The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ale/if_ale.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/7.3/sys/dev/ale/if_ale.c 199927 2009-11-29 19:30:54Z yongari $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/bus.h>
   36 #include <sys/endian.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/module.h>
   41 #include <sys/rman.h>
   42 #include <sys/queue.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/taskqueue.h>
   47 
   48 #include <net/bpf.h>
   49 #include <net/if.h>
   50 #include <net/if_arp.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_llc.h>
   54 #include <net/if_media.h>
   55 #include <net/if_types.h>
   56 #include <net/if_vlan_var.h>
   57 
   58 #include <netinet/in.h>
   59 #include <netinet/in_systm.h>
   60 #include <netinet/ip.h>
   61 #include <netinet/tcp.h>
   62 
   63 #include <dev/mii/mii.h>
   64 #include <dev/mii/miivar.h>
   65 
   66 #include <dev/pci/pcireg.h>
   67 #include <dev/pci/pcivar.h>
   68 
   69 #include <machine/atomic.h>
   70 #include <machine/bus.h>
   71 #include <machine/in_cksum.h>
   72 
   73 #include <dev/ale/if_alereg.h>
   74 #include <dev/ale/if_alevar.h>
   75 
   76 /* "device miibus" required.  See GENERIC if you get errors here. */
   77 #include "miibus_if.h"
   78 
   79 /* For more information about Tx checksum offload issues see ale_encap(). */
   80 #define ALE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   81 #ifndef IFCAP_VLAN_HWTSO
   82 #define IFCAP_VLAN_HWTSO        0
   83 #endif
   84 
   85 MODULE_DEPEND(ale, pci, 1, 1, 1);
   86 MODULE_DEPEND(ale, ether, 1, 1, 1);
   87 MODULE_DEPEND(ale, miibus, 1, 1, 1);
   88 
   89 /* Tunables. */
   90 static int msi_disable = 0;
   91 static int msix_disable = 0;
   92 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
   93 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
   94 
   95 /*
   96  * Devices supported by this driver.
   97  */
   98 static struct ale_dev {
   99         uint16_t        ale_vendorid;
  100         uint16_t        ale_deviceid;
  101         const char      *ale_name;
  102 } ale_devs[] = {
  103     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
  104     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
  105 };
  106 
  107 static int      ale_attach(device_t);
  108 static int      ale_check_boundary(struct ale_softc *);
  109 static int      ale_detach(device_t);
  110 static int      ale_dma_alloc(struct ale_softc *);
  111 static void     ale_dma_free(struct ale_softc *);
  112 static void     ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  113 static int      ale_encap(struct ale_softc *, struct mbuf **);
  114 static void     ale_get_macaddr(struct ale_softc *);
  115 static void     ale_init(void *);
  116 static void     ale_init_locked(struct ale_softc *);
  117 static void     ale_init_rx_pages(struct ale_softc *);
  118 static void     ale_init_tx_ring(struct ale_softc *);
  119 static void     ale_int_task(void *, int);
  120 static int      ale_intr(void *);
  121 static int      ale_ioctl(struct ifnet *, u_long, caddr_t);
  122 static void     ale_link_task(void *, int);
  123 static void     ale_mac_config(struct ale_softc *);
  124 static int      ale_miibus_readreg(device_t, int, int);
  125 static void     ale_miibus_statchg(device_t);
  126 static int      ale_miibus_writereg(device_t, int, int, int);
  127 static int      ale_mediachange(struct ifnet *);
  128 static void     ale_mediastatus(struct ifnet *, struct ifmediareq *);
  129 static void     ale_phy_reset(struct ale_softc *);
  130 static int      ale_probe(device_t);
  131 static void     ale_reset(struct ale_softc *);
  132 static int      ale_resume(device_t);
  133 static void     ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
  134     uint32_t, uint32_t *);
  135 static void     ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
  136 static int      ale_rxeof(struct ale_softc *sc, int);
  137 static void     ale_rxfilter(struct ale_softc *);
  138 static void     ale_rxvlan(struct ale_softc *);
  139 static void     ale_setlinkspeed(struct ale_softc *);
  140 static void     ale_setwol(struct ale_softc *);
  141 static int      ale_shutdown(device_t);
  142 static void     ale_start(struct ifnet *);
  143 static void     ale_stats_clear(struct ale_softc *);
  144 static void     ale_stats_update(struct ale_softc *);
  145 static void     ale_stop(struct ale_softc *);
  146 static void     ale_stop_mac(struct ale_softc *);
  147 static int      ale_suspend(device_t);
  148 static void     ale_sysctl_node(struct ale_softc *);
  149 static void     ale_tick(void *);
  150 static void     ale_tx_task(void *, int);
  151 static void     ale_txeof(struct ale_softc *);
  152 static void     ale_watchdog(struct ale_softc *);
  153 static int      sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  154 static int      sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
  155 static int      sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
  156 
  157 static device_method_t ale_methods[] = {
  158         /* Device interface. */
  159         DEVMETHOD(device_probe,         ale_probe),
  160         DEVMETHOD(device_attach,        ale_attach),
  161         DEVMETHOD(device_detach,        ale_detach),
  162         DEVMETHOD(device_shutdown,      ale_shutdown),
  163         DEVMETHOD(device_suspend,       ale_suspend),
  164         DEVMETHOD(device_resume,        ale_resume),
  165 
  166         /* MII interface. */
  167         DEVMETHOD(miibus_readreg,       ale_miibus_readreg),
  168         DEVMETHOD(miibus_writereg,      ale_miibus_writereg),
  169         DEVMETHOD(miibus_statchg,       ale_miibus_statchg),
  170 
  171         { NULL, NULL }
  172 };
  173 
  174 static driver_t ale_driver = {
  175         "ale",
  176         ale_methods,
  177         sizeof(struct ale_softc)
  178 };
  179 
  180 static devclass_t ale_devclass;
  181 
  182 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
  183 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
  184 
  185 static struct resource_spec ale_res_spec_mem[] = {
  186         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  187         { -1,                   0,              0 }
  188 };
  189 
  190 static struct resource_spec ale_irq_spec_legacy[] = {
  191         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  192         { -1,                   0,              0 }
  193 };
  194 
  195 static struct resource_spec ale_irq_spec_msi[] = {
  196         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  197         { -1,                   0,              0 }
  198 };
  199 
  200 static struct resource_spec ale_irq_spec_msix[] = {
  201         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  202         { -1,                   0,              0 }
  203 };
  204 
  205 static int
  206 ale_miibus_readreg(device_t dev, int phy, int reg)
  207 {
  208         struct ale_softc *sc;
  209         uint32_t v;
  210         int i;
  211 
  212         sc = device_get_softc(dev);
  213 
  214         if (phy != sc->ale_phyaddr)
  215                 return (0);
  216 
  217         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  218             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  219         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  220                 DELAY(5);
  221                 v = CSR_READ_4(sc, ALE_MDIO);
  222                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  223                         break;
  224         }
  225 
  226         if (i == 0) {
  227                 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
  228                 return (0);
  229         }
  230 
  231         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  232 }
  233 
  234 static int
  235 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
  236 {
  237         struct ale_softc *sc;
  238         uint32_t v;
  239         int i;
  240 
  241         sc = device_get_softc(dev);
  242 
  243         if (phy != sc->ale_phyaddr)
  244                 return (0);
  245 
  246         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  247             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  248             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  249         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  250                 DELAY(5);
  251                 v = CSR_READ_4(sc, ALE_MDIO);
  252                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  253                         break;
  254         }
  255 
  256         if (i == 0)
  257                 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
  258 
  259         return (0);
  260 }
  261 
  262 static void
  263 ale_miibus_statchg(device_t dev)
  264 {
  265         struct ale_softc *sc;
  266 
  267         sc = device_get_softc(dev);
  268 
  269         taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
  270 }
  271 
  272 static void
  273 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  274 {
  275         struct ale_softc *sc;
  276         struct mii_data *mii;
  277 
  278         sc = ifp->if_softc;
  279         ALE_LOCK(sc);
  280         mii = device_get_softc(sc->ale_miibus);
  281 
  282         mii_pollstat(mii);
  283         ALE_UNLOCK(sc);
  284         ifmr->ifm_status = mii->mii_media_status;
  285         ifmr->ifm_active = mii->mii_media_active;
  286 }
  287 
  288 static int
  289 ale_mediachange(struct ifnet *ifp)
  290 {
  291         struct ale_softc *sc;
  292         struct mii_data *mii;
  293         struct mii_softc *miisc;
  294         int error;
  295 
  296         sc = ifp->if_softc;
  297         ALE_LOCK(sc);
  298         mii = device_get_softc(sc->ale_miibus);
  299         if (mii->mii_instance != 0) {
  300                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  301                         mii_phy_reset(miisc);
  302         }
  303         error = mii_mediachg(mii);
  304         ALE_UNLOCK(sc);
  305 
  306         return (error);
  307 }
  308 
  309 static int
  310 ale_probe(device_t dev)
  311 {
  312         struct ale_dev *sp;
  313         int i;
  314         uint16_t vendor, devid;
  315 
  316         vendor = pci_get_vendor(dev);
  317         devid = pci_get_device(dev);
  318         sp = ale_devs;
  319         for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
  320                 if (vendor == sp->ale_vendorid &&
  321                     devid == sp->ale_deviceid) {
  322                         device_set_desc(dev, sp->ale_name);
  323                         return (BUS_PROBE_DEFAULT);
  324                 }
  325                 sp++;
  326         }
  327 
  328         return (ENXIO);
  329 }
  330 
  331 static void
  332 ale_get_macaddr(struct ale_softc *sc)
  333 {
  334         uint32_t ea[2], reg;
  335         int i, vpdc;
  336 
  337         reg = CSR_READ_4(sc, ALE_SPI_CTRL);
  338         if ((reg & SPI_VPD_ENB) != 0) {
  339                 reg &= ~SPI_VPD_ENB;
  340                 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
  341         }
  342 
  343         if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
  344                 /*
  345                  * PCI VPD capability found, let TWSI reload EEPROM.
  346                  * This will set ethernet address of controller.
  347                  */
  348                 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
  349                     TWSI_CTRL_SW_LD_START);
  350                 for (i = 100; i > 0; i--) {
  351                         DELAY(1000);
  352                         reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
  353                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  354                                 break;
  355                 }
  356                 if (i == 0)
  357                         device_printf(sc->ale_dev,
  358                             "reloading EEPROM timeout!\n");
  359         } else {
  360                 if (bootverbose)
  361                         device_printf(sc->ale_dev,
  362                             "PCI VPD capability not found!\n");
  363         }
  364 
  365         ea[0] = CSR_READ_4(sc, ALE_PAR0);
  366         ea[1] = CSR_READ_4(sc, ALE_PAR1);
  367         sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
  368         sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
  369         sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
  370         sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
  371         sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
  372         sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
  373 }
  374 
  375 static void
  376 ale_phy_reset(struct ale_softc *sc)
  377 {
  378 
  379         /* Reset magic from Linux. */
  380         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  381             GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
  382             GPHY_CTRL_PHY_PLL_ON);
  383         DELAY(1000);
  384         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  385             GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
  386             GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
  387         DELAY(1000);
  388 
  389 #define ATPHY_DBG_ADDR          0x1D
  390 #define ATPHY_DBG_DATA          0x1E
  391 
  392         /* Enable hibernation mode. */
  393         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  394             ATPHY_DBG_ADDR, 0x0B);
  395         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  396             ATPHY_DBG_DATA, 0xBC00);
  397         /* Set Class A/B for all modes. */
  398         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  399             ATPHY_DBG_ADDR, 0x00);
  400         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  401             ATPHY_DBG_DATA, 0x02EF);
  402         /* Enable 10BT power saving. */
  403         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  404             ATPHY_DBG_ADDR, 0x12);
  405         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  406             ATPHY_DBG_DATA, 0x4C04);
  407         /* Adjust 1000T power. */
  408         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  409             ATPHY_DBG_ADDR, 0x04);
  410         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  411             ATPHY_DBG_ADDR, 0x8BBB);
  412         /* 10BT center tap voltage. */
  413         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  414             ATPHY_DBG_ADDR, 0x05);
  415         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  416             ATPHY_DBG_ADDR, 0x2C46);
  417 
  418 #undef  ATPHY_DBG_ADDR
  419 #undef  ATPHY_DBG_DATA
  420         DELAY(1000);
  421 }
  422 
  423 static int
  424 ale_attach(device_t dev)
  425 {
  426         struct ale_softc *sc;
  427         struct ifnet *ifp;
  428         uint16_t burst;
  429         int error, i, msic, msixc, pmc;
  430         uint32_t rxf_len, txf_len;
  431 
  432         error = 0;
  433         sc = device_get_softc(dev);
  434         sc->ale_dev = dev;
  435 
  436         mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  437             MTX_DEF);
  438         callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
  439         TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
  440         TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
  441 
  442         /* Map the device. */
  443         pci_enable_busmaster(dev);
  444         sc->ale_res_spec = ale_res_spec_mem;
  445         sc->ale_irq_spec = ale_irq_spec_legacy;
  446         error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
  447         if (error != 0) {
  448                 device_printf(dev, "cannot allocate memory resources.\n");
  449                 goto fail;
  450         }
  451 
  452         /* Set PHY address. */
  453         sc->ale_phyaddr = ALE_PHY_ADDR;
  454 
  455         /* Reset PHY. */
  456         ale_phy_reset(sc);
  457 
  458         /* Reset the ethernet controller. */
  459         ale_reset(sc);
  460 
  461         /* Get PCI and chip id/revision. */
  462         sc->ale_rev = pci_get_revid(dev);
  463         if (sc->ale_rev >= 0xF0) {
  464                 /* L2E Rev. B. AR8114 */
  465                 sc->ale_flags |= ALE_FLAG_FASTETHER;
  466         } else {
  467                 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
  468                         /* L1E AR8121 */
  469                         sc->ale_flags |= ALE_FLAG_JUMBO;
  470                 } else {
  471                         /* L2E Rev. A. AR8113 */
  472                         sc->ale_flags |= ALE_FLAG_FASTETHER;
  473                 }
  474         }
  475         /*
  476          * All known controllers seems to require 4 bytes alignment
  477          * of Tx buffers to make Tx checksum offload with custom
  478          * checksum generation method work.
