */
 2508                 AGE_COMMIT_MBOX(sc);
 2509         }
 2510 
 2511         return (count > 0 ? 0 : EAGAIN);
 2512 }
 2513 
 2514 static void
 2515 age_tick(void *arg)
 2516 {
 2517         struct age_softc *sc;
 2518         struct mii_data *mii;
 2519 
 2520         sc = (struct age_softc *)arg;
 2521 
 2522         AGE_LOCK_ASSERT(sc);
 2523 
 2524         mii = device_get_softc(sc->age_miibus);
 2525         mii_tick(mii);
 2526         age_watchdog(sc);
 2527         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
 2528 }
 2529 
 2530 static void
 2531 age_reset(struct age_softc *sc)
 2532 {
 2533         uint32_t reg;
 2534         int i;
 2535 
 2536         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
 2537         CSR_READ_4(sc, AGE_MASTER_CFG);
 2538         DELAY(1000);
 2539         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2540                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
 2541                         break;
 2542                 DELAY(10);
 2543         }
 2544 
 2545         if (i == 0)
 2546                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
 2547         /* Initialize PCIe module. From Linux. */
 2548         CSR_WRITE_4(sc, 0x12FC, 0x6500);
 2549         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2550 }
 2551 
 2552 static void
 2553 age_init(void *xsc)
 2554 {
 2555         struct age_softc *sc;
 2556 
 2557         sc = (struct age_softc *)xsc;
 2558         AGE_LOCK(sc);
 2559         age_init_locked(sc);
 2560         AGE_UNLOCK(sc);
 2561 }
 2562 
 2563 static void
 2564 age_init_locked(struct age_softc *sc)
 2565 {
 2566         struct ifnet *ifp;
 2567         struct mii_data *mii;
 2568         uint8_t eaddr[ETHER_ADDR_LEN];
 2569         bus_addr_t paddr;
 2570         uint32_t reg, fsize;
 2571         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
 2572         int error;
 2573 
 2574         AGE_LOCK_ASSERT(sc);
 2575 
 2576         ifp = sc->age_ifp;
 2577         mii = device_get_softc(sc->age_miibus);
 2578 
 2579         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2580                 return;
 2581 
 2582         /*
 2583          * Cancel any pending I/O.
 2584          */
 2585         age_stop(sc);
 2586 
 2587         /*
 2588          * Reset the chip to a known state.
 2589          */
 2590         age_reset(sc);
 2591 
 2592         /* Initialize descriptors. */
 2593         error = age_init_rx_ring(sc);
 2594         if (error != 0) {
 2595                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
 2596                 age_stop(sc);
 2597                 return;
 2598         }
 2599         age_init_rr_ring(sc);
 2600         age_init_tx_ring(sc);
 2601         age_init_cmb_block(sc);
 2602         age_init_smb_block(sc);
 2603 
 2604         /* Reprogram the station address. */
 2605         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2606         CSR_WRITE_4(sc, AGE_PAR0,
 2607             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2608         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2609 
 2610         /* Set descriptor base addresses. */
 2611         paddr = sc->age_rdata.age_tx_ring_paddr;
 2612         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
 2613         paddr = sc->age_rdata.age_rx_ring_paddr;
 2614         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
 2615         paddr = sc->age_rdata.age_rr_ring_paddr;
 2616         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
 2617         paddr = sc->age_rdata.age_tx_ring_paddr;
 2618         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
 2619         paddr = sc->age_rdata.age_cmb_block_paddr;
 2620         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
 2621         paddr = sc->age_rdata.age_smb_block_paddr;
 2622         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
 2623         /* Set Rx/Rx return descriptor counter. */
 2624         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
 2625             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
 2626             DESC_RRD_CNT_MASK) |
 2627             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
 2628         /* Set Tx descriptor counter. */
 2629         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
 2630             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
 2631 
 2632         /* Tell hardware that we're ready to load descriptors. */
 2633         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2634 
 2635         /*
 2636          * Initialize mailbox register.
