The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ale/if_ale.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/8.3/sys/dev/ale/if_ale.c 229058 2011-12-31 01:08:31Z yongari $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/bus.h>
   36 #include <sys/endian.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/module.h>
   41 #include <sys/rman.h>
   42 #include <sys/queue.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/taskqueue.h>
   47 
   48 #include <net/bpf.h>
   49 #include <net/if.h>
   50 #include <net/if_arp.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_llc.h>
   54 #include <net/if_media.h>
   55 #include <net/if_types.h>
   56 #include <net/if_vlan_var.h>
   57 
   58 #include <netinet/in.h>
   59 #include <netinet/in_systm.h>
   60 #include <netinet/ip.h>
   61 #include <netinet/tcp.h>
   62 
   63 #include <dev/mii/mii.h>
   64 #include <dev/mii/miivar.h>
   65 
   66 #include <dev/pci/pcireg.h>
   67 #include <dev/pci/pcivar.h>
   68 
   69 #include <machine/bus.h>
   70 #include <machine/in_cksum.h>
   71 
   72 #include <dev/ale/if_alereg.h>
   73 #include <dev/ale/if_alevar.h>
   74 
   75 /* "device miibus" required.  See GENERIC if you get errors here. */
   76 #include "miibus_if.h"
   77 
   78 /* For more information about Tx checksum offload issues see ale_encap(). */
   79 #define ALE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   80 
   81 MODULE_DEPEND(ale, pci, 1, 1, 1);
   82 MODULE_DEPEND(ale, ether, 1, 1, 1);
   83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
   84 
   85 /* Tunables. */
   86 static int msi_disable = 0;
   87 static int msix_disable = 0;
   88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
   89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
   90 
   91 /*
   92  * Devices supported by this driver.
   93  */
   94 static struct ale_dev {
   95         uint16_t        ale_vendorid;
   96         uint16_t        ale_deviceid;
   97         const char      *ale_name;
   98 } ale_devs[] = {
   99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
  100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
  101 };
  102 
  103 static int      ale_attach(device_t);
  104 static int      ale_check_boundary(struct ale_softc *);
  105 static int      ale_detach(device_t);
  106 static int      ale_dma_alloc(struct ale_softc *);
  107 static void     ale_dma_free(struct ale_softc *);
  108 static void     ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  109 static int      ale_encap(struct ale_softc *, struct mbuf **);
  110 static void     ale_get_macaddr(struct ale_softc *);
  111 static void     ale_init(void *);
  112 static void     ale_init_locked(struct ale_softc *);
  113 static void     ale_init_rx_pages(struct ale_softc *);
  114 static void     ale_init_tx_ring(struct ale_softc *);
  115 static void     ale_int_task(void *, int);
  116 static int      ale_intr(void *);
  117 static int      ale_ioctl(struct ifnet *, u_long, caddr_t);
  118 static void     ale_link_task(void *, int);
  119 static void     ale_mac_config(struct ale_softc *);
  120 static int      ale_miibus_readreg(device_t, int, int);
  121 static void     ale_miibus_statchg(device_t);
  122 static int      ale_miibus_writereg(device_t, int, int, int);
  123 static int      ale_mediachange(struct ifnet *);
  124 static void     ale_mediastatus(struct ifnet *, struct ifmediareq *);
  125 static void     ale_phy_reset(struct ale_softc *);
  126 static int      ale_probe(device_t);
  127 static void     ale_reset(struct ale_softc *);
  128 static int      ale_resume(device_t);
  129 static void     ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
  130     uint32_t, uint32_t *);
  131 static void     ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
  132 static int      ale_rxeof(struct ale_softc *sc, int);
  133 static void     ale_rxfilter(struct ale_softc *);
  134 static void     ale_rxvlan(struct ale_softc *);
  135 static void     ale_setlinkspeed(struct ale_softc *);
  136 static void     ale_setwol(struct ale_softc *);
  137 static int      ale_shutdown(device_t);
  138 static void     ale_start(struct ifnet *);
  139 static void     ale_start_locked(struct ifnet *);
  140 static void     ale_stats_clear(struct ale_softc *);
  141 static void     ale_stats_update(struct ale_softc *);
  142 static void     ale_stop(struct ale_softc *);
  143 static void     ale_stop_mac(struct ale_softc *);
  144 static int      ale_suspend(device_t);
  145 static void     ale_sysctl_node(struct ale_softc *);
  146 static void     ale_tick(void *);
  147 static void     ale_txeof(struct ale_softc *);
  148 static void     ale_watchdog(struct ale_softc *);
  149 static int      sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  150 static int      sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
  151 static int      sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
  152 
  153 static device_method_t ale_methods[] = {
  154         /* Device interface. */
  155         DEVMETHOD(device_probe,         ale_probe),
  156         DEVMETHOD(device_attach,        ale_attach),
  157         DEVMETHOD(device_detach,        ale_detach),
  158         DEVMETHOD(device_shutdown,      ale_shutdown),
  159         DEVMETHOD(device_suspend,       ale_suspend),
  160         DEVMETHOD(device_resume,        ale_resume),
  161 
  162         /* MII interface. */
  163         DEVMETHOD(miibus_readreg,       ale_miibus_readreg),
  164         DEVMETHOD(miibus_writereg,      ale_miibus_writereg),
  165         DEVMETHOD(miibus_statchg,       ale_miibus_statchg),
  166 
  167         { NULL, NULL }
  168 };
  169 
  170 static driver_t ale_driver = {
  171         "ale",
  172         ale_methods,
  173         sizeof(struct ale_softc)
  174 };
  175 
  176 static devclass_t ale_devclass;
  177 
  178 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
  179 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
  180 
  181 static struct resource_spec ale_res_spec_mem[] = {
  182         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  183         { -1,                   0,              0 }
  184 };
  185 
  186 static struct resource_spec ale_irq_spec_legacy[] = {
  187         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  188         { -1,                   0,              0 }
  189 };
  190 
  191 static struct resource_spec ale_irq_spec_msi[] = {
  192         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  193         { -1,                   0,              0 }
  194 };
  195 
  196 static struct resource_spec ale_irq_spec_msix[] = {
  197         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  198         { -1,                   0,              0 }
  199 };
  200 
  201 static int
  202 ale_miibus_readreg(device_t dev, int phy, int reg)
  203 {
  204         struct ale_softc *sc;
  205         uint32_t v;
  206         int i;
  207 
  208         sc = device_get_softc(dev);
  209 
  210         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  211             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  212         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  213                 DELAY(5);
  214                 v = CSR_READ_4(sc, ALE_MDIO);
  215                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  216                         break;
  217         }
  218 
  219         if (i == 0) {
  220                 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
  221                 return (0);
  222         }
  223 
  224         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  225 }
  226 
  227 static int
  228 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
  229 {
  230         struct ale_softc *sc;
  231         uint32_t v;
  232         int i;
  233 
  234         sc = device_get_softc(dev);
  235 
  236         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  237             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  238             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  239         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  240                 DELAY(5);
  241                 v = CSR_READ_4(sc, ALE_MDIO);
  242                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  243                         break;
  244         }
  245 
  246         if (i == 0)
  247                 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
  248 
  249         return (0);
  250 }
  251 
  252 static void
  253 ale_miibus_statchg(device_t dev)
  254 {
  255         struct ale_softc *sc;
  256 
  257         sc = device_get_softc(dev);
  258 
  259         taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
  260 }
  261 
  262 static void
  263 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  264 {
  265         struct ale_softc *sc;
  266         struct mii_data *mii;
  267 
  268         sc = ifp->if_softc;
  269         ALE_LOCK(sc);
  270         mii = device_get_softc(sc->ale_miibus);
  271 
  272         mii_pollstat(mii);
  273         ifmr->ifm_status = mii->mii_media_status;
  274         ifmr->ifm_active = mii->mii_media_active;
  275         ALE_UNLOCK(sc);
  276 }
  277 
  278 static int
  279 ale_mediachange(struct ifnet *ifp)
  280 {
  281         struct ale_softc *sc;
  282         struct mii_data *mii;
  283         struct mii_softc *miisc;
  284         int error;
  285 
  286         sc = ifp->if_softc;
  287         ALE_LOCK(sc);
  288         mii = device_get_softc(sc->ale_miibus);
  289         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  290                 mii_phy_reset(miisc);
  291         error = mii_mediachg(mii);
  292         ALE_UNLOCK(sc);
  293 
  294         return (error);
  295 }
  296 
  297 static int
  298 ale_probe(device_t dev)
  299 {
  300         struct ale_dev *sp;
  301         int i;
  302         uint16_t vendor, devid;
  303 
  304         vendor = pci_get_vendor(dev);
  305         devid = pci_get_device(dev);
  306         sp = ale_devs;
  307         for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
  308                 if (vendor == sp->ale_vendorid &&
  309                     devid == sp->ale_deviceid) {
  310                         device_set_desc(dev, sp->ale_name);
  311                         return (BUS_PROBE_DEFAULT);
  312                 }
  313                 sp++;
  314         }
  315 
  316         return (ENXIO);
  317 }
  318 
  319 static void
  320 ale_get_macaddr(struct ale_softc *sc)
  321 {
  322         uint32_t ea[2], reg;
  323         int i, vpdc;
  324 
  325         reg = CSR_READ_4(sc, ALE_SPI_CTRL);
  326         if ((reg & SPI_VPD_ENB) != 0) {
  327                 reg &= ~SPI_VPD_ENB;
  328                 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
  329         }
  330 
  331         if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
  332                 /*
  333                  * PCI VPD capability found, let TWSI reload EEPROM.
  334                  * This will set ethernet address of controller.
  335                  */
  336                 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
  337                     TWSI_CTRL_SW_LD_START);
  338                 for (i = 100; i > 0; i--) {
  339                         DELAY(1000);
  340                         reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
  341                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  342                                 break;
  343                 }
  344                 if (i == 0)
  345                         device_printf(sc->ale_dev,
  346                             "reloading EEPROM timeout!\n");
  347         } else {
  348                 if (bootverbose)
  349                         device_printf(sc->ale_dev,
  350                             "PCI VPD capability not found!\n");
  351         }
  352 
  353         ea[0] = CSR_READ_4(sc, ALE_PAR0);
  354         ea[1] = CSR_READ_4(sc, ALE_PAR1);
  355         sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
  356         sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
  357         sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
  358         sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
  359         sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
  360         sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
  361 }
  362 
  363 static void
  364 ale_phy_reset(struct ale_softc *sc)
  365 {
  366 
  367         /* Reset magic from Linux. */
  368         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  369             GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
  370             GPHY_CTRL_PHY_PLL_ON);
  371         DELAY(1000);
  372         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  373             GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
  374             GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
  375         DELAY(1000);
  376 
  377 #define ATPHY_DBG_ADDR          0x1D
  378 #define ATPHY_DBG_DATA          0x1E
  379 
  380         /* Enable hibernation mode. */
  381         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  382             ATPHY_DBG_ADDR, 0x0B);
  383         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  384             ATPHY_DBG_DATA, 0xBC00);
  385         /* Set Class A/B for all modes. */
  386         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  387             ATPHY_DBG_ADDR, 0x00);
  388         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  389             ATPHY_DBG_DATA, 0x02EF);
  390         /* Enable 10BT power saving. */
  391         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  392             ATPHY_DBG_ADDR, 0x12);
  393         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  394             ATPHY_DBG_DATA, 0x4C04);
  395         /* Adjust 1000T power. */
  396         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  397             ATPHY_DBG_ADDR, 0x04);
  398         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  399             ATPHY_DBG_ADDR, 0x8BBB);
  400         /* 10BT center tap voltage. */
  401         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  402             ATPHY_DBG_ADDR, 0x05);
  403         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  404             ATPHY_DBG_ADDR, 0x2C46);
  405 
  406 #undef  ATPHY_DBG_ADDR
  407 #undef  ATPHY_DBG_DATA
  408         DELAY(1000);
  409 }
  410 
  411 static int
  412 ale_attach(device_t dev)
  413 {
  414         struct ale_softc *sc;
  415         struct ifnet *ifp;
  416         uint16_t burst;
  417         int error, i, msic, msixc, pmc;
  418         uint32_t rxf_len, txf_len;
  419 
  420         error = 0;
  421         sc = device_get_softc(dev);
  422         sc->ale_dev = dev;
  423 
  424         mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  425             MTX_DEF);
  426         callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
  427         TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
  428         TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
  429 
  430         /* Map the device. */
  431         pci_enable_busmaster(dev);
  432         sc->ale_res_spec = ale_res_spec_mem;
  433         sc->ale_irq_spec = ale_irq_spec_legacy;
  434         error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
  435         if (error != 0) {
  436                 device_printf(dev, "cannot allocate memory resources.\n");
  437                 goto fail;
  438         }
  439 
  440         /* Set PHY address. */
  441         sc->ale_phyaddr = ALE_PHY_ADDR;
  442 
  443         /* Reset PHY. */
  444         ale_phy_reset(sc);
  445 
  446         /* Reset the ethernet controller. */
  447         ale_reset(sc);
  448 
  449         /* Get PCI and chip id/revision. */
  450         sc->ale_rev = pci_get_revid(dev);
  451         if (sc->ale_rev >= 0xF0) {
  452                 /* L2E Rev. B. AR8114 */
  453                 sc->ale_flags |= ALE_FLAG_FASTETHER;
  454         } else {
  455                 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
  456                         /* L1E AR8121 */
  457                         sc->ale_flags |= ALE_FLAG_JUMBO;
  458                 } else {
  459                         /* L2E Rev. A. AR8113 */
  460                         sc->ale_flags |= ALE_FLAG_FASTETHER;
  461                 }
  462         }
  463         /*
  464          * All known controllers seems to require 4 bytes alignment
  465          * of Tx buffers to make Tx checksum offload with custom
  466          * checksum generation method work.
