The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ale/if_ale.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/bus.h>
   38 #include <sys/endian.h>
   39 #include <sys/kernel.h>
   40 #include <sys/malloc.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/module.h>
   43 #include <sys/rman.h>
   44 #include <sys/queue.h>
   45 #include <sys/socket.h>
   46 #include <sys/sockio.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/taskqueue.h>
   49 
   50 #include <net/bpf.h>
   51 #include <net/if.h>
   52 #include <net/if_var.h>
   53 #include <net/if_arp.h>
   54 #include <net/ethernet.h>
   55 #include <net/if_dl.h>
   56 #include <net/if_llc.h>
   57 #include <net/if_media.h>
   58 #include <net/if_types.h>
   59 #include <net/if_vlan_var.h>
   60 
   61 #include <netinet/in.h>
   62 #include <netinet/in_systm.h>
   63 #include <netinet/ip.h>
   64 #include <netinet/tcp.h>
   65 
   66 #include <dev/mii/mii.h>
   67 #include <dev/mii/miivar.h>
   68 
   69 #include <dev/pci/pcireg.h>
   70 #include <dev/pci/pcivar.h>
   71 
   72 #include <machine/bus.h>
   73 #include <machine/in_cksum.h>
   74 
   75 #include <dev/ale/if_alereg.h>
   76 #include <dev/ale/if_alevar.h>
   77 
   78 /* "device miibus" required.  See GENERIC if you get errors here. */
   79 #include "miibus_if.h"
   80 
   81 /* For more information about Tx checksum offload issues see ale_encap(). */
   82 #define ALE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   83 
   84 MODULE_DEPEND(ale, pci, 1, 1, 1);
   85 MODULE_DEPEND(ale, ether, 1, 1, 1);
   86 MODULE_DEPEND(ale, miibus, 1, 1, 1);
   87 
   88 /* Tunables. */
   89 static int msi_disable = 0;
   90 static int msix_disable = 0;
   91 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
   92 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
   93 
   94 /*
   95  * Devices supported by this driver.
   96  */
   97 static const struct ale_dev {
   98         uint16_t        ale_vendorid;
   99         uint16_t        ale_deviceid;
  100         const char      *ale_name;
  101 } ale_devs[] = {
  102     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
  103     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
  104 };
  105 
  106 static int      ale_attach(device_t);
  107 static int      ale_check_boundary(struct ale_softc *);
  108 static int      ale_detach(device_t);
  109 static int      ale_dma_alloc(struct ale_softc *);
  110 static void     ale_dma_free(struct ale_softc *);
  111 static void     ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  112 static int      ale_encap(struct ale_softc *, struct mbuf **);
  113 static void     ale_get_macaddr(struct ale_softc *);
  114 static void     ale_init(void *);
  115 static void     ale_init_locked(struct ale_softc *);
  116 static void     ale_init_rx_pages(struct ale_softc *);
  117 static void     ale_init_tx_ring(struct ale_softc *);
  118 static void     ale_int_task(void *, int);
  119 static int      ale_intr(void *);
  120 static int      ale_ioctl(struct ifnet *, u_long, caddr_t);
  121 static void     ale_mac_config(struct ale_softc *);
  122 static int      ale_miibus_readreg(device_t, int, int);
  123 static void     ale_miibus_statchg(device_t);
  124 static int      ale_miibus_writereg(device_t, int, int, int);
  125 static int      ale_mediachange(struct ifnet *);
  126 static void     ale_mediastatus(struct ifnet *, struct ifmediareq *);
  127 static void     ale_phy_reset(struct ale_softc *);
  128 static int      ale_probe(device_t);
  129 static void     ale_reset(struct ale_softc *);
  130 static int      ale_resume(device_t);
  131 static void     ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
  132     uint32_t, uint32_t *);
  133 static void     ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
  134 static int      ale_rxeof(struct ale_softc *sc, int);
  135 static void     ale_rxfilter(struct ale_softc *);
  136 static void     ale_rxvlan(struct ale_softc *);
  137 static void     ale_setlinkspeed(struct ale_softc *);
  138 static void     ale_setwol(struct ale_softc *);
  139 static int      ale_shutdown(device_t);
  140 static void     ale_start(struct ifnet *);
  141 static void     ale_start_locked(struct ifnet *);
  142 static void     ale_stats_clear(struct ale_softc *);
  143 static void     ale_stats_update(struct ale_softc *);
  144 static void     ale_stop(struct ale_softc *);
  145 static void     ale_stop_mac(struct ale_softc *);
  146 static int      ale_suspend(device_t);
  147 static void     ale_sysctl_node(struct ale_softc *);
  148 static void     ale_tick(void *);
  149 static void     ale_txeof(struct ale_softc *);
  150 static void     ale_watchdog(struct ale_softc *);
  151 static int      sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  152 static int      sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
  153 static int      sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
  154 
  155 static device_method_t ale_methods[] = {
  156         /* Device interface. */
  157         DEVMETHOD(device_probe,         ale_probe),
  158         DEVMETHOD(device_attach,        ale_attach),
  159         DEVMETHOD(device_detach,        ale_detach),
  160         DEVMETHOD(device_shutdown,      ale_shutdown),
  161         DEVMETHOD(device_suspend,       ale_suspend),
  162         DEVMETHOD(device_resume,        ale_resume),
  163 
  164         /* MII interface. */
  165         DEVMETHOD(miibus_readreg,       ale_miibus_readreg),
  166         DEVMETHOD(miibus_writereg,      ale_miibus_writereg),
  167         DEVMETHOD(miibus_statchg,       ale_miibus_statchg),
  168 
  169         DEVMETHOD_END
  170 };
  171 
  172 static driver_t ale_driver = {
  173         "ale",
  174         ale_methods,
  175         sizeof(struct ale_softc)
  176 };
  177 
  178 DRIVER_MODULE(ale, pci, ale_driver, NULL, NULL);
  179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, ale, ale_devs,
  180     nitems(ale_devs));
  181 DRIVER_MODULE(miibus, ale, miibus_driver, NULL, NULL);
  182 
  183 static struct resource_spec ale_res_spec_mem[] = {
  184         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  185         { -1,                   0,              0 }
  186 };
  187 
  188 static struct resource_spec ale_irq_spec_legacy[] = {
  189         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  190         { -1,                   0,              0 }
  191 };
  192 
  193 static struct resource_spec ale_irq_spec_msi[] = {
  194         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  195         { -1,                   0,              0 }
  196 };
  197 
  198 static struct resource_spec ale_irq_spec_msix[] = {
  199         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  200         { -1,                   0,              0 }
  201 };
  202 
  203 static int
  204 ale_miibus_readreg(device_t dev, int phy, int reg)
  205 {
  206         struct ale_softc *sc;
  207         uint32_t v;
  208         int i;
  209 
  210         sc = device_get_softc(dev);
  211 
  212         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  213             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  214         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  215                 DELAY(5);
  216                 v = CSR_READ_4(sc, ALE_MDIO);
  217                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  218                         break;
  219         }
  220 
  221         if (i == 0) {
  222                 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
  223                 return (0);
  224         }
  225 
  226         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  227 }
  228 
  229 static int
  230 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
  231 {
  232         struct ale_softc *sc;
  233         uint32_t v;
  234         int i;
  235 
  236         sc = device_get_softc(dev);
  237 
  238         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  239             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  240             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  241         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  242                 DELAY(5);
  243                 v = CSR_READ_4(sc, ALE_MDIO);
  244                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  245                         break;
  246         }
  247 
  248         if (i == 0)
  249                 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
  250 
  251         return (0);
  252 }
  253 
  254 static void
  255 ale_miibus_statchg(device_t dev)
  256 {
  257         struct ale_softc *sc;
  258         struct mii_data *mii;
  259         struct ifnet *ifp;
  260         uint32_t reg;
  261 
  262         sc = device_get_softc(dev);
  263         mii = device_get_softc(sc->ale_miibus);
  264         ifp = sc->ale_ifp;
  265         if (mii == NULL || ifp == NULL ||
  266             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  267                 return;
  268 
  269         sc->ale_flags &= ~ALE_FLAG_LINK;
  270         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  271             (IFM_ACTIVE | IFM_AVALID)) {
  272                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  273                 case IFM_10_T:
  274                 case IFM_100_TX:
  275                         sc->ale_flags |= ALE_FLAG_LINK;
  276                         break;
  277                 case IFM_1000_T:
  278                         if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
  279                                 sc->ale_flags |= ALE_FLAG_LINK;
  280                         break;
  281                 default:
  282                         break;
  283                 }
  284         }
  285 
  286         /* Stop Rx/Tx MACs. */
  287         ale_stop_mac(sc);
  288 
  289         /* Program MACs with resolved speed/duplex/flow-control. */
  290         if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
  291                 ale_mac_config(sc);
  292                 /* Reenable Tx/Rx MACs. */
  293                 reg = CSR_READ_4(sc, ALE_MAC_CFG);
  294                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
  295                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
  296         }
  297 }
  298 
  299 static void
  300 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  301 {
  302         struct ale_softc *sc;
  303         struct mii_data *mii;
  304 
  305         sc = ifp->if_softc;
  306         ALE_LOCK(sc);
  307         if ((ifp->if_flags & IFF_UP) == 0) {
  308                 ALE_UNLOCK(sc);
  309                 return;
  310         }
  311         mii = device_get_softc(sc->ale_miibus);
  312 
  313         mii_pollstat(mii);
  314         ifmr->ifm_status = mii->mii_media_status;
  315         ifmr->ifm_active = mii->mii_media_active;
  316         ALE_UNLOCK(sc);
  317 }
  318 
  319 static int
  320 ale_mediachange(struct ifnet *ifp)
  321 {
  322         struct ale_softc *sc;
  323         struct mii_data *mii;
  324         struct mii_softc *miisc;
  325         int error;
  326 
  327         sc = ifp->if_softc;
  328         ALE_LOCK(sc);
  329         mii = device_get_softc(sc->ale_miibus);
  330         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  331                 PHY_RESET(miisc);
  332         error = mii_mediachg(mii);
  333         ALE_UNLOCK(sc);
  334 
  335         return (error);
  336 }
  337 
  338 static int
  339 ale_probe(device_t dev)
  340 {
  341         const struct ale_dev *sp;
  342         int i;
  343         uint16_t vendor, devid;
  344 
  345         vendor = pci_get_vendor(dev);
  346         devid = pci_get_device(dev);
  347         sp = ale_devs;
  348         for (i = 0; i < nitems(ale_devs); i++) {
  349                 if (vendor == sp->ale_vendorid &&
  350                     devid == sp->ale_deviceid) {
  351                         device_set_desc(dev, sp->ale_name);
  352                         return (BUS_PROBE_DEFAULT);
  353                 }
  354                 sp++;
  355         }
  356 
  357         return (ENXIO);
  358 }
  359 
  360 static void
  361 ale_get_macaddr(struct ale_softc *sc)
  362 {
  363         uint32_t ea[2], reg;
  364         int i, vpdc;
  365 
  366         reg = CSR_READ_4(sc, ALE_SPI_CTRL);
  367         if ((reg & SPI_VPD_ENB) != 0) {
  368                 reg &= ~SPI_VPD_ENB;
  369                 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
  370         }
  371 
  372         if (pci_find_cap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
  373                 /*
  374                  * PCI VPD capability found, let TWSI reload EEPROM.
  375                  * This will set ethernet address of controller.
