FreeBSD/Linux Kernel Cross Reference
sys/dev/ale/if_ale.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/queue.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/taskqueue.h>
49
50 #include <net/bpf.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 #include <net/if_vlan_var.h>
60
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71
72 #include <machine/bus.h>
73 #include <machine/in_cksum.h>
74
75 #include <dev/ale/if_alereg.h>
76 #include <dev/ale/if_alevar.h>
77
78 /* "device miibus" required. See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80
81 /* For more information about Tx checksum offload issues see ale_encap(). */
82 #define ALE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
83
84 MODULE_DEPEND(ale, pci, 1, 1, 1);
85 MODULE_DEPEND(ale, ether, 1, 1, 1);
86 MODULE_DEPEND(ale, miibus, 1, 1, 1);
87
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
93
94 /*
95 * Devices supported by this driver.
96 */
97 static const struct ale_dev {
98 uint16_t ale_vendorid;
99 uint16_t ale_deviceid;
100 const char *ale_name;
101 } ale_devs[] = {
102 { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
103 "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
104 };
105
106 static int ale_attach(device_t);
107 static int ale_check_boundary(struct ale_softc *);
108 static int ale_detach(device_t);
109 static int ale_dma_alloc(struct ale_softc *);
110 static void ale_dma_free(struct ale_softc *);
111 static void ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
112 static int ale_encap(struct ale_softc *, struct mbuf **);
113 static void ale_get_macaddr(struct ale_softc *);
114 static void ale_init(void *);
115 static void ale_init_locked(struct ale_softc *);
116 static void ale_init_rx_pages(struct ale_softc *);
117 static void ale_init_tx_ring(struct ale_softc *);
118 static void ale_int_task(void *, int);
119 static int ale_intr(void *);
120 static int ale_ioctl(struct ifnet *, u_long, caddr_t);
121 static void ale_mac_config(struct ale_softc *);
122 static int ale_miibus_readreg(device_t, int, int);
123 static void ale_miibus_statchg(device_t);
124 static int ale_miibus_writereg(device_t, int, int, int);
125 static int ale_mediachange(struct ifnet *);
126 static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
127 static void ale_phy_reset(struct ale_softc *);
128 static int ale_probe(device_t);
129 static void ale_reset(struct ale_softc *);
130 static int ale_resume(device_t);
131 static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
132 uint32_t, uint32_t *);
133 static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
134 static int ale_rxeof(struct ale_softc *sc, int);
135 static void ale_rxfilter(struct ale_softc *);
136 static void ale_rxvlan(struct ale_softc *);
137 static void ale_setlinkspeed(struct ale_softc *);
138 static void ale_setwol(struct ale_softc *);
139 static int ale_shutdown(device_t);
140 static void ale_start(struct ifnet *);
141 static void ale_start_locked(struct ifnet *);
142 static void ale_stats_clear(struct ale_softc *);
143 static void ale_stats_update(struct ale_softc *);
144 static void ale_stop(struct ale_softc *);
145 static void ale_stop_mac(struct ale_softc *);
146 static int ale_suspend(device_t);
147 static void ale_sysctl_node(struct ale_softc *);
148 static void ale_tick(void *);
149 static void ale_txeof(struct ale_softc *);
150 static void ale_watchdog(struct ale_softc *);
151 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
152 static int sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
153 static int sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
154
155 static device_method_t ale_methods[] = {
156 /* Device interface. */
157 DEVMETHOD(device_probe, ale_probe),
158 DEVMETHOD(device_attach, ale_attach),
159 DEVMETHOD(device_detach, ale_detach),
160 DEVMETHOD(device_shutdown, ale_shutdown),
161 DEVMETHOD(device_suspend, ale_suspend),
162 DEVMETHOD(device_resume, ale_resume),
163
164 /* MII interface. */
165 DEVMETHOD(miibus_readreg, ale_miibus_readreg),
166 DEVMETHOD(miibus_writereg, ale_miibus_writereg),
167 DEVMETHOD(miibus_statchg, ale_miibus_statchg),
168
169 DEVMETHOD_END
170 };
171
172 static driver_t ale_driver = {
173 "ale",
174 ale_methods,
175 sizeof(struct ale_softc)
176 };
177
178 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
180 nitems(ale_devs));
181 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL);
182
183 static struct resource_spec ale_res_spec_mem[] = {
184 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
185 { -1, 0, 0 }
186 };
187
188 static struct resource_spec ale_irq_spec_legacy[] = {
189 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
190 { -1, 0, 0 }
191 };
192
193 static struct resource_spec ale_irq_spec_msi[] = {
194 { SYS_RES_IRQ, 1, RF_ACTIVE },
195 { -1, 0, 0 }
196 };
197
198 static struct resource_spec ale_irq_spec_msix[] = {
199 { SYS_RES_IRQ, 1, RF_ACTIVE },
200 { -1, 0, 0 }
201 };
202
203 static int
204 ale_miibus_readreg(device_t dev, int phy, int reg)
205 {
206 struct ale_softc *sc;
207 uint32_t v;
208 int i;
209
210 sc = device_get_softc(dev);
211
212 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
213 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
214 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
215 DELAY(5);
216 v = CSR_READ_4(sc, ALE_MDIO);
217 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
218 break;
219 }
220
221 if (i == 0) {
222 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
223 return (0);
224 }
225
226 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
227 }
228
229 static int
230 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
231 {
232 struct ale_softc *sc;
233 uint32_t v;
234 int i;
235
236 sc = device_get_softc(dev);
237
238 CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
239 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
240 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
241 for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
242 DELAY(5);
243 v = CSR_READ_4(sc, ALE_MDIO);
244 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
245 break;
246 }
247
248 if (i == 0)
249 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
250
251 return (0);
252 }
253
254 static void
255 ale_miibus_statchg(device_t dev)
256 {
257 struct ale_softc *sc;
258 struct mii_data *mii;
259 struct ifnet *ifp;
260 uint32_t reg;
261
262 sc = device_get_softc(dev);
263 mii = device_get_softc(sc->ale_miibus);
264 ifp = sc->ale_ifp;
265 if (mii == NULL || ifp == NULL ||
266 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
267 return;
268
269 sc->ale_flags &= ~ALE_FLAG_LINK;
270 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
271 (IFM_ACTIVE | IFM_AVALID)) {
272 switch (IFM_SUBTYPE(mii->mii_media_active)) {
273 case IFM_10_T:
274 case IFM_100_TX:
275 sc->ale_flags |= ALE_FLAG_LINK;
276 break;
277 case IFM_1000_T:
278 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
279 sc->ale_flags |= ALE_FLAG_LINK;
280 break;
281 default:
282 break;
283 }
284 }
285
286 /* Stop Rx/Tx MACs. */
287 ale_stop_mac(sc);
288
289 /* Program MACs with resolved speed/duplex/flow-control. */
290 if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
291 ale_mac_config(sc);
292 /* Reenable Tx/Rx MACs. */
293 reg = CSR_READ_4(sc, ALE_MAC_CFG);
294 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
295 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
296 }
297 }
298
299 static void
300 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
301 {
302 struct ale_softc *sc;
303 struct mii_data *mii;
304
305 sc = ifp->if_softc;
306 ALE_LOCK(sc);
307 if ((ifp->if_flags & IFF_UP) == 0) {
308 ALE_UNLOCK(sc);
309 return;
310 }
311 mii = device_get_softc(sc->ale_miibus);
312
313 mii_pollstat(mii);
314 ifmr->ifm_status = mii->mii_media_status;
315 ifmr->ifm_active = mii->mii_media_active;
316 ALE_UNLOCK(sc);
317 }
318
319 static int
320 ale_mediachange(struct ifnet *ifp)
321 {
322 struct ale_softc *sc;
323 struct mii_data *mii;
324 struct mii_softc *miisc;
325 int error;
326
327 sc = ifp->if_softc;
328 ALE_LOCK(sc);
329 mii = device_get_softc(sc->ale_miibus);
330 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
331 PHY_RESET(miisc);
332 error = mii_mediachg(mii);
333 ALE_UNLOCK(sc);
334
335 return (error);
336 }
337
338 static int
339 ale_probe(device_t dev)
340 {
341 const struct ale_dev *sp;
342 int i;
343 uint16_t vendor, devid;
344
345 vendor = pci_get_vendor(dev);
346 devid = pci_get_device(dev);
347 sp = ale_devs;
348 for (i = 0; i < nitems(ale_devs); i++) {
349 if (vendor == sp->ale_vendorid &&
350 devid == sp->ale_deviceid) {
351 device_set_desc(dev, sp->ale_name);
352 return (BUS_PROBE_DEFAULT);
353 }
354 sp++;
355 }
356
357 return (ENXIO);
358 }
359
360 static void
361 ale_get_macaddr(struct ale_softc *sc)
362 {
363 uint32_t ea[2], reg;
364 int i, vpdc;
365
366 reg = CSR_READ_4(sc, ALE_SPI_CTRL);
367 if ((reg & SPI_VPD_ENB) != 0) {
368 reg &= ~SPI_VPD_ENB;
369 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
370 }
371
372 if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
373 /*
374 * PCI VPD capability found, let TWSI reload EEPROM.
375 * This will set ethernet address of controller.
376 */
377 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
378 TWSI_CTRL_SW_LD_START);
379 for (i = 100; i > 0; i--) {
380 DELAY(1000);
381 reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
382 if ((reg & TWSI_CTRL_SW_LD_START) == 0)
383 break;
384 }
385 if (i == 0)
386 device_printf(sc->ale_dev,
387 "reloading EEPROM timeout!\n");
388 } else {
389 if (bootverbose)
390 device_printf(sc->ale_dev,
391 "PCI VPD capability not found!\n");
392 }
393
394 ea[0] = CSR_READ_4(sc, ALE_PAR0);
395 ea[1] = CSR_READ_4(sc, ALE_PAR1);
396 sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
397 sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
398 sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
399 sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
400 sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
401 sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
402 }
403
404 static void
405 ale_phy_reset(struct ale_softc *sc)
406 {
407
408 /* Reset magic from Linux. */
409 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
410 GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
411 GPHY_CTRL_PHY_PLL_ON);
412 DELAY(1000);
413 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
414 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
415 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
416 DELAY(1000);
417
418 #define ATPHY_DBG_ADDR 0x1D
419 #define ATPHY_DBG_DATA 0x1E
420
421 /* Enable hibernation mode. */
422 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
423 ATPHY_DBG_ADDR, 0x0B);
424 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
425 ATPHY_DBG_DATA, 0xBC00);
426 /* Set Class A/B for all modes. */
427 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
428 ATPHY_DBG_ADDR, 0x00);
429 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
430 ATPHY_DBG_DATA, 0x02EF);
431 /* Enable 10BT power saving. */
432 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
433 ATPHY_DBG_ADDR, 0x12);
434 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
435 ATPHY_DBG_DATA, 0x4C04);
436 /* Adjust 1000T power. */
437 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
438 ATPHY_DBG_ADDR, 0x04);
439 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
440 ATPHY_DBG_ADDR, 0x8BBB);
441 /* 10BT center tap voltage. */
442 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
443 ATPHY_DBG_ADDR, 0x05);
444 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
445 ATPHY_DBG_ADDR, 0x2C46);
446
447 #undef ATPHY_DBG_ADDR
448 #undef ATPHY_DBG_DATA
449 DELAY(1000);
450 }
451
452 static int
453 ale_attach(device_t dev)
454 {
455 struct ale_softc *sc;
456 struct ifnet *ifp;
457 uint16_t burst;
458 int error, i, msic, msixc, pmc;
459 uint32_t rxf_len, txf_len;
460
461 error = 0;
462 sc = device_get_softc(dev);
463 sc->ale_dev = dev;
464
465 mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
466 MTX_DEF);
467 callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
468 NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
469
470 /* Map the device. */
471 pci_enable_busmaster(dev);
472 sc->ale_res_spec = ale_res_spec_mem;
473 sc->ale_irq_spec = ale_irq_spec_legacy;
474 error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
475 if (error != 0) {
476 device_printf(dev, "cannot allocate memory resources.\n");
477 goto fail;
478 }
479
480 /* Set PHY address. */
481 sc->ale_phyaddr = ALE_PHY_ADDR;
482
483 /* Reset PHY. */
484 ale_phy_reset(sc);
485
486 /* Reset the ethernet controller. */
487 ale_reset(sc);
488
489 /* Get PCI and chip id/revision. */
490 sc->ale_rev = pci_get_revid(dev);
491 if (sc->ale_rev >= 0xF0) {
492 /* L2E Rev. B. AR8114 */
493 sc->ale_flags |= ALE_FLAG_FASTETHER;
494 } else {
495 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
496 /* L1E AR8121 */
497 sc->ale_flags |= ALE_FLAG_JUMBO;
498 } else {
499 /* L2E Rev. A. AR8113 */
500 sc->ale_flags |= ALE_FLAG_FASTETHER;
501 }
502 }
503 /*
504 * All known controllers seems to require 4 bytes alignment
505 * of Tx buffers to make Tx checksum offload with custom
506 * checksum generation method work.
