The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/age/if_age.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/8.4/sys/dev/age/if_age.c 246725 2013-02-13 00:47:47Z yongari $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/bus.h>
   36 #include <sys/endian.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/rman.h>
   41 #include <sys/module.h>
   42 #include <sys/queue.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/taskqueue.h>
   47 
   48 #include <net/bpf.h>
   49 #include <net/if.h>
   50 #include <net/if_arp.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_media.h>
   54 #include <net/if_types.h>
   55 #include <net/if_vlan_var.h>
   56 
   57 #include <netinet/in.h>
   58 #include <netinet/in_systm.h>
   59 #include <netinet/ip.h>
   60 #include <netinet/tcp.h>
   61 
   62 #include <dev/mii/mii.h>
   63 #include <dev/mii/miivar.h>
   64 
   65 #include <dev/pci/pcireg.h>
   66 #include <dev/pci/pcivar.h>
   67 
   68 #include <machine/bus.h>
   69 #include <machine/in_cksum.h>
   70 
   71 #include <dev/age/if_agereg.h>
   72 #include <dev/age/if_agevar.h>
   73 
   74 /* "device miibus" required.  See GENERIC if you get errors here. */
   75 #include "miibus_if.h"
   76 
   77 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   78 
   79 MODULE_DEPEND(age, pci, 1, 1, 1);
   80 MODULE_DEPEND(age, ether, 1, 1, 1);
   81 MODULE_DEPEND(age, miibus, 1, 1, 1);
   82 
   83 /* Tunables. */
   84 static int msi_disable = 0;
   85 static int msix_disable = 0;
   86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
   87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
   88 
   89 /*
   90  * Devices supported by this driver.
   91  */
   92 static struct age_dev {
   93         uint16_t        age_vendorid;
   94         uint16_t        age_deviceid;
   95         const char      *age_name;
   96 } age_devs[] = {
   97         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
   98             "Attansic Technology Corp, L1 Gigabit Ethernet" },
   99 };
  100 
  101 static int age_miibus_readreg(device_t, int, int);
  102 static int age_miibus_writereg(device_t, int, int, int);
  103 static void age_miibus_statchg(device_t);
  104 static void age_mediastatus(struct ifnet *, struct ifmediareq *);
  105 static int age_mediachange(struct ifnet *);
  106 static int age_probe(device_t);
  107 static void age_get_macaddr(struct age_softc *);
  108 static void age_phy_reset(struct age_softc *);
  109 static int age_attach(device_t);
  110 static int age_detach(device_t);
  111 static void age_sysctl_node(struct age_softc *);
  112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  113 static int age_check_boundary(struct age_softc *);
  114 static int age_dma_alloc(struct age_softc *);
  115 static void age_dma_free(struct age_softc *);
  116 static int age_shutdown(device_t);
  117 static void age_setwol(struct age_softc *);
  118 static int age_suspend(device_t);
  119 static int age_resume(device_t);
  120 static int age_encap(struct age_softc *, struct mbuf **);
  121 static void age_start(struct ifnet *);
  122 static void age_start_locked(struct ifnet *);
  123 static void age_watchdog(struct age_softc *);
  124 static int age_ioctl(struct ifnet *, u_long, caddr_t);
  125 static void age_mac_config(struct age_softc *);
  126 static void age_link_task(void *, int);
  127 static void age_stats_update(struct age_softc *);
  128 static int age_intr(void *);
  129 static void age_int_task(void *, int);
  130 static void age_txintr(struct age_softc *, int);
  131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
  132 static int age_rxintr(struct age_softc *, int, int);
  133 static void age_tick(void *);
  134 static void age_reset(struct age_softc *);
  135 static void age_init(void *);
  136 static void age_init_locked(struct age_softc *);
  137 static void age_stop(struct age_softc *);
  138 static void age_stop_txmac(struct age_softc *);
  139 static void age_stop_rxmac(struct age_softc *);
  140 static void age_init_tx_ring(struct age_softc *);
  141 static int age_init_rx_ring(struct age_softc *);
  142 static void age_init_rr_ring(struct age_softc *);
  143 static void age_init_cmb_block(struct age_softc *);
  144 static void age_init_smb_block(struct age_softc *);
  145 #ifndef __NO_STRICT_ALIGNMENT
  146 static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
  147 #endif
  148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
  149 static void age_rxvlan(struct age_softc *);
  150 static void age_rxfilter(struct age_softc *);
  151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
  152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
  154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
  155 
  156 
  157 static device_method_t age_methods[] = {
  158         /* Device interface. */
  159         DEVMETHOD(device_probe,         age_probe),
  160         DEVMETHOD(device_attach,        age_attach),
  161         DEVMETHOD(device_detach,        age_detach),
  162         DEVMETHOD(device_shutdown,      age_shutdown),
  163         DEVMETHOD(device_suspend,       age_suspend),
  164         DEVMETHOD(device_resume,        age_resume),
  165 
  166         /* MII interface. */
  167         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
  168         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
  169         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
  170 
  171         { NULL, NULL }
  172 };
  173 
  174 static driver_t age_driver = {
  175         "age",
  176         age_methods,
  177         sizeof(struct age_softc)
  178 };
  179 
  180 static devclass_t age_devclass;
  181 
  182 DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
  183 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
  184 
  185 static struct resource_spec age_res_spec_mem[] = {
  186         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  187         { -1,                   0,              0 }
  188 };
  189 
  190 static struct resource_spec age_irq_spec_legacy[] = {
  191         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  192         { -1,                   0,              0 }
  193 };
  194 
  195 static struct resource_spec age_irq_spec_msi[] = {
  196         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  197         { -1,                   0,              0 }
  198 };
  199 
  200 static struct resource_spec age_irq_spec_msix[] = {
  201         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  202         { -1,                   0,              0 }
  203 };
  204 
  205 /*
  206  *      Read a PHY register on the MII of the L1.
  207  */
  208 static int
  209 age_miibus_readreg(device_t dev, int phy, int reg)
  210 {
  211         struct age_softc *sc;
  212         uint32_t v;
  213         int i;
  214 
  215         sc = device_get_softc(dev);
  216 
  217         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  218             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  219         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
  220                 DELAY(1);
  221                 v = CSR_READ_4(sc, AGE_MDIO);
  222                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  223                         break;
  224         }
  225 
  226         if (i == 0) {
  227                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
  228                 return (0);
  229         }
  230 
  231         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  232 }
  233 
  234 /*
  235  *      Write a PHY register on the MII of the L1.
  236  */
  237 static int
  238 age_miibus_writereg(device_t dev, int phy, int reg, int val)
  239 {
  240         struct age_softc *sc;
  241         uint32_t v;
  242         int i;
  243 
  244         sc = device_get_softc(dev);
  245 
  246         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  247             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  248             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  249         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
  250                 DELAY(1);
  251                 v = CSR_READ_4(sc, AGE_MDIO);
  252                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  253                         break;
  254         }
  255 
  256         if (i == 0)
  257                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
  258 
  259         return (0);
  260 }
  261 
  262 /*
  263  *      Callback from MII layer when media changes.
  264  */
  265 static void
  266 age_miibus_statchg(device_t dev)
  267 {
  268         struct age_softc *sc;
  269 
  270         sc = device_get_softc(dev);
  271         taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
  272 }
  273 
  274 /*
  275  *      Get the current interface media status.
  276  */
  277 static void
  278 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  279 {
  280         struct age_softc *sc;
  281         struct mii_data *mii;
  282 
  283         sc = ifp->if_softc;
  284         AGE_LOCK(sc);
  285         mii = device_get_softc(sc->age_miibus);
  286 
  287         mii_pollstat(mii);
  288         ifmr->ifm_status = mii->mii_media_status;
  289         ifmr->ifm_active = mii->mii_media_active;
  290         AGE_UNLOCK(sc);
  291 }
  292 
  293 /*
  294  *      Set hardware to newly-selected media.
  295  */
  296 static int
  297 age_mediachange(struct ifnet *ifp)
  298 {
  299         struct age_softc *sc;
  300         struct mii_data *mii;
  301         struct mii_softc *miisc;
  302         int error;
  303 
  304         sc = ifp->if_softc;
  305         AGE_LOCK(sc);
  306         mii = device_get_softc(sc->age_miibus);
  307         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  308                 mii_phy_reset(miisc);
  309         error = mii_mediachg(mii);
  310         AGE_UNLOCK(sc);
  311 
  312         return (error);
  313 }
  314 
  315 static int
  316 age_probe(device_t dev)
  317 {
  318         struct age_dev *sp;
  319         int i;
  320         uint16_t vendor, devid;
  321 
  322         vendor = pci_get_vendor(dev);
  323         devid = pci_get_device(dev);
  324         sp = age_devs;
  325         for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
  326             i++, sp++) {
  327                 if (vendor == sp->age_vendorid &&
  328                     devid == sp->age_deviceid) {
  329                         device_set_desc(dev, sp->age_name);
  330                         return (BUS_PROBE_DEFAULT);
  331                 }
  332         }
  333 
  334         return (ENXIO);
  335 }
  336 
  337 static void
  338 age_get_macaddr(struct age_softc *sc)
  339 {
  340         uint32_t ea[2], reg;
  341         int i, vpdc;
  342 
  343         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
  344         if ((reg & SPI_VPD_ENB) != 0) {
  345                 /* Get VPD stored in TWSI EEPROM. */
  346                 reg &= ~SPI_VPD_ENB;
  347                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
  348         }
  349 
  350         if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
  351                 /*
  352                  * PCI VPD capability found, let TWSI reload EEPROM.
  353                  * This will set ethernet address of controller.
  354                  */
  355                 CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
  356                     TWSI_CTRL_SW_LD_START);
  357                 for (i = 100; i > 0; i--) {
  358                         DELAY(1000);
  359                         reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
  360                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  361                                 break;
  362                 }
  363                 if (i == 0)
  364                         device_printf(sc->age_dev,
  365                             "reloading EEPROM timeout!\n");
  366         } else {
  367                 if (bootverbose)
  368                         device_printf(sc->age_dev,
  369                             "PCI VPD capability not found!\n");
  370         }
  371 
  372         ea[0] = CSR_READ_4(sc, AGE_PAR0);
  373         ea[1] = CSR_READ_4(sc, AGE_PAR1);
  374         sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
  375         sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
  376         sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
  377         sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
  378         sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
  379         sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
  380 }
  381 
  382 static void
  383 age_phy_reset(struct age_softc *sc)
  384 {
  385         uint16_t reg, pn;
  386         int i, linkup;
  387 
  388         /* Reset PHY. */
  389         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
  390         DELAY(2000);
  391         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
  392         DELAY(2000);
  393 
  394 #define ATPHY_DBG_ADDR          0x1D
  395 #define ATPHY_DBG_DATA          0x1E
  396 #define ATPHY_CDTC              0x16
  397 #define PHY_CDTC_ENB            0x0001
  398 #define PHY_CDTC_POFF           8
  399 #define ATPHY_CDTS              0x1C
  400 #define PHY_CDTS_STAT_OK        0x0000
  401 #define PHY_CDTS_STAT_SHORT     0x0100
  402 #define PHY_CDTS_STAT_OPEN      0x0200
  403 #define PHY_CDTS_STAT_INVAL     0x0300
  404 #define PHY_CDTS_STAT_MASK      0x0300
  405 
  406         /* Check power saving mode. Magic from Linux. */
  407         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
  408         for (linkup = 0, pn = 0; pn < 4; pn++) {
  409                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
  410                     (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
  411                 for (i = 200; i > 0; i--) {
  412                         DELAY(1000);
  413                         reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
  414                             ATPHY_CDTC);
  415                         if ((reg & PHY_CDTC_ENB) == 0)
  416                                 break;
  417                 }
  418                 DELAY(1000);
  419                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
  420                     ATPHY_CDTS);
  421                 if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
  422                         linkup++;
  423                         break;
  424                 }
  425         }
  426         age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
  427             BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
  428         if (linkup == 0) {
  429                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  430                     ATPHY_DBG_ADDR, 0);
  431                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  432                     ATPHY_DBG_DATA, 0x124E);
  433                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  434                     ATPHY_DBG_ADDR, 1);
  435                 reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
  436                     ATPHY_DBG_DATA);
  437                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  438                     ATPHY_DBG_DATA, reg | 0x03);
  439                 /* XXX */
  440                 DELAY(1500 * 1000);
  441                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  442                     ATPHY_DBG_ADDR, 0);
  443                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
  444                     ATPHY_DBG_DATA, 0x024E);
  445     }
  446 
  447 #undef  ATPHY_DBG_ADDR
  448 #undef  ATPHY_DBG_DATA
  449 #undef  ATPHY_CDTC
  450 #undef  PHY_CDTC_ENB
  451 #undef  PHY_CDTC_POFF
  452 #undef  ATPHY_CDTS
  453 #undef  PHY_CDTS_STAT_OK
  454 #undef  PHY_CDTS_STAT_SHORT
  455 #undef  PHY_CDTS_STAT_OPEN
  456 #undef  PHY_CDTS_STAT_INVAL
  457 #undef  PHY_CDTS_STAT_MASK
  458 }
  459 
  460 static int
  461 age_attach(device_t dev)
  462 {
  463         struct age_softc *sc;
  464         struct ifnet *ifp;
  465         uint16_t burst;
  466         int error, i, msic, msixc, pmc;
  467 
  468         error = 0;
  469         sc = device_get_softc(dev);
  470         sc->age_dev = dev;
  471 
  472         mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  473             MTX_DEF);
  474         callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
  475         TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
  476         TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
  477 
  478         /* Map the device. */
  479         pci_enable_busmaster(dev);
  480         sc->age_res_spec = age_res_spec_mem;
  481         sc->age_irq_spec = age_irq_spec_legacy;
  482         error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
  483         if (error != 0) {
  484                 device_printf(dev, "cannot allocate memory resources.\n");
  485                 goto fail;
  486         }
  487 
  488         /* Set PHY address. */
  489         sc->age_phyaddr = AGE_PHY_ADDR;
  490 
  491         /* Reset PHY. */
  492         age_phy_reset(sc);
  493 
  494         /* Reset the ethernet controller. */
  495         age_reset(sc);
  496 
  497         /* Get PCI and chip id/revision. */
  498         sc->age_rev = pci_get_revid(dev);
  499         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
  500             MASTER_CHIP_REV_SHIFT;
  501         if (bootverbose) {
  502                 device_printf(dev, "PCI device revision : 0x%04x\n",
  503                     sc->age_rev);
  504                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  505                     sc->age_chip_rev);
  506         }
  507 
  508         /*
  509          * XXX
  510          * Unintialized hardware returns an invalid chip id/revision
  511          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
  512          * unplugged cable results in putting hardware into automatic
  513          * power down mode which in turn returns invalld chip revision.