  376                  */
  377                 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
  378                     TWSI_CTRL_SW_LD_START);
  379                 for (i = 100; i > 0; i--) {
  380                         DELAY(1000);
  381                         reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
  382                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  383                                 break;
  384                 }
  385                 if (i == 0)
  386                         device_printf(sc->ale_dev,
  387                             "reloading EEPROM timeout!\n");
  388         } else {
  389                 if (bootverbose)
  390                         device_printf(sc->ale_dev,
  391                             "PCI VPD capability not found!\n");
  392         }
  393 
  394         ea[0] = CSR_READ_4(sc, ALE_PAR0);
  395         ea[1] = CSR_READ_4(sc, ALE_PAR1);
  396         sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
  397         sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
  398         sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
  399         sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
  400         sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
  401         sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
  402 }
  403 
  404 static void
  405 ale_phy_reset(struct ale_softc *sc)
  406 {
  407 
  408         /* Reset magic from Linux. */
  409         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  410             GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
  411             GPHY_CTRL_PHY_PLL_ON);
  412         DELAY(1000);
  413         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  414             GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
  415             GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
  416         DELAY(1000);
  417 
  418 #define ATPHY_DBG_ADDR          0x1D
  419 #define ATPHY_DBG_DATA          0x1E
  420 
  421         /* Enable hibernation mode. */
  422         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  423             ATPHY_DBG_ADDR, 0x0B);
  424         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  425             ATPHY_DBG_DATA, 0xBC00);
  426         /* Set Class A/B for all modes. */
  427         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  428             ATPHY_DBG_ADDR, 0x00);
  429         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  430             ATPHY_DBG_DATA, 0x02EF);
  431         /* Enable 10BT power saving. */
  432         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  433             ATPHY_DBG_ADDR, 0x12);
  434         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  435             ATPHY_DBG_DATA, 0x4C04);
  436         /* Adjust 1000T power. */
  437         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  438             ATPHY_DBG_ADDR, 0x04);
  439         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  440             ATPHY_DBG_ADDR, 0x8BBB);
  441         /* 10BT center tap voltage. */
  442         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  443             ATPHY_DBG_ADDR, 0x05);
  444         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  445             ATPHY_DBG_ADDR, 0x2C46);
  446 
  447 #undef  ATPHY_DBG_ADDR
  448 #undef  ATPHY_DBG_DATA
  449         DELAY(1000);
  450 }
  451 
  452 static int
  453 ale_attach(device_t dev)
  454 {
  455         struct ale_softc *sc;
  456         struct ifnet *ifp;
  457         uint16_t burst;
  458         int error, i, msic, msixc, pmc;
  459         uint32_t rxf_len, txf_len;
  460 
  461         error = 0;
  462         sc = device_get_softc(dev);
  463         sc->ale_dev = dev;
  464 
  465         mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  466             MTX_DEF);
  467         callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
  468         NET_TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
  469 
  470         /* Map the device. */
  471         pci_enable_busmaster(dev);
  472         sc->ale_res_spec = ale_res_spec_mem;
  473         sc->ale_irq_spec = ale_irq_spec_legacy;
  474         error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
  475         if (error != 0) {
  476                 device_printf(dev, "cannot allocate memory resources.\n");
  477                 goto fail;
  478         }
  479 
  480         /* Set PHY address. */
  481         sc->ale_phyaddr = ALE_PHY_ADDR;
  482 
  483         /* Reset PHY. */
  484         ale_phy_reset(sc);
  485 
  486         /* Reset the ethernet controller. */
  487         ale_reset(sc);
  488 
  489         /* Get PCI and chip id/revision. */
  490         sc->ale_rev = pci_get_revid(dev);
  491         if (sc->ale_rev >= 0xF0) {
  492                 /* L2E Rev. B. AR8114 */
  493                 sc->ale_flags |= ALE_FLAG_FASTETHER;
  494         } else {
  495                 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
  496                         /* L1E AR8121 */
  497                         sc->ale_flags |= ALE_FLAG_JUMBO;
  498                 } else {
  499                         /* L2E Rev. A. AR8113 */
  500                         sc->ale_flags |= ALE_FLAG_FASTETHER;
  501                 }
  502         }
  503         /*
  504          * All known controllers seems to require 4 bytes alignment
  505          * of Tx buffers to make Tx checksum offload with custom
  506          * checksum generation method work.
  507          */
  508         sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
  509         /*
  510          * All known controllers seems to have issues on Rx checksum
  511          * offload for fragmented IP datagrams.
  512          */
  513         sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
  514         /*
  515          * Don't use Tx CMB. It is known to cause RRS update failure
  516          * under certain circumstances. Typical phenomenon of the
  517          * issue would be unexpected sequence number encountered in
  518          * Rx handler.
  519          */
  520         sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
  521         sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
  522             MASTER_CHIP_REV_SHIFT;
  523         if (bootverbose) {
  524                 device_printf(dev, "PCI device revision : 0x%04x\n",
  525                     sc->ale_rev);
  526                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  527                     sc->ale_chip_rev);
  528         }
  529         txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
  530         rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
  531         /*
  532          * Uninitialized hardware returns an invalid chip id/revision
  533          * as well as 0xFFFFFFFF for Tx/Rx fifo length.
  534          */
  535         if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
  536             rxf_len == 0xFFFFFFF) {
  537                 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
  538                     "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
  539                     txf_len, rxf_len);
  540                 error = ENXIO;
  541                 goto fail;
  542         }
  543         device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
  544 
  545         /* Allocate IRQ resources. */
  546         msixc = pci_msix_count(dev);
  547         msic = pci_msi_count(dev);
  548         if (bootverbose) {
  549                 device_printf(dev, "MSIX count : %d\n", msixc);
  550                 device_printf(dev, "MSI count : %d\n", msic);
  551         }
  552 
  553         /* Prefer MSIX over MSI. */
  554         if (msix_disable == 0 || msi_disable == 0) {
  555                 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
  556                     pci_alloc_msix(dev, &msixc) == 0) {
  557                         if (msixc == ALE_MSIX_MESSAGES) {
  558                                 device_printf(dev, "Using %d MSIX messages.\n",
  559                                     msixc);
  560                                 sc->ale_flags |= ALE_FLAG_MSIX;
  561                                 sc->ale_irq_spec = ale_irq_spec_msix;
  562                         } else
  563                                 pci_release_msi(dev);
  564                 }
  565                 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
  566                     msic == ALE_MSI_MESSAGES &&
  567                     pci_alloc_msi(dev, &msic) == 0) {
  568                         if (msic == ALE_MSI_MESSAGES) {
  569                                 device_printf(dev, "Using %d MSI messages.\n",
  570                                     msic);
  571                                 sc->ale_flags |= ALE_FLAG_MSI;
  572                                 sc->ale_irq_spec = ale_irq_spec_msi;
  573                         } else
  574                                 pci_release_msi(dev);
  575                 }
  576         }
  577 
  578         error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  579         if (error != 0) {
  580                 device_printf(dev, "cannot allocate IRQ resources.\n");
  581                 goto fail;
  582         }
  583 
  584         /* Get DMA parameters from PCIe device control register. */
  585         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
  586                 sc->ale_flags |= ALE_FLAG_PCIE;
  587                 burst = pci_read_config(dev, i + 0x08, 2);
  588                 /* Max read request size. */
  589                 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
  590                     DMA_CFG_RD_BURST_SHIFT;
  591                 /* Max payload size. */
  592                 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
  593                     DMA_CFG_WR_BURST_SHIFT;
  594                 if (bootverbose) {
  595                         device_printf(dev, "Read request size : %d bytes.\n",
  596                             128 << ((burst >> 12) & 0x07));
  597                         device_printf(dev, "TLP payload size : %d bytes.\n",
  598                             128 << ((burst >> 5) & 0x07));
  599                 }
  600         } else {
  601                 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
  602                 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
  603         }
  604 
  605         /* Create device sysctl node. */
  606         ale_sysctl_node(sc);
  607 
  608         if ((error = ale_dma_alloc(sc)) != 0)
  609                 goto fail;
  610 
  611         /* Load station address. */
  612         ale_get_macaddr(sc);
  613 
  614         ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
  615         if (ifp == NULL) {
  616                 device_printf(dev, "cannot allocate ifnet structure.\n");
  617                 error = ENXIO;
  618                 goto fail;
  619         }
  620 
  621         ifp->if_softc = sc;
  622         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  623         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  624         ifp->if_ioctl = ale_ioctl;
  625         ifp->if_start = ale_start;
  626         ifp->if_init = ale_init;
  627         ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
  628         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  629         IFQ_SET_READY(&ifp->if_snd);
  630         ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
  631         ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
  632         if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
  633                 sc->ale_flags |= ALE_FLAG_PMCAP;
  634                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
  635         }
  636         ifp->if_capenable = ifp->if_capabilities;
  637 
  638         /* Set up MII bus. */
  639         error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
  640             ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
  641             MIIF_DOPAUSE);
  642         if (error != 0) {
  643                 device_printf(dev, "attaching PHYs failed\n");
  644                 goto fail;
  645         }
  646 
  647         ether_ifattach(ifp, sc->ale_eaddr);
  648 
  649         /* VLAN capability setup. */
  650         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
  651             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
  652         ifp->if_capenable = ifp->if_capabilities;
  653         /*
  654          * Even though controllers supported by ale(3) have Rx checksum
  655          * offload bug the workaround for fragmented frames seemed to
  656          * work so far. However it seems Rx checksum offload does not
  657          * work under certain conditions. So disable Rx checksum offload
  658          * until I find more clue about it but allow users to override it.
  659          */
  660         ifp->if_capenable &= ~IFCAP_RXCSUM;
  661 
  662         /* Tell the upper layer(s) we support long frames. */
  663         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
  664 
  665         /* Create local taskq. */
  666         sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
  667             taskqueue_thread_enqueue, &sc->ale_tq);
  668         if (sc->ale_tq == NULL) {
  669                 device_printf(dev, "could not create taskqueue.\n");
  670                 ether_ifdetach(ifp);
  671                 error = ENXIO;
  672                 goto fail;
  673         }
  674         taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
  675             device_get_nameunit(sc->ale_dev));
  676 
  677         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  678                 msic = ALE_MSIX_MESSAGES;
  679         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  680                 msic = ALE_MSI_MESSAGES;
  681         else
  682                 msic = 1;
  683         for (i = 0; i < msic; i++) {
  684                 error = bus_setup_intr(dev, sc->ale_irq[i],
  685                     INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
  686                     &sc->ale_intrhand[i]);
  687                 if (error != 0)
  688                         break;
  689         }
  690         if (error != 0) {
  691                 device_printf(dev, "could not set up interrupt handler.\n");
  692                 taskqueue_free(sc->ale_tq);
  693                 sc->ale_tq = NULL;
  694                 ether_ifdetach(ifp);
  695                 goto fail;
  696         }
  697 
  698 fail:
  699         if (error != 0)
  700                 ale_detach(dev);
  701 
  702         return (error);
  703 }
  704 
  705 static int
  706 ale_detach(device_t dev)
  707 {
  708         struct ale_softc *sc;
  709         struct ifnet *ifp;
  710         int i, msic;
  711 
  712         sc = device_get_softc(dev);
  713 
  714         ifp = sc->ale_ifp;
  715         if (device_is_attached(dev)) {
  716                 ether_ifdetach(ifp);
  717                 ALE_LOCK(sc);
  718                 ale_stop(sc);
  719                 ALE_UNLOCK(sc);
  720                 callout_drain(&sc->ale_tick_ch);
  721                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  722         }
  723 
  724         if (sc->ale_tq != NULL) {
  725                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  726                 taskqueue_free(sc->ale_tq);
  727                 sc->ale_tq = NULL;
  728         }
  729 
  730         if (sc->ale_miibus != NULL) {
  731                 device_delete_child(dev, sc->ale_miibus);
  732                 sc->ale_miibus = NULL;
  733         }
  734         bus_generic_detach(dev);
  735         ale_dma_free(sc);
  736 
  737         if (ifp != NULL) {
  738                 if_free(ifp);
  739                 sc->ale_ifp = NULL;
  740         }
  741 
  742         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  743                 msic = ALE_MSIX_MESSAGES;
  744         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  745                 msic = ALE_MSI_MESSAGES;
  746         else
  747                 msic = 1;
  748         for (i = 0; i < msic; i++) {
  749                 if (sc->ale_intrhand[i] != NULL) {
  750                         bus_teardown_intr(dev, sc->ale_irq[i],
  751                             sc->ale_intrhand[i]);
  752                         sc->ale_intrhand[i] = NULL;
  753                 }
  754         }
  755 
  756         bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  757         if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
  758                 pci_release_msi(dev);
  759         bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
  760         mtx_destroy(&sc->ale_mtx);
  761 
  762         return (0);
  763 }
  764 
  765 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
  766             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  767 
  768 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  769             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  770 
  771 static void
  772 ale_sysctl_node(struct ale_softc *sc)
  773 {
  774         struct sysctl_ctx_list *ctx;
  775         struct sysctl_oid_list *child, *parent;
  776         struct sysctl_oid *tree;
  777         struct ale_hw_stats *stats;
  778         int error;
  779 
  780         stats = &sc->ale_stats;
  781         ctx = device_get_sysctl_ctx(sc->ale_dev);
  782         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
  783 
  784         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
  785             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_rx_mod,
  786             0, sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
  787         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
  788             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->ale_int_tx_mod,
  789             0, sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
  790         /* Pull in device tunables. */
  791         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  792         error = resource_int_value(device_get_name(sc->ale_dev),
  793             device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
  794         if (error == 0) {
  795                 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
  796                     sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
  797                         device_printf(sc->ale_dev, "int_rx_mod value out of "
  798                             "range; using default: %d\n",
  799                             ALE_IM_RX_TIMER_DEFAULT);
  800                         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  801                 }
  802         }
  803         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  804         error = resource_int_value(device_get_name(sc->ale_dev),
  805             device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
  806         if (error == 0) {
  807                 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
  808                     sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
  809                         device_printf(sc->ale_dev, "int_tx_mod value out of "
  810                             "range; using default: %d\n",
  811                             ALE_IM_TX_TIMER_DEFAULT);
  812                         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  813                 }
  814         }
  815         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
  816             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
  817             &sc->ale_process_limit, 0, sysctl_hw_ale_proc_limit, "I",
  818             "max number of Rx events to process");
  819         /* Pull in device tunables. */
  820         sc->ale_process_limit = ALE_PROC_DEFAULT;
  821         error = resource_int_value(device_get_name(sc->ale_dev),
  822             device_get_unit(sc->ale_dev), "process_limit",
  823             &sc->ale_process_limit);
  824         if (error == 0) {
  825                 if (sc->ale_process_limit < ALE_PROC_MIN ||
  826                     sc->ale_process_limit > ALE_PROC_MAX) {
  827                         device_printf(sc->ale_dev,
  828                             "process_limit value out of range; "
  829                             "using default: %d\n", ALE_PROC_DEFAULT);
  830                         sc->ale_process_limit = ALE_PROC_DEFAULT;
  831                 }
  832         }
  833 
  834         /* Misc statistics. */
  835         ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
  836             &stats->reset_brk_seq,
  837             "Controller resets due to broken Rx sequnce number");
  838 
  839         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
