The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/aic7xxx/aic79xx.seq

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Adaptec U320 device driver firmware for Linux and FreeBSD.
    3  *
    4  * Copyright (c) 1994-2001, 2004 Justin T. Gibbs.
    5  * Copyright (c) 2000-2002 Adaptec Inc.
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions, and the following disclaimer,
   13  *    without modification.
   14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
   15  *    substantially similar to the "NO WARRANTY" disclaimer below
   16  *    ("Disclaimer") and any redistribution must be conditioned upon
   17  *    including a substantially similar Disclaimer requirement for further
   18  *    binary redistribution.
   19  * 3. Neither the names of the above-listed copyright holders nor the names
   20  *    of any contributors may be used to endorse or promote products derived
   21  *    from this software without specific prior written permission.
   22  *
   23  * Alternatively, this software may be distributed under the terms of the
   24  * GNU General Public License ("GPL") version 2 as published by the Free
   25  * Software Foundation.
   26  *
   27  * NO WARRANTY
   28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
   31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
   37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   38  * POSSIBILITY OF SUCH DAMAGES.
   39  *
   40  * $FreeBSD: releng/8.1/sys/dev/aic7xxx/aic79xx.seq 166813 2007-02-18 19:48:59Z ceri $
   41  */
   42 
   43 VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#119 $"
   44 PATCH_ARG_LIST = "struct ahd_softc *ahd"
   45 PREFIX = "ahd_"
   46 
   47 #include "aic79xx.reg"
   48 #include "scsi_message.h"
   49 
   50 restart:
   51 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
   52         test    SEQINTCODE, 0xFF jz idle_loop;
   53         SET_SEQINTCODE(NO_SEQINT)
   54 }
   55 
   56 idle_loop:
   57 
   58         if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
   59                 /*
   60                  * Convert ERROR status into a sequencer
   61                  * interrupt to handle the case of an
   62                  * interrupt collision on the hardware
   63                  * setting of HWERR.
   64                  */
   65                 test    ERROR, 0xFF jz no_error_set;
   66                 SET_SEQINTCODE(SAW_HWERR)
   67 no_error_set:
   68         }
   69         SET_MODE(M_SCSI, M_SCSI)
   70         test    SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
   71         test    SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list;
   72         /*
   73          * If the kernel has caught up with us, thaw the queue.
   74          */
   75         mov     A, KERNEL_QFREEZE_COUNT;
   76         cmp     QFREEZE_COUNT, A jne check_frozen_completions;
   77         mov     A, KERNEL_QFREEZE_COUNT[1];
   78         cmp     QFREEZE_COUNT[1], A jne check_frozen_completions;
   79         and     SEQ_FLAGS2, ~SELECTOUT_QFROZEN;
   80         jmp     check_waiting_list;
   81 check_frozen_completions:
   82         test    SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus;
   83 BEGIN_CRITICAL;
   84         /*
   85          * If we have completions stalled waiting for the qfreeze
   86          * to take effect, move them over to the complete_scb list
   87          * now that no selections are pending.
   88          */
   89         cmp     COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus;
   90         /*
   91          * Find the end of the qfreeze list.  The first element has
   92          * to be treated specially.
   93          */
   94         bmov    SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2;
   95         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists;
   96         /*
   97          * Now the normal loop.
   98          */
   99         bmov    SCBPTR, SCB_NEXT_COMPLETE, 2;
  100         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1;
  101 join_lists:
  102         bmov    SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
  103         bmov    COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2;
  104         mvi     COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL;
  105         jmp     idle_loop_checkbus;
  106 check_waiting_list:
  107         cmp     WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
  108         /*
  109          * ENSELO is cleared by a SELDO, so we must test for SELDO
  110          * one last time.
  111          */
  112         test    SSTAT0, SELDO jnz select_out;
  113         call    start_selection;
  114 idle_loop_checkbus:
  115         test    SSTAT0, SELDO jnz select_out;
  116 END_CRITICAL;
  117         test    SSTAT0, SELDI jnz select_in;
  118         test    SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
  119         test    SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
  120         call    unexpected_nonpkt_phase_find_ctxt;
  121 idle_loop_check_nonpackreq:
  122         test    SSTAT2, NONPACKREQ jz . + 2;
  123         call    unexpected_nonpkt_phase_find_ctxt;
  124         if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
  125                 /*
  126                  * On Rev A. hardware, the busy LED is only
  127                  * turned on automaically during selections
  128                  * and re-selections.  Make the LED status
  129                  * more useful by forcing it to be on so
  130                  * long as one of our data FIFOs is active.
  131                  */
  132                 and     A, FIFO0FREE|FIFO1FREE, DFFSTAT;
  133                 cmp     A, FIFO0FREE|FIFO1FREE jne . + 3;
  134                 and     SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
  135                 jmp     . + 2;
  136                 or      SBLKCTL, DIAGLEDEN|DIAGLEDON;
  137         }
  138         call    idle_loop_gsfifo_in_scsi_mode;
  139         call    idle_loop_service_fifos;
  140         call    idle_loop_cchan;
  141         jmp     idle_loop;
  142 
  143 idle_loop_gsfifo:
  144         SET_MODE(M_SCSI, M_SCSI)
  145 BEGIN_CRITICAL;
  146 idle_loop_gsfifo_in_scsi_mode:
  147         test    LQISTAT2, LQIGSAVAIL jz return;
  148         /*
  149          * We have received good status for this transaction.  There may
  150          * still be data in our FIFOs draining to the host.  Complete
  151          * the SCB only if all data has transferred to the host.
  152          */
  153 good_status_IU_done:
  154         bmov    SCBPTR, GSFIFO, 2;
  155         clr     SCB_SCSI_STATUS;
  156         /*
  157          * If a command completed before an attempted task management
  158          * function completed, notify the host after disabling any
  159          * pending select-outs.
  160          */
  161         test    SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
  162         test    SSTAT0, SELDO|SELINGO jnz . + 2;
  163         and     SCSISEQ0, ~ENSELO;
  164         SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
  165 gsfifo_complete_normally:
  166         or      SCB_CONTROL, STATUS_RCVD;
  167 
  168         /*
  169          * Since this status did not consume a FIFO, we have to
  170          * be a bit more dilligent in how we check for FIFOs pertaining
  171          * to this transaction.  There are two states that a FIFO still
  172          * transferring data may be in.
  173          *
  174          * 1) Configured and draining to the host, with a FIFO handler.
  175          * 2) Pending cfg4data, fifo not empty.
  176          *
  177          * Case 1 can be detected by noticing a non-zero FIFO active
  178          * count in the SCB.  In this case, we allow the routine servicing
  179          * the FIFO to complete the SCB.
  180          * 
  181          * Case 2 implies either a pending or yet to occur save data
  182          * pointers for this same context in the other FIFO.  So, if
  183          * we detect case 1, we will properly defer the post of the SCB
  184          * and achieve the desired result.  The pending cfg4data will
  185          * notice that status has been received and complete the SCB.
  186          */
  187         test    SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
  188         call    complete;
  189 END_CRITICAL;
  190         jmp     idle_loop_gsfifo_in_scsi_mode;
  191 
  192 idle_loop_service_fifos:
  193         SET_MODE(M_DFF0, M_DFF0)
  194 BEGIN_CRITICAL;
  195         test    LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
  196         call    longjmp;
  197 END_CRITICAL;
  198 idle_loop_next_fifo:
  199         SET_MODE(M_DFF1, M_DFF1)
  200 BEGIN_CRITICAL;
  201         test    LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
  202 END_CRITICAL;
  203 return:
  204         ret;
  205 
  206 idle_loop_cchan:
  207         SET_MODE(M_CCHAN, M_CCHAN)
  208         test    QOFF_CTLSTA, HS_MAILBOX_ACT jz  hs_mailbox_empty;
  209         or      QOFF_CTLSTA, HS_MAILBOX_ACT;
  210         mov     LOCAL_HS_MAILBOX, HS_MAILBOX;
  211 hs_mailbox_empty:
  212 BEGIN_CRITICAL;
  213         test    CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
  214         test    CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
  215         test    CCSCBCTL, CCSCBDONE jz return;
  216         /* FALLTHROUGH */
  217 scbdma_tohost_done:
  218         test    CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
  219         /*
  220          * An SCB has been succesfully uploaded to the host.
  221          * If the SCB was uploaded for some reason other than
  222          * bad SCSI status (currently only for underruns), we
  223          * queue the SCB for normal completion.  Otherwise, we
  224          * wait until any select-out activity has halted, and
  225          * then queue the completion.
  226          */
  227         and     CCSCBCTL, ~(CCARREN|CCSCBEN);
  228         bmov    COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
  229         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2;
  230         mvi     COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL;
  231         test    SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion;
  232         bmov    SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2;
  233         bmov    COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret;
  234 scbdma_queue_completion:
  235         bmov    SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
  236         bmov    COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
  237 fill_qoutfifo_dmadone:
  238         and     CCSCBCTL, ~(CCARREN|CCSCBEN);
  239         call    qoutfifo_updated;
  240         mvi     COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
  241         bmov    QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
  242         test    QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
  243         bmov    QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
  244         xor     QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
  245 END_CRITICAL;
  246 
  247 qoutfifo_updated:
  248         /*
  249          * If there are more commands waiting to be dma'ed
  250          * to the host, always coalesce.  Otherwise honor the
  251          * host's wishes.
  252          */
  253         cmp     COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
  254         cmp     COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
  255         test    LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
  256 
  257         /*
  258          * If we have relatively few commands outstanding, don't
  259          * bother waiting for another command to complete.
  260          */
  261         test    CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
  262         /* Add -1 so that jnc means <= not just < */
  263         add     A, -1, INT_COALESCING_MINCMDS;
  264         add     NONE, A, CMDS_PENDING;
  265         jnc     issue_cmdcmplt;
  266         
  267         /*
  268          * If coalescing, only coalesce up to the limit
  269          * provided by the host driver.
  270          */
  271 coalesce_by_count:
  272         mov     A, INT_COALESCING_MAXCMDS;
  273         add     NONE, A, INT_COALESCING_CMDCOUNT;
  274         jc      issue_cmdcmplt;
  275         /*
  276          * If the timer is not currently active,
  277          * fire it up.
  278          */
  279         test    INTCTL, SWTMINTMASK jz return;
  280         bmov    SWTIMER, INT_COALESCING_TIMER, 2;
  281         mvi     CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
  282         or      INTCTL, SWTMINTEN|SWTIMER_START;
  283         and     INTCTL, ~SWTMINTMASK ret;
  284 
  285 issue_cmdcmplt:
  286         mvi     INTSTAT, CMDCMPLT;
  287         clr     INT_COALESCING_CMDCOUNT;
  288         or      INTCTL, SWTMINTMASK ret;
  289 
  290 BEGIN_CRITICAL;
  291 fetch_new_scb_inprog:
  292         test    CCSCBCTL, ARRDONE jz return;
  293 fetch_new_scb_done:
  294         and     CCSCBCTL, ~(CCARREN|CCSCBEN);
  295         clr     A;
  296         add     CMDS_PENDING, 1;
  297         adc     CMDS_PENDING[1], A;
  298         if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
  299                 /*
  300                  * "Short Luns" are not placed into outgoing LQ
  301                  * packets in the correct byte order.  Use a full
  302                  * sized lun field instead and fill it with the
  303                  * one byte of lun information we support.
  304                  */
  305                 mov     SCB_PKT_LUN[6], SCB_LUN;
  306         }
  307         /*
  308          * The FIFO use count field is shared with the
  309          * tag set by the host so that our SCB dma engine
  310          * knows the correct location to store the SCB.
  311          * Set it to zero before processing the SCB.
  312          */
  313         clr     SCB_FIFO_USE_COUNT;
  314         /* Update the next SCB address to download. */
  315         bmov    NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
  316         /*
  317          * NULL out the SCB links since these fields
  318          * occupy the same location as SCB_NEXT_SCB_BUSADDR.