507 */
508 sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
509 /*
510 * All known controllers seems to have issues on Rx checksum
511 * offload for fragmented IP datagrams.
512 */
513 sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
514 /*
515 * Don't use Tx CMB. It is known to cause RRS update failure
516 * under certain circumstances. Typical phenomenon of the
517 * issue would be unexpected sequence number encountered in
518 * Rx handler.
519 */
520 sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
521 sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
522 MASTER_CHIP_REV_SHIFT;
523 if (bootverbose) {
524 device_printf(dev, "PCI device revision : 0x%04x\n",
525 sc->ale_rev);
526 device_printf(dev, "Chip id/revision : 0x%04x\n",
527 sc->ale_chip_rev);
528 }
529 txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
530 rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
531 /*
532 * Uninitialized hardware returns an invalid chip id/revision
533 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
534 */
535 if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
536 rxf_len == 0xFFFFFFF) {
537 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
538 "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
539 txf_len, rxf_len);
540 error = ENXIO;
541 goto fail;
542 }
543 device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
544
545 /* Allocate IRQ resources. */
546 msixc = pci_msix_count(dev);
547 msic = pci_msi_count(dev);
548 if (bootverbose) {
549 device_printf(dev, "MSIX count : %d\n", msixc);
550 device_printf(dev, "MSI count : %d\n", msic);
551 }
552
553 /* Prefer MSIX over MSI. */
554 if (msix_disable == 0 || msi_disable == 0) {
555 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
556 pci_alloc_msix(dev, &msixc) == 0) {
557 if (msixc == ALE_MSIX_MESSAGES) {
558 device_printf(dev, "Using %d MSIX messages.\n",
559 msixc);
560 sc->ale_flags |= ALE_FLAG_MSIX;
561 sc->ale_irq_spec = ale_irq_spec_msix;
562 } else
563 pci_release_msi(dev);
564 }
565 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
566 msic == ALE_MSI_MESSAGES &&
567 pci_alloc_msi(dev, &msic) == 0) {
568 if (msic == ALE_MSI_MESSAGES) {
569 device_printf(dev, "Using %d MSI messages.\n",
570 msic);
571 sc->ale_flags |= ALE_FLAG_MSI;
572 sc->ale_irq_spec = ale_irq_spec_msi;
573 } else
574 pci_release_msi(dev);
575 }
576 }
577
578 error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
579 if (error != 0) {
580 device_printf(dev, "cannot allocate IRQ resources.\n");
581 goto fail;
582 }
583
584 /* Get DMA parameters from PCIe device control register. */
585 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
586 sc->ale_flags |= ALE_FLAG_PCIE;
587 burst = pci_read_config(dev, i + 0x08, 2);
588 /* Max read request size. */
589 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
590 DMA_CFG_RD_BURST_SHIFT;
591 /* Max payload size. */
592 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
593 DMA_CFG_WR_BURST_SHIFT;
594 if (bootverbose) {
595 device_printf(dev, "Read request size : %d bytes.\n",
596 128 << ((burst >> 12) & 0x07));
597 device_printf(dev, "TLP payload size : %d bytes.\n",
598 128 << ((burst >> 5) & 0x07));
599 }
600 } else {
601 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
602 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
603 }
604
605 /* Create device sysctl node. */
606 ale_sysctl_node(sc);
607
608 if ((error = ale_dma_alloc(sc)) != 0)
609 goto fail;
610
611 /* Load station address. */
612 ale_get_macaddr(sc);
613
614 ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
615 if (ifp == NULL) {
616 device_printf(dev, "cannot allocate ifnet structure.\n");
617 error = ENXIO;
618 goto fail;
619 }
620
621 ifp->if_softc = sc;
622 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
623 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
624 ifp->if_ioctl = ale_ioctl;
625 ifp->if_start = ale_start;
626 ifp->if_init = ale_init;
627 ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
628 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
629 IFQ_SET_READY(&ifp->if_snd);
630 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
631 ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
632 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
633 sc->ale_flags |= ALE_FLAG_PMCAP;
634 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
635 }
636 ifp->if_capenable = ifp->if_capabilities;
637
638 /* Set up MII bus. */
639 error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
640 ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
641 MIIF_DOPAUSE);
642 if (error != 0) {
643 device_printf(dev, "attaching PHYs failed\n");
644 goto fail;
645 }
646
647 ether_ifattach(ifp, sc->ale_eaddr);
648
649 /* VLAN capability setup. */
650 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
651 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
652 ifp->if_capenable = ifp->if_capabilities;
653 /*
654 * Even though controllers supported by ale(3) have Rx checksum
655 * offload bug the workaround for fragmented frames seemed to
656 * work so far. However it seems Rx checksum offload does not
657 * work under certain conditions. So disable Rx checksum offload
658 * until I find more clue about it but allow users to override it.
659 */
660 ifp->if_capenable &= ~IFCAP_RXCSUM;
661
662 /* Tell the upper layer(s) we support long frames. */
663 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
664
665 /* Create local taskq. */
666 sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
667 taskqueue_thread_enqueue, &sc->ale_tq);
668 if (sc->ale_tq == NULL) {
669 device_printf(dev, "could not create taskqueue.\n");
670 ether_ifdetach(ifp);
671 error = ENXIO;
672 goto fail;
673 }
674 taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
675 device_get_nameunit(sc->ale_dev));
676
677 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
678 msic = ALE_MSIX_MESSAGES;
679 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
680 msic = ALE_MSI_MESSAGES;
681 else
682 msic = 1;
683 for (i = 0; i < msic; i++) {
684 error = bus_setup_intr(dev, sc->ale_irq[i],
685 INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
686 &sc->ale_intrhand[i]);
687 if (error != 0)
688 break;
689 }
690 if (error != 0) {
691 device_printf(dev, "could not set up interrupt handler.\n");
692 taskqueue_free(sc->ale_tq);
693 sc->ale_tq = NULL;
694 ether_ifdetach(ifp);
695 goto fail;
696 }
697
698 fail:
699 if (error != 0)
700 ale_detach(dev);
701
702 return (error);
703 }
704
705 static int
706 ale_detach(device_t dev)
707 {
708 struct ale_softc *sc;
709 struct ifnet *ifp;
710 int i, msic;
711
712 sc = device_get_softc(dev);
713
714 ifp = sc->ale_ifp;
715 if (device_is_attached(dev)) {
716 ether_ifdetach(ifp);
717 ALE_LOCK(sc);
718 ale_stop(sc);
719 ALE_UNLOCK(sc);
720 callout_drain(&sc->ale_tick_ch);
721 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
722 }
723
724 if (sc->ale_tq != NULL) {
725 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
726 taskqueue_free(sc->ale_tq);
727 sc->ale_tq = NULL;
728 }
729
730 if (sc->ale_miibus != NULL) {
731 device_delete_child(dev, sc->ale_miibus);
732 sc->ale_miibus = NULL;
733 }
734 bus_generic_detach(dev);
735 ale_dma_free(sc);
736
737 if (ifp != NULL) {
738 if_free(ifp);
739 sc->ale_ifp = NULL;
740 }
741
742 if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
743 msic = ALE_MSIX_MESSAGES;
744 else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
745 msic = ALE_MSI_MESSAGES;
746 else
747 msic = 1;
748 for (i = 0; i < msic; i++) {
749 if (sc->ale_intrhand[i] != NULL) {
750 bus_teardown_intr(dev, sc->ale_irq[i],
751 sc->ale_intrhand[i]);
752 sc->ale_intrhand[i] = NULL;
753 }
754 }
755
756 bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
757 if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
758 pci_release_msi(dev);
759 bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
760 mtx_destroy(&sc->ale_mtx);
761
762 return (0);
763 }
764
765 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
766 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
767
768 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
769 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
770
771 static void
772 ale_sysctl_node(struct ale_softc *sc)
773 {
774 struct sysctl_ctx_list *ctx;
775 struct sysctl_oid_list *child, *parent;
776 struct sysctl_oid *tree;
777 struct ale_hw_stats *stats;
778 int error;
779
780 stats = &sc->ale_stats;
781 ctx = device_get_sysctl_ctx(sc->ale_dev);
782 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
783
784 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
785 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
786 0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
787 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
788 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
789 0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
790 /* Pull in device tunables. */
791 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
792 error = resource_int_value(device_get_name(sc->ale_dev),
793 device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
794 if (error == 0) {
795 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
796 sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
797 device_printf(sc->ale_dev, "int_rx_mod value out of "
798 "range; using default: %d\n",
799 ALE_IM_RX_TIMER_DEFAULT);
800 sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
801 }
802 }
803 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
804 error = resource_int_value(device_get_name(sc->ale_dev),
805 device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
806 if (error == 0) {
807 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
808 sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
809 device_printf(sc->ale_dev, "int_tx_mod value out of "
810 "range; using default: %d\n",
811 ALE_IM_TX_TIMER_DEFAULT);
812 sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
813 }
814 }
815 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
816 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
817 &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
818 "max number of Rx events to process");
819 /* Pull in device tunables. */
820 sc->ale_process_limit = ALE_PROC_DEFAULT;
821 error = resource_int_value(device_get_name(sc->ale_dev),
822 device_get_unit(sc->ale_dev), "process_limit",
823 &sc->ale_process_limit);
824 if (error == 0) {
825 if (sc->ale_process_limit < ALE_PROC_MIN ||
826 sc->ale_process_limit > ALE_PROC_MAX) {
827 device_printf(sc->ale_dev,
828 "process_limit value out of range; "
829 "using default: %d\n", ALE_PROC_DEFAULT);
830 sc->ale_process_limit = ALE_PROC_DEFAULT;
831 }
832 }
833
834 /* Misc statistics. */
835 ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
836 &stats->reset_brk_seq,
837 "Controller resets due to broken Rx sequnce number");
838
839 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
840 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
841 parent = SYSCTL_CHILDREN(tree);
842
843 /* Rx statistics. */
844 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
846 child = SYSCTL_CHILDREN(tree);
847 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
848 &stats->rx_frames, "Good frames");
849 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
850 &stats->rx_bcast_frames, "Good broadcast frames");
851 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
852 &stats->rx_mcast_frames, "Good multicast frames");
853 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
854 &stats->rx_pause_frames, "Pause control frames");
855 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
856 &stats->rx_control_frames, "Control frames");
857 ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
858 &stats->rx_crcerrs, "CRC errors");
859 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
860 &stats->rx_lenerrs, "Frames with length mismatched");
861 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
862 &stats->rx_bytes, "Good octets");
863 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
864 &stats->rx_bcast_bytes, "Good broadcast octets");
865 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
866 &stats->rx_mcast_bytes, "Good multicast octets");
867 ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
868 &stats->rx_runts, "Too short frames");
869 ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
870 &stats->rx_fragments, "Fragmented frames");
871 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
872 &stats->rx_pkts_64, "64 bytes frames");
873 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
874 &stats->rx_pkts_65_127, "65 to 127 bytes frames");
875 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
876 &stats->rx_pkts_128_255, "128 to 255 bytes frames");
877 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
878 &stats->rx_pkts_256_511, "256 to 511 bytes frames");
879 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
880 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
881 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
882 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