  514          */
  515         if (sc->age_chip_rev == 0xFFFF) {
  516                 device_printf(dev,"invalid chip revision : 0x%04x -- "
  517                     "not initialized?\n", sc->age_chip_rev);
  518                 error = ENXIO;
  519                 goto fail;
  520         }
  521 
  522         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
  523             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
  524             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
  525 
  526         /* Allocate IRQ resources. */
  527         msixc = pci_msix_count(dev);
  528         msic = pci_msi_count(dev);
  529         if (bootverbose) {
  530                 device_printf(dev, "MSIX count : %d\n", msixc);
  531                 device_printf(dev, "MSI count : %d\n", msic);
  532         }
  533 
  534         /* Prefer MSIX over MSI. */
  535         if (msix_disable == 0 || msi_disable == 0) {
  536                 if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
  537                     pci_alloc_msix(dev, &msixc) == 0) {
  538                         if (msic == AGE_MSIX_MESSAGES) {
  539                                 device_printf(dev, "Using %d MSIX messages.\n",
  540                                     msixc);
  541                                 sc->age_flags |= AGE_FLAG_MSIX;
  542                                 sc->age_irq_spec = age_irq_spec_msix;
  543                         } else
  544                                 pci_release_msi(dev);
  545                 }
  546                 if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
  547                     msic == AGE_MSI_MESSAGES &&
  548                     pci_alloc_msi(dev, &msic) == 0) {
  549                         if (msic == AGE_MSI_MESSAGES) {
  550                                 device_printf(dev, "Using %d MSI messages.\n",
  551                                     msic);
  552                                 sc->age_flags |= AGE_FLAG_MSI;
  553                                 sc->age_irq_spec = age_irq_spec_msi;
  554                         } else
  555                                 pci_release_msi(dev);
  556                 }
  557         }
  558 
  559         error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
  560         if (error != 0) {
  561                 device_printf(dev, "cannot allocate IRQ resources.\n");
  562                 goto fail;
  563         }
  564 
  565 
  566         /* Get DMA parameters from PCIe device control register. */
  567         if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
  568                 sc->age_flags |= AGE_FLAG_PCIE;
  569                 burst = pci_read_config(dev, i + 0x08, 2);
  570                 /* Max read request size. */
  571                 sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
  572                     DMA_CFG_RD_BURST_SHIFT;
  573                 /* Max payload size. */
  574                 sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
  575                     DMA_CFG_WR_BURST_SHIFT;
  576                 if (bootverbose) {
  577                         device_printf(dev, "Read request size : %d bytes.\n",
  578                             128 << ((burst >> 12) & 0x07));
  579                         device_printf(dev, "TLP payload size : %d bytes.\n",
  580                             128 << ((burst >> 5) & 0x07));
  581                 }
  582         } else {
  583                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
  584                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
  585         }
  586 
  587         /* Create device sysctl node. */
  588         age_sysctl_node(sc);
  589 
  590         if ((error = age_dma_alloc(sc) != 0))
  591                 goto fail;
  592 
  593         /* Load station address. */
  594         age_get_macaddr(sc);
  595 
  596         ifp = sc->age_ifp = if_alloc(IFT_ETHER);
  597         if (ifp == NULL) {
  598                 device_printf(dev, "cannot allocate ifnet structure.\n");
  599                 error = ENXIO;
  600                 goto fail;
  601         }
  602 
  603         ifp->if_softc = sc;
  604         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  605         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  606         ifp->if_ioctl = age_ioctl;
  607         ifp->if_start = age_start;
  608         ifp->if_init = age_init;
  609         ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
  610         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  611         IFQ_SET_READY(&ifp->if_snd);
  612         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
  613         ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
  614         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
  615                 sc->age_flags |= AGE_FLAG_PMCAP;
  616                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
  617         }
  618         ifp->if_capenable = ifp->if_capabilities;
  619 
  620         /* Set up MII bus. */
  621         error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
  622             age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
  623             0);
  624         if (error != 0) {
  625                 device_printf(dev, "attaching PHYs failed\n");
  626                 goto fail;
  627         }
  628 
  629         ether_ifattach(ifp, sc->age_eaddr);
  630 
  631         /* VLAN capability setup. */
  632         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
  633             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
  634         ifp->if_capenable = ifp->if_capabilities;
  635 
  636         /* Tell the upper layer(s) we support long frames. */
  637         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  638 
  639         /* Create local taskq. */
  640         sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
  641             taskqueue_thread_enqueue, &sc->age_tq);
  642         if (sc->age_tq == NULL) {
  643                 device_printf(dev, "could not create taskqueue.\n");
  644                 ether_ifdetach(ifp);
  645                 error = ENXIO;
  646                 goto fail;
  647         }
  648         taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
  649             device_get_nameunit(sc->age_dev));
  650 
  651         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
  652                 msic = AGE_MSIX_MESSAGES;
  653         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
  654                 msic = AGE_MSI_MESSAGES;
  655         else
  656                 msic = 1;
  657         for (i = 0; i < msic; i++) {
  658                 error = bus_setup_intr(dev, sc->age_irq[i],
  659                     INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
  660                     &sc->age_intrhand[i]);
  661                 if (error != 0)
  662                         break;
  663         }
  664         if (error != 0) {
  665                 device_printf(dev, "could not set up interrupt handler.\n");
  666                 taskqueue_free(sc->age_tq);
  667                 sc->age_tq = NULL;
  668                 ether_ifdetach(ifp);
  669                 goto fail;
  670         }
  671 
  672 fail:
  673         if (error != 0)
  674                 age_detach(dev);
  675 
  676         return (error);
  677 }
  678 
  679 static int
  680 age_detach(device_t dev)
  681 {
  682         struct age_softc *sc;
  683         struct ifnet *ifp;
  684         int i, msic;
  685 
  686         sc = device_get_softc(dev);
  687 
  688         ifp = sc->age_ifp;
  689         if (device_is_attached(dev)) {
  690                 AGE_LOCK(sc);
  691                 sc->age_flags |= AGE_FLAG_DETACH;
  692                 age_stop(sc);
  693                 AGE_UNLOCK(sc);
  694                 callout_drain(&sc->age_tick_ch);
  695                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
  696                 taskqueue_drain(taskqueue_swi, &sc->age_link_task);
  697                 ether_ifdetach(ifp);
  698         }
  699 
  700         if (sc->age_tq != NULL) {
  701                 taskqueue_drain(sc->age_tq, &sc->age_int_task);
  702                 taskqueue_free(sc->age_tq);
  703                 sc->age_tq = NULL;
  704         }
  705 
  706         if (sc->age_miibus != NULL) {
  707                 device_delete_child(dev, sc->age_miibus);
  708                 sc->age_miibus = NULL;
  709         }
  710         bus_generic_detach(dev);
  711         age_dma_free(sc);
  712 
  713         if (ifp != NULL) {
  714                 if_free(ifp);
  715                 sc->age_ifp = NULL;
  716         }
  717 
  718         if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
  719                 msic = AGE_MSIX_MESSAGES;
  720         else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
  721                 msic = AGE_MSI_MESSAGES;
  722         else
  723                 msic = 1;
  724         for (i = 0; i < msic; i++) {
  725                 if (sc->age_intrhand[i] != NULL) {
  726                         bus_teardown_intr(dev, sc->age_irq[i],
  727                             sc->age_intrhand[i]);
  728                         sc->age_intrhand[i] = NULL;
  729                 }
  730         }
  731 
  732         bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
  733         if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
  734                 pci_release_msi(dev);
  735         bus_release_resources(dev, sc->age_res_spec, sc->age_res);
  736         mtx_destroy(&sc->age_mtx);
  737 
  738         return (0);
  739 }
  740 
  741 static void
  742 age_sysctl_node(struct age_softc *sc)
  743 {
  744         int error;
  745 
  746         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
  747             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
  748             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
  749             "I", "Statistics");
  750 
  751         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
  752             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
  753             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
  754             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
  755 
  756         /* Pull in device tunables. */
  757         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
  758         error = resource_int_value(device_get_name(sc->age_dev),
  759             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
  760         if (error == 0) {
  761                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
  762                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
  763                         device_printf(sc->age_dev,
  764                             "int_mod value out of range; using default: %d\n",
  765                             AGE_IM_TIMER_DEFAULT);
  766                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
  767                 }
  768         }
  769 
  770         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
  771             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
  772             "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
  773             0, sysctl_hw_age_proc_limit, "I",
  774             "max number of Rx events to process");
  775 
  776         /* Pull in device tunables. */
  777         sc->age_process_limit = AGE_PROC_DEFAULT;
  778         error = resource_int_value(device_get_name(sc->age_dev),
  779             device_get_unit(sc->age_dev), "process_limit",
  780             &sc->age_process_limit);
  781         if (error == 0) {
  782                 if (sc->age_process_limit < AGE_PROC_MIN ||
  783                     sc->age_process_limit > AGE_PROC_MAX) {
  784                         device_printf(sc->age_dev,
  785                             "process_limit value out of range; "
  786                             "using default: %d\n", AGE_PROC_DEFAULT);
  787                         sc->age_process_limit = AGE_PROC_DEFAULT;
  788                 }
  789         }
  790 }
  791 
  792 struct age_dmamap_arg {
  793         bus_addr_t      age_busaddr;
  794 };
  795 
  796 static void
  797 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  798 {
  799         struct age_dmamap_arg *ctx;
  800 
  801         if (error != 0)
  802                 return;
  803 
  804         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  805 
  806         ctx = (struct age_dmamap_arg *)arg;
  807         ctx->age_busaddr = segs[0].ds_addr;
  808 }
  809 
  810 /*
  811  * Attansic L1 controller have single register to specify high
  812  * address part of DMA blocks. So all descriptor structures and
  813  * DMA memory blocks should have the same high address of given
  814  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
  815  */
  816 static int
  817 age_check_boundary(struct age_softc *sc)
  818 {
  819         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
  820         bus_addr_t cmb_block_end, smb_block_end;
  821 
  822         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
  823         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
  824         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
  825         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
  826         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
  827         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
  828 
  829         if ((AGE_ADDR_HI(tx_ring_end) !=
  830             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
  831             (AGE_ADDR_HI(rx_ring_end) !=
  832             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
  833             (AGE_ADDR_HI(rr_ring_end) !=
  834             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
  835             (AGE_ADDR_HI(cmb_block_end) !=
  836             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
  837             (AGE_ADDR_HI(smb_block_end) !=
  838             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
  839                 return (EFBIG);
  840 
  841         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
  842             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
  843             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
  844             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
  845                 return (EFBIG);
  846 
  847         return (0);
  848 }
  849 
  850 static int
  851 age_dma_alloc(struct age_softc *sc)
  852 {
  853         struct age_txdesc *txd;
  854         struct age_rxdesc *rxd;
  855         bus_addr_t lowaddr;
  856         struct age_dmamap_arg ctx;
  857         int error, i;
  858 
  859         lowaddr = BUS_SPACE_MAXADDR;
  860 
  861 again:
  862         /* Create parent ring/DMA block tag. */
  863         error = bus_dma_tag_create(
  864             bus_get_dma_tag(sc->age_dev), /* parent */
  865             1, 0,                       /* alignment, boundary */
  866             lowaddr,                    /* lowaddr */
  867             BUS_SPACE_MAXADDR,          /* highaddr */
  868             NULL, NULL,                 /* filter, filterarg */
  869             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
  870             0,                          /* nsegments */
  871             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
  872             0,                          /* flags */
  873             NULL, NULL,                 /* lockfunc, lockarg */
  874             &sc->age_cdata.age_parent_tag);
  875         if (error != 0) {
  876                 device_printf(sc->age_dev,
  877                     "could not create parent DMA tag.\n");
  878                 goto fail;
  879         }
  880 
  881         /* Create tag for Tx ring. */
  882         error = bus_dma_tag_create(
  883             sc->age_cdata.age_parent_tag, /* parent */
  884             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
  885             BUS_SPACE_MAXADDR,          /* lowaddr */
  886             BUS_SPACE_MAXADDR,          /* highaddr */
  887             NULL, NULL,                 /* filter, filterarg */
  888             AGE_TX_RING_SZ,             /* maxsize */
  889             1,                          /* nsegments */
  890             AGE_TX_RING_SZ,             /* maxsegsize */
  891             0,                          /* flags */
  892             NULL, NULL,                 /* lockfunc, lockarg */
  893             &sc->age_cdata.age_tx_ring_tag);
  894         if (error != 0) {
  895                 device_printf(sc->age_dev,
  896                     "could not create Tx ring DMA tag.\n");
  897                 goto fail;
  898         }
  899 
  900         /* Create tag for Rx ring. */
  901         error = bus_dma_tag_create(
  902             sc->age_cdata.age_parent_tag, /* parent */
  903             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
  904             BUS_SPACE_MAXADDR,          /* lowaddr */
  905             BUS_SPACE_MAXADDR,          /* highaddr */
  906             NULL, NULL,                 /* filter, filterarg */
  907             AGE_RX_RING_SZ,             /* maxsize */
  908             1,                          /* nsegments */
  909             AGE_RX_RING_SZ,             /* maxsegsize */
  910             0,                          /* flags */
  911             NULL, NULL,                 /* lockfunc, lockarg */
  912             &sc->age_cdata.age_rx_ring_tag);
  913         if (error != 0) {
  914                 device_printf(sc->age_dev,
  915                     "could not create Rx ring DMA tag.\n");
  916                 goto fail;
  917         }
  918 
  919         /* Create tag for Rx return ring. */
  920         error = bus_dma_tag_create(
  921             sc->age_cdata.age_parent_tag, /* parent */
  922             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
  923             BUS_SPACE_MAXADDR,          /* lowaddr */
  924             BUS_SPACE_MAXADDR,          /* highaddr */
  925             NULL, NULL,                 /* filter, filterarg */
  926             AGE_RR_RING_SZ,             /* maxsize */
  927             1,                          /* nsegments */
  928             AGE_RR_RING_SZ,             /* maxsegsize */
  929             0,                          /* flags */
  930             NULL, NULL,                 /* lockfunc, lockarg */
  931             &sc->age_cdata.age_rr_ring_tag);
  932         if (error != 0) {
  933                 device_printf(sc->age_dev,
  934                     "could not create Rx return ring DMA tag.\n");
  935                 goto fail;
  936         }
  937 
  938         /* Create tag for coalesing message block. */
  939         error = bus_dma_tag_create(
  940             sc->age_cdata.age_parent_tag, /* parent */
  941             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
  942             BUS_SPACE_MAXADDR,          /* lowaddr */