  319          */
  320         mvi     SCB_NEXT[1], SCB_LIST_NULL;
  321         mvi     SCB_NEXT2[1], SCB_LIST_NULL;
  322         /* Increment our position in the QINFIFO. */
  323         mov     NONE, SNSCB_QOFF;
  324 
  325         /*
  326          * Save SCBID of this SCB in REG0 since
  327          * SCBPTR will be clobbered during target
  328          * list updates.  We also record the SCB's
  329          * flags so that we can refer to them even
  330          * after SCBPTR has been changed.
  331          */
  332         bmov    REG0, SCBPTR, 2;
  333         mov     A, SCB_CONTROL;
  334 
  335         /*
  336          * Find the tail SCB of the execution queue
  337          * for this target.
  338          */
  339         shr     SINDEX, 3, SCB_SCSIID;
  340         and     SINDEX, ~0x1;
  341         mvi     SINDEX[1], (WAITING_SCB_TAILS >> 8);
  342         bmov    DINDEX, SINDEX, 2;
  343         bmov    SCBPTR, SINDIR, 2;
  344 
  345         /*
  346          * Update the tail to point to the new SCB.
  347          */
  348         bmov    DINDIR, REG0, 2;
  349 
  350         /*
  351          * If the queue was empty, queue this SCB as
  352          * the first for this target.
  353          */
  354         cmp     SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
  355 
  356         /*
  357          * SCBs that want to send messages must always be
  358          * at the head of their per-target queue so that
  359          * ATN can be asserted even if the current
  360          * negotiation agreement is packetized.  If the
  361          * target queue is empty, the SCB can be queued
  362          * immediately.  If the queue is not empty, we must
  363          * wait for it to empty before entering this SCB
  364          * into the waiting for selection queue.  Otherwise
  365          * our batching and round-robin selection scheme 
  366          * could allow commands to be queued out of order.
  367          * To simplify the implementation, we stop pulling
  368          * new commands from the host until the MK_MESSAGE
  369          * SCB can be queued to the waiting for selection
  370          * list.
  371          */
  372         test    A, MK_MESSAGE jz batch_scb; 
  373 
  374         /*
  375          * If the last SCB is also a MK_MESSAGE SCB, then
  376          * order is preserved even if we batch.
  377          */
  378         test    SCB_CONTROL, MK_MESSAGE jz batch_scb; 
  379 
  380         /*
  381          * Defer this SCB and stop fetching new SCBs until
  382          * it can be queued.  Since the SCB_SCSIID of the
  383          * tail SCB must be the same as that of the newly
  384          * queued SCB, there is no need to restore the SCBID
  385          * here.
  386          */
  387         or      SEQ_FLAGS2, PENDING_MK_MESSAGE;
  388         bmov    MK_MESSAGE_SCB, REG0, 2;
  389         mov     MK_MESSAGE_SCSIID, SCB_SCSIID ret;
  390 
  391 batch_scb:
  392         /*
  393          * Otherwise just update the previous tail SCB to
  394          * point to the new tail.
  395          */
  396         bmov    SCB_NEXT, REG0, 2 ret;
  397 
  398 first_new_target_scb:
  399         /*
  400          * Append SCB to the tail of the waiting for
  401          * selection list.
  402          */
  403         cmp     WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
  404         bmov    SCBPTR, WAITING_TID_TAIL, 2;
  405         bmov    SCB_NEXT2, REG0, 2;
  406         bmov    WAITING_TID_TAIL, REG0, 2 ret;
  407 first_new_scb:
  408         /*
  409          * Whole list is empty, so the head of
  410          * the list must be initialized too.
  411          */
  412         bmov    WAITING_TID_HEAD, REG0, 2;
  413         bmov    WAITING_TID_TAIL, REG0, 2 ret;
  414 END_CRITICAL;
  415 
  416 scbdma_idle:
  417         /*
  418          * Don't bother downloading new SCBs to execute
  419          * if select-outs are currently frozen or we have
  420          * a MK_MESSAGE SCB waiting to enter the queue.
  421          */
  422         test    SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE
  423                 jnz scbdma_no_new_scbs;
  424 BEGIN_CRITICAL;
  425         test    QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
  426 scbdma_no_new_scbs:
  427         cmp     COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
  428         cmp     COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
  429         /* FALLTHROUGH */
  430 fill_qoutfifo:
  431         /*
  432          * Keep track of the SCBs we are dmaing just
  433          * in case the DMA fails or is aborted.
  434          */
  435         bmov    COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
  436         mvi     CCSCBCTL, CCSCBRESET;
  437         bmov    SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
  438         mov     A, QOUTFIFO_NEXT_ADDR;
  439         bmov    SCBPTR, COMPLETE_SCB_HEAD, 2;
  440 fill_qoutfifo_loop:
  441         bmov    CCSCBRAM, SCBPTR, 2;
  442         mov     CCSCBRAM, SCB_SGPTR[0];
  443         mov     CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG;
  444         mov     NONE, SDSCB_QOFF;
  445         inc     INT_COALESCING_CMDCOUNT;
  446         add     CMDS_PENDING, -1;
  447         adc     CMDS_PENDING[1], -1;
  448         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
  449         cmp     CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
  450         test    QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
  451         /*
  452          * Don't cross an ADB or Cachline boundary when DMA'ing
  453          * completion entries.  In PCI mode, at least in 32/33
  454          * configurations, the SCB DMA engine may lose its place
  455          * in the data-stream should the target force a retry on
  456          * something other than an 8byte aligned boundary. In
  457          * PCI-X mode, we do this to avoid split transactions since
  458          * many chipsets seem to be unable to format proper split
  459          * completions to continue the data transfer.
  460          */
  461         add     SINDEX, A, CCSCBADDR;
  462         test    SINDEX, CACHELINE_MASK jz fill_qoutfifo_done;
  463         bmov    SCBPTR, SCB_NEXT_COMPLETE, 2;
  464         jmp     fill_qoutfifo_loop;
  465 fill_qoutfifo_done:
  466         mov     SCBHCNT, CCSCBADDR;
  467         mvi     CCSCBCTL, CCSCBEN|CCSCBRESET;
  468         bmov    COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
  469         mvi     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
  470 
  471 fetch_new_scb:
  472         bmov    SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
  473         mvi     CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
  474 dma_complete_scb:
  475         bmov    SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
  476         bmov    SCBHADDR, SCB_BUSADDR, 4;
  477         mvi     CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
  478 
  479 /*
  480  * Either post or fetch an SCB from host memory.  The caller
  481  * is responsible for polling for transfer completion.
  482  *
  483  * Prerequisits: Mode == M_CCHAN
  484  *               SINDEX contains CCSCBCTL flags
  485  *               SCBHADDR set to Host SCB address
  486  *               SCBPTR set to SCB src location on "push" operations
  487  */
  488 SET_SRC_MODE    M_CCHAN;
  489 SET_DST_MODE    M_CCHAN;
  490 dma_scb:
  491         mvi     SCBHCNT, SCB_TRANSFER_SIZE;
  492         mov     CCSCBCTL, SINDEX ret;
  493 
  494 setjmp:
  495         /*
  496          * At least on the A, a return in the same
  497          * instruction as the bmov results in a return
  498          * to the caller, not to the new address at the
  499          * top of the stack.  Since we want the latter
  500          * (we use setjmp to register a handler from an
  501          * interrupt context but not invoke that handler
  502          * until we return to our idle loop), use a
  503          * separate ret instruction.
  504          */
  505         bmov    LONGJMP_ADDR, STACK, 2;
  506         ret;
  507 setjmp_inline:
  508         bmov    LONGJMP_ADDR, STACK, 2;
  509 longjmp:
  510         bmov    STACK, LONGJMP_ADDR, 2 ret;
  511 END_CRITICAL;
  512 
  513 /*************************** Chip Bug Work Arounds ****************************/
  514 /*
  515  * Must disable interrupts when setting the mode pointer
  516  * register as an interrupt occurring mid update will
  517  * fail to store the new mode value for restoration on
  518  * an iret.
  519  */
  520 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
  521 set_mode_work_around:
  522         mvi     SEQINTCTL, INTVEC1DSL;
  523         mov     MODE_PTR, SINDEX;
  524         clr     SEQINTCTL ret;
  525 }
  526 
  527 
  528 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
  529 set_seqint_work_around:
  530         mov     SEQINTCODE, SINDEX;
  531         mvi     SEQINTCODE, NO_SEQINT ret;
  532 }
  533 
  534 /************************ Packetized LongJmp Routines *************************/
  535 SET_SRC_MODE    M_SCSI;
  536 SET_DST_MODE    M_SCSI;
  537 start_selection:
  538 BEGIN_CRITICAL;
  539         if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
  540                 /*
  541                  * Razor #494
  542                  * Rev A hardware fails to update LAST/CURR/NEXTSCB
  543                  * correctly after a packetized selection in several
  544                  * situations:
  545                  *
  546                  * 1) If only one command existed in the queue, the
  547                  *    LAST/CURR/NEXTSCB are unchanged.
  548                  *
  549                  * 2) In a non QAS, protocol allowed phase change,
  550                  *    the queue is shifted 1 too far.  LASTSCB is
  551                  *    the last SCB that was correctly processed.
  552                  * 
  553                  * 3) In the QAS case, if the full list of commands
  554                  *    was successfully sent, NEXTSCB is NULL and neither
  555                  *    CURRSCB nor LASTSCB can be trusted.  We must
  556                  *    manually walk the list counting MAXCMDCNT elements
  557                  *    to find the last SCB that was sent correctly.
  558                  *
  559                  * To simplify the workaround for this bug in SELDO
  560                  * handling, we initialize LASTSCB prior to enabling
  561                  * selection so we can rely on it even for case #1 above.
  562                  */
  563                 bmov    LASTSCB, WAITING_TID_HEAD, 2;
  564         }
  565         bmov    CURRSCB, WAITING_TID_HEAD, 2;
  566         bmov    SCBPTR, WAITING_TID_HEAD, 2;
  567         shr     SELOID, 4, SCB_SCSIID;
  568         /*
  569          * If we want to send a message to the device, ensure
  570          * we are selecting with atn irregardless of our packetized
  571          * agreement.  Since SPI4 only allows target reset or PPR
  572          * messages if this is a packetized connection, the change
  573          * to our negotiation table entry for this selection will
  574          * be cleared when the message is acted on.
  575          */
  576         test    SCB_CONTROL, MK_MESSAGE jz . + 3;
  577         mov     NEGOADDR, SELOID;
  578         or      NEGCONOPTS, ENAUTOATNO;
  579         or      SCSISEQ0, ENSELO ret;
  580 END_CRITICAL;
  581 
  582 /*
  583  * Allocate a FIFO for a non-packetized transaction.
  584  * In RevA hardware, both FIFOs must be free before we
  585  * can allocate a FIFO for a non-packetized transaction.
  586  */
  587 allocate_fifo_loop:
  588         /*
  589          * Do whatever work is required to free a FIFO.
  590          */
  591         call    idle_loop_service_fifos;
  592         SET_MODE(M_SCSI, M_SCSI)
  593 allocate_fifo:
  594         if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
  595                 and     A, FIFO0FREE|FIFO1FREE, DFFSTAT;
  596                 cmp     A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
  597         } else {
  598                 test    DFFSTAT, FIFO1FREE jnz allocate_fifo1;
  599                 test    DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
  600                 mvi     DFFSTAT, B_CURRFIFO_0;
  601                 SET_MODE(M_DFF0, M_DFF0)
  602                 bmov    SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
  603         }
  604 SET_SRC_MODE    M_SCSI;
  605 SET_DST_MODE    M_SCSI;
  606 allocate_fifo1:
  607         mvi     DFFSTAT, CURRFIFO_1;
  608         SET_MODE(M_DFF1, M_DFF1)
  609         bmov    SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
  610 
  611 /*
  612  * We have been reselected as an initiator
  613  * or selected as a target.