  467          */
  468         sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
  469         /*
  470          * All known controllers seems to have issues on Rx checksum
  471          * offload for fragmented IP datagrams.
  472          */
  473         sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
  474         /*
  475          * Don't use Tx CMB. It is known to cause RRS update failure
  476          * under certain circumstances. Typical phenomenon of the
  477          * issue would be unexpected sequence number encountered in
  478          * Rx handler.
  479          */
  480         sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
  481         sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
  482             MASTER_CHIP_REV_SHIFT;
  483         if (bootverbose) {
  484                 device_printf(dev, "PCI device revision : 0x%04x\n",
  485                     sc->ale_rev);
  486                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  487                     sc->ale_chip_rev);
  488         }
  489         txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
  490         rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
  491         /*
  492          * Uninitialized hardware returns an invalid chip id/revision
  493          * as well as 0xFFFFFFFF for Tx/Rx fifo length.
  494          */
  495         if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
  496             rxf_len == 0xFFFFFFF) {
  497                 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
  498                     "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
  499                     txf_len, rxf_len);
  500                 error = ENXIO;
  501                 goto fail;
  502         }
  503         device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
  504 
  505         /* Allocate IRQ resources. */
  506         msixc = pci_msix_count(dev);
  507         msic = pci_msi_count(dev);
  508         if (bootverbose) {
  509                 device_printf(dev, "MSIX count : %d\n", msixc);
  510                 device_printf(dev, "MSI count : %d\n", msic);
  511         }
  512 
  513         /* Prefer MSIX over MSI. */
  514         if (msix_disable == 0 || msi_disable == 0) {
  515                 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
  516                     pci_alloc_msix(dev, &msixc) == 0) {
  517                         if (msic == ALE_MSIX_MESSAGES) {
  518                                 device_printf(dev, "Using %d MSIX messages.\n",
  519                                     msixc);
  520                                 sc->ale_flags |= ALE_FLAG_MSIX;
  521                                 sc->ale_irq_spec = ale_irq_spec_msix;
  522                         } else
  523                                 pci_release_msi(dev);
  524                 }
  525                 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
  526                     msic == ALE_MSI_MESSAGES &&
  527                     pci_alloc_msi(dev, &msic) == 0) {
  528                         if (msic == ALE_MSI_MESSAGES) {
  529                                 device_printf(dev, "Using %d MSI messages.\n",
  530                                     msic);
  531                                 sc->ale_flags |= ALE_FLAG_MSI;
  532                                 sc->ale_irq_spec = ale_irq_spec_msi;
  533                         } else
  534                                 pci_release_msi(dev);
  535                 }
  536         }
  537 
  538         error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  539         if (error != 0) {
  540                 device_printf(dev, "cannot allocate IRQ resources.\n");
  541                 goto fail;
  542         }
  543 
  544         /* Get DMA parameters from PCIe device control register. */
  545         if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
  546                 sc->ale_flags |= ALE_FLAG_PCIE;
  547                 burst = pci_read_config(dev, i + 0x08, 2);
  548                 /* Max read request size. */
  549                 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
  550                     DMA_CFG_RD_BURST_SHIFT;
  551                 /* Max payload size. */
  552                 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
  553                     DMA_CFG_WR_BURST_SHIFT;
  554                 if (bootverbose) {
  555                         device_printf(dev, "Read request size : %d bytes.\n",
  556                             128 << ((burst >> 12) & 0x07));
  557                         device_printf(dev, "TLP payload size : %d bytes.\n",
  558                             128 << ((burst >> 5) & 0x07));
  559                 }
  560         } else {
  561                 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
  562                 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
  563         }
  564 
  565         /* Create device sysctl node. */
  566         ale_sysctl_node(sc);
  567 
  568         if ((error = ale_dma_alloc(sc) != 0))
  569                 goto fail;
  570 
  571         /* Load station address. */
  572         ale_get_macaddr(sc);
  573 
  574         ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
  575         if (ifp == NULL) {
  576                 device_printf(dev, "cannot allocate ifnet structure.\n");
  577                 error = ENXIO;
  578                 goto fail;
  579         }
  580 
  581         ifp->if_softc = sc;
  582         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  583         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  584         ifp->if_ioctl = ale_ioctl;
  585         ifp->if_start = ale_start;
  586         ifp->if_init = ale_init;
  587         ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
  588         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  589         IFQ_SET_READY(&ifp->if_snd);
  590         ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
  591         ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
  592         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
  593                 sc->ale_flags |= ALE_FLAG_PMCAP;
  594                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
  595         }
  596         ifp->if_capenable = ifp->if_capabilities;
  597 
  598         /* Set up MII bus. */
  599         error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
  600             ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
  601             0);
  602         if (error != 0) {
  603                 device_printf(dev, "attaching PHYs failed\n");
  604                 goto fail;
  605         }
  606 
  607         ether_ifattach(ifp, sc->ale_eaddr);
  608 
  609         /* VLAN capability setup. */
  610         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
  611             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
  612         ifp->if_capenable = ifp->if_capabilities;
  613         /*
  614          * Even though controllers supported by ale(3) have Rx checksum
  615          * offload bug the workaround for fragmented frames seemed to
  616          * work so far. However it seems Rx checksum offload does not
  617          * work under certain conditions. So disable Rx checksum offload
  618          * until I find more clue about it but allow users to override it.
  619          */
  620         ifp->if_capenable &= ~IFCAP_RXCSUM;
  621 
  622         /* Tell the upper layer(s) we support long frames. */
  623         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  624 
  625         /* Create local taskq. */
  626         sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
  627             taskqueue_thread_enqueue, &sc->ale_tq);
  628         if (sc->ale_tq == NULL) {
  629                 device_printf(dev, "could not create taskqueue.\n");
  630                 ether_ifdetach(ifp);
  631                 error = ENXIO;
  632                 goto fail;
  633         }
  634         taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
  635             device_get_nameunit(sc->ale_dev));
  636 
  637         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  638                 msic = ALE_MSIX_MESSAGES;
  639         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  640                 msic = ALE_MSI_MESSAGES;
  641         else
  642                 msic = 1;
  643         for (i = 0; i < msic; i++) {
  644                 error = bus_setup_intr(dev, sc->ale_irq[i],
  645                     INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
  646                     &sc->ale_intrhand[i]);
  647                 if (error != 0)
  648                         break;
  649         }
  650         if (error != 0) {
  651                 device_printf(dev, "could not set up interrupt handler.\n");
  652                 taskqueue_free(sc->ale_tq);
  653                 sc->ale_tq = NULL;
  654                 ether_ifdetach(ifp);
  655                 goto fail;
  656         }
  657 
  658 fail:
  659         if (error != 0)
  660                 ale_detach(dev);
  661 
  662         return (error);
  663 }
  664 
  665 static int
  666 ale_detach(device_t dev)
  667 {
  668         struct ale_softc *sc;
  669         struct ifnet *ifp;
  670         int i, msic;
  671 
  672         sc = device_get_softc(dev);
  673 
  674         ifp = sc->ale_ifp;
  675         if (device_is_attached(dev)) {
  676                 ether_ifdetach(ifp);
  677                 ALE_LOCK(sc);
  678                 ale_stop(sc);
  679                 ALE_UNLOCK(sc);
  680                 callout_drain(&sc->ale_tick_ch);
  681                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  682                 taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
  683         }
  684 
  685         if (sc->ale_tq != NULL) {
  686                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  687                 taskqueue_free(sc->ale_tq);
  688                 sc->ale_tq = NULL;
  689         }
  690 
  691         if (sc->ale_miibus != NULL) {
  692                 device_delete_child(dev, sc->ale_miibus);
  693                 sc->ale_miibus = NULL;
  694         }
  695         bus_generic_detach(dev);
  696         ale_dma_free(sc);
  697 
  698         if (ifp != NULL) {
  699                 if_free(ifp);
  700                 sc->ale_ifp = NULL;
  701         }
  702 
  703         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  704                 msic = ALE_MSIX_MESSAGES;
  705         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  706                 msic = ALE_MSI_MESSAGES;
  707         else
  708                 msic = 1;
  709         for (i = 0; i < msic; i++) {
  710                 if (sc->ale_intrhand[i] != NULL) {
  711                         bus_teardown_intr(dev, sc->ale_irq[i],
  712                             sc->ale_intrhand[i]);
  713                         sc->ale_intrhand[i] = NULL;
  714                 }
  715         }
  716 
  717         bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  718         if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
  719                 pci_release_msi(dev);
  720         bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
  721         mtx_destroy(&sc->ale_mtx);
  722 
  723         return (0);
  724 }
  725 
  726 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
  727             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  728 
  729 #if __FreeBSD_version > 800000
  730 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  731             SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  732 #else
  733 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  734             SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  735 #endif
  736 
  737 static void
  738 ale_sysctl_node(struct ale_softc *sc)
  739 {
  740         struct sysctl_ctx_list *ctx;
  741         struct sysctl_oid_list *child, *parent;
  742         struct sysctl_oid *tree;
  743         struct ale_hw_stats *stats;
  744         int error;
  745 
  746         stats = &sc->ale_stats;
  747         ctx = device_get_sysctl_ctx(sc->ale_dev);
  748         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
  749 
  750         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
  751             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
  752             sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
  753         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
  754             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
  755             sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
  756         /* Pull in device tunables. */
  757         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  758         error = resource_int_value(device_get_name(sc->ale_dev),
  759             device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
  760         if (error == 0) {
  761                 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
  762                     sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
  763                         device_printf(sc->ale_dev, "int_rx_mod value out of "
  764                             "range; using default: %d\n",
  765                             ALE_IM_RX_TIMER_DEFAULT);
  766                         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  767                 }
  768         }
  769         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  770         error = resource_int_value(device_get_name(sc->ale_dev),
  771             device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
  772         if (error == 0) {
  773                 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
  774                     sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
  775                         device_printf(sc->ale_dev, "int_tx_mod value out of "
  776                             "range; using default: %d\n",
  777                             ALE_IM_TX_TIMER_DEFAULT);
  778                         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  779                 }
  780         }
  781         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
  782             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
  783             sysctl_hw_ale_proc_limit, "I",
  784             "max number of Rx events to process");
  785         /* Pull in device tunables. */
  786         sc->ale_process_limit = ALE_PROC_DEFAULT;
  787         error = resource_int_value(device_get_name(sc->ale_dev),
  788             device_get_unit(sc->ale_dev), "process_limit",
  789             &sc->ale_process_limit);
  790         if (error == 0) {
  791                 if (sc->ale_process_limit < ALE_PROC_MIN ||
  792                     sc->ale_process_limit > ALE_PROC_MAX) {
  793                         device_printf(sc->ale_dev,
  794                             "process_limit value out of range; "
  795                             "using default: %d\n", ALE_PROC_DEFAULT);
  796                         sc->ale_process_limit = ALE_PROC_DEFAULT;
  797                 }
  798         }
  799 
  800         /* Misc statistics. */
  801         ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
  802             &stats->reset_brk_seq,
  803             "Controller resets due to broken Rx sequnce number");
  804 
  805         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
  806             NULL, "ATE statistics");
  807         parent = SYSCTL_CHILDREN(tree);
  808 
  809         /* Rx statistics. */
  810         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
  811             NULL, "Rx MAC statistics");
  812         child = SYSCTL_CHILDREN(tree);
  813         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  814             &stats->rx_frames, "Good frames");
  815         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  816             &stats->rx_bcast_frames, "Good broadcast frames");
  817         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  818             &stats->rx_mcast_frames, "Good multicast frames");
  819         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  820             &stats->rx_pause_frames, "Pause control frames");
  821         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  822             &stats->rx_control_frames, "Control frames");
  823         ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
  824             &stats->rx_crcerrs, "CRC errors");
  825         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  826             &stats->rx_lenerrs, "Frames with length mismatched");
  827         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  828             &stats->rx_bytes, "Good octets");
  829         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  830             &stats->rx_bcast_bytes, "Good broadcast octets");
  831         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  832             &stats->rx_mcast_bytes, "Good multicast octets");
  833         ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
  834             &stats->rx_runts, "Too short frames");
  835         ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
  836             &stats->rx_fragments, "Fragmented frames");
  837         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  838             &stats->rx_pkts_64, "64 bytes frames");
  839         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  840             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
  841         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  842             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
  843         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  844             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
  845         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  846             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
  847         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  848             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
  849         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  850             &stats->rx_pkts_1519_max, "1519 to max frames");
  851         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  852             &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
  853         ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
  854             &stats->rx_fifo_oflows, "FIFO overflows");
  855         ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
  856             &stats->rx_rrs_errs, "Return status write-back errors");
  857         ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
  858             &stats->rx_alignerrs, "Alignment errors");
  859         ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
  860             &stats->rx_pkts_filtered,
  861             "Frames dropped due to address filtering");
  862 
  863         /* Tx statistics. */
  864         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
  865             NULL, "Tx MAC statistics");
  866         child = SYSCTL_CHILDREN(tree);
  867         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  868             &stats->tx_frames, "Good frames");
  869         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  870             &stats->tx_bcast_frames, "Good broadcast frames");
  871         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  872             &stats->tx_mcast_frames, "Good multicast frames");
  873         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  874             &stats->tx_pause_frames, "Pause control frames");
  875         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  876             &stats->tx_control_frames, "Control frames");
  877         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
  878             &stats->tx_excess_defer, "Frames with excessive derferrals");
  879         ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
  880             &stats->tx_excess_defer, "Frames with derferrals");
  881         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  882             &stats->tx_bytes, "Good octets");
  883         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  884             &stats->tx_bcast_bytes, "Good broadcast octets");
  885         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  886             &stats->tx_mcast_bytes, "Good multicast octets");
  887         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  888             &stats->tx_pkts_64, "64 bytes frames");
  889         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  890             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
  891         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  892             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
  893         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  894             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
  895         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  896             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
  897         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  898             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
  899         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  900             &stats->tx_pkts_1519_max, "1519 to max frames");
  901         ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
  902             &stats->tx_single_colls, "Single collisions");
  903         ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
  904             &stats->tx_multi_colls, "Multiple collisions");
  905         ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
  906             &stats->tx_late_colls, "Late collisions");
  907         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
  908             &stats->tx_excess_colls, "Excessive collisions");
  909         ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
  910             &stats->tx_abort, "Aborted frames due to Excessive collisions");
  911         ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
  912             &stats->tx_underrun, "FIFO underruns");
  913         ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
  914             &stats->tx_desc_underrun, "Descriptor write-back errors");
  915         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  916             &stats->tx_lenerrs, "Frames with length mismatched");
  917         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  918             &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
  919 }
  920 
  921 #undef ALE_SYSCTL_STAT_ADD32
  922 #undef ALE_SYSCTL_STAT_ADD64
  923 
  924 struct ale_dmamap_arg {
  925         bus_addr_t      ale_busaddr;
  926 };
  927 
  928 static void
  929 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  930 {
  931         struct ale_dmamap_arg *ctx;
  932 
  933         if (error != 0)
  934                 return;
  935 
  936         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  937 
  938         ctx = (struct ale_dmamap_arg *)arg;
  939         ctx->ale_busaddr = segs[0].ds_addr;
  940 }
  941 
  942 /*
  943  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
  944  * which specifies high address region of DMA blocks. Therefore these
  945  * blocks should have the same high address of given 4GB address
  946  * space(i.e. crossing 4GB boundary is not allowed).