  943             BUS_SPACE_MAXADDR,          /* highaddr */
  944             NULL, NULL,                 /* filter, filterarg */
  945             AGE_CMB_BLOCK_SZ,           /* maxsize */
  946             1,                          /* nsegments */
  947             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
  948             0,                          /* flags */
  949             NULL, NULL,                 /* lockfunc, lockarg */
  950             &sc->age_cdata.age_cmb_block_tag);
  951         if (error != 0) {
  952                 device_printf(sc->age_dev,
  953                     "could not create CMB DMA tag.\n");
  954                 goto fail;
  955         }
  956 
  957         /* Create tag for statistics message block. */
  958         error = bus_dma_tag_create(
  959             sc->age_cdata.age_parent_tag, /* parent */
  960             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
  961             BUS_SPACE_MAXADDR,          /* lowaddr */
  962             BUS_SPACE_MAXADDR,          /* highaddr */
  963             NULL, NULL,                 /* filter, filterarg */
  964             AGE_SMB_BLOCK_SZ,           /* maxsize */
  965             1,                          /* nsegments */
  966             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
  967             0,                          /* flags */
  968             NULL, NULL,                 /* lockfunc, lockarg */
  969             &sc->age_cdata.age_smb_block_tag);
  970         if (error != 0) {
  971                 device_printf(sc->age_dev,
  972                     "could not create SMB DMA tag.\n");
  973                 goto fail;
  974         }
  975 
  976         /* Allocate DMA'able memory and load the DMA map. */
  977         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
  978             (void **)&sc->age_rdata.age_tx_ring,
  979             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
  980             &sc->age_cdata.age_tx_ring_map);
  981         if (error != 0) {
  982                 device_printf(sc->age_dev,
  983                     "could not allocate DMA'able memory for Tx ring.\n");
  984                 goto fail;
  985         }
  986         ctx.age_busaddr = 0;
  987         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
  988             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
  989             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
  990         if (error != 0 || ctx.age_busaddr == 0) {
  991                 device_printf(sc->age_dev,
  992                     "could not load DMA'able memory for Tx ring.\n");
  993                 goto fail;
  994         }
  995         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
  996         /* Rx ring */
  997         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
  998             (void **)&sc->age_rdata.age_rx_ring,
  999             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1000             &sc->age_cdata.age_rx_ring_map);
 1001         if (error != 0) {
 1002                 device_printf(sc->age_dev,
 1003                     "could not allocate DMA'able memory for Rx ring.\n");
 1004                 goto fail;
 1005         }
 1006         ctx.age_busaddr = 0;
 1007         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
 1008             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
 1009             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
 1010         if (error != 0 || ctx.age_busaddr == 0) {
 1011                 device_printf(sc->age_dev,
 1012                     "could not load DMA'able memory for Rx ring.\n");
 1013                 goto fail;
 1014         }
 1015         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
 1016         /* Rx return ring */
 1017         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
 1018             (void **)&sc->age_rdata.age_rr_ring,
 1019             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1020             &sc->age_cdata.age_rr_ring_map);
 1021         if (error != 0) {
 1022                 device_printf(sc->age_dev,
 1023                     "could not allocate DMA'able memory for Rx return ring.\n");
 1024                 goto fail;
 1025         }
 1026         ctx.age_busaddr = 0;
 1027         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
 1028             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
 1029             AGE_RR_RING_SZ, age_dmamap_cb,
 1030             &ctx, 0);
 1031         if (error != 0 || ctx.age_busaddr == 0) {
 1032                 device_printf(sc->age_dev,
 1033                     "could not load DMA'able memory for Rx return ring.\n");
 1034                 goto fail;
 1035         }
 1036         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
 1037         /* CMB block */
 1038         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
 1039             (void **)&sc->age_rdata.age_cmb_block,
 1040             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1041             &sc->age_cdata.age_cmb_block_map);
 1042         if (error != 0) {
 1043                 device_printf(sc->age_dev,
 1044                     "could not allocate DMA'able memory for CMB block.\n");
 1045                 goto fail;
 1046         }
 1047         ctx.age_busaddr = 0;
 1048         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
 1049             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
 1050             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
 1051         if (error != 0 || ctx.age_busaddr == 0) {
 1052                 device_printf(sc->age_dev,
 1053                     "could not load DMA'able memory for CMB block.\n");
 1054                 goto fail;
 1055         }
 1056         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
 1057         /* SMB block */
 1058         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
 1059             (void **)&sc->age_rdata.age_smb_block,
 1060             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1061             &sc->age_cdata.age_smb_block_map);
 1062         if (error != 0) {
 1063                 device_printf(sc->age_dev,
 1064                     "could not allocate DMA'able memory for SMB block.\n");
 1065                 goto fail;
 1066         }
 1067         ctx.age_busaddr = 0;
 1068         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
 1069             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
 1070             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
 1071         if (error != 0 || ctx.age_busaddr == 0) {
 1072                 device_printf(sc->age_dev,
 1073                     "could not load DMA'able memory for SMB block.\n");
 1074                 goto fail;
 1075         }
 1076         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
 1077 
 1078         /*
 1079          * All ring buffer and DMA blocks should have the same
 1080          * high address part of 64bit DMA address space.
 1081          */
 1082         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1083             (error = age_check_boundary(sc)) != 0) {
 1084                 device_printf(sc->age_dev, "4GB boundary crossed, "
 1085                     "switching to 32bit DMA addressing mode.\n");
 1086                 age_dma_free(sc);
 1087                 /* Limit DMA address space to 32bit and try again. */
 1088                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1089                 goto again;
 1090         }
 1091 
 1092         /*
 1093          * Create Tx/Rx buffer parent tag.
 1094          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
 1095          * so it needs separate parent DMA tag.
 1096          * XXX
 1097          * It seems enabling 64bit DMA causes data corruption. Limit
 1098          * DMA address space to 32bit.
 1099          */
 1100         error = bus_dma_tag_create(
 1101             bus_get_dma_tag(sc->age_dev), /* parent */
 1102             1, 0,                       /* alignment, boundary */
 1103             BUS_SPACE_MAXADDR_32BIT,    /* lowaddr */
 1104             BUS_SPACE_MAXADDR,          /* highaddr */
 1105             NULL, NULL,                 /* filter, filterarg */
 1106             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1107             0,                          /* nsegments */
 1108             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1109             0,                          /* flags */
 1110             NULL, NULL,                 /* lockfunc, lockarg */
 1111             &sc->age_cdata.age_buffer_tag);
 1112         if (error != 0) {
 1113                 device_printf(sc->age_dev,
 1114                     "could not create parent buffer DMA tag.\n");
 1115                 goto fail;
 1116         }
 1117 
 1118         /* Create tag for Tx buffers. */
 1119         error = bus_dma_tag_create(
 1120             sc->age_cdata.age_buffer_tag, /* parent */
 1121             1, 0,                       /* alignment, boundary */
 1122             BUS_SPACE_MAXADDR,          /* lowaddr */
 1123             BUS_SPACE_MAXADDR,          /* highaddr */
 1124             NULL, NULL,                 /* filter, filterarg */
 1125             AGE_TSO_MAXSIZE,            /* maxsize */
 1126             AGE_MAXTXSEGS,              /* nsegments */
 1127             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1128             0,                          /* flags */
 1129             NULL, NULL,                 /* lockfunc, lockarg */
 1130             &sc->age_cdata.age_tx_tag);
 1131         if (error != 0) {
 1132                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
 1133                 goto fail;
 1134         }
 1135 
 1136         /* Create tag for Rx buffers. */
 1137         error = bus_dma_tag_create(
 1138             sc->age_cdata.age_buffer_tag, /* parent */
 1139             AGE_RX_BUF_ALIGN, 0,        /* alignment, boundary */
 1140             BUS_SPACE_MAXADDR,          /* lowaddr */
 1141             BUS_SPACE_MAXADDR,          /* highaddr */
 1142             NULL, NULL,                 /* filter, filterarg */
 1143             MCLBYTES,                   /* maxsize */
 1144             1,                          /* nsegments */
 1145             MCLBYTES,                   /* maxsegsize */
 1146             0,                          /* flags */
 1147             NULL, NULL,                 /* lockfunc, lockarg */
 1148             &sc->age_cdata.age_rx_tag);
 1149         if (error != 0) {
 1150                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
 1151                 goto fail;
 1152         }
 1153 
 1154         /* Create DMA maps for Tx buffers. */
 1155         for (i = 0; i < AGE_TX_RING_CNT; i++) {
 1156                 txd = &sc->age_cdata.age_txdesc[i];
 1157                 txd->tx_m = NULL;
 1158                 txd->tx_dmamap = NULL;
 1159                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
 1160                     &txd->tx_dmamap);
 1161                 if (error != 0) {
 1162                         device_printf(sc->age_dev,
 1163                             "could not create Tx dmamap.\n");
 1164                         goto fail;
 1165                 }
 1166         }
 1167         /* Create DMA maps for Rx buffers. */
 1168         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
 1169             &sc->age_cdata.age_rx_sparemap)) != 0) {
 1170                 device_printf(sc->age_dev,
 1171                     "could not create spare Rx dmamap.\n");
 1172                 goto fail;
 1173         }
 1174         for (i = 0; i < AGE_RX_RING_CNT; i++) {
 1175                 rxd = &sc->age_cdata.age_rxdesc[i];
 1176                 rxd->rx_m = NULL;
 1177                 rxd->rx_dmamap = NULL;
 1178                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
 1179                     &rxd->rx_dmamap);
 1180                 if (error != 0) {
 1181                         device_printf(sc->age_dev,
 1182                             "could not create Rx dmamap.\n");
 1183                         goto fail;
 1184                 }
 1185         }
 1186 
 1187 fail:
 1188         return (error);
 1189 }
 1190 
 1191 static void
 1192 age_dma_free(struct age_softc *sc)
 1193 {
 1194         struct age_txdesc *txd;
 1195         struct age_rxdesc *rxd;
 1196         int i;
 1197 
 1198         /* Tx buffers */
 1199         if (sc->age_cdata.age_tx_tag != NULL) {
 1200                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
 1201                         txd = &sc->age_cdata.age_txdesc[i];
 1202                         if (txd->tx_dmamap != NULL) {
 1203                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
 1204                                     txd->tx_dmamap);
 1205                                 txd->tx_dmamap = NULL;
 1206                         }
 1207                 }
 1208                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
 1209                 sc->age_cdata.age_tx_tag = NULL;
 1210         }
 1211         /* Rx buffers */
 1212         if (sc->age_cdata.age_rx_tag != NULL) {
 1213                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
 1214                         rxd = &sc->age_cdata.age_rxdesc[i];
 1215                         if (rxd->rx_dmamap != NULL) {
 1216                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
 1217                                     rxd->rx_dmamap);
 1218                                 rxd->rx_dmamap = NULL;
 1219                         }
 1220                 }
 1221                 if (sc->age_cdata.age_rx_sparemap != NULL) {
 1222                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
 1223                             sc->age_cdata.age_rx_sparemap);
 1224                         sc->age_cdata.age_rx_sparemap = NULL;
 1225                 }
 1226                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
 1227                 sc->age_cdata.age_rx_tag = NULL;
 1228         }
 1229         /* Tx ring. */
 1230         if (sc->age_cdata.age_tx_ring_tag != NULL) {
 1231                 if (sc->age_cdata.age_tx_ring_map != NULL)
 1232                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
 1233                             sc->age_cdata.age_tx_ring_map);
 1234                 if (sc->age_cdata.age_tx_ring_map != NULL &&
 1235                     sc->age_rdata.age_tx_ring != NULL)
 1236                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
 1237                             sc->age_rdata.age_tx_ring,
 1238                             sc->age_cdata.age_tx_ring_map);
 1239                 sc->age_rdata.age_tx_ring = NULL;
 1240                 sc->age_cdata.age_tx_ring_map = NULL;
 1241                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
 1242                 sc->age_cdata.age_tx_ring_tag = NULL;
 1243         }
 1244         /* Rx ring. */
 1245         if (sc->age_cdata.age_rx_ring_tag != NULL) {
 1246                 if (sc->age_cdata.age_rx_ring_map != NULL)
 1247                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
 1248                             sc->age_cdata.age_rx_ring_map);
 1249                 if (sc->age_cdata.age_rx_ring_map != NULL &&
 1250                     sc->age_rdata.age_rx_ring != NULL)
 1251                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
 1252                             sc->age_rdata.age_rx_ring,
 1253                             sc->age_cdata.age_rx_ring_map);
 1254                 sc->age_rdata.age_rx_ring = NULL;
 1255                 sc->age_cdata.age_rx_ring_map = NULL;
 1256                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
 1257                 sc->age_cdata.age_rx_ring_tag = NULL;
 1258         }
 1259         /* Rx return ring. */
 1260         if (sc->age_cdata.age_rr_ring_tag != NULL) {
 1261                 if (sc->age_cdata.age_rr_ring_map != NULL)
 1262                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
 1263                             sc->age_cdata.age_rr_ring_map);
 1264                 if (sc->age_cdata.age_rr_ring_map != NULL &&
 1265                     sc->age_rdata.age_rr_ring != NULL)
 1266                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
 1267                             sc->age_rdata.age_rr_ring,
 1268                             sc->age_cdata.age_rr_ring_map);
 1269                 sc->age_rdata.age_rr_ring = NULL;
 1270                 sc->age_cdata.age_rr_ring_map = NULL;
 1271                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
 1272                 sc->age_cdata.age_rr_ring_tag = NULL;
 1273         }
 1274         /* CMB block */
 1275         if (sc->age_cdata.age_cmb_block_tag != NULL) {
 1276                 if (sc->age_cdata.age_cmb_block_map != NULL)
 1277                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
 1278                             sc->age_cdata.age_cmb_block_map);
 1279                 if (sc->age_cdata.age_cmb_block_map != NULL &&
 1280                     sc->age_rdata.age_cmb_block != NULL)
 1281                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
 1282                             sc->age_rdata.age_cmb_block,
 1283                             sc->age_cdata.age_cmb_block_map);
 1284                 sc->age_rdata.age_cmb_block = NULL;
 1285                 sc->age_cdata.age_cmb_block_map = NULL;
 1286                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
 1287                 sc->age_cdata.age_cmb_block_tag = NULL;
 1288         }
 1289         /* SMB block */
 1290         if (sc->age_cdata.age_smb_block_tag != NULL) {
 1291                 if (sc->age_cdata.age_smb_block_map != NULL)
 1292                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
 1293                             sc->age_cdata.age_smb_block_map);
 1294                 if (sc->age_cdata.age_smb_block_map != NULL &&
 1295                     sc->age_rdata.age_smb_block != NULL)
 1296                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
 1297                             sc->age_rdata.age_smb_block,
 1298                             sc->age_cdata.age_smb_block_map);
 1299                 sc->age_rdata.age_smb_block = NULL;
 1300                 sc->age_cdata.age_smb_block_map = NULL;
 1301                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
 1302                 sc->age_cdata.age_smb_block_tag = NULL;
 1303         }
 1304 
 1305         if (sc->age_cdata.age_buffer_tag != NULL) {
 1306                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
 1307                 sc->age_cdata.age_buffer_tag = NULL;
 1308         }
 1309         if (sc->age_cdata.age_parent_tag != NULL) {
 1310                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
 1311                 sc->age_cdata.age_parent_tag = NULL;
 1312         }
 1313 }
 1314 
 1315 /*
 1316  *      Make sure the interface is stopped at reboot time.
