The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ale/if_ale.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/8.4/sys/dev/ale/if_ale.c 245154 2013-01-08 05:35:18Z yongari $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/bus.h>
   36 #include <sys/endian.h>
   37 #include <sys/kernel.h>
   38 #include <sys/malloc.h>
   39 #include <sys/mbuf.h>
   40 #include <sys/module.h>
   41 #include <sys/rman.h>
   42 #include <sys/queue.h>
   43 #include <sys/socket.h>
   44 #include <sys/sockio.h>
   45 #include <sys/sysctl.h>
   46 #include <sys/taskqueue.h>
   47 
   48 #include <net/bpf.h>
   49 #include <net/if.h>
   50 #include <net/if_arp.h>
   51 #include <net/ethernet.h>
   52 #include <net/if_dl.h>
   53 #include <net/if_llc.h>
   54 #include <net/if_media.h>
   55 #include <net/if_types.h>
   56 #include <net/if_vlan_var.h>
   57 
   58 #include <netinet/in.h>
   59 #include <netinet/in_systm.h>
   60 #include <netinet/ip.h>
   61 #include <netinet/tcp.h>
   62 
   63 #include <dev/mii/mii.h>
   64 #include <dev/mii/miivar.h>
   65 
   66 #include <dev/pci/pcireg.h>
   67 #include <dev/pci/pcivar.h>
   68 
   69 #include <machine/bus.h>
   70 #include <machine/in_cksum.h>
   71 
   72 #include <dev/ale/if_alereg.h>
   73 #include <dev/ale/if_alevar.h>
   74 
   75 /* "device miibus" required.  See GENERIC if you get errors here. */
   76 #include "miibus_if.h"
   77 
   78 /* For more information about Tx checksum offload issues see ale_encap(). */
   79 #define ALE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
   80 
   81 MODULE_DEPEND(ale, pci, 1, 1, 1);
   82 MODULE_DEPEND(ale, ether, 1, 1, 1);
   83 MODULE_DEPEND(ale, miibus, 1, 1, 1);
   84 
   85 /* Tunables. */
   86 static int msi_disable = 0;
   87 static int msix_disable = 0;
   88 TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
   89 TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
   90 
   91 /*
   92  * Devices supported by this driver.
   93  */
   94 static const struct ale_dev {
   95         uint16_t        ale_vendorid;
   96         uint16_t        ale_deviceid;
   97         const char      *ale_name;
   98 } ale_devs[] = {
   99     { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
  100     "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
  101 };
  102 
  103 static int      ale_attach(device_t);
  104 static int      ale_check_boundary(struct ale_softc *);
  105 static int      ale_detach(device_t);
  106 static int      ale_dma_alloc(struct ale_softc *);
  107 static void     ale_dma_free(struct ale_softc *);
  108 static void     ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
  109 static int      ale_encap(struct ale_softc *, struct mbuf **);
  110 static void     ale_get_macaddr(struct ale_softc *);
  111 static void     ale_init(void *);
  112 static void     ale_init_locked(struct ale_softc *);
  113 static void     ale_init_rx_pages(struct ale_softc *);
  114 static void     ale_init_tx_ring(struct ale_softc *);
  115 static void     ale_int_task(void *, int);
  116 static int      ale_intr(void *);
  117 static int      ale_ioctl(struct ifnet *, u_long, caddr_t);
  118 static void     ale_mac_config(struct ale_softc *);
  119 static int      ale_miibus_readreg(device_t, int, int);
  120 static void     ale_miibus_statchg(device_t);
  121 static int      ale_miibus_writereg(device_t, int, int, int);
  122 static int      ale_mediachange(struct ifnet *);
  123 static void     ale_mediastatus(struct ifnet *, struct ifmediareq *);
  124 static void     ale_phy_reset(struct ale_softc *);
  125 static int      ale_probe(device_t);
  126 static void     ale_reset(struct ale_softc *);
  127 static int      ale_resume(device_t);
  128 static void     ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
  129     uint32_t, uint32_t *);
  130 static void     ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
  131 static int      ale_rxeof(struct ale_softc *sc, int);
  132 static void     ale_rxfilter(struct ale_softc *);
  133 static void     ale_rxvlan(struct ale_softc *);
  134 static void     ale_setlinkspeed(struct ale_softc *);
  135 static void     ale_setwol(struct ale_softc *);
  136 static int      ale_shutdown(device_t);
  137 static void     ale_start(struct ifnet *);
  138 static void     ale_start_locked(struct ifnet *);
  139 static void     ale_stats_clear(struct ale_softc *);
  140 static void     ale_stats_update(struct ale_softc *);
  141 static void     ale_stop(struct ale_softc *);
  142 static void     ale_stop_mac(struct ale_softc *);
  143 static int      ale_suspend(device_t);
  144 static void     ale_sysctl_node(struct ale_softc *);
  145 static void     ale_tick(void *);
  146 static void     ale_txeof(struct ale_softc *);
  147 static void     ale_watchdog(struct ale_softc *);
  148 static int      sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
  149 static int      sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
  150 static int      sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
  151 
  152 static device_method_t ale_methods[] = {
  153         /* Device interface. */
  154         DEVMETHOD(device_probe,         ale_probe),
  155         DEVMETHOD(device_attach,        ale_attach),
  156         DEVMETHOD(device_detach,        ale_detach),
  157         DEVMETHOD(device_shutdown,      ale_shutdown),
  158         DEVMETHOD(device_suspend,       ale_suspend),
  159         DEVMETHOD(device_resume,        ale_resume),
  160 
  161         /* MII interface. */
  162         DEVMETHOD(miibus_readreg,       ale_miibus_readreg),
  163         DEVMETHOD(miibus_writereg,      ale_miibus_writereg),
  164         DEVMETHOD(miibus_statchg,       ale_miibus_statchg),
  165 
  166         DEVMETHOD_END
  167 };
  168 
  169 static driver_t ale_driver = {
  170         "ale",
  171         ale_methods,
  172         sizeof(struct ale_softc)
  173 };
  174 
  175 static devclass_t ale_devclass;
  176 
  177 DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, NULL, NULL);
  178 DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, NULL, NULL);
  179 
  180 static struct resource_spec ale_res_spec_mem[] = {
  181         { SYS_RES_MEMORY,       PCIR_BAR(0),    RF_ACTIVE },
  182         { -1,                   0,              0 }
  183 };
  184 
  185 static struct resource_spec ale_irq_spec_legacy[] = {
  186         { SYS_RES_IRQ,          0,              RF_ACTIVE | RF_SHAREABLE },
  187         { -1,                   0,              0 }