  840             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ATE statistics");
  841         parent = SYSCTL_CHILDREN(tree);
  842 
  843         /* Rx statistics. */
  844         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
  845             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
  846         child = SYSCTL_CHILDREN(tree);
  847         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  848             &stats->rx_frames, "Good frames");
  849         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  850             &stats->rx_bcast_frames, "Good broadcast frames");
  851         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  852             &stats->rx_mcast_frames, "Good multicast frames");
  853         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  854             &stats->rx_pause_frames, "Pause control frames");
  855         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  856             &stats->rx_control_frames, "Control frames");
  857         ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
  858             &stats->rx_crcerrs, "CRC errors");
  859         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  860             &stats->rx_lenerrs, "Frames with length mismatched");
  861         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  862             &stats->rx_bytes, "Good octets");
  863         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  864             &stats->rx_bcast_bytes, "Good broadcast octets");
  865         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  866             &stats->rx_mcast_bytes, "Good multicast octets");
  867         ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
  868             &stats->rx_runts, "Too short frames");
  869         ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
  870             &stats->rx_fragments, "Fragmented frames");
  871         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  872             &stats->rx_pkts_64, "64 bytes frames");
  873         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  874             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
  875         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  876             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
  877         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  878             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
  879         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  880             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
  881         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  882             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
  883         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  884             &stats->rx_pkts_1519_max, "1519 to max frames");
  885         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  886             &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
  887         ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
  888             &stats->rx_fifo_oflows, "FIFO overflows");
  889         ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
  890             &stats->rx_rrs_errs, "Return status write-back errors");
  891         ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
  892             &stats->rx_alignerrs, "Alignment errors");
  893         ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
  894             &stats->rx_pkts_filtered,
  895             "Frames dropped due to address filtering");
  896 
  897         /* Tx statistics. */
  898         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
  899             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
  900         child = SYSCTL_CHILDREN(tree);
  901         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  902             &stats->tx_frames, "Good frames");
  903         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  904             &stats->tx_bcast_frames, "Good broadcast frames");
  905         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  906             &stats->tx_mcast_frames, "Good multicast frames");
  907         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  908             &stats->tx_pause_frames, "Pause control frames");
  909         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  910             &stats->tx_control_frames, "Control frames");
  911         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
  912             &stats->tx_excess_defer, "Frames with excessive derferrals");
  913         ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
  914             &stats->tx_excess_defer, "Frames with derferrals");
  915         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  916             &stats->tx_bytes, "Good octets");
  917         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  918             &stats->tx_bcast_bytes, "Good broadcast octets");
  919         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  920             &stats->tx_mcast_bytes, "Good multicast octets");
  921         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  922             &stats->tx_pkts_64, "64 bytes frames");
  923         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  924             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
  925         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  926             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
  927         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  928             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
  929         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  930             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
  931         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  932             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
  933         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  934             &stats->tx_pkts_1519_max, "1519 to max frames");
  935         ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
  936             &stats->tx_single_colls, "Single collisions");
  937         ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
  938             &stats->tx_multi_colls, "Multiple collisions");
  939         ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
  940             &stats->tx_late_colls, "Late collisions");
  941         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
  942             &stats->tx_excess_colls, "Excessive collisions");
  943         ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
  944             &stats->tx_underrun, "FIFO underruns");
  945         ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
  946             &stats->tx_desc_underrun, "Descriptor write-back errors");
  947         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  948             &stats->tx_lenerrs, "Frames with length mismatched");
  949         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  950             &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
  951 }
  952 
  953 #undef ALE_SYSCTL_STAT_ADD32
  954 #undef ALE_SYSCTL_STAT_ADD64
  955 
  956 struct ale_dmamap_arg {
  957         bus_addr_t      ale_busaddr;
  958 };
  959 
  960 static void
  961 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  962 {
  963         struct ale_dmamap_arg *ctx;
  964 
  965         if (error != 0)
  966                 return;
  967 
  968         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  969 
  970         ctx = (struct ale_dmamap_arg *)arg;
  971         ctx->ale_busaddr = segs[0].ds_addr;
  972 }
  973 
  974 /*
  975  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
  976  * which specifies high address region of DMA blocks. Therefore these
  977  * blocks should have the same high address of given 4GB address
  978  * space(i.e. crossing 4GB boundary is not allowed).
  979  */
  980 static int
  981 ale_check_boundary(struct ale_softc *sc)
  982 {
  983         bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
  984         bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
  985 
  986         rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
  987             sc->ale_pagesize;
  988         rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
  989             sc->ale_pagesize;
  990         tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
  991         tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
  992         rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
  993         rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
  994 
  995         if ((ALE_ADDR_HI(tx_ring_end) !=
  996             ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
  997             (ALE_ADDR_HI(rx_page_end[0]) !=
  998             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
  999             (ALE_ADDR_HI(rx_page_end[1]) !=
 1000             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
 1001             (ALE_ADDR_HI(tx_cmb_end) !=
 1002             ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
 1003             (ALE_ADDR_HI(rx_cmb_end[0]) !=
 1004             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
 1005             (ALE_ADDR_HI(rx_cmb_end[1]) !=
 1006             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
 1007                 return (EFBIG);
 1008 
 1009         if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
 1010             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
 1011             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
 1012             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
 1013             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
 1014                 return (EFBIG);
 1015 
 1016         return (0);
 1017 }
 1018 
 1019 static int
 1020 ale_dma_alloc(struct ale_softc *sc)
 1021 {
 1022         struct ale_txdesc *txd;
 1023         bus_addr_t lowaddr;
 1024         struct ale_dmamap_arg ctx;
 1025         int error, guard_size, i;
 1026 
 1027         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
 1028                 guard_size = ALE_JUMBO_FRAMELEN;
 1029         else
 1030                 guard_size = ALE_MAX_FRAMELEN;
 1031         sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
 1032             ALE_RX_PAGE_ALIGN);
 1033         lowaddr = BUS_SPACE_MAXADDR;
 1034 again:
 1035         /* Create parent DMA tag. */
 1036         error = bus_dma_tag_create(
 1037             bus_get_dma_tag(sc->ale_dev), /* parent */
 1038             1, 0,                       /* alignment, boundary */
 1039             lowaddr,                    /* lowaddr */
 1040             BUS_SPACE_MAXADDR,          /* highaddr */
 1041             NULL, NULL,                 /* filter, filterarg */
 1042             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1043             0,                          /* nsegments */
 1044             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1045             0,                          /* flags */
 1046             NULL, NULL,                 /* lockfunc, lockarg */
 1047             &sc->ale_cdata.ale_parent_tag);
 1048         if (error != 0) {
 1049                 device_printf(sc->ale_dev,
 1050                     "could not create parent DMA tag.\n");
 1051                 goto fail;
 1052         }
 1053 
 1054         /* Create DMA tag for Tx descriptor ring. */
 1055         error = bus_dma_tag_create(
 1056             sc->ale_cdata.ale_parent_tag, /* parent */
 1057             ALE_TX_RING_ALIGN, 0,       /* alignment, boundary */
 1058             BUS_SPACE_MAXADDR,          /* lowaddr */
 1059             BUS_SPACE_MAXADDR,          /* highaddr */
 1060             NULL, NULL,                 /* filter, filterarg */
 1061             ALE_TX_RING_SZ,             /* maxsize */
 1062             1,                          /* nsegments */
 1063             ALE_TX_RING_SZ,             /* maxsegsize */
 1064             0,                          /* flags */
 1065             NULL, NULL,                 /* lockfunc, lockarg */
 1066             &sc->ale_cdata.ale_tx_ring_tag);
 1067         if (error != 0) {
 1068                 device_printf(sc->ale_dev,
 1069                     "could not create Tx ring DMA tag.\n");
 1070                 goto fail;
 1071         }
 1072 
 1073         /* Create DMA tag for Rx pages. */
 1074         for (i = 0; i < ALE_RX_PAGES; i++) {
 1075                 error = bus_dma_tag_create(
 1076                     sc->ale_cdata.ale_parent_tag, /* parent */
 1077                     ALE_RX_PAGE_ALIGN, 0,       /* alignment, boundary */
 1078                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1079                     BUS_SPACE_MAXADDR,          /* highaddr */
 1080                     NULL, NULL,                 /* filter, filterarg */
 1081                     sc->ale_pagesize,           /* maxsize */
 1082                     1,                          /* nsegments */
 1083                     sc->ale_pagesize,           /* maxsegsize */
 1084                     0,                          /* flags */
 1085                     NULL, NULL,                 /* lockfunc, lockarg */
 1086                     &sc->ale_cdata.ale_rx_page[i].page_tag);
 1087                 if (error != 0) {
 1088                         device_printf(sc->ale_dev,
 1089                             "could not create Rx page %d DMA tag.\n", i);
 1090                         goto fail;
 1091                 }
 1092         }
 1093 
 1094         /* Create DMA tag for Tx coalescing message block. */
 1095         error = bus_dma_tag_create(
 1096             sc->ale_cdata.ale_parent_tag, /* parent */
 1097             ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1098             BUS_SPACE_MAXADDR,          /* lowaddr */
 1099             BUS_SPACE_MAXADDR,          /* highaddr */
 1100             NULL, NULL,                 /* filter, filterarg */
 1101             ALE_TX_CMB_SZ,              /* maxsize */
 1102             1,                          /* nsegments */
 1103             ALE_TX_CMB_SZ,              /* maxsegsize */
 1104             0,                          /* flags */
 1105             NULL, NULL,                 /* lockfunc, lockarg */
 1106             &sc->ale_cdata.ale_tx_cmb_tag);
 1107         if (error != 0) {
 1108                 device_printf(sc->ale_dev,
 1109                     "could not create Tx CMB DMA tag.\n");
 1110                 goto fail;
 1111         }
 1112 
 1113         /* Create DMA tag for Rx coalescing message block. */
 1114         for (i = 0; i < ALE_RX_PAGES; i++) {
 1115                 error = bus_dma_tag_create(
 1116                     sc->ale_cdata.ale_parent_tag, /* parent */
 1117                     ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1118                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1119                     BUS_SPACE_MAXADDR,          /* highaddr */
 1120                     NULL, NULL,                 /* filter, filterarg */
 1121                     ALE_RX_CMB_SZ,              /* maxsize */
 1122                     1,                          /* nsegments */
 1123                     ALE_RX_CMB_SZ,              /* maxsegsize */
 1124                     0,                          /* flags */
 1125                     NULL, NULL,                 /* lockfunc, lockarg */
 1126                     &sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1127                 if (error != 0) {
 1128                         device_printf(sc->ale_dev,
 1129                             "could not create Rx page %d CMB DMA tag.\n", i);
 1130                         goto fail;
 1131                 }
 1132         }
 1133 
 1134         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1135         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
 1136             (void **)&sc->ale_cdata.ale_tx_ring,
 1137             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1138             &sc->ale_cdata.ale_tx_ring_map);
 1139         if (error != 0) {
 1140                 device_printf(sc->ale_dev,
 1141                     "could not allocate DMA'able memory for Tx ring.\n");
 1142                 goto fail;
 1143         }
 1144         ctx.ale_busaddr = 0;
 1145         error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
 1146             sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
 1147             ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
 1148         if (error != 0 || ctx.ale_busaddr == 0) {
 1149                 device_printf(sc->ale_dev,
 1150                     "could not load DMA'able memory for Tx ring.\n");
 1151                 goto fail;
 1152         }
 1153         sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
 1154 
 1155         /* Rx pages. */
 1156         for (i = 0; i < ALE_RX_PAGES; i++) {
 1157                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
 1158                     (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
 1159                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1160                     &sc->ale_cdata.ale_rx_page[i].page_map);
 1161                 if (error != 0) {
 1162                         device_printf(sc->ale_dev,
 1163                             "could not allocate DMA'able memory for "
 1164                             "Rx page %d.\n", i);
 1165                         goto fail;
 1166                 }
 1167                 ctx.ale_busaddr = 0;
 1168                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
 1169                     sc->ale_cdata.ale_rx_page[i].page_map,
 1170                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1171                     sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
 1172                 if (error != 0 || ctx.ale_busaddr == 0) {
 1173                         device_printf(sc->ale_dev,
 1174                             "could not load DMA'able memory for "
 1175                             "Rx page %d.\n", i);
 1176                         goto fail;
 1177                 }
 1178                 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
 1179         }
 1180 
 1181         /* Tx CMB. */
 1182         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
 1183             (void **)&sc->ale_cdata.ale_tx_cmb,
 1184             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1185             &sc->ale_cdata.ale_tx_cmb_map);
 1186         if (error != 0) {
 1187                 device_printf(sc->ale_dev,
 1188                     "could not allocate DMA'able memory for Tx CMB.\n");
 1189                 goto fail;
 1190         }
 1191         ctx.ale_busaddr = 0;
 1192         error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
 1193             sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
 1194             ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1195         if (error != 0 || ctx.ale_busaddr == 0) {
 1196                 device_printf(sc->ale_dev,
 1197                     "could not load DMA'able memory for Tx CMB.\n");
 1198                 goto fail;
 1199         }
 1200         sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
 1201 
 1202         /* Rx CMB. */
 1203         for (i = 0; i < ALE_RX_PAGES; i++) {
 1204                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1205                     (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1206                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1207                     &sc->ale_cdata.ale_rx_page[i].cmb_map);
 1208                 if (error != 0) {
 1209                         device_printf(sc->ale_dev, "could not allocate "
 1210                             "DMA'able memory for Rx page %d CMB.\n", i);
 1211                         goto fail;
 1212                 }
 1213                 ctx.ale_busaddr = 0;
 1214                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1215                     sc->ale_cdata.ale_rx_page[i].cmb_map,
 1216                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1217                     ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1218                 if (error != 0 || ctx.ale_busaddr == 0) {
 1219                         device_printf(sc->ale_dev, "could not load DMA'able "
 1220                             "memory for Rx page %d CMB.\n", i);
 1221                         goto fail;
 1222                 }
 1223                 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
 1224         }
 1225 
 1226         /*
 1227          * Tx descriptors/RXF0/CMB DMA blocks share the same
 1228          * high address region of 64bit DMA address space.