  479          */
  480         sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
  481         /*
  482          * All known controllers seems to have issues on Rx checksum
  483          * offload for fragmented IP datagrams.
  484          */
  485         sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
  486         /*
  487          * Don't use Tx CMB. It is known to cause RRS update failure
  488          * under certain circumstances. Typical phenomenon of the
  489          * issue would be unexpected sequence number encountered in
  490          * Rx handler.
  491          */
  492         sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
  493         sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
  494             MASTER_CHIP_REV_SHIFT;
  495         if (bootverbose) {
  496                 device_printf(dev, "PCI device revision : 0x%04x\n",
  497                     sc->ale_rev);
  498                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  499                     sc->ale_chip_rev);
  500         }
  501         txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
  502         rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
  503         /*
  504          * Uninitialized hardware returns an invalid chip id/revision
  505          * as well as 0xFFFFFFFF for Tx/Rx fifo length.
  506          */
  507         if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
  508             rxf_len == 0xFFFFFFF) {
  509                 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
  510                     "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
  511                     txf_len, rxf_len);
  512                 error = ENXIO;
  513                 goto fail;
  514         }
  515         device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
  516 
  517         /* Allocate IRQ resources. */
  518         msixc = pci_msix_count(dev);
  519         msic = pci_msi_count(dev);
  520         if (bootverbose) {
  521                 device_printf(dev, "MSIX count : %d\n", msixc);
  522                 device_printf(dev, "MSI count : %d\n", msic);
  523         }
  524 
  525         /* Prefer MSIX over MSI. */
  526         if (msix_disable == 0 || msi_disable == 0) {
  527                 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
  528                     pci_alloc_msix(dev, &msixc) == 0) {
  529                         if (msic == ALE_MSIX_MESSAGES) {
  530                                 device_printf(dev, "Using %d MSIX messages.\n",
  531                                     msixc);
  532                                 sc->ale_flags |= ALE_FLAG_MSIX;
  533                                 sc->ale_irq_spec = ale_irq_spec_msix;
  534                         } else
  535                                 pci_release_msi(dev);
  536                 }
  537                 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
  538                     msic == ALE_MSI_MESSAGES &&
  539                     pci_alloc_msi(dev, &msic) == 0) {
  540                         if (msic == ALE_MSI_MESSAGES) {
  541                                 device_printf(dev, "Using %d MSI messages.\n",
  542                                     msic);
  543                                 sc->ale_flags |= ALE_FLAG_MSI;
  544                                 sc->ale_irq_spec = ale_irq_spec_msi;
  545                         } else
  546                                 pci_release_msi(dev);
  547                 }
  548         }
  549 
  550         error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  551         if (error != 0) {
  552                 device_printf(dev, "cannot allocate IRQ resources.\n");
  553                 goto fail;
  554         }
  555 
  556         /* Get DMA parameters from PCIe device control register. */
  557         if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
  558                 sc->ale_flags |= ALE_FLAG_PCIE;
  559                 burst = pci_read_config(dev, i + 0x08, 2);
  560                 /* Max read request size. */
  561                 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
  562                     DMA_CFG_RD_BURST_SHIFT;
  563                 /* Max payload size. */
  564                 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
  565                     DMA_CFG_WR_BURST_SHIFT;
  566                 if (bootverbose) {
  567                         device_printf(dev, "Read request size : %d bytes.\n",
  568                             128 << ((burst >> 12) & 0x07));
  569                         device_printf(dev, "TLP payload size : %d bytes.\n",
  570                             128 << ((burst >> 5) & 0x07));
  571                 }
  572         } else {
  573                 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
  574                 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
  575         }
  576 
  577         /* Create device sysctl node. */
  578         ale_sysctl_node(sc);
  579 
  580         if ((error = ale_dma_alloc(sc) != 0))
  581                 goto fail;
  582 
  583         /* Load station address. */
  584         ale_get_macaddr(sc);
  585 
  586         ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
  587         if (ifp == NULL) {
  588                 device_printf(dev, "cannot allocate ifnet structure.\n");
  589                 error = ENXIO;
  590                 goto fail;
  591         }
  592 
  593         ifp->if_softc = sc;
  594         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  595         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  596         ifp->if_ioctl = ale_ioctl;
  597         ifp->if_start = ale_start;
  598         ifp->if_init = ale_init;
  599         ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
  600         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  601         IFQ_SET_READY(&ifp->if_snd);
  602         ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
  603         ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
  604         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
  605                 sc->ale_flags |= ALE_FLAG_PMCAP;
  606                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
  607         }
  608         ifp->if_capenable = ifp->if_capabilities;
  609 
  610         /* Set up MII bus. */
  611         if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
  612             ale_mediastatus)) != 0) {
  613                 device_printf(dev, "no PHY found!\n");
  614                 goto fail;
  615         }
  616 
  617         ether_ifattach(ifp, sc->ale_eaddr);
  618 
  619         /* VLAN capability setup. */
  620         ifp->if_capabilities |= IFCAP_VLAN_MTU;
  621         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
  622         ifp->if_capenable = ifp->if_capabilities;
  623         /*
  624          * Even though controllers supported by ale(3) have Rx checksum
  625          * offload bug the workaround for fragmented frames seemed to
  626          * work so far. However it seems Rx checksum offload does not
  627          * work under certain conditions. So disable Rx checksum offload
  628          * until I find more clue about it but allow users to override it.
  629          */
  630         ifp->if_capenable &= ~IFCAP_RXCSUM;
  631 
  632         /* Tell the upper layer(s) we support long frames. */
  633         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  634 
  635         /* Create local taskq. */
  636         TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp);
  637         sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
  638             taskqueue_thread_enqueue, &sc->ale_tq);
  639         if (sc->ale_tq == NULL) {
  640                 device_printf(dev, "could not create taskqueue.\n");
  641                 ether_ifdetach(ifp);
  642                 error = ENXIO;
  643                 goto fail;
  644         }
  645         taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
  646             device_get_nameunit(sc->ale_dev));
  647 
  648         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  649                 msic = ALE_MSIX_MESSAGES;
  650         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  651                 msic = ALE_MSI_MESSAGES;
  652         else
  653                 msic = 1;
  654         for (i = 0; i < msic; i++) {
  655                 error = bus_setup_intr(dev, sc->ale_irq[i],
  656                     INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
  657                     &sc->ale_intrhand[i]);
  658                 if (error != 0)
  659                         break;
  660         }
  661         if (error != 0) {
  662                 device_printf(dev, "could not set up interrupt handler.\n");
  663                 taskqueue_free(sc->ale_tq);
  664                 sc->ale_tq = NULL;
  665                 ether_ifdetach(ifp);
  666                 goto fail;
  667         }
  668 
  669 fail:
  670         if (error != 0)
  671                 ale_detach(dev);
  672 
  673         return (error);
  674 }
  675 
  676 static int
  677 ale_detach(device_t dev)
  678 {
  679         struct ale_softc *sc;
  680         struct ifnet *ifp;
  681         int i, msic;
  682 
  683         sc = device_get_softc(dev);
  684 
  685         ifp = sc->ale_ifp;
  686         if (device_is_attached(dev)) {
  687                 ALE_LOCK(sc);
  688                 sc->ale_flags |= ALE_FLAG_DETACH;
  689                 ale_stop(sc);
  690                 ALE_UNLOCK(sc);
  691                 callout_drain(&sc->ale_tick_ch);
  692                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  693                 taskqueue_drain(sc->ale_tq, &sc->ale_tx_task);
  694                 taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
  695                 ether_ifdetach(ifp);
  696         }
  697 
  698         if (sc->ale_tq != NULL) {
  699                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  700                 taskqueue_free(sc->ale_tq);
  701                 sc->ale_tq = NULL;
  702         }
  703 
  704         if (sc->ale_miibus != NULL) {
  705                 device_delete_child(dev, sc->ale_miibus);
  706                 sc->ale_miibus = NULL;
  707         }
  708         bus_generic_detach(dev);
  709         ale_dma_free(sc);
  710 
  711         if (ifp != NULL) {
  712                 if_free(ifp);
  713                 sc->ale_ifp = NULL;
  714         }
  715 
  716         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  717                 msic = ALE_MSIX_MESSAGES;
  718         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  719                 msic = ALE_MSI_MESSAGES;
  720         else
  721                 msic = 1;
  722         for (i = 0; i < msic; i++) {
  723                 if (sc->ale_intrhand[i] != NULL) {
  724                         bus_teardown_intr(dev, sc->ale_irq[i],
  725                             sc->ale_intrhand[i]);
  726                         sc->ale_intrhand[i] = NULL;
  727                 }
  728         }
  729 
  730         bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  731         if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
  732                 pci_release_msi(dev);
  733         bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
  734         mtx_destroy(&sc->ale_mtx);
  735 
  736         return (0);
  737 }
  738 
  739 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
  740             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  741 
  742 #if __FreeBSD_version > 800000
  743 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  744             SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  745 #else
  746 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  747             SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  748 #endif
  749 
  750 static void
  751 ale_sysctl_node(struct ale_softc *sc)
  752 {
  753         struct sysctl_ctx_list *ctx;
  754         struct sysctl_oid_list *child, *parent;
  755         struct sysctl_oid *tree;
  756         struct ale_hw_stats *stats;
  757         int error;
  758 
  759         stats = &sc->ale_stats;
  760         ctx = device_get_sysctl_ctx(sc->ale_dev);
  761         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
  762 
  763         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
  764             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
  765             sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
  766         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
  767             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
  768             sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
  769         /* Pull in device tunables. */
  770         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  771         error = resource_int_value(device_get_name(sc->ale_dev),
  772             device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
  773         if (error == 0) {
  774                 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
  775                     sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
  776                         device_printf(sc->ale_dev, "int_rx_mod value out of "
  777                             "range; using default: %d\n",
  778                             ALE_IM_RX_TIMER_DEFAULT);
  779                         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  780                 }
  781         }
  782         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  783         error = resource_int_value(device_get_name(sc->ale_dev),
  784             device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
  785         if (error == 0) {
  786                 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
  787                     sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
  788                         device_printf(sc->ale_dev, "int_tx_mod value out of "
  789                             "range; using default: %d\n",
  790                             ALE_IM_TX_TIMER_DEFAULT);
  791                         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  792                 }
  793         }
  794         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
  795             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
  796             sysctl_hw_ale_proc_limit, "I",
  797             "max number of Rx events to process");
  798         /* Pull in device tunables. */
  799         sc->ale_process_limit = ALE_PROC_DEFAULT;
  800         error = resource_int_value(device_get_name(sc->ale_dev),
  801             device_get_unit(sc->ale_dev), "process_limit",
  802             &sc->ale_process_limit);
  803         if (error == 0) {
  804                 if (sc->ale_process_limit < ALE_PROC_MIN ||
  805                     sc->ale_process_limit > ALE_PROC_MAX) {
  806                         device_printf(sc->ale_dev,
  807                             "process_limit value out of range; "
  808                             "using default: %d\n", ALE_PROC_DEFAULT);
  809                         sc->ale_process_limit = ALE_PROC_DEFAULT;
  810                 }
  811         }
  812 
  813         /* Misc statistics. */
  814         ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
  815             &stats->reset_brk_seq,
  816             "Controller resets due to broken Rx sequnce number");
  817 
  818         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
  819             NULL, "ATE statistics");
  820         parent = SYSCTL_CHILDREN(tree);
  821 
  822         /* Rx statistics. */
  823         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
  824             NULL, "Rx MAC statistics");
  825         child = SYSCTL_CHILDREN(tree);
  826         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  827             &stats->rx_frames, "Good frames");
  828         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  829             &stats->rx_bcast_frames, "Good broadcast frames");
  830         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  831             &stats->rx_mcast_frames, "Good multicast frames");
  832         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  833             &stats->rx_pause_frames, "Pause control frames");
  834         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  835             &stats->rx_control_frames, "Control frames");
  836         ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
  837             &stats->rx_crcerrs, "CRC errors");
  838         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  839             &stats->rx_lenerrs, "Frames with length mismatched");
  840         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  841             &stats->rx_bytes, "Good octets");
  842         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  843             &stats->rx_bcast_bytes, "Good broadcast octets");
  844         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  845             &stats->rx_mcast_bytes, "Good multicast octets");
  846         ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
  847             &stats->rx_runts, "Too short frames");
  848         ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
  849             &stats->rx_fragments, "Fragmented frames");
  850         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  851             &stats->rx_pkts_64, "64 bytes frames");
  852         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  853             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
  854         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  855             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
  856         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  857             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
  858         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  859             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
  860         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  861             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