  947  */
  948 static int
  949 ale_check_boundary(struct ale_softc *sc)
  950 {
  951         bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
  952         bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
  953 
  954         rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
  955             sc->ale_pagesize;
  956         rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
  957             sc->ale_pagesize;
  958         tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
  959         tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
  960         rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
  961         rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
  962 
  963         if ((ALE_ADDR_HI(tx_ring_end) !=
  964             ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
  965             (ALE_ADDR_HI(rx_page_end[0]) !=
  966             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
  967             (ALE_ADDR_HI(rx_page_end[1]) !=
  968             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
  969             (ALE_ADDR_HI(tx_cmb_end) !=
  970             ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
  971             (ALE_ADDR_HI(rx_cmb_end[0]) !=
  972             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
  973             (ALE_ADDR_HI(rx_cmb_end[1]) !=
  974             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
  975                 return (EFBIG);
  976 
  977         if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
  978             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
  979             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
  980             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
  981             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
  982                 return (EFBIG);
  983 
  984         return (0);
  985 }
  986 
  987 static int
  988 ale_dma_alloc(struct ale_softc *sc)
  989 {
  990         struct ale_txdesc *txd;
  991         bus_addr_t lowaddr;
  992         struct ale_dmamap_arg ctx;
  993         int error, guard_size, i;
  994 
  995         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
  996                 guard_size = ALE_JUMBO_FRAMELEN;
  997         else
  998                 guard_size = ALE_MAX_FRAMELEN;
  999         sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
 1000             ALE_RX_PAGE_ALIGN);
 1001         lowaddr = BUS_SPACE_MAXADDR;
 1002 again:
 1003         /* Create parent DMA tag. */
 1004         error = bus_dma_tag_create(
 1005             bus_get_dma_tag(sc->ale_dev), /* parent */
 1006             1, 0,                       /* alignment, boundary */
 1007             lowaddr,                    /* lowaddr */
 1008             BUS_SPACE_MAXADDR,          /* highaddr */
 1009             NULL, NULL,                 /* filter, filterarg */
 1010             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1011             0,                          /* nsegments */
 1012             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1013             0,                          /* flags */
 1014             NULL, NULL,                 /* lockfunc, lockarg */
 1015             &sc->ale_cdata.ale_parent_tag);
 1016         if (error != 0) {
 1017                 device_printf(sc->ale_dev,
 1018                     "could not create parent DMA tag.\n");
 1019                 goto fail;
 1020         }
 1021 
 1022         /* Create DMA tag for Tx descriptor ring. */
 1023         error = bus_dma_tag_create(
 1024             sc->ale_cdata.ale_parent_tag, /* parent */
 1025             ALE_TX_RING_ALIGN, 0,       /* alignment, boundary */
 1026             BUS_SPACE_MAXADDR,          /* lowaddr */
 1027             BUS_SPACE_MAXADDR,          /* highaddr */
 1028             NULL, NULL,                 /* filter, filterarg */
 1029             ALE_TX_RING_SZ,             /* maxsize */
 1030             1,                          /* nsegments */
 1031             ALE_TX_RING_SZ,             /* maxsegsize */
 1032             0,                          /* flags */
 1033             NULL, NULL,                 /* lockfunc, lockarg */
 1034             &sc->ale_cdata.ale_tx_ring_tag);
 1035         if (error != 0) {
 1036                 device_printf(sc->ale_dev,
 1037                     "could not create Tx ring DMA tag.\n");
 1038                 goto fail;
 1039         }
 1040 
 1041         /* Create DMA tag for Rx pages. */
 1042         for (i = 0; i < ALE_RX_PAGES; i++) {
 1043                 error = bus_dma_tag_create(
 1044                     sc->ale_cdata.ale_parent_tag, /* parent */
 1045                     ALE_RX_PAGE_ALIGN, 0,       /* alignment, boundary */
 1046                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1047                     BUS_SPACE_MAXADDR,          /* highaddr */
 1048                     NULL, NULL,                 /* filter, filterarg */
 1049                     sc->ale_pagesize,           /* maxsize */
 1050                     1,                          /* nsegments */
 1051                     sc->ale_pagesize,           /* maxsegsize */
 1052                     0,                          /* flags */
 1053                     NULL, NULL,                 /* lockfunc, lockarg */
 1054                     &sc->ale_cdata.ale_rx_page[i].page_tag);
 1055                 if (error != 0) {
 1056                         device_printf(sc->ale_dev,
 1057                             "could not create Rx page %d DMA tag.\n", i);
 1058                         goto fail;
 1059                 }
 1060         }
 1061 
 1062         /* Create DMA tag for Tx coalescing message block. */
 1063         error = bus_dma_tag_create(
 1064             sc->ale_cdata.ale_parent_tag, /* parent */
 1065             ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1066             BUS_SPACE_MAXADDR,          /* lowaddr */
 1067             BUS_SPACE_MAXADDR,          /* highaddr */
 1068             NULL, NULL,                 /* filter, filterarg */
 1069             ALE_TX_CMB_SZ,              /* maxsize */
 1070             1,                          /* nsegments */
 1071             ALE_TX_CMB_SZ,              /* maxsegsize */
 1072             0,                          /* flags */
 1073             NULL, NULL,                 /* lockfunc, lockarg */
 1074             &sc->ale_cdata.ale_tx_cmb_tag);
 1075         if (error != 0) {
 1076                 device_printf(sc->ale_dev,
 1077                     "could not create Tx CMB DMA tag.\n");
 1078                 goto fail;
 1079         }
 1080 
 1081         /* Create DMA tag for Rx coalescing message block. */
 1082         for (i = 0; i < ALE_RX_PAGES; i++) {
 1083                 error = bus_dma_tag_create(
 1084                     sc->ale_cdata.ale_parent_tag, /* parent */
 1085                     ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1086                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1087                     BUS_SPACE_MAXADDR,          /* highaddr */
 1088                     NULL, NULL,                 /* filter, filterarg */
 1089                     ALE_RX_CMB_SZ,              /* maxsize */
 1090                     1,                          /* nsegments */
 1091                     ALE_RX_CMB_SZ,              /* maxsegsize */
 1092                     0,                          /* flags */
 1093                     NULL, NULL,                 /* lockfunc, lockarg */
 1094                     &sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1095                 if (error != 0) {
 1096                         device_printf(sc->ale_dev,
 1097                             "could not create Rx page %d CMB DMA tag.\n", i);
 1098                         goto fail;
 1099                 }
 1100         }
 1101 
 1102         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1103         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
 1104             (void **)&sc->ale_cdata.ale_tx_ring,
 1105             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1106             &sc->ale_cdata.ale_tx_ring_map);
 1107         if (error != 0) {
 1108                 device_printf(sc->ale_dev,
 1109                     "could not allocate DMA'able memory for Tx ring.\n");
 1110                 goto fail;
 1111         }
 1112         ctx.ale_busaddr = 0;
 1113         error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
 1114             sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
 1115             ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
 1116         if (error != 0 || ctx.ale_busaddr == 0) {
 1117                 device_printf(sc->ale_dev,
 1118                     "could not load DMA'able memory for Tx ring.\n");
 1119                 goto fail;
 1120         }
 1121         sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
 1122 
 1123         /* Rx pages. */
 1124         for (i = 0; i < ALE_RX_PAGES; i++) {
 1125                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
 1126                     (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
 1127                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1128                     &sc->ale_cdata.ale_rx_page[i].page_map);
 1129                 if (error != 0) {
 1130                         device_printf(sc->ale_dev,
 1131                             "could not allocate DMA'able memory for "
 1132                             "Rx page %d.\n", i);
 1133                         goto fail;
 1134                 }
 1135                 ctx.ale_busaddr = 0;
 1136                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
 1137                     sc->ale_cdata.ale_rx_page[i].page_map,
 1138                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1139                     sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
 1140                 if (error != 0 || ctx.ale_busaddr == 0) {
 1141                         device_printf(sc->ale_dev,
 1142                             "could not load DMA'able memory for "
 1143                             "Rx page %d.\n", i);
 1144                         goto fail;
 1145                 }
 1146                 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
 1147         }
 1148 
 1149         /* Tx CMB. */
 1150         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
 1151             (void **)&sc->ale_cdata.ale_tx_cmb,
 1152             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1153             &sc->ale_cdata.ale_tx_cmb_map);
 1154         if (error != 0) {
 1155                 device_printf(sc->ale_dev,
 1156                     "could not allocate DMA'able memory for Tx CMB.\n");
 1157                 goto fail;
 1158         }
 1159         ctx.ale_busaddr = 0;
 1160         error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
 1161             sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
 1162             ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1163         if (error != 0 || ctx.ale_busaddr == 0) {
 1164                 device_printf(sc->ale_dev,
 1165                     "could not load DMA'able memory for Tx CMB.\n");
 1166                 goto fail;
 1167         }
 1168         sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
 1169 
 1170         /* Rx CMB. */
 1171         for (i = 0; i < ALE_RX_PAGES; i++) {
 1172                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1173                     (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1174                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1175                     &sc->ale_cdata.ale_rx_page[i].cmb_map);
 1176                 if (error != 0) {
 1177                         device_printf(sc->ale_dev, "could not allocate "
 1178                             "DMA'able memory for Rx page %d CMB.\n", i);
 1179                         goto fail;
 1180                 }
 1181                 ctx.ale_busaddr = 0;
 1182                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1183                     sc->ale_cdata.ale_rx_page[i].cmb_map,
 1184                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1185                     ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1186                 if (error != 0 || ctx.ale_busaddr == 0) {
 1187                         device_printf(sc->ale_dev, "could not load DMA'able "
 1188                             "memory for Rx page %d CMB.\n", i);
 1189                         goto fail;
 1190                 }
 1191                 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
 1192         }
 1193 
 1194         /*
 1195          * Tx descriptors/RXF0/CMB DMA blocks share the same
 1196          * high address region of 64bit DMA address space.