  188 };
  189 
  190 static struct resource_spec ale_irq_spec_msi[] = {
  191         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  192         { -1,                   0,              0 }
  193 };
  194 
  195 static struct resource_spec ale_irq_spec_msix[] = {
  196         { SYS_RES_IRQ,          1,              RF_ACTIVE },
  197         { -1,                   0,              0 }
  198 };
  199 
  200 static int
  201 ale_miibus_readreg(device_t dev, int phy, int reg)
  202 {
  203         struct ale_softc *sc;
  204         uint32_t v;
  205         int i;
  206 
  207         sc = device_get_softc(dev);
  208 
  209         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
  210             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  211         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  212                 DELAY(5);
  213                 v = CSR_READ_4(sc, ALE_MDIO);
  214                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  215                         break;
  216         }
  217 
  218         if (i == 0) {
  219                 device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
  220                 return (0);
  221         }
  222 
  223         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
  224 }
  225 
  226 static int
  227 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
  228 {
  229         struct ale_softc *sc;
  230         uint32_t v;
  231         int i;
  232 
  233         sc = device_get_softc(dev);
  234 
  235         CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
  236             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
  237             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
  238         for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
  239                 DELAY(5);
  240                 v = CSR_READ_4(sc, ALE_MDIO);
  241                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
  242                         break;
  243         }
  244 
  245         if (i == 0)
  246                 device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
  247 
  248         return (0);
  249 }
  250 
  251 static void
  252 ale_miibus_statchg(device_t dev)
  253 {
  254         struct ale_softc *sc;
  255         struct mii_data *mii;
  256         struct ifnet *ifp;
  257         uint32_t reg;
  258 
  259         sc = device_get_softc(dev);
  260         mii = device_get_softc(sc->ale_miibus);
  261         ifp = sc->ale_ifp;
  262         if (mii == NULL || ifp == NULL ||
  263             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  264                 return;
  265 
  266         sc->ale_flags &= ~ALE_FLAG_LINK;
  267         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  268             (IFM_ACTIVE | IFM_AVALID)) {
  269                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  270                 case IFM_10_T:
  271                 case IFM_100_TX:
  272                         sc->ale_flags |= ALE_FLAG_LINK;
  273                         break;
  274                 case IFM_1000_T:
  275                         if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
  276                                 sc->ale_flags |= ALE_FLAG_LINK;
  277                         break;
  278                 default:
  279                         break;
  280                 }
  281         }
  282 
  283         /* Stop Rx/Tx MACs. */
  284         ale_stop_mac(sc);
  285 
  286         /* Program MACs with resolved speed/duplex/flow-control. */
  287         if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
  288                 ale_mac_config(sc);
  289                 /* Reenable Tx/Rx MACs. */
  290                 reg = CSR_READ_4(sc, ALE_MAC_CFG);
  291                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
  292                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
  293         }
  294 }
  295 
  296 static void
  297 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
  298 {
  299         struct ale_softc *sc;
  300         struct mii_data *mii;
  301 
  302         sc = ifp->if_softc;
  303         ALE_LOCK(sc);
  304         if ((ifp->if_flags & IFF_UP) == 0) {
  305                 ALE_UNLOCK(sc);
  306                 return;
  307         }
  308         mii = device_get_softc(sc->ale_miibus);
  309 
  310         mii_pollstat(mii);
  311         ifmr->ifm_status = mii->mii_media_status;
  312         ifmr->ifm_active = mii->mii_media_active;
  313         ALE_UNLOCK(sc);
  314 }
  315 
  316 static int
  317 ale_mediachange(struct ifnet *ifp)
  318 {
  319         struct ale_softc *sc;
  320         struct mii_data *mii;
  321         struct mii_softc *miisc;
  322         int error;
  323 
  324         sc = ifp->if_softc;
  325         ALE_LOCK(sc);
  326         mii = device_get_softc(sc->ale_miibus);
  327         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
  328                 mii_phy_reset(miisc);
  329         error = mii_mediachg(mii);
  330         ALE_UNLOCK(sc);
  331 
  332         return (error);
  333 }
  334 
  335 static int
  336 ale_probe(device_t dev)
  337 {
  338         const struct ale_dev *sp;
  339         int i;
  340         uint16_t vendor, devid;
  341 
  342         vendor = pci_get_vendor(dev);
  343         devid = pci_get_device(dev);
  344         sp = ale_devs;
  345         for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
  346                 if (vendor == sp->ale_vendorid &&
  347                     devid == sp->ale_deviceid) {
  348                         device_set_desc(dev, sp->ale_name);
  349                         return (BUS_PROBE_DEFAULT);
  350                 }
  351                 sp++;
  352         }
  353 
  354         return (ENXIO);
  355 }
  356 
  357 static void
  358 ale_get_macaddr(struct ale_softc *sc)
  359 {
  360         uint32_t ea[2], reg;
  361         int i, vpdc;
  362 
  363         reg = CSR_READ_4(sc, ALE_SPI_CTRL);
  364         if ((reg & SPI_VPD_ENB) != 0) {
  365                 reg &= ~SPI_VPD_ENB;
  366                 CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
  367         }
  368 
  369         if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
  370                 /*
  371                  * PCI VPD capability found, let TWSI reload EEPROM.
  372                  * This will set ethernet address of controller.