883 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
884 &stats->rx_pkts_1519_max, "1519 to max frames");
885 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
886 &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
887 ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
888 &stats->rx_fifo_oflows, "FIFO overflows");
889 ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
890 &stats->rx_rrs_errs, "Return status write-back errors");
891 ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
892 &stats->rx_alignerrs, "Alignment errors");
893 ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
894 &stats->rx_pkts_filtered,
895 "Frames dropped due to address filtering");
896
897 /* Tx statistics. */
898 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
899 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
900 child = SYSCTL_CHILDREN(tree);
901 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
902 &stats->tx_frames, "Good frames");
903 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
904 &stats->tx_bcast_frames, "Good broadcast frames");
905 ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
906 &stats->tx_mcast_frames, "Good multicast frames");
907 ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
908 &stats->tx_pause_frames, "Pause control frames");
909 ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
910 &stats->tx_control_frames, "Control frames");
911 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
912 &stats->tx_excess_defer, "Frames with excessive derferrals");
913 ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
914 &stats->tx_excess_defer, "Frames with derferrals");
915 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
916 &stats->tx_bytes, "Good octets");
917 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
918 &stats->tx_bcast_bytes, "Good broadcast octets");
919 ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
920 &stats->tx_mcast_bytes, "Good multicast octets");
921 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
922 &stats->tx_pkts_64, "64 bytes frames");
923 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
924 &stats->tx_pkts_65_127, "65 to 127 bytes frames");
925 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
926 &stats->tx_pkts_128_255, "128 to 255 bytes frames");
927 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
928 &stats->tx_pkts_256_511, "256 to 511 bytes frames");
929 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
930 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
931 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
932 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
933 ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
934 &stats->tx_pkts_1519_max, "1519 to max frames");
935 ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
936 &stats->tx_single_colls, "Single collisions");
937 ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
938 &stats->tx_multi_colls, "Multiple collisions");
939 ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
940 &stats->tx_late_colls, "Late collisions");
941 ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
942 &stats->tx_excess_colls, "Excessive collisions");
943 ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
944 &stats->tx_underrun, "FIFO underruns");
945 ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
946 &stats->tx_desc_underrun, "Descriptor write-back errors");
947 ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
948 &stats->tx_lenerrs, "Frames with length mismatched");
949 ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
950 &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
951 }
952
953 #undef ALE_SYSCTL_STAT_ADD32
954 #undef ALE_SYSCTL_STAT_ADD64
955
956 struct ale_dmamap_arg {
957 bus_addr_t ale_busaddr;
958 };
959
960 static void
961 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
962 {
963 struct ale_dmamap_arg *ctx;
964
965 if (error != 0)
966 return;
967
968 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
969
970 ctx = (struct ale_dmamap_arg *)arg;
971 ctx->ale_busaddr = segs[0].ds_addr;
972 }
973
974 /*
975 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
976 * which specifies high address region of DMA blocks. Therefore these
977 * blocks should have the same high address of given 4GB address
978 * space(i.e. crossing 4GB boundary is not allowed).
979 */
980 static int
981 ale_check_boundary(struct ale_softc *sc)
982 {
983 bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
984 bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
985
986 rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
987 sc->ale_pagesize;
988 rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
989 sc->ale_pagesize;
990 tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
991 tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
992 rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
993 rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
994
995 if ((ALE_ADDR_HI(tx_ring_end) !=
996 ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
997 (ALE_ADDR_HI(rx_page_end[0]) !=
998 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
999 (ALE_ADDR_HI(rx_page_end[1]) !=
1000 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
1001 (ALE_ADDR_HI(tx_cmb_end) !=
1002 ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
1003 (ALE_ADDR_HI(rx_cmb_end[0]) !=
1004 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
1005 (ALE_ADDR_HI(rx_cmb_end[1]) !=
1006 ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
1007 return (EFBIG);
1008
1009 if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
1010 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
1011 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
1012 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
1013 (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
1014 return (EFBIG);
1015
1016 return (0);
1017 }
1018
1019 static int
1020 ale_dma_alloc(struct ale_softc *sc)
1021 {
1022 struct ale_txdesc *txd;
1023 bus_addr_t lowaddr;
1024 struct ale_dmamap_arg ctx;
1025 int error, guard_size, i;
1026
1027 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1028 guard_size = ALE_JUMBO_FRAMELEN;
1029 else
1030 guard_size = ALE_MAX_FRAMELEN;
1031 sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1032 ALE_RX_PAGE_ALIGN);
1033 lowaddr = BUS_SPACE_MAXADDR;
1034 again:
1035 /* Create parent DMA tag. */
1036 error = bus_dma_tag_create(
1037 bus_get_dma_tag(sc->ale_dev), /* parent */
1038 1, 0, /* alignment, boundary */
1039 lowaddr, /* lowaddr */
1040 BUS_SPACE_MAXADDR, /* highaddr */
1041 NULL, NULL, /* filter, filterarg */
1042 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1043 0, /* nsegments */
1044 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1045 0, /* flags */
1046 NULL, NULL, /* lockfunc, lockarg */
1047 &sc->ale_cdata.ale_parent_tag);
1048 if (error != 0) {
1049 device_printf(sc->ale_dev,
1050 "could not create parent DMA tag.\n");
1051 goto fail;
1052 }
1053
1054 /* Create DMA tag for Tx descriptor ring. */
1055 error = bus_dma_tag_create(
1056 sc->ale_cdata.ale_parent_tag, /* parent */
1057 ALE_TX_RING_ALIGN, 0, /* alignment, boundary */
1058 BUS_SPACE_MAXADDR, /* lowaddr */
1059 BUS_SPACE_MAXADDR, /* highaddr */
1060 NULL, NULL, /* filter, filterarg */
1061 ALE_TX_RING_SZ, /* maxsize */
1062 1, /* nsegments */
1063 ALE_TX_RING_SZ, /* maxsegsize */
1064 0, /* flags */
1065 NULL, NULL, /* lockfunc, lockarg */
1066 &sc->ale_cdata.ale_tx_ring_tag);
1067 if (error != 0) {
1068 device_printf(sc->ale_dev,
1069 "could not create Tx ring DMA tag.\n");
1070 goto fail;
1071 }
1072
1073 /* Create DMA tag for Rx pages. */
1074 for (i = 0; i < ALE_RX_PAGES; i++) {
1075 error = bus_dma_tag_create(
1076 sc->ale_cdata.ale_parent_tag, /* parent */
1077 ALE_RX_PAGE_ALIGN, 0, /* alignment, boundary */
1078 BUS_SPACE_MAXADDR, /* lowaddr */
1079 BUS_SPACE_MAXADDR, /* highaddr */
1080 NULL, NULL, /* filter, filterarg */
1081 sc->ale_pagesize, /* maxsize */
1082 1, /* nsegments */
1083 sc->ale_pagesize, /* maxsegsize */
1084 0, /* flags */
1085 NULL, NULL, /* lockfunc, lockarg */
1086 &sc->ale_cdata.ale_rx_page[i].page_tag);
1087 if (error != 0) {
1088 device_printf(sc->ale_dev,
1089 "could not create Rx page %d DMA tag.\n", i);
1090 goto fail;
1091 }
1092 }
1093
1094 /* Create DMA tag for Tx coalescing message block. */
1095 error = bus_dma_tag_create(
1096 sc->ale_cdata.ale_parent_tag, /* parent */
1097 ALE_CMB_ALIGN, 0, /* alignment, boundary */
1098 BUS_SPACE_MAXADDR, /* lowaddr */
1099 BUS_SPACE_MAXADDR, /* highaddr */
1100 NULL, NULL, /* filter, filterarg */
1101 ALE_TX_CMB_SZ, /* maxsize */
1102 1, /* nsegments */
1103 ALE_TX_CMB_SZ, /* maxsegsize */
1104 0, /* flags */
1105 NULL, NULL, /* lockfunc, lockarg */
1106 &sc->ale_cdata.ale_tx_cmb_tag);
1107 if (error != 0) {
1108 device_printf(sc->ale_dev,
1109 "could not create Tx CMB DMA tag.\n");
1110 goto fail;
1111 }
1112
1113 /* Create DMA tag for Rx coalescing message block. */
1114 for (i = 0; i < ALE_RX_PAGES; i++) {
1115 error = bus_dma_tag_create(
1116 sc->ale_cdata.ale_parent_tag, /* parent */
1117 ALE_CMB_ALIGN, 0, /* alignment, boundary */
1118 BUS_SPACE_MAXADDR, /* lowaddr */
1119 BUS_SPACE_MAXADDR, /* highaddr */
1120 NULL, NULL, /* filter, filterarg */
1121 ALE_RX_CMB_SZ, /* maxsize */
1122 1, /* nsegments */
1123 ALE_RX_CMB_SZ, /* maxsegsize */
1124 0, /* flags */
1125 NULL, NULL, /* lockfunc, lockarg */
1126 &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1127 if (error != 0) {
1128 device_printf(sc->ale_dev,
1129 "could not create Rx page %d CMB DMA tag.\n", i);
1130 goto fail;
1131 }
1132 }
1133
1134 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
1135 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1136 (void **)&sc->ale_cdata.ale_tx_ring,
1137 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1138 &sc->ale_cdata.ale_tx_ring_map);
1139 if (error != 0) {
1140 device_printf(sc->ale_dev,
1141 "could not allocate DMA'able memory for Tx ring.\n");
1142 goto fail;
1143 }
1144 ctx.ale_busaddr = 0;
1145 error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1146 sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1147 ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1148 if (error != 0 || ctx.ale_busaddr == 0) {
1149 device_printf(sc->ale_dev,
1150 "could not load DMA'able memory for Tx ring.\n");
1151 goto fail;
1152 }
1153 sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1154
1155 /* Rx pages. */
1156 for (i = 0; i < ALE_RX_PAGES; i++) {
1157 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1158 (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1159 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1160 &sc->ale_cdata.ale_rx_page[i].page_map);
1161 if (error != 0) {
1162 device_printf(sc->ale_dev,
1163 "could not allocate DMA'able memory for "
1164 "Rx page %d.\n", i);
1165 goto fail;
1166 }
1167 ctx.ale_busaddr = 0;
1168 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1169 sc->ale_cdata.ale_rx_page[i].page_map,
1170 sc->ale_cdata.ale_rx_page[i].page_addr,
1171 sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1172 if (error != 0 || ctx.ale_busaddr == 0) {
1173 device_printf(sc->ale_dev,
1174 "could not load DMA'able memory for "
1175 "Rx page %d.\n", i);
1176 goto fail;
1177 }
1178 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1179 }
1180
1181 /* Tx CMB. */
1182 error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1183 (void **)&sc->ale_cdata.ale_tx_cmb,
1184 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1185 &sc->ale_cdata.ale_tx_cmb_map);
1186 if (error != 0) {
1187 device_printf(sc->ale_dev,
1188 "could not allocate DMA'able memory for Tx CMB.\n");
1189 goto fail;
1190 }
1191 ctx.ale_busaddr = 0;
1192 error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1193 sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1194 ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1195 if (error != 0 || ctx.ale_busaddr == 0) {
1196 device_printf(sc->ale_dev,
1197 "could not load DMA'able memory for Tx CMB.\n");
1198 goto fail;
1199 }
1200 sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1201
1202 /* Rx CMB. */
1203 for (i = 0; i < ALE_RX_PAGES; i++) {
1204 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1205 (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1206 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1207 &sc->ale_cdata.ale_rx_page[i].cmb_map);
1208 if (error != 0) {
1209 device_printf(sc->ale_dev, "could not allocate "
1210 "DMA'able memory for Rx page %d CMB.\n", i);
1211 goto fail;
1212 }
1213 ctx.ale_busaddr = 0;
1214 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1215 sc->ale_cdata.ale_rx_page[i].cmb_map,
1216 sc->ale_cdata.ale_rx_page[i].cmb_addr,
1217 ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1218 if (error != 0 || ctx.ale_busaddr == 0) {
1219 device_printf(sc->ale_dev, "could not load DMA'able "
1220 "memory for Rx page %d CMB.\n", i);
1221 goto fail;
1222 }
1223 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1224 }
1225
1226 /*
1227 * Tx descriptors/RXF0/CMB DMA blocks share the same
1228 * high address region of 64bit DMA address space.
