The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/agp/agp.c

Version: -  FREEBSD  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-2  -  FREEBSD-11-1  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-4  -  FREEBSD-10-3  -  FREEBSD-10-2  -  FREEBSD-10-1  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-3  -  FREEBSD-9-2  -  FREEBSD-9-1  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-4  -  FREEBSD-8-3  -  FREEBSD-8-2  -  FREEBSD-8-1  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-4  -  FREEBSD-7-3  -  FREEBSD-7-2  -  FREEBSD-7-1  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-4  -  FREEBSD-6-3  -  FREEBSD-6-2  -  FREEBSD-6-1  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-5  -  FREEBSD-5-4  -  FREEBSD-5-3  -  FREEBSD-5-2  -  FREEBSD-5-1  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2000 Doug Rabson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/9.1/sys/dev/agp/agp.c 236926 2012-06-11 21:33:02Z kib $");
   29 
   30 #include "opt_agp.h"
   31 #include "opt_bus.h"
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/malloc.h>
   36 #include <sys/kernel.h>
   37 #include <sys/module.h>
   38 #include <sys/bus.h>
   39 #include <sys/conf.h>
   40 #include <sys/ioccom.h>
   41 #include <sys/agpio.h>
   42 #include <sys/lock.h>
   43 #include <sys/mutex.h>
   44 #include <sys/proc.h>
   45 
   46 #include <dev/agp/agppriv.h>
   47 #include <dev/agp/agpvar.h>
   48 #include <dev/agp/agpreg.h>
   49 #include <dev/pci/pcivar.h>
   50 #include <dev/pci/pcireg.h>
   51 
   52 #include <vm/vm.h>
   53 #include <vm/vm_object.h>
   54 #include <vm/vm_page.h>
   55 #include <vm/vm_pageout.h>
   56 #include <vm/pmap.h>
   57 
   58 #include <machine/md_var.h>
   59 #include <machine/bus.h>
   60 #include <machine/resource.h>
   61 #include <sys/rman.h>
   62 
   63 MODULE_VERSION(agp, 1);
   64 
   65 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
   66 
   67                                 /* agp_drv.c */
   68 static d_open_t agp_open;
   69 static d_close_t agp_close;
   70 static d_ioctl_t agp_ioctl;
   71 static d_mmap_t agp_mmap;
   72 
   73 static struct cdevsw agp_cdevsw = {
   74         .d_version =    D_VERSION,
   75         .d_flags =      D_NEEDGIANT,
   76         .d_open =       agp_open,
   77         .d_close =      agp_close,
   78         .d_ioctl =      agp_ioctl,
   79         .d_mmap =       agp_mmap,
   80         .d_name =       "agp",
   81 };
   82 
   83 static devclass_t agp_devclass;
   84 
   85 /* Helper functions for implementing chipset mini drivers. */
   86 
   87 void
   88 agp_flush_cache()
   89 {
   90 #if defined(__i386__) || defined(__amd64__)
   91         wbinvd();
   92 #endif
   93 }
   94 
   95 u_int8_t
   96 agp_find_caps(device_t dev)
   97 {
   98         int capreg;
   99 
  100 
  101         if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0)
  102                 capreg = 0;
  103         return (capreg);
  104 }
  105 
  106 /*
  107  * Find an AGP display device (if any).