  373                  */
  374                 CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
  375                     TWSI_CTRL_SW_LD_START);
  376                 for (i = 100; i > 0; i--) {
  377                         DELAY(1000);
  378                         reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
  379                         if ((reg & TWSI_CTRL_SW_LD_START) == 0)
  380                                 break;
  381                 }
  382                 if (i == 0)
  383                         device_printf(sc->ale_dev,
  384                             "reloading EEPROM timeout!\n");
  385         } else {
  386                 if (bootverbose)
  387                         device_printf(sc->ale_dev,
  388                             "PCI VPD capability not found!\n");
  389         }
  390 
  391         ea[0] = CSR_READ_4(sc, ALE_PAR0);
  392         ea[1] = CSR_READ_4(sc, ALE_PAR1);
  393         sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
  394         sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
  395         sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
  396         sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
  397         sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
  398         sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
  399 }
  400 
  401 static void
  402 ale_phy_reset(struct ale_softc *sc)
  403 {
  404 
  405         /* Reset magic from Linux. */
  406         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  407             GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
  408             GPHY_CTRL_PHY_PLL_ON);
  409         DELAY(1000);
  410         CSR_WRITE_2(sc, ALE_GPHY_CTRL,
  411             GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
  412             GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
  413         DELAY(1000);
  414 
  415 #define ATPHY_DBG_ADDR          0x1D
  416 #define ATPHY_DBG_DATA          0x1E
  417 
  418         /* Enable hibernation mode. */
  419         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  420             ATPHY_DBG_ADDR, 0x0B);
  421         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  422             ATPHY_DBG_DATA, 0xBC00);
  423         /* Set Class A/B for all modes. */
  424         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  425             ATPHY_DBG_ADDR, 0x00);
  426         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  427             ATPHY_DBG_DATA, 0x02EF);
  428         /* Enable 10BT power saving. */
  429         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  430             ATPHY_DBG_ADDR, 0x12);
  431         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  432             ATPHY_DBG_DATA, 0x4C04);
  433         /* Adjust 1000T power. */
  434         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  435             ATPHY_DBG_ADDR, 0x04);
  436         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  437             ATPHY_DBG_ADDR, 0x8BBB);
  438         /* 10BT center tap voltage. */
  439         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  440             ATPHY_DBG_ADDR, 0x05);
  441         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
  442             ATPHY_DBG_ADDR, 0x2C46);
  443 
  444 #undef  ATPHY_DBG_ADDR
  445 #undef  ATPHY_DBG_DATA
  446         DELAY(1000);
  447 }
  448 
  449 static int
  450 ale_attach(device_t dev)
  451 {
  452         struct ale_softc *sc;
  453         struct ifnet *ifp;
  454         uint16_t burst;
  455         int error, i, msic, msixc, pmc;
  456         uint32_t rxf_len, txf_len;
  457 
  458         error = 0;
  459         sc = device_get_softc(dev);
  460         sc->ale_dev = dev;
  461 
  462         mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
  463             MTX_DEF);
  464         callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
  465         TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
  466 
  467         /* Map the device. */
  468         pci_enable_busmaster(dev);
  469         sc->ale_res_spec = ale_res_spec_mem;
  470         sc->ale_irq_spec = ale_irq_spec_legacy;
  471         error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
  472         if (error != 0) {
  473                 device_printf(dev, "cannot allocate memory resources.\n");
  474                 goto fail;
  475         }
  476 
  477         /* Set PHY address. */
  478         sc->ale_phyaddr = ALE_PHY_ADDR;
  479 
  480         /* Reset PHY. */
  481         ale_phy_reset(sc);
  482 
  483         /* Reset the ethernet controller. */
  484         ale_reset(sc);
  485 
  486         /* Get PCI and chip id/revision. */
  487         sc->ale_rev = pci_get_revid(dev);
  488         if (sc->ale_rev >= 0xF0) {
  489                 /* L2E Rev. B. AR8114 */
  490                 sc->ale_flags |= ALE_FLAG_FASTETHER;
  491         } else {
  492                 if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
  493                         /* L1E AR8121 */
  494                         sc->ale_flags |= ALE_FLAG_JUMBO;
  495                 } else {
  496                         /* L2E Rev. A. AR8113 */
  497                         sc->ale_flags |= ALE_FLAG_FASTETHER;
  498                 }
  499         }
  500         /*
  501          * All known controllers seems to require 4 bytes alignment
  502          * of Tx buffers to make Tx checksum offload with custom
  503          * checksum generation method work.
  504          */
  505         sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
  506         /*
  507          * All known controllers seems to have issues on Rx checksum
  508          * offload for fragmented IP datagrams.
  509          */
  510         sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
  511         /*
  512          * Don't use Tx CMB. It is known to cause RRS update failure
  513          * under certain circumstances. Typical phenomenon of the
  514          * issue would be unexpected sequence number encountered in
  515          * Rx handler.
  516          */
  517         sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
  518         sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
  519             MASTER_CHIP_REV_SHIFT;
  520         if (bootverbose) {
  521                 device_printf(dev, "PCI device revision : 0x%04x\n",
  522                     sc->ale_rev);
  523                 device_printf(dev, "Chip id/revision : 0x%04x\n",
  524                     sc->ale_chip_rev);
  525         }
  526         txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
  527         rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
  528         /*
  529          * Uninitialized hardware returns an invalid chip id/revision
  530          * as well as 0xFFFFFFFF for Tx/Rx fifo length.