  862         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  863             &stats->rx_pkts_1519_max, "1519 to max frames");
  864         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  865             &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
  866         ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
  867             &stats->rx_fifo_oflows, "FIFO overflows");
  868         ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
  869             &stats->rx_rrs_errs, "Return status write-back errors");
  870         ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
  871             &stats->rx_alignerrs, "Alignment errors");
  872         ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
  873             &stats->rx_pkts_filtered,
  874             "Frames dropped due to address filtering");
  875 
  876         /* Tx statistics. */
  877         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
  878             NULL, "Tx MAC statistics");
  879         child = SYSCTL_CHILDREN(tree);
  880         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  881             &stats->tx_frames, "Good frames");
  882         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  883             &stats->tx_bcast_frames, "Good broadcast frames");
  884         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  885             &stats->tx_mcast_frames, "Good multicast frames");
  886         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  887             &stats->tx_pause_frames, "Pause control frames");
  888         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  889             &stats->tx_control_frames, "Control frames");
  890         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
  891             &stats->tx_excess_defer, "Frames with excessive derferrals");
  892         ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
  893             &stats->tx_excess_defer, "Frames with derferrals");
  894         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  895             &stats->tx_bytes, "Good octets");
  896         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  897             &stats->tx_bcast_bytes, "Good broadcast octets");
  898         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  899             &stats->tx_mcast_bytes, "Good multicast octets");
  900         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  901             &stats->tx_pkts_64, "64 bytes frames");
  902         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  903             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
  904         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  905             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
  906         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  907             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
  908         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  909             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
  910         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  911             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
  912         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  913             &stats->tx_pkts_1519_max, "1519 to max frames");
  914         ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
  915             &stats->tx_single_colls, "Single collisions");
  916         ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
  917             &stats->tx_multi_colls, "Multiple collisions");
  918         ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
  919             &stats->tx_late_colls, "Late collisions");
  920         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
  921             &stats->tx_excess_colls, "Excessive collisions");
  922         ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
  923             &stats->tx_abort, "Aborted frames due to Excessive collisions");
  924         ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
  925             &stats->tx_underrun, "FIFO underruns");
  926         ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
  927             &stats->tx_desc_underrun, "Descriptor write-back errors");
  928         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  929             &stats->tx_lenerrs, "Frames with length mismatched");
  930         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  931             &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
  932 }
  933 
  934 #undef ALE_SYSCTL_STAT_ADD32
  935 #undef ALE_SYSCTL_STAT_ADD64
  936 
  937 struct ale_dmamap_arg {
  938         bus_addr_t      ale_busaddr;
  939 };
  940 
  941 static void
  942 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  943 {
  944         struct ale_dmamap_arg *ctx;
  945 
  946         if (error != 0)
  947                 return;
  948 
  949         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  950 
  951         ctx = (struct ale_dmamap_arg *)arg;
  952         ctx->ale_busaddr = segs[0].ds_addr;
  953 }
  954 
  955 /*
  956  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
  957  * which specifies high address region of DMA blocks. Therefore these
  958  * blocks should have the same high address of given 4GB address
  959  * space(i.e. crossing 4GB boundary is not allowed).
  960  */
  961 static int
  962 ale_check_boundary(struct ale_softc *sc)
  963 {
  964         bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
  965         bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
  966 
  967         rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
  968             sc->ale_pagesize;
  969         rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
  970             sc->ale_pagesize;
  971         tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
  972         tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
  973         rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
  974         rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
  975 
  976         if ((ALE_ADDR_HI(tx_ring_end) !=
  977             ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
  978             (ALE_ADDR_HI(rx_page_end[0]) !=
  979             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
  980             (ALE_ADDR_HI(rx_page_end[1]) !=
  981             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
  982             (ALE_ADDR_HI(tx_cmb_end) !=
  983             ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
  984             (ALE_ADDR_HI(rx_cmb_end[0]) !=
  985             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
  986             (ALE_ADDR_HI(rx_cmb_end[1]) !=
  987             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
  988                 return (EFBIG);
  989 
  990         if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
  991             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
  992             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
  993             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
  994             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
  995                 return (EFBIG);
  996 
  997         return (0);
  998 }
  999 
 1000 static int
 1001 ale_dma_alloc(struct ale_softc *sc)
 1002 {
 1003         struct ale_txdesc *txd;
 1004         bus_addr_t lowaddr;
 1005         struct ale_dmamap_arg ctx;
 1006         int error, guard_size, i;
 1007 
 1008         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
 1009                 guard_size = ALE_JUMBO_FRAMELEN;
 1010         else
 1011                 guard_size = ALE_MAX_FRAMELEN;
 1012         sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
 1013             ALE_RX_PAGE_ALIGN);
 1014         lowaddr = BUS_SPACE_MAXADDR;
 1015 again:
 1016         /* Create parent DMA tag. */
 1017         error = bus_dma_tag_create(
 1018             bus_get_dma_tag(sc->ale_dev), /* parent */
 1019             1, 0,                       /* alignment, boundary */
 1020             lowaddr,                    /* lowaddr */
 1021             BUS_SPACE_MAXADDR,          /* highaddr */
 1022             NULL, NULL,                 /* filter, filterarg */
 1023             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1024             0,                          /* nsegments */
 1025             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1026             0,                          /* flags */
 1027             NULL, NULL,                 /* lockfunc, lockarg */
 1028             &sc->ale_cdata.ale_parent_tag);
 1029         if (error != 0) {
 1030                 device_printf(sc->ale_dev,
 1031                     "could not create parent DMA tag.\n");
 1032                 goto fail;
 1033         }
 1034 
 1035         /* Create DMA tag for Tx descriptor ring. */
 1036         error = bus_dma_tag_create(
 1037             sc->ale_cdata.ale_parent_tag, /* parent */
 1038             ALE_TX_RING_ALIGN, 0,       /* alignment, boundary */
 1039             BUS_SPACE_MAXADDR,          /* lowaddr */
 1040             BUS_SPACE_MAXADDR,          /* highaddr */
 1041             NULL, NULL,                 /* filter, filterarg */
 1042             ALE_TX_RING_SZ,             /* maxsize */
 1043             1,                          /* nsegments */
 1044             ALE_TX_RING_SZ,             /* maxsegsize */
 1045             0,                          /* flags */
 1046             NULL, NULL,                 /* lockfunc, lockarg */
 1047             &sc->ale_cdata.ale_tx_ring_tag);
 1048         if (error != 0) {
 1049                 device_printf(sc->ale_dev,
 1050                     "could not create Tx ring DMA tag.\n");
 1051                 goto fail;
 1052         }
 1053 
 1054         /* Create DMA tag for Rx pages. */
 1055         for (i = 0; i < ALE_RX_PAGES; i++) {
 1056                 error = bus_dma_tag_create(
 1057                     sc->ale_cdata.ale_parent_tag, /* parent */
 1058                     ALE_RX_PAGE_ALIGN, 0,       /* alignment, boundary */
 1059                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1060                     BUS_SPACE_MAXADDR,          /* highaddr */
 1061                     NULL, NULL,                 /* filter, filterarg */
 1062                     sc->ale_pagesize,           /* maxsize */
 1063                     1,                          /* nsegments */
 1064                     sc->ale_pagesize,           /* maxsegsize */
 1065                     0,                          /* flags */
 1066                     NULL, NULL,                 /* lockfunc, lockarg */
 1067                     &sc->ale_cdata.ale_rx_page[i].page_tag);
 1068                 if (error != 0) {
 1069                         device_printf(sc->ale_dev,
 1070                             "could not create Rx page %d DMA tag.\n", i);
 1071                         goto fail;
 1072                 }
 1073         }
 1074 
 1075         /* Create DMA tag for Tx coalescing message block. */
 1076         error = bus_dma_tag_create(
 1077             sc->ale_cdata.ale_parent_tag, /* parent */
 1078             ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1079             BUS_SPACE_MAXADDR,          /* lowaddr */
 1080             BUS_SPACE_MAXADDR,          /* highaddr */
 1081             NULL, NULL,                 /* filter, filterarg */
 1082             ALE_TX_CMB_SZ,              /* maxsize */
 1083             1,                          /* nsegments */
 1084             ALE_TX_CMB_SZ,              /* maxsegsize */
 1085             0,                          /* flags */
 1086             NULL, NULL,                 /* lockfunc, lockarg */
 1087             &sc->ale_cdata.ale_tx_cmb_tag);
 1088         if (error != 0) {
 1089                 device_printf(sc->ale_dev,
 1090                     "could not create Tx CMB DMA tag.\n");
 1091                 goto fail;
 1092         }
 1093 
 1094         /* Create DMA tag for Rx coalescing message block. */
 1095         for (i = 0; i < ALE_RX_PAGES; i++) {
 1096                 error = bus_dma_tag_create(
 1097                     sc->ale_cdata.ale_parent_tag, /* parent */
 1098                     ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1099                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1100                     BUS_SPACE_MAXADDR,          /* highaddr */
 1101                     NULL, NULL,                 /* filter, filterarg */
 1102                     ALE_RX_CMB_SZ,              /* maxsize */
 1103                     1,                          /* nsegments */
 1104                     ALE_RX_CMB_SZ,              /* maxsegsize */
 1105                     0,                          /* flags */
 1106                     NULL, NULL,                 /* lockfunc, lockarg */
 1107                     &sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1108                 if (error != 0) {
 1109                         device_printf(sc->ale_dev,
 1110                             "could not create Rx page %d CMB DMA tag.\n", i);
 1111                         goto fail;
 1112                 }
 1113         }
 1114 
 1115         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1116         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
 1117             (void **)&sc->ale_cdata.ale_tx_ring,
 1118             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1119             &sc->ale_cdata.ale_tx_ring_map);
 1120         if (error != 0) {
 1121                 device_printf(sc->ale_dev,
 1122                     "could not allocate DMA'able memory for Tx ring.\n");
 1123                 goto fail;
 1124         }
 1125         ctx.ale_busaddr = 0;
 1126         error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
 1127             sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
 1128             ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
 1129         if (error != 0 || ctx.ale_busaddr == 0) {
 1130                 device_printf(sc->ale_dev,
 1131                     "could not load DMA'able memory for Tx ring.\n");
 1132                 goto fail;
 1133         }
 1134         sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
 1135 
 1136         /* Rx pages. */
 1137         for (i = 0; i < ALE_RX_PAGES; i++) {
 1138                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
 1139                     (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
 1140                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1141                     &sc->ale_cdata.ale_rx_page[i].page_map);
 1142                 if (error != 0) {
 1143                         device_printf(sc->ale_dev,
 1144                             "could not allocate DMA'able memory for "
 1145                             "Rx page %d.\n", i);
 1146                         goto fail;
 1147                 }
 1148                 ctx.ale_busaddr = 0;
 1149                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
 1150                     sc->ale_cdata.ale_rx_page[i].page_map,
 1151                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1152                     sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
 1153                 if (error != 0 || ctx.ale_busaddr == 0) {
 1154                         device_printf(sc->ale_dev,
 1155                             "could not load DMA'able memory for "
 1156                             "Rx page %d.\n", i);
 1157                         goto fail;
 1158                 }
 1159                 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
 1160         }
 1161 
 1162         /* Tx CMB. */
 1163         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
 1164             (void **)&sc->ale_cdata.ale_tx_cmb,
 1165             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1166             &sc->ale_cdata.ale_tx_cmb_map);
 1167         if (error != 0) {
 1168                 device_printf(sc->ale_dev,
 1169                     "could not allocate DMA'able memory for Tx CMB.\n");
 1170                 goto fail;
 1171         }
 1172         ctx.ale_busaddr = 0;
 1173         error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
 1174             sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
 1175             ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1176         if (error != 0 || ctx.ale_busaddr == 0) {
 1177                 device_printf(sc->ale_dev,
 1178                     "could not load DMA'able memory for Tx CMB.\n");
 1179                 goto fail;
 1180         }
 1181         sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
 1182 
 1183         /* Rx CMB. */
 1184         for (i = 0; i < ALE_RX_PAGES; i++) {
 1185                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1186                     (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1187                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1188                     &sc->ale_cdata.ale_rx_page[i].cmb_map);
 1189                 if (error != 0) {
 1190                         device_printf(sc->ale_dev, "could not allocate "
 1191                             "DMA'able memory for Rx page %d CMB.\n", i);
 1192                         goto fail;
 1193                 }
 1194                 ctx.ale_busaddr = 0;
 1195                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1196                     sc->ale_cdata.ale_rx_page[i].cmb_map,
 1197                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1198                     ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1199                 if (error != 0 || ctx.ale_busaddr == 0) {
 1200                         device_printf(sc->ale_dev, "could not load DMA'able "
 1201                             "memory for Rx page %d CMB.\n", i);
 1202                         goto fail;
 1203                 }
 1204                 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
 1205         }
 1206 
 1207         /*
 1208          * Tx descriptors/RXF0/CMB DMA blocks share the same
 1209          * high address region of 64bit DMA address space.