 1317  */
 1318 static int
 1319 age_shutdown(device_t dev)
 1320 {
 1321 
 1322         return (age_suspend(dev));
 1323 }
 1324 
 1325 static void
 1326 age_setwol(struct age_softc *sc)
 1327 {
 1328         struct ifnet *ifp;
 1329         struct mii_data *mii;
 1330         uint32_t reg, pmcs;
 1331         uint16_t pmstat;
 1332         int aneg, i, pmc;
 1333 
 1334         AGE_LOCK_ASSERT(sc);
 1335 
 1336         if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
 1337                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
 1338                 /*
 1339                  * No PME capability, PHY power down.
 1340                  * XXX
 1341                  * Due to an unknown reason powering down PHY resulted
 1342                  * in unexpected results such as inaccessbility of
 1343                  * hardware of freshly rebooted system. Disable
 1344                  * powering down PHY until I got more information for
 1345                  * Attansic/Atheros PHY hardwares.
 1346                  */
 1347 #ifdef notyet
 1348                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1349                     MII_BMCR, BMCR_PDOWN);
 1350 #endif
 1351                 return;
 1352         }
 1353 
 1354         ifp = sc->age_ifp;
 1355         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1356                 /*
 1357                  * Note, this driver resets the link speed to 10/100Mbps with
 1358                  * auto-negotiation but we don't know whether that operation
 1359                  * would succeed or not as it have no control after powering
 1360                  * off. If the renegotiation fail WOL may not work. Running
 1361                  * at 1Gbps will draw more power than 375mA at 3.3V which is
 1362                  * specified in PCI specification and that would result in
 1363                  * complete shutdowning power to ethernet controller.
 1364                  *
 1365                  * TODO
 1366                  *  Save current negotiated media speed/duplex/flow-control
 1367                  *  to softc and restore the same link again after resuming.
 1368                  *  PHY handling such as power down/resetting to 100Mbps
 1369                  *  may be better handled in suspend method in phy driver.
 1370                  */
 1371                 mii = device_get_softc(sc->age_miibus);
 1372                 mii_pollstat(mii);
 1373                 aneg = 0;
 1374                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1375                         switch IFM_SUBTYPE(mii->mii_media_active) {
 1376                         case IFM_10_T:
 1377                         case IFM_100_TX:
 1378                                 goto got_link;
 1379                         case IFM_1000_T:
 1380                                 aneg++;
 1381                         default:
 1382                                 break;
 1383                         }
 1384                 }
 1385                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1386                     MII_100T2CR, 0);
 1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1388                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
 1389                     ANAR_10 | ANAR_CSMA);
 1390                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1391                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1392                 DELAY(1000);
 1393                 if (aneg != 0) {
 1394                         /* Poll link state until age(4) get a 10/100 link. */
 1395                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1396                                 mii_pollstat(mii);
 1397                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1398                                         switch (IFM_SUBTYPE(
 1399                                             mii->mii_media_active)) {
 1400                                         case IFM_10_T:
 1401                                         case IFM_100_TX:
 1402                                                 age_mac_config(sc);
 1403                                                 goto got_link;
 1404                                         default:
 1405                                                 break;
 1406                                         }
 1407                                 }
 1408                                 AGE_UNLOCK(sc);
 1409                                 pause("agelnk", hz);
 1410                                 AGE_LOCK(sc);
 1411                         }
 1412                         if (i == MII_ANEGTICKS_GIGE)
 1413                                 device_printf(sc->age_dev,
 1414                                     "establishing link failed, "
 1415                                     "WOL may not work!");
 1416                 }
 1417                 /*
 1418                  * No link, force MAC to have 100Mbps, full-duplex link.
 1419                  * This is the last resort and may/may not work.
 1420                  */
 1421                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1422                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1423                 age_mac_config(sc);
 1424         }
 1425 
 1426 got_link:
 1427         pmcs = 0;
 1428         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1429                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1430         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
 1431         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 1432         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
 1433         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
 1434         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1435                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1436         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1437                 reg |= MAC_CFG_RX_ENB;
 1438                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 1439         }
 1440 
 1441         /* Request PME. */
 1442         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
 1443         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1444         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1445                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1446         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1447 #ifdef notyet
 1448         /* See above for powering down PHY issues. */
 1449         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1450                 /* No WOL, PHY power down. */
 1451                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
 1452                     MII_BMCR, BMCR_PDOWN);
 1453         }
 1454 #endif
 1455 }
 1456 
 1457 static int
 1458 age_suspend(device_t dev)
 1459 {
 1460         struct age_softc *sc;
 1461 
 1462         sc = device_get_softc(dev);
 1463 
 1464         AGE_LOCK(sc);
 1465         age_stop(sc);
 1466         age_setwol(sc);
 1467         AGE_UNLOCK(sc);
 1468 
 1469         return (0);
 1470 }
 1471 
 1472 static int
 1473 age_resume(device_t dev)
 1474 {
 1475         struct age_softc *sc;
 1476         struct ifnet *ifp;
 1477 
 1478         sc = device_get_softc(dev);
 1479 
 1480         AGE_LOCK(sc);
 1481         age_phy_reset(sc);
 1482         ifp = sc->age_ifp;
 1483         if ((ifp->if_flags & IFF_UP) != 0)
 1484                 age_init_locked(sc);
 1485 
 1486         AGE_UNLOCK(sc);
 1487 
 1488         return (0);
 1489 }
 1490 
 1491 static int
 1492 age_encap(struct age_softc *sc, struct mbuf **m_head)
 1493 {
 1494         struct age_txdesc *txd, *txd_last;
 1495         struct tx_desc *desc;
 1496         struct mbuf *m;
 1497         struct ip *ip;
 1498         struct tcphdr *tcp;
 1499         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
 1500         bus_dmamap_t map;
 1501         uint32_t cflags, hdrlen, ip_off, poff, vtag;
 1502         int error, i, nsegs, prod, si;
 1503 
 1504         AGE_LOCK_ASSERT(sc);
 1505 
 1506         M_ASSERTPKTHDR((*m_head));
 1507 
 1508         m = *m_head;
 1509         ip = NULL;
 1510         tcp = NULL;
 1511         cflags = vtag = 0;
 1512         ip_off = poff = 0;
 1513         if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
 1514                 /*
 1515                  * L1 requires offset of TCP/UDP payload in its Tx
 1516                  * descriptor to perform hardware Tx checksum offload.
 1517                  * Additionally, TSO requires IP/TCP header size and
 1518                  * modification of IP/TCP header in order to make TSO
 1519                  * engine work. This kind of operation takes many CPU
 1520                  * cycles on FreeBSD so fast host CPU is needed to get
 1521                  * smooth TSO performance.
 1522                  */
 1523                 struct ether_header *eh;
 1524 
 1525                 if (M_WRITABLE(m) == 0) {
 1526                         /* Get a writable copy. */
 1527                         m = m_dup(*m_head, M_DONTWAIT);
 1528                         /* Release original mbufs. */
 1529                         m_freem(*m_head);
 1530                         if (m == NULL) {
 1531                                 *m_head = NULL;
 1532                                 return (ENOBUFS);
 1533                         }
 1534                         *m_head = m;
 1535                 }
 1536                 ip_off = sizeof(struct ether_header);
 1537                 m = m_pullup(m, ip_off);
 1538                 if (m == NULL) {
 1539                         *m_head = NULL;
 1540                         return (ENOBUFS);
 1541                 }
 1542                 eh = mtod(m, struct ether_header *);
 1543                 /*
 1544                  * Check if hardware VLAN insertion is off.
 1545                  * Additional check for LLC/SNAP frame?
 1546                  */
 1547                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1548                         ip_off = sizeof(struct ether_vlan_header);
 1549                         m = m_pullup(m, ip_off);
 1550                         if (m == NULL) {
 1551                                 *m_head = NULL;
 1552                                 return (ENOBUFS);
 1553                         }
 1554                 }
 1555                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1556                 if (m == NULL) {
 1557                         *m_head = NULL;
 1558                         return (ENOBUFS);
 1559                 }
 1560                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1561                 poff = ip_off + (ip->ip_hl << 2);
 1562                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1563                         m = m_pullup(m, poff + sizeof(struct tcphdr));
 1564                         if (m == NULL) {
 1565                                 *m_head = NULL;
 1566                                 return (ENOBUFS);
 1567                         }
 1568                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1569                         m = m_pullup(m, poff + (tcp->th_off << 2));
 1570                         if (m == NULL) {
 1571                                 *m_head = NULL;
 1572                                 return (ENOBUFS);
 1573                         }
 1574                         /*
 1575                          * L1 requires IP/TCP header size and offset as
 1576                          * well as TCP pseudo checksum which complicates
 1577                          * TSO configuration. I guess this comes from the
 1578                          * adherence to Microsoft NDIS Large Send
 1579                          * specification which requires insertion of
 1580                          * pseudo checksum by upper stack. The pseudo
 1581                          * checksum that NDIS refers to doesn't include
 1582                          * TCP payload length so age(4) should recompute
 1583                          * the pseudo checksum here. Hopefully this wouldn't
 1584                          * be much burden on modern CPUs.
 1585                          * Reset IP checksum and recompute TCP pseudo
 1586                          * checksum as NDIS specification said.
 1587                          */
 1588                         ip = (struct ip *)(mtod(m, char *) + ip_off);
 1589                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1590                         ip->ip_sum = 0;
 1591                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1592                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1593                 }
 1594                 *m_head = m;
 1595         }
 1596 
 1597         si = prod = sc->age_cdata.age_tx_prod;
 1598         txd = &sc->age_cdata.age_txdesc[prod];
 1599         txd_last = txd;
 1600         map = txd->tx_dmamap;
 1601 
 1602         error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
 1603             *m_head, txsegs, &nsegs, 0);
 1604         if (error == EFBIG) {
 1605                 m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
 1606                 if (m == NULL) {
 1607                         m_freem(*m_head);
 1608                         *m_head = NULL;
 1609                         return (ENOMEM);
 1610                 }
 1611                 *m_head = m;
 1612                 error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
 1613                     *m_head, txsegs, &nsegs, 0);
 1614                 if (error != 0) {
 1615                         m_freem(*m_head);
 1616                         *m_head = NULL;
 1617                         return (error);
 1618                 }
 1619         } else if (error != 0)
 1620                 return (error);
 1621         if (nsegs == 0) {
 1622                 m_freem(*m_head);
 1623                 *m_head = NULL;
 1624                 return (EIO);
 1625         }
 1626 
 1627         /* Check descriptor overrun. */
 1628         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
 1629                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
 1630                 return (ENOBUFS);
 1631         }
 1632 
 1633         m = *m_head;
 1634         /* Configure VLAN hardware tag insertion. */
 1635         if ((m->m_flags & M_VLANTAG) != 0) {
 1636                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
 1637                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
 1638                 cflags |= AGE_TD_INSERT_VLAN_TAG;
 1639         }
 1640 
 1641         desc = NULL;
 1642         i = 0;
 1643         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1644                 /* Request TSO and set MSS. */
 1645                 cflags |= AGE_TD_TSO_IPV4;
 1646                 cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
 1647                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
 1648                     AGE_TD_TSO_MSS_SHIFT);
 1649                 /* Set IP/TCP header size. */
 1650                 cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
 1651                 cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
 1652                 /*
 1653                  * L1 requires the first buffer should only hold IP/TCP
 1654                  * header data. TCP payload should be handled in other
 1655                  * descriptors.