  108  */
  109 static device_t
  110 agp_find_display(void)
  111 {
  112         devclass_t pci = devclass_find("pci");
  113         device_t bus, dev = 0;
  114         device_t *kids;
  115         int busnum, numkids, i;
  116 
  117         for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
  118                 bus = devclass_get_device(pci, busnum);
  119                 if (!bus)
  120                         continue;
  121                 if (device_get_children(bus, &kids, &numkids) != 0)
  122                         continue;
  123                 for (i = 0; i < numkids; i++) {
  124                         dev = kids[i];
  125                         if (pci_get_class(dev) == PCIC_DISPLAY
  126                             && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
  127                                 if (agp_find_caps(dev)) {
  128                                         free(kids, M_TEMP);
  129                                         return dev;
  130                                 }
  131                                         
  132                 }
  133                 free(kids, M_TEMP);
  134         }
  135 
  136         return 0;
  137 }
  138 
  139 struct agp_gatt *
  140 agp_alloc_gatt(device_t dev)
  141 {
  142         u_int32_t apsize = AGP_GET_APERTURE(dev);
  143         u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
  144         struct agp_gatt *gatt;
  145 
  146         if (bootverbose)
  147                 device_printf(dev,
  148                               "allocating GATT for aperture of size %dM\n",
  149                               apsize / (1024*1024));
  150 
  151         if (entries == 0) {
  152                 device_printf(dev, "bad aperture size\n");
  153                 return NULL;
  154         }
  155 
  156         gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
  157         if (!gatt)
  158                 return 0;
  159 
  160         gatt->ag_entries = entries;
  161         gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
  162                                         0, ~0, PAGE_SIZE, 0);
  163         if (!gatt->ag_virtual) {
  164                 if (bootverbose)
  165                         device_printf(dev, "contiguous allocation failed\n");
  166                 free(gatt, M_AGP);
  167                 return 0;
  168         }
  169         bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
  170         gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
  171         agp_flush_cache();
  172 
  173         return gatt;
  174 }
  175 
  176 void
  177 agp_free_gatt(struct agp_gatt *gatt)
  178 {
  179         contigfree(gatt->ag_virtual,
  180                    gatt->ag_entries * sizeof(u_int32_t), M_AGP);
  181         free(gatt, M_AGP);
  182 }
  183 
  184 static u_int agp_max[][2] = {
  185         {0,     0},
  186         {32,    4},
  187         {64,    28},
  188         {128,   96},
  189         {256,   204},
  190         {512,   440},
  191         {1024,  942},
  192         {2048,  1920},
  193         {4096,  3932}
  194 };
  195 #define agp_max_size    (sizeof(agp_max) / sizeof(agp_max[0]))
  196 
  197 /**
  198  * Sets the PCI resource which represents the AGP aperture.
  199  *
  200  * If not called, the default AGP aperture resource of AGP_APBASE will
  201  * be used.  Must be called before agp_generic_attach().
  202  */
  203 void
  204 agp_set_aperture_resource(device_t dev, int rid)
  205 {
  206         struct agp_softc *sc = device_get_softc(dev);
  207 
  208         sc->as_aperture_rid = rid;
  209 }
  210 
  211 int
  212 agp_generic_attach(device_t dev)
  213 {
  214         struct agp_softc *sc = device_get_softc(dev);
  215         int i;
  216         u_int memsize;
  217 
  218         /*
  219          * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
  220          * because the kernel doesn't need to map it.
  221          */
  222 
  223         if (sc->as_aperture_rid != -1) {
  224                 if (sc->as_aperture_rid == 0)
  225                         sc->as_aperture_rid = AGP_APBASE;
  226 
  227                 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  228                     &sc->as_aperture_rid, RF_SHAREABLE);
  229                 if (!sc->as_aperture)
  230                         return ENOMEM;
  231         }
  232 
  233         /*
  234          * Work out an upper bound for agp memory allocation. This
  235          * uses a heurisitc table from the Linux driver.
  236          */
  237         memsize = ptoa(Maxmem) >> 20;
  238         for (i = 0; i < agp_max_size; i++) {
  239                 if (memsize <= agp_max[i][0])
  240                         break;
  241         }
  242         if (i == agp_max_size)
  243                 i = agp_max_size - 1;
  244         sc->as_maxmem = agp_max[i][1] << 20U;
  245 
  246         /*
  247          * The lock is used to prevent re-entry to
  248          * agp_generic_bind_memory() since that function can sleep.
  249          */
  250         mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
  251 
  252         /*
  253          * Initialise stuff for the userland device.