 2637          * Updated producer/consumer index information is exchanged
 2638          * through this mailbox register. However Tx producer and
 2639          * Rx return consumer/Rx producer are all shared such that
 2640          * it's hard to separate code path between Tx and Rx without
 2641          * locking. If L1 hardware have a separate mail box register
 2642          * for Tx and Rx consumer/producer management we could have
 2643          * independent Tx/Rx handler which in turn Rx handler could have
 2644          * been run without any locking.
 2645          */
 2646         AGE_COMMIT_MBOX(sc);
 2647 
 2648         /* Configure IPG/IFG parameters. */
 2649         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
 2650             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
 2651             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2652             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2653             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
 2654 
 2655         /* Set parameters for half-duplex media. */
 2656         CSR_WRITE_4(sc, AGE_HDPX_CFG,
 2657             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2658             HDPX_CFG_LCOL_MASK) |
 2659             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2660             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2661             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2662             HDPX_CFG_ABEBT_MASK) |
 2663             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2664             HDPX_CFG_JAMIPG_MASK));
 2665 
 2666         /* Configure interrupt moderation timer. */
 2667         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
 2668         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
 2669         reg &= ~MASTER_MTIMER_ENB;
 2670         if (AGE_USECS(sc->age_int_mod) == 0)
 2671                 reg &= ~MASTER_ITIMER_ENB;
 2672         else
 2673                 reg |= MASTER_ITIMER_ENB;
 2674         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
 2675         if (bootverbose)
 2676                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
 2677                     sc->age_int_mod);
 2678         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
 2679 
 2680         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
 2681         if (ifp->if_mtu < ETHERMTU)
 2682                 sc->age_max_frame_size = ETHERMTU;
 2683         else
 2684                 sc->age_max_frame_size = ifp->if_mtu;
 2685         sc->age_max_frame_size += ETHER_HDR_LEN +
 2686             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
 2687         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
 2688         /* Configure jumbo frame. */
 2689         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
 2690         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
 2691             (((fsize / sizeof(uint64_t)) <<
 2692             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
 2693             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
 2694             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
 2695             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
 2696             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
 2697 
 2698         /* Configure flow-control parameters. From Linux. */
 2699         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
 2700                 /*
 2701                  * Magic workaround for old-L1.
 2702                  * Don't know which hw revision requires this magic.
 2703                  */
 2704                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
 2705                 /*
 2706                  * Another magic workaround for flow-control mode
 2707                  * change. From Linux.
 2708                  */
 2709                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2710         }
 2711         /*
 2712          * TODO
 2713          *  Should understand pause parameter relationships between FIFO
 2714          *  size and number of Rx descriptors and Rx return descriptors.
 2715          *
 2716          *  Magic parameters came from Linux.
 2717          */
 2718         switch (sc->age_chip_rev) {
 2719         case 0x8001:
 2720         case 0x9001:
 2721         case 0x9002:
 2722         case 0x9003:
 2723                 rxf_hi = AGE_RX_RING_CNT / 16;
 2724                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
 2725                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
 2726                 rrd_lo = AGE_RR_RING_CNT / 16;
 2727                 break;
 2728         default:
 2729                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
 2730                 rxf_lo = reg / 16;
 2731                 if (rxf_lo < 192)
 2732                         rxf_lo = 192;
 2733                 rxf_hi = (reg * 7) / 8;
 2734                 if (rxf_hi < rxf_lo)
 2735                         rxf_hi = rxf_lo + 16;
 2736                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
 2737                 rrd_lo = reg / 8;
 2738                 rrd_hi = (reg * 7) / 8;
 2739                 if (rrd_lo < 2)
 2740                         rrd_lo = 2;
 2741                 if (rrd_hi < rrd_lo)
 2742                         rrd_hi = rrd_lo + 3;
 2743                 break;
 2744         }
 2745         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
 2746             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2747             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
 2748             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2749             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
 2750         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
 2751             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
 2752             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
 2753             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
 2754             RXQ_RRD_PAUSE_THRESH_HI_MASK));
 2755 
 2756         /* Configure RxQ. */
 2757         CSR_WRITE_4(sc, AGE_RXQ_CFG,
 2758             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