  614  */
  615 SET_SRC_MODE    M_SCSI;
  616 SET_DST_MODE    M_SCSI;
  617 select_in:
  618         if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
  619                 /*
  620                  * On Rev A. hardware, the busy LED is only
  621                  * turned on automaically during selections
  622                  * and re-selections.  Make the LED status
  623                  * more useful by forcing it to be on from
  624                  * the point of selection until our idle
  625                  * loop determines that neither of our FIFOs
  626                  * are busy.  This handles the non-packetized
  627                  * case nicely as we will not return to the
  628                  * idle loop until the busfree at the end of
  629                  * each transaction.
  630                  */
  631                 or      SBLKCTL, DIAGLEDEN|DIAGLEDON;
  632         }
  633         if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
  634                 /*
  635                  * Test to ensure that the bus has not
  636                  * already gone free prior to clearing
  637                  * any stale busfree status.  This avoids
  638                  * a window whereby a busfree just after
  639                  * a selection could be missed.
  640                  */
  641                 test    SCSISIGI, BSYI jz . + 2;
  642                 mvi     CLRSINT1,CLRBUSFREE;
  643                 or      SIMODE1, ENBUSFREE;
  644         }
  645         or      SXFRCTL0, SPIOEN;
  646         and     SAVED_SCSIID, SELID_MASK, SELID;
  647         and     A, OID, IOWNID;
  648         or      SAVED_SCSIID, A;
  649         mvi     CLRSINT0, CLRSELDI;
  650         jmp     ITloop;
  651 
  652 /*
  653  * We have successfully selected out.
  654  *
  655  * Clear SELDO.
  656  * Dequeue all SCBs sent from the waiting queue
  657  * Requeue all SCBs *not* sent to the tail of the waiting queue
  658  * Take Razor #494 into account for above.
  659  *
  660  * In Packetized Mode:
  661  *      Return to the idle loop.  Our interrupt handler will take
  662  *      care of any incoming L_Qs.
  663  *
  664  * In Non-Packetize Mode:
  665  *      Continue to our normal state machine.
  666  */
  667 SET_SRC_MODE    M_SCSI;
  668 SET_DST_MODE    M_SCSI;
  669 select_out:
  670 BEGIN_CRITICAL;
  671         if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
  672                 /*
  673                  * On Rev A. hardware, the busy LED is only
  674                  * turned on automaically during selections
  675                  * and re-selections.  Make the LED status
  676                  * more useful by forcing it to be on from
  677                  * the point of re-selection until our idle
  678                  * loop determines that neither of our FIFOs
  679                  * are busy.  This handles the non-packetized
  680                  * case nicely as we will not return to the
  681                  * idle loop until the busfree at the end of
  682                  * each transaction.
  683                  */
  684                 or      SBLKCTL, DIAGLEDEN|DIAGLEDON;
  685         }
  686         /* Clear out all SCBs that have been successfully sent. */
  687         if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
  688                 /*
  689                  * For packetized, the LQO manager clears ENSELO on
  690                  * the assertion of SELDO.  If we are non-packetized,
  691                  * LASTSCB and CURRSCB are accurate.
  692                  */
  693                 test    SCSISEQ0, ENSELO jnz use_lastscb;
  694 
  695                 /*
  696                  * The update is correct for LQOSTAT1 errors.  All
  697                  * but LQOBUSFREE are handled by kernel interrupts.
  698                  * If we see LQOBUSFREE, return to the idle loop.
  699                  * Once we are out of the select_out critical section,
  700                  * the kernel will cleanup the LQOBUSFREE and we will
  701                  * eventually restart the selection if appropriate.
  702                  */
  703                 test    LQOSTAT1, LQOBUSFREE jnz idle_loop;
  704 
  705                 /*
  706                  * On a phase change oustside of packet boundaries,
  707                  * LASTSCB points to the currently active SCB context
  708                  * on the bus.
  709                  */
  710                 test    LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
  711 
  712                 /*
  713                  * If the hardware has traversed the whole list, NEXTSCB
  714                  * will be NULL, CURRSCB and LASTSCB cannot be trusted,
  715                  * but MAXCMDCNT is accurate.  If we stop part way through
  716                  * the list or only had one command to issue, NEXTSCB[1] is
  717                  * not NULL and LASTSCB is the last command to go out.
  718                  */
  719                 cmp     NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
  720 
  721                 /*
  722                  * Brute force walk.
  723                  */
  724                 bmov    SCBPTR, WAITING_TID_HEAD, 2;
  725                 mvi     SEQINTCTL, INTVEC1DSL;
  726                 mvi     MODE_PTR, MK_MODE(M_CFG, M_CFG);
  727                 mov     A, MAXCMDCNT;
  728                 mvi     MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
  729                 clr     SEQINTCTL;
  730 find_lastscb_loop:
  731                 dec     A;
  732                 test    A, 0xFF jz found_last_sent_scb;
  733                 bmov    SCBPTR, SCB_NEXT, 2;
  734                 jmp     find_lastscb_loop;
  735 use_lastscb:
  736                 bmov    SCBPTR, LASTSCB, 2;
  737 found_last_sent_scb:
  738                 bmov    CURRSCB, SCBPTR, 2;
  739 curscb_ww_done:
  740         } else {
  741                 bmov    SCBPTR, CURRSCB, 2;
  742         }
  743 
  744         /*
  745          * The whole list made it.  Clear our tail pointer to indicate
  746          * that the per-target selection queue is now empty.
  747          */
  748         cmp     SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail;
  749 
  750         /*
  751          * Requeue any SCBs not sent, to the tail of the waiting Q.
  752          * We know that neither the per-TID list nor the list of
  753          * TIDs is empty.  Use this knowledge to our advantage and
  754          * queue the remainder to the tail of the global execution
  755          * queue.
  756          */
  757         bmov    REG0, SCB_NEXT, 2;
  758 select_out_queue_remainder:
  759         bmov    SCBPTR, WAITING_TID_TAIL, 2;
  760         bmov    SCB_NEXT2, REG0, 2;
  761         bmov    WAITING_TID_TAIL, REG0, 2;
  762         jmp     select_out_inc_tid_q;
  763 
  764 select_out_clear_tail:
  765         /*
  766          * Queue any pending MK_MESSAGE SCB for this target now
  767          * that the queue is empty.
  768          */
  769         test    SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb;
  770         mov     A, MK_MESSAGE_SCSIID;
  771         cmp     SCB_SCSIID, A jne select_out_no_mk_message_scb;
  772         and     SEQ_FLAGS2, ~PENDING_MK_MESSAGE;
  773         bmov    REG0, MK_MESSAGE_SCB, 2;
  774         jmp select_out_queue_remainder;
  775 
  776 select_out_no_mk_message_scb:
  777         /*
  778          * Clear this target's execution tail and increment the queue.
  779          */
  780         shr     DINDEX, 3, SCB_SCSIID;
  781         or      DINDEX, 1;      /* Want only the second byte */
  782         mvi     DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
  783         mvi     DINDIR, SCB_LIST_NULL;
  784 select_out_inc_tid_q:
  785         bmov    SCBPTR, WAITING_TID_HEAD, 2;
  786         bmov    WAITING_TID_HEAD, SCB_NEXT2, 2;
  787         cmp     WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
  788         mvi     WAITING_TID_TAIL[1], SCB_LIST_NULL;
  789         bmov    SCBPTR, CURRSCB, 2;
  790         mvi     CLRSINT0, CLRSELDO;
  791         test    LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared;
  792         test    LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared;
  793 
  794         /*
  795          * If this is a packetized connection, return to our
  796          * idle_loop and let our interrupt handler deal with
  797          * any connection setup/teardown issues.  The only
  798          * exceptions are the case of MK_MESSAGE and task management
  799          * SCBs.
  800          */
  801         if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
  802                 /*
  803                  * In the A, the LQO manager transitions to LQOSTOP0 even if
  804                  * we have selected out with ATN asserted and the target
  805                  * REQs in a non-packet phase.
  806                  */
  807                 test    SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
  808                 test    SCSISIGO, ATNO jnz select_out_non_packetized;
  809 select_out_no_message:
  810         }
  811         test    LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
  812         test    SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
  813         SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
  814         jmp     idle_loop;
  815 
  816 select_out_non_packetized:
  817         /* Non packetized request. */
  818         and     SCSISEQ0, ~ENSELO;
  819         if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
  820                 /*
  821                  * Test to ensure that the bus has not
  822                  * already gone free prior to clearing
  823                  * any stale busfree status.  This avoids
  824                  * a window whereby a busfree just after
  825                  * a selection could be missed.
  826                  */
  827                 test    SCSISIGI, BSYI jz . + 2;
  828                 mvi     CLRSINT1,CLRBUSFREE;
  829                 or      SIMODE1, ENBUSFREE;
  830         }
  831         mov     SAVED_SCSIID, SCB_SCSIID;
  832         mov     SAVED_LUN, SCB_LUN;
  833         mvi     SEQ_FLAGS, NO_CDB_SENT;
  834 END_CRITICAL;
  835         or      SXFRCTL0, SPIOEN;
  836 
  837         /*
  838          * As soon as we get a successful selection, the target
  839          * should go into the message out phase since we have ATN
  840          * asserted.
  841          */
  842         mvi     MSG_OUT, MSG_IDENTIFYFLAG;
  843 
  844         /*
  845          * Main loop for information transfer phases.  Wait for the
  846          * target to assert REQ before checking MSG, C/D and I/O for
  847          * the bus phase.
  848          */
  849 mesgin_phasemis:
  850 ITloop:
  851         call    phase_lock;
  852 
  853         mov     A, LASTPHASE;
  854 
  855         test    A, ~P_DATAIN_DT jz p_data;
  856         cmp     A,P_COMMAND     je p_command;
  857         cmp     A,P_MESGOUT     je p_mesgout;
  858         cmp     A,P_STATUS      je p_status;
  859         cmp     A,P_MESGIN      je p_mesgin;
  860 
  861         SET_SEQINTCODE(BAD_PHASE)
  862         jmp     ITloop;                 /* Try reading the bus again. */
  863 
  864 /*
  865  * Command phase.  Set up the DMA registers and let 'er rip.
  866  */
  867 p_command:
  868         test    SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
  869         SET_SEQINTCODE(PROTO_VIOLATION)
  870 p_command_okay:
  871         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
  872                 jnz p_command_allocate_fifo;
  873         /*
  874          * Command retry.  Free our current FIFO and
  875          * re-allocate a FIFO so transfer state is
  876          * reset.
  877          */
  878 SET_SRC_MODE    M_DFF1;
  879 SET_DST_MODE    M_DFF1;
  880         mvi     DFFSXFRCTL, RSTCHN|CLRSHCNT;
  881         SET_MODE(M_SCSI, M_SCSI)
  882 p_command_allocate_fifo:
  883         bmov    ALLOCFIFO_SCBPTR, SCBPTR, 2;
  884         call    allocate_fifo;
  885 SET_SRC_MODE    M_DFF1;
  886 SET_DST_MODE    M_DFF1;
  887         add     NONE, -17, SCB_CDB_LEN;
  888         jnc     p_command_embedded;
  889 p_command_from_host:
  890         bmov    HADDR[0], SCB_HOST_CDB_PTR, 9;
  891         mvi     SG_CACHE_PRE, LAST_SEG;
  892         mvi     DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
  893         jmp     p_command_xfer;
  894 p_command_embedded:
  895         bmov    SHCNT[0], SCB_CDB_LEN,  1;
  896         bmov    DFDAT, SCB_CDB_STORE, 16; 
  897         mvi     DFCNTRL, SCSIEN;
  898 p_command_xfer:
  899         and     SEQ_FLAGS, ~NO_CDB_SENT;
  900         if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) {
  901                 /*
  902                  * To speed up CDB delivery in Rev B, all CDB acks
  903                  * are "released" to the output sync as soon as the
  904                  * command phase starts.  There is only one problem
  905                  * with this approach.  If the target changes phase
  906                  * before all data are sent, we have left over acks
  907                  * that can go out on the bus in a data phase.  Due
  908                  * to other chip contraints, this only happens if
  909                  * the target goes to data-in, but if the acks go
  910                  * out before we can test SDONE, we'll think that
  911                  * the transfer has completed successfully.  Work
  912                  * around this by taking advantage of the 400ns or
  913                  * 800ns dead time between command phase and the REQ
  914                  * of the new phase.  If the transfer has completed
  915                  * successfully, SCSIEN should fall *long* before we
  916                  * see a phase change.  We thus treat any phasemiss
  917                  * that occurs before SCSIEN falls as an incomplete
  918                  * transfer.