 1197          */
 1198         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1199             (error = ale_check_boundary(sc)) != 0) {
 1200                 device_printf(sc->ale_dev, "4GB boundary crossed, "
 1201                     "switching to 32bit DMA addressing mode.\n");
 1202                 ale_dma_free(sc);
 1203                 /*
 1204                  * Limit max allowable DMA address space to 32bit
 1205                  * and try again.
 1206                  */
 1207                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1208                 goto again;
 1209         }
 1210 
 1211         /*
 1212          * Create Tx buffer parent tag.
 1213          * AR81xx allows 64bit DMA addressing of Tx buffers so it
 1214          * needs separate parent DMA tag as parent DMA address space
 1215          * could be restricted to be within 32bit address space by
 1216          * 4GB boundary crossing.
 1217          */
 1218         error = bus_dma_tag_create(
 1219             bus_get_dma_tag(sc->ale_dev), /* parent */
 1220             1, 0,                       /* alignment, boundary */
 1221             BUS_SPACE_MAXADDR,          /* lowaddr */
 1222             BUS_SPACE_MAXADDR,          /* highaddr */
 1223             NULL, NULL,                 /* filter, filterarg */
 1224             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1225             0,                          /* nsegments */
 1226             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1227             0,                          /* flags */
 1228             NULL, NULL,                 /* lockfunc, lockarg */
 1229             &sc->ale_cdata.ale_buffer_tag);
 1230         if (error != 0) {
 1231                 device_printf(sc->ale_dev,
 1232                     "could not create parent buffer DMA tag.\n");
 1233                 goto fail;
 1234         }
 1235 
 1236         /* Create DMA tag for Tx buffers. */
 1237         error = bus_dma_tag_create(
 1238             sc->ale_cdata.ale_buffer_tag, /* parent */
 1239             1, 0,                       /* alignment, boundary */
 1240             BUS_SPACE_MAXADDR,          /* lowaddr */
 1241             BUS_SPACE_MAXADDR,          /* highaddr */
 1242             NULL, NULL,                 /* filter, filterarg */
 1243             ALE_TSO_MAXSIZE,            /* maxsize */
 1244             ALE_MAXTXSEGS,              /* nsegments */
 1245             ALE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1246             0,                          /* flags */
 1247             NULL, NULL,                 /* lockfunc, lockarg */
 1248             &sc->ale_cdata.ale_tx_tag);
 1249         if (error != 0) {
 1250                 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
 1251                 goto fail;
 1252         }
 1253 
 1254         /* Create DMA maps for Tx buffers. */
 1255         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1256                 txd = &sc->ale_cdata.ale_txdesc[i];
 1257                 txd->tx_m = NULL;
 1258                 txd->tx_dmamap = NULL;
 1259                 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
 1260                     &txd->tx_dmamap);
 1261                 if (error != 0) {
 1262                         device_printf(sc->ale_dev,
 1263                             "could not create Tx dmamap.\n");
 1264                         goto fail;
 1265                 }
 1266         }
 1267 
 1268 fail:
 1269         return (error);
 1270 }
 1271 
 1272 static void
 1273 ale_dma_free(struct ale_softc *sc)
 1274 {
 1275         struct ale_txdesc *txd;
 1276         int i;
 1277 
 1278         /* Tx buffers. */
 1279         if (sc->ale_cdata.ale_tx_tag != NULL) {
 1280                 for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1281                         txd = &sc->ale_cdata.ale_txdesc[i];
 1282                         if (txd->tx_dmamap != NULL) {
 1283                                 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
 1284                                     txd->tx_dmamap);
 1285                                 txd->tx_dmamap = NULL;
 1286                         }
 1287                 }
 1288                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
 1289                 sc->ale_cdata.ale_tx_tag = NULL;
 1290         }
 1291         /* Tx descriptor ring. */
 1292         if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
 1293                 if (sc->ale_cdata.ale_tx_ring_map != NULL)
 1294                         bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
 1295                             sc->ale_cdata.ale_tx_ring_map);
 1296                 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
 1297                     sc->ale_cdata.ale_tx_ring != NULL)
 1298                         bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
 1299                             sc->ale_cdata.ale_tx_ring,
 1300                             sc->ale_cdata.ale_tx_ring_map);
 1301                 sc->ale_cdata.ale_tx_ring = NULL;
 1302                 sc->ale_cdata.ale_tx_ring_map = NULL;
 1303                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
 1304                 sc->ale_cdata.ale_tx_ring_tag = NULL;
 1305         }
 1306         /* Rx page block. */
 1307         for (i = 0; i < ALE_RX_PAGES; i++) {
 1308                 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
 1309                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
 1310                                 bus_dmamap_unload(
 1311                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1312                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1313                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
 1314                             sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
 1315                                 bus_dmamem_free(
 1316                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1317                                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1318                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1319                         sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
 1320                         sc->ale_cdata.ale_rx_page[i].page_map = NULL;
 1321                         bus_dma_tag_destroy(
 1322                             sc->ale_cdata.ale_rx_page[i].page_tag);
 1323                         sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
 1324                 }
 1325         }
 1326         /* Rx CMB. */
 1327         for (i = 0; i < ALE_RX_PAGES; i++) {
 1328                 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
 1329                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
 1330                                 bus_dmamap_unload(
 1331                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1332                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1333                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
 1334                             sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
 1335                                 bus_dmamem_free(
 1336                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1337                                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1338                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1339                         sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
 1340                         sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
 1341                         bus_dma_tag_destroy(
 1342                             sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1343                         sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
 1344                 }
 1345         }
 1346         /* Tx CMB. */
 1347         if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
 1348                 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
 1349                         bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
 1350                             sc->ale_cdata.ale_tx_cmb_map);
 1351                 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
 1352                     sc->ale_cdata.ale_tx_cmb != NULL)
 1353                         bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
 1354                             sc->ale_cdata.ale_tx_cmb,
 1355                             sc->ale_cdata.ale_tx_cmb_map);
 1356                 sc->ale_cdata.ale_tx_cmb = NULL;
 1357                 sc->ale_cdata.ale_tx_cmb_map = NULL;
 1358                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
 1359                 sc->ale_cdata.ale_tx_cmb_tag = NULL;
 1360         }
 1361         if (sc->ale_cdata.ale_buffer_tag != NULL) {
 1362                 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
 1363                 sc->ale_cdata.ale_buffer_tag = NULL;
 1364         }
 1365         if (sc->ale_cdata.ale_parent_tag != NULL) {
 1366                 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
 1367                 sc->ale_cdata.ale_parent_tag = NULL;
 1368         }
 1369 }
 1370 
 1371 static int
 1372 ale_shutdown(device_t dev)
 1373 {
 1374 
 1375         return (ale_suspend(dev));
 1376 }
 1377 
 1378 /*
 1379  * Note, this driver resets the link speed to 10/100Mbps by
 1380  * restarting auto-negotiation in suspend/shutdown phase but we
 1381  * don't know whether that auto-negotiation would succeed or not
 1382  * as driver has no control after powering off/suspend operation.
 1383  * If the renegotiation fail WOL may not work. Running at 1Gbps
 1384  * will draw more power than 375mA at 3.3V which is specified in
 1385  * PCI specification and that would result in complete
 1386  * shutdowning power to ethernet controller.
 1387  *
 1388  * TODO
 1389  * Save current negotiated media speed/duplex/flow-control to
 1390  * softc and restore the same link again after resuming. PHY
 1391  * handling such as power down/resetting to 100Mbps may be better
 1392  * handled in suspend method in phy driver.
 1393  */
 1394 static void
 1395 ale_setlinkspeed(struct ale_softc *sc)
 1396 {
 1397         struct mii_data *mii;
 1398         int aneg, i;
 1399 
 1400         mii = device_get_softc(sc->ale_miibus);
 1401         mii_pollstat(mii);
 1402         aneg = 0;
 1403         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1404             (IFM_ACTIVE | IFM_AVALID)) {
 1405                 switch IFM_SUBTYPE(mii->mii_media_active) {
 1406                 case IFM_10_T:
 1407                 case IFM_100_TX:
 1408                         return;
 1409                 case IFM_1000_T:
 1410                         aneg++;
 1411                         break;
 1412                 default:
 1413                         break;
 1414                 }
 1415         }
 1416         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
 1417         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1418             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 1419         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1420             MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1421         DELAY(1000);
 1422         if (aneg != 0) {
 1423                 /*
 1424                  * Poll link state until ale(4) get a 10/100Mbps link.
 1425                  */
 1426                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1427                         mii_pollstat(mii);
 1428                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
 1429                             == (IFM_ACTIVE | IFM_AVALID)) {
 1430                                 switch (IFM_SUBTYPE(
 1431                                     mii->mii_media_active)) {
 1432                                 case IFM_10_T:
 1433                                 case IFM_100_TX:
 1434                                         ale_mac_config(sc);
 1435                                         return;
 1436                                 default:
 1437                                         break;
 1438                                 }
 1439                         }
 1440                         ALE_UNLOCK(sc);
 1441                         pause("alelnk", hz);
 1442                         ALE_LOCK(sc);
 1443                 }
 1444                 if (i == MII_ANEGTICKS_GIGE)
 1445                         device_printf(sc->ale_dev,
 1446                             "establishing a link failed, WOL may not work!");
 1447         }
 1448         /*
 1449          * No link, force MAC to have 100Mbps, full-duplex link.
 1450          * This is the last resort and may/may not work.
 1451          */
 1452         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1453         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1454         ale_mac_config(sc);
 1455 }
 1456 
 1457 static void
 1458 ale_setwol(struct ale_softc *sc)
 1459 {
 1460         struct ifnet *ifp;
 1461         uint32_t reg, pmcs;
 1462         uint16_t pmstat;
 1463         int pmc;
 1464 
 1465         ALE_LOCK_ASSERT(sc);
 1466 
 1467         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
 1468                 /* Disable WOL. */
 1469                 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 1470                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1471                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1472                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1473                 /* Force PHY power down. */
 1474                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1475                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1476                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
 1477                     GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
 1478                     GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
 1479                 return;
 1480         }
 1481 
 1482         ifp = sc->ale_ifp;
 1483         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1484                 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 1485                         ale_setlinkspeed(sc);
 1486         }
 1487 
 1488         pmcs = 0;
 1489         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1490                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1491         CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
 1492         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 1493         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
 1494             MAC_CFG_BCAST);
 1495         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1496                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1497         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1498                 reg |= MAC_CFG_RX_ENB;
 1499         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 1500 
 1501         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1502                 /* WOL disabled, PHY power down. */
 1503                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1504                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1505                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1506                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1507                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1508                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
 1509                     GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
 1510                     GPHY_CTRL_PWDOWN_HW);
 1511         }
 1512         /* Request PME. */
 1513         pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
 1514         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1515         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1516                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1517         pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1518 }
 1519 
 1520 static int
 1521 ale_suspend(device_t dev)
 1522 {
 1523         struct ale_softc *sc;
 1524 
 1525         sc = device_get_softc(dev);
 1526 
 1527         ALE_LOCK(sc);
 1528         ale_stop(sc);
 1529         ale_setwol(sc);
 1530         ALE_UNLOCK(sc);
 1531 
 1532         return (0);
 1533 }
 1534 
 1535 static int
 1536 ale_resume(device_t dev)
 1537 {
 1538         struct ale_softc *sc;
 1539         struct ifnet *ifp;
 1540         int pmc;
 1541         uint16_t pmstat;
 1542 
 1543         sc = device_get_softc(dev);
 1544 
 1545         ALE_LOCK(sc);
 1546         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
 1547                 /* Disable PME and clear PME status. */
 1548                 pmstat = pci_read_config(sc->ale_dev,
 1549                     pmc + PCIR_POWER_STATUS, 2);
 1550                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1551                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1552                         pci_write_config(sc->ale_dev,
 1553                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 1554                 }
 1555         }
 1556         /* Reset PHY. */
 1557         ale_phy_reset(sc);
 1558         ifp = sc->ale_ifp;
 1559         if ((ifp->if_flags & IFF_UP) != 0) {
 1560                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1561                 ale_init_locked(sc);
 1562         }
 1563         ALE_UNLOCK(sc);
 1564 
 1565         return (0);
 1566 }
 1567 
 1568 static int
 1569 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
 1570 {
 1571         struct ale_txdesc *txd, *txd_last;
 1572         struct tx_desc *desc;
 1573         struct mbuf *m;
 1574         struct ip *ip;
 1575         struct tcphdr *tcp;
 1576         bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
 1577         bus_dmamap_t map;
 1578         uint32_t cflags, hdrlen, ip_off, poff, vtag;
 1579         int error, i, nsegs, prod, si;
 1580 
 1581         ALE_LOCK_ASSERT(sc);
 1582 
 1583         M_ASSERTPKTHDR((*m_head));
 1584 
 1585         m = *m_head;
 1586         ip = NULL;
 1587         tcp = NULL;
 1588         cflags = vtag = 0;
 1589         ip_off = poff = 0;
 1590         if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
 1591                 /*
 1592                  * AR81xx requires offset of TCP/UDP payload in its Tx
 1593                  * descriptor to perform hardware Tx checksum offload.