  254          */
  255         agp_devclass = devclass_find("agp");
  256         TAILQ_INIT(&sc->as_memory);
  257         sc->as_nextid = 1;
  258 
  259         sc->as_devnode = make_dev(&agp_cdevsw,
  260             0, UID_ROOT, GID_WHEEL, 0600, "agpgart");
  261         sc->as_devnode->si_drv1 = dev;
  262 
  263         return 0;
  264 }
  265 
  266 void
  267 agp_free_cdev(device_t dev)
  268 {
  269         struct agp_softc *sc = device_get_softc(dev);
  270 
  271         destroy_dev(sc->as_devnode);
  272 }
  273 
  274 void
  275 agp_free_res(device_t dev)
  276 {
  277         struct agp_softc *sc = device_get_softc(dev);
  278 
  279         if (sc->as_aperture != NULL)
  280                 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
  281                     sc->as_aperture);
  282         mtx_destroy(&sc->as_lock);
  283         agp_flush_cache();
  284 }
  285 
  286 int
  287 agp_generic_detach(device_t dev)
  288 {
  289 
  290         agp_free_cdev(dev);
  291         agp_free_res(dev);
  292         return 0;
  293 }
  294 
  295 /**
  296  * Default AGP aperture size detection which simply returns the size of
  297  * the aperture's PCI resource.
  298  */
  299 u_int32_t
  300 agp_generic_get_aperture(device_t dev)
  301 {
  302         struct agp_softc *sc = device_get_softc(dev);
  303 
  304         return rman_get_size(sc->as_aperture);
  305 }
  306 
  307 /**
  308  * Default AGP aperture size setting function, which simply doesn't allow
  309  * changes to resource size.
  310  */
  311 int
  312 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
  313 {
  314         u_int32_t current_aperture;
  315 
  316         current_aperture = AGP_GET_APERTURE(dev);
  317         if (current_aperture != aperture)
  318                 return EINVAL;
  319         else
  320                 return 0;
  321 }
  322 
  323 /*
  324  * This does the enable logic for v3, with the same topology
  325  * restrictions as in place for v2 -- one bus, one device on the bus.
  326  */
  327 static int
  328 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
  329 {
  330         u_int32_t tstatus, mstatus;
  331         u_int32_t command;
  332         int rq, sba, fw, rate, arqsz, cal;
  333 
  334         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  335         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  336 
  337         /* Set RQ to the min of mode, tstatus and mstatus */
  338         rq = AGP_MODE_GET_RQ(mode);
  339         if (AGP_MODE_GET_RQ(tstatus) < rq)
  340                 rq = AGP_MODE_GET_RQ(tstatus);
  341         if (AGP_MODE_GET_RQ(mstatus) < rq)
  342                 rq = AGP_MODE_GET_RQ(mstatus);
  343 
  344         /*
  345          * ARQSZ - Set the value to the maximum one.
  346          * Don't allow the mode register to override values.
  347          */
  348         arqsz = AGP_MODE_GET_ARQSZ(mode);
  349         if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
  350                 rq = AGP_MODE_GET_ARQSZ(tstatus);
  351         if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
  352                 rq = AGP_MODE_GET_ARQSZ(mstatus);
  353 
  354         /* Calibration cycle - don't allow override by mode register */
  355         cal = AGP_MODE_GET_CAL(tstatus);
  356         if (AGP_MODE_GET_CAL(mstatus) < cal)
  357                 cal = AGP_MODE_GET_CAL(mstatus);
  358 
  359         /* SBA must be supported for AGP v3. */
  360         sba = 1;
  361 
  362         /* Set FW if all three support it. */
  363         fw = (AGP_MODE_GET_FW(tstatus)
  364                & AGP_MODE_GET_FW(mstatus)
  365                & AGP_MODE_GET_FW(mode));
  366         
  367         /* Figure out the max rate */
  368         rate = (AGP_MODE_GET_RATE(tstatus)
  369                 & AGP_MODE_GET_RATE(mstatus)
  370                 & AGP_MODE_GET_RATE(mode));
  371         if (rate & AGP_MODE_V3_RATE_8x)
  372                 rate = AGP_MODE_V3_RATE_8x;
  373         else