 1229          */
 1230         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1231             (error = ale_check_boundary(sc)) != 0) {
 1232                 device_printf(sc->ale_dev, "4GB boundary crossed, "
 1233                     "switching to 32bit DMA addressing mode.\n");
 1234                 ale_dma_free(sc);
 1235                 /*
 1236                  * Limit max allowable DMA address space to 32bit
 1237                  * and try again.
 1238                  */
 1239                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1240                 goto again;
 1241         }
 1242 
 1243         /*
 1244          * Create Tx buffer parent tag.
 1245          * AR81xx allows 64bit DMA addressing of Tx buffers so it
 1246          * needs separate parent DMA tag as parent DMA address space
 1247          * could be restricted to be within 32bit address space by
 1248          * 4GB boundary crossing.
 1249          */
 1250         error = bus_dma_tag_create(
 1251             bus_get_dma_tag(sc->ale_dev), /* parent */
 1252             1, 0,                       /* alignment, boundary */
 1253             BUS_SPACE_MAXADDR,          /* lowaddr */
 1254             BUS_SPACE_MAXADDR,          /* highaddr */
 1255             NULL, NULL,                 /* filter, filterarg */
 1256             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1257             0,                          /* nsegments */
 1258             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1259             0,                          /* flags */
 1260             NULL, NULL,                 /* lockfunc, lockarg */
 1261             &sc->ale_cdata.ale_buffer_tag);
 1262         if (error != 0) {
 1263                 device_printf(sc->ale_dev,
 1264                     "could not create parent buffer DMA tag.\n");
 1265                 goto fail;
 1266         }
 1267 
 1268         /* Create DMA tag for Tx buffers. */
 1269         error = bus_dma_tag_create(
 1270             sc->ale_cdata.ale_buffer_tag, /* parent */
 1271             1, 0,                       /* alignment, boundary */
 1272             BUS_SPACE_MAXADDR,          /* lowaddr */
 1273             BUS_SPACE_MAXADDR,          /* highaddr */
 1274             NULL, NULL,                 /* filter, filterarg */
 1275             ALE_TSO_MAXSIZE,            /* maxsize */
 1276             ALE_MAXTXSEGS,              /* nsegments */
 1277             ALE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1278             0,                          /* flags */
 1279             NULL, NULL,                 /* lockfunc, lockarg */
 1280             &sc->ale_cdata.ale_tx_tag);
 1281         if (error != 0) {
 1282                 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
 1283                 goto fail;
 1284         }
 1285 
 1286         /* Create DMA maps for Tx buffers. */
 1287         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1288                 txd = &sc->ale_cdata.ale_txdesc[i];
 1289                 txd->tx_m = NULL;
 1290                 txd->tx_dmamap = NULL;
 1291                 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
 1292                     &txd->tx_dmamap);
 1293                 if (error != 0) {
 1294                         device_printf(sc->ale_dev,
 1295                             "could not create Tx dmamap.\n");
 1296                         goto fail;
 1297                 }
 1298         }
 1299 
 1300 fail:
 1301         return (error);
 1302 }
 1303 
 1304 static void
 1305 ale_dma_free(struct ale_softc *sc)
 1306 {
 1307         struct ale_txdesc *txd;
 1308         int i;
 1309 
 1310         /* Tx buffers. */
 1311         if (sc->ale_cdata.ale_tx_tag != NULL) {
 1312                 for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1313                         txd = &sc->ale_cdata.ale_txdesc[i];
 1314                         if (txd->tx_dmamap != NULL) {
 1315                                 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
 1316                                     txd->tx_dmamap);
 1317                                 txd->tx_dmamap = NULL;
 1318                         }
 1319                 }
 1320                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
 1321                 sc->ale_cdata.ale_tx_tag = NULL;
 1322         }
 1323         /* Tx descriptor ring. */
 1324         if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
 1325                 if (sc->ale_cdata.ale_tx_ring_paddr != 0)
 1326                         bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
 1327                             sc->ale_cdata.ale_tx_ring_map);
 1328                 if (sc->ale_cdata.ale_tx_ring != NULL)
 1329                         bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
 1330                             sc->ale_cdata.ale_tx_ring,
 1331                             sc->ale_cdata.ale_tx_ring_map);
 1332                 sc->ale_cdata.ale_tx_ring_paddr = 0;
 1333                 sc->ale_cdata.ale_tx_ring = NULL;
 1334                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
 1335                 sc->ale_cdata.ale_tx_ring_tag = NULL;
 1336         }
 1337         /* Rx page block. */
 1338         for (i = 0; i < ALE_RX_PAGES; i++) {
 1339                 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
 1340                         if (sc->ale_cdata.ale_rx_page[i].page_paddr != 0)
 1341                                 bus_dmamap_unload(
 1342                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1343                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1344                         if (sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
 1345                                 bus_dmamem_free(
 1346                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1347                                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1348                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1349                         sc->ale_cdata.ale_rx_page[i].page_paddr = 0;
 1350                         sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
 1351                         bus_dma_tag_destroy(
 1352                             sc->ale_cdata.ale_rx_page[i].page_tag);
 1353                         sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
 1354                 }
 1355         }
 1356         /* Rx CMB. */
 1357         for (i = 0; i < ALE_RX_PAGES; i++) {
 1358                 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
 1359                         if (sc->ale_cdata.ale_rx_page[i].cmb_paddr != 0)
 1360                                 bus_dmamap_unload(
 1361                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1362                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1363                         if (sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
 1364                                 bus_dmamem_free(
 1365                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1366                                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1367                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1368                         sc->ale_cdata.ale_rx_page[i].cmb_paddr = 0;
 1369                         sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
 1370                         bus_dma_tag_destroy(
 1371                             sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1372                         sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
 1373                 }
 1374         }
 1375         /* Tx CMB. */
 1376         if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
 1377                 if (sc->ale_cdata.ale_tx_cmb_paddr != 0)
 1378                         bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
 1379                             sc->ale_cdata.ale_tx_cmb_map);
 1380                 if (sc->ale_cdata.ale_tx_cmb != NULL)
 1381                         bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
 1382                             sc->ale_cdata.ale_tx_cmb,
 1383                             sc->ale_cdata.ale_tx_cmb_map);
 1384                 sc->ale_cdata.ale_tx_cmb_paddr = 0;
 1385                 sc->ale_cdata.ale_tx_cmb = NULL;
 1386                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
 1387                 sc->ale_cdata.ale_tx_cmb_tag = NULL;
 1388         }
 1389         if (sc->ale_cdata.ale_buffer_tag != NULL) {
 1390                 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
 1391                 sc->ale_cdata.ale_buffer_tag = NULL;
 1392         }
 1393         if (sc->ale_cdata.ale_parent_tag != NULL) {
 1394                 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
 1395                 sc->ale_cdata.ale_parent_tag = NULL;
 1396         }
 1397 }
 1398 
 1399 static int
 1400 ale_shutdown(device_t dev)
 1401 {
 1402 
 1403         return (ale_suspend(dev));
 1404 }
 1405 
 1406 /*
 1407  * Note, this driver resets the link speed to 10/100Mbps by
 1408  * restarting auto-negotiation in suspend/shutdown phase but we
 1409  * don't know whether that auto-negotiation would succeed or not
 1410  * as driver has no control after powering off/suspend operation.
 1411  * If the renegotiation fail WOL may not work. Running at 1Gbps
 1412  * will draw more power than 375mA at 3.3V which is specified in
 1413  * PCI specification and that would result in complete
 1414  * shutdowning power to ethernet controller.
 1415  *
 1416  * TODO
 1417  * Save current negotiated media speed/duplex/flow-control to
 1418  * softc and restore the same link again after resuming. PHY
 1419  * handling such as power down/resetting to 100Mbps may be better
 1420  * handled in suspend method in phy driver.
 1421  */
 1422 static void
 1423 ale_setlinkspeed(struct ale_softc *sc)
 1424 {
 1425         struct mii_data *mii;
 1426         int aneg, i;
 1427 
 1428         mii = device_get_softc(sc->ale_miibus);
 1429         mii_pollstat(mii);
 1430         aneg = 0;
 1431         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1432             (IFM_ACTIVE | IFM_AVALID)) {
 1433                 switch IFM_SUBTYPE(mii->mii_media_active) {
 1434                 case IFM_10_T:
 1435                 case IFM_100_TX:
 1436                         return;
 1437                 case IFM_1000_T:
 1438                         aneg++;
 1439                         break;
 1440                 default:
 1441                         break;
 1442                 }
 1443         }
 1444         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
 1445         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1446             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 1447         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1448             MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1449         DELAY(1000);
 1450         if (aneg != 0) {
 1451                 /*
 1452                  * Poll link state until ale(4) get a 10/100Mbps link.
 1453                  */
 1454                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1455                         mii_pollstat(mii);
 1456                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
 1457                             == (IFM_ACTIVE | IFM_AVALID)) {
 1458                                 switch (IFM_SUBTYPE(
 1459                                     mii->mii_media_active)) {
 1460                                 case IFM_10_T:
 1461                                 case IFM_100_TX:
 1462                                         ale_mac_config(sc);
 1463                                         return;
 1464                                 default:
 1465                                         break;
 1466                                 }
 1467                         }
 1468                         ALE_UNLOCK(sc);
 1469                         pause("alelnk", hz);
 1470                         ALE_LOCK(sc);
 1471                 }
 1472                 if (i == MII_ANEGTICKS_GIGE)
 1473                         device_printf(sc->ale_dev,
 1474                             "establishing a link failed, WOL may not work!");
 1475         }
 1476         /*
 1477          * No link, force MAC to have 100Mbps, full-duplex link.
 1478          * This is the last resort and may/may not work.