 1656                  */
 1657                 hdrlen = poff + (tcp->th_off << 2);
 1658                 desc = &sc->age_rdata.age_tx_ring[prod];
 1659                 desc->addr = htole64(txsegs[0].ds_addr);
 1660                 desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
 1661                 desc->flags = htole32(cflags);
 1662                 sc->age_cdata.age_tx_cnt++;
 1663                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
 1664                 if (m->m_len - hdrlen > 0) {
 1665                         /* Handle remaining payload of the 1st fragment. */
 1666                         desc = &sc->age_rdata.age_tx_ring[prod];
 1667                         desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
 1668                         desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
 1669                             vtag);
 1670                         desc->flags = htole32(cflags);
 1671                         sc->age_cdata.age_tx_cnt++;
 1672                         AGE_DESC_INC(prod, AGE_TX_RING_CNT);
 1673                 }
 1674                 /* Handle remaining fragments. */
 1675                 i = 1;
 1676         } else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
 1677                 /* Configure Tx IP/TCP/UDP checksum offload. */
 1678                 cflags |= AGE_TD_CSUM;
 1679                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
 1680                         cflags |= AGE_TD_TCPCSUM;
 1681                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
 1682                         cflags |= AGE_TD_UDPCSUM;
 1683                 /* Set checksum start offset. */
 1684                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
 1685                 /* Set checksum insertion position of TCP/UDP. */
 1686                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1687                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
 1688         }
 1689         for (; i < nsegs; i++) {
 1690                 desc = &sc->age_rdata.age_tx_ring[prod];
 1691                 desc->addr = htole64(txsegs[i].ds_addr);
 1692                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1693                 desc->flags = htole32(cflags);
 1694                 sc->age_cdata.age_tx_cnt++;
 1695                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
 1696         }
 1697         /* Update producer index. */
 1698         sc->age_cdata.age_tx_prod = prod;
 1699 
 1700         /* Set EOP on the last descriptor. */
 1701         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
 1702         desc = &sc->age_rdata.age_tx_ring[prod];
 1703         desc->flags |= htole32(AGE_TD_EOP);
 1704 
 1705         /* Lastly set TSO header and modify IP/TCP header for TSO operation. */
 1706         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1707                 desc = &sc->age_rdata.age_tx_ring[si];
 1708                 desc->flags |= htole32(AGE_TD_TSO_HDR);
 1709         }
 1710 
 1711         /* Swap dmamap of the first and the last. */
 1712         txd = &sc->age_cdata.age_txdesc[prod];
 1713         map = txd_last->tx_dmamap;
 1714         txd_last->tx_dmamap = txd->tx_dmamap;
 1715         txd->tx_dmamap = map;
 1716         txd->tx_m = m;
 1717 
 1718         /* Sync descriptors. */
 1719         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1720         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 1721             sc->age_cdata.age_tx_ring_map,
 1722             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1723 
 1724         return (0);
 1725 }
 1726 
 1727 static void
 1728 age_start(struct ifnet *ifp)
 1729 {
 1730         struct age_softc *sc;
 1731 
 1732         sc = ifp->if_softc;
 1733         AGE_LOCK(sc);
 1734         age_start_locked(ifp);
 1735         AGE_UNLOCK(sc);
 1736 }
 1737 
 1738 static void
 1739 age_start_locked(struct ifnet *ifp)
 1740 {
 1741         struct age_softc *sc;
 1742         struct mbuf *m_head;
 1743         int enq;
 1744 
 1745         sc = ifp->if_softc;
 1746 
 1747         AGE_LOCK_ASSERT(sc);
 1748 
 1749         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1750             IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
 1751                 return;
 1752 
 1753         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1754                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1755                 if (m_head == NULL)
 1756                         break;
 1757                 /*
 1758                  * Pack the data into the transmit ring. If we
 1759                  * don't have room, set the OACTIVE flag and wait
 1760                  * for the NIC to drain the ring.
 1761                  */
 1762                 if (age_encap(sc, &m_head)) {
 1763                         if (m_head == NULL)
 1764                                 break;
 1765                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1766                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1767                         break;
 1768                 }
 1769 
 1770                 enq++;
 1771                 /*
 1772                  * If there's a BPF listener, bounce a copy of this frame
 1773                  * to him.
 1774                  */
 1775                 ETHER_BPF_MTAP(ifp, m_head);
 1776         }
 1777 
 1778         if (enq > 0) {
 1779                 /* Update mbox. */
 1780                 AGE_COMMIT_MBOX(sc);
 1781                 /* Set a timeout in case the chip goes out to lunch. */
 1782                 sc->age_watchdog_timer = AGE_TX_TIMEOUT;
 1783         }
 1784 }
 1785 
 1786 static void
 1787 age_watchdog(struct age_softc *sc)
 1788 {
 1789         struct ifnet *ifp;
 1790 
 1791         AGE_LOCK_ASSERT(sc);
 1792 
 1793         if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
 1794                 return;
 1795 
 1796         ifp = sc->age_ifp;
 1797         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
 1798                 if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
 1799                 ifp->if_oerrors++;
 1800                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1801                 age_init_locked(sc);
 1802                 return;
 1803         }
 1804         if (sc->age_cdata.age_tx_cnt == 0) {
 1805                 if_printf(sc->age_ifp,
 1806                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
 1807                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1808                         age_start_locked(ifp);
 1809                 return;
 1810         }
 1811         if_printf(sc->age_ifp, "watchdog timeout\n");
 1812         ifp->if_oerrors++;
 1813         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1814         age_init_locked(sc);
 1815         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1816                 age_start_locked(ifp);
 1817 }
 1818 
 1819 static int
 1820 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1821 {
 1822         struct age_softc *sc;
 1823         struct ifreq *ifr;
 1824         struct mii_data *mii;
 1825         uint32_t reg;
 1826         int error, mask;
 1827 
 1828         sc = ifp->if_softc;
 1829         ifr = (struct ifreq *)data;
 1830         error = 0;
 1831         switch (cmd) {
 1832         case SIOCSIFMTU:
 1833                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
 1834                         error = EINVAL;
 1835                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1836                         AGE_LOCK(sc);
 1837                         ifp->if_mtu = ifr->ifr_mtu;
 1838                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1839                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1840                                 age_init_locked(sc);
 1841                         }
 1842                         AGE_UNLOCK(sc);
 1843                 }
 1844                 break;
 1845         case SIOCSIFFLAGS:
 1846                 AGE_LOCK(sc);
 1847                 if ((ifp->if_flags & IFF_UP) != 0) {
 1848                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1849                                 if (((ifp->if_flags ^ sc->age_if_flags)
 1850                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1851                                         age_rxfilter(sc);
 1852                         } else {
 1853                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
 1854                                         age_init_locked(sc);
 1855                         }
 1856                 } else {
 1857                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1858                                 age_stop(sc);
 1859                 }
 1860                 sc->age_if_flags = ifp->if_flags;
 1861                 AGE_UNLOCK(sc);
 1862                 break;
 1863         case SIOCADDMULTI:
 1864         case SIOCDELMULTI:
 1865                 AGE_LOCK(sc);
 1866                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1867                         age_rxfilter(sc);
 1868                 AGE_UNLOCK(sc);
 1869                 break;
 1870         case SIOCSIFMEDIA:
 1871         case SIOCGIFMEDIA:
 1872                 mii = device_get_softc(sc->age_miibus);
 1873                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1874                 break;
 1875         case SIOCSIFCAP:
 1876                 AGE_LOCK(sc);
 1877                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1878                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1879                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1880                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1881                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1882                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
 1883                         else
 1884                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
 1885                 }
 1886                 if ((mask & IFCAP_RXCSUM) != 0 &&
 1887                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
 1888                         ifp->if_capenable ^= IFCAP_RXCSUM;
 1889                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 1890                         reg &= ~MAC_CFG_RXCSUM_ENB;
 1891                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 1892                                 reg |= MAC_CFG_RXCSUM_ENB;
 1893                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 1894                 }
 1895                 if ((mask & IFCAP_TSO4) != 0 &&
 1896                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 1897                         ifp->if_capenable ^= IFCAP_TSO4;
 1898                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 1899                                 ifp->if_hwassist |= CSUM_TSO;
 1900                         else
 1901                                 ifp->if_hwassist &= ~CSUM_TSO;
 1902                 }
 1903 
 1904                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 1905                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 1906                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 1907                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 1908                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 1909                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 1910                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 1911                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 1912                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 1913                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 1914                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 1915                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 1916                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 1917                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 1918                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 1919                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 1920                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 1921                         age_rxvlan(sc);
 1922                 }
 1923                 AGE_UNLOCK(sc);
 1924                 VLAN_CAPABILITIES(ifp);
 1925                 break;
 1926         default:
 1927                 error = ether_ioctl(ifp, cmd, data);
 1928                 break;
 1929         }
 1930 
 1931         return (error);
 1932 }
 1933 
 1934 static void
 1935 age_mac_config(struct age_softc *sc)
 1936 {
 1937         struct mii_data *mii;
 1938         uint32_t reg;
 1939 
 1940         AGE_LOCK_ASSERT(sc);
 1941 
 1942         mii = device_get_softc(sc->age_miibus);
 1943         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 1944         reg &= ~MAC_CFG_FULL_DUPLEX;
 1945         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
 1946         reg &= ~MAC_CFG_SPEED_MASK;
 1947         /* Reprogram MAC with resolved speed/duplex. */
 1948         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1949         case IFM_10_T:
 1950         case IFM_100_TX:
 1951                 reg |= MAC_CFG_SPEED_10_100;
 1952                 break;
 1953         case IFM_1000_T:
 1954                 reg |= MAC_CFG_SPEED_1000;
 1955                 break;
 1956         }
 1957         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 1958                 reg |= MAC_CFG_FULL_DUPLEX;
 1959 #ifdef notyet
 1960                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 1961                         reg |= MAC_CFG_TX_FC;
 1962                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 1963                         reg |= MAC_CFG_RX_FC;
 1964 #endif
 1965         }
 1966 
 1967         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 1968 }
 1969 
 1970 static void
 1971 age_link_task(void *arg, int pending)
 1972 {
 1973         struct age_softc *sc;
 1974         struct mii_data *mii;
 1975         struct ifnet *ifp;
 1976         uint32_t reg;
 1977 
 1978         sc = (struct age_softc *)arg;
 1979 
 1980         AGE_LOCK(sc);
 1981         mii = device_get_softc(sc->age_miibus);
 1982         ifp = sc->age_ifp;
 1983         if (mii == NULL || ifp == NULL ||
 1984             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 1985                 AGE_UNLOCK(sc);
 1986                 return;
 1987         }
 1988 
 1989         sc->age_flags &= ~AGE_FLAG_LINK;
 1990         if ((mii->mii_media_status & IFM_AVALID) != 0) {
 1991                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1992                 case IFM_10_T:
 1993                 case IFM_100_TX:
 1994                 case IFM_1000_T:
 1995                         sc->age_flags |= AGE_FLAG_LINK;
 1996                         break;
 1997                 default:
 1998                         break;
 1999                 }
 2000         }
 2001 
 2002         /* Stop Rx/Tx MACs. */
 2003         age_stop_rxmac(sc);
 2004         age_stop_txmac(sc);
 2005 
 2006         /* Program MACs with resolved speed/duplex/flow-control. */
 2007         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
 2008                 age_mac_config(sc);
 2009                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2010                 /* Restart DMA engine and Tx/Rx MAC. */
 2011                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
 2012                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
 2013                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2014                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 2015         }
 2016 
 2017         AGE_UNLOCK(sc);
 2018 }
 2019 
 2020 static void
 2021 age_stats_update(struct age_softc *sc)
 2022 {
 2023         struct age_stats *stat;
 2024         struct smb *smb;
 2025         struct ifnet *ifp;
 2026 
 2027         AGE_LOCK_ASSERT(sc);
 2028 
 2029         stat = &sc->age_stat;
 2030 
 2031         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
 2032             sc->age_cdata.age_smb_block_map,
 2033             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2034 
 2035         smb = sc->age_rdata.age_smb_block;
 2036         if (smb->updated == 0)
 2037                 return;
 2038 
 2039         ifp = sc->age_ifp;
 2040         /* Rx stats. */
 2041         stat->rx_frames += smb->rx_frames;
 2042         stat->rx_bcast_frames += smb->rx_bcast_frames;
 2043         stat->rx_mcast_frames += smb->rx_mcast_frames;
 2044         stat->rx_pause_frames += smb->rx_pause_frames;
 2045         stat->rx_control_frames += smb->rx_control_frames;
 2046         stat->rx_crcerrs += smb->rx_crcerrs;
 2047         stat->rx_lenerrs += smb->rx_lenerrs;
 2048         stat->rx_bytes += smb->rx_bytes;
 2049         stat->rx_runts += smb->rx_runts;
 2050         stat->rx_fragments += smb->rx_fragments;
 2051         stat->rx_pkts_64 += smb->rx_pkts_64;
 2052         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 2053         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 2054         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 2055         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 2056         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 2057         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 2058         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 2059         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 2060         stat->rx_desc_oflows += smb->rx_desc_oflows;
 2061         stat->rx_alignerrs += smb->rx_alignerrs;
 2062         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 2063         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 2064         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 2065 
 2066         /* Tx stats. */
 2067         stat->tx_frames += smb->tx_frames;
 2068         stat->tx_bcast_frames += smb->tx_bcast_frames;
 2069         stat->tx_mcast_frames += smb->tx_mcast_frames;
 2070         stat->tx_pause_frames += smb->tx_pause_frames;
 2071         stat->tx_excess_defer += smb->tx_excess_defer;
 2072         stat->tx_control_frames += smb->tx_control_frames;
 2073         stat->tx_deferred += smb->tx_deferred;
 2074         stat->tx_bytes += smb->tx_bytes;
 2075         stat->tx_pkts_64 += smb->tx_pkts_64;
 2076         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 2077         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 2078         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 2079         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 2080         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 2081         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 2082         stat->tx_single_colls += smb->tx_single_colls;
 2083         stat->tx_multi_colls += smb->tx_multi_colls;
 2084         stat->tx_late_colls += smb->tx_late_colls;
 2085         stat->tx_excess_colls += smb->tx_excess_colls;
 2086         stat->tx_underrun += smb->tx_underrun;
 2087         stat->tx_desc_underrun += smb->tx_desc_underrun;
 2088         stat->tx_lenerrs += smb->tx_lenerrs;
 2089         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 2090         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 2091         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 2092 
 2093         /* Update counters in ifnet. */
 2094         ifp->if_opackets += smb->tx_frames;
 2095 
 2096         ifp->if_collisions += smb->tx_single_colls +
 2097             smb->tx_multi_colls + smb->tx_late_colls +
 2098             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
 2099 
 2100         ifp->if_oerrors += smb->tx_excess_colls +
 2101             smb->tx_late_colls + smb->tx_underrun +
 2102             smb->tx_pkts_truncated;
 2103 
 2104         ifp->if_ipackets += smb->rx_frames;
 2105 
 2106         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
 2107             smb->rx_runts + smb->rx_pkts_truncated +
 2108             smb->rx_fifo_oflows + smb->rx_desc_oflows +
 2109             smb->rx_alignerrs;
 2110 
 2111         /* Update done, clear. */
 2112         smb->updated = 0;
 2113 
 2114         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
 2115             sc->age_cdata.age_smb_block_map,
 2116             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2117 }
 2118 
 2119 static int
 2120 age_intr(void *arg)
 2121 {
 2122         struct age_softc *sc;
 2123         uint32_t status;
 2124 
 2125         sc = (struct age_softc *)arg;
 2126 
 2127         status = CSR_READ_4(sc, AGE_INTR_STATUS);
 2128         if (status == 0 || (status & AGE_INTRS) == 0)
 2129                 return (FILTER_STRAY);
 2130         /* Disable interrupts. */
 2131         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
 2132         taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
 2133 
 2134         return (FILTER_HANDLED);
 2135 }
 2136 
 2137 static void
 2138 age_int_task(void *arg, int pending)
 2139 {
 2140         struct age_softc *sc;
 2141         struct ifnet *ifp;
 2142         struct cmb *cmb;
 2143         uint32_t status;
 2144 
 2145         sc = (struct age_softc *)arg;
 2146 
 2147         AGE_LOCK(sc);
 2148 
 2149         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 2150             sc->age_cdata.age_cmb_block_map,
 2151             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2152         cmb = sc->age_rdata.age_cmb_block;
 2153         status = le32toh(cmb->intr_status);
 2154         if (sc->age_morework != 0)
 2155                 status |= INTR_CMB_RX;
 2156         if ((status & AGE_INTRS) == 0)
 2157                 goto done;
 2158 
 2159         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
 2160             TPD_CONS_SHIFT;
 2161         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
 2162             RRD_PROD_SHIFT;
 2163         /* Let hardware know CMB was served. */
 2164         cmb->intr_status = 0;
 2165         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 2166             sc->age_cdata.age_cmb_block_map,
 2167             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2168 
 2169 #if 0
 2170         printf("INTR: 0x%08x\n", status);
 2171         status &= ~INTR_DIS_DMA;
 2172         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
 2173 #endif
 2174         ifp = sc->age_ifp;
 2175         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2176                 if ((status & INTR_CMB_RX) != 0)
 2177                         sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
 2178                             sc->age_process_limit);
 2179                 if ((status & INTR_CMB_TX) != 0)
 2180                         age_txintr(sc, sc->age_tpd_cons);
 2181                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2182                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2183                                 device_printf(sc->age_dev,
 2184                                     "DMA read error! -- resetting\n");
 2185                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2186                                 device_printf(sc->age_dev,
 2187                                     "DMA write error! -- resetting\n");
 2188                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2189                         age_init_locked(sc);
 2190                 }
 2191                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2192                         age_start_locked(ifp);
 2193                 if ((status & INTR_SMB) != 0)
 2194                         age_stats_update(sc);
 2195         }
 2196 
 2197         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
 2198         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 2199             sc->age_cdata.age_cmb_block_map,
 2200             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2201         status = le32toh(cmb->intr_status);
 2202         if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
 2203                 taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
 2204                 AGE_UNLOCK(sc);
 2205                 return;
 2206         }
 2207 
 2208 done:
 2209         /* Re-enable interrupts. */
 2210         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
 2211         AGE_UNLOCK(sc);
 2212 }
 2213 
 2214 static void
 2215 age_txintr(struct age_softc *sc, int tpd_cons)
 2216 {
 2217         struct ifnet *ifp;
 2218         struct age_txdesc *txd;
 2219         int cons, prog;
 2220 
 2221         AGE_LOCK_ASSERT(sc);
 2222 
 2223         ifp = sc->age_ifp;
 2224 
 2225         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 2226             sc->age_cdata.age_tx_ring_map,
 2227             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2228 
 2229         /*
 2230          * Go through our Tx list and free mbufs for those
 2231          * frames which have been transmitted.