1229 */
1230 if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1231 (error = ale_check_boundary(sc)) != 0) {
1232 device_printf(sc->ale_dev, "4GB boundary crossed, "
1233 "switching to 32bit DMA addressing mode.\n");
1234 ale_dma_free(sc);
1235 /*
1236 * Limit max allowable DMA address space to 32bit
1237 * and try again.
1238 */
1239 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1240 goto again;
1241 }
1242
1243 /*
1244 * Create Tx buffer parent tag.
1245 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1246 * needs separate parent DMA tag as parent DMA address space
1247 * could be restricted to be within 32bit address space by
1248 * 4GB boundary crossing.
1249 */
1250 error = bus_dma_tag_create(
1251 bus_get_dma_tag(sc->ale_dev), /* parent */
1252 1, 0, /* alignment, boundary */
1253 BUS_SPACE_MAXADDR, /* lowaddr */
1254 BUS_SPACE_MAXADDR, /* highaddr */
1255 NULL, NULL, /* filter, filterarg */
1256 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1257 0, /* nsegments */
1258 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1259 0, /* flags */
1260 NULL, NULL, /* lockfunc, lockarg */
1261 &sc->ale_cdata.ale_buffer_tag);
1262 if (error != 0) {
1263 device_printf(sc->ale_dev,
1264 "could not create parent buffer DMA tag.\n");
1265 goto fail;
1266 }
1267
1268 /* Create DMA tag for Tx buffers. */
1269 error = bus_dma_tag_create(
1270 sc->ale_cdata.ale_buffer_tag, /* parent */
1271 1, 0, /* alignment, boundary */
1272 BUS_SPACE_MAXADDR, /* lowaddr */
1273 BUS_SPACE_MAXADDR, /* highaddr */
1274 NULL, NULL, /* filter, filterarg */
1275 ALE_TSO_MAXSIZE, /* maxsize */
1276 ALE_MAXTXSEGS, /* nsegments */
1277 ALE_TSO_MAXSEGSIZE, /* maxsegsize */
1278 0, /* flags */
1279 NULL, NULL, /* lockfunc, lockarg */
1280 &sc->ale_cdata.ale_tx_tag);
1281 if (error != 0) {
1282 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1283 goto fail;
1284 }
1285
1286 /* Create DMA maps for Tx buffers. */
1287 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1288 txd = &sc->ale_cdata.ale_txdesc[i];
1289 txd->tx_m = NULL;
1290 txd->tx_dmamap = NULL;
1291 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1292 &txd->tx_dmamap);
1293 if (error != 0) {
1294 device_printf(sc->ale_dev,
1295 "could not create Tx dmamap.\n");
1296 goto fail;
1297 }
1298 }
1299
1300 fail:
1301 return (error);
1302 }
1303
1304 static void
1305 ale_dma_free(struct ale_softc *sc)
1306 {
1307 struct ale_txdesc *txd;
1308 int i;
1309
1310 /* Tx buffers. */
1311 if (sc->ale_cdata.ale_tx_tag != NULL) {
1312 for (i = 0; i < ALE_TX_RING_CNT; i++) {
1313 txd = &sc->ale_cdata.ale_txdesc[i];
1314 if (txd->tx_dmamap != NULL) {
1315 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1316 txd->tx_dmamap);
1317 txd->tx_dmamap = NULL;
1318 }
1319 }
1320 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1321 sc->ale_cdata.ale_tx_tag = NULL;
1322 }
1323 /* Tx descriptor ring. */
1324 if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1325 if (sc->ale_cdata.ale_tx_ring_paddr != 0)
1326 bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1327 sc->ale_cdata.ale_tx_ring_map);
1328 if (sc->ale_cdata.ale_tx_ring != NULL)
1329 bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1330 sc->ale_cdata.ale_tx_ring,
1331 sc->ale_cdata.ale_tx_ring_map);
1332 sc->ale_cdata.ale_tx_ring_paddr = 0;
1333 sc->ale_cdata.ale_tx_ring = NULL;
1334 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1335 sc->ale_cdata.ale_tx_ring_tag = NULL;
1336 }
1337 /* Rx page block. */
1338 for (i = 0; i < ALE_RX_PAGES; i++) {
1339 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1340 if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
1341 bus_dmamap_unload(
1342 sc->ale_cdata.ale_rx_page[i].page_tag,
1343 sc->ale_cdata.ale_rx_page[i].page_map);
1344 if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1345 bus_dmamem_free(
1346 sc->ale_cdata.ale_rx_page[i].page_tag,
1347 sc->ale_cdata.ale_rx_page[i].page_addr,
1348 sc->ale_cdata.ale_rx_page[i].page_map);
1349 sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
1350 sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1351 bus_dma_tag_destroy(
1352 sc->ale_cdata.ale_rx_page[i].page_tag);
1353 sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1354 }
1355 }
1356 /* Rx CMB. */
1357 for (i = 0; i < ALE_RX_PAGES; i++) {
1358 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1359 if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
1360 bus_dmamap_unload(
1361 sc->ale_cdata.ale_rx_page[i].cmb_tag,
1362 sc->ale_cdata.ale_rx_page[i].cmb_map);
1363 if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1364 bus_dmamem_free(
1365 sc->ale_cdata.ale_rx_page[i].cmb_tag,
1366 sc->ale_cdata.ale_rx_page[i].cmb_addr,
1367 sc->ale_cdata.ale_rx_page[i].cmb_map);
1368 sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
1369 sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1370 bus_dma_tag_destroy(
1371 sc->ale_cdata.ale_rx_page[i].cmb_tag);
1372 sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1373 }
1374 }
1375 /* Tx CMB. */
1376 if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1377 if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
1378 bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1379 sc->ale_cdata.ale_tx_cmb_map);
1380 if (sc->ale_cdata.ale_tx_cmb != NULL)
1381 bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1382 sc->ale_cdata.ale_tx_cmb,
1383 sc->ale_cdata.ale_tx_cmb_map);
1384 sc->ale_cdata.ale_tx_cmb_paddr = 0;
1385 sc->ale_cdata.ale_tx_cmb = NULL;
1386 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1387 sc->ale_cdata.ale_tx_cmb_tag = NULL;
1388 }
1389 if (sc->ale_cdata.ale_buffer_tag != NULL) {
1390 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1391 sc->ale_cdata.ale_buffer_tag = NULL;
1392 }
1393 if (sc->ale_cdata.ale_parent_tag != NULL) {
1394 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1395 sc->ale_cdata.ale_parent_tag = NULL;
1396 }
1397 }
1398
1399 static int
1400 ale_shutdown(device_t dev)
1401 {
1402
1403 return (ale_suspend(dev));
1404 }
1405
1406 /*
1407 * Note, this driver resets the link speed to 10/100Mbps by
1408 * restarting auto-negotiation in suspend/shutdown phase but we
1409 * don't know whether that auto-negotiation would succeed or not
1410 * as driver has no control after powering off/suspend operation.
1411 * If the renegotiation fail WOL may not work. Running at 1Gbps
1412 * will draw more power than 375mA at 3.3V which is specified in
1413 * PCI specification and that would result in complete
1414 * shutdowning power to ethernet controller.
1415 *
1416 * TODO
1417 * Save current negotiated media speed/duplex/flow-control to
1418 * softc and restore the same link again after resuming. PHY
1419 * handling such as power down/resetting to 100Mbps may be better
1420 * handled in suspend method in phy driver.
1421 */
1422 static void
1423 ale_setlinkspeed(struct ale_softc *sc)
1424 {
1425 struct mii_data *mii;
1426 int aneg, i;
1427
1428 mii = device_get_softc(sc->ale_miibus);
1429 mii_pollstat(mii);
1430 aneg = 0;
1431 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1432 (IFM_ACTIVE | IFM_AVALID)) {
1433 switch IFM_SUBTYPE(mii->mii_media_active) {
1434 case IFM_10_T:
1435 case IFM_100_TX:
1436 return;
1437 case IFM_1000_T:
1438 aneg++;
1439 break;
1440 default:
1441 break;
1442 }
1443 }
1444 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1445 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1446 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1447 ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1448 MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1449 DELAY(1000);
1450 if (aneg != 0) {
1451 /*
1452 * Poll link state until ale(4) get a 10/100Mbps link.
1453 */
1454 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1455 mii_pollstat(mii);
1456 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1457 == (IFM_ACTIVE | IFM_AVALID)) {
1458 switch (IFM_SUBTYPE(
1459 mii->mii_media_active)) {
1460 case IFM_10_T:
1461 case IFM_100_TX:
1462 ale_mac_config(sc);
1463 return;
1464 default:
1465 break;
1466 }
1467 }
1468 ALE_UNLOCK(sc);
1469 pause("alelnk", hz);
1470 ALE_LOCK(sc);
1471 }
1472 if (i == MII_ANEGTICKS_GIGE)
1473 device_printf(sc->ale_dev,
1474 "establishing a link failed, WOL may not work!");
1475 }
1476 /*
1477 * No link, force MAC to have 100Mbps, full-duplex link.
1478 * This is the last resort and may/may not work.