 2759             RXQ_CFG_RD_BURST_MASK) |
 2760             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
 2761             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
 2762             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
 2763             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
 2764             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2765 
 2766         /* Configure TxQ. */
 2767         CSR_WRITE_4(sc, AGE_TXQ_CFG,
 2768             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2769             TXQ_CFG_TPD_BURST_MASK) |
 2770             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
 2771             TXQ_CFG_TX_FIFO_BURST_MASK) |
 2772             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
 2773             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
 2774             TXQ_CFG_ENB);
 2775 
 2776         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
 2777             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
 2778             TX_JUMBO_TPD_TH_MASK) |
 2779             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
 2780             TX_JUMBO_TPD_IPG_MASK));
 2781         /* Configure DMA parameters. */
 2782         CSR_WRITE_4(sc, AGE_DMA_CFG,
 2783             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
 2784             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
 2785             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
 2786 
 2787         /* Configure CMB DMA write threshold. */
 2788         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
 2789             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
 2790             CMB_WR_THRESH_RRD_MASK) |
 2791             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
 2792             CMB_WR_THRESH_TPD_MASK));
 2793 
 2794         /* Set CMB/SMB timer and enable them. */
 2795         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
 2796             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
 2797             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
 2798         /* Request SMB updates for every seconds. */
 2799         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
 2800         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
 2801 
 2802         /*
 2803          * Disable all WOL bits as WOL can interfere normal Rx
 2804          * operation.
 2805          */
 2806         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
 2807 
 2808         /*
 2809          * Configure Tx/Rx MACs.
 2810          *  - Auto-padding for short frames.
 2811          *  - Enable CRC generation.
 2812          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
 2813          *  of MAC is followed after link establishment.
 2814          */
 2815         CSR_WRITE_4(sc, AGE_MAC_CFG,
 2816             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
 2817             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
 2818             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2819             MAC_CFG_PREAMBLE_MASK));
 2820         /* Set up the receive filter. */
 2821         age_rxfilter(sc);
 2822         age_rxvlan(sc);
 2823 
 2824         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2825         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2826                 reg |= MAC_CFG_RXCSUM_ENB;
 2827 
 2828         /* Ack all pending interrupts and clear it. */
 2829         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
 2830         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
 2831 
 2832         /* Finally enable Tx/Rx MAC. */
 2833         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
 2834 
 2835         sc->age_flags &= ~AGE_FLAG_LINK;
 2836         /* Switch to the current media. */
 2837         mii_mediachg(mii);
 2838 
 2839         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
 2840 
 2841         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2842         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2843 }
 2844 
 2845 static void
 2846 age_stop(struct age_softc *sc)
 2847 {
 2848         struct ifnet *ifp;
 2849         struct age_txdesc *txd;
 2850         struct age_rxdesc *rxd;
 2851         uint32_t reg;
 2852         int i;
 2853 
 2854         AGE_LOCK_ASSERT(sc);
 2855         /*
 2856          * Mark the interface down and cancel the watchdog timer.
 2857          */
 2858         ifp = sc->age_ifp;
 2859         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2860         sc->age_flags &= ~AGE_FLAG_LINK;
 2861         callout_stop(&sc->age_tick_ch);
 2862         sc->age_watchdog_timer = 0;
 2863 
 2864         /*
 2865          * Disable interrupts.
 2866          */
 2867         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
 2868         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
 2869         /* Stop CMB/SMB updates. */
 2870         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
 2871         /* Stop Rx/Tx MAC. */
 2872         age_stop_rxmac(sc);
 2873         age_stop_txmac(sc);
 2874         /* Stop DMA. */
 2875         CSR_WRITE_4(sc, AGE_DMA_CFG,
 2876             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
 2877         /* Stop TxQ/RxQ. */
 2878         CSR_WRITE_4(sc, AGE_TXQ_CFG,
 2879             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
 2880         CSR_WRITE_4(sc, AGE_RXQ_CFG,
 2881             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
 2882         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2883                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
 2884                         break;
 2885                 DELAY(10);
 2886         }
 2887         if (i == 0)
 2888                 device_printf(sc->age_dev,
 2889                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
 2890 
 2891          /* Reclaim Rx buffers that have been processed. */
 2892         if (sc->age_cdata.age_rxhead != NULL)
 2893                 m_freem(sc->age_cdata.age_rxhead);
 2894         AGE_RXCHAIN_RESET(sc);
 2895         /*
 2896          * Free RX and TX mbufs still in the queues.