  374                 rate = AGP_MODE_V3_RATE_4x;
  375         if (bootverbose)
  376                 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
  377 
  378         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
  379 
  380         /* Construct the new mode word and tell the hardware */
  381         command = 0;
  382         command = AGP_MODE_SET_RQ(0, rq);
  383         command = AGP_MODE_SET_ARQSZ(command, arqsz);
  384         command = AGP_MODE_SET_CAL(command, cal);
  385         command = AGP_MODE_SET_SBA(command, sba);
  386         command = AGP_MODE_SET_FW(command, fw);
  387         command = AGP_MODE_SET_RATE(command, rate);
  388         command = AGP_MODE_SET_MODE_3(command, 1);
  389         command = AGP_MODE_SET_AGP(command, 1);
  390         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  391         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  392 
  393         return 0;
  394 }
  395 
  396 static int
  397 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
  398 {
  399         u_int32_t tstatus, mstatus;
  400         u_int32_t command;
  401         int rq, sba, fw, rate;
  402 
  403         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  404         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  405 
  406         /* Set RQ to the min of mode, tstatus and mstatus */
  407         rq = AGP_MODE_GET_RQ(mode);
  408         if (AGP_MODE_GET_RQ(tstatus) < rq)
  409                 rq = AGP_MODE_GET_RQ(tstatus);
  410         if (AGP_MODE_GET_RQ(mstatus) < rq)
  411                 rq = AGP_MODE_GET_RQ(mstatus);
  412 
  413         /* Set SBA if all three can deal with SBA */
  414         sba = (AGP_MODE_GET_SBA(tstatus)
  415                & AGP_MODE_GET_SBA(mstatus)
  416                & AGP_MODE_GET_SBA(mode));
  417 
  418         /* Similar for FW */
  419         fw = (AGP_MODE_GET_FW(tstatus)
  420                & AGP_MODE_GET_FW(mstatus)
  421                & AGP_MODE_GET_FW(mode));
  422 
  423         /* Figure out the max rate */
  424         rate = (AGP_MODE_GET_RATE(tstatus)
  425                 & AGP_MODE_GET_RATE(mstatus)
  426                 & AGP_MODE_GET_RATE(mode));
  427         if (rate & AGP_MODE_V2_RATE_4x)
  428                 rate = AGP_MODE_V2_RATE_4x;
  429         else if (rate & AGP_MODE_V2_RATE_2x)
  430                 rate = AGP_MODE_V2_RATE_2x;
  431         else
  432                 rate = AGP_MODE_V2_RATE_1x;
  433         if (bootverbose)
  434                 device_printf(dev, "Setting AGP v2 mode %d\n", rate);
  435 
  436         /* Construct the new mode word and tell the hardware */
  437         command = 0;
  438         command = AGP_MODE_SET_RQ(0, rq);
  439         command = AGP_MODE_SET_SBA(command, sba);
  440         command = AGP_MODE_SET_FW(command, fw);
  441         command = AGP_MODE_SET_RATE(command, rate);
  442         command = AGP_MODE_SET_AGP(command, 1);
  443         pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
  444         pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
  445 
  446         return 0;
  447 }
  448 
  449 int
  450 agp_generic_enable(device_t dev, u_int32_t mode)
  451 {
  452         device_t mdev = agp_find_display();
  453         u_int32_t tstatus, mstatus;
  454 
  455         if (!mdev) {
  456                 AGP_DPF("can't find display\n");
  457                 return ENXIO;
  458         }
  459 
  460         tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  461         mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
  462 
  463         /*
  464          * Check display and bridge for AGP v3 support.  AGP v3 allows
  465          * more variety in topology than v2, e.g. multiple AGP devices
  466          * attached to one bridge, or multiple AGP bridges in one
  467          * system.  This doesn't attempt to address those situations,
  468          * but should work fine for a classic single AGP slot system
  469          * with AGP v3.