1479 */
1480 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1481 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1482 ale_mac_config(sc);
1483 }
1484
1485 static void
1486 ale_setwol(struct ale_softc *sc)
1487 {
1488 struct ifnet *ifp;
1489 uint32_t reg, pmcs;
1490 uint16_t pmstat;
1491 int pmc;
1492
1493 ALE_LOCK_ASSERT(sc);
1494
1495 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1496 /* Disable WOL. */
1497 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1498 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1499 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1500 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1501 /* Force PHY power down. */
1502 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1503 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1504 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1505 GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1506 GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1507 return;
1508 }
1509
1510 ifp = sc->ale_ifp;
1511 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1512 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1513 ale_setlinkspeed(sc);
1514 }
1515
1516 pmcs = 0;
1517 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1518 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1519 CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1520 reg = CSR_READ_4(sc, ALE_MAC_CFG);
1521 reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1522 MAC_CFG_BCAST);
1523 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1524 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1525 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1526 reg |= MAC_CFG_RX_ENB;
1527 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1528
1529 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1530 /* WOL disabled, PHY power down. */
1531 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1532 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1533 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1534 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1535 GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1536 GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1537 GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1538 GPHY_CTRL_PWDOWN_HW);
1539 }
1540 /* Request PME. */
1541 pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1542 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1543 if ((ifp->if_capenable & IFCAP_WOL) != 0)
1544 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1545 pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1546 }
1547
1548 static int
1549 ale_suspend(device_t dev)
1550 {
1551 struct ale_softc *sc;
1552
1553 sc = device_get_softc(dev);
1554
1555 ALE_LOCK(sc);
1556 ale_stop(sc);
1557 ale_setwol(sc);
1558 ALE_UNLOCK(sc);
1559
1560 return (0);
1561 }
1562
1563 static int
1564 ale_resume(device_t dev)
1565 {
1566 struct ale_softc *sc;
1567 struct ifnet *ifp;
1568 int pmc;
1569 uint16_t pmstat;
1570
1571 sc = device_get_softc(dev);
1572
1573 ALE_LOCK(sc);
1574 if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1575 /* Disable PME and clear PME status. */
1576 pmstat = pci_read_config(sc->ale_dev,
1577 pmc + PCIR_POWER_STATUS, 2);
1578 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1579 pmstat &= ~PCIM_PSTAT_PMEENABLE;
1580 pci_write_config(sc->ale_dev,
1581 pmc + PCIR_POWER_STATUS, pmstat, 2);
1582 }
1583 }
1584 /* Reset PHY. */
1585 ale_phy_reset(sc);
1586 ifp = sc->ale_ifp;
1587 if ((ifp->if_flags & IFF_UP) != 0) {
1588 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1589 ale_init_locked(sc);
1590 }
1591 ALE_UNLOCK(sc);
1592
1593 return (0);
1594 }
1595
1596 static int
1597 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1598 {
1599 struct ale_txdesc *txd, *txd_last;
1600 struct tx_desc *desc;
1601 struct mbuf *m;
1602 struct ip *ip;
1603 struct tcphdr *tcp;
1604 bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1605 bus_dmamap_t map;
1606 uint32_t cflags, hdrlen, ip_off, poff, vtag;
1607 int error, i, nsegs, prod, si;
1608
1609 ALE_LOCK_ASSERT(sc);
1610
1611 M_ASSERTPKTHDR((*m_head));
1612
1613 m = *m_head;
1614 ip = NULL;
1615 tcp = NULL;
1616 cflags = vtag = 0;
1617 ip_off = poff = 0;
1618 if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1619 /*
1620 * AR81xx requires offset of TCP/UDP payload in its Tx
1621 * descriptor to perform hardware Tx checksum offload.
1622 * Additionally, TSO requires IP/TCP header size and
1623 * modification of IP/TCP header in order to make TSO
1624 * engine work. This kind of operation takes many CPU
1625 * cycles on FreeBSD so fast host CPU is required to
1626 * get smooth TSO performance.
1627 */
1628 struct ether_header *eh;
1629
1630 if (M_WRITABLE(m) == 0) {
1631 /* Get a writable copy. */
1632 m = m_dup(*m_head, M_NOWAIT);
1633 /* Release original mbufs. */
1634 m_freem(*m_head);
1635 if (m == NULL) {
1636 *m_head = NULL;
1637 return (ENOBUFS);
1638 }
1639 *m_head = m;
1640 }
1641
1642 /*
1643 * Buggy-controller requires 4 byte aligned Tx buffer
1644 * to make custom checksum offload work.
1645 */
1646 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1647 (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1648 (mtod(m, intptr_t) & 3) != 0) {
1649 m = m_defrag(*m_head, M_NOWAIT);
1650 if (m == NULL) {
1651 m_freem(*m_head);
1652 *m_head = NULL;
1653 return (ENOBUFS);
1654 }
1655 *m_head = m;
1656 }
1657
1658 ip_off = sizeof(struct ether_header);
1659 m = m_pullup(m, ip_off);
1660 if (m == NULL) {
1661 *m_head = NULL;
1662 return (ENOBUFS);
1663 }
1664 eh = mtod(m, struct ether_header *);
1665 /*
1666 * Check if hardware VLAN insertion is off.
1667 * Additional check for LLC/SNAP frame?
1668 */
1669 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1670 ip_off = sizeof(struct ether_vlan_header);
1671 m = m_pullup(m, ip_off);
1672 if (m == NULL) {
1673 *m_head = NULL;
1674 return (ENOBUFS);
1675 }
1676 }
1677 m = m_pullup(m, ip_off + sizeof(struct ip));
1678 if (m == NULL) {
1679 *m_head = NULL;
1680 return (ENOBUFS);
1681 }
1682 ip = (struct ip *)(mtod(m, char *) + ip_off);
1683 poff = ip_off + (ip->ip_hl << 2);
1684 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1685 /*
1686 * XXX
1687 * AR81xx requires the first descriptor should
1688 * not include any TCP playload for TSO case.
1689 * (i.e. ethernet header + IP + TCP header only)
1690 * m_pullup(9) above will ensure this too.
1691 * However it's not correct if the first mbuf
1692 * of the chain does not use cluster.
1693 */
1694 m = m_pullup(m, poff + sizeof(struct tcphdr));
1695 if (m == NULL) {
1696 *m_head = NULL;
1697 return (ENOBUFS);
1698 }
1699 ip = (struct ip *)(mtod(m, char *) + ip_off);
1700 tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1701 m = m_pullup(m, poff + (tcp->th_off << 2));
1702 if (m == NULL) {
1703 *m_head = NULL;
1704 return (ENOBUFS);
1705 }
1706 /*
1707 * AR81xx requires IP/TCP header size and offset as
1708 * well as TCP pseudo checksum which complicates
1709 * TSO configuration. I guess this comes from the
1710 * adherence to Microsoft NDIS Large Send
1711 * specification which requires insertion of
1712 * pseudo checksum by upper stack. The pseudo
1713 * checksum that NDIS refers to doesn't include
1714 * TCP payload length so ale(4) should recompute
1715 * the pseudo checksum here. Hopefully this wouldn't
1716 * be much burden on modern CPUs.
1717 * Reset IP checksum and recompute TCP pseudo
1718 * checksum as NDIS specification said.
1719 */
1720 ip->ip_sum = 0;
1721 tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1722 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1723 }
1724 *m_head = m;
1725 }
1726
1727 si = prod = sc->ale_cdata.ale_tx_prod;
1728 txd = &sc->ale_cdata.ale_txdesc[prod];
1729 txd_last = txd;
1730 map = txd->tx_dmamap;
1731
1732 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1733 *m_head, txsegs, &nsegs, 0);
1734 if (error == EFBIG) {
1735 m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
1736 if (m == NULL) {
1737 m_freem(*m_head);
1738 *m_head = NULL;
1739 return (ENOMEM);
1740 }
1741 *m_head = m;
1742 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1743 *m_head, txsegs, &nsegs, 0);
1744 if (error != 0) {
1745 m_freem(*m_head);
1746 *m_head = NULL;
1747 return (error);
1748 }
1749 } else if (error != 0)
1750 return (error);
1751 if (nsegs == 0) {
1752 m_freem(*m_head);
1753 *m_head = NULL;
1754 return (EIO);
1755 }
1756
1757 /* Check descriptor overrun. */
1758 if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
1759 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1760 return (ENOBUFS);
1761 }
1762 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1763
1764 m = *m_head;
1765 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1766 /* Request TSO and set MSS. */
1767 cflags |= ALE_TD_TSO;
1768 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1769 /* Set IP/TCP header size. */
1770 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1771 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1772 } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1773 /*
1774 * AR81xx supports Tx custom checksum offload feature
1775 * that offloads single 16bit checksum computation.
1776 * So you can choose one among IP, TCP and UDP.
1777 * Normally driver sets checksum start/insertion
1778 * position from the information of TCP/UDP frame as
1779 * TCP/UDP checksum takes more time than that of IP.
1780 * However it seems that custom checksum offload
1781 * requires 4 bytes aligned Tx buffers due to hardware
1782 * bug.
1783 * AR81xx also supports explicit Tx checksum computation
1784 * if it is told that the size of IP header and TCP
1785 * header(for UDP, the header size does not matter
1786 * because it's fixed length). However with this scheme
1787 * TSO does not work so you have to choose one either
1788 * TSO or explicit Tx checksum offload. I chosen TSO
1789 * plus custom checksum offload with work-around which
1790 * will cover most common usage for this consumer
1791 * ethernet controller. The work-around takes a lot of
1792 * CPU cycles if Tx buffer is not aligned on 4 bytes
1793 * boundary, though.
1794 */
1795 cflags |= ALE_TD_CXSUM;
1796 /* Set checksum start offset. */
1797 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1798 /* Set checksum insertion position of TCP/UDP. */
1799 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1800 ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1801 }
1802
1803 /* Configure VLAN hardware tag insertion. */
1804 if ((m->m_flags & M_VLANTAG) != 0) {
1805 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1806 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1807 cflags |= ALE_TD_INSERT_VLAN_TAG;
1808 }
1809
1810 i = 0;
1811 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1812 /*
1813 * Make sure the first fragment contains
1814 * only ethernet and IP/TCP header with options.
1815 */
1816 hdrlen = poff + (tcp->th_off << 2);
1817 desc = &sc->ale_cdata.ale_tx_ring[prod];
1818 desc->addr = htole64(txsegs[i].ds_addr);
1819 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
1820 desc->flags = htole32(cflags);
1821 sc->ale_cdata.ale_tx_cnt++;
1822 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1823 if (m->m_len - hdrlen > 0) {
1824 /* Handle remaining payload of the first fragment. */
1825 desc = &sc->ale_cdata.ale_tx_ring[prod];
1826 desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
1827 desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
1828 vtag);
1829 desc->flags = htole32(cflags);
1830 sc->ale_cdata.ale_tx_cnt++;
1831 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1832 }
1833 i = 1;
1834 }
1835 for (; i < nsegs; i++) {
1836 desc = &sc->ale_cdata.ale_tx_ring[prod];
1837 desc->addr = htole64(txsegs[i].ds_addr);
1838 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1839 desc->flags = htole32(cflags);
1840 sc->ale_cdata.ale_tx_cnt++;
1841 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1842 }
1843 /* Update producer index. */
1844 sc->ale_cdata.ale_tx_prod = prod;
1845 /* Set TSO header on the first descriptor. */
1846 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1847 desc = &sc->ale_cdata.ale_tx_ring[si];
1848 desc->flags |= htole32(ALE_TD_TSO_HDR);
1849 }
1850
1851 /* Finally set EOP on the last descriptor. */
1852 prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1853 desc = &sc->ale_cdata.ale_tx_ring[prod];
1854 desc->flags |= htole32(ALE_TD_EOP);
1855
1856 /* Swap dmamap of the first and the last. */
1857 txd = &sc->ale_cdata.ale_txdesc[prod];
1858 map = txd_last->tx_dmamap;
1859 txd_last->tx_dmamap = txd->tx_dmamap;
1860 txd->tx_dmamap = map;
1861 txd->tx_m = m;
1862
1863 /* Sync descriptors. */
1864 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1865 sc->ale_cdata.ale_tx_ring_map,
1866 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1867
1868 return (0);
1869 }
1870
1871 static void
1872 ale_start(struct ifnet *ifp)
1873 {
1874 struct ale_softc *sc;
1875
1876 sc = ifp->if_softc;
1877 ALE_LOCK(sc);
1878 ale_start_locked(ifp);
1879 ALE_UNLOCK(sc);
1880 }
1881
1882 static void
1883 ale_start_locked(struct ifnet *ifp)
1884 {
1885 struct ale_softc *sc;
1886 struct mbuf *m_head;
1887 int enq;
1888
1889 sc = ifp->if_softc;
1890
1891 ALE_LOCK_ASSERT(sc);
1892
1893 /* Reclaim transmitted frames. */
1894 if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1895 ale_txeof(sc);
1896
1897 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1898 IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
1899 return;
1900
1901 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1902 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1903 if (m_head == NULL)
1904 break;
1905 /*
1906 * Pack the data into the transmit ring. If we
1907 * don't have room, set the OACTIVE flag and wait
1908 * for the NIC to drain the ring.