 2897          */
 2898         for (i = 0; i < AGE_RX_RING_CNT; i++) {
 2899                 rxd = &sc->age_cdata.age_rxdesc[i];
 2900                 if (rxd->rx_m != NULL) {
 2901                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
 2902                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 2903                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
 2904                             rxd->rx_dmamap);
 2905                         m_freem(rxd->rx_m);
 2906                         rxd->rx_m = NULL;
 2907                 }
 2908         }
 2909         for (i = 0; i < AGE_TX_RING_CNT; i++) {
 2910                 txd = &sc->age_cdata.age_txdesc[i];
 2911                 if (txd->tx_m != NULL) {
 2912                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
 2913                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2914                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
 2915                             txd->tx_dmamap);
 2916                         m_freem(txd->tx_m);
 2917                         txd->tx_m = NULL;
 2918                 }
 2919         }
 2920 }
 2921 
 2922 static void
 2923 age_stop_txmac(struct age_softc *sc)
 2924 {
 2925         uint32_t reg;
 2926         int i;
 2927 
 2928         AGE_LOCK_ASSERT(sc);
 2929 
 2930         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2931         if ((reg & MAC_CFG_TX_ENB) != 0) {
 2932                 reg &= ~MAC_CFG_TX_ENB;
 2933                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 2934         }
 2935         /* Stop Tx DMA engine. */
 2936         reg = CSR_READ_4(sc, AGE_DMA_CFG);
 2937         if ((reg & DMA_CFG_RD_ENB) != 0) {
 2938                 reg &= ~DMA_CFG_RD_ENB;
 2939                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
 2940         }
 2941         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2942                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
 2943                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
 2944                         break;
 2945                 DELAY(10);
 2946         }
 2947         if (i == 0)
 2948                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
 2949 }
 2950 
 2951 static void
 2952 age_stop_rxmac(struct age_softc *sc)
 2953 {
 2954         uint32_t reg;
 2955         int i;
 2956 
 2957         AGE_LOCK_ASSERT(sc);
 2958 
 2959         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2960         if ((reg & MAC_CFG_RX_ENB) != 0) {
 2961                 reg &= ~MAC_CFG_RX_ENB;
 2962                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 2963         }
 2964         /* Stop Rx DMA engine. */
 2965         reg = CSR_READ_4(sc, AGE_DMA_CFG);
 2966         if ((reg & DMA_CFG_WR_ENB) != 0) {
 2967                 reg &= ~DMA_CFG_WR_ENB;
 2968                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
 2969         }
 2970         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2971                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
 2972                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
 2973                         break;
 2974                 DELAY(10);
 2975         }
 2976         if (i == 0)
 2977                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
 2978 }
 2979 
 2980 static void
 2981 age_init_tx_ring(struct age_softc *sc)
 2982 {
 2983         struct age_ring_data *rd;
 2984         struct age_txdesc *txd;
 2985         int i;
 2986 
 2987         AGE_LOCK_ASSERT(sc);
 2988 
 2989         sc->age_cdata.age_tx_prod = 0;
 2990         sc->age_cdata.age_tx_cons = 0;
 2991         sc->age_cdata.age_tx_cnt = 0;
 2992 
 2993         rd = &sc->age_rdata;
 2994         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
 2995         for (i = 0; i < AGE_TX_RING_CNT; i++) {
 2996                 txd = &sc->age_cdata.age_txdesc[i];
 2997                 txd->tx_desc = &rd->age_tx_ring[i];
 2998                 txd->tx_m = NULL;
 2999         }
 3000 
 3001         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 3002             sc->age_cdata.age_tx_ring_map,
 3003             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3004 }
 3005 
 3006 static int
 3007 age_init_rx_ring(struct age_softc *sc)
 3008 {
 3009         struct age_ring_data *rd;
 3010         struct age_rxdesc *rxd;
 3011         int i;
 3012 
 3013         AGE_LOCK_ASSERT(sc);