  919                  */
  920                 test    SSTAT1, PHASEMIS jnz p_command_xfer_failed;
  921                 test    DFCNTRL, SCSIEN jnz . - 1;
  922         } else {
  923                 test    DFCNTRL, SCSIEN jnz .;
  924         }
  925         /*
  926          * DMA Channel automatically disabled.
  927          * Don't allow a data phase if the command
  928          * was not fully transferred.
  929          */
  930         test    SSTAT2, SDONE jnz ITloop;
  931 p_command_xfer_failed:
  932         or      SEQ_FLAGS, NO_CDB_SENT;
  933         jmp     ITloop;
  934 
  935 
  936 /*
  937  * Status phase.  Wait for the data byte to appear, then read it
  938  * and store it into the SCB.
  939  */
  940 SET_SRC_MODE    M_SCSI;
  941 SET_DST_MODE    M_SCSI;
  942 p_status:
  943         test    SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
  944 p_status_okay:
  945         mov     SCB_SCSI_STATUS, SCSIDAT;
  946         or      SCB_CONTROL, STATUS_RCVD;
  947         jmp     ITloop;
  948 
  949 /*
  950  * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
  951  * indentify message sequence and send it to the target.  The host may
  952  * override this behavior by setting the MK_MESSAGE bit in the SCB
  953  * control byte.  This will cause us to interrupt the host and allow
  954  * it to handle the message phase completely on its own.  If the bit
  955  * associated with this target is set, we will also interrupt the host,
  956  * thereby allowing it to send a message on the next selection regardless
  957  * of the transaction being sent.
  958  * 
  959  * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
  960  * This is done to allow the host to send messages outside of an identify
  961  * sequence while protecting the seqencer from testing the MK_MESSAGE bit
  962  * on an SCB that might not be for the current nexus. (For example, a
  963  * BDR message in responce to a bad reselection would leave us pointed to
  964  * an SCB that doesn't have anything to do with the current target).
  965  *
  966  * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
  967  * bus device reset).
  968  *
  969  * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
  970  * in case the target decides to put us in this phase for some strange
  971  * reason.
  972  */
  973 p_mesgout_retry:
  974         /* Turn on ATN for the retry */
  975         mvi     SCSISIGO, ATNO;
  976 p_mesgout:
  977         mov     SINDEX, MSG_OUT;
  978         cmp     SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
  979         test    SCB_CONTROL,MK_MESSAGE  jnz host_message_loop;
  980 p_mesgout_identify:
  981         or      SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
  982         test    SCB_CONTROL, DISCENB jnz . + 2;
  983         and     SINDEX, ~DISCENB;
  984 /*
  985  * Send a tag message if TAG_ENB is set in the SCB control block.
  986  * Use SCB_NONPACKET_TAG as the tag value.
  987  */
  988 p_mesgout_tag:
  989         test    SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
  990         mov     SCSIDAT, SINDEX;        /* Send the identify message */
  991         call    phase_lock;
  992         cmp     LASTPHASE, P_MESGOUT    jne p_mesgout_done;
  993         and     SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
  994         call    phase_lock;
  995         cmp     LASTPHASE, P_MESGOUT    jne p_mesgout_done;
  996         mov     SCBPTR jmp p_mesgout_onebyte;
  997 /*
  998  * Interrupt the driver, and allow it to handle this message
  999  * phase and any required retries.
 1000  */
 1001 p_mesgout_from_host:
 1002         cmp     SINDEX, HOST_MSG        jne p_mesgout_onebyte;
 1003         jmp     host_message_loop;
 1004 
 1005 p_mesgout_onebyte:
 1006         mvi     CLRSINT1, CLRATNO;
 1007         mov     SCSIDAT, SINDEX;
 1008 
 1009 /*
 1010  * If the next bus phase after ATN drops is message out, it means
 1011  * that the target is requesting that the last message(s) be resent.
 1012  */
 1013         call    phase_lock;
 1014         cmp     LASTPHASE, P_MESGOUT    je p_mesgout_retry;
 1015 
 1016 p_mesgout_done:
 1017         mvi     CLRSINT1,CLRATNO;       /* Be sure to turn ATNO off */
 1018         mov     LAST_MSG, MSG_OUT;
 1019         mvi     MSG_OUT, MSG_NOOP;      /* No message left */
 1020         jmp     ITloop;
 1021 
 1022 /*
 1023  * Message in phase.  Bytes are read using Automatic PIO mode.
 1024  */
 1025 p_mesgin:
 1026         /* read the 1st message byte */
 1027         mvi     ACCUM           call inb_first;
 1028 
 1029         test    A,MSG_IDENTIFYFLAG      jnz mesgin_identify;
 1030         cmp     A,MSG_DISCONNECT        je mesgin_disconnect;
 1031         cmp     A,MSG_SAVEDATAPOINTER   je mesgin_sdptrs;
 1032         cmp     ALLZEROS,A              je mesgin_complete;
 1033         cmp     A,MSG_RESTOREPOINTERS   je mesgin_rdptrs;
 1034         cmp     A,MSG_IGN_WIDE_RESIDUE  je mesgin_ign_wide_residue;
 1035         cmp     A,MSG_NOOP              je mesgin_done;
 1036 
 1037 /*
 1038  * Pushed message loop to allow the kernel to
 1039  * run it's own message state engine.  To avoid an
 1040  * extra nop instruction after signaling the kernel,
 1041  * we perform the phase_lock before checking to see
 1042  * if we should exit the loop and skip the phase_lock
 1043  * in the ITloop.  Performing back to back phase_locks
 1044  * shouldn't hurt, but why do it twice...
 1045  */
 1046 host_message_loop:
 1047         call    phase_lock;     /* Benign the first time through. */
 1048         SET_SEQINTCODE(HOST_MSG_LOOP)
 1049         cmp     RETURN_1, EXIT_MSG_LOOP je ITloop;
 1050         cmp     RETURN_1, CONT_MSG_LOOP_WRITE   jne . + 3;
 1051         mov     SCSIDAT, RETURN_2;
 1052         jmp     host_message_loop;
 1053         /* Must be CONT_MSG_LOOP_READ */
 1054         mov     NONE, SCSIDAT;  /* ACK Byte */
 1055         jmp     host_message_loop;
 1056 
 1057 mesgin_ign_wide_residue:
 1058         mov     SAVED_MODE, MODE_PTR;
 1059         SET_MODE(M_SCSI, M_SCSI)
 1060         shr     NEGOADDR, 4, SAVED_SCSIID;
 1061         mov     A, NEGCONOPTS;
 1062         RESTORE_MODE(SAVED_MODE)
 1063         test    A, WIDEXFER jz mesgin_reject;
 1064         /* Pull the residue byte */
 1065         mvi     REG0    call inb_next;
 1066         cmp     REG0, 0x01 jne mesgin_reject;
 1067         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
 1068         test    SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
 1069         SET_SEQINTCODE(IGN_WIDE_RES)
 1070         jmp     mesgin_done;
 1071 
 1072 mesgin_proto_violation:
 1073         SET_SEQINTCODE(PROTO_VIOLATION)
 1074         jmp     mesgin_done;
 1075 mesgin_reject:
 1076         mvi     MSG_MESSAGE_REJECT      call mk_mesg;
 1077 mesgin_done:
 1078         mov     NONE,SCSIDAT;           /*dummy read from latch to ACK*/
 1079         jmp     ITloop;
 1080 
 1081 #define INDEX_DISC_LIST(scsiid, lun)                                    \
 1082         and     A, 0xC0, scsiid;                                        \
 1083         or      SCBPTR, A, lun;                                         \
 1084         clr     SCBPTR[1];                                              \
 1085         and     SINDEX, 0x30, scsiid;                                   \
 1086         shr     SINDEX, 3;      /* Multiply by 2 */                     \
 1087         add     SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);                \
 1088         mvi     SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
 1089 
 1090 mesgin_identify:
 1091         /*
 1092          * Determine whether a target is using tagged or non-tagged
 1093          * transactions by first looking at the transaction stored in
 1094          * the per-device, disconnected array.  If there is no untagged
 1095          * transaction for this target, this must be a tagged transaction.
 1096          */
 1097         and     SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
 1098         INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
 1099         bmov    DINDEX, SINDEX, 2;
 1100         bmov    REG0, SINDIR, 2;
 1101         cmp     REG0[1], SCB_LIST_NULL je snoop_tag;
 1102         /* Untagged.  Clear the busy table entry and setup the SCB. */
 1103         bmov    DINDIR, ALLONES, 2;
 1104         bmov    SCBPTR, REG0, 2;
 1105         jmp     setup_SCB;
 1106 
 1107 /*
 1108  * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
 1109  * If we get one, we use the tag returned to find the proper
 1110  * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
 1111  * tag + 256.
 1112  */
 1113 snoop_tag:
 1114         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
 1115                 or      SEQ_FLAGS, 0x80;
 1116         }
 1117         mov     NONE, SCSIDAT;          /* ACK Identify MSG */
 1118         call    phase_lock;
 1119         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
 1120                 or      SEQ_FLAGS, 0x1;
 1121         }
 1122         cmp     LASTPHASE, P_MESGIN     jne not_found_ITloop;
 1123         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
 1124                 or      SEQ_FLAGS, 0x2;
 1125         }
 1126         cmp     SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
 1127 get_tag:
 1128         clr     SCBPTR[1];
 1129         mvi     SCBPTR  call inb_next;  /* tag value */
 1130 verify_scb:
 1131         test    SCB_CONTROL,DISCONNECTED jz verify_other_scb;
 1132         mov     A, SAVED_SCSIID;
 1133         cmp     SCB_SCSIID, A jne verify_other_scb;
 1134         mov     A, SAVED_LUN;
 1135         cmp     SCB_LUN, A je setup_SCB_disconnected;
 1136 verify_other_scb:
 1137         xor     SCBPTR[1], 1;
 1138         test    SCBPTR[1], 0xFF jnz verify_scb;
 1139         jmp     not_found;
 1140 
 1141 /*
 1142  * Ensure that the SCB the tag points to is for
 1143  * an SCB transaction to the reconnecting target.
 1144  */
 1145 setup_SCB:
 1146         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
 1147                 or      SEQ_FLAGS, 0x10;
 1148         }
 1149         test    SCB_CONTROL,DISCONNECTED jz not_found;
 1150 setup_SCB_disconnected:
 1151         and     SCB_CONTROL,~DISCONNECTED;
 1152         clr     SEQ_FLAGS;      /* make note of IDENTIFY */
 1153         test    SCB_SGPTR, SG_LIST_NULL jnz . + 3;
 1154         bmov    ALLOCFIFO_SCBPTR, SCBPTR, 2;
 1155         call    allocate_fifo;
 1156         /* See if the host wants to send a message upon reconnection */
 1157         test    SCB_CONTROL, MK_MESSAGE jz mesgin_done;
 1158         mvi     HOST_MSG        call mk_mesg;
 1159         jmp     mesgin_done;
 1160 
 1161 not_found:
 1162         SET_SEQINTCODE(NO_MATCH)
 1163         jmp     mesgin_done;
 1164 
 1165 not_found_ITloop:
 1166         SET_SEQINTCODE(NO_MATCH)
 1167         jmp     ITloop;
 1168 
 1169 /*
 1170  * We received a "command complete" message.  Put the SCB on the complete
 1171  * queue and trigger a completion interrupt via the idle loop.  Before doing
 1172  * so, check to see if there is a residual or the status byte is something
 1173  * other than STATUS_GOOD (0).  In either of these conditions, we upload the
 1174  * SCB back to the host so it can process this information.
 1175  */
 1176 mesgin_complete:
 1177 
 1178         /*
 1179          * If ATN is raised, we still want to give the target a message.
 1180          * Perhaps there was a parity error on this last message byte.