 1210          */
 1211         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1212             (error = ale_check_boundary(sc)) != 0) {
 1213                 device_printf(sc->ale_dev, "4GB boundary crossed, "
 1214                     "switching to 32bit DMA addressing mode.\n");
 1215                 ale_dma_free(sc);
 1216                 /*
 1217                  * Limit max allowable DMA address space to 32bit
 1218                  * and try again.
 1219                  */
 1220                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1221                 goto again;
 1222         }
 1223 
 1224         /*
 1225          * Create Tx buffer parent tag.
 1226          * AR81xx allows 64bit DMA addressing of Tx buffers so it
 1227          * needs separate parent DMA tag as parent DMA address space
 1228          * could be restricted to be within 32bit address space by
 1229          * 4GB boundary crossing.
 1230          */
 1231         error = bus_dma_tag_create(
 1232             bus_get_dma_tag(sc->ale_dev), /* parent */
 1233             1, 0,                       /* alignment, boundary */
 1234             BUS_SPACE_MAXADDR,          /* lowaddr */
 1235             BUS_SPACE_MAXADDR,          /* highaddr */
 1236             NULL, NULL,                 /* filter, filterarg */
 1237             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1238             0,                          /* nsegments */
 1239             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1240             0,                          /* flags */
 1241             NULL, NULL,                 /* lockfunc, lockarg */
 1242             &sc->ale_cdata.ale_buffer_tag);
 1243         if (error != 0) {
 1244                 device_printf(sc->ale_dev,
 1245                     "could not create parent buffer DMA tag.\n");
 1246                 goto fail;
 1247         }
 1248 
 1249         /* Create DMA tag for Tx buffers. */
 1250         error = bus_dma_tag_create(
 1251             sc->ale_cdata.ale_buffer_tag, /* parent */
 1252             1, 0,                       /* alignment, boundary */
 1253             BUS_SPACE_MAXADDR,          /* lowaddr */
 1254             BUS_SPACE_MAXADDR,          /* highaddr */
 1255             NULL, NULL,                 /* filter, filterarg */
 1256             ALE_TSO_MAXSIZE,            /* maxsize */
 1257             ALE_MAXTXSEGS,              /* nsegments */
 1258             ALE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1259             0,                          /* flags */
 1260             NULL, NULL,                 /* lockfunc, lockarg */
 1261             &sc->ale_cdata.ale_tx_tag);
 1262         if (error != 0) {
 1263                 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
 1264                 goto fail;
 1265         }
 1266 
 1267         /* Create DMA maps for Tx buffers. */
 1268         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1269                 txd = &sc->ale_cdata.ale_txdesc[i];
 1270                 txd->tx_m = NULL;
 1271                 txd->tx_dmamap = NULL;
 1272                 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
 1273                     &txd->tx_dmamap);
 1274                 if (error != 0) {
 1275                         device_printf(sc->ale_dev,
 1276                             "could not create Tx dmamap.\n");
 1277                         goto fail;
 1278                 }
 1279         }
 1280 
 1281 fail:
 1282         return (error);
 1283 }
 1284 
 1285 static void
 1286 ale_dma_free(struct ale_softc *sc)
 1287 {
 1288         struct ale_txdesc *txd;
 1289         int i;
 1290 
 1291         /* Tx buffers. */
 1292         if (sc->ale_cdata.ale_tx_tag != NULL) {
 1293                 for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1294                         txd = &sc->ale_cdata.ale_txdesc[i];
 1295                         if (txd->tx_dmamap != NULL) {
 1296                                 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
 1297                                     txd->tx_dmamap);
 1298                                 txd->tx_dmamap = NULL;
 1299                         }
 1300                 }
 1301                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
 1302                 sc->ale_cdata.ale_tx_tag = NULL;
 1303         }
 1304         /* Tx descriptor ring. */
 1305         if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
 1306                 if (sc->ale_cdata.ale_tx_ring_map != NULL)
 1307                         bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
 1308                             sc->ale_cdata.ale_tx_ring_map);
 1309                 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
 1310                     sc->ale_cdata.ale_tx_ring != NULL)
 1311                         bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
 1312                             sc->ale_cdata.ale_tx_ring,
 1313                             sc->ale_cdata.ale_tx_ring_map);
 1314                 sc->ale_cdata.ale_tx_ring = NULL;
 1315                 sc->ale_cdata.ale_tx_ring_map = NULL;
 1316                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
 1317                 sc->ale_cdata.ale_tx_ring_tag = NULL;
 1318         }
 1319         /* Rx page block. */
 1320         for (i = 0; i < ALE_RX_PAGES; i++) {
 1321                 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
 1322                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
 1323                                 bus_dmamap_unload(
 1324                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1325                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1326                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
 1327                             sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
 1328                                 bus_dmamem_free(
 1329                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1330                                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1331                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1332                         sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
 1333                         sc->ale_cdata.ale_rx_page[i].page_map = NULL;
 1334                         bus_dma_tag_destroy(
 1335                             sc->ale_cdata.ale_rx_page[i].page_tag);
 1336                         sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
 1337                 }
 1338         }
 1339         /* Rx CMB. */
 1340         for (i = 0; i < ALE_RX_PAGES; i++) {
 1341                 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
 1342                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
 1343                                 bus_dmamap_unload(
 1344                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1345                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1346                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
 1347                             sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
 1348                                 bus_dmamem_free(
 1349                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1350                                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1351                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1352                         sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
 1353                         sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
 1354                         bus_dma_tag_destroy(
 1355                             sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1356                         sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
 1357                 }
 1358         }
 1359         /* Tx CMB. */
 1360         if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
 1361                 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
 1362                         bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
 1363                             sc->ale_cdata.ale_tx_cmb_map);
 1364                 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
 1365                     sc->ale_cdata.ale_tx_cmb != NULL)
 1366                         bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
 1367                             sc->ale_cdata.ale_tx_cmb,
 1368                             sc->ale_cdata.ale_tx_cmb_map);
 1369                 sc->ale_cdata.ale_tx_cmb = NULL;
 1370                 sc->ale_cdata.ale_tx_cmb_map = NULL;
 1371                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
 1372                 sc->ale_cdata.ale_tx_cmb_tag = NULL;
 1373         }
 1374         if (sc->ale_cdata.ale_buffer_tag != NULL) {
 1375                 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
 1376                 sc->ale_cdata.ale_buffer_tag = NULL;
 1377         }
 1378         if (sc->ale_cdata.ale_parent_tag != NULL) {
 1379                 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
 1380                 sc->ale_cdata.ale_parent_tag = NULL;
 1381         }
 1382 }
 1383 
 1384 static int
 1385 ale_shutdown(device_t dev)
 1386 {
 1387 
 1388         return (ale_suspend(dev));
 1389 }
 1390 
 1391 /*
 1392  * Note, this driver resets the link speed to 10/100Mbps by
 1393  * restarting auto-negotiation in suspend/shutdown phase but we
 1394  * don't know whether that auto-negotiation would succeed or not
 1395  * as driver has no control after powering off/suspend operation.
 1396  * If the renegotiation fail WOL may not work. Running at 1Gbps
 1397  * will draw more power than 375mA at 3.3V which is specified in
 1398  * PCI specification and that would result in complete
 1399  * shutdowning power to ethernet controller.
 1400  *
 1401  * TODO
 1402  * Save current negotiated media speed/duplex/flow-control to
 1403  * softc and restore the same link again after resuming. PHY
 1404  * handling such as power down/resetting to 100Mbps may be better
 1405  * handled in suspend method in phy driver.
 1406  */
 1407 static void
 1408 ale_setlinkspeed(struct ale_softc *sc)
 1409 {
 1410         struct mii_data *mii;
 1411         int aneg, i;
 1412 
 1413         mii = device_get_softc(sc->ale_miibus);
 1414         mii_pollstat(mii);
 1415         aneg = 0;
 1416         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1417             (IFM_ACTIVE | IFM_AVALID)) {
 1418                 switch IFM_SUBTYPE(mii->mii_media_active) {
 1419                 case IFM_10_T:
 1420                 case IFM_100_TX:
 1421                         return;
 1422                 case IFM_1000_T:
 1423                         aneg++;
 1424                         break;
 1425                 default:
 1426                         break;
 1427                 }
 1428         }
 1429         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
 1430         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1431             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 1432         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1433             MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1434         DELAY(1000);
 1435         if (aneg != 0) {
 1436                 /*
 1437                  * Poll link state until ale(4) get a 10/100Mbps link.
 1438                  */
 1439                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1440                         mii_pollstat(mii);
 1441                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
 1442                             == (IFM_ACTIVE | IFM_AVALID)) {
 1443                                 switch (IFM_SUBTYPE(
 1444                                     mii->mii_media_active)) {
 1445                                 case IFM_10_T:
 1446                                 case IFM_100_TX:
 1447                                         ale_mac_config(sc);
 1448                                         return;
 1449                                 default:
 1450                                         break;
 1451                                 }
 1452                         }
 1453                         ALE_UNLOCK(sc);
 1454                         pause("alelnk", hz);
 1455                         ALE_LOCK(sc);
 1456                 }
 1457                 if (i == MII_ANEGTICKS_GIGE)
 1458                         device_printf(sc->ale_dev,
 1459                             "establishing a link failed, WOL may not work!");
 1460         }
 1461         /*
 1462          * No link, force MAC to have 100Mbps, full-duplex link.
 1463          * This is the last resort and may/may not work.
 1464          */
 1465         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1466         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1467         ale_mac_config(sc);
 1468 }
 1469 
 1470 static void
 1471 ale_setwol(struct ale_softc *sc)
 1472 {
 1473         struct ifnet *ifp;
 1474         uint32_t reg, pmcs;
 1475         uint16_t pmstat;
 1476         int pmc;
 1477 
 1478         ALE_LOCK_ASSERT(sc);
 1479 
 1480         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
 1481                 /* Disable WOL. */
 1482                 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 1483                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1484                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1485                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1486                 /* Force PHY power down. */
 1487                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1488                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1489                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
 1490                     GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
 1491                     GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
 1492                 return;
 1493         }
 1494 
 1495         ifp = sc->ale_ifp;
 1496         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1497                 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 1498                         ale_setlinkspeed(sc);
 1499         }
 1500 
 1501         pmcs = 0;
 1502         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1503                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1504         CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
 1505         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 1506         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
 1507             MAC_CFG_BCAST);
 1508         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1509                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1510         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1511                 reg |= MAC_CFG_RX_ENB;
 1512         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 1513 
 1514         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1515                 /* WOL disabled, PHY power down. */
 1516                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1517                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1518                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1519                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1520                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1521                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
 1522                     GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
 1523                     GPHY_CTRL_PWDOWN_HW);
 1524         }
 1525         /* Request PME. */
 1526         pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
 1527         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1528         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1529                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1530         pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1531 }
 1532 
 1533 static int
 1534 ale_suspend(device_t dev)
 1535 {
 1536         struct ale_softc *sc;
 1537 
 1538         sc = device_get_softc(dev);
 1539 
 1540         ALE_LOCK(sc);
 1541         ale_stop(sc);
 1542         ale_setwol(sc);
 1543         ALE_UNLOCK(sc);
 1544 
 1545         return (0);
 1546 }
 1547 
 1548 static int
 1549 ale_resume(device_t dev)
 1550 {
 1551         struct ale_softc *sc;
 1552         struct ifnet *ifp;
 1553         int pmc;
 1554         uint16_t pmstat;
 1555 
 1556         sc = device_get_softc(dev);
 1557 
 1558         ALE_LOCK(sc);
 1559         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
 1560                 /* Disable PME and clear PME status. */
 1561                 pmstat = pci_read_config(sc->ale_dev,
 1562                     pmc + PCIR_POWER_STATUS, 2);
 1563                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1564                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1565                         pci_write_config(sc->ale_dev,
 1566                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 1567                 }
 1568         }
 1569         /* Reset PHY. */
 1570         ale_phy_reset(sc);
 1571         ifp = sc->ale_ifp;
 1572         if ((ifp->if_flags & IFF_UP) != 0) {
 1573                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1574                 ale_init_locked(sc);
 1575         }
 1576         ALE_UNLOCK(sc);
 1577 
 1578         return (0);
 1579 }
 1580 
 1581 static int
 1582 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
 1583 {
 1584         struct ale_txdesc *txd, *txd_last;
 1585         struct tx_desc *desc;
 1586         struct mbuf *m;
 1587         struct ip *ip;
 1588         struct tcphdr *tcp;
 1589         bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
 1590         bus_dmamap_t map;
 1591         uint32_t cflags, ip_off, poff, vtag;
 1592         int error, i, nsegs, prod, si;
 1593 
 1594         ALE_LOCK_ASSERT(sc);
 1595 
 1596         M_ASSERTPKTHDR((*m_head));
 1597 
 1598         m = *m_head;
 1599         ip = NULL;
 1600         tcp = NULL;
 1601         cflags = vtag = 0;
 1602         ip_off = poff = 0;
 1603         if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
 1604                 /*
 1605                  * AR81xx requires offset of TCP/UDP payload in its Tx
 1606                  * descriptor to perform hardware Tx checksum offload.