1909 */
1910 if (ale_encap(sc, &m_head)) {
1911 if (m_head == NULL)
1912 break;
1913 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1914 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1915 break;
1916 }
1917
1918 enq++;
1919 /*
1920 * If there's a BPF listener, bounce a copy of this frame
1921 * to him.
1922 */
1923 ETHER_BPF_MTAP(ifp, m_head);
1924 }
1925
1926 if (enq > 0) {
1927 /* Kick. */
1928 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1929 sc->ale_cdata.ale_tx_prod);
1930 /* Set a timeout in case the chip goes out to lunch. */
1931 sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1932 }
1933 }
1934
1935 static void
1936 ale_watchdog(struct ale_softc *sc)
1937 {
1938 struct ifnet *ifp;
1939
1940 ALE_LOCK_ASSERT(sc);
1941
1942 if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1943 return;
1944
1945 ifp = sc->ale_ifp;
1946 if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1947 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1948 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1949 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1950 ale_init_locked(sc);
1951 return;
1952 }
1953 if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1954 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1955 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1956 ale_init_locked(sc);
1957 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1958 ale_start_locked(ifp);
1959 }
1960
1961 static int
1962 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1963 {
1964 struct ale_softc *sc;
1965 struct ifreq *ifr;
1966 struct mii_data *mii;
1967 int error, mask;
1968
1969 sc = ifp->if_softc;
1970 ifr = (struct ifreq *)data;
1971 error = 0;
1972 switch (cmd) {
1973 case SIOCSIFMTU:
1974 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1975 ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1976 ifr->ifr_mtu > ETHERMTU))
1977 error = EINVAL;
1978 else if (ifp->if_mtu != ifr->ifr_mtu) {
1979 ALE_LOCK(sc);
1980 ifp->if_mtu = ifr->ifr_mtu;
1981 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1982 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1983 ale_init_locked(sc);
1984 }
1985 ALE_UNLOCK(sc);
1986 }
1987 break;
1988 case SIOCSIFFLAGS:
1989 ALE_LOCK(sc);
1990 if ((ifp->if_flags & IFF_UP) != 0) {
1991 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1992 if (((ifp->if_flags ^ sc->ale_if_flags)
1993 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1994 ale_rxfilter(sc);
1995 } else {
1996 ale_init_locked(sc);
1997 }
1998 } else {
1999 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2000 ale_stop(sc);
2001 }
2002 sc->ale_if_flags = ifp->if_flags;
2003 ALE_UNLOCK(sc);
2004 break;
2005 case SIOCADDMULTI:
2006 case SIOCDELMULTI:
2007 ALE_LOCK(sc);
2008 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2009 ale_rxfilter(sc);
2010 ALE_UNLOCK(sc);
2011 break;
2012 case SIOCSIFMEDIA:
2013 case SIOCGIFMEDIA:
2014 mii = device_get_softc(sc->ale_miibus);
2015 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2016 break;
2017 case SIOCSIFCAP:
2018 ALE_LOCK(sc);
2019 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2020 if ((mask & IFCAP_TXCSUM) != 0 &&
2021 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2022 ifp->if_capenable ^= IFCAP_TXCSUM;
2023 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2024 ifp->if_hwassist |= ALE_CSUM_FEATURES;
2025 else
2026 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
2027 }
2028 if ((mask & IFCAP_RXCSUM) != 0 &&
2029 (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2030 ifp->if_capenable ^= IFCAP_RXCSUM;
2031 if ((mask & IFCAP_TSO4) != 0 &&
2032 (ifp->if_capabilities & IFCAP_TSO4) != 0) {
2033 ifp->if_capenable ^= IFCAP_TSO4;
2034 if ((ifp->if_capenable & IFCAP_TSO4) != 0)
2035 ifp->if_hwassist |= CSUM_TSO;
2036 else
2037 ifp->if_hwassist &= ~CSUM_TSO;
2038 }
2039
2040 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2041 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2042 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2043 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2044 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2045 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2046 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2047 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2048 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2049 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2050 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2051 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2052 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2053 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2054 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2055 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2056 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2057 ale_rxvlan(sc);
2058 }
2059 ALE_UNLOCK(sc);
2060 VLAN_CAPABILITIES(ifp);
2061 break;
2062 default:
2063 error = ether_ioctl(ifp, cmd, data);
2064 break;
2065 }
2066
2067 return (error);
2068 }
2069
2070 static void
2071 ale_mac_config(struct ale_softc *sc)
2072 {
2073 struct mii_data *mii;
2074 uint32_t reg;
2075
2076 ALE_LOCK_ASSERT(sc);
2077
2078 mii = device_get_softc(sc->ale_miibus);
2079 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2080 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2081 MAC_CFG_SPEED_MASK);
2082 /* Reprogram MAC with resolved speed/duplex. */
2083 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2084 case IFM_10_T:
2085 case IFM_100_TX:
2086 reg |= MAC_CFG_SPEED_10_100;
2087 break;
2088 case IFM_1000_T:
2089 reg |= MAC_CFG_SPEED_1000;
2090 break;
2091 }
2092 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2093 reg |= MAC_CFG_FULL_DUPLEX;
2094 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2095 reg |= MAC_CFG_TX_FC;
2096 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2097 reg |= MAC_CFG_RX_FC;
2098 }
2099 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2100 }
2101
2102 static void
2103 ale_stats_clear(struct ale_softc *sc)
2104 {
2105 struct smb sb;
2106 uint32_t *reg;
2107 int i;
2108
2109 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2110 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2111 i += sizeof(uint32_t);
2112 }
2113 /* Read Tx statistics. */
2114 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2115 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2116 i += sizeof(uint32_t);
2117 }
2118 }
2119
2120 static void
2121 ale_stats_update(struct ale_softc *sc)
2122 {
2123 struct ale_hw_stats *stat;
2124 struct smb sb, *smb;
2125 struct ifnet *ifp;
2126 uint32_t *reg;
2127 int i;
2128
2129 ALE_LOCK_ASSERT(sc);
2130
2131 ifp = sc->ale_ifp;
2132 stat = &sc->ale_stats;
2133 smb = &sb;
2134
2135 /* Read Rx statistics. */
2136 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2137 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2138 i += sizeof(uint32_t);
2139 }
2140 /* Read Tx statistics. */
2141 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2142 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2143 i += sizeof(uint32_t);
2144 }
2145
2146 /* Rx stats. */
2147 stat->rx_frames += smb->rx_frames;
2148 stat->rx_bcast_frames += smb->rx_bcast_frames;
2149 stat->rx_mcast_frames += smb->rx_mcast_frames;
2150 stat->rx_pause_frames += smb->rx_pause_frames;
2151 stat->rx_control_frames += smb->rx_control_frames;
2152 stat->rx_crcerrs += smb->rx_crcerrs;
2153 stat->rx_lenerrs += smb->rx_lenerrs;
2154 stat->rx_bytes += smb->rx_bytes;
2155 stat->rx_runts += smb->rx_runts;
2156 stat->rx_fragments += smb->rx_fragments;
2157 stat->rx_pkts_64 += smb->rx_pkts_64;
2158 stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2159 stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2160 stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2161 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2162 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2163 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2164 stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2165 stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2166 stat->rx_rrs_errs += smb->rx_rrs_errs;
2167 stat->rx_alignerrs += smb->rx_alignerrs;
2168 stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2169 stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2170 stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2171
2172 /* Tx stats. */
2173 stat->tx_frames += smb->tx_frames;
2174 stat->tx_bcast_frames += smb->tx_bcast_frames;
2175 stat->tx_mcast_frames += smb->tx_mcast_frames;
2176 stat->tx_pause_frames += smb->tx_pause_frames;
2177 stat->tx_excess_defer += smb->tx_excess_defer;
2178 stat->tx_control_frames += smb->tx_control_frames;
2179 stat->tx_deferred += smb->tx_deferred;
2180 stat->tx_bytes += smb->tx_bytes;
2181 stat->tx_pkts_64 += smb->tx_pkts_64;
2182 stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2183 stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2184 stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2185 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2186 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2187 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2188 stat->tx_single_colls += smb->tx_single_colls;
2189 stat->tx_multi_colls += smb->tx_multi_colls;
2190 stat->tx_late_colls += smb->tx_late_colls;
2191 stat->tx_excess_colls += smb->tx_excess_colls;
2192 stat->tx_underrun += smb->tx_underrun;
2193 stat->tx_desc_underrun += smb->tx_desc_underrun;
2194 stat->tx_lenerrs += smb->tx_lenerrs;
2195 stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2196 stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2197 stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2198
2199 /* Update counters in ifnet. */
2200 if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2201
2202 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2203 smb->tx_multi_colls * 2 + smb->tx_late_colls +
2204 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2205
2206 if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
2207 smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
2208
2209 if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2210
2211 if_inc_counter(ifp, IFCOUNTER_IERRORS,
2212 smb->rx_crcerrs + smb->rx_lenerrs +
2213 smb->rx_runts + smb->rx_pkts_truncated +
2214 smb->rx_fifo_oflows + smb->rx_rrs_errs +
2215 smb->rx_alignerrs);
2216 }
2217
2218 static int
2219 ale_intr(void *arg)
2220 {
2221 struct ale_softc *sc;
2222 uint32_t status;
2223
2224 sc = (struct ale_softc *)arg;
2225
2226 status = CSR_READ_4(sc, ALE_INTR_STATUS);
2227 if ((status & ALE_INTRS) == 0)
2228 return (FILTER_STRAY);
2229 /* Disable interrupts. */
2230 CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2231 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2232
2233 return (FILTER_HANDLED);
2234 }
2235
2236 static void
2237 ale_int_task(void *arg, int pending)
2238 {
2239 struct ale_softc *sc;
2240 struct ifnet *ifp;
2241 uint32_t status;
2242 int more;
2243
2244 sc = (struct ale_softc *)arg;
2245
2246 status = CSR_READ_4(sc, ALE_INTR_STATUS);
2247 ALE_LOCK(sc);
2248 if (sc->ale_morework != 0)
2249 status |= INTR_RX_PKT;
2250 if ((status & ALE_INTRS) == 0)
2251 goto done;
2252
2253 /* Acknowledge interrupts but still disable interrupts. */
2254 CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2255
2256 ifp = sc->ale_ifp;
2257 more = 0;
2258 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2259 more = ale_rxeof(sc, sc->ale_process_limit);
2260 if (more == EAGAIN)
2261 sc->ale_morework = 1;
2262 else if (more == EIO) {
2263 sc->ale_stats.reset_brk_seq++;
2264 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2265 ale_init_locked(sc);
2266 ALE_UNLOCK(sc);
2267 return;
2268 }
2269
2270 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2271 if ((status & INTR_DMA_RD_TO_RST) != 0)
2272 device_printf(sc->ale_dev,
2273 "DMA read error! -- resetting\n");
2274 if ((status & INTR_DMA_WR_TO_RST) != 0)
2275 device_printf(sc->ale_dev,
2276 "DMA write error! -- resetting\n");
2277 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2278 ale_init_locked(sc);
2279 ALE_UNLOCK(sc);
2280 return;
2281 }
2282 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2283 ale_start_locked(ifp);
2284 }
2285
2286 if (more == EAGAIN ||
2287 (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2288 ALE_UNLOCK(sc);
2289 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2290 return;
2291 }
2292
2293 done:
2294 ALE_UNLOCK(sc);
2295
2296 /* Re-enable interrupts. */
2297 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2298 }
2299
2300 static void
2301 ale_txeof(struct ale_softc *sc)
2302 {
2303 struct ifnet *ifp;
2304 struct ale_txdesc *txd;
2305 uint32_t cons, prod;
2306 int prog;
2307
2308 ALE_LOCK_ASSERT(sc);
2309
2310 ifp = sc->ale_ifp;
2311
2312 if (sc->ale_cdata.ale_tx_cnt == 0)
2313 return;
2314
2315 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2316 sc->ale_cdata.ale_tx_ring_map,
2317 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2318 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2319 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2320 sc->ale_cdata.ale_tx_cmb_map,
2321 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2322 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2323 } else
2324 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2325 cons = sc->ale_cdata.ale_tx_cons;
2326 /*
2327 * Go through our Tx list and free mbufs for those
2328 * frames which have been transmitted.