  531          */
  532         if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
  533             rxf_len == 0xFFFFFFF) {
  534                 device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
  535                     "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
  536                     txf_len, rxf_len);
  537                 error = ENXIO;
  538                 goto fail;
  539         }
  540         device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
  541 
  542         /* Allocate IRQ resources. */
  543         msixc = pci_msix_count(dev);
  544         msic = pci_msi_count(dev);
  545         if (bootverbose) {
  546                 device_printf(dev, "MSIX count : %d\n", msixc);
  547                 device_printf(dev, "MSI count : %d\n", msic);
  548         }
  549 
  550         /* Prefer MSIX over MSI. */
  551         if (msix_disable == 0 || msi_disable == 0) {
  552                 if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
  553                     pci_alloc_msix(dev, &msixc) == 0) {
  554                         if (msixc == ALE_MSIX_MESSAGES) {
  555                                 device_printf(dev, "Using %d MSIX messages.\n",
  556                                     msixc);
  557                                 sc->ale_flags |= ALE_FLAG_MSIX;
  558                                 sc->ale_irq_spec = ale_irq_spec_msix;
  559                         } else
  560                                 pci_release_msi(dev);
  561                 }
  562                 if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
  563                     msic == ALE_MSI_MESSAGES &&
  564                     pci_alloc_msi(dev, &msic) == 0) {
  565                         if (msic == ALE_MSI_MESSAGES) {
  566                                 device_printf(dev, "Using %d MSI messages.\n",
  567                                     msic);
  568                                 sc->ale_flags |= ALE_FLAG_MSI;
  569                                 sc->ale_irq_spec = ale_irq_spec_msi;
  570                         } else
  571                                 pci_release_msi(dev);
  572                 }
  573         }
  574 
  575         error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  576         if (error != 0) {
  577                 device_printf(dev, "cannot allocate IRQ resources.\n");
  578                 goto fail;
  579         }
  580 
  581         /* Get DMA parameters from PCIe device control register. */
  582         if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
  583                 sc->ale_flags |= ALE_FLAG_PCIE;
  584                 burst = pci_read_config(dev, i + 0x08, 2);
  585                 /* Max read request size. */
  586                 sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
  587                     DMA_CFG_RD_BURST_SHIFT;
  588                 /* Max payload size. */
  589                 sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
  590                     DMA_CFG_WR_BURST_SHIFT;
  591                 if (bootverbose) {
  592                         device_printf(dev, "Read request size : %d bytes.\n",
  593                             128 << ((burst >> 12) & 0x07));
  594                         device_printf(dev, "TLP payload size : %d bytes.\n",
  595                             128 << ((burst >> 5) & 0x07));
  596                 }
  597         } else {
  598                 sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
  599                 sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
  600         }
  601 
  602         /* Create device sysctl node. */
  603         ale_sysctl_node(sc);
  604 
  605         if ((error = ale_dma_alloc(sc) != 0))
  606                 goto fail;
  607 
  608         /* Load station address. */
  609         ale_get_macaddr(sc);
  610 
  611         ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
  612         if (ifp == NULL) {
  613                 device_printf(dev, "cannot allocate ifnet structure.\n");
  614                 error = ENXIO;
  615                 goto fail;
  616         }
  617 
  618         ifp->if_softc = sc;
  619         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
  620         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
  621         ifp->if_ioctl = ale_ioctl;
  622         ifp->if_start = ale_start;
  623         ifp->if_init = ale_init;
  624         ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
  625         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
  626         IFQ_SET_READY(&ifp->if_snd);
  627         ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
  628         ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
  629         if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
  630                 sc->ale_flags |= ALE_FLAG_PMCAP;
  631                 ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
  632         }
  633         ifp->if_capenable = ifp->if_capabilities;
  634 
  635         /* Set up MII bus. */
  636         error = mii_attach(dev, &sc->ale_miibus, ifp, ale_mediachange,
  637             ale_mediastatus, BMSR_DEFCAPMASK, sc->ale_phyaddr, MII_OFFSET_ANY,
  638             MIIF_DOPAUSE);
  639         if (error != 0) {
  640                 device_printf(dev, "attaching PHYs failed\n");
  641                 goto fail;
  642         }
  643 
  644         ether_ifattach(ifp, sc->ale_eaddr);
  645 
  646         /* VLAN capability setup. */
  647         ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
  648             IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
  649         ifp->if_capenable = ifp->if_capabilities;
  650         /*
  651          * Even though controllers supported by ale(3) have Rx checksum
  652          * offload bug the workaround for fragmented frames seemed to
  653          * work so far. However it seems Rx checksum offload does not
  654          * work under certain conditions. So disable Rx checksum offload
  655          * until I find more clue about it but allow users to override it.