 1607                  * Additionally, TSO requires IP/TCP header size and
 1608                  * modification of IP/TCP header in order to make TSO
 1609                  * engine work. This kind of operation takes many CPU
 1610                  * cycles on FreeBSD so fast host CPU is required to
 1611                  * get smooth TSO performance.
 1612                  */
 1613                 struct ether_header *eh;
 1614 
 1615                 if (M_WRITABLE(m) == 0) {
 1616                         /* Get a writable copy. */
 1617                         m = m_dup(*m_head, M_DONTWAIT);
 1618                         /* Release original mbufs. */
 1619                         m_freem(*m_head);
 1620                         if (m == NULL) {
 1621                                 *m_head = NULL;
 1622                                 return (ENOBUFS);
 1623                         }
 1624                         *m_head = m;
 1625                 }
 1626 
 1627                 /*
 1628                  * Buggy-controller requires 4 byte aligned Tx buffer
 1629                  * to make custom checksum offload work.
 1630                  */
 1631                 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
 1632                     (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
 1633                     (mtod(m, intptr_t) & 3) != 0) {
 1634                         m = m_defrag(*m_head, M_DONTWAIT);
 1635                         if (m == NULL) {
 1636                                 *m_head = NULL;
 1637                                 return (ENOBUFS);
 1638                         }
 1639                         *m_head = m;
 1640                 }
 1641 
 1642                 ip_off = sizeof(struct ether_header);
 1643                 m = m_pullup(m, ip_off);
 1644                 if (m == NULL) {
 1645                         *m_head = NULL;
 1646                         return (ENOBUFS);
 1647                 }
 1648                 eh = mtod(m, struct ether_header *);
 1649                 /*
 1650                  * Check if hardware VLAN insertion is off.
 1651                  * Additional check for LLC/SNAP frame?
 1652                  */
 1653                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1654                         ip_off = sizeof(struct ether_vlan_header);
 1655                         m = m_pullup(m, ip_off);
 1656                         if (m == NULL) {
 1657                                 *m_head = NULL;
 1658                                 return (ENOBUFS);
 1659                         }
 1660                 }
 1661                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1662                 if (m == NULL) {
 1663                         *m_head = NULL;
 1664                         return (ENOBUFS);
 1665                 }
 1666                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1667                 poff = ip_off + (ip->ip_hl << 2);
 1668                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1669                         /*
 1670                          * XXX
 1671                          * AR81xx requires the first descriptor should
 1672                          * not include any TCP playload for TSO case.
 1673                          * (i.e. ethernet header + IP + TCP header only)
 1674                          * m_pullup(9) above will ensure this too.
 1675                          * However it's not correct if the first mbuf
 1676                          * of the chain does not use cluster.
 1677                          */
 1678                         m = m_pullup(m, poff + sizeof(struct tcphdr));
 1679                         if (m == NULL) {
 1680                                 *m_head = NULL;
 1681                                 return (ENOBUFS);
 1682                         }
 1683                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1684                         /*
 1685                          * AR81xx requires IP/TCP header size and offset as
 1686                          * well as TCP pseudo checksum which complicates
 1687                          * TSO configuration. I guess this comes from the
 1688                          * adherence to Microsoft NDIS Large Send
 1689                          * specification which requires insertion of
 1690                          * pseudo checksum by upper stack. The pseudo
 1691                          * checksum that NDIS refers to doesn't include
 1692                          * TCP payload length so ale(4) should recompute
 1693                          * the pseudo checksum here. Hopefully this wouldn't
 1694                          * be much burden on modern CPUs.
 1695                          * Reset IP checksum and recompute TCP pseudo
 1696                          * checksum as NDIS specification said.
 1697                          */
 1698                         ip->ip_sum = 0;
 1699                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1700                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1701                 }
 1702                 *m_head = m;
 1703         }
 1704 
 1705         si = prod = sc->ale_cdata.ale_tx_prod;
 1706         txd = &sc->ale_cdata.ale_txdesc[prod];
 1707         txd_last = txd;
 1708         map = txd->tx_dmamap;
 1709 
 1710         error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1711             *m_head, txsegs, &nsegs, 0);
 1712         if (error == EFBIG) {
 1713                 m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
 1714                 if (m == NULL) {
 1715                         m_freem(*m_head);
 1716                         *m_head = NULL;
 1717                         return (ENOMEM);
 1718                 }
 1719                 *m_head = m;
 1720                 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1721                     *m_head, txsegs, &nsegs, 0);
 1722                 if (error != 0) {
 1723                         m_freem(*m_head);
 1724                         *m_head = NULL;
 1725                         return (error);
 1726                 }
 1727         } else if (error != 0)
 1728                 return (error);
 1729         if (nsegs == 0) {
 1730                 m_freem(*m_head);
 1731                 *m_head = NULL;
 1732                 return (EIO);
 1733         }
 1734 
 1735         /* Check descriptor overrun. */
 1736         if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
 1737                 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
 1738                 return (ENOBUFS);
 1739         }
 1740         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1741 
 1742         m = *m_head;
 1743         /* Configure Tx checksum offload. */
 1744         if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
 1745                 /*
 1746                  * AR81xx supports Tx custom checksum offload feature
 1747                  * that offloads single 16bit checksum computation.
 1748                  * So you can choose one among IP, TCP and UDP.
 1749                  * Normally driver sets checksum start/insertion
 1750                  * position from the information of TCP/UDP frame as
 1751                  * TCP/UDP checksum takes more time than that of IP.
 1752                  * However it seems that custom checksum offload
 1753                  * requires 4 bytes aligned Tx buffers due to hardware
 1754                  * bug.
 1755                  * AR81xx also supports explicit Tx checksum computation
 1756                  * if it is told that the size of IP header and TCP
 1757                  * header(for UDP, the header size does not matter
 1758                  * because it's fixed length). However with this scheme
 1759                  * TSO does not work so you have to choose one either
 1760                  * TSO or explicit Tx checksum offload. I chosen TSO
 1761                  * plus custom checksum offload with work-around which
 1762                  * will cover most common usage for this consumer
 1763                  * ethernet controller. The work-around takes a lot of
 1764                  * CPU cycles if Tx buffer is not aligned on 4 bytes
 1765                  * boundary, though.
 1766                  */
 1767                 cflags |= ALE_TD_CXSUM;
 1768                 /* Set checksum start offset. */
 1769                 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
 1770                 /* Set checksum insertion position of TCP/UDP. */
 1771                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1772                     ALE_TD_CSUM_XSUMOFFSET_SHIFT);
 1773         }
 1774 
 1775         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1776                 /* Request TSO and set MSS. */
 1777                 cflags |= ALE_TD_TSO;
 1778                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
 1779                 /* Set IP/TCP header size. */
 1780                 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
 1781                 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
 1782         }
 1783 
 1784         /* Configure VLAN hardware tag insertion. */
 1785         if ((m->m_flags & M_VLANTAG) != 0) {
 1786                 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
 1787                 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
 1788                 cflags |= ALE_TD_INSERT_VLAN_TAG;
 1789         }
 1790 
 1791         desc = NULL;
 1792         for (i = 0; i < nsegs; i++) {
 1793                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1794                 desc->addr = htole64(txsegs[i].ds_addr);
 1795                 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1796                 desc->flags = htole32(cflags);
 1797                 sc->ale_cdata.ale_tx_cnt++;
 1798                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1799         }
 1800         /* Update producer index. */
 1801         sc->ale_cdata.ale_tx_prod = prod;
 1802         /* Set TSO header on the first descriptor. */
 1803         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1804                 desc = &sc->ale_cdata.ale_tx_ring[si];
 1805                 desc->flags |= htole32(ALE_TD_TSO_HDR);
 1806         }
 1807 
 1808         /* Finally set EOP on the last descriptor. */
 1809         prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
 1810         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1811         desc->flags |= htole32(ALE_TD_EOP);
 1812 
 1813         /* Swap dmamap of the first and the last. */
 1814         txd = &sc->ale_cdata.ale_txdesc[prod];
 1815         map = txd_last->tx_dmamap;
 1816         txd_last->tx_dmamap = txd->tx_dmamap;
 1817         txd->tx_dmamap = map;
 1818         txd->tx_m = m;
 1819 
 1820         /* Sync descriptors. */
 1821         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 1822             sc->ale_cdata.ale_tx_ring_map,
 1823             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1824 
 1825         return (0);
 1826 }
 1827 
 1828 static void
 1829 ale_tx_task(void *arg, int pending)
 1830 {
 1831         struct ifnet *ifp;
 1832 
 1833         ifp = (struct ifnet *)arg;
 1834         ale_start(ifp);
 1835 }
 1836 
 1837 static void
 1838 ale_start(struct ifnet *ifp)
 1839 {
 1840         struct ale_softc *sc;
 1841         struct mbuf *m_head;
 1842         int enq;
 1843 
 1844         sc = ifp->if_softc;
 1845 
 1846         ALE_LOCK(sc);
 1847 
 1848         /* Reclaim transmitted frames. */
 1849         if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
 1850                 ale_txeof(sc);
 1851 
 1852         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1853             IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1854                 ALE_UNLOCK(sc);
 1855                 return;
 1856         }
 1857 
 1858         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1859                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1860                 if (m_head == NULL)
 1861                         break;
 1862                 /*
 1863                  * Pack the data into the transmit ring. If we
 1864                  * don't have room, set the OACTIVE flag and wait
 1865                  * for the NIC to drain the ring.
 1866                  */
 1867                 if (ale_encap(sc, &m_head)) {
 1868                         if (m_head == NULL)
 1869                                 break;
 1870                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1871                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1872                         break;
 1873                 }
 1874 
 1875                 enq++;
 1876                 /*
 1877                  * If there's a BPF listener, bounce a copy of this frame
 1878                  * to him.