 1479          */
 1480         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1481         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1482         ale_mac_config(sc);
 1483 }
 1484 
 1485 static void
 1486 ale_setwol(struct ale_softc *sc)
 1487 {
 1488         struct ifnet *ifp;
 1489         uint32_t reg, pmcs;
 1490         uint16_t pmstat;
 1491         int pmc;
 1492 
 1493         ALE_LOCK_ASSERT(sc);
 1494 
 1495         if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
 1496                 /* Disable WOL. */
 1497                 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 1498                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1499                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1500                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1501                 /* Force PHY power down. */
 1502                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1503                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1504                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
 1505                     GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
 1506                     GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
 1507                 return;
 1508         }
 1509 
 1510         ifp = sc->ale_ifp;
 1511         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1512                 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 1513                         ale_setlinkspeed(sc);
 1514         }
 1515 
 1516         pmcs = 0;
 1517         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1518                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1519         CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
 1520         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 1521         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
 1522             MAC_CFG_BCAST);
 1523         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1524                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1525         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1526                 reg |= MAC_CFG_RX_ENB;
 1527         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 1528 
 1529         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1530                 /* WOL disabled, PHY power down. */
 1531                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1532                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1533                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1534                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1535                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1536                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
 1537                     GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
 1538                     GPHY_CTRL_PWDOWN_HW);
 1539         }
 1540         /* Request PME. */
 1541         pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
 1542         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1543         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1544                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1545         pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1546 }
 1547 
 1548 static int
 1549 ale_suspend(device_t dev)
 1550 {
 1551         struct ale_softc *sc;
 1552 
 1553         sc = device_get_softc(dev);
 1554 
 1555         ALE_LOCK(sc);
 1556         ale_stop(sc);
 1557         ale_setwol(sc);
 1558         ALE_UNLOCK(sc);
 1559 
 1560         return (0);
 1561 }
 1562 
 1563 static int
 1564 ale_resume(device_t dev)
 1565 {
 1566         struct ale_softc *sc;
 1567         struct ifnet *ifp;
 1568         int pmc;
 1569         uint16_t pmstat;
 1570 
 1571         sc = device_get_softc(dev);
 1572 
 1573         ALE_LOCK(sc);
 1574         if (pci_find_cap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
 1575                 /* Disable PME and clear PME status. */
 1576                 pmstat = pci_read_config(sc->ale_dev,
 1577                     pmc + PCIR_POWER_STATUS, 2);
 1578                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1579                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1580                         pci_write_config(sc->ale_dev,
 1581                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 1582                 }
 1583         }
 1584         /* Reset PHY. */
 1585         ale_phy_reset(sc);
 1586         ifp = sc->ale_ifp;
 1587         if ((ifp->if_flags & IFF_UP) != 0) {
 1588                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1589                 ale_init_locked(sc);
 1590         }
 1591         ALE_UNLOCK(sc);
 1592 
 1593         return (0);
 1594 }
 1595 
 1596 static int
 1597 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
 1598 {
 1599         struct ale_txdesc *txd, *txd_last;
 1600         struct tx_desc *desc;
 1601         struct mbuf *m;
 1602         struct ip *ip;
 1603         struct tcphdr *tcp;
 1604         bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
 1605         bus_dmamap_t map;
 1606         uint32_t cflags, hdrlen, ip_off, poff, vtag;
 1607         int error, i, nsegs, prod, si;
 1608 
 1609         ALE_LOCK_ASSERT(sc);
 1610 
 1611         M_ASSERTPKTHDR((*m_head));
 1612 
 1613         m = *m_head;
 1614         ip = NULL;
 1615         tcp = NULL;
 1616         cflags = vtag = 0;
 1617         ip_off = poff = 0;
 1618         if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
 1619                 /*
 1620                  * AR81xx requires offset of TCP/UDP payload in its Tx
 1621                  * descriptor to perform hardware Tx checksum offload.
 1622                  * Additionally, TSO requires IP/TCP header size and
 1623                  * modification of IP/TCP header in order to make TSO
 1624                  * engine work. This kind of operation takes many CPU
 1625                  * cycles on FreeBSD so fast host CPU is required to
 1626                  * get smooth TSO performance.
 1627                  */
 1628                 struct ether_header *eh;
 1629 
 1630                 if (M_WRITABLE(m) == 0) {
 1631                         /* Get a writable copy. */
 1632                         m = m_dup(*m_head, M_NOWAIT);
 1633                         /* Release original mbufs. */
 1634                         m_freem(*m_head);
 1635                         if (m == NULL) {
 1636                                 *m_head = NULL;
 1637                                 return (ENOBUFS);
 1638                         }
 1639                         *m_head = m;
 1640                 }
 1641 
 1642                 /*
 1643                  * Buggy-controller requires 4 byte aligned Tx buffer
 1644                  * to make custom checksum offload work.
 1645                  */
 1646                 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
 1647                     (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
 1648                     (mtod(m, intptr_t) & 3) != 0) {
 1649                         m = m_defrag(*m_head, M_NOWAIT);
 1650                         if (m == NULL) {
 1651                                 m_freem(*m_head);
 1652                                 *m_head = NULL;
 1653                                 return (ENOBUFS);
 1654                         }
 1655                         *m_head = m;
 1656                 }
 1657 
 1658                 ip_off = sizeof(struct ether_header);
 1659                 m = m_pullup(m, ip_off);
 1660                 if (m == NULL) {
 1661                         *m_head = NULL;
 1662                         return (ENOBUFS);
 1663                 }
 1664                 eh = mtod(m, struct ether_header *);
 1665                 /*
 1666                  * Check if hardware VLAN insertion is off.
 1667                  * Additional check for LLC/SNAP frame?
 1668                  */
 1669                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1670                         ip_off = sizeof(struct ether_vlan_header);
 1671                         m = m_pullup(m, ip_off);
 1672                         if (m == NULL) {
 1673                                 *m_head = NULL;
 1674                                 return (ENOBUFS);
 1675                         }
 1676                 }
 1677                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1678                 if (m == NULL) {
 1679                         *m_head = NULL;
 1680                         return (ENOBUFS);
 1681                 }
 1682                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1683                 poff = ip_off + (ip->ip_hl << 2);
 1684                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1685                         /*
 1686                          * XXX
 1687                          * AR81xx requires the first descriptor should
 1688                          * not include any TCP playload for TSO case.
 1689                          * (i.e. ethernet header + IP + TCP header only)
 1690                          * m_pullup(9) above will ensure this too.
 1691                          * However it's not correct if the first mbuf
 1692                          * of the chain does not use cluster.
 1693                          */
 1694                         m = m_pullup(m, poff + sizeof(struct tcphdr));
 1695                         if (m == NULL) {
 1696                                 *m_head = NULL;
 1697                                 return (ENOBUFS);
 1698                         }
 1699                         ip = (struct ip *)(mtod(m, char *) + ip_off);
 1700                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1701                         m = m_pullup(m, poff + (tcp->th_off << 2));
 1702                         if (m == NULL) {
 1703                                 *m_head = NULL;
 1704                                 return (ENOBUFS);
 1705                         }
 1706                         /*
 1707                          * AR81xx requires IP/TCP header size and offset as
 1708                          * well as TCP pseudo checksum which complicates
 1709                          * TSO configuration. I guess this comes from the
 1710                          * adherence to Microsoft NDIS Large Send
 1711                          * specification which requires insertion of
 1712                          * pseudo checksum by upper stack. The pseudo
 1713                          * checksum that NDIS refers to doesn't include
 1714                          * TCP payload length so ale(4) should recompute
 1715                          * the pseudo checksum here. Hopefully this wouldn't
 1716                          * be much burden on modern CPUs.
 1717                          * Reset IP checksum and recompute TCP pseudo
 1718                          * checksum as NDIS specification said.
 1719                          */
 1720                         ip->ip_sum = 0;
 1721                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1722                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1723                 }
 1724                 *m_head = m;
 1725         }
 1726 
 1727         si = prod = sc->ale_cdata.ale_tx_prod;
 1728         txd = &sc->ale_cdata.ale_txdesc[prod];
 1729         txd_last = txd;
 1730         map = txd->tx_dmamap;
 1731 
 1732         error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1733             *m_head, txsegs, &nsegs, 0);
 1734         if (error == EFBIG) {
 1735                 m = m_collapse(*m_head, M_NOWAIT, ALE_MAXTXSEGS);
 1736                 if (m == NULL) {
 1737                         m_freem(*m_head);
 1738                         *m_head = NULL;
 1739                         return (ENOMEM);
 1740                 }
 1741                 *m_head = m;
 1742                 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1743                     *m_head, txsegs, &nsegs, 0);
 1744                 if (error != 0) {
 1745                         m_freem(*m_head);
 1746                         *m_head = NULL;
 1747                         return (error);
 1748                 }
 1749         } else if (error != 0)
 1750                 return (error);
 1751         if (nsegs == 0) {
 1752                 m_freem(*m_head);
 1753                 *m_head = NULL;
 1754                 return (EIO);
 1755         }
 1756 
 1757         /* Check descriptor overrun. */
 1758         if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
 1759                 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
 1760                 return (ENOBUFS);
 1761         }
 1762         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1763 
 1764         m = *m_head;
 1765         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1766                 /* Request TSO and set MSS. */
 1767                 cflags |= ALE_TD_TSO;
 1768                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
 1769                 /* Set IP/TCP header size. */
 1770                 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
 1771                 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
 1772         } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
 1773                 /*
 1774                  * AR81xx supports Tx custom checksum offload feature
 1775                  * that offloads single 16bit checksum computation.
 1776                  * So you can choose one among IP, TCP and UDP.
 1777                  * Normally driver sets checksum start/insertion
 1778                  * position from the information of TCP/UDP frame as
 1779                  * TCP/UDP checksum takes more time than that of IP.
 1780                  * However it seems that custom checksum offload
 1781                  * requires 4 bytes aligned Tx buffers due to hardware
 1782                  * bug.
 1783                  * AR81xx also supports explicit Tx checksum computation
 1784                  * if it is told that the size of IP header and TCP
 1785                  * header(for UDP, the header size does not matter
 1786                  * because it's fixed length). However with this scheme
 1787                  * TSO does not work so you have to choose one either
 1788                  * TSO or explicit Tx checksum offload. I chosen TSO
 1789                  * plus custom checksum offload with work-around which
 1790                  * will cover most common usage for this consumer
 1791                  * ethernet controller. The work-around takes a lot of
 1792                  * CPU cycles if Tx buffer is not aligned on 4 bytes
 1793                  * boundary, though.
 1794                  */
 1795                 cflags |= ALE_TD_CXSUM;
 1796                 /* Set checksum start offset. */
 1797                 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
 1798                 /* Set checksum insertion position of TCP/UDP. */
 1799                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1800                     ALE_TD_CSUM_XSUMOFFSET_SHIFT);
 1801         }
 1802 
 1803         /* Configure VLAN hardware tag insertion. */
 1804         if ((m->m_flags & M_VLANTAG) != 0) {
 1805                 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
 1806                 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
 1807                 cflags |= ALE_TD_INSERT_VLAN_TAG;
 1808         }
 1809 
 1810         i = 0;
 1811         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1812                 /*
 1813                  * Make sure the first fragment contains
 1814                  * only ethernet and IP/TCP header with options.
 1815                  */
 1816                 hdrlen =  poff + (tcp->th_off << 2);
 1817                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1818                 desc->addr = htole64(txsegs[i].ds_addr);
 1819                 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
 1820                 desc->flags = htole32(cflags);
 1821                 sc->ale_cdata.ale_tx_cnt++;
 1822                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1823                 if (m->m_len - hdrlen > 0) {
 1824                         /* Handle remaining payload of the first fragment. */
 1825                         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1826                         desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
 1827                         desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
 1828                             vtag);
 1829                         desc->flags = htole32(cflags);
 1830                         sc->ale_cdata.ale_tx_cnt++;
 1831                         ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1832                 }
 1833                 i = 1;
 1834         }
 1835         for (; i < nsegs; i++) {
 1836                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1837                 desc->addr = htole64(txsegs[i].ds_addr);
 1838                 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1839                 desc->flags = htole32(cflags);
 1840                 sc->ale_cdata.ale_tx_cnt++;
 1841                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1842         }
 1843         /* Update producer index. */
 1844         sc->ale_cdata.ale_tx_prod = prod;
 1845         /* Set TSO header on the first descriptor. */
 1846         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1847                 desc = &sc->ale_cdata.ale_tx_ring[si];
 1848                 desc->flags |= htole32(ALE_TD_TSO_HDR);
 1849         }
 1850 
 1851         /* Finally set EOP on the last descriptor. */
 1852         prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
 1853         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1854         desc->flags |= htole32(ALE_TD_EOP);
 1855 
 1856         /* Swap dmamap of the first and the last. */
 1857         txd = &sc->ale_cdata.ale_txdesc[prod];
 1858         map = txd_last->tx_dmamap;
 1859         txd_last->tx_dmamap = txd->tx_dmamap;
 1860         txd->tx_dmamap = map;
 1861         txd->tx_m = m;
 1862 
 1863         /* Sync descriptors. */
 1864         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 1865             sc->ale_cdata.ale_tx_ring_map,
 1866             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1867 
 1868         return (0);
 1869 }
 1870 
 1871 static void
 1872 ale_start(struct ifnet *ifp)
 1873 {
 1874         struct ale_softc *sc;
 1875 
 1876         sc = ifp->if_softc;
 1877         ALE_LOCK(sc);
 1878         ale_start_locked(ifp);
 1879         ALE_UNLOCK(sc);
 1880 }
 1881 
 1882 static void
 1883 ale_start_locked(struct ifnet *ifp)
 1884 {
 1885         struct ale_softc *sc;
 1886         struct mbuf *m_head;
 1887         int enq;
 1888 
 1889         sc = ifp->if_softc;
 1890 
 1891         ALE_LOCK_ASSERT(sc);
 1892 
 1893         /* Reclaim transmitted frames. */
 1894         if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
 1895                 ale_txeof(sc);
 1896 
 1897         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1898             IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
 1899                 return;
 1900 
 1901         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1902                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1903                 if (m_head == NULL)
 1904                         break;
 1905                 /*
 1906                  * Pack the data into the transmit ring. If we
 1907                  * don't have room, set the OACTIVE flag and wait
 1908                  * for the NIC to drain the ring.