2329 */
2330 for (prog = 0; cons != prod; prog++,
2331 ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2332 if (sc->ale_cdata.ale_tx_cnt <= 0)
2333 break;
2334 prog++;
2335 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2336 sc->ale_cdata.ale_tx_cnt--;
2337 txd = &sc->ale_cdata.ale_txdesc[cons];
2338 if (txd->tx_m != NULL) {
2339 /* Reclaim transmitted mbufs. */
2340 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2341 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2342 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2343 txd->tx_dmamap);
2344 m_freem(txd->tx_m);
2345 txd->tx_m = NULL;
2346 }
2347 }
2348
2349 if (prog > 0) {
2350 sc->ale_cdata.ale_tx_cons = cons;
2351 /*
2352 * Unarm watchdog timer only when there is no pending
2353 * Tx descriptors in queue.
2354 */
2355 if (sc->ale_cdata.ale_tx_cnt == 0)
2356 sc->ale_watchdog_timer = 0;
2357 }
2358 }
2359
2360 static void
2361 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2362 uint32_t length, uint32_t *prod)
2363 {
2364 struct ale_rx_page *rx_page;
2365
2366 rx_page = *page;
2367 /* Update consumer position. */
2368 rx_page->cons += roundup(length + sizeof(struct rx_rs),
2369 ALE_RX_PAGE_ALIGN);
2370 if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2371 /*
2372 * End of Rx page reached, let hardware reuse
2373 * this page.
2374 */
2375 rx_page->cons = 0;
2376 *rx_page->cmb_addr = 0;
2377 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2378 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2379 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2380 RXF_VALID);
2381 /* Switch to alternate Rx page. */
2382 sc->ale_cdata.ale_rx_curp ^= 1;
2383 rx_page = *page =
2384 &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2385 /* Page flipped, sync CMB and Rx page. */
2386 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2387 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2388 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2389 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2390 /* Sync completed, cache updated producer index. */
2391 *prod = *rx_page->cmb_addr;
2392 }
2393 }
2394
2395 /*
2396 * It seems that AR81xx controller can compute partial checksum.
2397 * The partial checksum value can be used to accelerate checksum
2398 * computation for fragmented TCP/UDP packets. Upper network stack
2399 * already takes advantage of the partial checksum value in IP
2400 * reassembly stage. But I'm not sure the correctness of the
2401 * partial hardware checksum assistance due to lack of data sheet.
2402 * In addition, the Rx feature of controller that requires copying
2403 * for every frames effectively nullifies one of most nice offload
2404 * capability of controller.
2405 */
2406 static void
2407 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2408 {
2409 struct ifnet *ifp;
2410 struct ip *ip;
2411 char *p;
2412
2413 ifp = sc->ale_ifp;
2414 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2415 if ((status & ALE_RD_IPCSUM_NOK) == 0)
2416 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2417
2418 if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2419 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2420 ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2421 ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2422 m->m_pkthdr.csum_flags |=
2423 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2424 m->m_pkthdr.csum_data = 0xffff;
2425 }
2426 } else {
2427 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2428 (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2429 p = mtod(m, char *);
2430 p += ETHER_HDR_LEN;
2431 if ((status & ALE_RD_802_3) != 0)
2432 p += LLC_SNAPFRAMELEN;
2433 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2434 (status & ALE_RD_VLAN) != 0)
2435 p += ETHER_VLAN_ENCAP_LEN;
2436 ip = (struct ip *)p;
2437 if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2438 return;
2439 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2440 CSUM_PSEUDO_HDR;
2441 m->m_pkthdr.csum_data = 0xffff;
2442 }
2443 }
2444 /*
2445 * Don't mark bad checksum for TCP/UDP frames
2446 * as fragmented frames may always have set
2447 * bad checksummed bit of frame status.
2448 */
2449 }
2450
2451 /* Process received frames. */
2452 static int
2453 ale_rxeof(struct ale_softc *sc, int count)
2454 {
2455 struct ale_rx_page *rx_page;
2456 struct rx_rs *rs;
2457 struct ifnet *ifp;
2458 struct mbuf *m;
2459 uint32_t length, prod, seqno, status, vtags;
2460 int prog;
2461
2462 ifp = sc->ale_ifp;
2463 rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2464 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2465 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2466 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2467 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2468 /*
2469 * Don't directly access producer index as hardware may
2470 * update it while Rx handler is in progress. It would
2471 * be even better if there is a way to let hardware
2472 * know how far driver processed its received frames.
2473 * Alternatively, hardware could provide a way to disable
2474 * CMB updates until driver acknowledges the end of CMB
2475 * access.
2476 */
2477 prod = *rx_page->cmb_addr;
2478 for (prog = 0; prog < count; prog++) {
2479 if (rx_page->cons >= prod)
2480 break;
2481 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2482 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2483 if (sc->ale_cdata.ale_rx_seqno != seqno) {
2484 /*
2485 * Normally I believe this should not happen unless
2486 * severe driver bug or corrupted memory. However
2487 * it seems to happen under certain conditions which
2488 * is triggered by abrupt Rx events such as initiation
2489 * of bulk transfer of remote host. It's not easy to
2490 * reproduce this and I doubt it could be related
2491 * with FIFO overflow of hardware or activity of Tx
2492 * CMB updates. I also remember similar behaviour
2493 * seen on RealTek 8139 which uses resembling Rx
2494 * scheme.
2495 */
2496 if (bootverbose)
2497 device_printf(sc->ale_dev,
2498 "garbled seq: %u, expected: %u -- "
2499 "resetting!\n", seqno,
2500 sc->ale_cdata.ale_rx_seqno);
2501 return (EIO);
2502 }
2503 /* Frame received. */
2504 sc->ale_cdata.ale_rx_seqno++;
2505 length = ALE_RX_BYTES(le32toh(rs->length));
2506 status = le32toh(rs->flags);
2507 if ((status & ALE_RD_ERROR) != 0) {
2508 /*
2509 * We want to pass the following frames to upper
2510 * layer regardless of error status of Rx return
2511 * status.
2512 *
2513 * o IP/TCP/UDP checksum is bad.
2514 * o frame length and protocol specific length
2515 * does not match.
2516 */
2517 if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2518 ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2519 ALE_RD_TRUNC)) != 0) {
2520 ale_rx_update_page(sc, &rx_page, length, &prod);
2521 continue;
2522 }
2523 }
2524 /*
2525 * m_devget(9) is major bottle-neck of ale(4)(It comes
2526 * from hardware limitation). For jumbo frames we could
2527 * get a slightly better performance if driver use
2528 * m_getjcl(9) with proper buffer size argument. However
2529 * that would make code more complicated and I don't
2530 * think users would expect good Rx performance numbers
2531 * on these low-end consumer ethernet controller.
2532 */
2533 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2534 ETHER_ALIGN, ifp, NULL);
2535 if (m == NULL) {
2536 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2537 ale_rx_update_page(sc, &rx_page, length, &prod);
2538 continue;
2539 }
2540 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2541 (status & ALE_RD_IPV4) != 0)
2542 ale_rxcsum(sc, m, status);
2543 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2544 (status & ALE_RD_VLAN) != 0) {
2545 vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2546 m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2547 m->m_flags |= M_VLANTAG;
2548 }
2549
2550 /* Pass it to upper layer. */
2551 ALE_UNLOCK(sc);
2552 (*ifp->if_input)(ifp, m);
2553 ALE_LOCK(sc);
2554
2555 ale_rx_update_page(sc, &rx_page, length, &prod);
2556 }
2557
2558 return (count > 0 ? 0 : EAGAIN);
2559 }
2560
2561 static void
2562 ale_tick(void *arg)
2563 {
2564 struct ale_softc *sc;
2565 struct mii_data *mii;
2566
2567 sc = (struct ale_softc *)arg;
2568
2569 ALE_LOCK_ASSERT(sc);
2570
2571 mii = device_get_softc(sc->ale_miibus);
2572 mii_tick(mii);
2573 ale_stats_update(sc);
2574 /*
2575 * Reclaim Tx buffers that have been transferred. It's not
2576 * needed here but it would release allocated mbuf chains
2577 * faster and limit the maximum delay to a hz.
2578 */
2579 ale_txeof(sc);
2580 ale_watchdog(sc);
2581 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2582 }
2583
2584 static void
2585 ale_reset(struct ale_softc *sc)
2586 {
2587 uint32_t reg;
2588 int i;
2589
2590 /* Initialize PCIe module. From Linux. */
2591 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2592
2593 CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2594 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2595 DELAY(10);
2596 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2597 break;
2598 }
2599 if (i == 0)
2600 device_printf(sc->ale_dev, "master reset timeout!\n");
2601
2602 for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2603 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2604 break;
2605 DELAY(10);
2606 }
2607
2608 if (i == 0)
2609 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2610 }
2611
2612 static void
2613 ale_init(void *xsc)
2614 {
2615 struct ale_softc *sc;
2616
2617 sc = (struct ale_softc *)xsc;
2618 ALE_LOCK(sc);
2619 ale_init_locked(sc);
2620 ALE_UNLOCK(sc);
2621 }
2622
2623 static void
2624 ale_init_locked(struct ale_softc *sc)
2625 {
2626 struct ifnet *ifp;
2627 struct mii_data *mii;
2628 uint8_t eaddr[ETHER_ADDR_LEN];
2629 bus_addr_t paddr;
2630 uint32_t reg, rxf_hi, rxf_lo;
2631
2632 ALE_LOCK_ASSERT(sc);
2633
2634 ifp = sc->ale_ifp;
2635 mii = device_get_softc(sc->ale_miibus);
2636
2637 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2638 return;
2639 /*
2640 * Cancel any pending I/O.
2641 */
2642 ale_stop(sc);
2643 /*
2644 * Reset the chip to a known state.
2645 */
2646 ale_reset(sc);
2647 /* Initialize Tx descriptors, DMA memory blocks. */
2648 ale_init_rx_pages(sc);
2649 ale_init_tx_ring(sc);
2650
2651 /* Reprogram the station address. */
2652 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2653 CSR_WRITE_4(sc, ALE_PAR0,
2654 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2655 CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2656 /*
2657 * Clear WOL status and disable all WOL feature as WOL
2658 * would interfere Rx operation under normal environments.
2659 */
2660 CSR_READ_4(sc, ALE_WOL_CFG);
2661 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2662 /*
2663 * Set Tx descriptor/RXF0/CMB base addresses. They share
2664 * the same high address part of DMAable region.