 1879                  */
 1880                 ETHER_BPF_MTAP(ifp, m_head);
 1881         }
 1882 
 1883         if (enq > 0) {
 1884                 /* Kick. */
 1885                 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
 1886                     sc->ale_cdata.ale_tx_prod);
 1887                 /* Set a timeout in case the chip goes out to lunch. */
 1888                 sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
 1889         }
 1890 
 1891         ALE_UNLOCK(sc);
 1892 }
 1893 
 1894 static void
 1895 ale_watchdog(struct ale_softc *sc)
 1896 {
 1897         struct ifnet *ifp;
 1898 
 1899         ALE_LOCK_ASSERT(sc);
 1900 
 1901         if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
 1902                 return;
 1903 
 1904         ifp = sc->ale_ifp;
 1905         if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1906                 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
 1907                 ifp->if_oerrors++;
 1908                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1909                 ale_init_locked(sc);
 1910                 return;
 1911         }
 1912         if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
 1913         ifp->if_oerrors++;
 1914         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1915         ale_init_locked(sc);
 1916         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1917                 taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
 1918 }
 1919 
 1920 static int
 1921 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1922 {
 1923         struct ale_softc *sc;
 1924         struct ifreq *ifr;
 1925         struct mii_data *mii;
 1926         int error, mask;
 1927 
 1928         sc = ifp->if_softc;
 1929         ifr = (struct ifreq *)data;
 1930         error = 0;
 1931         switch (cmd) {
 1932         case SIOCSIFMTU:
 1933                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
 1934                     ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
 1935                     ifr->ifr_mtu > ETHERMTU))
 1936                         error = EINVAL;
 1937                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1938                         ALE_LOCK(sc);
 1939                         ifp->if_mtu = ifr->ifr_mtu;
 1940                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1941                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1942                                 ale_init_locked(sc);
 1943                         }
 1944                         ALE_UNLOCK(sc);
 1945                 }
 1946                 break;
 1947         case SIOCSIFFLAGS:
 1948                 ALE_LOCK(sc);
 1949                 if ((ifp->if_flags & IFF_UP) != 0) {
 1950                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1951                                 if (((ifp->if_flags ^ sc->ale_if_flags)
 1952                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1953                                         ale_rxfilter(sc);
 1954                         } else {
 1955                                 if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
 1956                                         ale_init_locked(sc);
 1957                         }
 1958                 } else {
 1959                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1960                                 ale_stop(sc);
 1961                 }
 1962                 sc->ale_if_flags = ifp->if_flags;
 1963                 ALE_UNLOCK(sc);
 1964                 break;
 1965         case SIOCADDMULTI:
 1966         case SIOCDELMULTI:
 1967                 ALE_LOCK(sc);
 1968                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1969                         ale_rxfilter(sc);
 1970                 ALE_UNLOCK(sc);
 1971                 break;
 1972         case SIOCSIFMEDIA:
 1973         case SIOCGIFMEDIA:
 1974                 mii = device_get_softc(sc->ale_miibus);
 1975                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1976                 break;
 1977         case SIOCSIFCAP:
 1978                 ALE_LOCK(sc);
 1979                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1980                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1981                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1982                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1983                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1984                                 ifp->if_hwassist |= ALE_CSUM_FEATURES;
 1985                         else
 1986                                 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
 1987                 }
 1988                 if ((mask & IFCAP_RXCSUM) != 0 &&
 1989                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 1990                         ifp->if_capenable ^= IFCAP_RXCSUM;
 1991                 if ((mask & IFCAP_TSO4) != 0 &&
 1992                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 1993                         ifp->if_capenable ^= IFCAP_TSO4;
 1994                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 1995                                 ifp->if_hwassist |= CSUM_TSO;
 1996                         else
 1997                                 ifp->if_hwassist &= ~CSUM_TSO;
 1998                 }
 1999 
 2000                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 2001                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 2002                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 2003                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 2004                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 2005                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2006 
 2007                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 2008                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 2009                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 2010                         ale_rxvlan(sc);
 2011                 }
 2012                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 2013                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 2014                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 2015                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 2016                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 2017                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 2018                 /*
 2019                  * VLAN hardware tagging is required to do checksum
 2020                  * offload or TSO on VLAN interface. Checksum offload
 2021                  * on VLAN interface also requires hardware checksum
 2022                  * offload of parent interface.
 2023                  */
 2024                 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
 2025                         ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
 2026                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 2027                         ifp->if_capenable &=
 2028                             ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
 2029                 ALE_UNLOCK(sc);
 2030                 VLAN_CAPABILITIES(ifp);
 2031                 break;
 2032         default:
 2033                 error = ether_ioctl(ifp, cmd, data);
 2034                 break;
 2035         }
 2036 
 2037         return (error);
 2038 }
 2039 
 2040 static void
 2041 ale_mac_config(struct ale_softc *sc)
 2042 {
 2043         struct mii_data *mii;
 2044         uint32_t reg;
 2045 
 2046         ALE_LOCK_ASSERT(sc);
 2047 
 2048         mii = device_get_softc(sc->ale_miibus);
 2049         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2050         reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
 2051             MAC_CFG_SPEED_MASK);
 2052         /* Reprogram MAC with resolved speed/duplex. */
 2053         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2054         case IFM_10_T:
 2055         case IFM_100_TX:
 2056                 reg |= MAC_CFG_SPEED_10_100;
 2057                 break;
 2058         case IFM_1000_T:
 2059                 reg |= MAC_CFG_SPEED_1000;
 2060                 break;
 2061         }
 2062         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 2063                 reg |= MAC_CFG_FULL_DUPLEX;
 2064 #ifdef notyet
 2065                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 2066                         reg |= MAC_CFG_TX_FC;
 2067                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 2068                         reg |= MAC_CFG_RX_FC;
 2069 #endif
 2070         }
 2071         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2072 }
 2073 
 2074 static void
 2075 ale_link_task(void *arg, int pending)
 2076 {
 2077         struct ale_softc *sc;
 2078         struct mii_data *mii;
 2079         struct ifnet *ifp;
 2080         uint32_t reg;
 2081 
 2082         sc = (struct ale_softc *)arg;
 2083 
 2084         ALE_LOCK(sc);
 2085         mii = device_get_softc(sc->ale_miibus);
 2086         ifp = sc->ale_ifp;
 2087         if (mii == NULL || ifp == NULL ||
 2088             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 2089                 ALE_UNLOCK(sc);
 2090                 return;
 2091         }
 2092 
 2093         sc->ale_flags &= ~ALE_FLAG_LINK;
 2094         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 2095             (IFM_ACTIVE | IFM_AVALID)) {
 2096                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2097                 case IFM_10_T:
 2098                 case IFM_100_TX:
 2099                         sc->ale_flags |= ALE_FLAG_LINK;
 2100                         break;
 2101                 case IFM_1000_T:
 2102                         if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 2103                                 sc->ale_flags |= ALE_FLAG_LINK;
 2104                         break;
 2105                 default:
 2106                         break;
 2107                 }
 2108         }
 2109 
 2110         /* Stop Rx/Tx MACs. */
 2111         ale_stop_mac(sc);
 2112 
 2113         /* Program MACs with resolved speed/duplex/flow-control. */
 2114         if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
 2115                 ale_mac_config(sc);
 2116                 /* Reenable Tx/Rx MACs. */
 2117                 reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2118                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2119                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2120         }
 2121 
 2122         ALE_UNLOCK(sc);
 2123 }
 2124 
 2125 static void
 2126 ale_stats_clear(struct ale_softc *sc)
 2127 {
 2128         struct smb sb;
 2129         uint32_t *reg;
 2130         int i;
 2131 
 2132         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2133                 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2134                 i += sizeof(uint32_t);
 2135         }
 2136         /* Read Tx statistics. */
 2137         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2138                 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2139                 i += sizeof(uint32_t);
 2140         }
 2141 }
 2142 
 2143 static void
 2144 ale_stats_update(struct ale_softc *sc)
 2145 {
 2146         struct ale_hw_stats *stat;
 2147         struct smb sb, *smb;
 2148         struct ifnet *ifp;
 2149         uint32_t *reg;
 2150         int i;
 2151 
 2152         ALE_LOCK_ASSERT(sc);
 2153 
 2154         ifp = sc->ale_ifp;
 2155         stat = &sc->ale_stats;
 2156         smb = &sb;
 2157 
 2158         /* Read Rx statistics. */
 2159         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2160                 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2161                 i += sizeof(uint32_t);
 2162         }
 2163         /* Read Tx statistics. */
 2164         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2165                 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2166                 i += sizeof(uint32_t);
 2167         }
 2168 
 2169         /* Rx stats. */
 2170         stat->rx_frames += smb->rx_frames;
 2171         stat->rx_bcast_frames += smb->rx_bcast_frames;
 2172         stat->rx_mcast_frames += smb->rx_mcast_frames;
 2173         stat->rx_pause_frames += smb->rx_pause_frames;
 2174         stat->rx_control_frames += smb->rx_control_frames;
 2175         stat->rx_crcerrs += smb->rx_crcerrs;
 2176         stat->rx_lenerrs += smb->rx_lenerrs;
 2177         stat->rx_bytes += smb->rx_bytes;
 2178         stat->rx_runts += smb->rx_runts;
 2179         stat->rx_fragments += smb->rx_fragments;
 2180         stat->rx_pkts_64 += smb->rx_pkts_64;
 2181         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 2182         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 2183         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 2184         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 2185         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 2186         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 2187         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 2188         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 2189         stat->rx_rrs_errs += smb->rx_rrs_errs;
 2190         stat->rx_alignerrs += smb->rx_alignerrs;
 2191         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 2192         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 2193         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 2194 
 2195         /* Tx stats. */
 2196         stat->tx_frames += smb->tx_frames;
 2197         stat->tx_bcast_frames += smb->tx_bcast_frames;
 2198         stat->tx_mcast_frames += smb->tx_mcast_frames;
 2199         stat->tx_pause_frames += smb->tx_pause_frames;
 2200         stat->tx_excess_defer += smb->tx_excess_defer;
 2201         stat->tx_control_frames += smb->tx_control_frames;
 2202         stat->tx_deferred += smb->tx_deferred;
 2203         stat->tx_bytes += smb->tx_bytes;
 2204         stat->tx_pkts_64 += smb->tx_pkts_64;
 2205         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 2206         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 2207         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 2208         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 2209         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 2210         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 2211         stat->tx_single_colls += smb->tx_single_colls;
 2212         stat->tx_multi_colls += smb->tx_multi_colls;
 2213         stat->tx_late_colls += smb->tx_late_colls;
 2214         stat->tx_excess_colls += smb->tx_excess_colls;
 2215         stat->tx_abort += smb->tx_abort;
 2216         stat->tx_underrun += smb->tx_underrun;
 2217         stat->tx_desc_underrun += smb->tx_desc_underrun;
 2218         stat->tx_lenerrs += smb->tx_lenerrs;
 2219         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 2220         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 2221         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 2222 
 2223         /* Update counters in ifnet. */
 2224         ifp->if_opackets += smb->tx_frames;
 2225 
 2226         ifp->if_collisions += smb->tx_single_colls +
 2227             smb->tx_multi_colls * 2 + smb->tx_late_colls +
 2228             smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
 2229 
 2230         /*
 2231          * XXX
 2232          * tx_pkts_truncated counter looks suspicious. It constantly
 2233          * increments with no sign of Tx errors. This may indicate
 2234          * the counter name is not correct one so I've removed the
 2235          * counter in output errors.
 2236          */
 2237         ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
 2238             smb->tx_underrun;
 2239 
 2240         ifp->if_ipackets += smb->rx_frames;
 2241 
 2242         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
 2243             smb->rx_runts + smb->rx_pkts_truncated +
 2244             smb->rx_fifo_oflows + smb->rx_rrs_errs +
 2245             smb->rx_alignerrs;
 2246 }
 2247 
 2248 static int
 2249 ale_intr(void *arg)
 2250 {
 2251         struct ale_softc *sc;
 2252         uint32_t status;
 2253 
 2254         sc = (struct ale_softc *)arg;
 2255 
 2256         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2257         if ((status & ALE_INTRS) == 0)
 2258                 return (FILTER_STRAY);
 2259         /* Disable interrupts. */
 2260         CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
 2261         taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2262 
 2263         return (FILTER_HANDLED);
 2264 }
 2265 
 2266 static void
 2267 ale_int_task(void *arg, int pending)
 2268 {
 2269         struct ale_softc *sc;
 2270         struct ifnet *ifp;
 2271         uint32_t status;
 2272         int more;
 2273 
 2274         sc = (struct ale_softc *)arg;
 2275 
 2276         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2277         more = atomic_readandclear_int(&sc->ale_morework);
 2278         if (more != 0)
 2279                 status |= INTR_RX_PKT;
 2280         if ((status & ALE_INTRS) == 0)
 2281                 goto done;
 2282 
 2283         /* Acknowledge interrupts but still disable interrupts. */
 2284         CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
 2285 
 2286         ifp = sc->ale_ifp;
 2287         more = 0;
 2288         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2289                 more = ale_rxeof(sc, sc->ale_process_limit);
 2290                 if (more == EAGAIN)
 2291                         atomic_set_int(&sc->ale_morework, 1);
 2292                 else if (more == EIO) {
 2293                         ALE_LOCK(sc);
 2294                         sc->ale_stats.reset_brk_seq++;
 2295                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2296                         ale_init_locked(sc);
 2297                         ALE_UNLOCK(sc);
 2298                         return;
 2299                 }
 2300 
 2301                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2302                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2303                                 device_printf(sc->ale_dev,
 2304                                     "DMA read error! -- resetting\n");
 2305                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2306                                 device_printf(sc->ale_dev,
 2307                                     "DMA write error! -- resetting\n");
 2308                         ALE_LOCK(sc);
 2309                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2310                         ale_init_locked(sc);
 2311                         ALE_UNLOCK(sc);
 2312                         return;
 2313                 }
 2314                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2315                         taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
 2316         }
 2317 
 2318         if (more == EAGAIN ||
 2319             (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
 2320                 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2321                 return;
 2322         }
 2323 
 2324 done:
 2325         /* Re-enable interrupts. */
 2326         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
 2327 }
 2328 
 2329 static void
 2330 ale_txeof(struct ale_softc *sc)
 2331 {
 2332         struct ifnet *ifp;
 2333         struct ale_txdesc *txd;
 2334         uint32_t cons, prod;
 2335         int prog;
 2336 
 2337         ALE_LOCK_ASSERT(sc);
 2338 
 2339         ifp = sc->ale_ifp;
 2340 
 2341         if (sc->ale_cdata.ale_tx_cnt == 0)
 2342                 return;
 2343 
 2344         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2345             sc->ale_cdata.ale_tx_ring_map,
 2346             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2347         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
 2348                 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2349                     sc->ale_cdata.ale_tx_cmb_map,
 2350                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2351                 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
 2352         } else
 2353                 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
 2354         cons = sc->ale_cdata.ale_tx_cons;
 2355         /*
 2356          * Go through our Tx list and free mbufs for those
 2357          * frames which have been transmitted.