 2232          */
 2233         cons = sc->age_cdata.age_tx_cons;
 2234         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
 2235                 if (sc->age_cdata.age_tx_cnt <= 0)
 2236                         break;
 2237                 prog++;
 2238                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2239                 sc->age_cdata.age_tx_cnt--;
 2240                 txd = &sc->age_cdata.age_txdesc[cons];
 2241                 /*
 2242                  * Clear Tx descriptors, it's not required but would
 2243                  * help debugging in case of Tx issues.
 2244                  */
 2245                 txd->tx_desc->addr = 0;
 2246                 txd->tx_desc->len = 0;
 2247                 txd->tx_desc->flags = 0;
 2248 
 2249                 if (txd->tx_m == NULL)
 2250                         continue;
 2251                 /* Reclaim transmitted mbufs. */
 2252                 bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
 2253                     BUS_DMASYNC_POSTWRITE);
 2254                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
 2255                 m_freem(txd->tx_m);
 2256                 txd->tx_m = NULL;
 2257         }
 2258 
 2259         if (prog > 0) {
 2260                 sc->age_cdata.age_tx_cons = cons;
 2261 
 2262                 /*
 2263                  * Unarm watchdog timer only when there are no pending
 2264                  * Tx descriptors in queue.
 2265                  */
 2266                 if (sc->age_cdata.age_tx_cnt == 0)
 2267                         sc->age_watchdog_timer = 0;
 2268                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 2269                     sc->age_cdata.age_tx_ring_map,
 2270                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2271         }
 2272 }
 2273 
 2274 #ifndef __NO_STRICT_ALIGNMENT
 2275 static struct mbuf *
 2276 age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
 2277 {
 2278         struct mbuf *n;
 2279         int i;
 2280         uint16_t *src, *dst;
 2281 
 2282         src = mtod(m, uint16_t *);
 2283         dst = src - 3;
 2284 
 2285         if (m->m_next == NULL) {
 2286                 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
 2287                         *dst++ = *src++;
 2288                 m->m_data -= 6;
 2289                 return (m);
 2290         }
 2291         /*
 2292          * Append a new mbuf to received mbuf chain and copy ethernet
 2293          * header from the mbuf chain. This can save lots of CPU
 2294          * cycles for jumbo frame.
 2295          */
 2296         MGETHDR(n, M_NOWAIT, MT_DATA);
 2297         if (n == NULL) {
 2298                 ifp->if_iqdrops++;
 2299                 m_freem(m);
 2300                 return (NULL);
 2301         }
 2302         bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
 2303         m->m_data += ETHER_HDR_LEN;
 2304         m->m_len -= ETHER_HDR_LEN;
 2305         n->m_len = ETHER_HDR_LEN;
 2306         M_MOVE_PKTHDR(n, m);
 2307         n->m_next = m;
 2308         return (n);
 2309 }
 2310 #endif
 2311 
 2312 /* Receive a frame. */
 2313 static void
 2314 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
 2315 {
 2316         struct age_rxdesc *rxd;
 2317         struct ifnet *ifp;
 2318         struct mbuf *mp, *m;
 2319         uint32_t status, index, vtag;
 2320         int count, nsegs;
 2321         int rx_cons;
 2322 
 2323         AGE_LOCK_ASSERT(sc);
 2324 
 2325         ifp = sc->age_ifp;
 2326         status = le32toh(rxrd->flags);
 2327         index = le32toh(rxrd->index);
 2328         rx_cons = AGE_RX_CONS(index);
 2329         nsegs = AGE_RX_NSEGS(index);
 2330 
 2331         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
 2332         if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
 2333                 /*
 2334                  * We want to pass the following frames to upper
 2335                  * layer regardless of error status of Rx return
 2336                  * ring.
 2337                  *
 2338                  *  o IP/TCP/UDP checksum is bad.
 2339                  *  o frame length and protocol specific length
 2340                  *     does not match.
 2341                  */
 2342                 status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
 2343                 if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
 2344                     AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
 2345                         return;
 2346         }
 2347 
 2348         for (count = 0; count < nsegs; count++,
 2349             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
 2350                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
 2351                 mp = rxd->rx_m;
 2352                 /* Add a new receive buffer to the ring. */
 2353                 if (age_newbuf(sc, rxd) != 0) {
 2354                         ifp->if_iqdrops++;
 2355                         /* Reuse Rx buffers. */
 2356                         if (sc->age_cdata.age_rxhead != NULL)
 2357                                 m_freem(sc->age_cdata.age_rxhead);
 2358                         break;
 2359                 }
 2360 
 2361                 /*
 2362                  * Assume we've received a full sized frame.
 2363                  * Actual size is fixed when we encounter the end of
 2364                  * multi-segmented frame.
 2365                  */
 2366                 mp->m_len = AGE_RX_BUF_SIZE;
 2367 
 2368                 /* Chain received mbufs. */
 2369                 if (sc->age_cdata.age_rxhead == NULL) {
 2370                         sc->age_cdata.age_rxhead = mp;
 2371                         sc->age_cdata.age_rxtail = mp;
 2372                 } else {
 2373                         mp->m_flags &= ~M_PKTHDR;
 2374                         sc->age_cdata.age_rxprev_tail =
 2375                             sc->age_cdata.age_rxtail;
 2376                         sc->age_cdata.age_rxtail->m_next = mp;
 2377                         sc->age_cdata.age_rxtail = mp;
 2378                 }
 2379 
 2380                 if (count == nsegs - 1) {
 2381                         /* Last desc. for this frame. */
 2382                         m = sc->age_cdata.age_rxhead;
 2383                         m->m_flags |= M_PKTHDR;
 2384                         /*
 2385                          * It seems that L1 controller has no way
 2386                          * to tell hardware to strip CRC bytes.
 2387                          */
 2388                         m->m_pkthdr.len = sc->age_cdata.age_rxlen -
 2389                             ETHER_CRC_LEN;
 2390                         if (nsegs > 1) {
 2391                                 /* Set last mbuf size. */
 2392                                 mp->m_len = sc->age_cdata.age_rxlen -
 2393                                     ((nsegs - 1) * AGE_RX_BUF_SIZE);
 2394                                 /* Remove the CRC bytes in chained mbufs. */
 2395                                 if (mp->m_len <= ETHER_CRC_LEN) {
 2396                                         sc->age_cdata.age_rxtail =
 2397                                             sc->age_cdata.age_rxprev_tail;
 2398                                         sc->age_cdata.age_rxtail->m_len -=
 2399                                             (ETHER_CRC_LEN - mp->m_len);
 2400                                         sc->age_cdata.age_rxtail->m_next = NULL;
 2401                                         m_freem(mp);
 2402                                 } else {
 2403                                         mp->m_len -= ETHER_CRC_LEN;
 2404                                 }
 2405                         } else
 2406                                 m->m_len = m->m_pkthdr.len;
 2407                         m->m_pkthdr.rcvif = ifp;
 2408                         /*
 2409                          * Set checksum information.
 2410                          * It seems that L1 controller can compute partial
 2411                          * checksum. The partial checksum value can be used
 2412                          * to accelerate checksum computation for fragmented
 2413                          * TCP/UDP packets. Upper network stack already
 2414                          * takes advantage of the partial checksum value in
 2415                          * IP reassembly stage. But I'm not sure the
 2416                          * correctness of the partial hardware checksum
 2417                          * assistance due to lack of data sheet. If it is
 2418                          * proven to work on L1 I'll enable it.
 2419                          */
 2420                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2421                             (status & AGE_RRD_IPV4) != 0) {
 2422                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
 2423                                         m->m_pkthdr.csum_flags |=
 2424                                             CSUM_IP_CHECKED | CSUM_IP_VALID;
 2425                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
 2426                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
 2427                                         m->m_pkthdr.csum_flags |=
 2428                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2429                                         m->m_pkthdr.csum_data = 0xffff;
 2430                                 }
 2431                                 /*
 2432                                  * Don't mark bad checksum for TCP/UDP frames
 2433                                  * as fragmented frames may always have set
 2434                                  * bad checksummed bit of descriptor status.
 2435                                  */
 2436                         }
 2437 
 2438                         /* Check for VLAN tagged frames. */
 2439                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2440                             (status & AGE_RRD_VLAN) != 0) {
 2441                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
 2442                                 m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
 2443                                 m->m_flags |= M_VLANTAG;
 2444                         }
 2445 #ifndef __NO_STRICT_ALIGNMENT
 2446                         m = age_fixup_rx(ifp, m);
 2447                         if (m != NULL)
 2448 #endif
 2449                         {
 2450                         /* Pass it on. */
 2451                         AGE_UNLOCK(sc);
 2452                         (*ifp->if_input)(ifp, m);
 2453                         AGE_LOCK(sc);
 2454                         }
 2455                 }
 2456         }
 2457 
 2458         /* Reset mbuf chains. */
 2459         AGE_RXCHAIN_RESET(sc);
 2460 }
 2461 
 2462 static int
 2463 age_rxintr(struct age_softc *sc, int rr_prod, int count)
 2464 {
 2465         struct rx_rdesc *rxrd;
 2466         int rr_cons, nsegs, pktlen, prog;
 2467 
 2468         AGE_LOCK_ASSERT(sc);
 2469 
 2470         rr_cons = sc->age_cdata.age_rr_cons;
 2471         if (rr_cons == rr_prod)
 2472                 return (0);
 2473 
 2474         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
 2475             sc->age_cdata.age_rr_ring_map,
 2476             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2477         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
 2478             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
 2479 
 2480         for (prog = 0; rr_cons != rr_prod; prog++) {
 2481                 if (count <= 0)
 2482                         break;
 2483                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
 2484                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
 2485                 if (nsegs == 0)
 2486                         break;
 2487                 /*
 2488                  * Check number of segments against received bytes.
 2489                  * Non-matching value would indicate that hardware
 2490                  * is still trying to update Rx return descriptors.
 2491                  * I'm not sure whether this check is really needed.