  656          */
  657         ifp->if_capenable &= ~IFCAP_RXCSUM;
  658 
  659         /* Tell the upper layer(s) we support long frames. */
  660         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
  661 
  662         /* Create local taskq. */
  663         sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
  664             taskqueue_thread_enqueue, &sc->ale_tq);
  665         if (sc->ale_tq == NULL) {
  666                 device_printf(dev, "could not create taskqueue.\n");
  667                 ether_ifdetach(ifp);
  668                 error = ENXIO;
  669                 goto fail;
  670         }
  671         taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
  672             device_get_nameunit(sc->ale_dev));
  673 
  674         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  675                 msic = ALE_MSIX_MESSAGES;
  676         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  677                 msic = ALE_MSI_MESSAGES;
  678         else
  679                 msic = 1;
  680         for (i = 0; i < msic; i++) {
  681                 error = bus_setup_intr(dev, sc->ale_irq[i],
  682                     INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
  683                     &sc->ale_intrhand[i]);
  684                 if (error != 0)
  685                         break;
  686         }
  687         if (error != 0) {
  688                 device_printf(dev, "could not set up interrupt handler.\n");
  689                 taskqueue_free(sc->ale_tq);
  690                 sc->ale_tq = NULL;
  691                 ether_ifdetach(ifp);
  692                 goto fail;
  693         }
  694 
  695 fail:
  696         if (error != 0)
  697                 ale_detach(dev);
  698 
  699         return (error);
  700 }
  701 
  702 static int
  703 ale_detach(device_t dev)
  704 {
  705         struct ale_softc *sc;
  706         struct ifnet *ifp;
  707         int i, msic;
  708 
  709         sc = device_get_softc(dev);
  710 
  711         ifp = sc->ale_ifp;
  712         if (device_is_attached(dev)) {
  713                 ether_ifdetach(ifp);
  714                 ALE_LOCK(sc);
  715                 ale_stop(sc);
  716                 ALE_UNLOCK(sc);
  717                 callout_drain(&sc->ale_tick_ch);
  718                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  719         }
  720 
  721         if (sc->ale_tq != NULL) {
  722                 taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
  723                 taskqueue_free(sc->ale_tq);
  724                 sc->ale_tq = NULL;
  725         }
  726 
  727         if (sc->ale_miibus != NULL) {
  728                 device_delete_child(dev, sc->ale_miibus);
  729                 sc->ale_miibus = NULL;
  730         }
  731         bus_generic_detach(dev);
  732         ale_dma_free(sc);
  733 
  734         if (ifp != NULL) {
  735                 if_free(ifp);
  736                 sc->ale_ifp = NULL;
  737         }
  738 
  739         if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
  740                 msic = ALE_MSIX_MESSAGES;
  741         else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
  742                 msic = ALE_MSI_MESSAGES;
  743         else
  744                 msic = 1;
  745         for (i = 0; i < msic; i++) {
  746                 if (sc->ale_intrhand[i] != NULL) {
  747                         bus_teardown_intr(dev, sc->ale_irq[i],
  748                             sc->ale_intrhand[i]);
  749                         sc->ale_intrhand[i] = NULL;
  750                 }
  751         }
  752 
  753         bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
  754         if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
  755                 pci_release_msi(dev);
  756         bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
  757         mtx_destroy(&sc->ale_mtx);
  758 
  759         return (0);
  760 }
  761 
  762 #define ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)    \
  763             SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
  764 
  765 #if __FreeBSD_version > 800000
  766 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  767             SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  768 #else
  769 #define ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
  770             SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
  771 #endif
  772 
  773 static void
  774 ale_sysctl_node(struct ale_softc *sc)
  775 {
  776         struct sysctl_ctx_list *ctx;
  777         struct sysctl_oid_list *child, *parent;
  778         struct sysctl_oid *tree;
  779         struct ale_hw_stats *stats;
  780         int error;
  781 
  782         stats = &sc->ale_stats;
  783         ctx = device_get_sysctl_ctx(sc->ale_dev);
  784         child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
  785 
  786         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
  787             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
  788             sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
  789         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
  790             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
  791             sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
  792         /* Pull in device tunables. */
  793         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  794         error = resource_int_value(device_get_name(sc->ale_dev),
  795             device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
  796         if (error == 0) {
  797                 if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
  798                     sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
  799                         device_printf(sc->ale_dev, "int_rx_mod value out of "
  800                             "range; using default: %d\n",
  801                             ALE_IM_RX_TIMER_DEFAULT);
  802                         sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
  803                 }
  804         }
  805         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  806         error = resource_int_value(device_get_name(sc->ale_dev),
  807             device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
  808         if (error == 0) {
  809                 if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
  810                     sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
  811                         device_printf(sc->ale_dev, "int_tx_mod value out of "
  812                             "range; using default: %d\n",
  813                             ALE_IM_TX_TIMER_DEFAULT);
  814                         sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
  815                 }
  816         }
  817         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
  818             CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
  819             sysctl_hw_ale_proc_limit, "I",
  820             "max number of Rx events to process");
  821         /* Pull in device tunables. */
  822         sc->ale_process_limit = ALE_PROC_DEFAULT;
  823         error = resource_int_value(device_get_name(sc->ale_dev),
  824             device_get_unit(sc->ale_dev), "process_limit",
  825             &sc->ale_process_limit);
  826         if (error == 0) {
  827                 if (sc->ale_process_limit < ALE_PROC_MIN ||
  828                     sc->ale_process_limit > ALE_PROC_MAX) {
  829                         device_printf(sc->ale_dev,
  830                             "process_limit value out of range; "
  831                             "using default: %d\n", ALE_PROC_DEFAULT);
  832                         sc->ale_process_limit = ALE_PROC_DEFAULT;
  833                 }
  834         }
  835 
  836         /* Misc statistics. */
  837         ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
  838             &stats->reset_brk_seq,
  839             "Controller resets due to broken Rx sequnce number");
  840 
  841         tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
  842             NULL, "ATE statistics");
  843         parent = SYSCTL_CHILDREN(tree);
  844 
  845         /* Rx statistics. */
  846         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
  847             NULL, "Rx MAC statistics");
  848         child = SYSCTL_CHILDREN(tree);
  849         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  850             &stats->rx_frames, "Good frames");
  851         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  852             &stats->rx_bcast_frames, "Good broadcast frames");
  853         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  854             &stats->rx_mcast_frames, "Good multicast frames");
  855         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  856             &stats->rx_pause_frames, "Pause control frames");
  857         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  858             &stats->rx_control_frames, "Control frames");
  859         ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
  860             &stats->rx_crcerrs, "CRC errors");
  861         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  862             &stats->rx_lenerrs, "Frames with length mismatched");
  863         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  864             &stats->rx_bytes, "Good octets");
  865         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  866             &stats->rx_bcast_bytes, "Good broadcast octets");
  867         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  868             &stats->rx_mcast_bytes, "Good multicast octets");