 1181          * Either way, the target should take us to message out phase
 1182          * and then attempt to complete the command again.  We should use a
 1183          * critical section here to guard against a timeout triggering
 1184          * for this command and setting ATN while we are still processing
 1185          * the completion.
 1186         test    SCSISIGI, ATNI jnz mesgin_done;
 1187          */
 1188 
 1189         /*
 1190          * If we are identified and have successfully sent the CDB,
 1191          * any status will do.  Optimize this fast path.
 1192          */
 1193         test    SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
 1194         test    SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
 1195 
 1196         /*
 1197          * If the target never sent an identify message but instead went
 1198          * to mesgin to give an invalid message, let the host abort us.
 1199          */
 1200         test    SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
 1201 
 1202         /*
 1203          * If we recevied good status but never successfully sent the
 1204          * cdb, abort the command.
 1205          */
 1206         test    SCB_SCSI_STATUS,0xff    jnz complete_accepted;
 1207         test    SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
 1208 complete_accepted:
 1209 
 1210         /*
 1211          * See if we attempted to deliver a message but the target ingnored us.
 1212          */
 1213         test    SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
 1214         SET_SEQINTCODE(MKMSG_FAILED)
 1215 complete_nomsg:
 1216         call    queue_scb_completion;
 1217         jmp     await_busfree;
 1218 
 1219 BEGIN_CRITICAL;
 1220 freeze_queue:
 1221         /* Cancel any pending select-out. */
 1222         test    SSTAT0, SELDO|SELINGO jnz . + 2;
 1223         and     SCSISEQ0, ~ENSELO;
 1224         mov     ACCUM_SAVE, A;
 1225         clr     A;
 1226         add     QFREEZE_COUNT, 1;
 1227         adc     QFREEZE_COUNT[1], A;
 1228         or      SEQ_FLAGS2, SELECTOUT_QFROZEN;
 1229         mov     A, ACCUM_SAVE ret;
 1230 END_CRITICAL;
 1231 
 1232 /*
 1233  * Complete the current FIFO's SCB if data for this same
 1234  * SCB is not transferring in the other FIFO.
 1235  */
 1236 SET_SRC_MODE    M_DFF1;
 1237 SET_DST_MODE    M_DFF1;
 1238 pkt_complete_scb_if_fifos_idle:
 1239         bmov    ARG_1, SCBPTR, 2;
 1240         mvi     DFFSXFRCTL, CLRCHN;
 1241         SET_MODE(M_SCSI, M_SCSI)
 1242         bmov    SCBPTR, ARG_1, 2;
 1243         test    SCB_FIFO_USE_COUNT, 0xFF jnz return;
 1244 queue_scb_completion:
 1245         test    SCB_SCSI_STATUS,0xff    jnz bad_status;
 1246         /*
 1247          * Check for residuals
 1248          */
 1249         test    SCB_SGPTR, SG_LIST_NULL jnz complete;   /* No xfer */
 1250         test    SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
 1251         test    SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
 1252 complete:
 1253 BEGIN_CRITICAL;
 1254         bmov    SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
 1255         bmov    COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
 1256 END_CRITICAL;
 1257 bad_status:
 1258         cmp     SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
 1259         call    freeze_queue;
 1260 upload_scb:
 1261         /*
 1262          * Restore SCB TAG since we reuse this field
 1263          * in the sequencer.  We don't want to corrupt
 1264          * it on the host.
 1265          */
 1266         bmov    SCB_TAG, SCBPTR, 2;
 1267 BEGIN_CRITICAL;
 1268         or      SCB_SGPTR, SG_STATUS_VALID;
 1269         mvi     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL;
 1270         cmp     COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail;
 1271         bmov    COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
 1272         bmov    COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret;
 1273 add_dma_scb_tail:
 1274         bmov    REG0, SCBPTR, 2;
 1275         bmov    SCBPTR, COMPLETE_DMA_SCB_TAIL, 2;
 1276         bmov    SCB_NEXT_COMPLETE, REG0, 2;
 1277         bmov    COMPLETE_DMA_SCB_TAIL, REG0, 2 ret;
 1278 END_CRITICAL;
 1279 
 1280 /*
 1281  * Is it a disconnect message?  Set a flag in the SCB to remind us
 1282  * and await the bus going free.  If this is an untagged transaction
 1283  * store the SCB id for it in our untagged target table for lookup on
 1284  * a reselction.
 1285  */
 1286 mesgin_disconnect:
 1287         /*
 1288          * If ATN is raised, we still want to give the target a message.
 1289          * Perhaps there was a parity error on this last message byte
 1290          * or we want to abort this command.  Either way, the target
 1291          * should take us to message out phase and then attempt to
 1292          * disconnect again.
 1293          * XXX - Wait for more testing.
 1294         test    SCSISIGI, ATNI jnz mesgin_done;
 1295          */
 1296         test    SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
 1297                 jnz mesgin_proto_violation;
 1298         or      SCB_CONTROL,DISCONNECTED;
 1299         test    SCB_CONTROL, TAG_ENB jnz await_busfree;
 1300 queue_disc_scb:
 1301         bmov    REG0, SCBPTR, 2;
 1302         INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
 1303         bmov    DINDEX, SINDEX, 2;
 1304         bmov    DINDIR, REG0, 2;
 1305         bmov    SCBPTR, REG0, 2;
 1306         /* FALLTHROUGH */
 1307 await_busfree:
 1308         and     SIMODE1, ~ENBUSFREE;
 1309         if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
 1310                 /*
 1311                  * In the BUSFREEREV_BUG case, the
 1312                  * busfree status was cleared at the
 1313                  * beginning of the connection.
 1314                  */
 1315                 mvi     CLRSINT1,CLRBUSFREE;
 1316         }
 1317         mov     NONE, SCSIDAT;          /* Ack the last byte */
 1318         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
 1319                 jnz await_busfree_not_m_dff;
 1320 SET_SRC_MODE    M_DFF1;
 1321 SET_DST_MODE    M_DFF1;
 1322 await_busfree_clrchn:
 1323         mvi     DFFSXFRCTL, CLRCHN;
 1324 await_busfree_not_m_dff:
 1325         /* clear target specific flags */
 1326         mvi     SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT;
 1327         test    SSTAT1,REQINIT|BUSFREE  jz .;
 1328         /*
 1329          * We only set BUSFREE status once either a new
 1330          * phase has been detected or we are really
 1331          * BUSFREE.  This allows the driver to know
 1332          * that we are active on the bus even though
 1333          * no identified transaction exists should a
 1334          * timeout occur while awaiting busfree.
 1335          */
 1336         mvi     LASTPHASE, P_BUSFREE;
 1337         test    SSTAT1, BUSFREE jnz idle_loop;
 1338         SET_SEQINTCODE(MISSED_BUSFREE)
 1339 
 1340 
 1341 /*
 1342  * Save data pointers message:
 1343  * Copying RAM values back to SCB, for Save Data Pointers message, but
 1344  * only if we've actually been into a data phase to change them.  This
 1345  * protects against bogus data in scratch ram and the residual counts
 1346  * since they are only initialized when we go into data_in or data_out.
 1347  * Ack the message as soon as possible.
 1348  */
 1349 SET_SRC_MODE    M_DFF1;
 1350 SET_DST_MODE    M_DFF1;
 1351 mesgin_sdptrs:
 1352         mov     NONE,SCSIDAT;           /*dummy read from latch to ACK*/
 1353         test    SEQ_FLAGS, DPHASE       jz ITloop;
 1354         call    save_pointers;
 1355         jmp     ITloop;
 1356 
 1357 save_pointers:
 1358         /*
 1359          * If we are asked to save our position at the end of the
 1360          * transfer, just mark us at the end rather than perform a
 1361          * full save.
 1362          */
 1363         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
 1364         or      SCB_SGPTR, SG_LIST_NULL ret;
 1365 
 1366 save_pointers_full:
 1367         /*
 1368          * The SCB_DATAPTR becomes the current SHADDR.
 1369          * All other information comes directly from our residual
 1370          * state.
 1371          */
 1372         bmov    SCB_DATAPTR, SHADDR, 8;
 1373         bmov    SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
 1374 
 1375 /*
 1376  * Restore pointers message?  Data pointers are recopied from the
 1377  * SCB anytime we enter a data phase for the first time, so all
 1378  * we need to do is clear the DPHASE flag and let the data phase
 1379  * code do the rest.  We also reset/reallocate the FIFO to make
 1380  * sure we have a clean start for the next data or command phase.
 1381  */
 1382 mesgin_rdptrs:
 1383         and     SEQ_FLAGS, ~DPHASE;
 1384         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
 1385         mvi     DFFSXFRCTL, RSTCHN|CLRSHCNT;
 1386         SET_MODE(M_SCSI, M_SCSI)
 1387 msgin_rdptrs_get_fifo:
 1388         call    allocate_fifo;
 1389         jmp     mesgin_done;
 1390 
 1391 phase_lock:     
 1392         if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
 1393                 /*
 1394                  * Don't ignore persistent REQ assertions just because
 1395                  * they were asserted within the bus settle delay window.
 1396                  * This allows us to tolerate devices like the GEM318
 1397                  * that violate the SCSI spec.  We are careful not to
 1398                  * count REQ while we are waiting for it to fall during
 1399                  * an async phase due to our asserted ACK.  Each
 1400                  * sequencer instruction takes ~25ns, so the REQ must
 1401                  * last at least 100ns in order to be counted as a true
 1402                  * REQ.
 1403                  */
 1404                 test    SCSIPHASE, 0xFF jnz phase_locked;
 1405                 test    SCSISIGI, ACKI jnz phase_lock;
 1406                 test    SCSISIGI, REQI jz phase_lock;
 1407                 test    SCSIPHASE, 0xFF jnz phase_locked;
 1408                 test    SCSISIGI, ACKI jnz phase_lock;
 1409                 test    SCSISIGI, REQI jz phase_lock;
 1410 phase_locked:
 1411         } else {
 1412                 test    SCSIPHASE, 0xFF jz .;
 1413         }
 1414         test    SSTAT1, SCSIPERR jnz phase_lock;
 1415 phase_lock_latch_phase:
 1416         and     LASTPHASE, PHASE_MASK, SCSISIGI ret;
 1417 
 1418 /*
 1419  * Functions to read data in Automatic PIO mode.
 1420  *
 1421  * An ACK is not sent on input from the target until SCSIDATL is read from.
 1422  * So we wait until SCSIDATL is latched (the usual way), then read the data
 1423  * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
 1424  * line, or we just want to acknowledge the byte, then we do a dummy read
 1425  * from SCISDATL.  The SCSI spec guarantees that the target will hold the
 1426  * data byte on the bus until we send our ACK.
 1427  *
 1428  * The assumption here is that these are called in a particular sequence,
 1429  * and that REQ is already set when inb_first is called.  inb_{first,next}
 1430  * use the same calling convention as inb.
 1431  */
 1432 inb_next:
 1433         mov     NONE,SCSIDAT;           /*dummy read from latch to ACK*/
 1434 inb_next_wait:
 1435         /*
 1436          * If there is a parity error, wait for the kernel to
 1437          * see the interrupt and prepare our message response
 1438          * before continuing.
 1439          */
 1440         test    SCSIPHASE, 0xFF jz .;
 1441         test    SSTAT1, SCSIPERR jnz inb_next_wait;
 1442 inb_next_check_phase:
 1443         and     LASTPHASE, PHASE_MASK, SCSISIGI;
 1444         cmp     LASTPHASE, P_MESGIN jne mesgin_phasemis;
 1445 inb_first:
 1446         clr     DINDEX[1];
 1447         mov     DINDEX,SINDEX;
 1448         mov     DINDIR,SCSIBUS  ret;            /*read byte directly from bus*/
 1449 inb_last:
 1450         mov     NONE,SCSIDAT ret;               /*dummy read from latch to ACK*/
 1451 
 1452 mk_mesg:
 1453         mvi     SCSISIGO, ATNO;
 1454         mov     MSG_OUT,SINDEX ret;
 1455 
 1456 SET_SRC_MODE    M_DFF1;
 1457 SET_DST_MODE    M_DFF1;
 1458 disable_ccsgen:
 1459         test    SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
 1460         clr     CCSGCTL;
 1461 disable_ccsgen_fetch_done:
 1462         clr     SG_STATE ret;
 1463 
 1464 service_fifo:
 1465         /*
 1466          * Do we have any prefetch left???