  470          */
  471         if (AGP_MODE_GET_MODE_3(mode) &&
  472             AGP_MODE_GET_MODE_3(tstatus) &&
  473             AGP_MODE_GET_MODE_3(mstatus))
  474                 return (agp_v3_enable(dev, mdev, mode));
  475         else
  476                 return (agp_v2_enable(dev, mdev, mode));            
  477 }
  478 
  479 struct agp_memory *
  480 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
  481 {
  482         struct agp_softc *sc = device_get_softc(dev);
  483         struct agp_memory *mem;
  484 
  485         if ((size & (AGP_PAGE_SIZE - 1)) != 0)
  486                 return 0;
  487 
  488         if (sc->as_allocated + size > sc->as_maxmem)
  489                 return 0;
  490 
  491         if (type != 0) {
  492                 printf("agp_generic_alloc_memory: unsupported type %d\n",
  493                        type);
  494                 return 0;
  495         }
  496 
  497         mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
  498         mem->am_id = sc->as_nextid++;
  499         mem->am_size = size;
  500         mem->am_type = 0;
  501         mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
  502         mem->am_physical = 0;
  503         mem->am_offset = 0;
  504         mem->am_is_bound = 0;
  505         TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
  506         sc->as_allocated += size;
  507 
  508         return mem;
  509 }
  510 
  511 int
  512 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
  513 {
  514         struct agp_softc *sc = device_get_softc(dev);
  515 
  516         if (mem->am_is_bound)
  517                 return EBUSY;
  518 
  519         sc->as_allocated -= mem->am_size;
  520         TAILQ_REMOVE(&sc->as_memory, mem, am_link);
  521         vm_object_deallocate(mem->am_obj);
  522         free(mem, M_AGP);
  523         return 0;
  524 }
  525 
  526 int
  527 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
  528                         vm_offset_t offset)
  529 {
  530         struct agp_softc *sc = device_get_softc(dev);
  531         vm_offset_t i, j, k;
  532         vm_page_t m;
  533         int error;
  534 
  535         /* Do some sanity checks first. */
  536         if ((offset & (AGP_PAGE_SIZE - 1)) != 0 ||
  537             offset + mem->am_size > AGP_GET_APERTURE(dev)) {
  538                 device_printf(dev, "binding memory at bad offset %#x\n",
  539                     (int)offset);
  540                 return EINVAL;
  541         }
  542 
  543         /*
  544          * Allocate the pages early, before acquiring the lock,
  545          * because vm_page_grab() may sleep and we can't hold a mutex
  546          * while sleeping.
  547          */
  548         VM_OBJECT_LOCK(mem->am_obj);
  549         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  550                 /*
  551                  * Find a page from the object and wire it
  552                  * down. This page will be mapped using one or more
  553                  * entries in the GATT (assuming that PAGE_SIZE >=
  554                  * AGP_PAGE_SIZE. If this is the first call to bind,
  555                  * the pages will be allocated and zeroed.
  556                  */
  557                 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
  558                     VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
  559                 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m));
  560         }
  561         VM_OBJECT_UNLOCK(mem->am_obj);
  562 
  563         mtx_lock(&sc->as_lock);
  564 
  565         if (mem->am_is_bound) {
  566                 device_printf(dev, "memory already bound\n");
  567                 error = EINVAL;
  568                 VM_OBJECT_LOCK(mem->am_obj);
  569                 i = 0;
  570                 goto bad;
  571         }
  572         
  573         /*
  574          * Bind the individual pages and flush the chipset's
  575          * TLB.
  576          */
  577         VM_OBJECT_LOCK(mem->am_obj);
  578         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  579                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i));
  580 
  581                 /*
  582                  * Install entries in the GATT, making sure that if
  583                  * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
  584                  * aligned to PAGE_SIZE, we don't modify too many GATT 
  585                  * entries.
  586                  */
  587                 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
  588                      j += AGP_PAGE_SIZE) {
  589                         vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
  590                         AGP_DPF("binding offset %#jx to pa %#jx\n",
  591                                 (uintmax_t)offset + i + j, (uintmax_t)pa);
  592                         error = AGP_BIND_PAGE(dev, offset + i + j, pa);
  593                         if (error) {
  594                                 /*
  595                                  * Bail out. Reverse all the mappings
  596                                  * and unwire the pages.
  597                                  */
  598                                 for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
  599                                         AGP_UNBIND_PAGE(dev, offset + k);
  600                                 goto bad;
  601                         }
  602                 }
  603                 vm_page_wakeup(m);
  604         }
  605         VM_OBJECT_UNLOCK(mem->am_obj);
  606 
  607         /*
  608          * Flush the cpu cache since we are providing a new mapping
  609          * for these pages.