 1594                  * Additionally, TSO requires IP/TCP header size and
 1595                  * modification of IP/TCP header in order to make TSO
 1596                  * engine work. This kind of operation takes many CPU
 1597                  * cycles on FreeBSD so fast host CPU is required to
 1598                  * get smooth TSO performance.
 1599                  */
 1600                 struct ether_header *eh;
 1601 
 1602                 if (M_WRITABLE(m) == 0) {
 1603                         /* Get a writable copy. */
 1604                         m = m_dup(*m_head, M_DONTWAIT);
 1605                         /* Release original mbufs. */
 1606                         m_freem(*m_head);
 1607                         if (m == NULL) {
 1608                                 *m_head = NULL;
 1609                                 return (ENOBUFS);
 1610                         }
 1611                         *m_head = m;
 1612                 }
 1613 
 1614                 /*
 1615                  * Buggy-controller requires 4 byte aligned Tx buffer
 1616                  * to make custom checksum offload work.
 1617                  */
 1618                 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
 1619                     (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
 1620                     (mtod(m, intptr_t) & 3) != 0) {
 1621                         m = m_defrag(*m_head, M_DONTWAIT);
 1622                         if (m == NULL) {
 1623                                 *m_head = NULL;
 1624                                 return (ENOBUFS);
 1625                         }
 1626                         *m_head = m;
 1627                 }
 1628 
 1629                 ip_off = sizeof(struct ether_header);
 1630                 m = m_pullup(m, ip_off);
 1631                 if (m == NULL) {
 1632                         *m_head = NULL;
 1633                         return (ENOBUFS);
 1634                 }
 1635                 eh = mtod(m, struct ether_header *);
 1636                 /*
 1637                  * Check if hardware VLAN insertion is off.
 1638                  * Additional check for LLC/SNAP frame?
 1639                  */
 1640                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1641                         ip_off = sizeof(struct ether_vlan_header);
 1642                         m = m_pullup(m, ip_off);
 1643                         if (m == NULL) {
 1644                                 *m_head = NULL;
 1645                                 return (ENOBUFS);
 1646                         }
 1647                 }
 1648                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1649                 if (m == NULL) {
 1650                         *m_head = NULL;
 1651                         return (ENOBUFS);
 1652                 }
 1653                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1654                 poff = ip_off + (ip->ip_hl << 2);
 1655                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1656                         /*
 1657                          * XXX
 1658                          * AR81xx requires the first descriptor should
 1659                          * not include any TCP playload for TSO case.
 1660                          * (i.e. ethernet header + IP + TCP header only)
 1661                          * m_pullup(9) above will ensure this too.
 1662                          * However it's not correct if the first mbuf
 1663                          * of the chain does not use cluster.
 1664                          */
 1665                         m = m_pullup(m, poff + sizeof(struct tcphdr));
 1666                         if (m == NULL) {
 1667                                 *m_head = NULL;
 1668                                 return (ENOBUFS);
 1669                         }
 1670                         ip = (struct ip *)(mtod(m, char *) + ip_off);
 1671                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1672                         m = m_pullup(m, poff + (tcp->th_off << 2));
 1673                         if (m == NULL) {
 1674                                 *m_head = NULL;
 1675                                 return (ENOBUFS);
 1676                         }
 1677                         /*
 1678                          * AR81xx requires IP/TCP header size and offset as
 1679                          * well as TCP pseudo checksum which complicates
 1680                          * TSO configuration. I guess this comes from the
 1681                          * adherence to Microsoft NDIS Large Send
 1682                          * specification which requires insertion of
 1683                          * pseudo checksum by upper stack. The pseudo
 1684                          * checksum that NDIS refers to doesn't include
 1685                          * TCP payload length so ale(4) should recompute
 1686                          * the pseudo checksum here. Hopefully this wouldn't
 1687                          * be much burden on modern CPUs.
 1688                          * Reset IP checksum and recompute TCP pseudo
 1689                          * checksum as NDIS specification said.
 1690                          */
 1691                         ip->ip_sum = 0;
 1692                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1693                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1694                 }
 1695                 *m_head = m;
 1696         }
 1697 
 1698         si = prod = sc->ale_cdata.ale_tx_prod;
 1699         txd = &sc->ale_cdata.ale_txdesc[prod];
 1700         txd_last = txd;
 1701         map = txd->tx_dmamap;
 1702 
 1703         error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1704             *m_head, txsegs, &nsegs, 0);
 1705         if (error == EFBIG) {
 1706                 m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
 1707                 if (m == NULL) {
 1708                         m_freem(*m_head);
 1709                         *m_head = NULL;
 1710                         return (ENOMEM);
 1711                 }
 1712                 *m_head = m;
 1713                 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1714                     *m_head, txsegs, &nsegs, 0);
 1715                 if (error != 0) {
 1716                         m_freem(*m_head);
 1717                         *m_head = NULL;
 1718                         return (error);
 1719                 }
 1720         } else if (error != 0)
 1721                 return (error);
 1722         if (nsegs == 0) {
 1723                 m_freem(*m_head);
 1724                 *m_head = NULL;
 1725                 return (EIO);
 1726         }
 1727 
 1728         /* Check descriptor overrun. */
 1729         if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
 1730                 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
 1731                 return (ENOBUFS);
 1732         }
 1733         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1734 
 1735         m = *m_head;
 1736         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1737                 /* Request TSO and set MSS. */
 1738                 cflags |= ALE_TD_TSO;
 1739                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
 1740                 /* Set IP/TCP header size. */
 1741                 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
 1742                 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
 1743         } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
 1744                 /*
 1745                  * AR81xx supports Tx custom checksum offload feature
 1746                  * that offloads single 16bit checksum computation.
 1747                  * So you can choose one among IP, TCP and UDP.
 1748                  * Normally driver sets checksum start/insertion
 1749                  * position from the information of TCP/UDP frame as
 1750                  * TCP/UDP checksum takes more time than that of IP.
 1751                  * However it seems that custom checksum offload
 1752                  * requires 4 bytes aligned Tx buffers due to hardware
 1753                  * bug.
 1754                  * AR81xx also supports explicit Tx checksum computation
 1755                  * if it is told that the size of IP header and TCP
 1756                  * header(for UDP, the header size does not matter
 1757                  * because it's fixed length). However with this scheme
 1758                  * TSO does not work so you have to choose one either
 1759                  * TSO or explicit Tx checksum offload. I chosen TSO
 1760                  * plus custom checksum offload with work-around which
 1761                  * will cover most common usage for this consumer
 1762                  * ethernet controller. The work-around takes a lot of
 1763                  * CPU cycles if Tx buffer is not aligned on 4 bytes
 1764                  * boundary, though.
 1765                  */
 1766                 cflags |= ALE_TD_CXSUM;
 1767                 /* Set checksum start offset. */
 1768                 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
 1769                 /* Set checksum insertion position of TCP/UDP. */
 1770                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1771                     ALE_TD_CSUM_XSUMOFFSET_SHIFT);
 1772         }
 1773 
 1774         /* Configure VLAN hardware tag insertion. */
 1775         if ((m->m_flags & M_VLANTAG) != 0) {
 1776                 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
 1777                 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
 1778                 cflags |= ALE_TD_INSERT_VLAN_TAG;
 1779         }
 1780 
 1781         i = 0;
 1782         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1783                 /*
 1784                  * Make sure the first fragment contains
 1785                  * only ethernet and IP/TCP header with options.
 1786                  */
 1787                 hdrlen =  poff + (tcp->th_off << 2);
 1788                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1789                 desc->addr = htole64(txsegs[i].ds_addr);
 1790                 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
 1791                 desc->flags = htole32(cflags);
 1792                 sc->ale_cdata.ale_tx_cnt++;
 1793                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1794                 if (m->m_len - hdrlen > 0) {
 1795                         /* Handle remaining payload of the first fragment. */
 1796                         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1797                         desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
 1798                         desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
 1799                             vtag);
 1800                         desc->flags = htole32(cflags);
 1801                         sc->ale_cdata.ale_tx_cnt++;
 1802                         ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1803                 }
 1804                 i = 1;
 1805         }
 1806         for (; i < nsegs; i++) {
 1807                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1808                 desc->addr = htole64(txsegs[i].ds_addr);
 1809                 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1810                 desc->flags = htole32(cflags);
 1811                 sc->ale_cdata.ale_tx_cnt++;
 1812                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1813         }
 1814         /* Update producer index. */
 1815         sc->ale_cdata.ale_tx_prod = prod;
 1816         /* Set TSO header on the first descriptor. */
 1817         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1818                 desc = &sc->ale_cdata.ale_tx_ring[si];
 1819                 desc->flags |= htole32(ALE_TD_TSO_HDR);
 1820         }
 1821 
 1822         /* Finally set EOP on the last descriptor. */
 1823         prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
 1824         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1825         desc->flags |= htole32(ALE_TD_EOP);
 1826 
 1827         /* Swap dmamap of the first and the last. */
 1828         txd = &sc->ale_cdata.ale_txdesc[prod];
 1829         map = txd_last->tx_dmamap;
 1830         txd_last->tx_dmamap = txd->tx_dmamap;
 1831         txd->tx_dmamap = map;
 1832         txd->tx_m = m;
 1833 
 1834         /* Sync descriptors. */
 1835         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 1836             sc->ale_cdata.ale_tx_ring_map,
 1837             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1838 
 1839         return (0);
 1840 }
 1841 
 1842 static void
 1843 ale_start(struct ifnet *ifp)
 1844 {
 1845         struct ale_softc *sc;
 1846 
 1847         sc = ifp->if_softc;
 1848         ALE_LOCK(sc);
 1849         ale_start_locked(ifp);
 1850         ALE_UNLOCK(sc);
 1851 }
 1852 
 1853 static void
 1854 ale_start_locked(struct ifnet *ifp)
 1855 {
 1856         struct ale_softc *sc;
 1857         struct mbuf *m_head;
 1858         int enq;
 1859 
 1860         sc = ifp->if_softc;
 1861 
 1862         ALE_LOCK_ASSERT(sc);
 1863 
 1864         /* Reclaim transmitted frames. */
 1865         if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
 1866                 ale_txeof(sc);
 1867 
 1868         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1869             IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
 1870                 return;
 1871 
 1872         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1873                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1874                 if (m_head == NULL)
 1875                         break;
 1876                 /*
 1877                  * Pack the data into the transmit ring. If we
 1878                  * don't have room, set the OACTIVE flag and wait
 1879                  * for the NIC to drain the ring.
 1880                  */
 1881                 if (ale_encap(sc, &m_head)) {
 1882                         if (m_head == NULL)
 1883                                 break;
 1884                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1885                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1886                         break;
 1887                 }
 1888 
 1889                 enq++;
 1890                 /*
 1891                  * If there's a BPF listener, bounce a copy of this frame
 1892                  * to him.