  869         ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
  870             &stats->rx_runts, "Too short frames");
  871         ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
  872             &stats->rx_fragments, "Fragmented frames");
  873         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  874             &stats->rx_pkts_64, "64 bytes frames");
  875         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  876             &stats->rx_pkts_65_127, "65 to 127 bytes frames");
  877         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  878             &stats->rx_pkts_128_255, "128 to 255 bytes frames");
  879         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  880             &stats->rx_pkts_256_511, "256 to 511 bytes frames");
  881         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  882             &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
  883         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  884             &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
  885         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  886             &stats->rx_pkts_1519_max, "1519 to max frames");
  887         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  888             &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
  889         ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
  890             &stats->rx_fifo_oflows, "FIFO overflows");
  891         ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
  892             &stats->rx_rrs_errs, "Return status write-back errors");
  893         ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
  894             &stats->rx_alignerrs, "Alignment errors");
  895         ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
  896             &stats->rx_pkts_filtered,
  897             "Frames dropped due to address filtering");
  898 
  899         /* Tx statistics. */
  900         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
  901             NULL, "Tx MAC statistics");
  902         child = SYSCTL_CHILDREN(tree);
  903         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
  904             &stats->tx_frames, "Good frames");
  905         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
  906             &stats->tx_bcast_frames, "Good broadcast frames");
  907         ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
  908             &stats->tx_mcast_frames, "Good multicast frames");
  909         ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
  910             &stats->tx_pause_frames, "Pause control frames");
  911         ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
  912             &stats->tx_control_frames, "Control frames");
  913         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
  914             &stats->tx_excess_defer, "Frames with excessive derferrals");
  915         ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
  916             &stats->tx_excess_defer, "Frames with derferrals");
  917         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
  918             &stats->tx_bytes, "Good octets");
  919         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
  920             &stats->tx_bcast_bytes, "Good broadcast octets");
  921         ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
  922             &stats->tx_mcast_bytes, "Good multicast octets");
  923         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
  924             &stats->tx_pkts_64, "64 bytes frames");
  925         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
  926             &stats->tx_pkts_65_127, "65 to 127 bytes frames");
  927         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
  928             &stats->tx_pkts_128_255, "128 to 255 bytes frames");
  929         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
  930             &stats->tx_pkts_256_511, "256 to 511 bytes frames");
  931         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
  932             &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
  933         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
  934             &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
  935         ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
  936             &stats->tx_pkts_1519_max, "1519 to max frames");
  937         ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
  938             &stats->tx_single_colls, "Single collisions");
  939         ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
  940             &stats->tx_multi_colls, "Multiple collisions");
  941         ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
  942             &stats->tx_late_colls, "Late collisions");
  943         ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
  944             &stats->tx_excess_colls, "Excessive collisions");
  945         ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
  946             &stats->tx_abort, "Aborted frames due to Excessive collisions");
  947         ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
  948             &stats->tx_underrun, "FIFO underruns");
  949         ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
  950             &stats->tx_desc_underrun, "Descriptor write-back errors");
  951         ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
  952             &stats->tx_lenerrs, "Frames with length mismatched");
  953         ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
  954             &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
  955 }
  956 
  957 #undef ALE_SYSCTL_STAT_ADD32
  958 #undef ALE_SYSCTL_STAT_ADD64
  959 
  960 struct ale_dmamap_arg {
  961         bus_addr_t      ale_busaddr;
  962 };
  963 
  964 static void
  965 ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
  966 {
  967         struct ale_dmamap_arg *ctx;
  968 
  969         if (error != 0)
  970                 return;
  971 
  972         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
  973 
  974         ctx = (struct ale_dmamap_arg *)arg;
  975         ctx->ale_busaddr = segs[0].ds_addr;
  976 }
  977 
  978 /*
  979  * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
  980  * which specifies high address region of DMA blocks. Therefore these
  981  * blocks should have the same high address of given 4GB address
  982  * space(i.e. crossing 4GB boundary is not allowed).
  983  */
  984 static int
  985 ale_check_boundary(struct ale_softc *sc)
  986 {
  987         bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
  988         bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
  989 
  990         rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
  991             sc->ale_pagesize;
  992         rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
  993             sc->ale_pagesize;
  994         tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
  995         tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
  996         rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
  997         rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
  998 
  999         if ((ALE_ADDR_HI(tx_ring_end) !=
 1000             ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
 1001             (ALE_ADDR_HI(rx_page_end[0]) !=
 1002             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
 1003             (ALE_ADDR_HI(rx_page_end[1]) !=
 1004             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
 1005             (ALE_ADDR_HI(tx_cmb_end) !=
 1006             ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
 1007             (ALE_ADDR_HI(rx_cmb_end[0]) !=
 1008             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
 1009             (ALE_ADDR_HI(rx_cmb_end[1]) !=
 1010             ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
 1011                 return (EFBIG);
 1012 
 1013         if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
 1014             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
 1015             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
 1016             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
 1017             (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
 1018                 return (EFBIG);
 1019 
 1020         return (0);
 1021 }
 1022 
 1023 static int
 1024 ale_dma_alloc(struct ale_softc *sc)
 1025 {
 1026         struct ale_txdesc *txd;
 1027         bus_addr_t lowaddr;
 1028         struct ale_dmamap_arg ctx;
 1029         int error, guard_size, i;
 1030 
 1031         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
 1032                 guard_size = ALE_JUMBO_FRAMELEN;
 1033         else
 1034                 guard_size = ALE_MAX_FRAMELEN;
 1035         sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
 1036             ALE_RX_PAGE_ALIGN);
 1037         lowaddr = BUS_SPACE_MAXADDR;
 1038 again:
 1039         /* Create parent DMA tag. */
 1040         error = bus_dma_tag_create(
 1041             bus_get_dma_tag(sc->ale_dev), /* parent */
 1042             1, 0,                       /* alignment, boundary */
 1043             lowaddr,                    /* lowaddr */
 1044             BUS_SPACE_MAXADDR,          /* highaddr */
 1045             NULL, NULL,                 /* filter, filterarg */
 1046             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1047             0,                          /* nsegments */
 1048             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1049             0,                          /* flags */
 1050             NULL, NULL,                 /* lockfunc, lockarg */