  610          */
  611         agp_flush_cache();
  612 
  613         /*
  614          * Make sure the chipset gets the new mappings.
  615          */
  616         AGP_FLUSH_TLB(dev);
  617 
  618         mem->am_offset = offset;
  619         mem->am_is_bound = 1;
  620 
  621         mtx_unlock(&sc->as_lock);
  622 
  623         return 0;
  624 bad:
  625         mtx_unlock(&sc->as_lock);
  626         VM_OBJECT_LOCK_ASSERT(mem->am_obj, MA_OWNED);
  627         for (k = 0; k < mem->am_size; k += PAGE_SIZE) {
  628                 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k));
  629                 if (k >= i)
  630                         vm_page_wakeup(m);
  631                 vm_page_lock(m);
  632                 vm_page_unwire(m, 0);
  633                 vm_page_unlock(m);
  634         }
  635         VM_OBJECT_UNLOCK(mem->am_obj);
  636 
  637         return error;
  638 }
  639 
  640 int
  641 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
  642 {
  643         struct agp_softc *sc = device_get_softc(dev);
  644         vm_page_t m;
  645         int i;
  646 
  647         mtx_lock(&sc->as_lock);
  648 
  649         if (!mem->am_is_bound) {
  650                 device_printf(dev, "memory is not bound\n");
  651                 mtx_unlock(&sc->as_lock);
  652                 return EINVAL;
  653         }
  654 
  655 
  656         /*
  657          * Unbind the individual pages and flush the chipset's
  658          * TLB. Unwire the pages so they can be swapped.
  659          */
  660         for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
  661                 AGP_UNBIND_PAGE(dev, mem->am_offset + i);
  662         VM_OBJECT_LOCK(mem->am_obj);
  663         for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
  664                 m = vm_page_lookup(mem->am_obj, atop(i));
  665                 vm_page_lock(m);
  666                 vm_page_unwire(m, 0);
  667                 vm_page_unlock(m);
  668         }
  669         VM_OBJECT_UNLOCK(mem->am_obj);
  670                 
  671         agp_flush_cache();
  672         AGP_FLUSH_TLB(dev);
  673 
  674         mem->am_offset = 0;
  675         mem->am_is_bound = 0;
  676 
  677         mtx_unlock(&sc->as_lock);
  678 
  679         return 0;
  680 }
  681 
  682 /* Helper functions for implementing user/kernel api */
  683 
  684 static int
  685 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
  686 {
  687         struct agp_softc *sc = device_get_softc(dev);
  688 
  689         if (sc->as_state != AGP_ACQUIRE_FREE)
  690                 return EBUSY;
  691         sc->as_state = state;
  692 
  693         return 0;
  694 }
  695 
  696 static int
  697 agp_release_helper(device_t dev, enum agp_acquire_state state)
  698 {
  699         struct agp_softc *sc = device_get_softc(dev);
  700 
  701         if (sc->as_state == AGP_ACQUIRE_FREE)
  702                 return 0;
  703 
  704         if (sc->as_state != state)
  705                 return EBUSY;
  706 
  707         sc->as_state = AGP_ACQUIRE_FREE;
  708         return 0;
  709 }
  710 
  711 static struct agp_memory *
  712 agp_find_memory(device_t dev, int id)
  713 {
  714         struct agp_softc *sc = device_get_softc(dev);
  715         struct agp_memory *mem;
  716 
  717         AGP_DPF("searching for memory block %d\n", id);
  718         TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
  719                 AGP_DPF("considering memory block %d\n", mem->am_id);
  720                 if (mem->am_id == id)
  721                         return mem;
  722         }
  723         return 0;
  724 }
  725 
  726 /* Implementation of the userland ioctl api */
  727 
  728 static int
  729 agp_info_user(device_t dev, agp_info *info)
  730 {
  731         struct agp_softc *sc = device_get_softc(dev);
  732 
  733         bzero(info, sizeof *info);
  734         info->bridge_id = pci_get_devid(dev);
  735         info->agp_mode = 
  736             pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  737         if (sc->as_aperture)