 2492                  */
 2493                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
 2494                 if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE)
 2495                         break;
 2496 
 2497                 /* Received a frame. */
 2498                 age_rxeof(sc, rxrd);
 2499                 /* Clear return ring. */
 2500                 rxrd->index = 0;
 2501                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
 2502                 sc->age_cdata.age_rx_cons += nsegs;
 2503                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
 2504         }
 2505 
 2506         if (prog > 0) {
 2507                 /* Update the consumer index. */
 2508                 sc->age_cdata.age_rr_cons = rr_cons;
 2509 
 2510                 bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
 2511                     sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
 2512                 /* Sync descriptors. */
 2513                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
 2514                     sc->age_cdata.age_rr_ring_map,
 2515                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2516 
 2517                 /* Notify hardware availability of new Rx buffers. */
 2518                 AGE_COMMIT_MBOX(sc);
 2519         }
 2520 
 2521         return (count > 0 ? 0 : EAGAIN);
 2522 }
 2523 
 2524 static void
 2525 age_tick(void *arg)
 2526 {
 2527         struct age_softc *sc;
 2528         struct mii_data *mii;
 2529 
 2530         sc = (struct age_softc *)arg;
 2531 
 2532         AGE_LOCK_ASSERT(sc);
 2533 
 2534         mii = device_get_softc(sc->age_miibus);
 2535         mii_tick(mii);
 2536         age_watchdog(sc);
 2537         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
 2538 }
 2539 
 2540 static void
 2541 age_reset(struct age_softc *sc)
 2542 {
 2543         uint32_t reg;
 2544         int i;
 2545 
 2546         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
 2547         CSR_READ_4(sc, AGE_MASTER_CFG);
 2548         DELAY(1000);
 2549         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2550                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
 2551                         break;
 2552                 DELAY(10);
 2553         }
 2554 
 2555         if (i == 0)
 2556                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
 2557         /* Initialize PCIe module. From Linux. */
 2558         CSR_WRITE_4(sc, 0x12FC, 0x6500);
 2559         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2560 }
 2561 
 2562 static void
 2563 age_init(void *xsc)
 2564 {
 2565         struct age_softc *sc;
 2566 
 2567         sc = (struct age_softc *)xsc;
 2568         AGE_LOCK(sc);
 2569         age_init_locked(sc);
 2570         AGE_UNLOCK(sc);
 2571 }
 2572 
 2573 static void
 2574 age_init_locked(struct age_softc *sc)
 2575 {
 2576         struct ifnet *ifp;
 2577         struct mii_data *mii;
 2578         uint8_t eaddr[ETHER_ADDR_LEN];
 2579         bus_addr_t paddr;
 2580         uint32_t reg, fsize;
 2581         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
 2582         int error;
 2583 
 2584         AGE_LOCK_ASSERT(sc);
 2585 
 2586         ifp = sc->age_ifp;
 2587         mii = device_get_softc(sc->age_miibus);
 2588 
 2589         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2590                 return;
 2591 
 2592         /*
 2593          * Cancel any pending I/O.
 2594          */
 2595         age_stop(sc);
 2596 
 2597         /*
 2598          * Reset the chip to a known state.
 2599          */
 2600         age_reset(sc);
 2601 
 2602         /* Initialize descriptors. */
 2603         error = age_init_rx_ring(sc);
 2604         if (error != 0) {
 2605                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
 2606                 age_stop(sc);
 2607                 return;
 2608         }
 2609         age_init_rr_ring(sc);
 2610         age_init_tx_ring(sc);
 2611         age_init_cmb_block(sc);
 2612         age_init_smb_block(sc);
 2613 
 2614         /* Reprogram the station address. */
 2615         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2616         CSR_WRITE_4(sc, AGE_PAR0,
 2617             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2618         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2619 
 2620         /* Set descriptor base addresses. */
 2621         paddr = sc->age_rdata.age_tx_ring_paddr;
 2622         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
 2623         paddr = sc->age_rdata.age_rx_ring_paddr;
 2624         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
 2625         paddr = sc->age_rdata.age_rr_ring_paddr;
 2626         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
 2627         paddr = sc->age_rdata.age_tx_ring_paddr;
 2628         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
 2629         paddr = sc->age_rdata.age_cmb_block_paddr;
 2630         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
 2631         paddr = sc->age_rdata.age_smb_block_paddr;
 2632         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
 2633         /* Set Rx/Rx return descriptor counter. */
 2634         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
 2635             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
 2636             DESC_RRD_CNT_MASK) |
 2637             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
 2638         /* Set Tx descriptor counter. */
 2639         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
 2640             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
 2641 
 2642         /* Tell hardware that we're ready to load descriptors. */
 2643         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2644 
 2645         /*
 2646          * Initialize mailbox register.
 2647          * Updated producer/consumer index information is exchanged
 2648          * through this mailbox register. However Tx producer and
 2649          * Rx return consumer/Rx producer are all shared such that
 2650          * it's hard to separate code path between Tx and Rx without
 2651          * locking. If L1 hardware have a separate mail box register
 2652          * for Tx and Rx consumer/producer management we could have
 2653          * indepent Tx/Rx handler which in turn Rx handler could have
 2654          * been run without any locking.
 2655          */
 2656         AGE_COMMIT_MBOX(sc);
 2657 
 2658         /* Configure IPG/IFG parameters. */
 2659         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
 2660             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
 2661             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2662             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2663             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
 2664 
 2665         /* Set parameters for half-duplex media. */
 2666         CSR_WRITE_4(sc, AGE_HDPX_CFG,
 2667             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2668             HDPX_CFG_LCOL_MASK) |
 2669             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2670             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2671             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2672             HDPX_CFG_ABEBT_MASK) |
 2673             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2674             HDPX_CFG_JAMIPG_MASK));
 2675 
 2676         /* Configure interrupt moderation timer. */
 2677         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
 2678         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
 2679         reg &= ~MASTER_MTIMER_ENB;
 2680         if (AGE_USECS(sc->age_int_mod) == 0)
 2681                 reg &= ~MASTER_ITIMER_ENB;
 2682         else
 2683                 reg |= MASTER_ITIMER_ENB;
 2684         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
 2685         if (bootverbose)
 2686                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
 2687                     sc->age_int_mod);
 2688         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
 2689 
 2690         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
 2691         if (ifp->if_mtu < ETHERMTU)
 2692                 sc->age_max_frame_size = ETHERMTU;
 2693         else
 2694                 sc->age_max_frame_size = ifp->if_mtu;
 2695         sc->age_max_frame_size += ETHER_HDR_LEN +
 2696             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
 2697         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
 2698         /* Configure jumbo frame. */
 2699         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
 2700         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
 2701             (((fsize / sizeof(uint64_t)) <<
 2702             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
 2703             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
 2704             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
 2705             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
 2706             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
 2707 
 2708         /* Configure flow-control parameters. From Linux. */
 2709         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
 2710                 /*
 2711                  * Magic workaround for old-L1.
 2712                  * Don't know which hw revision requires this magic.
 2713                  */
 2714                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
 2715                 /*
 2716                  * Another magic workaround for flow-control mode
 2717                  * change. From Linux.
 2718                  */
 2719                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2720         }
 2721         /*
 2722          * TODO
 2723          *  Should understand pause parameter relationships between FIFO
 2724          *  size and number of Rx descriptors and Rx return descriptors.
 2725          *
 2726          *  Magic parameters came from Linux.
 2727          */
 2728         switch (sc->age_chip_rev) {
 2729         case 0x8001:
 2730         case 0x9001:
 2731         case 0x9002:
 2732         case 0x9003:
 2733                 rxf_hi = AGE_RX_RING_CNT / 16;
 2734                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
 2735                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
 2736                 rrd_lo = AGE_RR_RING_CNT / 16;
 2737                 break;
 2738         default:
 2739                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
 2740                 rxf_lo = reg / 16;
 2741                 if (rxf_lo < 192)
 2742                         rxf_lo = 192;
 2743                 rxf_hi = (reg * 7) / 8;
 2744                 if (rxf_hi < rxf_lo)
 2745                         rxf_hi = rxf_lo + 16;
 2746                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
 2747                 rrd_lo = reg / 8;
 2748                 rrd_hi = (reg * 7) / 8;
 2749                 if (rrd_lo < 2)
 2750                         rrd_lo = 2;
 2751                 if (rrd_hi < rrd_lo)
 2752                         rrd_hi = rrd_lo + 3;
 2753                 break;
 2754         }
 2755         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
 2756             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2757             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
 2758             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2759             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
 2760         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
 2761             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
 2762             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
 2763             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
 2764             RXQ_RRD_PAUSE_THRESH_HI_MASK));
 2765 
 2766         /* Configure RxQ. */
 2767         CSR_WRITE_4(sc, AGE_RXQ_CFG,
 2768             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
 2769             RXQ_CFG_RD_BURST_MASK) |
 2770             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
 2771             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
 2772             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
 2773             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
 2774             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2775 
 2776         /* Configure TxQ. */
 2777         CSR_WRITE_4(sc, AGE_TXQ_CFG,
 2778             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2779             TXQ_CFG_TPD_BURST_MASK) |
 2780             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
 2781             TXQ_CFG_TX_FIFO_BURST_MASK) |
 2782             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
 2783             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
 2784             TXQ_CFG_ENB);
 2785 
 2786         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
 2787             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
 2788             TX_JUMBO_TPD_TH_MASK) |
 2789             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
 2790             TX_JUMBO_TPD_IPG_MASK));
 2791         /* Configure DMA parameters. */
 2792         CSR_WRITE_4(sc, AGE_DMA_CFG,
 2793             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
 2794             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
 2795             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
 2796 
 2797         /* Configure CMB DMA write threshold. */
 2798         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
 2799             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
 2800             CMB_WR_THRESH_RRD_MASK) |
 2801             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
 2802             CMB_WR_THRESH_TPD_MASK));
 2803 
 2804         /* Set CMB/SMB timer and enable them. */
 2805         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
 2806             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
 2807             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
 2808         /* Request SMB updates for every seconds. */
 2809         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
 2810         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
 2811 
 2812         /*
 2813          * Disable all WOL bits as WOL can interfere normal Rx
 2814          * operation.
 2815          */
 2816         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
 2817 
 2818         /*
 2819          * Configure Tx/Rx MACs.
 2820          *  - Auto-padding for short frames.
 2821          *  - Enable CRC generation.
 2822          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
 2823          *  of MAC is followed after link establishment.
 2824          */
 2825         CSR_WRITE_4(sc, AGE_MAC_CFG,
 2826             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
 2827             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
 2828             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2829             MAC_CFG_PREAMBLE_MASK));
 2830         /* Set up the receive filter. */
 2831         age_rxfilter(sc);
 2832         age_rxvlan(sc);
 2833 
 2834         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2835         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
 2836                 reg |= MAC_CFG_RXCSUM_ENB;
 2837 
 2838         /* Ack all pending interrupts and clear it. */
 2839         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
 2840         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
 2841 
 2842         /* Finally enable Tx/Rx MAC. */
 2843         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
 2844 
 2845         sc->age_flags &= ~AGE_FLAG_LINK;
 2846         /* Switch to the current media. */
 2847         mii_mediachg(mii);
 2848 
 2849         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
 2850 
 2851         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2852         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2853 }
 2854 
 2855 static void
 2856 age_stop(struct age_softc *sc)
 2857 {
 2858         struct ifnet *ifp;
 2859         struct age_txdesc *txd;
 2860         struct age_rxdesc *rxd;
 2861         uint32_t reg;
 2862         int i;
 2863 
 2864         AGE_LOCK_ASSERT(sc);
 2865         /*
 2866          * Mark the interface down and cancel the watchdog timer.
 2867          */
 2868         ifp = sc->age_ifp;
 2869         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2870         sc->age_flags &= ~AGE_FLAG_LINK;
 2871         callout_stop(&sc->age_tick_ch);
 2872         sc->age_watchdog_timer = 0;
 2873 
 2874         /*
 2875          * Disable interrupts.
 2876          */
 2877         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
 2878         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
 2879         /* Stop CMB/SMB updates. */
 2880         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
 2881         /* Stop Rx/Tx MAC. */
 2882         age_stop_rxmac(sc);
 2883         age_stop_txmac(sc);
 2884         /* Stop DMA. */
 2885         CSR_WRITE_4(sc, AGE_DMA_CFG,
 2886             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
 2887         /* Stop TxQ/RxQ. */
 2888         CSR_WRITE_4(sc, AGE_TXQ_CFG,
 2889             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
 2890         CSR_WRITE_4(sc, AGE_RXQ_CFG,
 2891             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
 2892         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2893                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
 2894                         break;
 2895                 DELAY(10);
 2896         }
 2897         if (i == 0)
 2898                 device_printf(sc->age_dev,
 2899                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
 2900 
 2901          /* Reclaim Rx buffers that have been processed. */
 2902         if (sc->age_cdata.age_rxhead != NULL)
 2903                 m_freem(sc->age_cdata.age_rxhead);
 2904         AGE_RXCHAIN_RESET(sc);
 2905         /*
 2906          * Free RX and TX mbufs still in the queues.