 1467          */
 1468         test    SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
 1469 
 1470         /*
 1471          * Can this FIFO have access to the S/G cache yet?
 1472          */
 1473         test    CCSGCTL, SG_CACHE_AVAIL jz return;
 1474 
 1475         /* Did we just finish fetching segs? */
 1476         test    CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
 1477 
 1478         /* Are we actively fetching segments? */
 1479         test    CCSGCTL, CCSGENACK jnz return;
 1480 
 1481         /*
 1482          * Should the other FIFO get the S/G cache first?  If
 1483          * both FIFOs have been allocated since we last checked
 1484          * any FIFO, it is important that we service a FIFO
 1485          * that is not actively on the bus first.  This guarantees
 1486          * that a FIFO will be freed to handle snapshot requests for
 1487          * any FIFO that is still on the bus.  Chips with RTI do not
 1488          * perform snapshots, so don't bother with this test there.
 1489          */
 1490         if ((ahd->features & AHD_RTI) == 0) {
 1491                 /*
 1492                  * If we're not still receiving SCSI data,
 1493                  * it is safe to allocate the S/G cache to
 1494                  * this FIFO.
 1495                  */
 1496                 test    DFCNTRL, SCSIEN jz idle_sgfetch_start;
 1497 
 1498                 /*
 1499                  * Switch to the other FIFO.  Non-RTI chips
 1500                  * also have the "set mode" bug, so we must
 1501                  * disable interrupts during the switch.
 1502                  */
 1503                 mvi     SEQINTCTL, INTVEC1DSL;
 1504                 xor     MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
 1505 
 1506                 /*
 1507                  * If the other FIFO needs loading, then it
 1508                  * must not have claimed the S/G cache yet
 1509                  * (SG_CACHE_AVAIL would have been cleared in
 1510                  * the orginal FIFO mode and we test this above).
 1511                  * Return to the idle loop so we can process the
 1512                  * FIFO not currently on the bus first.
 1513                  */
 1514                 test    SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay;
 1515                 clr     SEQINTCTL ret;
 1516 idle_sgfetch_okay:
 1517                 xor     MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
 1518                 clr     SEQINTCTL;
 1519         }
 1520 
 1521 idle_sgfetch_start:
 1522         /*
 1523          * We fetch a "cacheline aligned" and sized amount of data
 1524          * so we don't end up referencing a non-existant page.
 1525          * Cacheline aligned is in quotes because the kernel will
 1526          * set the prefetch amount to a reasonable level if the
 1527          * cacheline size is unknown.
 1528          */
 1529         bmov    SGHADDR, SCB_RESIDUAL_SGPTR, 4;
 1530         mvi     SGHCNT, SG_PREFETCH_CNT;
 1531         if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
 1532                 /*
 1533                  * Need two instructions between "touches" of SGHADDR.
 1534                  */
 1535                 nop;
 1536         }
 1537         and     SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
 1538         mvi     CCSGCTL, CCSGEN|CCSGRESET;
 1539         or      SG_STATE, FETCH_INPROG ret;
 1540 idle_sgfetch_complete:
 1541         /*
 1542          * Guard against SG_CACHE_AVAIL activating during sg fetch
 1543          * request in the other FIFO.
 1544          */
 1545         test    SG_STATE, FETCH_INPROG jz return;
 1546         clr     CCSGCTL;
 1547         and     CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
 1548         mvi     SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
 1549 idle_sg_avail:
 1550         /* Does the hardware have space for another SG entry? */
 1551         test    DFSTATUS, PRELOAD_AVAIL jz return;
 1552         /*
 1553          * On the A, preloading a segment before HDMAENACK
 1554          * comes true can clobber the shaddow address of the
 1555          * first segment in the S/G FIFO.  Wait until it is
 1556          * safe to proceed.
 1557          */
 1558         if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
 1559                 test    DFCNTRL, HDMAENACK jz return;
 1560         }
 1561         if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
 1562                 bmov    HADDR, CCSGRAM, 8;
 1563         } else {
 1564                 bmov    HADDR, CCSGRAM, 4;
 1565         }
 1566         bmov    HCNT, CCSGRAM, 3;
 1567         bmov    SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
 1568         if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
 1569                 and     HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
 1570         }
 1571         if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
 1572                 /* Skip 4 bytes of pad. */
 1573                 add     CCSGADDR, 4;
 1574         }
 1575 sg_advance:
 1576         clr     A;                      /* add sizeof(struct scatter) */
 1577         add     SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
 1578         adc     SCB_RESIDUAL_SGPTR[1],A;
 1579         adc     SCB_RESIDUAL_SGPTR[2],A;
 1580         adc     SCB_RESIDUAL_SGPTR[3],A;
 1581         mov     SINDEX, SCB_RESIDUAL_SGPTR[0];
 1582         test    SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
 1583         or      SINDEX, LAST_SEG;
 1584         clr     SG_STATE;
 1585         mov     SG_CACHE_PRE, SINDEX;
 1586         if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
 1587                 /*
 1588                  * Use SCSIENWRDIS so that SCSIEN is never
 1589                  * modified by this operation.
 1590                  */
 1591                 or      DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
 1592         } else {
 1593                 or      DFCNTRL, PRELOADEN|HDMAEN;
 1594         }
 1595         /*
 1596          * Do we have another segment in the cache?
 1597          */
 1598         add     NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
 1599         jnc     return;
 1600         and     SG_STATE, ~SEGS_AVAIL ret;
 1601 
 1602 /*
 1603  * Initialize the DMA address and counter from the SCB.
 1604  */
 1605 load_first_seg:
 1606         bmov    HADDR, SCB_DATAPTR, 11;
 1607         and     REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
 1608         test    SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
 1609         or      REG_ISR, LAST_SEG;
 1610         mov     SG_CACHE_PRE, REG_ISR;
 1611         mvi     DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
 1612         /*
 1613          * Since we've are entering a data phase, we will
 1614          * rely on the SCB_RESID* fields.  Initialize the
 1615          * residual and clear the full residual flag.
 1616          */
 1617         and     SCB_SGPTR[0], ~SG_FULL_RESID;
 1618         bmov    SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
 1619         /* If we need more S/G elements, tell the idle loop */
 1620         test    SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
 1621         mvi     SG_STATE, LOADING_NEEDED ret;
 1622         clr     SG_STATE ret;
 1623 
 1624 p_data_handle_xfer:
 1625         call    setjmp;
 1626         test    SG_STATE, LOADING_NEEDED jnz service_fifo;
 1627 p_data_clear_handler:
 1628         or      LONGJMP_ADDR[1], INVALID_ADDR ret;
 1629 
 1630 p_data:
 1631         test    SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT   jz p_data_allowed;
 1632         SET_SEQINTCODE(PROTO_VIOLATION)
 1633 p_data_allowed:
 1634  
 1635         test    SEQ_FLAGS, DPHASE       jz data_phase_initialize;
 1636 
 1637         /*
 1638          * If we re-enter the data phase after going through another
 1639          * phase, our transfer location has almost certainly been
 1640          * corrupted by the interveining, non-data, transfers.  Ask
 1641          * the host driver to fix us up based on the transfer residual
 1642          * unless we already know that we should be bitbucketing.
 1643          */
 1644         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
 1645         SET_SEQINTCODE(PDATA_REINIT)
 1646         jmp     data_phase_inbounds;
 1647 
 1648 p_data_bitbucket:
 1649         /*
 1650          * Turn on `Bit Bucket' mode, wait until the target takes
 1651          * us to another phase, and then notify the host.
 1652          */
 1653         mov     SAVED_MODE, MODE_PTR;
 1654         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
 1655                 jnz bitbucket_not_m_dff;
 1656         /*
 1657          * Ensure that any FIFO contents are cleared out and the
 1658          * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
 1659          * doesn't discard data already in the FIFO.
 1660          */
 1661         mvi     DFFSXFRCTL, RSTCHN|CLRSHCNT;
 1662         SET_MODE(M_SCSI, M_SCSI)
 1663 bitbucket_not_m_dff:
 1664         or      SXFRCTL1,BITBUCKET;
 1665         /* Wait for non-data phase. */
 1666         test    SCSIPHASE, ~DATA_PHASE_MASK jz .;
 1667         and     SXFRCTL1, ~BITBUCKET;
 1668         RESTORE_MODE(SAVED_MODE)
 1669 SET_SRC_MODE    M_DFF1;
 1670 SET_DST_MODE    M_DFF1;
 1671         SET_SEQINTCODE(DATA_OVERRUN)
 1672         jmp     ITloop;
 1673 
 1674 data_phase_initialize:
 1675         test    SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
 1676         call    load_first_seg;
 1677 data_phase_inbounds:
 1678         /* We have seen a data phase at least once. */
 1679         or      SEQ_FLAGS, DPHASE;
 1680         mov     SAVED_MODE, MODE_PTR;
 1681         test    SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
 1682         call    p_data_handle_xfer;
 1683 data_group_dma_loop:
 1684         /*
 1685          * The transfer is complete if either the last segment
 1686          * completes or the target changes phase.  Both conditions
 1687          * will clear SCSIEN.
 1688          */
 1689         call    idle_loop_service_fifos;
 1690         call    idle_loop_cchan;
 1691         call    idle_loop_gsfifo;
 1692         RESTORE_MODE(SAVED_MODE)
 1693         test    DFCNTRL, SCSIEN jnz data_group_dma_loop;
 1694 
 1695 data_group_dmafinish:
 1696         /*
 1697          * The transfer has terminated either due to a phase
 1698          * change, and/or the completion of the last segment.
 1699          * We have two goals here.  Do as much other work
 1700          * as possible while the data fifo drains on a read
 1701          * and respond as quickly as possible to the standard
 1702          * messages (save data pointers/disconnect and command
 1703          * complete) that usually follow a data phase.
 1704          */
 1705         call    calc_residual;
 1706 
 1707         /*
 1708          * Go ahead and shut down the DMA engine now.
 1709          */
 1710         test    DFCNTRL, DIRECTION jnz data_phase_finish;
 1711 data_group_fifoflush:
 1712         if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
 1713                 or      DFCNTRL, FIFOFLUSH;
 1714         }
 1715         /*
 1716          * We have enabled the auto-ack feature.  This means
 1717          * that the controller may have already transferred
 1718          * some overrun bytes into the data FIFO and acked them
 1719          * on the bus.  The only way to detect this situation is
 1720          * to wait for LAST_SEG_DONE to come true on a completed
 1721          * transfer and then test to see if the data FIFO is
 1722          * non-empty.  We know there is more data yet to transfer
 1723          * if SG_LIST_NULL is not yet set, thus there cannot be
 1724          * an overrun.
 1725          */
 1726         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
 1727         test    SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
 1728         test    DFSTATUS, FIFOEMP jnz data_phase_finish;
 1729         /* Overrun */
 1730         jmp     p_data;
 1731 data_phase_finish:
 1732         /*
 1733          * If the target has left us in data phase, loop through
 1734          * the dma code again.  We will only loop if there is a
 1735          * data overrun.  
 1736          */
 1737         if ((ahd->flags & AHD_TARGETROLE) != 0) {
 1738                 test    SSTAT0, TARGET jnz data_phase_done;
 1739         }
 1740         if ((ahd->flags & AHD_INITIATORROLE) != 0) {
 1741                 test    SSTAT1, REQINIT jz .;
 1742                 test    SCSIPHASE, DATA_PHASE_MASK jnz p_data;
 1743         }
 1744 
 1745 data_phase_done:
 1746         /* Kill off any pending prefetch */
 1747         call    disable_ccsgen;
 1748         or      LONGJMP_ADDR[1], INVALID_ADDR;
 1749 
 1750         if ((ahd->flags & AHD_TARGETROLE) != 0) {
 1751                 test    SEQ_FLAGS, DPHASE_PENDING jz ITloop;
 1752                 /*
 1753                 and     SEQ_FLAGS, ~DPHASE_PENDING;
 1754                  * For data-in phases, wait for any pending acks from the
 1755                  * initiator before changing phase.  We only need to
 1756                  * send Ignore Wide Residue messages for data-in phases.