 1051             &sc->ale_cdata.ale_parent_tag);
 1052         if (error != 0) {
 1053                 device_printf(sc->ale_dev,
 1054                     "could not create parent DMA tag.\n");
 1055                 goto fail;
 1056         }
 1057 
 1058         /* Create DMA tag for Tx descriptor ring. */
 1059         error = bus_dma_tag_create(
 1060             sc->ale_cdata.ale_parent_tag, /* parent */
 1061             ALE_TX_RING_ALIGN, 0,       /* alignment, boundary */
 1062             BUS_SPACE_MAXADDR,          /* lowaddr */
 1063             BUS_SPACE_MAXADDR,          /* highaddr */
 1064             NULL, NULL,                 /* filter, filterarg */
 1065             ALE_TX_RING_SZ,             /* maxsize */
 1066             1,                          /* nsegments */
 1067             ALE_TX_RING_SZ,             /* maxsegsize */
 1068             0,                          /* flags */
 1069             NULL, NULL,                 /* lockfunc, lockarg */
 1070             &sc->ale_cdata.ale_tx_ring_tag);
 1071         if (error != 0) {
 1072                 device_printf(sc->ale_dev,
 1073                     "could not create Tx ring DMA tag.\n");
 1074                 goto fail;
 1075         }
 1076 
 1077         /* Create DMA tag for Rx pages. */
 1078         for (i = 0; i < ALE_RX_PAGES; i++) {
 1079                 error = bus_dma_tag_create(
 1080                     sc->ale_cdata.ale_parent_tag, /* parent */
 1081                     ALE_RX_PAGE_ALIGN, 0,       /* alignment, boundary */
 1082                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1083                     BUS_SPACE_MAXADDR,          /* highaddr */
 1084                     NULL, NULL,                 /* filter, filterarg */
 1085                     sc->ale_pagesize,           /* maxsize */
 1086                     1,                          /* nsegments */
 1087                     sc->ale_pagesize,           /* maxsegsize */
 1088                     0,                          /* flags */
 1089                     NULL, NULL,                 /* lockfunc, lockarg */
 1090                     &sc->ale_cdata.ale_rx_page[i].page_tag);
 1091                 if (error != 0) {
 1092                         device_printf(sc->ale_dev,
 1093                             "could not create Rx page %d DMA tag.\n", i);
 1094                         goto fail;
 1095                 }
 1096         }
 1097 
 1098         /* Create DMA tag for Tx coalescing message block. */
 1099         error = bus_dma_tag_create(
 1100             sc->ale_cdata.ale_parent_tag, /* parent */
 1101             ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1102             BUS_SPACE_MAXADDR,          /* lowaddr */
 1103             BUS_SPACE_MAXADDR,          /* highaddr */
 1104             NULL, NULL,                 /* filter, filterarg */
 1105             ALE_TX_CMB_SZ,              /* maxsize */
 1106             1,                          /* nsegments */
 1107             ALE_TX_CMB_SZ,              /* maxsegsize */
 1108             0,                          /* flags */
 1109             NULL, NULL,                 /* lockfunc, lockarg */
 1110             &sc->ale_cdata.ale_tx_cmb_tag);
 1111         if (error != 0) {
 1112                 device_printf(sc->ale_dev,
 1113                     "could not create Tx CMB DMA tag.\n");
 1114                 goto fail;
 1115         }
 1116 
 1117         /* Create DMA tag for Rx coalescing message block. */
 1118         for (i = 0; i < ALE_RX_PAGES; i++) {
 1119                 error = bus_dma_tag_create(
 1120                     sc->ale_cdata.ale_parent_tag, /* parent */
 1121                     ALE_CMB_ALIGN, 0,           /* alignment, boundary */
 1122                     BUS_SPACE_MAXADDR,          /* lowaddr */
 1123                     BUS_SPACE_MAXADDR,          /* highaddr */
 1124                     NULL, NULL,                 /* filter, filterarg */
 1125                     ALE_RX_CMB_SZ,              /* maxsize */
 1126                     1,                          /* nsegments */
 1127                     ALE_RX_CMB_SZ,              /* maxsegsize */
 1128                     0,                          /* flags */
 1129                     NULL, NULL,                 /* lockfunc, lockarg */
 1130                     &sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1131                 if (error != 0) {
 1132                         device_printf(sc->ale_dev,
 1133                             "could not create Rx page %d CMB DMA tag.\n", i);
 1134                         goto fail;
 1135                 }
 1136         }
 1137 
 1138         /* Allocate DMA'able memory and load the DMA map for Tx ring. */
 1139         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
 1140             (void **)&sc->ale_cdata.ale_tx_ring,
 1141             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1142             &sc->ale_cdata.ale_tx_ring_map);
 1143         if (error != 0) {
 1144                 device_printf(sc->ale_dev,
 1145                     "could not allocate DMA'able memory for Tx ring.\n");
 1146                 goto fail;
 1147         }
 1148         ctx.ale_busaddr = 0;
 1149         error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
 1150             sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
 1151             ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
 1152         if (error != 0 || ctx.ale_busaddr == 0) {
 1153                 device_printf(sc->ale_dev,
 1154                     "could not load DMA'able memory for Tx ring.\n");
 1155                 goto fail;
 1156         }
 1157         sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
 1158 
 1159         /* Rx pages. */
 1160         for (i = 0; i < ALE_RX_PAGES; i++) {
 1161                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
 1162                     (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
 1163                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1164                     &sc->ale_cdata.ale_rx_page[i].page_map);
 1165                 if (error != 0) {
 1166                         device_printf(sc->ale_dev,
 1167                             "could not allocate DMA'able memory for "
 1168                             "Rx page %d.\n", i);
 1169                         goto fail;
 1170                 }
 1171                 ctx.ale_busaddr = 0;
 1172                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
 1173                     sc->ale_cdata.ale_rx_page[i].page_map,
 1174                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1175                     sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
 1176                 if (error != 0 || ctx.ale_busaddr == 0) {
 1177                         device_printf(sc->ale_dev,
 1178                             "could not load DMA'able memory for "
 1179                             "Rx page %d.\n", i);
 1180                         goto fail;
 1181                 }
 1182                 sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
 1183         }
 1184 
 1185         /* Tx CMB. */
 1186         error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
 1187             (void **)&sc->ale_cdata.ale_tx_cmb,
 1188             BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1189             &sc->ale_cdata.ale_tx_cmb_map);
 1190         if (error != 0) {
 1191                 device_printf(sc->ale_dev,
 1192                     "could not allocate DMA'able memory for Tx CMB.\n");
 1193                 goto fail;
 1194         }
 1195         ctx.ale_busaddr = 0;
 1196         error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
 1197             sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
 1198             ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1199         if (error != 0 || ctx.ale_busaddr == 0) {
 1200                 device_printf(sc->ale_dev,
 1201                     "could not load DMA'able memory for Tx CMB.\n");
 1202                 goto fail;
 1203         }
 1204         sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
 1205 
 1206         /* Rx CMB. */
 1207         for (i = 0; i < ALE_RX_PAGES; i++) {
 1208                 error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1209                     (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1210                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 1211                     &sc->ale_cdata.ale_rx_page[i].cmb_map);
 1212                 if (error != 0) {
 1213                         device_printf(sc->ale_dev, "could not allocate "
 1214                             "DMA'able memory for Rx page %d CMB.\n", i);
 1215                         goto fail;
 1216                 }
 1217                 ctx.ale_busaddr = 0;
 1218                 error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1219                     sc->ale_cdata.ale_rx_page[i].cmb_map,
 1220                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1221                     ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
 1222                 if (error != 0 || ctx.ale_busaddr == 0) {
 1223                         device_printf(sc->ale_dev, "could not load DMA'able "
 1224                             "memory for Rx page %d CMB.\n", i);
 1225                         goto fail;
 1226                 }
 1227                 sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
 1228         }
 1229 
 1230         /*
 1231          * Tx descriptors/RXF0/CMB DMA blocks share the same
 1232          * high address region of 64bit DMA address space.