 2907          */
 2908         for (i = 0; i < AGE_RX_RING_CNT; i++) {
 2909                 rxd = &sc->age_cdata.age_rxdesc[i];
 2910                 if (rxd->rx_m != NULL) {
 2911                         bus_dmamap_sync(sc->age_cdata.age_rx_tag,
 2912                             rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
 2913                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
 2914                             rxd->rx_dmamap);
 2915                         m_freem(rxd->rx_m);
 2916                         rxd->rx_m = NULL;
 2917                 }
 2918         }
 2919         for (i = 0; i < AGE_TX_RING_CNT; i++) {
 2920                 txd = &sc->age_cdata.age_txdesc[i];
 2921                 if (txd->tx_m != NULL) {
 2922                         bus_dmamap_sync(sc->age_cdata.age_tx_tag,
 2923                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2924                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
 2925                             txd->tx_dmamap);
 2926                         m_freem(txd->tx_m);
 2927                         txd->tx_m = NULL;
 2928                 }
 2929         }
 2930 }
 2931 
 2932 static void
 2933 age_stop_txmac(struct age_softc *sc)
 2934 {
 2935         uint32_t reg;
 2936         int i;
 2937 
 2938         AGE_LOCK_ASSERT(sc);
 2939 
 2940         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2941         if ((reg & MAC_CFG_TX_ENB) != 0) {
 2942                 reg &= ~MAC_CFG_TX_ENB;
 2943                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 2944         }
 2945         /* Stop Tx DMA engine. */
 2946         reg = CSR_READ_4(sc, AGE_DMA_CFG);
 2947         if ((reg & DMA_CFG_RD_ENB) != 0) {
 2948                 reg &= ~DMA_CFG_RD_ENB;
 2949                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
 2950         }
 2951         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2952                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
 2953                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
 2954                         break;
 2955                 DELAY(10);
 2956         }
 2957         if (i == 0)
 2958                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
 2959 }
 2960 
 2961 static void
 2962 age_stop_rxmac(struct age_softc *sc)
 2963 {
 2964         uint32_t reg;
 2965         int i;
 2966 
 2967         AGE_LOCK_ASSERT(sc);
 2968 
 2969         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 2970         if ((reg & MAC_CFG_RX_ENB) != 0) {
 2971                 reg &= ~MAC_CFG_RX_ENB;
 2972                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 2973         }
 2974         /* Stop Rx DMA engine. */
 2975         reg = CSR_READ_4(sc, AGE_DMA_CFG);
 2976         if ((reg & DMA_CFG_WR_ENB) != 0) {
 2977                 reg &= ~DMA_CFG_WR_ENB;
 2978                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
 2979         }
 2980         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
 2981                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
 2982                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
 2983                         break;
 2984                 DELAY(10);
 2985         }
 2986         if (i == 0)
 2987                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
 2988 }
 2989 
 2990 static void
 2991 age_init_tx_ring(struct age_softc *sc)
 2992 {
 2993         struct age_ring_data *rd;
 2994         struct age_txdesc *txd;
 2995         int i;
 2996 
 2997         AGE_LOCK_ASSERT(sc);
 2998 
 2999         sc->age_cdata.age_tx_prod = 0;
 3000         sc->age_cdata.age_tx_cons = 0;
 3001         sc->age_cdata.age_tx_cnt = 0;
 3002 
 3003         rd = &sc->age_rdata;
 3004         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
 3005         for (i = 0; i < AGE_TX_RING_CNT; i++) {
 3006                 txd = &sc->age_cdata.age_txdesc[i];
 3007                 txd->tx_desc = &rd->age_tx_ring[i];
 3008                 txd->tx_m = NULL;
 3009         }
 3010 
 3011         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
 3012             sc->age_cdata.age_tx_ring_map,
 3013             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3014 }
 3015 
 3016 static int
 3017 age_init_rx_ring(struct age_softc *sc)
 3018 {
 3019         struct age_ring_data *rd;
 3020         struct age_rxdesc *rxd;
 3021         int i;
 3022 
 3023         AGE_LOCK_ASSERT(sc);
 3024 
 3025         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
 3026         sc->age_morework = 0;
 3027         rd = &sc->age_rdata;
 3028         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
 3029         for (i = 0; i < AGE_RX_RING_CNT; i++) {
 3030                 rxd = &sc->age_cdata.age_rxdesc[i];
 3031                 rxd->rx_m = NULL;
 3032                 rxd->rx_desc = &rd->age_rx_ring[i];
 3033                 if (age_newbuf(sc, rxd) != 0)
 3034                         return (ENOBUFS);
 3035         }
 3036 
 3037         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
 3038             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
 3039 
 3040         return (0);
 3041 }
 3042 
 3043 static void
 3044 age_init_rr_ring(struct age_softc *sc)
 3045 {
 3046         struct age_ring_data *rd;
 3047 
 3048         AGE_LOCK_ASSERT(sc);
 3049 
 3050         sc->age_cdata.age_rr_cons = 0;
 3051         AGE_RXCHAIN_RESET(sc);
 3052 
 3053         rd = &sc->age_rdata;
 3054         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
 3055         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
 3056             sc->age_cdata.age_rr_ring_map,
 3057             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3058 }
 3059 
 3060 static void
 3061 age_init_cmb_block(struct age_softc *sc)
 3062 {
 3063         struct age_ring_data *rd;
 3064 
 3065         AGE_LOCK_ASSERT(sc);
 3066 
 3067         rd = &sc->age_rdata;
 3068         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
 3069         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
 3070             sc->age_cdata.age_cmb_block_map,
 3071             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3072 }
 3073 
 3074 static void
 3075 age_init_smb_block(struct age_softc *sc)
 3076 {
 3077         struct age_ring_data *rd;
 3078 
 3079         AGE_LOCK_ASSERT(sc);
 3080 
 3081         rd = &sc->age_rdata;
 3082         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
 3083         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
 3084             sc->age_cdata.age_smb_block_map,
 3085             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3086 }
 3087 
 3088 static int
 3089 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
 3090 {
 3091         struct rx_desc *desc;
 3092         struct mbuf *m;
 3093         bus_dma_segment_t segs[1];
 3094         bus_dmamap_t map;
 3095         int nsegs;
 3096 
 3097         AGE_LOCK_ASSERT(sc);
 3098 
 3099         m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 3100         if (m == NULL)
 3101                 return (ENOBUFS);
 3102         m->m_len = m->m_pkthdr.len = MCLBYTES;
 3103 #ifndef __NO_STRICT_ALIGNMENT
 3104         m_adj(m, AGE_RX_BUF_ALIGN);
 3105 #endif
 3106 
 3107         if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
 3108             sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
 3109                 m_freem(m);
 3110                 return (ENOBUFS);
 3111         }
 3112         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
 3113 
 3114         if (rxd->rx_m != NULL) {
 3115                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
 3116                     BUS_DMASYNC_POSTREAD);
 3117                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
 3118         }
 3119         map = rxd->rx_dmamap;
 3120         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
 3121         sc->age_cdata.age_rx_sparemap = map;
 3122         bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
 3123             BUS_DMASYNC_PREREAD);
 3124         rxd->rx_m = m;
 3125 
 3126         desc = rxd->rx_desc;
 3127         desc->addr = htole64(segs[0].ds_addr);
 3128         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
 3129             AGE_RD_LEN_SHIFT);
 3130         return (0);
 3131 }
 3132 
 3133 static void
 3134 age_rxvlan(struct age_softc *sc)
 3135 {
 3136         struct ifnet *ifp;
 3137         uint32_t reg;
 3138 
 3139         AGE_LOCK_ASSERT(sc);
 3140 
 3141         ifp = sc->age_ifp;
 3142         reg = CSR_READ_4(sc, AGE_MAC_CFG);
 3143         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 3144         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 3145                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 3146         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
 3147 }
 3148 
 3149 static void
 3150 age_rxfilter(struct age_softc *sc)
 3151 {
 3152         struct ifnet *ifp;
 3153         struct ifmultiaddr *ifma;
 3154         uint32_t crc;
 3155         uint32_t mchash[2];
 3156         uint32_t rxcfg;
 3157 
 3158         AGE_LOCK_ASSERT(sc);
 3159 
 3160         ifp = sc->age_ifp;
 3161 
 3162         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
 3163         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 3164         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3165                 rxcfg |= MAC_CFG_BCAST;
 3166         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3167                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3168                         rxcfg |= MAC_CFG_PROMISC;
 3169                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3170                         rxcfg |= MAC_CFG_ALLMULTI;
 3171                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
 3172                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
 3173                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
 3174                 return;
 3175         }
 3176 
 3177         /* Program new filter. */
 3178         bzero(mchash, sizeof(mchash));
 3179 
 3180         if_maddr_rlock(ifp);
 3181         TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
 3182                 if (ifma->ifma_addr->sa_family != AF_LINK)
 3183                         continue;
 3184                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
 3185                     ifma->ifma_addr), ETHER_ADDR_LEN);
 3186                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 3187         }
 3188         if_maddr_runlock(ifp);
 3189 
 3190         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
 3191         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
 3192         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
 3193 }
 3194 
 3195 static int
 3196 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
 3197 {
 3198         struct age_softc *sc;
 3199         struct age_stats *stats;
 3200         int error, result;
 3201 
 3202         result = -1;
 3203         error = sysctl_handle_int(oidp, &result, 0, req);
 3204 
 3205         if (error != 0 || req->newptr == NULL)
 3206                 return (error);
 3207 
 3208         if (result != 1)
 3209                 return (error);
 3210 
 3211         sc = (struct age_softc *)arg1;
 3212         stats = &sc->age_stat;
 3213         printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
 3214         printf("Transmit good frames : %ju\n",
 3215             (uintmax_t)stats->tx_frames);
 3216         printf("Transmit good broadcast frames : %ju\n",
 3217             (uintmax_t)stats->tx_bcast_frames);
 3218         printf("Transmit good multicast frames : %ju\n",
 3219             (uintmax_t)stats->tx_mcast_frames);
 3220         printf("Transmit pause control frames : %u\n",
 3221             stats->tx_pause_frames);
 3222         printf("Transmit control frames : %u\n",
 3223             stats->tx_control_frames);
 3224         printf("Transmit frames with excessive deferrals : %u\n",
 3225             stats->tx_excess_defer);
 3226         printf("Transmit deferrals : %u\n",
 3227             stats->tx_deferred);
 3228         printf("Transmit good octets : %ju\n",
 3229             (uintmax_t)stats->tx_bytes);
 3230         printf("Transmit good broadcast octets : %ju\n",
 3231             (uintmax_t)stats->tx_bcast_bytes);
 3232         printf("Transmit good multicast octets : %ju\n",
 3233             (uintmax_t)stats->tx_mcast_bytes);
 3234         printf("Transmit frames 64 bytes : %ju\n",
 3235             (uintmax_t)stats->tx_pkts_64);
 3236         printf("Transmit frames 65 to 127 bytes : %ju\n",
 3237             (uintmax_t)stats->tx_pkts_65_127);
 3238         printf("Transmit frames 128 to 255 bytes : %ju\n",
 3239             (uintmax_t)stats->tx_pkts_128_255);
 3240         printf("Transmit frames 256 to 511 bytes : %ju\n",
 3241             (uintmax_t)stats->tx_pkts_256_511);
 3242         printf("Transmit frames 512 to 1024 bytes : %ju\n",
 3243             (uintmax_t)stats->tx_pkts_512_1023);
 3244         printf("Transmit frames 1024 to 1518 bytes : %ju\n",
 3245             (uintmax_t)stats->tx_pkts_1024_1518);
 3246         printf("Transmit frames 1519 to MTU bytes : %ju\n",
 3247             (uintmax_t)stats->tx_pkts_1519_max);
 3248         printf("Transmit single collisions : %u\n",
 3249             stats->tx_single_colls);
 3250         printf("Transmit multiple collisions : %u\n",
 3251             stats->tx_multi_colls);
 3252         printf("Transmit late collisions : %u\n",
 3253             stats->tx_late_colls);
 3254         printf("Transmit abort due to excessive collisions : %u\n",
 3255             stats->tx_excess_colls);
 3256         printf("Transmit underruns due to FIFO underruns : %u\n",
 3257             stats->tx_underrun);
 3258         printf("Transmit descriptor write-back errors : %u\n",
 3259             stats->tx_desc_underrun);
 3260         printf("Transmit frames with length mismatched frame size : %u\n",
 3261             stats->tx_lenerrs);
 3262         printf("Transmit frames with truncated due to MTU size : %u\n",
 3263             stats->tx_lenerrs);
 3264 
 3265         printf("Receive good frames : %ju\n",
 3266             (uintmax_t)stats->rx_frames);
 3267         printf("Receive good broadcast frames : %ju\n",
 3268             (uintmax_t)stats->rx_bcast_frames);
 3269         printf("Receive good multicast frames : %ju\n",
 3270             (uintmax_t)stats->rx_mcast_frames);
 3271         printf("Receive pause control frames : %u\n",
 3272             stats->rx_pause_frames);
 3273         printf("Receive control frames : %u\n",
 3274             stats->rx_control_frames);
 3275         printf("Receive CRC errors : %u\n",
 3276             stats->rx_crcerrs);
 3277         printf("Receive frames with length errors : %u\n",
 3278             stats->rx_lenerrs);
 3279         printf("Receive good octets : %ju\n",
 3280             (uintmax_t)stats->rx_bytes);
 3281         printf("Receive good broadcast octets : %ju\n",
 3282             (uintmax_t)stats->rx_bcast_bytes);
 3283         printf("Receive good multicast octets : %ju\n",
 3284             (uintmax_t)stats->rx_mcast_bytes);
 3285         printf("Receive frames too short : %u\n",
 3286             stats->rx_runts);
 3287         printf("Receive fragmented frames : %ju\n",
 3288             (uintmax_t)stats->rx_fragments);
 3289         printf("Receive frames 64 bytes : %ju\n",
 3290             (uintmax_t)stats->rx_pkts_64);
 3291         printf("Receive frames 65 to 127 bytes : %ju\n",
 3292             (uintmax_t)stats->rx_pkts_65_127);
 3293         printf("Receive frames 128 to 255 bytes : %ju\n",
 3294             (uintmax_t)stats->rx_pkts_128_255);
 3295         printf("Receive frames 256 to 511 bytes : %ju\n",
 3296             (uintmax_t)stats->rx_pkts_256_511);
 3297         printf("Receive frames 512 to 1024 bytes : %ju\n",
 3298             (uintmax_t)stats->rx_pkts_512_1023);
 3299         printf("Receive frames 1024 to 1518 bytes : %ju\n",
 3300             (uintmax_t)stats->rx_pkts_1024_1518);
 3301         printf("Receive frames 1519 to MTU bytes : %ju\n",
 3302             (uintmax_t)stats->rx_pkts_1519_max);
 3303         printf("Receive frames too long : %ju\n",
 3304             (uint64_t)stats->rx_pkts_truncated);
 3305         printf("Receive frames with FIFO overflow : %u\n",
 3306             stats->rx_fifo_oflows);
 3307         printf("Receive frames with return descriptor overflow : %u\n",
 3308             stats->rx_desc_oflows);
 3309         printf("Receive frames with alignment errors : %u\n",
 3310             stats->rx_alignerrs);
 3311         printf("Receive frames dropped due to address filtering : %ju\n",
 3312             (uint64_t)stats->rx_pkts_filtered);
 3313 
 3314         return (error);
 3315 }
 3316 
 3317 static int
 3318 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3319 {
 3320         int error, value;
 3321 
 3322         if (arg1 == NULL)
 3323                 return (EINVAL);
 3324         value = *(int *)arg1;
 3325         error = sysctl_handle_int(oidp, &value, 0, req);
 3326         if (error || req->newptr == NULL)
 3327                 return (error);
 3328         if (value < low || value > high)
 3329                 return (EINVAL);
 3330         *(int *)arg1 = value;
 3331 
 3332         return (0);
 3333 }
 3334 
 3335 static int
 3336 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
 3337 {
 3338         return (sysctl_int_range(oidp, arg1, arg2, req,
 3339             AGE_PROC_MIN, AGE_PROC_MAX));
 3340 }
 3341 
 3342 static int
 3343 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
 3344 {
 3345 
 3346         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
 3347             AGE_IM_TIMER_MAX));
 3348 }

Cache object: 2526b247d3f9974f66d318d7ae688207


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.