 3014 
 3015         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
 3016         sc->age_morework = 0;
 3017         rd = &sc->age_rdata;
 3018         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
 3019         for (i = 0; i < AGE_RX_RING_CNT; i++) {
 3020                 rxd = &sc->age_cdata.age_rxdesc[i];
 3021                 rxd->rx_m = NULL;
 3022                 rxd->rx_desc = &rd->age_rx_ring[i];
 3023                 if (age_newbuf(sc, rxd) != 0)
 3024                         return (ENOBUFS);
 3025         }
 3026 
 3027         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
 3028             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
 3029 
 3030         return (0);
 3031 }
 3032 
 3033 static void
 3034 age_init_rr_ring(struct age_softc *sc)
 3035 {
 3036         struct age_ring_data *rd;
 3037 
 3038         AGE_LOCK_ASSERT(sc);
 3039 
 3040         sc->age_cdata.age_rr_cons = 0;
 3041         AGE_RXCHAIN_RESET(sc);
 3042 
 3043         rd = &sc->age_rdata;
 3044         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
 3045         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
 3046             sc->age_cdata.age_rr_ring_map,
 3047             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3048 }
 3049 
 3050 static void
 3051 age_init_cmb_block(struct age_softc *sc)
 3052 {
 3053         struct age_ring_data *rd;
 3054 
 3055         AGE_LOCK_ASSERT(sc);
 3056 
 3057         rd = &sc->age_rdata;
 3058         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
 3059         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 3060             sc->age_cdata.age_cmb_block_map,
 3061             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3062 }
 3063 
 3064 static void
 3065 age_init_smb_block(struct age_softc *sc)
 3066 {
 3067         struct age_ring_data *rd;
 3068 
 3069         AGE_LOCK_ASSERT(sc);
 3070 
 3071         rd = &sc->age_rdata;
 3072         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
 3073         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
 3074             sc->age_cdata.age_smb_block_map,
 3075             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3076 }
 3077 
 3078 static int
 3079 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
 3080 {
 3081         struct rx_desc *desc;
 3082         struct mbuf *m;
 3083         bus_dma_segment_t segs[1];
 3084         bus_dmamap_t map;
 3085         int nsegs;
 3086 
 3087         AGE_LOCK_ASSERT(sc);
 3088 
 3089         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 3090         if (m == NULL)
 3091                 return (ENOBUFS);
 3092         m->m_len = m->m_pkthdr.len = MCLBYTES;
 3093 #ifndef __NO_STRICT_ALIGNMENT
 3094         m_adj(m, AGE_RX_BUF_ALIGN);
 3095 #endif
 3096 
 3097         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
 3098             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
 3099                 m_freem(m);
 3100                 return (ENOBUFS);
 3101         }
 3102         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 3103 
 3104         if (rxd->rx_m != NULL) {
 3105                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
 3106                     BUS_DMASYNC_POSTREAD);
 3107                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
 3108         }
 3109         map = rxd->rx_dmamap;
 3110         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
 3111         sc->age_cdata.age_rx_sparemap = map;
 3112         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
 3113             BUS_DMASYNC_PREREAD);
 3114         rxd->rx_m = m;
 3115 
 3116         desc = rxd->rx_desc;
 3117         desc->addr = htole64(segs[0].ds_addr);
 3118         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
 3119             AGE_RD_LEN_SHIFT);
 3120         return (0);
 3121 }
 3122 
 3123 static void
 3124 age_rxvlan(struct age_softc *sc)
 3125 {
 3126         struct ifnet *ifp;
 3127         uint32_t reg;
 3128 
 3129         AGE_LOCK_ASSERT(sc);
 3130 
 3131         ifp = sc->age_ifp;
 3132         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 3133         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 3134         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 3135                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 3136         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 3137 }
 3138 
 3139 static u_int