  738                 info->aper_base = rman_get_start(sc->as_aperture);
  739         else
  740                 info->aper_base = 0;
  741         info->aper_size = AGP_GET_APERTURE(dev) >> 20;
  742         info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
  743         info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
  744 
  745         return 0;
  746 }
  747 
  748 static int
  749 agp_setup_user(device_t dev, agp_setup *setup)
  750 {
  751         return AGP_ENABLE(dev, setup->agp_mode);
  752 }
  753 
  754 static int
  755 agp_allocate_user(device_t dev, agp_allocate *alloc)
  756 {
  757         struct agp_memory *mem;
  758 
  759         mem = AGP_ALLOC_MEMORY(dev,
  760                                alloc->type,
  761                                alloc->pg_count << AGP_PAGE_SHIFT);
  762         if (mem) {
  763                 alloc->key = mem->am_id;
  764                 alloc->physical = mem->am_physical;
  765                 return 0;
  766         } else {
  767                 return ENOMEM;
  768         }
  769 }
  770 
  771 static int
  772 agp_deallocate_user(device_t dev, int id)
  773 {
  774         struct agp_memory *mem = agp_find_memory(dev, id);
  775 
  776         if (mem) {
  777                 AGP_FREE_MEMORY(dev, mem);
  778                 return 0;
  779         } else {
  780                 return ENOENT;
  781         }
  782 }
  783 
  784 static int
  785 agp_bind_user(device_t dev, agp_bind *bind)
  786 {
  787         struct agp_memory *mem = agp_find_memory(dev, bind->key);
  788 
  789         if (!mem)
  790                 return ENOENT;
  791 
  792         return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
  793 }
  794 
  795 static int
  796 agp_unbind_user(device_t dev, agp_unbind *unbind)
  797 {
  798         struct agp_memory *mem = agp_find_memory(dev, unbind->key);
  799 
  800         if (!mem)
  801                 return ENOENT;
  802 
  803         return AGP_UNBIND_MEMORY(dev, mem);
  804 }
  805 
  806 static int
  807 agp_chipset_flush(device_t dev)
  808 {
  809 
  810         return (AGP_CHIPSET_FLUSH(dev));
  811 }
  812 
  813 static int
  814 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
  815 {
  816         device_t dev = kdev->si_drv1;
  817         struct agp_softc *sc = device_get_softc(dev);
  818 
  819         if (!sc->as_isopen) {
  820                 sc->as_isopen = 1;
  821                 device_busy(dev);
  822         }
  823 
  824         return 0;
  825 }
  826 
  827 static int
  828 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
  829 {
  830         device_t dev = kdev->si_drv1;
  831         struct agp_softc *sc = device_get_softc(dev);
  832         struct agp_memory *mem;
  833 
  834         /*
  835          * Clear the GATT and force release on last close
  836          */
  837         while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
  838                 if (mem->am_is_bound)
  839                         AGP_UNBIND_MEMORY(dev, mem);
  840                 AGP_FREE_MEMORY(dev, mem);
  841         }
  842         if (sc->as_state == AGP_ACQUIRE_USER)
  843                 agp_release_helper(dev, AGP_ACQUIRE_USER);
  844         sc->as_isopen = 0;
  845         device_unbusy(dev);
  846 
  847         return 0;
  848 }
  849 
  850 static int
  851 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
  852 {
  853         device_t dev = kdev->si_drv1;
  854 
  855         switch (cmd) {
  856         case AGPIOC_INFO:
  857                 return agp_info_user(dev, (agp_info *) data);
  858 
  859         case AGPIOC_ACQUIRE:
  860                 return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
  861 
  862         case AGPIOC_RELEASE:
  863                 return agp_release_helper(dev, AGP_ACQUIRE_USER);
  864 
  865         case AGPIOC_SETUP:
  866                 return agp_setup_user(dev, (agp_setup *)data);
  867 
  868         case AGPIOC_ALLOCATE:
  869                 return agp_allocate_user(dev, (agp_allocate *)data);
  870 
  871         case AGPIOC_DEALLOCATE:
  872                 return agp_deallocate_user(dev, *(int *) data);
  873 
  874         case AGPIOC_BIND:
  875                 return agp_bind_user(dev, (agp_bind *)data);
  876 
  877         case AGPIOC_UNBIND:
  878                 return agp_unbind_user(dev, (agp_unbind *)data);
  879 
  880         case AGPIOC_CHIPSET_FLUSH:
  881                 return agp_chipset_flush(dev);
  882         }
  883 
  884         return EINVAL;
  885 }
  886 
  887 static int
  888 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr,
  889     int prot, vm_memattr_t *memattr)
  890 {
  891         device_t dev = kdev->si_drv1;
  892         struct agp_softc *sc = device_get_softc(dev);
  893 
  894         if (offset > AGP_GET_APERTURE(dev))
  895                 return -1;
  896         if (sc->as_aperture == NULL)
  897                 return -1;
  898         *paddr = rman_get_start(sc->as_aperture) + offset;
  899         return 0;
  900 }
  901 
  902 /* Implementation of the kernel api */
  903 
  904 device_t
  905 agp_find_device()
  906 {
  907         device_t *children, child;
  908         int i, count;
  909 
  910         if (!agp_devclass)
  911                 return NULL;
  912         if (devclass_get_devices(agp_devclass, &children, &count) != 0)
  913                 return NULL;
  914         child = NULL;
  915         for (i = 0; i < count; i++) {
  916                 if (device_is_attached(children[i])) {
  917                         child = children[i];
  918                         break;
  919                 }
  920         }
  921         free(children, M_TEMP);
  922         return child;
  923 }
  924 
  925 enum agp_acquire_state
  926 agp_state(device_t dev)
  927 {
  928         struct agp_softc *sc = device_get_softc(dev);
  929         return sc->as_state;
  930 }
  931 
  932 void
  933 agp_get_info(device_t dev, struct agp_info *info)
  934 {
  935         struct agp_softc *sc = device_get_softc(dev);
  936 
  937         info->ai_mode =
  938                 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
  939         if (sc->as_aperture != NULL)
  940                 info->ai_aperture_base = rman_get_start(sc->as_aperture);
  941         else
  942                 info->ai_aperture_base = 0;
  943         info->ai_aperture_size = AGP_GET_APERTURE(dev);
  944         info->ai_memory_allowed = sc->as_maxmem;
  945         info->ai_memory_used = sc->as_allocated;
  946 }
  947 
  948 int
  949 agp_acquire(device_t dev)
  950 {
  951         return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
  952 }
  953 
  954 int
  955 agp_release(device_t dev)
  956 {
  957         return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
  958 }
  959 
  960 int
  961 agp_enable(device_t dev, u_int32_t mode)
  962 {
  963         return AGP_ENABLE(dev, mode);
  964 }
  965 
  966 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
  967 {
  968         return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
  969 }
  970 
  971 void agp_free_memory(device_t dev, void *handle)
  972 {
  973         struct agp_memory *mem = (struct agp_memory *) handle;
  974         AGP_FREE_MEMORY(dev, mem);
  975 }
  976 
  977 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
  978 {
  979         struct agp_memory *mem = (struct agp_memory *) handle;
  980         return AGP_BIND_MEMORY(dev, mem, offset);
  981 }
  982 
  983 int agp_unbind_memory(device_t dev, void *handle)
  984 {
  985         struct agp_memory *mem = (struct agp_memory *) handle;
  986         return AGP_UNBIND_MEMORY(dev, mem);
  987 }
  988 
  989 void agp_memory_info(device_t dev, void *handle, struct
  990                      agp_memory_info *mi)
  991 {
  992         struct agp_memory *mem = (struct agp_memory *) handle;
  993 
  994         mi->ami_size = mem->am_size;
  995         mi->ami_physical = mem->am_physical;
  996         mi->ami_offset = mem->am_offset;
  997         mi->ami_is_bound = mem->am_is_bound;
  998 }

Cache object: 848df91a0352d4ff922e23ed932c6762


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.