 1757                 test    DFCNTRL, DIRECTION jz target_ITloop;
 1758                 test    SSTAT1, REQINIT jnz .;
 1759                 test    SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
 1760                 SET_MODE(M_SCSI, M_SCSI)
 1761                 test    NEGCONOPTS, WIDEXFER jz target_ITloop;
 1762                  */
 1763                 /*
 1764                  * Issue an Ignore Wide Residue Message.
 1765                 mvi     P_MESGIN|BSYO call change_phase;
 1766                 mvi     MSG_IGN_WIDE_RESIDUE call target_outb;
 1767                 mvi     1 call target_outb;
 1768                 jmp     target_ITloop;
 1769                  */
 1770         } else {
 1771                 jmp     ITloop;
 1772         }
 1773 
 1774 /*
 1775  * We assume that, even though data may still be
 1776  * transferring to the host, that the SCSI side of
 1777  * the DMA engine is now in a static state.  This
 1778  * allows us to update our notion of where we are
 1779  * in this transfer.
 1780  *
 1781  * If, by chance, we stopped before being able
 1782  * to fetch additional segments for this transfer,
 1783  * yet the last S/G was completely exhausted,
 1784  * call our idle loop until it is able to load
 1785  * another segment.  This will allow us to immediately
 1786  * pickup on the next segment on the next data phase.
 1787  *
 1788  * If we happened to stop on the last segment, then
 1789  * our residual information is still correct from
 1790  * the idle loop and there is no need to perform
 1791  * any fixups.
 1792  */
 1793 residual_before_last_seg:
 1794         test    MDFFSTAT, SHVALID       jnz sgptr_fixup;
 1795         /*
 1796          * Can never happen from an interrupt as the packetized
 1797          * hardware will only interrupt us once SHVALID or
 1798          * LAST_SEG_DONE.
 1799          */
 1800         call    idle_loop_service_fifos;
 1801         RESTORE_MODE(SAVED_MODE)
 1802         /* FALLTHROUGH */
 1803 calc_residual:
 1804         test    SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
 1805         /* Record if we've consumed all S/G entries */
 1806         test    MDFFSTAT, SHVALID       jz . + 2;
 1807         bmov    SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
 1808         or      SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
 1809 
 1810 sgptr_fixup:
 1811         /*
 1812          * Fixup the residual next S/G pointer.  The S/G preload
 1813          * feature of the chip allows us to load two elements
 1814          * in addition to the currently active element.  We
 1815          * store the bottom byte of the next S/G pointer in
 1816          * the SG_CACHE_PTR register so we can restore the
 1817          * correct value when the DMA completes.  If the next
 1818          * sg ptr value has advanced to the point where higher
 1819          * bytes in the address have been affected, fix them
 1820          * too.
 1821          */
 1822         test    SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
 1823         test    SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
 1824         add     SCB_RESIDUAL_SGPTR[1], -1;
 1825         adc     SCB_RESIDUAL_SGPTR[2], -1; 
 1826         adc     SCB_RESIDUAL_SGPTR[3], -1;
 1827 sgptr_fixup_done:
 1828         and     SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
 1829         clr     SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
 1830         bmov    SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
 1831 
 1832 export timer_isr:
 1833         call    issue_cmdcmplt;
 1834         mvi     CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
 1835         if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
 1836                 /*
 1837                  * In H2A4, the mode pointer is not saved
 1838                  * for intvec2, but is restored on iret.
 1839                  * This can lead to the restoration of a
 1840                  * bogus mode ptr.  Manually clear the
 1841                  * intmask bits and do a normal return
 1842                  * to compensate.
 1843                  */
 1844                 and     SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
 1845         } else {
 1846                 or      SEQINTCTL, IRET ret;
 1847         }
 1848 
 1849 export seq_isr:
 1850         if ((ahd->features & AHD_RTI) == 0) {
 1851                 /*
 1852                  * On RevA Silicon, if the target returns us to data-out
 1853                  * after we have already trained for data-out, it is
 1854                  * possible for us to transition the free running clock to
 1855                  * data-valid before the required 100ns P1 setup time (8 P1
 1856                  * assertions in fast-160 mode).  This will only happen if
 1857                  * this L-Q is a continuation of a data transfer for which
 1858                  * we have already prefetched data into our FIFO (LQ/Data
 1859                  * followed by LQ/Data for the same write transaction).
 1860                  * This can cause some target implementations to miss the
 1861                  * first few data transfers on the bus.  We detect this
 1862                  * situation by noticing that this is the first data transfer
 1863                  * after an LQ (LQIWORKONLQ true), that the data transfer is
 1864                  * a continuation of a transfer already setup in our FIFO
 1865                  * (SAVEPTRS interrupt), and that the transaction is a write
 1866                  * (DIRECTION set in DFCNTRL). The delay is performed by
 1867                  * disabling SCSIEN until we see the first REQ from the
 1868                  * target.
 1869                  * 
 1870                  * First instruction in an ISR cannot be a branch on
 1871                  * Rev A.  Snapshot LQISTAT2 so the status is not missed
 1872                  * and deffer the test by one instruction.
 1873                  */
 1874                 mov     REG_ISR, LQISTAT2;
 1875                 test    REG_ISR, LQIWORKONLQ jz main_isr;
 1876                 test    SEQINTSRC, SAVEPTRS  jz main_isr;
 1877                 test    LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
 1878                 /*
 1879                  * Switch to the active FIFO after clearing the snapshot
 1880                  * savepointer in the current FIFO.  We do this so that
 1881                  * a pending CTXTDONE or SAVEPTR is visible in the active
 1882                  * FIFO.  This status is the only way we can detect if we
 1883                  * have lost the race (e.g. host paused us) and our attempts
 1884                  * to disable the channel occurred after all REQs were
 1885                  * already seen and acked (REQINIT never comes true).
 1886                  */
 1887                 mvi     DFFSXFRCTL, CLRCHN;
 1888                 xor     MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
 1889                 test    DFCNTRL, DIRECTION jz interrupt_return;
 1890                 and     DFCNTRL, ~SCSIEN;
 1891 snapshot_wait_data_valid:
 1892                 test    SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return;
 1893                 test    SSTAT1, REQINIT jz snapshot_wait_data_valid;
 1894 snapshot_data_valid:
 1895                 or      DFCNTRL, SCSIEN;
 1896                 or      SEQINTCTL, IRET ret;
 1897 snapshot_saveptr:
 1898                 mvi     DFFSXFRCTL, CLRCHN;
 1899                 or      SEQINTCTL, IRET ret;
 1900 main_isr:
 1901         }
 1902         test    SEQINTSRC, CFG4DATA     jnz cfg4data_intr;
 1903         test    SEQINTSRC, CFG4ISTAT    jnz cfg4istat_intr;
 1904         test    SEQINTSRC, SAVEPTRS     jnz saveptr_intr;
 1905         test    SEQINTSRC, CFG4ICMD     jnz cfg4icmd_intr;
 1906         SET_SEQINTCODE(INVALID_SEQINT)
 1907 
 1908 /*
 1909  * There are two types of save pointers interrupts:
 1910  * The first is a snapshot save pointers where the current FIFO is not
 1911  * active and contains a snapshot of the current poniter information.
 1912  * This happens between packets in a stream for a single L_Q.  Since we
 1913  * are not performing a pointer save, we can safely clear the channel
 1914  * so it can be used for other transactions.  On RTI capable controllers,
 1915  * where snapshots can, and are, disabled, the code to handle this type
 1916  * of snapshot is not active.
 1917  *
 1918  * The second case is a save pointers on an active FIFO which occurs
 1919  * if the target changes to a new L_Q or busfrees/QASes and the transfer
 1920  * has a residual.  This should occur coincident with a ctxtdone.  We
 1921  * disable the interrupt and allow our active routine to handle the
 1922  * save.
 1923  */
 1924 saveptr_intr:
 1925         if ((ahd->features & AHD_RTI) == 0) {
 1926                 test    LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
 1927         }
 1928 saveptr_active_fifo:
 1929         and     SEQIMODE, ~ENSAVEPTRS;
 1930         or      SEQINTCTL, IRET ret;
 1931 
 1932 cfg4data_intr:
 1933         test    SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
 1934         call    load_first_seg;
 1935         call    pkt_handle_xfer;
 1936         inc     SCB_FIFO_USE_COUNT;
 1937 interrupt_return:
 1938         or      SEQINTCTL, IRET ret;
 1939 
 1940 cfg4istat_intr:
 1941         call    freeze_queue;
 1942         add     NONE, -13, SCB_CDB_LEN;
 1943         jnc     cfg4istat_have_sense_addr;
 1944         test    SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
 1945         /*
 1946          * Host sets up address/count and enables transfer.
 1947          */
 1948         SET_SEQINTCODE(CFG4ISTAT_INTR)
 1949         jmp     cfg4istat_setup_handler;
 1950 cfg4istat_have_sense_addr:
 1951         bmov    HADDR, SCB_SENSE_BUSADDR, 4;
 1952         mvi     HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
 1953         mvi     SG_CACHE_PRE, LAST_SEG;
 1954         mvi     DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
 1955 cfg4istat_setup_handler:
 1956         /*
 1957          * Status pkt is transferring to host.
 1958          * Wait in idle loop for transfer to complete.
 1959          * If a command completed before an attempted
 1960          * task management function completed, notify the host.
 1961          */
 1962         test    SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
 1963         SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
 1964 cfg4istat_no_taskmgmt_func:
 1965         call    pkt_handle_status;
 1966         or      SEQINTCTL, IRET ret;
 1967 
 1968 cfg4icmd_intr:
 1969         /*
 1970          * In the case of DMAing a CDB from the host, the normal
 1971          * CDB buffer is formatted with an 8 byte address followed
 1972          * by a 1 byte count.
 1973          */
 1974         bmov    HADDR[0], SCB_HOST_CDB_PTR, 9;
 1975         mvi     SG_CACHE_PRE, LAST_SEG;
 1976         mvi     DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
 1977         call    pkt_handle_cdb;
 1978         or      SEQINTCTL, IRET ret;
 1979 
 1980 /*
 1981  * See if the target has gone on in this context creating an
 1982  * overrun condition.  For the write case, the hardware cannot
 1983  * ack bytes until data are provided.  So, if the target begins
 1984  * another  packet without changing contexts, implying we are
 1985  * not sitting on a packet boundary, we are in an overrun
 1986  * situation.  For the read case, the hardware will continue to
 1987  * ack bytes into the FIFO, and may even ack the last overrun packet
 1988  * into the FIFO.   If the FIFO should become non-empty, we are in
 1989  * a read overrun case.
 1990  */
 1991 #define check_overrun                                                   \
 1992         /* Not on a packet boundary. */                                 \
 1993         test    MDFFSTAT, DLZERO jz pkt_handle_overrun;                 \
 1994         test    DFSTATUS, FIFOEMP jz pkt_handle_overrun
 1995 
 1996 pkt_handle_xfer:
 1997         test    SG_STATE, LOADING_NEEDED jz pkt_last_seg;
 1998         call    setjmp;
 1999         test    SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
 2000         test    SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
 2001         test    SCSISIGO, ATNO jnz . + 2;
 2002         test    SSTAT2, NONPACKREQ jz pkt_service_fifo;
 2003         /*
 2004          * Defer handling of this NONPACKREQ until we
 2005          * can be sure it pertains to this FIFO.  SAVEPTRS
 2006          * will not be asserted if the NONPACKREQ is for us,
 2007          * so we must simulate it if shaddow is valid.  If
 2008          * shaddow is not valid, keep running this FIFO until we
 2009          * have satisfied the transfer by loading segments and
 2010          * waiting for either shaddow valid or last_seg_done.