 1893                  */
 1894                 ETHER_BPF_MTAP(ifp, m_head);
 1895         }
 1896 
 1897         if (enq > 0) {
 1898                 /* Kick. */
 1899                 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
 1900                     sc->ale_cdata.ale_tx_prod);
 1901                 /* Set a timeout in case the chip goes out to lunch. */
 1902                 sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
 1903         }
 1904 }
 1905 
 1906 static void
 1907 ale_watchdog(struct ale_softc *sc)
 1908 {
 1909         struct ifnet *ifp;
 1910 
 1911         ALE_LOCK_ASSERT(sc);
 1912 
 1913         if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
 1914                 return;
 1915 
 1916         ifp = sc->ale_ifp;
 1917         if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1918                 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
 1919                 ifp->if_oerrors++;
 1920                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1921                 ale_init_locked(sc);
 1922                 return;
 1923         }
 1924         if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
 1925         ifp->if_oerrors++;
 1926         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1927         ale_init_locked(sc);
 1928         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1929                 ale_start_locked(ifp);
 1930 }
 1931 
 1932 static int
 1933 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1934 {
 1935         struct ale_softc *sc;
 1936         struct ifreq *ifr;
 1937         struct mii_data *mii;
 1938         int error, mask;
 1939 
 1940         sc = ifp->if_softc;
 1941         ifr = (struct ifreq *)data;
 1942         error = 0;
 1943         switch (cmd) {
 1944         case SIOCSIFMTU:
 1945                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
 1946                     ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
 1947                     ifr->ifr_mtu > ETHERMTU))
 1948                         error = EINVAL;
 1949                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1950                         ALE_LOCK(sc);
 1951                         ifp->if_mtu = ifr->ifr_mtu;
 1952                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1953                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1954                                 ale_init_locked(sc);
 1955                         }
 1956                         ALE_UNLOCK(sc);
 1957                 }
 1958                 break;
 1959         case SIOCSIFFLAGS:
 1960                 ALE_LOCK(sc);
 1961                 if ((ifp->if_flags & IFF_UP) != 0) {
 1962                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1963                                 if (((ifp->if_flags ^ sc->ale_if_flags)
 1964                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 1965                                         ale_rxfilter(sc);
 1966                         } else {
 1967                                 ale_init_locked(sc);
 1968                         }
 1969                 } else {
 1970                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1971                                 ale_stop(sc);
 1972                 }
 1973                 sc->ale_if_flags = ifp->if_flags;
 1974                 ALE_UNLOCK(sc);
 1975                 break;
 1976         case SIOCADDMULTI:
 1977         case SIOCDELMULTI:
 1978                 ALE_LOCK(sc);
 1979                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 1980                         ale_rxfilter(sc);
 1981                 ALE_UNLOCK(sc);
 1982                 break;
 1983         case SIOCSIFMEDIA:
 1984         case SIOCGIFMEDIA:
 1985                 mii = device_get_softc(sc->ale_miibus);
 1986                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 1987                 break;
 1988         case SIOCSIFCAP:
 1989                 ALE_LOCK(sc);
 1990                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 1991                 if ((mask & IFCAP_TXCSUM) != 0 &&
 1992                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 1993                         ifp->if_capenable ^= IFCAP_TXCSUM;
 1994                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 1995                                 ifp->if_hwassist |= ALE_CSUM_FEATURES;
 1996                         else
 1997                                 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
 1998                 }
 1999                 if ((mask & IFCAP_RXCSUM) != 0 &&
 2000                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 2001                         ifp->if_capenable ^= IFCAP_RXCSUM;
 2002                 if ((mask & IFCAP_TSO4) != 0 &&
 2003                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 2004                         ifp->if_capenable ^= IFCAP_TSO4;
 2005                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 2006                                 ifp->if_hwassist |= CSUM_TSO;
 2007                         else
 2008                                 ifp->if_hwassist &= ~CSUM_TSO;
 2009                 }
 2010 
 2011                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 2012                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 2013                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 2014                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 2015                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 2016                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2017                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 2018                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 2019                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 2020                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 2021                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 2022                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 2023                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 2024                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 2025                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 2026                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 2027                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 2028                         ale_rxvlan(sc);
 2029                 }
 2030                 ALE_UNLOCK(sc);
 2031                 VLAN_CAPABILITIES(ifp);
 2032                 break;
 2033         default:
 2034                 error = ether_ioctl(ifp, cmd, data);
 2035                 break;
 2036         }
 2037 
 2038         return (error);
 2039 }
 2040 
 2041 static void
 2042 ale_mac_config(struct ale_softc *sc)
 2043 {
 2044         struct mii_data *mii;
 2045         uint32_t reg;
 2046 
 2047         ALE_LOCK_ASSERT(sc);
 2048 
 2049         mii = device_get_softc(sc->ale_miibus);
 2050         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2051         reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
 2052             MAC_CFG_SPEED_MASK);
 2053         /* Reprogram MAC with resolved speed/duplex. */
 2054         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2055         case IFM_10_T:
 2056         case IFM_100_TX:
 2057                 reg |= MAC_CFG_SPEED_10_100;
 2058                 break;
 2059         case IFM_1000_T:
 2060                 reg |= MAC_CFG_SPEED_1000;
 2061                 break;
 2062         }
 2063         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 2064                 reg |= MAC_CFG_FULL_DUPLEX;
 2065 #ifdef notyet
 2066                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 2067                         reg |= MAC_CFG_TX_FC;
 2068                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 2069                         reg |= MAC_CFG_RX_FC;
 2070 #endif
 2071         }
 2072         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2073 }
 2074 
 2075 static void
 2076 ale_link_task(void *arg, int pending)
 2077 {
 2078         struct ale_softc *sc;
 2079         struct mii_data *mii;
 2080         struct ifnet *ifp;
 2081         uint32_t reg;
 2082 
 2083         sc = (struct ale_softc *)arg;
 2084 
 2085         ALE_LOCK(sc);
 2086         mii = device_get_softc(sc->ale_miibus);
 2087         ifp = sc->ale_ifp;
 2088         if (mii == NULL || ifp == NULL ||
 2089             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 2090                 ALE_UNLOCK(sc);
 2091                 return;
 2092         }
 2093 
 2094         sc->ale_flags &= ~ALE_FLAG_LINK;
 2095         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 2096             (IFM_ACTIVE | IFM_AVALID)) {
 2097                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2098                 case IFM_10_T:
 2099                 case IFM_100_TX:
 2100                         sc->ale_flags |= ALE_FLAG_LINK;
 2101                         break;
 2102                 case IFM_1000_T:
 2103                         if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 2104                                 sc->ale_flags |= ALE_FLAG_LINK;
 2105                         break;
 2106                 default:
 2107                         break;
 2108                 }
 2109         }
 2110 
 2111         /* Stop Rx/Tx MACs. */
 2112         ale_stop_mac(sc);
 2113 
 2114         /* Program MACs with resolved speed/duplex/flow-control. */
 2115         if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
 2116                 ale_mac_config(sc);
 2117                 /* Reenable Tx/Rx MACs. */
 2118                 reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2119                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2120                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2121         }
 2122 
 2123         ALE_UNLOCK(sc);
 2124 }
 2125 
 2126 static void
 2127 ale_stats_clear(struct ale_softc *sc)
 2128 {
 2129         struct smb sb;
 2130         uint32_t *reg;
 2131         int i;
 2132 
 2133         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2134                 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2135                 i += sizeof(uint32_t);
 2136         }
 2137         /* Read Tx statistics. */
 2138         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2139                 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2140                 i += sizeof(uint32_t);
 2141         }
 2142 }
 2143 
 2144 static void
 2145 ale_stats_update(struct ale_softc *sc)
 2146 {
 2147         struct ale_hw_stats *stat;
 2148         struct smb sb, *smb;
 2149         struct ifnet *ifp;
 2150         uint32_t *reg;
 2151         int i;
 2152 
 2153         ALE_LOCK_ASSERT(sc);
 2154 
 2155         ifp = sc->ale_ifp;
 2156         stat = &sc->ale_stats;
 2157         smb = &sb;
 2158 
 2159         /* Read Rx statistics. */
 2160         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2161                 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2162                 i += sizeof(uint32_t);
 2163         }
 2164         /* Read Tx statistics. */
 2165         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2166                 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2167                 i += sizeof(uint32_t);
 2168         }
 2169 
 2170         /* Rx stats. */
 2171         stat->rx_frames += smb->rx_frames;
 2172         stat->rx_bcast_frames += smb->rx_bcast_frames;
 2173         stat->rx_mcast_frames += smb->rx_mcast_frames;
 2174         stat->rx_pause_frames += smb->rx_pause_frames;
 2175         stat->rx_control_frames += smb->rx_control_frames;
 2176         stat->rx_crcerrs += smb->rx_crcerrs;
 2177         stat->rx_lenerrs += smb->rx_lenerrs;
 2178         stat->rx_bytes += smb->rx_bytes;
 2179         stat->rx_runts += smb->rx_runts;
 2180         stat->rx_fragments += smb->rx_fragments;
 2181         stat->rx_pkts_64 += smb->rx_pkts_64;
 2182         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 2183         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 2184         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 2185         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 2186         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 2187         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 2188         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 2189         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 2190         stat->rx_rrs_errs += smb->rx_rrs_errs;
 2191         stat->rx_alignerrs += smb->rx_alignerrs;
 2192         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 2193         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 2194         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 2195 
 2196         /* Tx stats. */
 2197         stat->tx_frames += smb->tx_frames;
 2198         stat->tx_bcast_frames += smb->tx_bcast_frames;
 2199         stat->tx_mcast_frames += smb->tx_mcast_frames;
 2200         stat->tx_pause_frames += smb->tx_pause_frames;
 2201         stat->tx_excess_defer += smb->tx_excess_defer;
 2202         stat->tx_control_frames += smb->tx_control_frames;
 2203         stat->tx_deferred += smb->tx_deferred;
 2204         stat->tx_bytes += smb->tx_bytes;
 2205         stat->tx_pkts_64 += smb->tx_pkts_64;
 2206         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 2207         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 2208         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 2209         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 2210         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 2211         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 2212         stat->tx_single_colls += smb->tx_single_colls;
 2213         stat->tx_multi_colls += smb->tx_multi_colls;
 2214         stat->tx_late_colls += smb->tx_late_colls;
 2215         stat->tx_excess_colls += smb->tx_excess_colls;
 2216         stat->tx_abort += smb->tx_abort;
 2217         stat->tx_underrun += smb->tx_underrun;
 2218         stat->tx_desc_underrun += smb->tx_desc_underrun;
 2219         stat->tx_lenerrs += smb->tx_lenerrs;
 2220         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 2221         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 2222         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 2223 
 2224         /* Update counters in ifnet. */
 2225         ifp->if_opackets += smb->tx_frames;
 2226 
 2227         ifp->if_collisions += smb->tx_single_colls +
 2228             smb->tx_multi_colls * 2 + smb->tx_late_colls +
 2229             smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
 2230 
 2231         /*
 2232          * XXX
 2233          * tx_pkts_truncated counter looks suspicious. It constantly
 2234          * increments with no sign of Tx errors. This may indicate
 2235          * the counter name is not correct one so I've removed the
 2236          * counter in output errors.
 2237          */
 2238         ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
 2239             smb->tx_underrun;
 2240 
 2241         ifp->if_ipackets += smb->rx_frames;
 2242 
 2243         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
 2244             smb->rx_runts + smb->rx_pkts_truncated +
 2245             smb->rx_fifo_oflows + smb->rx_rrs_errs +
 2246             smb->rx_alignerrs;
 2247 }
 2248 
 2249 static int
 2250 ale_intr(void *arg)
 2251 {
 2252         struct ale_softc *sc;
 2253         uint32_t status;
 2254 
 2255         sc = (struct ale_softc *)arg;
 2256 
 2257         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2258         if ((status & ALE_INTRS) == 0)
 2259                 return (FILTER_STRAY);
 2260         /* Disable interrupts. */
 2261         CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
 2262         taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2263 
 2264         return (FILTER_HANDLED);
 2265 }
 2266 
 2267 static void
 2268 ale_int_task(void *arg, int pending)
 2269 {
 2270         struct ale_softc *sc;
 2271         struct ifnet *ifp;
 2272         uint32_t status;
 2273         int more;
 2274 
 2275         sc = (struct ale_softc *)arg;
 2276 
 2277         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2278         ALE_LOCK(sc);
 2279         if (sc->ale_morework != 0)
 2280                 status |= INTR_RX_PKT;
 2281         if ((status & ALE_INTRS) == 0)
 2282                 goto done;
 2283 
 2284         /* Acknowledge interrupts but still disable interrupts. */
 2285         CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
 2286 
 2287         ifp = sc->ale_ifp;
 2288         more = 0;
 2289         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2290                 more = ale_rxeof(sc, sc->ale_process_limit);
 2291                 if (more == EAGAIN)
 2292                         sc->ale_morework = 1;
 2293                 else if (more == EIO) {
 2294                         sc->ale_stats.reset_brk_seq++;
 2295                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2296                         ale_init_locked(sc);
 2297                         ALE_UNLOCK(sc);
 2298                         return;
 2299                 }
 2300 
 2301                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2302                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2303                                 device_printf(sc->ale_dev,
 2304                                     "DMA read error! -- resetting\n");
 2305                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2306                                 device_printf(sc->ale_dev,
 2307                                     "DMA write error! -- resetting\n");
 2308                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2309                         ale_init_locked(sc);
 2310                         ALE_UNLOCK(sc);
 2311                         return;
 2312                 }
 2313                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2314                         ale_start_locked(ifp);
 2315         }
 2316 
 2317         if (more == EAGAIN ||
 2318             (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
 2319                 ALE_UNLOCK(sc);
 2320                 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2321                 return;
 2322         }
 2323 
 2324 done:
 2325         ALE_UNLOCK(sc);
 2326 
 2327         /* Re-enable interrupts. */
 2328         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
 2329 }
 2330 
 2331 static void
 2332 ale_txeof(struct ale_softc *sc)
 2333 {
 2334         struct ifnet *ifp;
 2335         struct ale_txdesc *txd;
 2336         uint32_t cons, prod;
 2337         int prog;
 2338 
 2339         ALE_LOCK_ASSERT(sc);
 2340 
 2341         ifp = sc->ale_ifp;
 2342 
 2343         if (sc->ale_cdata.ale_tx_cnt == 0)
 2344                 return;
 2345 
 2346         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2347             sc->ale_cdata.ale_tx_ring_map,
 2348             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2349         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
 2350                 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2351                     sc->ale_cdata.ale_tx_cmb_map,
 2352                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2353                 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
 2354         } else
 2355                 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
 2356         cons = sc->ale_cdata.ale_tx_cons;
 2357         /*
 2358          * Go through our Tx list and free mbufs for those
 2359          * frames which have been transmitted.