 2358          */
 2359         for (prog = 0; cons != prod; prog++,
 2360             ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
 2361                 if (sc->ale_cdata.ale_tx_cnt <= 0)
 2362                         break;
 2363                 prog++;
 2364                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2365                 sc->ale_cdata.ale_tx_cnt--;
 2366                 txd = &sc->ale_cdata.ale_txdesc[cons];
 2367                 if (txd->tx_m != NULL) {
 2368                         /* Reclaim transmitted mbufs. */
 2369                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2370                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2371                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2372                             txd->tx_dmamap);
 2373                         m_freem(txd->tx_m);
 2374                         txd->tx_m = NULL;
 2375                 }
 2376         }
 2377 
 2378         if (prog > 0) {
 2379                 sc->ale_cdata.ale_tx_cons = cons;
 2380                 /*
 2381                  * Unarm watchdog timer only when there is no pending
 2382                  * Tx descriptors in queue.
 2383                  */
 2384                 if (sc->ale_cdata.ale_tx_cnt == 0)
 2385                         sc->ale_watchdog_timer = 0;
 2386         }
 2387 }
 2388 
 2389 static void
 2390 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
 2391     uint32_t length, uint32_t *prod)
 2392 {
 2393         struct ale_rx_page *rx_page;
 2394 
 2395         rx_page = *page;
 2396         /* Update consumer position. */
 2397         rx_page->cons += roundup(length + sizeof(struct rx_rs),
 2398             ALE_RX_PAGE_ALIGN);
 2399         if (rx_page->cons >= ALE_RX_PAGE_SZ) {
 2400                 /*
 2401                  * End of Rx page reached, let hardware reuse
 2402                  * this page.
 2403                  */
 2404                 rx_page->cons = 0;
 2405                 *rx_page->cmb_addr = 0;
 2406                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2407                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2408                 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
 2409                     RXF_VALID);
 2410                 /* Switch to alternate Rx page. */
 2411                 sc->ale_cdata.ale_rx_curp ^= 1;
 2412                 rx_page = *page =
 2413                     &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2414                 /* Page flipped, sync CMB and Rx page. */
 2415                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2416                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2417                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2418                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2419                 /* Sync completed, cache updated producer index. */
 2420                 *prod = *rx_page->cmb_addr;
 2421         }
 2422 }
 2423 
 2424 
 2425 /*
 2426  * It seems that AR81xx controller can compute partial checksum.
 2427  * The partial checksum value can be used to accelerate checksum
 2428  * computation for fragmented TCP/UDP packets. Upper network stack
 2429  * already takes advantage of the partial checksum value in IP
 2430  * reassembly stage. But I'm not sure the correctness of the
 2431  * partial hardware checksum assistance due to lack of data sheet.
 2432  * In addition, the Rx feature of controller that requires copying
 2433  * for every frames effectively nullifies one of most nice offload
 2434  * capability of controller.
 2435  */
 2436 static void
 2437 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
 2438 {
 2439         struct ifnet *ifp;
 2440         struct ip *ip;
 2441         char *p;
 2442 
 2443         ifp = sc->ale_ifp;
 2444         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2445         if ((status & ALE_RD_IPCSUM_NOK) == 0)
 2446                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2447 
 2448         if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
 2449                 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
 2450                     ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
 2451                     ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
 2452                         m->m_pkthdr.csum_flags |=
 2453                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2454                         m->m_pkthdr.csum_data = 0xffff;
 2455                 }
 2456         } else {
 2457                 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
 2458                     (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
 2459                         p = mtod(m, char *);
 2460                         p += ETHER_HDR_LEN;
 2461                         if ((status & ALE_RD_802_3) != 0)
 2462                                 p += LLC_SNAPFRAMELEN;
 2463                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
 2464                             (status & ALE_RD_VLAN) != 0)
 2465                                 p += ETHER_VLAN_ENCAP_LEN;
 2466                         ip = (struct ip *)p;
 2467                         if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
 2468                                 return;
 2469                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 2470                             CSUM_PSEUDO_HDR;
 2471                         m->m_pkthdr.csum_data = 0xffff;
 2472                 }
 2473         }
 2474         /*
 2475          * Don't mark bad checksum for TCP/UDP frames
 2476          * as fragmented frames may always have set
 2477          * bad checksummed bit of frame status.
 2478          */
 2479 }
 2480 
 2481 /* Process received frames. */
 2482 static int
 2483 ale_rxeof(struct ale_softc *sc, int count)
 2484 {
 2485         struct ale_rx_page *rx_page;
 2486         struct rx_rs *rs;
 2487         struct ifnet *ifp;
 2488         struct mbuf *m;
 2489         uint32_t length, prod, seqno, status, vtags;
 2490         int prog;
 2491 
 2492         ifp = sc->ale_ifp;
 2493         rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2494         bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2495             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2496         bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2497             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2498         /*
 2499          * Don't directly access producer index as hardware may
 2500          * update it while Rx handler is in progress. It would
 2501          * be even better if there is a way to let hardware
 2502          * know how far driver processed its received frames.
 2503          * Alternatively, hardware could provide a way to disable
 2504          * CMB updates until driver acknowledges the end of CMB
 2505          * access.
 2506          */
 2507         prod = *rx_page->cmb_addr;
 2508         for (prog = 0; prog < count; prog++) {
 2509                 if (rx_page->cons >= prod)
 2510                         break;
 2511                 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
 2512                 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
 2513                 if (sc->ale_cdata.ale_rx_seqno != seqno) {
 2514                         /*
 2515                          * Normally I believe this should not happen unless
 2516                          * severe driver bug or corrupted memory. However
 2517                          * it seems to happen under certain conditions which
 2518                          * is triggered by abrupt Rx events such as initiation
 2519                          * of bulk transfer of remote host. It's not easy to
 2520                          * reproduce this and I doubt it could be related
 2521                          * with FIFO overflow of hardware or activity of Tx
 2522                          * CMB updates. I also remember similar behaviour
 2523                          * seen on RealTek 8139 which uses resembling Rx
 2524                          * scheme.
 2525                          */
 2526                         if (bootverbose)
 2527                                 device_printf(sc->ale_dev,
 2528                                     "garbled seq: %u, expected: %u -- "
 2529                                     "resetting!\n", seqno,
 2530                                     sc->ale_cdata.ale_rx_seqno);
 2531                         return (EIO);
 2532                 }
 2533                 /* Frame received. */
 2534                 sc->ale_cdata.ale_rx_seqno++;
 2535                 length = ALE_RX_BYTES(le32toh(rs->length));
 2536                 status = le32toh(rs->flags);
 2537                 if ((status & ALE_RD_ERROR) != 0) {
 2538                         /*
 2539                          * We want to pass the following frames to upper
 2540                          * layer regardless of error status of Rx return
 2541                          * status.
 2542                          *
 2543                          *  o IP/TCP/UDP checksum is bad.
 2544                          *  o frame length and protocol specific length
 2545                          *     does not match.
 2546                          */
 2547                         if ((status & (ALE_RD_CRC | ALE_RD_CODE |
 2548                             ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
 2549                             ALE_RD_TRUNC)) != 0) {
 2550                                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2551                                 continue;
 2552                         }
 2553                 }
 2554                 /*
 2555                  * m_devget(9) is major bottle-neck of ale(4)(It comes
 2556                  * from hardware limitation). For jumbo frames we could
 2557                  * get a slightly better performance if driver use
 2558                  * m_getjcl(9) with proper buffer size argument. However
 2559                  * that would make code more complicated and I don't
 2560                  * think users would expect good Rx performance numbers
 2561                  * on these low-end consumer ethernet controller.
 2562                  */
 2563                 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
 2564                     ETHER_ALIGN, ifp, NULL);
 2565                 if (m == NULL) {
 2566                         ifp->if_iqdrops++;
 2567                         ale_rx_update_page(sc, &rx_page, length, &prod);
 2568                         continue;
 2569                 }
 2570                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2571                     (status & ALE_RD_IPV4) != 0)
 2572                         ale_rxcsum(sc, m, status);
 2573                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2574                     (status & ALE_RD_VLAN) != 0) {
 2575                         vtags = ALE_RX_VLAN(le32toh(rs->vtags));
 2576                         m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
 2577                         m->m_flags |= M_VLANTAG;
 2578                 }
 2579 
 2580                 /* Pass it to upper layer. */
 2581                 (*ifp->if_input)(ifp, m);
 2582 
 2583                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2584         }
 2585 
 2586         return (count > 0 ? 0 : EAGAIN);
 2587 }
 2588 
 2589 static void
 2590 ale_tick(void *arg)
 2591 {
 2592         struct ale_softc *sc;
 2593         struct mii_data *mii;
 2594 
 2595         sc = (struct ale_softc *)arg;
 2596 
 2597         ALE_LOCK_ASSERT(sc);
 2598 
 2599         mii = device_get_softc(sc->ale_miibus);
 2600         mii_tick(mii);
 2601         ale_stats_update(sc);
 2602         /*
 2603          * Reclaim Tx buffers that have been transferred. It's not
 2604          * needed here but it would release allocated mbuf chains
 2605          * faster and limit the maximum delay to a hz.
 2606          */
 2607         ale_txeof(sc);
 2608         ale_watchdog(sc);
 2609         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2610 }
 2611 
 2612 static void
 2613 ale_reset(struct ale_softc *sc)
 2614 {
 2615         uint32_t reg;
 2616         int i;
 2617 
 2618         /* Initialize PCIe module. From Linux. */
 2619         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2620 
 2621         CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
 2622         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2623                 DELAY(10);
 2624                 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
 2625                         break;
 2626         }
 2627         if (i == 0)
 2628                 device_printf(sc->ale_dev, "master reset timeout!\n");
 2629 
 2630         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2631                 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
 2632                         break;
 2633                 DELAY(10);
 2634         }
 2635 
 2636         if (i == 0)
 2637                 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
 2638 }
 2639 
 2640 static void
 2641 ale_init(void *xsc)
 2642 {
 2643         struct ale_softc *sc;
 2644 
 2645         sc = (struct ale_softc *)xsc;
 2646         ALE_LOCK(sc);
 2647         ale_init_locked(sc);
 2648         ALE_UNLOCK(sc);
 2649 }
 2650 
 2651 static void
 2652 ale_init_locked(struct ale_softc *sc)
 2653 {
 2654         struct ifnet *ifp;
 2655         struct mii_data *mii;
 2656         uint8_t eaddr[ETHER_ADDR_LEN];
 2657         bus_addr_t paddr;
 2658         uint32_t reg, rxf_hi, rxf_lo;
 2659 
 2660         ALE_LOCK_ASSERT(sc);
 2661 
 2662         ifp = sc->ale_ifp;
 2663         mii = device_get_softc(sc->ale_miibus);
 2664 
 2665         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2666                 return;
 2667         /*
 2668          * Cancel any pending I/O.
 2669          */
 2670         ale_stop(sc);
 2671         /*
 2672          * Reset the chip to a known state.
 2673          */
 2674         ale_reset(sc);
 2675         /* Initialize Tx descriptors, DMA memory blocks. */
 2676         ale_init_rx_pages(sc);
 2677         ale_init_tx_ring(sc);
 2678 
 2679         /* Reprogram the station address. */
 2680         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2681         CSR_WRITE_4(sc, ALE_PAR0,
 2682             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2683         CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2684         /*
 2685          * Clear WOL status and disable all WOL feature as WOL
 2686          * would interfere Rx operation under normal environments.
 2687          */
 2688         CSR_READ_4(sc, ALE_WOL_CFG);
 2689         CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 2690         /*
 2691          * Set Tx descriptor/RXF0/CMB base addresses. They share
 2692          * the same high address part of DMAable region.
 2693          */
 2694         paddr = sc->ale_cdata.ale_tx_ring_paddr;
 2695         CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
 2696         CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
 2697         CSR_WRITE_4(sc, ALE_TPD_CNT,
 2698             (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
 2699         /* Set Rx page base address, note we use single queue. */
 2700         paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
 2701         CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
 2702         paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
 2703         CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
 2704         /* Set Tx/Rx CMB addresses. */
 2705         paddr = sc->ale_cdata.ale_tx_cmb_paddr;
 2706         CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
 2707         paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
 2708         CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
 2709         paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
 2710         CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
 2711         /* Mark RXF0 is valid. */
 2712         CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
 2713         CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
 2714         /*
 2715          * No need to initialize RFX1/RXF2/RXF3. We don't use
 2716          * multi-queue yet.