 1909                  */
 1910                 if (ale_encap(sc, &m_head)) {
 1911                         if (m_head == NULL)
 1912                                 break;
 1913                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1914                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1915                         break;
 1916                 }
 1917 
 1918                 enq++;
 1919                 /*
 1920                  * If there's a BPF listener, bounce a copy of this frame
 1921                  * to him.
 1922                  */
 1923                 ETHER_BPF_MTAP(ifp, m_head);
 1924         }
 1925 
 1926         if (enq > 0) {
 1927                 /* Kick. */
 1928                 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
 1929                     sc->ale_cdata.ale_tx_prod);
 1930                 /* Set a timeout in case the chip goes out to lunch. */
 1931                 sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
 1932         }
 1933 }
 1934 
 1935 static void
 1936 ale_watchdog(struct ale_softc *sc)
 1937 {
 1938         struct ifnet *ifp;
 1939 
 1940         ALE_LOCK_ASSERT(sc);
 1941 
 1942         if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
 1943                 return;
 1944 
 1945         ifp = sc->ale_ifp;
 1946         if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1947                 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
 1948                 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1949                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1950                 ale_init_locked(sc);
 1951                 return;
 1952         }
 1953         if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
 1954         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 1955         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1956         ale_init_locked(sc);
 1957         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1958                 ale_start_locked(ifp);
 1959 }
 1960 
 1961 static int
 1962 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1963 {
 1964         struct ale_softc *sc;
 1965         struct ifreq *ifr;
 1966         struct mii_data *mii;
 1967         int error, mask;
 1968 
 1969         sc = ifp->if_softc;
 1970         ifr = (struct ifreq *)data;
 1971         error = 0;
 1972         switch (cmd) {
 1973         case SIOCSIFMTU:
 1974                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
 1975                     ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
 1976                     ifr->ifr_mtu > ETHERMTU))
 1977                         error = EINVAL;
 1978                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1979                         ALE_LOCK(sc);
 1980                         ifp->if_mtu = ifr->ifr_mtu;
 1981                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1982                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1983                                 ale_init_locked(sc);
 1984                         }
 1985                         ALE_UNLOCK(sc);
 1986                 }
 1987                 break;
 1988         case SIOCSIFFLAGS:
 1989                 ALE_LOCK(sc);
 1990                 if ((ifp->if_flags & IFF_UP) != 0) {
 1991                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1992                                 if (((ifp->if_flags ^ sc->ale_if_flags)
 1993                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1994                                         ale_rxfilter(sc);
 1995                         } else {
 1996                                 ale_init_locked(sc);
 1997                         }
 1998                 } else {
 1999                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2000                                 ale_stop(sc);
 2001                 }
 2002                 sc->ale_if_flags = ifp->if_flags;
 2003                 ALE_UNLOCK(sc);
 2004                 break;
 2005         case SIOCADDMULTI:
 2006         case SIOCDELMULTI:
 2007                 ALE_LOCK(sc);
 2008                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2009                         ale_rxfilter(sc);
 2010                 ALE_UNLOCK(sc);
 2011                 break;
 2012         case SIOCSIFMEDIA:
 2013         case SIOCGIFMEDIA:
 2014                 mii = device_get_softc(sc->ale_miibus);
 2015                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 2016                 break;
 2017         case SIOCSIFCAP:
 2018                 ALE_LOCK(sc);
 2019                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 2020                 if ((mask & IFCAP_TXCSUM) != 0 &&
 2021                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 2022                         ifp->if_capenable ^= IFCAP_TXCSUM;
 2023                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 2024                                 ifp->if_hwassist |= ALE_CSUM_FEATURES;
 2025                         else
 2026                                 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
 2027                 }
 2028                 if ((mask & IFCAP_RXCSUM) != 0 &&
 2029                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 2030                         ifp->if_capenable ^= IFCAP_RXCSUM;
 2031                 if ((mask & IFCAP_TSO4) != 0 &&
 2032                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 2033                         ifp->if_capenable ^= IFCAP_TSO4;
 2034                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 2035                                 ifp->if_hwassist |= CSUM_TSO;
 2036                         else
 2037                                 ifp->if_hwassist &= ~CSUM_TSO;
 2038                 }
 2039 
 2040                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 2041                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 2042                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 2043                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 2044                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 2045                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2046                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 2047                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 2048                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 2049                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 2050                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 2051                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 2052                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 2053                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 2054                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 2055                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 2056                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 2057                         ale_rxvlan(sc);
 2058                 }
 2059                 ALE_UNLOCK(sc);
 2060                 VLAN_CAPABILITIES(ifp);
 2061                 break;
 2062         default:
 2063                 error = ether_ioctl(ifp, cmd, data);
 2064                 break;
 2065         }
 2066 
 2067         return (error);
 2068 }
 2069 
 2070 static void
 2071 ale_mac_config(struct ale_softc *sc)
 2072 {
 2073         struct mii_data *mii;
 2074         uint32_t reg;
 2075 
 2076         ALE_LOCK_ASSERT(sc);
 2077 
 2078         mii = device_get_softc(sc->ale_miibus);
 2079         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2080         reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
 2081             MAC_CFG_SPEED_MASK);
 2082         /* Reprogram MAC with resolved speed/duplex. */
 2083         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2084         case IFM_10_T:
 2085         case IFM_100_TX:
 2086                 reg |= MAC_CFG_SPEED_10_100;
 2087                 break;
 2088         case IFM_1000_T:
 2089                 reg |= MAC_CFG_SPEED_1000;
 2090                 break;
 2091         }
 2092         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 2093                 reg |= MAC_CFG_FULL_DUPLEX;
 2094                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 2095                         reg |= MAC_CFG_TX_FC;
 2096                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 2097                         reg |= MAC_CFG_RX_FC;
 2098         }
 2099         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2100 }
 2101 
 2102 static void
 2103 ale_stats_clear(struct ale_softc *sc)
 2104 {
 2105         struct smb sb;
 2106         uint32_t *reg;
 2107         int i;
 2108 
 2109         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2110                 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2111                 i += sizeof(uint32_t);
 2112         }
 2113         /* Read Tx statistics. */
 2114         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2115                 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2116                 i += sizeof(uint32_t);
 2117         }
 2118 }
 2119 
 2120 static void
 2121 ale_stats_update(struct ale_softc *sc)
 2122 {
 2123         struct ale_hw_stats *stat;
 2124         struct smb sb, *smb;
 2125         struct ifnet *ifp;
 2126         uint32_t *reg;
 2127         int i;
 2128 
 2129         ALE_LOCK_ASSERT(sc);
 2130 
 2131         ifp = sc->ale_ifp;
 2132         stat = &sc->ale_stats;
 2133         smb = &sb;
 2134 
 2135         /* Read Rx statistics. */
 2136         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2137                 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2138                 i += sizeof(uint32_t);
 2139         }
 2140         /* Read Tx statistics. */
 2141         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2142                 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2143                 i += sizeof(uint32_t);
 2144         }
 2145 
 2146         /* Rx stats. */
 2147         stat->rx_frames += smb->rx_frames;
 2148         stat->rx_bcast_frames += smb->rx_bcast_frames;
 2149         stat->rx_mcast_frames += smb->rx_mcast_frames;
 2150         stat->rx_pause_frames += smb->rx_pause_frames;
 2151         stat->rx_control_frames += smb->rx_control_frames;
 2152         stat->rx_crcerrs += smb->rx_crcerrs;
 2153         stat->rx_lenerrs += smb->rx_lenerrs;
 2154         stat->rx_bytes += smb->rx_bytes;
 2155         stat->rx_runts += smb->rx_runts;
 2156         stat->rx_fragments += smb->rx_fragments;
 2157         stat->rx_pkts_64 += smb->rx_pkts_64;
 2158         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 2159         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 2160         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 2161         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 2162         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 2163         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 2164         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 2165         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 2166         stat->rx_rrs_errs += smb->rx_rrs_errs;
 2167         stat->rx_alignerrs += smb->rx_alignerrs;
 2168         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 2169         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 2170         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 2171 
 2172         /* Tx stats. */
 2173         stat->tx_frames += smb->tx_frames;
 2174         stat->tx_bcast_frames += smb->tx_bcast_frames;
 2175         stat->tx_mcast_frames += smb->tx_mcast_frames;
 2176         stat->tx_pause_frames += smb->tx_pause_frames;
 2177         stat->tx_excess_defer += smb->tx_excess_defer;
 2178         stat->tx_control_frames += smb->tx_control_frames;
 2179         stat->tx_deferred += smb->tx_deferred;
 2180         stat->tx_bytes += smb->tx_bytes;
 2181         stat->tx_pkts_64 += smb->tx_pkts_64;
 2182         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 2183         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 2184         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 2185         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 2186         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 2187         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 2188         stat->tx_single_colls += smb->tx_single_colls;
 2189         stat->tx_multi_colls += smb->tx_multi_colls;
 2190         stat->tx_late_colls += smb->tx_late_colls;
 2191         stat->tx_excess_colls += smb->tx_excess_colls;
 2192         stat->tx_underrun += smb->tx_underrun;
 2193         stat->tx_desc_underrun += smb->tx_desc_underrun;
 2194         stat->tx_lenerrs += smb->tx_lenerrs;
 2195         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 2196         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 2197         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 2198 
 2199         /* Update counters in ifnet. */
 2200         if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
 2201 
 2202         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
 2203             smb->tx_multi_colls * 2 + smb->tx_late_colls +
 2204             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
 2205 
 2206         if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_late_colls +
 2207             smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated);
 2208 
 2209         if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
 2210 
 2211         if_inc_counter(ifp, IFCOUNTER_IERRORS,
 2212             smb->rx_crcerrs + smb->rx_lenerrs +
 2213             smb->rx_runts + smb->rx_pkts_truncated +
 2214             smb->rx_fifo_oflows + smb->rx_rrs_errs +
 2215             smb->rx_alignerrs);
 2216 }
 2217 
 2218 static int
 2219 ale_intr(void *arg)
 2220 {
 2221         struct ale_softc *sc;
 2222         uint32_t status;
 2223 
 2224         sc = (struct ale_softc *)arg;
 2225 
 2226         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2227         if ((status & ALE_INTRS) == 0)
 2228                 return (FILTER_STRAY);
 2229         /* Disable interrupts. */
 2230         CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
 2231         taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2232 
 2233         return (FILTER_HANDLED);
 2234 }
 2235 
 2236 static void
 2237 ale_int_task(void *arg, int pending)
 2238 {
 2239         struct ale_softc *sc;
 2240         struct ifnet *ifp;
 2241         uint32_t status;
 2242         int more;
 2243 
 2244         sc = (struct ale_softc *)arg;
 2245 
 2246         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2247         ALE_LOCK(sc);
 2248         if (sc->ale_morework != 0)
 2249                 status |= INTR_RX_PKT;
 2250         if ((status & ALE_INTRS) == 0)
 2251                 goto done;
 2252 
 2253         /* Acknowledge interrupts but still disable interrupts. */
 2254         CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
 2255 
 2256         ifp = sc->ale_ifp;
 2257         more = 0;
 2258         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2259                 more = ale_rxeof(sc, sc->ale_process_limit);
 2260                 if (more == EAGAIN)
 2261                         sc->ale_morework = 1;
 2262                 else if (more == EIO) {
 2263                         sc->ale_stats.reset_brk_seq++;
 2264                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2265                         ale_init_locked(sc);
 2266                         ALE_UNLOCK(sc);
 2267                         return;
 2268                 }
 2269 
 2270                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2271                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2272                                 device_printf(sc->ale_dev,
 2273                                     "DMA read error! -- resetting\n");
 2274                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2275                                 device_printf(sc->ale_dev,
 2276                                     "DMA write error! -- resetting\n");
 2277                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2278                         ale_init_locked(sc);
 2279                         ALE_UNLOCK(sc);
 2280                         return;
 2281                 }
 2282                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2283                         ale_start_locked(ifp);
 2284         }
 2285 
 2286         if (more == EAGAIN ||
 2287             (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
 2288                 ALE_UNLOCK(sc);
 2289                 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2290                 return;
 2291         }
 2292 
 2293 done:
 2294         ALE_UNLOCK(sc);
 2295 
 2296         /* Re-enable interrupts. */
 2297         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
 2298 }
 2299 
 2300 static void
 2301 ale_txeof(struct ale_softc *sc)
 2302 {
 2303         struct ifnet *ifp;
 2304         struct ale_txdesc *txd;
 2305         uint32_t cons, prod;
 2306         int prog;
 2307 
 2308         ALE_LOCK_ASSERT(sc);
 2309 
 2310         ifp = sc->ale_ifp;
 2311 
 2312         if (sc->ale_cdata.ale_tx_cnt == 0)
 2313                 return;
 2314 
 2315         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2316             sc->ale_cdata.ale_tx_ring_map,
 2317             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2318         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
 2319                 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2320                     sc->ale_cdata.ale_tx_cmb_map,
 2321                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2322                 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
 2323         } else
 2324                 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
 2325         cons = sc->ale_cdata.ale_tx_cons;
 2326         /*
 2327          * Go through our Tx list and free mbufs for those
 2328          * frames which have been transmitted.