 2360          */
 2361         for (prog = 0; cons != prod; prog++,
 2362             ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
 2363                 if (sc->ale_cdata.ale_tx_cnt <= 0)
 2364                         break;
 2365                 prog++;
 2366                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2367                 sc->ale_cdata.ale_tx_cnt--;
 2368                 txd = &sc->ale_cdata.ale_txdesc[cons];
 2369                 if (txd->tx_m != NULL) {
 2370                         /* Reclaim transmitted mbufs. */
 2371                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2372                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2373                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2374                             txd->tx_dmamap);
 2375                         m_freem(txd->tx_m);
 2376                         txd->tx_m = NULL;
 2377                 }
 2378         }
 2379 
 2380         if (prog > 0) {
 2381                 sc->ale_cdata.ale_tx_cons = cons;
 2382                 /*
 2383                  * Unarm watchdog timer only when there is no pending
 2384                  * Tx descriptors in queue.
 2385                  */
 2386                 if (sc->ale_cdata.ale_tx_cnt == 0)
 2387                         sc->ale_watchdog_timer = 0;
 2388         }
 2389 }
 2390 
 2391 static void
 2392 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
 2393     uint32_t length, uint32_t *prod)
 2394 {
 2395         struct ale_rx_page *rx_page;
 2396 
 2397         rx_page = *page;
 2398         /* Update consumer position. */
 2399         rx_page->cons += roundup(length + sizeof(struct rx_rs),
 2400             ALE_RX_PAGE_ALIGN);
 2401         if (rx_page->cons >= ALE_RX_PAGE_SZ) {
 2402                 /*
 2403                  * End of Rx page reached, let hardware reuse
 2404                  * this page.
 2405                  */
 2406                 rx_page->cons = 0;
 2407                 *rx_page->cmb_addr = 0;
 2408                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2409                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2410                 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
 2411                     RXF_VALID);
 2412                 /* Switch to alternate Rx page. */
 2413                 sc->ale_cdata.ale_rx_curp ^= 1;
 2414                 rx_page = *page =
 2415                     &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2416                 /* Page flipped, sync CMB and Rx page. */
 2417                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2418                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2419                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2420                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2421                 /* Sync completed, cache updated producer index. */
 2422                 *prod = *rx_page->cmb_addr;
 2423         }
 2424 }
 2425 
 2426 
 2427 /*
 2428  * It seems that AR81xx controller can compute partial checksum.
 2429  * The partial checksum value can be used to accelerate checksum
 2430  * computation for fragmented TCP/UDP packets. Upper network stack
 2431  * already takes advantage of the partial checksum value in IP
 2432  * reassembly stage. But I'm not sure the correctness of the
 2433  * partial hardware checksum assistance due to lack of data sheet.
 2434  * In addition, the Rx feature of controller that requires copying
 2435  * for every frames effectively nullifies one of most nice offload
 2436  * capability of controller.
 2437  */
 2438 static void
 2439 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
 2440 {
 2441         struct ifnet *ifp;
 2442         struct ip *ip;
 2443         char *p;
 2444 
 2445         ifp = sc->ale_ifp;
 2446         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2447         if ((status & ALE_RD_IPCSUM_NOK) == 0)
 2448                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2449 
 2450         if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
 2451                 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
 2452                     ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
 2453                     ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
 2454                         m->m_pkthdr.csum_flags |=
 2455                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2456                         m->m_pkthdr.csum_data = 0xffff;
 2457                 }
 2458         } else {
 2459                 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
 2460                     (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
 2461                         p = mtod(m, char *);
 2462                         p += ETHER_HDR_LEN;
 2463                         if ((status & ALE_RD_802_3) != 0)
 2464                                 p += LLC_SNAPFRAMELEN;
 2465                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
 2466                             (status & ALE_RD_VLAN) != 0)
 2467                                 p += ETHER_VLAN_ENCAP_LEN;
 2468                         ip = (struct ip *)p;
 2469                         if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
 2470                                 return;
 2471                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 2472                             CSUM_PSEUDO_HDR;
 2473                         m->m_pkthdr.csum_data = 0xffff;
 2474                 }
 2475         }
 2476         /*
 2477          * Don't mark bad checksum for TCP/UDP frames
 2478          * as fragmented frames may always have set
 2479          * bad checksummed bit of frame status.
 2480          */
 2481 }
 2482 
 2483 /* Process received frames. */
 2484 static int
 2485 ale_rxeof(struct ale_softc *sc, int count)
 2486 {
 2487         struct ale_rx_page *rx_page;
 2488         struct rx_rs *rs;
 2489         struct ifnet *ifp;
 2490         struct mbuf *m;
 2491         uint32_t length, prod, seqno, status, vtags;
 2492         int prog;
 2493 
 2494         ifp = sc->ale_ifp;
 2495         rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2496         bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2497             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2498         bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2499             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2500         /*
 2501          * Don't directly access producer index as hardware may
 2502          * update it while Rx handler is in progress. It would
 2503          * be even better if there is a way to let hardware
 2504          * know how far driver processed its received frames.
 2505          * Alternatively, hardware could provide a way to disable
 2506          * CMB updates until driver acknowledges the end of CMB
 2507          * access.
 2508          */
 2509         prod = *rx_page->cmb_addr;
 2510         for (prog = 0; prog < count; prog++) {
 2511                 if (rx_page->cons >= prod)
 2512                         break;
 2513                 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
 2514                 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
 2515                 if (sc->ale_cdata.ale_rx_seqno != seqno) {
 2516                         /*
 2517                          * Normally I believe this should not happen unless
 2518                          * severe driver bug or corrupted memory. However
 2519                          * it seems to happen under certain conditions which
 2520                          * is triggered by abrupt Rx events such as initiation
 2521                          * of bulk transfer of remote host. It's not easy to
 2522                          * reproduce this and I doubt it could be related
 2523                          * with FIFO overflow of hardware or activity of Tx
 2524                          * CMB updates. I also remember similar behaviour
 2525                          * seen on RealTek 8139 which uses resembling Rx
 2526                          * scheme.
 2527                          */
 2528                         if (bootverbose)
 2529                                 device_printf(sc->ale_dev,
 2530                                     "garbled seq: %u, expected: %u -- "
 2531                                     "resetting!\n", seqno,
 2532                                     sc->ale_cdata.ale_rx_seqno);
 2533                         return (EIO);
 2534                 }
 2535                 /* Frame received. */
 2536                 sc->ale_cdata.ale_rx_seqno++;
 2537                 length = ALE_RX_BYTES(le32toh(rs->length));
 2538                 status = le32toh(rs->flags);
 2539                 if ((status & ALE_RD_ERROR) != 0) {
 2540                         /*
 2541                          * We want to pass the following frames to upper
 2542                          * layer regardless of error status of Rx return
 2543                          * status.
 2544                          *
 2545                          *  o IP/TCP/UDP checksum is bad.
 2546                          *  o frame length and protocol specific length
 2547                          *     does not match.
 2548                          */
 2549                         if ((status & (ALE_RD_CRC | ALE_RD_CODE |
 2550                             ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
 2551                             ALE_RD_TRUNC)) != 0) {
 2552                                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2553                                 continue;
 2554                         }
 2555                 }
 2556                 /*
 2557                  * m_devget(9) is major bottle-neck of ale(4)(It comes
 2558                  * from hardware limitation). For jumbo frames we could
 2559                  * get a slightly better performance if driver use
 2560                  * m_getjcl(9) with proper buffer size argument. However
 2561                  * that would make code more complicated and I don't
 2562                  * think users would expect good Rx performance numbers
 2563                  * on these low-end consumer ethernet controller.
 2564                  */
 2565                 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
 2566                     ETHER_ALIGN, ifp, NULL);
 2567                 if (m == NULL) {
 2568                         ifp->if_iqdrops++;
 2569                         ale_rx_update_page(sc, &rx_page, length, &prod);
 2570                         continue;
 2571                 }
 2572                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2573                     (status & ALE_RD_IPV4) != 0)
 2574                         ale_rxcsum(sc, m, status);
 2575                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2576                     (status & ALE_RD_VLAN) != 0) {
 2577                         vtags = ALE_RX_VLAN(le32toh(rs->vtags));
 2578                         m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
 2579                         m->m_flags |= M_VLANTAG;
 2580                 }
 2581 
 2582                 /* Pass it to upper layer. */
 2583                 ALE_UNLOCK(sc);
 2584                 (*ifp->if_input)(ifp, m);
 2585                 ALE_LOCK(sc);
 2586 
 2587                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2588         }
 2589 
 2590         return (count > 0 ? 0 : EAGAIN);
 2591 }
 2592 
 2593 static void
 2594 ale_tick(void *arg)
 2595 {
 2596         struct ale_softc *sc;
 2597         struct mii_data *mii;
 2598 
 2599         sc = (struct ale_softc *)arg;
 2600 
 2601         ALE_LOCK_ASSERT(sc);
 2602 
 2603         mii = device_get_softc(sc->ale_miibus);
 2604         mii_tick(mii);
 2605         ale_stats_update(sc);
 2606         /*
 2607          * Reclaim Tx buffers that have been transferred. It's not
 2608          * needed here but it would release allocated mbuf chains
 2609          * faster and limit the maximum delay to a hz.
 2610          */
 2611         ale_txeof(sc);
 2612         ale_watchdog(sc);
 2613         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2614 }
 2615 
 2616 static void
 2617 ale_reset(struct ale_softc *sc)
 2618 {
 2619         uint32_t reg;
 2620         int i;
 2621 
 2622         /* Initialize PCIe module. From Linux. */
 2623         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2624 
 2625         CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
 2626         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2627                 DELAY(10);
 2628                 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
 2629                         break;
 2630         }
 2631         if (i == 0)
 2632                 device_printf(sc->ale_dev, "master reset timeout!\n");
 2633 
 2634         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2635                 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
 2636                         break;
 2637                 DELAY(10);
 2638         }
 2639 
 2640         if (i == 0)
 2641                 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
 2642 }
 2643 
 2644 static void
 2645 ale_init(void *xsc)
 2646 {
 2647         struct ale_softc *sc;
 2648 
 2649         sc = (struct ale_softc *)xsc;
 2650         ALE_LOCK(sc);
 2651         ale_init_locked(sc);
 2652         ALE_UNLOCK(sc);
 2653 }
 2654 
 2655 static void
 2656 ale_init_locked(struct ale_softc *sc)
 2657 {
 2658         struct ifnet *ifp;
 2659         struct mii_data *mii;
 2660         uint8_t eaddr[ETHER_ADDR_LEN];
 2661         bus_addr_t paddr;
 2662         uint32_t reg, rxf_hi, rxf_lo;
 2663 
 2664         ALE_LOCK_ASSERT(sc);
 2665 
 2666         ifp = sc->ale_ifp;
 2667         mii = device_get_softc(sc->ale_miibus);
 2668 
 2669         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2670                 return;
 2671         /*
 2672          * Cancel any pending I/O.
 2673          */
 2674         ale_stop(sc);
 2675         /*
 2676          * Reset the chip to a known state.
 2677          */
 2678         ale_reset(sc);
 2679         /* Initialize Tx descriptors, DMA memory blocks. */
 2680         ale_init_rx_pages(sc);
 2681         ale_init_tx_ring(sc);
 2682 
 2683         /* Reprogram the station address. */
 2684         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2685         CSR_WRITE_4(sc, ALE_PAR0,
 2686             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2687         CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2688         /*
 2689          * Clear WOL status and disable all WOL feature as WOL
 2690          * would interfere Rx operation under normal environments.
 2691          */
 2692         CSR_READ_4(sc, ALE_WOL_CFG);
 2693         CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 2694         /*
 2695          * Set Tx descriptor/RXF0/CMB base addresses. They share
 2696          * the same high address part of DMAable region.
 2697          */
 2698         paddr = sc->ale_cdata.ale_tx_ring_paddr;
 2699         CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
 2700         CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
 2701         CSR_WRITE_4(sc, ALE_TPD_CNT,
 2702             (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
 2703         /* Set Rx page base address, note we use single queue. */
 2704         paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
 2705         CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
 2706         paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
 2707         CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
 2708         /* Set Tx/Rx CMB addresses. */
 2709         paddr = sc->ale_cdata.ale_tx_cmb_paddr;
 2710         CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
 2711         paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
 2712         CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
 2713         paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
 2714         CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
 2715         /* Mark RXF0 is valid. */
 2716         CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
 2717         CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
 2718         /*
 2719          * No need to initialize RFX1/RXF2/RXF3. We don't use
 2720          * multi-queue yet.