 2717          */
 2718 
 2719         /* Set Rx page size, excluding guard frame size. */
 2720         CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
 2721         /* Tell hardware that we're ready to load DMA blocks. */
 2722         CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2723 
 2724         /* Set Rx/Tx interrupt trigger threshold. */
 2725         CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
 2726             (4 << INT_TRIG_TX_THRESH_SHIFT));
 2727         /*
 2728          * XXX
 2729          * Set interrupt trigger timer, its purpose and relation
 2730          * with interrupt moderation mechanism is not clear yet.
 2731          */
 2732         CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
 2733             ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
 2734             (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
 2735 
 2736         /* Configure interrupt moderation timer. */
 2737         reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
 2738         reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
 2739         CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
 2740         reg = CSR_READ_4(sc, ALE_MASTER_CFG);
 2741         reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
 2742         reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
 2743         if (ALE_USECS(sc->ale_int_rx_mod) != 0)
 2744                 reg |= MASTER_IM_RX_TIMER_ENB;
 2745         if (ALE_USECS(sc->ale_int_tx_mod) != 0)
 2746                 reg |= MASTER_IM_TX_TIMER_ENB;
 2747         CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
 2748         CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
 2749 
 2750         /* Set Maximum frame size of controller. */
 2751         if (ifp->if_mtu < ETHERMTU)
 2752                 sc->ale_max_frame_size = ETHERMTU;
 2753         else
 2754                 sc->ale_max_frame_size = ifp->if_mtu;
 2755         sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 2756             ETHER_CRC_LEN;
 2757         CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
 2758         /* Configure IPG/IFG parameters. */
 2759         CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
 2760             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
 2761             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2762             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2763             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
 2764         /* Set parameters for half-duplex media. */
 2765         CSR_WRITE_4(sc, ALE_HDPX_CFG,
 2766             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2767             HDPX_CFG_LCOL_MASK) |
 2768             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2769             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2770             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2771             HDPX_CFG_ABEBT_MASK) |
 2772             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2773             HDPX_CFG_JAMIPG_MASK));
 2774 
 2775         /* Configure Tx jumbo frame parameters. */
 2776         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2777                 if (ifp->if_mtu < ETHERMTU)
 2778                         reg = sc->ale_max_frame_size;
 2779                 else if (ifp->if_mtu < 6 * 1024)
 2780                         reg = (sc->ale_max_frame_size * 2) / 3;
 2781                 else
 2782                         reg = sc->ale_max_frame_size / 2;
 2783                 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
 2784                     roundup(reg, TX_JUMBO_THRESH_UNIT) >>
 2785                     TX_JUMBO_THRESH_UNIT_SHIFT);
 2786         }
 2787         /* Configure TxQ. */
 2788         reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
 2789             << TXQ_CFG_TX_FIFO_BURST_SHIFT;
 2790         reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2791             TXQ_CFG_TPD_BURST_MASK;
 2792         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
 2793 
 2794         /* Configure Rx jumbo frame & flow control parameters. */
 2795         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2796                 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
 2797                 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
 2798                     (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
 2799                     RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
 2800                     ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
 2801                     RX_JUMBO_LKAH_MASK));
 2802                 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
 2803                 rxf_hi = (reg * 7) / 10;
 2804                 rxf_lo = (reg * 3)/ 10;
 2805                 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
 2806                     ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2807                     RX_FIFO_PAUSE_THRESH_LO_MASK) |
 2808                     ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2809                      RX_FIFO_PAUSE_THRESH_HI_MASK));
 2810         }
 2811 
 2812         /* Disable RSS. */
 2813         CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
 2814         CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
 2815 
 2816         /* Configure RxQ. */
 2817         CSR_WRITE_4(sc, ALE_RXQ_CFG,
 2818             RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2819 
 2820         /* Configure DMA parameters. */
 2821         reg = 0;
 2822         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
 2823                 reg |= DMA_CFG_TXCMB_ENB;
 2824         CSR_WRITE_4(sc, ALE_DMA_CFG,
 2825             DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
 2826             sc->ale_dma_rd_burst | reg |
 2827             sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
 2828             ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
 2829             DMA_CFG_RD_DELAY_CNT_MASK) |
 2830             ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
 2831             DMA_CFG_WR_DELAY_CNT_MASK));
 2832 
 2833         /*
 2834          * Hardware can be configured to issue SMB interrupt based
 2835          * on programmed interval. Since there is a callout that is
 2836          * invoked for every hz in driver we use that instead of
 2837          * relying on periodic SMB interrupt.
 2838          */
 2839         CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
 2840         /* Clear MAC statistics. */
 2841         ale_stats_clear(sc);
 2842 
 2843         /*
 2844          * Configure Tx/Rx MACs.
 2845          *  - Auto-padding for short frames.
 2846          *  - Enable CRC generation.
 2847          *  Actual reconfiguration of MAC for resolved speed/duplex
 2848          *  is followed after detection of link establishment.
 2849          *  AR81xx always does checksum computation regardless of
 2850          *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
 2851          *  cause Rx handling issue for fragmented IP datagrams due
 2852          *  to silicon bug.
 2853          */
 2854         reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
 2855             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2856             MAC_CFG_PREAMBLE_MASK);
 2857         if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
 2858                 reg |= MAC_CFG_SPEED_10_100;
 2859         else
 2860                 reg |= MAC_CFG_SPEED_1000;
 2861         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2862 
 2863         /* Set up the receive filter. */
 2864         ale_rxfilter(sc);
 2865         ale_rxvlan(sc);
 2866 
 2867         /* Acknowledge all pending interrupts and clear it. */
 2868         CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
 2869         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2870         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
 2871 
 2872         sc->ale_flags &= ~ALE_FLAG_LINK;
 2873         /* Switch to the current media. */
 2874         mii_mediachg(mii);
 2875 
 2876         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2877 
 2878         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2879         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2880 }
 2881 
 2882 static void
 2883 ale_stop(struct ale_softc *sc)
 2884 {
 2885         struct ifnet *ifp;
 2886         struct ale_txdesc *txd;
 2887         uint32_t reg;
 2888         int i;
 2889 
 2890         ALE_LOCK_ASSERT(sc);
 2891         /*
 2892          * Mark the interface down and cancel the watchdog timer.
 2893          */
 2894         ifp = sc->ale_ifp;
 2895         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2896         sc->ale_flags &= ~ALE_FLAG_LINK;
 2897         callout_stop(&sc->ale_tick_ch);
 2898         sc->ale_watchdog_timer = 0;
 2899         ale_stats_update(sc);
 2900         /* Disable interrupts. */
 2901         CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
 2902         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2903         /* Disable queue processing and DMA. */
 2904         reg = CSR_READ_4(sc, ALE_TXQ_CFG);
 2905         reg &= ~TXQ_CFG_ENB;
 2906         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
 2907         reg = CSR_READ_4(sc, ALE_RXQ_CFG);
 2908         reg &= ~RXQ_CFG_ENB;
 2909         CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
 2910         reg = CSR_READ_4(sc, ALE_DMA_CFG);
 2911         reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
 2912         CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
 2913         DELAY(1000);
 2914         /* Stop Rx/Tx MACs. */
 2915         ale_stop_mac(sc);
 2916         /* Disable interrupts which might be touched in taskq handler. */
 2917         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2918 
 2919         /*
 2920          * Free TX mbufs still in the queues.
 2921          */
 2922         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2923                 txd = &sc->ale_cdata.ale_txdesc[i];
 2924                 if (txd->tx_m != NULL) {
 2925                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2926                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2927                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2928                             txd->tx_dmamap);
 2929                         m_freem(txd->tx_m);
 2930                         txd->tx_m = NULL;
 2931                 }
 2932         }
 2933 }
 2934 
 2935 static void
 2936 ale_stop_mac(struct ale_softc *sc)
 2937 {
 2938         uint32_t reg;
 2939         int i;
 2940 
 2941         ALE_LOCK_ASSERT(sc);
 2942 
 2943         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2944         if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
 2945                 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2946                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2947         }
 2948 
 2949         for (i = ALE_TIMEOUT; i > 0; i--) {
 2950                 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
 2951                 if (reg == 0)
 2952                         break;
 2953                 DELAY(10);
 2954         }
 2955         if (i == 0)
 2956                 device_printf(sc->ale_dev,
 2957                     "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
 2958 }
 2959 
 2960 static void
 2961 ale_init_tx_ring(struct ale_softc *sc)
 2962 {
 2963         struct ale_txdesc *txd;
 2964         int i;
 2965 
 2966         ALE_LOCK_ASSERT(sc);
 2967 
 2968         sc->ale_cdata.ale_tx_prod = 0;
 2969         sc->ale_cdata.ale_tx_cons = 0;
 2970         sc->ale_cdata.ale_tx_cnt = 0;
 2971 
 2972         bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
 2973         bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
 2974         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2975                 txd = &sc->ale_cdata.ale_txdesc[i];
 2976                 txd->tx_m = NULL;
 2977         }
 2978         *sc->ale_cdata.ale_tx_cmb = 0;
 2979         bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2980             sc->ale_cdata.ale_tx_cmb_map,
 2981             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2982         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2983             sc->ale_cdata.ale_tx_ring_map,
 2984             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2985 }
 2986 
 2987 static void
 2988 ale_init_rx_pages(struct ale_softc *sc)
 2989 {
 2990         struct ale_rx_page *rx_page;
 2991         int i;
 2992 
 2993         ALE_LOCK_ASSERT(sc);
 2994 
 2995         atomic_set_int(&sc->ale_morework, 0);
 2996         sc->ale_cdata.ale_rx_seqno = 0;
 2997         sc->ale_cdata.ale_rx_curp = 0;
 2998 
 2999         for (i = 0; i < ALE_RX_PAGES; i++) {
 3000                 rx_page = &sc->ale_cdata.ale_rx_page[i];
 3001                 bzero(rx_page->page_addr, sc->ale_pagesize);
 3002                 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
 3003                 rx_page->cons = 0;
 3004                 *rx_page->cmb_addr = 0;
 3005                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 3006                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3007                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 3008                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3009         }
 3010 }
 3011 
 3012 static void
 3013 ale_rxvlan(struct ale_softc *sc)
 3014 {
 3015         struct ifnet *ifp;
 3016         uint32_t reg;
 3017 
 3018         ALE_LOCK_ASSERT(sc);
 3019 
 3020         ifp = sc->ale_ifp;
 3021         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 3022         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 3023         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 3024                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 3025         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 3026 }
 3027 
 3028 static void
 3029 ale_rxfilter(struct ale_softc *sc)
 3030 {
 3031         struct ifnet *ifp;
 3032         struct ifmultiaddr *ifma;
 3033         uint32_t crc;
 3034         uint32_t mchash[2];
 3035         uint32_t rxcfg;
 3036 
 3037         ALE_LOCK_ASSERT(sc);
 3038 
 3039         ifp = sc->ale_ifp;
 3040 
 3041         rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
 3042         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 3043         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3044                 rxcfg |= MAC_CFG_BCAST;
 3045         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3046                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3047                         rxcfg |= MAC_CFG_PROMISC;
 3048                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3049                         rxcfg |= MAC_CFG_ALLMULTI;
 3050                 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
 3051                 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
 3052                 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3053                 return;
 3054         }
 3055 
 3056         /* Program new filter. */
 3057         bzero(mchash, sizeof(mchash));
 3058 
 3059         IF_ADDR_LOCK(ifp);
 3060         TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
 3061                 if (ifma->ifma_addr->sa_family != AF_LINK)
 3062                         continue;
 3063                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
 3064                     ifma->ifma_addr), ETHER_ADDR_LEN);
 3065                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 3066         }
 3067         IF_ADDR_UNLOCK(ifp);
 3068 
 3069         CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
 3070         CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
 3071         CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3072 }
 3073 
 3074 static int
 3075 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3076 {
 3077         int error, value;
 3078 
 3079         if (arg1 == NULL)
 3080                 return (EINVAL);
 3081         value = *(int *)arg1;
 3082         error = sysctl_handle_int(oidp, &value, 0, req);
 3083         if (error || req->newptr == NULL)
 3084                 return (error);
 3085         if (value < low || value > high)
 3086                 return (EINVAL);
 3087         *(int *)arg1 = value;
 3088 
 3089         return (0);
 3090 }
 3091 
 3092 static int
 3093 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
 3094 {
 3095         return (sysctl_int_range(oidp, arg1, arg2, req,
 3096             ALE_PROC_MIN, ALE_PROC_MAX));
 3097 }
 3098 
 3099 static int
 3100 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
 3101 {
 3102 
 3103         return (sysctl_int_range(oidp, arg1, arg2, req,
 3104             ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
 3105 }

Cache object: c19036dfd7718a3bf5e222b6138a27b4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.