 2329          */
 2330         for (prog = 0; cons != prod; prog++,
 2331             ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
 2332                 if (sc->ale_cdata.ale_tx_cnt <= 0)
 2333                         break;
 2334                 prog++;
 2335                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2336                 sc->ale_cdata.ale_tx_cnt--;
 2337                 txd = &sc->ale_cdata.ale_txdesc[cons];
 2338                 if (txd->tx_m != NULL) {
 2339                         /* Reclaim transmitted mbufs. */
 2340                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2341                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2342                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2343                             txd->tx_dmamap);
 2344                         m_freem(txd->tx_m);
 2345                         txd->tx_m = NULL;
 2346                 }
 2347         }
 2348 
 2349         if (prog > 0) {
 2350                 sc->ale_cdata.ale_tx_cons = cons;
 2351                 /*
 2352                  * Unarm watchdog timer only when there is no pending
 2353                  * Tx descriptors in queue.
 2354                  */
 2355                 if (sc->ale_cdata.ale_tx_cnt == 0)
 2356                         sc->ale_watchdog_timer = 0;
 2357         }
 2358 }
 2359 
 2360 static void
 2361 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
 2362     uint32_t length, uint32_t *prod)
 2363 {
 2364         struct ale_rx_page *rx_page;
 2365 
 2366         rx_page = *page;
 2367         /* Update consumer position. */
 2368         rx_page->cons += roundup(length + sizeof(struct rx_rs),
 2369             ALE_RX_PAGE_ALIGN);
 2370         if (rx_page->cons >= ALE_RX_PAGE_SZ) {
 2371                 /*
 2372                  * End of Rx page reached, let hardware reuse
 2373                  * this page.
 2374                  */
 2375                 rx_page->cons = 0;
 2376                 *rx_page->cmb_addr = 0;
 2377                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2378                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2379                 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
 2380                     RXF_VALID);
 2381                 /* Switch to alternate Rx page. */
 2382                 sc->ale_cdata.ale_rx_curp ^= 1;
 2383                 rx_page = *page =
 2384                     &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2385                 /* Page flipped, sync CMB and Rx page. */
 2386                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2387                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2388                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2389                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2390                 /* Sync completed, cache updated producer index. */
 2391                 *prod = *rx_page->cmb_addr;
 2392         }
 2393 }
 2394 
 2395 /*
 2396  * It seems that AR81xx controller can compute partial checksum.
 2397  * The partial checksum value can be used to accelerate checksum
 2398  * computation for fragmented TCP/UDP packets. Upper network stack
 2399  * already takes advantage of the partial checksum value in IP
 2400  * reassembly stage. But I'm not sure the correctness of the
 2401  * partial hardware checksum assistance due to lack of data sheet.
 2402  * In addition, the Rx feature of controller that requires copying
 2403  * for every frames effectively nullifies one of most nice offload
 2404  * capability of controller.
 2405  */
 2406 static void
 2407 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
 2408 {
 2409         struct ifnet *ifp;
 2410         struct ip *ip;
 2411         char *p;
 2412 
 2413         ifp = sc->ale_ifp;
 2414         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2415         if ((status & ALE_RD_IPCSUM_NOK) == 0)
 2416                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2417 
 2418         if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
 2419                 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
 2420                     ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
 2421                     ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
 2422                         m->m_pkthdr.csum_flags |=
 2423                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2424                         m->m_pkthdr.csum_data = 0xffff;
 2425                 }
 2426         } else {
 2427                 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
 2428                     (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
 2429                         p = mtod(m, char *);
 2430                         p += ETHER_HDR_LEN;
 2431                         if ((status & ALE_RD_802_3) != 0)
 2432                                 p += LLC_SNAPFRAMELEN;
 2433                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
 2434                             (status & ALE_RD_VLAN) != 0)
 2435                                 p += ETHER_VLAN_ENCAP_LEN;
 2436                         ip = (struct ip *)p;
 2437                         if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
 2438                                 return;
 2439                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 2440                             CSUM_PSEUDO_HDR;
 2441                         m->m_pkthdr.csum_data = 0xffff;
 2442                 }
 2443         }
 2444         /*
 2445          * Don't mark bad checksum for TCP/UDP frames
 2446          * as fragmented frames may always have set
 2447          * bad checksummed bit of frame status.
 2448          */
 2449 }
 2450 
 2451 /* Process received frames. */
 2452 static int
 2453 ale_rxeof(struct ale_softc *sc, int count)
 2454 {
 2455         struct ale_rx_page *rx_page;
 2456         struct rx_rs *rs;
 2457         struct ifnet *ifp;
 2458         struct mbuf *m;
 2459         uint32_t length, prod, seqno, status, vtags;
 2460         int prog;
 2461 
 2462         ifp = sc->ale_ifp;
 2463         rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2464         bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2465             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2466         bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2467             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2468         /*
 2469          * Don't directly access producer index as hardware may
 2470          * update it while Rx handler is in progress. It would
 2471          * be even better if there is a way to let hardware
 2472          * know how far driver processed its received frames.
 2473          * Alternatively, hardware could provide a way to disable
 2474          * CMB updates until driver acknowledges the end of CMB
 2475          * access.
 2476          */
 2477         prod = *rx_page->cmb_addr;
 2478         for (prog = 0; prog < count; prog++) {
 2479                 if (rx_page->cons >= prod)
 2480                         break;
 2481                 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
 2482                 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
 2483                 if (sc->ale_cdata.ale_rx_seqno != seqno) {
 2484                         /*
 2485                          * Normally I believe this should not happen unless
 2486                          * severe driver bug or corrupted memory. However
 2487                          * it seems to happen under certain conditions which
 2488                          * is triggered by abrupt Rx events such as initiation
 2489                          * of bulk transfer of remote host. It's not easy to
 2490                          * reproduce this and I doubt it could be related
 2491                          * with FIFO overflow of hardware or activity of Tx
 2492                          * CMB updates. I also remember similar behaviour
 2493                          * seen on RealTek 8139 which uses resembling Rx
 2494                          * scheme.
 2495                          */
 2496                         if (bootverbose)
 2497                                 device_printf(sc->ale_dev,
 2498                                     "garbled seq: %u, expected: %u -- "
 2499                                     "resetting!\n", seqno,
 2500                                     sc->ale_cdata.ale_rx_seqno);
 2501                         return (EIO);
 2502                 }
 2503                 /* Frame received. */
 2504                 sc->ale_cdata.ale_rx_seqno++;
 2505                 length = ALE_RX_BYTES(le32toh(rs->length));
 2506                 status = le32toh(rs->flags);
 2507                 if ((status & ALE_RD_ERROR) != 0) {
 2508                         /*
 2509                          * We want to pass the following frames to upper
 2510                          * layer regardless of error status of Rx return
 2511                          * status.
 2512                          *
 2513                          *  o IP/TCP/UDP checksum is bad.
 2514                          *  o frame length and protocol specific length
 2515                          *     does not match.
 2516                          */
 2517                         if ((status & (ALE_RD_CRC | ALE_RD_CODE |
 2518                             ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
 2519                             ALE_RD_TRUNC)) != 0) {
 2520                                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2521                                 continue;
 2522                         }
 2523                 }
 2524                 /*
 2525                  * m_devget(9) is major bottle-neck of ale(4)(It comes
 2526                  * from hardware limitation). For jumbo frames we could
 2527                  * get a slightly better performance if driver use
 2528                  * m_getjcl(9) with proper buffer size argument. However
 2529                  * that would make code more complicated and I don't
 2530                  * think users would expect good Rx performance numbers
 2531                  * on these low-end consumer ethernet controller.
 2532                  */
 2533                 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
 2534                     ETHER_ALIGN, ifp, NULL);
 2535                 if (m == NULL) {
 2536                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2537                         ale_rx_update_page(sc, &rx_page, length, &prod);
 2538                         continue;
 2539                 }
 2540                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2541                     (status & ALE_RD_IPV4) != 0)
 2542                         ale_rxcsum(sc, m, status);
 2543                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2544                     (status & ALE_RD_VLAN) != 0) {
 2545                         vtags = ALE_RX_VLAN(le32toh(rs->vtags));
 2546                         m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
 2547                         m->m_flags |= M_VLANTAG;
 2548                 }
 2549 
 2550                 /* Pass it to upper layer. */
 2551                 ALE_UNLOCK(sc);
 2552                 (*ifp->if_input)(ifp, m);
 2553                 ALE_LOCK(sc);
 2554 
 2555                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2556         }
 2557 
 2558         return (count > 0 ? 0 : EAGAIN);
 2559 }
 2560 
 2561 static void
 2562 ale_tick(void *arg)
 2563 {
 2564         struct ale_softc *sc;
 2565         struct mii_data *mii;
 2566 
 2567         sc = (struct ale_softc *)arg;
 2568 
 2569         ALE_LOCK_ASSERT(sc);
 2570 
 2571         mii = device_get_softc(sc->ale_miibus);
 2572         mii_tick(mii);
 2573         ale_stats_update(sc);
 2574         /*
 2575          * Reclaim Tx buffers that have been transferred. It's not
 2576          * needed here but it would release allocated mbuf chains
 2577          * faster and limit the maximum delay to a hz.
 2578          */
 2579         ale_txeof(sc);
 2580         ale_watchdog(sc);
 2581         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2582 }
 2583 
 2584 static void
 2585 ale_reset(struct ale_softc *sc)
 2586 {
 2587         uint32_t reg;
 2588         int i;
 2589 
 2590         /* Initialize PCIe module. From Linux. */
 2591         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2592 
 2593         CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
 2594         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2595                 DELAY(10);
 2596                 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
 2597                         break;
 2598         }
 2599         if (i == 0)
 2600                 device_printf(sc->ale_dev, "master reset timeout!\n");
 2601 
 2602         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2603                 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
 2604                         break;
 2605                 DELAY(10);
 2606         }
 2607 
 2608         if (i == 0)
 2609                 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
 2610 }
 2611 
 2612 static void
 2613 ale_init(void *xsc)
 2614 {
 2615         struct ale_softc *sc;
 2616 
 2617         sc = (struct ale_softc *)xsc;
 2618         ALE_LOCK(sc);
 2619         ale_init_locked(sc);
 2620         ALE_UNLOCK(sc);
 2621 }
 2622 
 2623 static void
 2624 ale_init_locked(struct ale_softc *sc)
 2625 {
 2626         struct ifnet *ifp;
 2627         struct mii_data *mii;
 2628         uint8_t eaddr[ETHER_ADDR_LEN];
 2629         bus_addr_t paddr;
 2630         uint32_t reg, rxf_hi, rxf_lo;
 2631 
 2632         ALE_LOCK_ASSERT(sc);
 2633 
 2634         ifp = sc->ale_ifp;
 2635         mii = device_get_softc(sc->ale_miibus);
 2636 
 2637         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2638                 return;
 2639         /*
 2640          * Cancel any pending I/O.
 2641          */
 2642         ale_stop(sc);
 2643         /*
 2644          * Reset the chip to a known state.
 2645          */
 2646         ale_reset(sc);
 2647         /* Initialize Tx descriptors, DMA memory blocks. */
 2648         ale_init_rx_pages(sc);
 2649         ale_init_tx_ring(sc);
 2650 
 2651         /* Reprogram the station address. */
 2652         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2653         CSR_WRITE_4(sc, ALE_PAR0,
 2654             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2655         CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2656         /*
 2657          * Clear WOL status and disable all WOL feature as WOL
 2658          * would interfere Rx operation under normal environments.
 2659          */
 2660         CSR_READ_4(sc, ALE_WOL_CFG);
 2661         CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 2662         /*
 2663          * Set Tx descriptor/RXF0/CMB base addresses. They share
 2664          * the same high address part of DMAable region.
 2665          */
 2666         paddr = sc->ale_cdata.ale_tx_ring_paddr;
 2667         CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
 2668         CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
 2669         CSR_WRITE_4(sc, ALE_TPD_CNT,
 2670             (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
 2671         /* Set Rx page base address, note we use single queue. */
 2672         paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
 2673         CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
 2674         paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
 2675         CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
 2676         /* Set Tx/Rx CMB addresses. */
 2677         paddr = sc->ale_cdata.ale_tx_cmb_paddr;
 2678         CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
 2679         paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
 2680         CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
 2681         paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
 2682         CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
 2683         /* Mark RXF0 is valid. */
 2684         CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
 2685         CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
 2686         /*
 2687          * No need to initialize RFX1/RXF2/RXF3. We don't use
 2688          * multi-queue yet.