 2721          */
 2722 
 2723         /* Set Rx page size, excluding guard frame size. */
 2724         CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
 2725         /* Tell hardware that we're ready to load DMA blocks. */
 2726         CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2727 
 2728         /* Set Rx/Tx interrupt trigger threshold. */
 2729         CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
 2730             (4 << INT_TRIG_TX_THRESH_SHIFT));
 2731         /*
 2732          * XXX
 2733          * Set interrupt trigger timer, its purpose and relation
 2734          * with interrupt moderation mechanism is not clear yet.
 2735          */
 2736         CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
 2737             ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
 2738             (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
 2739 
 2740         /* Configure interrupt moderation timer. */
 2741         reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
 2742         reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
 2743         CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
 2744         reg = CSR_READ_4(sc, ALE_MASTER_CFG);
 2745         reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
 2746         reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
 2747         if (ALE_USECS(sc->ale_int_rx_mod) != 0)
 2748                 reg |= MASTER_IM_RX_TIMER_ENB;
 2749         if (ALE_USECS(sc->ale_int_tx_mod) != 0)
 2750                 reg |= MASTER_IM_TX_TIMER_ENB;
 2751         CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
 2752         CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
 2753 
 2754         /* Set Maximum frame size of controller. */
 2755         if (ifp->if_mtu < ETHERMTU)
 2756                 sc->ale_max_frame_size = ETHERMTU;
 2757         else
 2758                 sc->ale_max_frame_size = ifp->if_mtu;
 2759         sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 2760             ETHER_CRC_LEN;
 2761         CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
 2762         /* Configure IPG/IFG parameters. */
 2763         CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
 2764             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
 2765             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2766             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2767             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
 2768         /* Set parameters for half-duplex media. */
 2769         CSR_WRITE_4(sc, ALE_HDPX_CFG,
 2770             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2771             HDPX_CFG_LCOL_MASK) |
 2772             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2773             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2774             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2775             HDPX_CFG_ABEBT_MASK) |
 2776             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2777             HDPX_CFG_JAMIPG_MASK));
 2778 
 2779         /* Configure Tx jumbo frame parameters. */
 2780         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2781                 if (ifp->if_mtu < ETHERMTU)
 2782                         reg = sc->ale_max_frame_size;
 2783                 else if (ifp->if_mtu < 6 * 1024)
 2784                         reg = (sc->ale_max_frame_size * 2) / 3;
 2785                 else
 2786                         reg = sc->ale_max_frame_size / 2;
 2787                 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
 2788                     roundup(reg, TX_JUMBO_THRESH_UNIT) >>
 2789                     TX_JUMBO_THRESH_UNIT_SHIFT);
 2790         }
 2791         /* Configure TxQ. */
 2792         reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
 2793             << TXQ_CFG_TX_FIFO_BURST_SHIFT;
 2794         reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2795             TXQ_CFG_TPD_BURST_MASK;
 2796         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
 2797 
 2798         /* Configure Rx jumbo frame & flow control parameters. */
 2799         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2800                 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
 2801                 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
 2802                     (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
 2803                     RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
 2804                     ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
 2805                     RX_JUMBO_LKAH_MASK));
 2806                 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
 2807                 rxf_hi = (reg * 7) / 10;
 2808                 rxf_lo = (reg * 3)/ 10;
 2809                 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
 2810                     ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2811                     RX_FIFO_PAUSE_THRESH_LO_MASK) |
 2812                     ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2813                      RX_FIFO_PAUSE_THRESH_HI_MASK));
 2814         }
 2815 
 2816         /* Disable RSS. */
 2817         CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
 2818         CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
 2819 
 2820         /* Configure RxQ. */
 2821         CSR_WRITE_4(sc, ALE_RXQ_CFG,
 2822             RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2823 
 2824         /* Configure DMA parameters. */
 2825         reg = 0;
 2826         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
 2827                 reg |= DMA_CFG_TXCMB_ENB;
 2828         CSR_WRITE_4(sc, ALE_DMA_CFG,
 2829             DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
 2830             sc->ale_dma_rd_burst | reg |
 2831             sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
 2832             ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
 2833             DMA_CFG_RD_DELAY_CNT_MASK) |
 2834             ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
 2835             DMA_CFG_WR_DELAY_CNT_MASK));
 2836 
 2837         /*
 2838          * Hardware can be configured to issue SMB interrupt based
 2839          * on programmed interval. Since there is a callout that is
 2840          * invoked for every hz in driver we use that instead of
 2841          * relying on periodic SMB interrupt.
 2842          */
 2843         CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
 2844         /* Clear MAC statistics. */
 2845         ale_stats_clear(sc);
 2846 
 2847         /*
 2848          * Configure Tx/Rx MACs.
 2849          *  - Auto-padding for short frames.
 2850          *  - Enable CRC generation.
 2851          *  Actual reconfiguration of MAC for resolved speed/duplex
 2852          *  is followed after detection of link establishment.
 2853          *  AR81xx always does checksum computation regardless of
 2854          *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
 2855          *  cause Rx handling issue for fragmented IP datagrams due
 2856          *  to silicon bug.
 2857          */
 2858         reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
 2859             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2860             MAC_CFG_PREAMBLE_MASK);
 2861         if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
 2862                 reg |= MAC_CFG_SPEED_10_100;
 2863         else
 2864                 reg |= MAC_CFG_SPEED_1000;
 2865         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2866 
 2867         /* Set up the receive filter. */
 2868         ale_rxfilter(sc);
 2869         ale_rxvlan(sc);
 2870 
 2871         /* Acknowledge all pending interrupts and clear it. */
 2872         CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
 2873         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2874         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
 2875 
 2876         sc->ale_flags &= ~ALE_FLAG_LINK;
 2877         /* Switch to the current media. */
 2878         mii_mediachg(mii);
 2879 
 2880         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2881 
 2882         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2883         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2884 }
 2885 
 2886 static void
 2887 ale_stop(struct ale_softc *sc)
 2888 {
 2889         struct ifnet *ifp;
 2890         struct ale_txdesc *txd;
 2891         uint32_t reg;
 2892         int i;
 2893 
 2894         ALE_LOCK_ASSERT(sc);
 2895         /*
 2896          * Mark the interface down and cancel the watchdog timer.
 2897          */
 2898         ifp = sc->ale_ifp;
 2899         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2900         sc->ale_flags &= ~ALE_FLAG_LINK;
 2901         callout_stop(&sc->ale_tick_ch);
 2902         sc->ale_watchdog_timer = 0;
 2903         ale_stats_update(sc);
 2904         /* Disable interrupts. */
 2905         CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
 2906         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2907         /* Disable queue processing and DMA. */
 2908         reg = CSR_READ_4(sc, ALE_TXQ_CFG);
 2909         reg &= ~TXQ_CFG_ENB;
 2910         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
 2911         reg = CSR_READ_4(sc, ALE_RXQ_CFG);
 2912         reg &= ~RXQ_CFG_ENB;
 2913         CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
 2914         reg = CSR_READ_4(sc, ALE_DMA_CFG);
 2915         reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
 2916         CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
 2917         DELAY(1000);
 2918         /* Stop Rx/Tx MACs. */
 2919         ale_stop_mac(sc);
 2920         /* Disable interrupts which might be touched in taskq handler. */
 2921         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2922 
 2923         /*
 2924          * Free TX mbufs still in the queues.
 2925          */
 2926         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2927                 txd = &sc->ale_cdata.ale_txdesc[i];
 2928                 if (txd->tx_m != NULL) {
 2929                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2930                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2931                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2932                             txd->tx_dmamap);
 2933                         m_freem(txd->tx_m);
 2934                         txd->tx_m = NULL;
 2935                 }
 2936         }
 2937 }
 2938 
 2939 static void
 2940 ale_stop_mac(struct ale_softc *sc)
 2941 {
 2942         uint32_t reg;
 2943         int i;
 2944 
 2945         ALE_LOCK_ASSERT(sc);
 2946 
 2947         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2948         if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
 2949                 reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
 2950                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2951         }
 2952 
 2953         for (i = ALE_TIMEOUT; i > 0; i--) {
 2954                 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
 2955                 if (reg == 0)
 2956                         break;
 2957                 DELAY(10);
 2958         }
 2959         if (i == 0)
 2960                 device_printf(sc->ale_dev,
 2961                     "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
 2962 }
 2963 
 2964 static void
 2965 ale_init_tx_ring(struct ale_softc *sc)
 2966 {
 2967         struct ale_txdesc *txd;
 2968         int i;
 2969 
 2970         ALE_LOCK_ASSERT(sc);
 2971 
 2972         sc->ale_cdata.ale_tx_prod = 0;
 2973         sc->ale_cdata.ale_tx_cons = 0;
 2974         sc->ale_cdata.ale_tx_cnt = 0;
 2975 
 2976         bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
 2977         bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
 2978         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2979                 txd = &sc->ale_cdata.ale_txdesc[i];
 2980                 txd->tx_m = NULL;
 2981         }
 2982         *sc->ale_cdata.ale_tx_cmb = 0;
 2983         bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2984             sc->ale_cdata.ale_tx_cmb_map,
 2985             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2986         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2987             sc->ale_cdata.ale_tx_ring_map,
 2988             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2989 }
 2990 
 2991 static void
 2992 ale_init_rx_pages(struct ale_softc *sc)
 2993 {
 2994         struct ale_rx_page *rx_page;
 2995         int i;
 2996 
 2997         ALE_LOCK_ASSERT(sc);
 2998 
 2999         sc->ale_morework = 0;
 3000         sc->ale_cdata.ale_rx_seqno = 0;
 3001         sc->ale_cdata.ale_rx_curp = 0;
 3002 
 3003         for (i = 0; i < ALE_RX_PAGES; i++) {
 3004                 rx_page = &sc->ale_cdata.ale_rx_page[i];
 3005                 bzero(rx_page->page_addr, sc->ale_pagesize);
 3006                 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
 3007                 rx_page->cons = 0;
 3008                 *rx_page->cmb_addr = 0;
 3009                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 3010                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3011                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 3012                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3013         }
 3014 }
 3015 
 3016 static void
 3017 ale_rxvlan(struct ale_softc *sc)
 3018 {
 3019         struct ifnet *ifp;
 3020         uint32_t reg;
 3021 
 3022         ALE_LOCK_ASSERT(sc);
 3023 
 3024         ifp = sc->ale_ifp;
 3025         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 3026         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 3027         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 3028                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 3029         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 3030 }
 3031 
 3032 static void
 3033 ale_rxfilter(struct ale_softc *sc)
 3034 {
 3035         struct ifnet *ifp;
 3036         struct ifmultiaddr *ifma;
 3037         uint32_t crc;
 3038         uint32_t mchash[2];
 3039         uint32_t rxcfg;
 3040 
 3041         ALE_LOCK_ASSERT(sc);
 3042 
 3043         ifp = sc->ale_ifp;
 3044 
 3045         rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
 3046         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 3047         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3048                 rxcfg |= MAC_CFG_BCAST;
 3049         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3050                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3051                         rxcfg |= MAC_CFG_PROMISC;
 3052                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3053                         rxcfg |= MAC_CFG_ALLMULTI;
 3054                 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
 3055                 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
 3056                 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3057                 return;
 3058         }
 3059 
 3060         /* Program new filter. */
 3061         bzero(mchash, sizeof(mchash));
 3062 
 3063         if_maddr_rlock(ifp);
 3064         TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
 3065                 if (ifma->ifma_addr->sa_family != AF_LINK)
 3066                         continue;
 3067                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
 3068                     ifma->ifma_addr), ETHER_ADDR_LEN);
 3069                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 3070         }
 3071         if_maddr_runlock(ifp);
 3072 
 3073         CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
 3074         CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
 3075         CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3076 }
 3077 
 3078 static int
 3079 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3080 {
 3081         int error, value;
 3082 
 3083         if (arg1 == NULL)
 3084                 return (EINVAL);
 3085         value = *(int *)arg1;
 3086         error = sysctl_handle_int(oidp, &value, 0, req);
 3087         if (error || req->newptr == NULL)
 3088                 return (error);
 3089         if (value < low || value > high)
 3090                 return (EINVAL);
 3091         *(int *)arg1 = value;
 3092 
 3093         return (0);
 3094 }
 3095 
 3096 static int
 3097 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
 3098 {
 3099         return (sysctl_int_range(oidp, arg1, arg2, req,
 3100             ALE_PROC_MIN, ALE_PROC_MAX));
 3101 }
 3102 
 3103 static int
 3104 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
 3105 {
 3106 
 3107         return (sysctl_int_range(oidp, arg1, arg2, req,
 3108             ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
 3109 }

Cache object: ce6bdf9179f637d392edbefb322be3a1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.