 3140 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 3141 {
 3142         uint32_t *mchash = arg;
 3143         uint32_t crc;
 3144 
 3145         crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
 3146         mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 3147 
 3148         return (1);
 3149 }
 3150 
 3151 static void
 3152 age_rxfilter(struct age_softc *sc)
 3153 {
 3154         struct ifnet *ifp;
 3155         uint32_t mchash[2];
 3156         uint32_t rxcfg;
 3157 
 3158         AGE_LOCK_ASSERT(sc);
 3159 
 3160         ifp = sc->age_ifp;
 3161 
 3162         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
 3163         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 3164         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3165                 rxcfg |= MAC_CFG_BCAST;
 3166         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3167                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3168                         rxcfg |= MAC_CFG_PROMISC;
 3169                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3170                         rxcfg |= MAC_CFG_ALLMULTI;
 3171                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
 3172                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
 3173                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
 3174                 return;
 3175         }
 3176 
 3177         /* Program new filter. */
 3178         bzero(mchash, sizeof(mchash));
 3179         if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
 3180 
 3181         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
 3182         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
 3183         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
 3184 }
 3185 
 3186 static int
 3187 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
 3188 {
 3189         struct age_softc *sc;
 3190         struct age_stats *stats;
 3191         int error, result;
 3192 
 3193         result = -1;
 3194         error = sysctl_handle_int(oidp, &result, 0, req);
 3195 
 3196         if (error != 0 || req->newptr == NULL)
 3197                 return (error);
 3198 
 3199         if (result != 1)
 3200                 return (error);
 3201 
 3202         sc = (struct age_softc *)arg1;
 3203         stats = &sc->age_stat;
 3204         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
 3205         printf("Transmit good frames : %ju\n",
 3206             (uintmax_t)stats->tx_frames);
 3207         printf("Transmit good broadcast frames : %ju\n",
 3208             (uintmax_t)stats->tx_bcast_frames);
 3209         printf("Transmit good multicast frames : %ju\n",
 3210             (uintmax_t)stats->tx_mcast_frames);
 3211         printf("Transmit pause control frames : %u\n",
 3212             stats->tx_pause_frames);
 3213         printf("Transmit control frames : %u\n",
 3214             stats->tx_control_frames);
 3215         printf("Transmit frames with excessive deferrals : %u\n",
 3216             stats->tx_excess_defer);
 3217         printf("Transmit deferrals : %u\n",
 3218             stats->tx_deferred);
 3219         printf("Transmit good octets : %ju\n",
 3220             (uintmax_t)stats->tx_bytes);
 3221         printf("Transmit good broadcast octets : %ju\n",
 3222             (uintmax_t)stats->tx_bcast_bytes);
 3223         printf("Transmit good multicast octets : %ju\n",
 3224             (uintmax_t)stats->tx_mcast_bytes);
 3225         printf("Transmit frames 64 bytes : %ju\n",
 3226             (uintmax_t)stats->tx_pkts_64);
 3227         printf("Transmit frames 65 to 127 bytes : %ju\n",
 3228             (uintmax_t)stats->tx_pkts_65_127);
 3229         printf("Transmit frames 128 to 255 bytes : %ju\n",
 3230             (uintmax_t)stats->tx_pkts_128_255);
 3231         printf("Transmit frames 256 to 511 bytes : %ju\n",
 3232             (uintmax_t)stats->tx_pkts_256_511);
 3233         printf("Transmit frames 512 to 1024 bytes : %ju\n",
 3234             (uintmax_t)stats->tx_pkts_512_1023);
 3235         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
 3236             (uintmax_t)stats->tx_pkts_1024_1518);
 3237         printf("Transmit frames 1519 to MTU bytes : %ju\n",
 3238             (uintmax_t)stats->tx_pkts_1519_max);
 3239         printf("Transmit single collisions : %u\n",
 3240             stats->tx_single_colls);
 3241         printf("Transmit multiple collisions : %u\n",