 2011          */
 2012         test    MDFFSTAT, SHVALID jnz pkt_saveptrs;
 2013 pkt_service_fifo:
 2014         test    SG_STATE, LOADING_NEEDED jnz service_fifo;
 2015 pkt_last_seg:
 2016         call    setjmp;
 2017         test    SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
 2018         test    SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
 2019         test    SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
 2020         test    SCSISIGO, ATNO jnz . + 2;
 2021         test    SSTAT2, NONPACKREQ jz return;
 2022         test    MDFFSTAT, SHVALID jz return;
 2023         /* FALLTHROUGH */
 2024 
 2025 /*
 2026  * Either a SAVEPTRS interrupt condition is pending for this FIFO
 2027  * or we have a pending NONPACKREQ for this FIFO.  We differentiate
 2028  * between the two by capturing the state of the SAVEPTRS interrupt
 2029  * prior to clearing this status and executing the common code for
 2030  * these two cases.
 2031  */
 2032 pkt_saveptrs:
 2033 BEGIN_CRITICAL;
 2034         if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
 2035                 or      DFCNTRL, FIFOFLUSH;
 2036         }
 2037         mov     REG0, SEQINTSRC;
 2038         call    calc_residual;
 2039         call    save_pointers;
 2040         mvi     CLRSEQINTSRC, CLRSAVEPTRS;
 2041         call    disable_ccsgen;
 2042         or      SEQIMODE, ENSAVEPTRS;
 2043         test    DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
 2044         test    DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
 2045         /*
 2046          * Keep a handler around for this FIFO until it drains
 2047          * to the host to guarantee that we don't complete the
 2048          * command to the host before the data arrives.
 2049          */
 2050 pkt_saveptrs_wait_fifoemp:
 2051         call    setjmp;
 2052         test    DFSTATUS, FIFOEMP jz return;
 2053 pkt_saveptrs_check_status:
 2054         or      LONGJMP_ADDR[1], INVALID_ADDR;
 2055         test    REG0, SAVEPTRS jz unexpected_nonpkt_phase;
 2056         dec     SCB_FIFO_USE_COUNT;
 2057         test    SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
 2058         mvi     DFFSXFRCTL, CLRCHN ret;
 2059 
 2060 /*
 2061  * LAST_SEG_DONE status has been seen in the current FIFO.
 2062  * This indicates that all of the allowed data for this
 2063  * command has transferred across the SCSI and host buses.
 2064  * Check for overrun and see if we can complete this command.
 2065  */
 2066 pkt_last_seg_done:
 2067         /*
 2068          * Mark transfer as completed.
 2069          */
 2070         or      SCB_SGPTR, SG_LIST_NULL;
 2071 
 2072         /*
 2073          * Wait for the current context to finish to verify that
 2074          * no overrun condition has occurred.
 2075          */
 2076         test    SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
 2077         call    setjmp;
 2078 pkt_wait_ctxt_done_loop:
 2079         test    SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
 2080         /*
 2081          * A sufficiently large overrun or a NONPACKREQ may
 2082          * prevent CTXTDONE from ever asserting, so we must
 2083          * poll for these statuses too.
 2084          */
 2085         check_overrun;
 2086         test    SSTAT2, NONPACKREQ jz return;
 2087         test    SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
 2088         /* FALLTHROUGH */
 2089 
 2090 pkt_ctxt_done:
 2091         check_overrun;
 2092         or      LONGJMP_ADDR[1], INVALID_ADDR;
 2093         /*
 2094          * If status has been received, it is safe to skip
 2095          * the check to see if another FIFO is active because
 2096          * LAST_SEG_DONE has been observed.  However, we check
 2097          * the FIFO anyway since it costs us only one extra
 2098          * instruction to leverage common code to perform the
 2099          * SCB completion.
 2100          */
 2101         dec     SCB_FIFO_USE_COUNT;
 2102         test    SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
 2103         mvi     DFFSXFRCTL, CLRCHN ret;
 2104 END_CRITICAL;
 2105 
 2106 /*
 2107  * Must wait until CDB xfer is over before issuing the
 2108  * clear channel.
 2109  */
 2110 pkt_handle_cdb:
 2111         call    setjmp;
 2112         test    SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
 2113         or      LONGJMP_ADDR[1], INVALID_ADDR;
 2114         mvi     DFFSXFRCTL, CLRCHN ret;
 2115 
 2116 /*
 2117  * Watch over the status transfer.  Our host sense buffer is
 2118  * large enough to take the maximum allowed status packet.
 2119  * None-the-less, we must still catch and report overruns to
 2120  * the host.  Additionally, properly catch unexpected non-packet
 2121  * phases that are typically caused by CRC errors in status packet
 2122  * transmission.
 2123  */
 2124 pkt_handle_status:
 2125         call    setjmp;
 2126         test    SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
 2127         test    SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
 2128         test    SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
 2129 pkt_status_IU_done:
 2130         if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
 2131                 or      DFCNTRL, FIFOFLUSH;
 2132         }
 2133         test    DFSTATUS, FIFOEMP jz return;
 2134 BEGIN_CRITICAL;
 2135         or      LONGJMP_ADDR[1], INVALID_ADDR;
 2136         mvi     SCB_SCSI_STATUS, STATUS_PKT_SENSE;
 2137         or      SCB_CONTROL, STATUS_RCVD;
 2138         jmp     pkt_complete_scb_if_fifos_idle;
 2139 END_CRITICAL;
 2140 pkt_status_check_overrun:
 2141         /*
 2142          * Status PKT overruns are unceremoniously recovered with a
 2143          * bus reset.  If we've overrun, let the host know so that
 2144          * recovery can be performed.
 2145          *
 2146          * LAST_SEG_DONE has been observed.  If either CTXTDONE or
 2147          * a NONPACKREQ phase change have occurred and the FIFO is
 2148          * empty, there is no overrun.
 2149          */
 2150         test    DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
 2151         test    SEQINTSRC, CTXTDONE jz . + 2;
 2152         test    DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
 2153         test    SCSIPHASE, ~DATA_PHASE_MASK jz return;
 2154         test    DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
 2155 pkt_status_report_overrun:
 2156         SET_SEQINTCODE(STATUS_OVERRUN)
 2157         /* SEQUENCER RESTARTED */
 2158 pkt_status_check_nonpackreq:
 2159         /*
 2160          * CTXTDONE may be held off if a NONPACKREQ is associated with
 2161          * the current context.  If a NONPACKREQ is observed, decide
 2162          * if it is for the current context.  If it is for the current
 2163          * context, we must defer NONPACKREQ processing until all data
 2164          * has transferred to the host.
 2165          */
 2166         test    SCSIPHASE, ~DATA_PHASE_MASK jz return;
 2167         test    SCSISIGO, ATNO jnz . + 2;
 2168         test    SSTAT2, NONPACKREQ jz return;
 2169         test    SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
 2170         test    DFSTATUS, FIFOEMP jz return;
 2171         /*
 2172          * The unexpected nonpkt phase handler assumes that any
 2173          * data channel use will have a FIFO reference count.  It
 2174          * turns out that the status handler doesn't need a refernce
 2175          * count since the status received flag, and thus completion
 2176          * processing, cannot be set until the handler is finished.
 2177          * We increment the count here to make the nonpkt handler
 2178          * happy.
 2179          */
 2180         inc     SCB_FIFO_USE_COUNT;
 2181         /* FALLTHROUGH */
 2182 
 2183 /*
 2184  * Nonpackreq is a polled status.  It can come true in three situations:
 2185  * we have received an L_Q, we have sent one or more L_Qs, or there is no
 2186  * L_Q context associated with this REQ (REQ occurs immediately after a
 2187  * (re)selection).  Routines that know that the context responsible for this
 2188  * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
 2189  * top level idle loop, we exhaust all active contexts prior to determining that
 2190  * we simply do not have the full I_T_L_Q for this phase.
 2191  */
 2192 unexpected_nonpkt_phase_find_ctxt:
 2193         /*
 2194          * This nonpackreq is most likely associated with one of the tags
 2195          * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
 2196          * nonpackreq if we've cleared out the FIFOs and handled any
 2197          * pending SELDO.
 2198          */
 2199 SET_SRC_MODE    M_SCSI;
 2200 SET_DST_MODE    M_SCSI;
 2201         and     A, FIFO1FREE|FIFO0FREE, DFFSTAT;
 2202         cmp     A, FIFO1FREE|FIFO0FREE jne return;
 2203         test    SSTAT0, SELDO jnz return;
 2204         mvi     SCBPTR[1], SCB_LIST_NULL;
 2205 unexpected_nonpkt_phase:
 2206         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
 2207                 jnz unexpected_nonpkt_mode_cleared;
 2208 SET_SRC_MODE    M_DFF0;
 2209 SET_DST_MODE    M_DFF0;
 2210         or      LONGJMP_ADDR[1], INVALID_ADDR;
 2211         dec     SCB_FIFO_USE_COUNT;
 2212         mvi     DFFSXFRCTL, CLRCHN;
 2213 unexpected_nonpkt_mode_cleared:
 2214         mvi     CLRSINT2, CLRNONPACKREQ;
 2215         if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
 2216                 /*
 2217                  * Test to ensure that the bus has not
 2218                  * already gone free prior to clearing
 2219                  * any stale busfree status.  This avoids
 2220                  * a window whereby a busfree just after
 2221                  * a selection could be missed.
 2222                  */
 2223                 test    SCSISIGI, BSYI jz . + 2;
 2224                 mvi     CLRSINT1,CLRBUSFREE;
 2225                 or      SIMODE1, ENBUSFREE;
 2226         }
 2227         test    SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
 2228         SET_SEQINTCODE(ENTERING_NONPACK)
 2229         jmp     ITloop;
 2230 
 2231 illegal_phase:
 2232         SET_SEQINTCODE(ILLEGAL_PHASE)
 2233         jmp     ITloop;
 2234 
 2235 /*
 2236  * We have entered an overrun situation.  If we have working
 2237  * BITBUCKET, flip that on and let the hardware eat any overrun
 2238  * data.  Otherwise use an overrun buffer in the host to simulate
 2239  * BITBUCKET.
 2240  */
 2241 pkt_handle_overrun_inc_use_count:
 2242         inc     SCB_FIFO_USE_COUNT;
 2243 pkt_handle_overrun:
 2244         SET_SEQINTCODE(CFG4OVERRUN)
 2245         call    freeze_queue;
 2246         if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
 2247                 or      DFFSXFRCTL, DFFBITBUCKET;
 2248 SET_SRC_MODE    M_DFF1;
 2249 SET_DST_MODE    M_DFF1;
 2250         } else {
 2251                 call    load_overrun_buf;
 2252                 mvi     DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
 2253         }
 2254         call    setjmp;
 2255         if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
 2256                 test    DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
 2257                 call    load_overrun_buf;
 2258                 or      DFCNTRL, PRELOADEN;
 2259 overrun_load_done:
 2260                 test    SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
 2261         } else {
 2262                 test    DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
 2263         }
 2264         test    SSTAT2, NONPACKREQ jz return;
 2265 pkt_overrun_end:
 2266         or      SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
 2267         test    SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
 2268         dec     SCB_FIFO_USE_COUNT;
 2269         or      LONGJMP_ADDR[1], INVALID_ADDR;
 2270         test    SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
 2271         mvi     DFFSXFRCTL, CLRCHN ret;
 2272 
 2273 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
 2274 load_overrun_buf:
 2275         /*
 2276          * Load a dummy segment if preload space is available.
 2277          */
 2278         mov     HADDR[0], SHARED_DATA_ADDR;
 2279         add     HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
 2280         mov     ACCUM_SAVE, A;
 2281         clr     A;
 2282         adc     HADDR[2], A, SHARED_DATA_ADDR[2];
 2283         adc     HADDR[3], A, SHARED_DATA_ADDR[3];
 2284         mov     A, ACCUM_SAVE;
 2285         bmov    HADDR[4], ALLZEROS, 4;
 2286         /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
 2287         clr     HCNT[0];
 2288         mvi     HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
 2289         clr     HCNT[2] ret;
 2290 }

Cache object: f6c8b08dc014579a865bd1f2de43240f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.