 2689          */
 2690 
 2691         /* Set Rx page size, excluding guard frame size. */
 2692         CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
 2693         /* Tell hardware that we're ready to load DMA blocks. */
 2694         CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2695 
 2696         /* Set Rx/Tx interrupt trigger threshold. */
 2697         CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
 2698             (4 << INT_TRIG_TX_THRESH_SHIFT));
 2699         /*
 2700          * XXX
 2701          * Set interrupt trigger timer, its purpose and relation
 2702          * with interrupt moderation mechanism is not clear yet.
 2703          */
 2704         CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
 2705             ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
 2706             (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
 2707 
 2708         /* Configure interrupt moderation timer. */
 2709         reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
 2710         reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
 2711         CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
 2712         reg = CSR_READ_4(sc, ALE_MASTER_CFG);
 2713         reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
 2714         reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
 2715         if (ALE_USECS(sc->ale_int_rx_mod) != 0)
 2716                 reg |= MASTER_IM_RX_TIMER_ENB;
 2717         if (ALE_USECS(sc->ale_int_tx_mod) != 0)
 2718                 reg |= MASTER_IM_TX_TIMER_ENB;
 2719         CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
 2720         CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
 2721 
 2722         /* Set Maximum frame size of controller. */
 2723         if (ifp->if_mtu < ETHERMTU)
 2724                 sc->ale_max_frame_size = ETHERMTU;
 2725         else
 2726                 sc->ale_max_frame_size = ifp->if_mtu;
 2727         sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 2728             ETHER_CRC_LEN;
 2729         CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
 2730         /* Configure IPG/IFG parameters. */
 2731         CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
 2732             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
 2733             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2734             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2735             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
 2736         /* Set parameters for half-duplex media. */
 2737         CSR_WRITE_4(sc, ALE_HDPX_CFG,
 2738             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2739             HDPX_CFG_LCOL_MASK) |
 2740             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2741             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2742             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2743             HDPX_CFG_ABEBT_MASK) |
 2744             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2745             HDPX_CFG_JAMIPG_MASK));
 2746 
 2747         /* Configure Tx jumbo frame parameters. */
 2748         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2749                 if (ifp->if_mtu < ETHERMTU)
 2750                         reg = sc->ale_max_frame_size;
 2751                 else if (ifp->if_mtu < 6 * 1024)
 2752                         reg = (sc->ale_max_frame_size * 2) / 3;
 2753                 else
 2754                         reg = sc->ale_max_frame_size / 2;
 2755                 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
 2756                     roundup(reg, TX_JUMBO_THRESH_UNIT) >>
 2757                     TX_JUMBO_THRESH_UNIT_SHIFT);
 2758         }
 2759         /* Configure TxQ. */
 2760         reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
 2761             << TXQ_CFG_TX_FIFO_BURST_SHIFT;
 2762         reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2763             TXQ_CFG_TPD_BURST_MASK;
 2764         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
 2765 
 2766         /* Configure Rx jumbo frame & flow control parameters. */
 2767         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2768                 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
 2769                 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
 2770                     (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
 2771                     RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
 2772                     ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
 2773                     RX_JUMBO_LKAH_MASK));
 2774                 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
 2775                 rxf_hi = (reg * 7) / 10;
 2776                 rxf_lo = (reg * 3)/ 10;
 2777                 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
 2778                     ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2779                     RX_FIFO_PAUSE_THRESH_LO_MASK) |
 2780                     ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2781                     RX_FIFO_PAUSE_THRESH_HI_MASK));
 2782         }
 2783 
 2784         /* Disable RSS. */
 2785         CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
 2786         CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
 2787 
 2788         /* Configure RxQ. */
 2789         CSR_WRITE_4(sc, ALE_RXQ_CFG,
 2790             RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2791 
 2792         /* Configure DMA parameters. */
 2793         reg = 0;
 2794         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
 2795                 reg |= DMA_CFG_TXCMB_ENB;
 2796         CSR_WRITE_4(sc, ALE_DMA_CFG,
 2797             DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
 2798             sc->ale_dma_rd_burst | reg |
 2799             sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
 2800             ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
 2801             DMA_CFG_RD_DELAY_CNT_MASK) |
 2802             ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
 2803             DMA_CFG_WR_DELAY_CNT_MASK));
 2804 
 2805         /*
 2806          * Hardware can be configured to issue SMB interrupt based
 2807          * on programmed interval. Since there is a callout that is
 2808          * invoked for every hz in driver we use that instead of
 2809          * relying on periodic SMB interrupt.
 2810          */
 2811         CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
 2812         /* Clear MAC statistics. */
 2813         ale_stats_clear(sc);
 2814 
 2815         /*
 2816          * Configure Tx/Rx MACs.
 2817          *  - Auto-padding for short frames.
 2818          *  - Enable CRC generation.
 2819          *  Actual reconfiguration of MAC for resolved speed/duplex
 2820          *  is followed after detection of link establishment.
 2821          *  AR81xx always does checksum computation regardless of
 2822          *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
 2823          *  cause Rx handling issue for fragmented IP datagrams due
 2824          *  to silicon bug.
 2825          */
 2826         reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
 2827             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2828             MAC_CFG_PREAMBLE_MASK);
 2829         if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
 2830                 reg |= MAC_CFG_SPEED_10_100;
 2831         else
 2832                 reg |= MAC_CFG_SPEED_1000;
 2833         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2834 
 2835         /* Set up the receive filter. */
 2836         ale_rxfilter(sc);
 2837         ale_rxvlan(sc);
 2838 
 2839         /* Acknowledge all pending interrupts and clear it. */
 2840         CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
 2841         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2842         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
 2843 
 2844         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2845         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2846 
 2847         sc->ale_flags &= ~ALE_FLAG_LINK;
 2848         /* Switch to the current media. */
 2849         mii_mediachg(mii);
 2850 
 2851         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2852 }
 2853 
 2854 static void
 2855 ale_stop(struct ale_softc *sc)
 2856 {
 2857         struct ifnet *ifp;
 2858         struct ale_txdesc *txd;
 2859         uint32_t reg;
 2860         int i;
 2861 
 2862         ALE_LOCK_ASSERT(sc);
 2863         /*
 2864          * Mark the interface down and cancel the watchdog timer.
 2865          */
 2866         ifp = sc->ale_ifp;
 2867         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2868         sc->ale_flags &= ~ALE_FLAG_LINK;
 2869         callout_stop(&sc->ale_tick_ch);
 2870         sc->ale_watchdog_timer = 0;
 2871         ale_stats_update(sc);
 2872         /* Disable interrupts. */
 2873         CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
 2874         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2875         /* Disable queue processing and DMA. */
 2876         reg = CSR_READ_4(sc, ALE_TXQ_CFG);
 2877         reg &= ~TXQ_CFG_ENB;
 2878         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
 2879         reg = CSR_READ_4(sc, ALE_RXQ_CFG);
 2880         reg &= ~RXQ_CFG_ENB;
 2881         CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
 2882         reg = CSR_READ_4(sc, ALE_DMA_CFG);
 2883         reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
 2884         CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
 2885         DELAY(1000);
 2886         /* Stop Rx/Tx MACs. */
 2887         ale_stop_mac(sc);
 2888         /* Disable interrupts which might be touched in taskq handler. */
 2889         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2890 
 2891         /*
 2892          * Free TX mbufs still in the queues.
 2893          */
 2894         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2895                 txd = &sc->ale_cdata.ale_txdesc[i];
 2896                 if (txd->tx_m != NULL) {
 2897                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2898                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2899                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2900                             txd->tx_dmamap);
 2901                         m_freem(txd->tx_m);
 2902                         txd->tx_m = NULL;
 2903                 }
 2904         }
 2905 }
 2906 
 2907 static void
 2908 ale_stop_mac(struct ale_softc *sc)
 2909 {
 2910         uint32_t reg;
 2911         int i;
 2912 
 2913         ALE_LOCK_ASSERT(sc);
 2914 
 2915         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2916         if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
 2917                 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
 2918                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2919         }
 2920 
 2921         for (i = ALE_TIMEOUT; i > 0; i--) {
 2922                 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
 2923                 if (reg == 0)
 2924                         break;
 2925                 DELAY(10);
 2926         }
 2927         if (i == 0)
 2928                 device_printf(sc->ale_dev,
 2929                     "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
 2930 }
 2931 
 2932 static void
 2933 ale_init_tx_ring(struct ale_softc *sc)
 2934 {
 2935         struct ale_txdesc *txd;
 2936         int i;
 2937 
 2938         ALE_LOCK_ASSERT(sc);
 2939 
 2940         sc->ale_cdata.ale_tx_prod = 0;
 2941         sc->ale_cdata.ale_tx_cons = 0;
 2942         sc->ale_cdata.ale_tx_cnt = 0;
 2943 
 2944         bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
 2945         bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
 2946         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2947                 txd = &sc->ale_cdata.ale_txdesc[i];
 2948                 txd->tx_m = NULL;
 2949         }
 2950         *sc->ale_cdata.ale_tx_cmb = 0;
 2951         bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2952             sc->ale_cdata.ale_tx_cmb_map,
 2953             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2954         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2955             sc->ale_cdata.ale_tx_ring_map,
 2956             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2957 }
 2958 
 2959 static void
 2960 ale_init_rx_pages(struct ale_softc *sc)
 2961 {
 2962         struct ale_rx_page *rx_page;
 2963         int i;
 2964 
 2965         ALE_LOCK_ASSERT(sc);
 2966 
 2967         sc->ale_morework = 0;
 2968         sc->ale_cdata.ale_rx_seqno = 0;
 2969         sc->ale_cdata.ale_rx_curp = 0;
 2970 
 2971         for (i = 0; i < ALE_RX_PAGES; i++) {
 2972                 rx_page = &sc->ale_cdata.ale_rx_page[i];
 2973                 bzero(rx_page->page_addr, sc->ale_pagesize);
 2974                 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
 2975                 rx_page->cons = 0;
 2976                 *rx_page->cmb_addr = 0;
 2977                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2978                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2979                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2980                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2981         }
 2982 }
 2983 
 2984 static void
 2985 ale_rxvlan(struct ale_softc *sc)
 2986 {
 2987         struct ifnet *ifp;
 2988         uint32_t reg;
 2989 
 2990         ALE_LOCK_ASSERT(sc);
 2991 
 2992         ifp = sc->ale_ifp;
 2993         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2994         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 2995         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 2996                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 2997         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2998 }
 2999 
 3000 static u_int
 3001 ale_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 3002 {
 3003         uint32_t crc, *mchash = arg;
 3004 
 3005         crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
 3006         mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 3007 
 3008         return (1);
 3009 }
 3010 
 3011 static void
 3012 ale_rxfilter(struct ale_softc *sc)
 3013 {
 3014         struct ifnet *ifp;
 3015         uint32_t mchash[2];
 3016         uint32_t rxcfg;
 3017 
 3018         ALE_LOCK_ASSERT(sc);
 3019 
 3020         ifp = sc->ale_ifp;
 3021 
 3022         rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
 3023         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 3024         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3025                 rxcfg |= MAC_CFG_BCAST;
 3026         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3027                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3028                         rxcfg |= MAC_CFG_PROMISC;
 3029                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3030                         rxcfg |= MAC_CFG_ALLMULTI;
 3031                 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
 3032                 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
 3033                 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3034                 return;
 3035         }
 3036 
 3037         /* Program new filter. */
 3038         bzero(mchash, sizeof(mchash));
 3039         if_foreach_llmaddr(ifp, ale_hash_maddr, &mchash);
 3040 
 3041         CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
 3042         CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
 3043         CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3044 }
 3045 
 3046 static int
 3047 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3048 {
 3049         int error, value;
 3050 
 3051         if (arg1 == NULL)
 3052                 return (EINVAL);
 3053         value = *(int *)arg1;
 3054         error = sysctl_handle_int(oidp, &value, 0, req);
 3055         if (error || req->newptr == NULL)
 3056                 return (error);
 3057         if (value < low || value > high)
 3058                 return (EINVAL);
 3059         *(int *)arg1 = value;
 3060 
 3061         return (0);
 3062 }
 3063 
 3064 static int
 3065 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
 3066 {
 3067         return (sysctl_int_range(oidp, arg1, arg2, req,
 3068             ALE_PROC_MIN, ALE_PROC_MAX));
 3069 }
 3070 
 3071 static int
 3072 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
 3073 {
 3074 
 3075         return (sysctl_int_range(oidp, arg1, arg2, req,
 3076             ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
 3077 }

Cache object: 67df39a35a139ee1c75c3366028640fe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.