 3242             stats->tx_multi_colls);
 3243         printf("Transmit late collisions : %u\n",
 3244             stats->tx_late_colls);
 3245         printf("Transmit abort due to excessive collisions : %u\n",
 3246             stats->tx_excess_colls);
 3247         printf("Transmit underruns due to FIFO underruns : %u\n",
 3248             stats->tx_underrun);
 3249         printf("Transmit descriptor write-back errors : %u\n",
 3250             stats->tx_desc_underrun);
 3251         printf("Transmit frames with length mismatched frame size : %u\n",
 3252             stats->tx_lenerrs);
 3253         printf("Transmit frames with truncated due to MTU size : %u\n",
 3254             stats->tx_lenerrs);
 3255 
 3256         printf("Receive good frames : %ju\n",
 3257             (uintmax_t)stats->rx_frames);
 3258         printf("Receive good broadcast frames : %ju\n",
 3259             (uintmax_t)stats->rx_bcast_frames);
 3260         printf("Receive good multicast frames : %ju\n",
 3261             (uintmax_t)stats->rx_mcast_frames);
 3262         printf("Receive pause control frames : %u\n",
 3263             stats->rx_pause_frames);
 3264         printf("Receive control frames : %u\n",
 3265             stats->rx_control_frames);
 3266         printf("Receive CRC errors : %u\n",
 3267             stats->rx_crcerrs);
 3268         printf("Receive frames with length errors : %u\n",
 3269             stats->rx_lenerrs);
 3270         printf("Receive good octets : %ju\n",
 3271             (uintmax_t)stats->rx_bytes);
 3272         printf("Receive good broadcast octets : %ju\n",
 3273             (uintmax_t)stats->rx_bcast_bytes);
 3274         printf("Receive good multicast octets : %ju\n",
 3275             (uintmax_t)stats->rx_mcast_bytes);
 3276         printf("Receive frames too short : %u\n",
 3277             stats->rx_runts);
 3278         printf("Receive fragmented frames : %ju\n",
 3279             (uintmax_t)stats->rx_fragments);
 3280         printf("Receive frames 64 bytes : %ju\n",
 3281             (uintmax_t)stats->rx_pkts_64);
 3282         printf("Receive frames 65 to 127 bytes : %ju\n",
 3283             (uintmax_t)stats->rx_pkts_65_127);
 3284         printf("Receive frames 128 to 255 bytes : %ju\n",
 3285             (uintmax_t)stats->rx_pkts_128_255);
 3286         printf("Receive frames 256 to 511 bytes : %ju\n",
 3287             (uintmax_t)stats->rx_pkts_256_511);
 3288         printf("Receive frames 512 to 1024 bytes : %ju\n",
 3289             (uintmax_t)stats->rx_pkts_512_1023);
 3290         printf("Receive frames 1024 to 1518 bytes : %ju\n",
 3291             (uintmax_t)stats->rx_pkts_1024_1518);
 3292         printf("Receive frames 1519 to MTU bytes : %ju\n",
 3293             (uintmax_t)stats->rx_pkts_1519_max);
 3294         printf("Receive frames too long : %ju\n",
 3295             (uint64_t)stats->rx_pkts_truncated);
 3296         printf("Receive frames with FIFO overflow : %u\n",
 3297             stats->rx_fifo_oflows);
 3298         printf("Receive frames with return descriptor overflow : %u\n",
 3299             stats->rx_desc_oflows);
 3300         printf("Receive frames with alignment errors : %u\n",
 3301             stats->rx_alignerrs);
 3302         printf("Receive frames dropped due to address filtering : %ju\n",
 3303             (uint64_t)stats->rx_pkts_filtered);
 3304 
 3305         return (error);
 3306 }
 3307 
 3308 static int
 3309 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3310 {
 3311         int error, value;
 3312 
 3313         if (arg1 == NULL)
 3314                 return (EINVAL);
 3315         value = *(int *)arg1;
 3316         error = sysctl_handle_int(oidp, &value, 0, req);
 3317         if (error || req->newptr == NULL)
 3318                 return (error);
 3319         if (value < low || value > high)
 3320                 return (EINVAL);
 3321         *(int *)arg1 = value;
 3322 
 3323         return (0);
 3324 }
 3325 
 3326 static int
 3327 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
 3328 {
 3329         return (sysctl_int_range(oidp, arg1, arg2, req,
 3330             AGE_PROC_MIN, AGE_PROC_MAX));
 3331 }
 3332 
 3333 static int
 3334 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
 3335 {
 3336 
 3337         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
 3338             AGE_IM_TIMER_MAX));
 3339 }

Cache object: a6f8c8a9d327a423d7318058e2b2dfe4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.