2665 */
2666 paddr = sc->ale_cdata.ale_tx_ring_paddr;
2667 CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2668 CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2669 CSR_WRITE_4(sc, ALE_TPD_CNT,
2670 (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2671 /* Set Rx page base address, note we use single queue. */
2672 paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2673 CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2674 paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2675 CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2676 /* Set Tx/Rx CMB addresses. */
2677 paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2678 CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2679 paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2680 CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2681 paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2682 CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2683 /* Mark RXF0 is valid. */
2684 CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2685 CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2686 /*
2687 * No need to initialize RFX1/RXF2/RXF3. We don't use
2688 * multi-queue yet.
2689 */
2690
2691 /* Set Rx page size, excluding guard frame size. */
2692 CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2693 /* Tell hardware that we're ready to load DMA blocks. */
2694 CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2695
2696 /* Set Rx/Tx interrupt trigger threshold. */
2697 CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2698 (4 << INT_TRIG_TX_THRESH_SHIFT));
2699 /*
2700 * XXX
2701 * Set interrupt trigger timer, its purpose and relation
2702 * with interrupt moderation mechanism is not clear yet.
2703 */
2704 CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2705 ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2706 (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2707
2708 /* Configure interrupt moderation timer. */
2709 reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2710 reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2711 CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2712 reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2713 reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2714 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2715 if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2716 reg |= MASTER_IM_RX_TIMER_ENB;
2717 if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2718 reg |= MASTER_IM_TX_TIMER_ENB;
2719 CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2720 CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2721
2722 /* Set Maximum frame size of controller. */
2723 if (ifp->if_mtu < ETHERMTU)
2724 sc->ale_max_frame_size = ETHERMTU;
2725 else
2726 sc->ale_max_frame_size = ifp->if_mtu;
2727 sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2728 ETHER_CRC_LEN;
2729 CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2730 /* Configure IPG/IFG parameters. */
2731 CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2732 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2733 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2734 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2735 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2736 /* Set parameters for half-duplex media. */
2737 CSR_WRITE_4(sc, ALE_HDPX_CFG,
2738 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2739 HDPX_CFG_LCOL_MASK) |
2740 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2741 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2742 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2743 HDPX_CFG_ABEBT_MASK) |
2744 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2745 HDPX_CFG_JAMIPG_MASK));
2746
2747 /* Configure Tx jumbo frame parameters. */
2748 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2749 if (ifp->if_mtu < ETHERMTU)
2750 reg = sc->ale_max_frame_size;
2751 else if (ifp->if_mtu < 6 * 1024)
2752 reg = (sc->ale_max_frame_size * 2) / 3;
2753 else
2754 reg = sc->ale_max_frame_size / 2;
2755 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2756 roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2757 TX_JUMBO_THRESH_UNIT_SHIFT);
2758 }
2759 /* Configure TxQ. */
2760 reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2761 << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2762 reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2763 TXQ_CFG_TPD_BURST_MASK;
2764 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2765
2766 /* Configure Rx jumbo frame & flow control parameters. */
2767 if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2768 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2769 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2770 (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2771 RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2772 ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2773 RX_JUMBO_LKAH_MASK));
2774 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2775 rxf_hi = (reg * 7) / 10;
2776 rxf_lo = (reg * 3)/ 10;
2777 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2778 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2779 RX_FIFO_PAUSE_THRESH_LO_MASK) |
2780 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2781 RX_FIFO_PAUSE_THRESH_HI_MASK));
2782 }
2783
2784 /* Disable RSS. */
2785 CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2786 CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2787
2788 /* Configure RxQ. */
2789 CSR_WRITE_4(sc, ALE_RXQ_CFG,
2790 RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2791
2792 /* Configure DMA parameters. */
2793 reg = 0;
2794 if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2795 reg |= DMA_CFG_TXCMB_ENB;
2796 CSR_WRITE_4(sc, ALE_DMA_CFG,
2797 DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2798 sc->ale_dma_rd_burst | reg |
2799 sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2800 ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2801 DMA_CFG_RD_DELAY_CNT_MASK) |
2802 ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2803 DMA_CFG_WR_DELAY_CNT_MASK));
2804
2805 /*
2806 * Hardware can be configured to issue SMB interrupt based
2807 * on programmed interval. Since there is a callout that is
2808 * invoked for every hz in driver we use that instead of
2809 * relying on periodic SMB interrupt.
2810 */
2811 CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2812 /* Clear MAC statistics. */
2813 ale_stats_clear(sc);
2814
2815 /*
2816 * Configure Tx/Rx MACs.
2817 * - Auto-padding for short frames.
2818 * - Enable CRC generation.
2819 * Actual reconfiguration of MAC for resolved speed/duplex
2820 * is followed after detection of link establishment.
2821 * AR81xx always does checksum computation regardless of
2822 * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2823 * cause Rx handling issue for fragmented IP datagrams due
2824 * to silicon bug.
2825 */
2826 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2827 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2828 MAC_CFG_PREAMBLE_MASK);
2829 if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2830 reg |= MAC_CFG_SPEED_10_100;
2831 else
2832 reg |= MAC_CFG_SPEED_1000;
2833 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2834
2835 /* Set up the receive filter. */
2836 ale_rxfilter(sc);
2837 ale_rxvlan(sc);
2838
2839 /* Acknowledge all pending interrupts and clear it. */
2840 CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2841 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2842 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2843
2844 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2845 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2846
2847 sc->ale_flags &= ~ALE_FLAG_LINK;
2848 /* Switch to the current media. */
2849 mii_mediachg(mii);
2850
2851 callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2852 }
2853
2854 static void
2855 ale_stop(struct ale_softc *sc)
2856 {
2857 struct ifnet *ifp;
2858 struct ale_txdesc *txd;
2859 uint32_t reg;
2860 int i;
2861
2862 ALE_LOCK_ASSERT(sc);
2863 /*
2864 * Mark the interface down and cancel the watchdog timer.
2865 */
2866 ifp = sc->ale_ifp;
2867 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2868 sc->ale_flags &= ~ALE_FLAG_LINK;
2869 callout_stop(&sc->ale_tick_ch);
2870 sc->ale_watchdog_timer = 0;
2871 ale_stats_update(sc);
2872 /* Disable interrupts. */
2873 CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2874 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2875 /* Disable queue processing and DMA. */
2876 reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2877 reg &= ~TXQ_CFG_ENB;
2878 CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2879 reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2880 reg &= ~RXQ_CFG_ENB;
2881 CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2882 reg = CSR_READ_4(sc, ALE_DMA_CFG);
2883 reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2884 CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2885 DELAY(1000);
2886 /* Stop Rx/Tx MACs. */
2887 ale_stop_mac(sc);
2888 /* Disable interrupts which might be touched in taskq handler. */
2889 CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2890
2891 /*
2892 * Free TX mbufs still in the queues.
2893 */
2894 for (i = 0; i < ALE_TX_RING_CNT; i++) {
2895 txd = &sc->ale_cdata.ale_txdesc[i];
2896 if (txd->tx_m != NULL) {
2897 bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2898 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2899 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2900 txd->tx_dmamap);
2901 m_freem(txd->tx_m);
2902 txd->tx_m = NULL;
2903 }
2904 }
2905 }
2906
2907 static void
2908 ale_stop_mac(struct ale_softc *sc)
2909 {
2910 uint32_t reg;
2911 int i;
2912
2913 ALE_LOCK_ASSERT(sc);
2914
2915 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2916 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2917 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2918 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2919 }
2920
2921 for (i = ALE_TIMEOUT; i > 0; i--) {
2922 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2923 if (reg == 0)
2924 break;
2925 DELAY(10);
2926 }
2927 if (i == 0)
2928 device_printf(sc->ale_dev,
2929 "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2930 }
2931
2932 static void
2933 ale_init_tx_ring(struct ale_softc *sc)
2934 {
2935 struct ale_txdesc *txd;
2936 int i;
2937
2938 ALE_LOCK_ASSERT(sc);
2939
2940 sc->ale_cdata.ale_tx_prod = 0;
2941 sc->ale_cdata.ale_tx_cons = 0;
2942 sc->ale_cdata.ale_tx_cnt = 0;
2943
2944 bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2945 bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2946 for (i = 0; i < ALE_TX_RING_CNT; i++) {
2947 txd = &sc->ale_cdata.ale_txdesc[i];
2948 txd->tx_m = NULL;
2949 }
2950 *sc->ale_cdata.ale_tx_cmb = 0;
2951 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2952 sc->ale_cdata.ale_tx_cmb_map,
2953 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2954 bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2955 sc->ale_cdata.ale_tx_ring_map,
2956 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2957 }
2958
2959 static void
2960 ale_init_rx_pages(struct ale_softc *sc)
2961 {
2962 struct ale_rx_page *rx_page;
2963 int i;
2964
2965 ALE_LOCK_ASSERT(sc);
2966
2967 sc->ale_morework = 0;
2968 sc->ale_cdata.ale_rx_seqno = 0;
2969 sc->ale_cdata.ale_rx_curp = 0;
2970
2971 for (i = 0; i < ALE_RX_PAGES; i++) {
2972 rx_page = &sc->ale_cdata.ale_rx_page[i];
2973 bzero(rx_page->page_addr, sc->ale_pagesize);
2974 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
2975 rx_page->cons = 0;
2976 *rx_page->cmb_addr = 0;
2977 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2978 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2979 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2980 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2981 }
2982 }
2983
2984 static void
2985 ale_rxvlan(struct ale_softc *sc)
2986 {
2987 struct ifnet *ifp;
2988 uint32_t reg;
2989
2990 ALE_LOCK_ASSERT(sc);
2991
2992 ifp = sc->ale_ifp;
2993 reg = CSR_READ_4(sc, ALE_MAC_CFG);
2994 reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2995 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2996 reg |= MAC_CFG_VLAN_TAG_STRIP;
2997 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2998 }
2999
3000 static u_int
3001 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3002 {
3003 uint32_t crc, *mchash = arg;
3004
3005 crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3006 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3007
3008 return (1);
3009 }
3010
3011 static void
3012 ale_rxfilter(struct ale_softc *sc)
3013 {
3014 struct ifnet *ifp;
3015 uint32_t mchash[2];
3016 uint32_t rxcfg;
3017
3018 ALE_LOCK_ASSERT(sc);
3019
3020 ifp = sc->ale_ifp;
3021
3022 rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3023 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3024 if ((ifp->if_flags & IFF_BROADCAST) != 0)
3025 rxcfg |= MAC_CFG_BCAST;
3026 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3027 if ((ifp->if_flags & IFF_PROMISC) != 0)
3028 rxcfg |= MAC_CFG_PROMISC;
3029 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3030 rxcfg |= MAC_CFG_ALLMULTI;
3031 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3032 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3033 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3034 return;
3035 }
3036
3037 /* Program new filter. */
3038 bzero(mchash, sizeof(mchash));
3039 if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
3040
3041 CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3042 CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3043 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3044 }
3045
3046 static int
3047 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3048 {
3049 int error, value;
3050
3051 if (arg1 == NULL)
3052 return (EINVAL);
3053 value = *(int *)arg1;
3054 error = sysctl_handle_int(oidp, &value, 0, req);
3055 if (error || req->newptr == NULL)
3056 return (error);
3057 if (value < low || value > high)
3058 return (EINVAL);
3059 *(int *)arg1 = value;
3060
3061 return (0);
3062 }
3063
3064 static int
3065 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3066 {
3067 return (sysctl_int_range(oidp, arg1, arg2, req,
3068 ALE_PROC_MIN, ALE_PROC_MAX));
3069 }
3070
3071 static int
3072 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3073 {
3074
3075 return (sysctl_int_range(oidp, arg1, arg2, req,
3076 ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3077 }
Cache object: 67df39a35a139ee1c75c3366028640fe
|