 1233          */
 1234         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
 1235             (error = ale_check_boundary(sc)) != 0) {
 1236                 device_printf(sc->ale_dev, "4GB boundary crossed, "
 1237                     "switching to 32bit DMA addressing mode.\n");
 1238                 ale_dma_free(sc);
 1239                 /*
 1240                  * Limit max allowable DMA address space to 32bit
 1241                  * and try again.
 1242                  */
 1243                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 1244                 goto again;
 1245         }
 1246 
 1247         /*
 1248          * Create Tx buffer parent tag.
 1249          * AR81xx allows 64bit DMA addressing of Tx buffers so it
 1250          * needs separate parent DMA tag as parent DMA address space
 1251          * could be restricted to be within 32bit address space by
 1252          * 4GB boundary crossing.
 1253          */
 1254         error = bus_dma_tag_create(
 1255             bus_get_dma_tag(sc->ale_dev), /* parent */
 1256             1, 0,                       /* alignment, boundary */
 1257             BUS_SPACE_MAXADDR,          /* lowaddr */
 1258             BUS_SPACE_MAXADDR,          /* highaddr */
 1259             NULL, NULL,                 /* filter, filterarg */
 1260             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
 1261             0,                          /* nsegments */
 1262             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
 1263             0,                          /* flags */
 1264             NULL, NULL,                 /* lockfunc, lockarg */
 1265             &sc->ale_cdata.ale_buffer_tag);
 1266         if (error != 0) {
 1267                 device_printf(sc->ale_dev,
 1268                     "could not create parent buffer DMA tag.\n");
 1269                 goto fail;
 1270         }
 1271 
 1272         /* Create DMA tag for Tx buffers. */
 1273         error = bus_dma_tag_create(
 1274             sc->ale_cdata.ale_buffer_tag, /* parent */
 1275             1, 0,                       /* alignment, boundary */
 1276             BUS_SPACE_MAXADDR,          /* lowaddr */
 1277             BUS_SPACE_MAXADDR,          /* highaddr */
 1278             NULL, NULL,                 /* filter, filterarg */
 1279             ALE_TSO_MAXSIZE,            /* maxsize */
 1280             ALE_MAXTXSEGS,              /* nsegments */
 1281             ALE_TSO_MAXSEGSIZE,         /* maxsegsize */
 1282             0,                          /* flags */
 1283             NULL, NULL,                 /* lockfunc, lockarg */
 1284             &sc->ale_cdata.ale_tx_tag);
 1285         if (error != 0) {
 1286                 device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
 1287                 goto fail;
 1288         }
 1289 
 1290         /* Create DMA maps for Tx buffers. */
 1291         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1292                 txd = &sc->ale_cdata.ale_txdesc[i];
 1293                 txd->tx_m = NULL;
 1294                 txd->tx_dmamap = NULL;
 1295                 error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
 1296                     &txd->tx_dmamap);
 1297                 if (error != 0) {
 1298                         device_printf(sc->ale_dev,
 1299                             "could not create Tx dmamap.\n");
 1300                         goto fail;
 1301                 }
 1302         }
 1303 
 1304 fail:
 1305         return (error);
 1306 }
 1307 
 1308 static void
 1309 ale_dma_free(struct ale_softc *sc)
 1310 {
 1311         struct ale_txdesc *txd;
 1312         int i;
 1313 
 1314         /* Tx buffers. */
 1315         if (sc->ale_cdata.ale_tx_tag != NULL) {
 1316                 for (i = 0; i < ALE_TX_RING_CNT; i++) {
 1317                         txd = &sc->ale_cdata.ale_txdesc[i];
 1318                         if (txd->tx_dmamap != NULL) {
 1319                                 bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
 1320                                     txd->tx_dmamap);
 1321                                 txd->tx_dmamap = NULL;
 1322                         }
 1323                 }
 1324                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
 1325                 sc->ale_cdata.ale_tx_tag = NULL;
 1326         }
 1327         /* Tx descriptor ring. */
 1328         if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
 1329                 if (sc->ale_cdata.ale_tx_ring_map != NULL)
 1330                         bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
 1331                             sc->ale_cdata.ale_tx_ring_map);
 1332                 if (sc->ale_cdata.ale_tx_ring_map != NULL &&
 1333                     sc->ale_cdata.ale_tx_ring != NULL)
 1334                         bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
 1335                             sc->ale_cdata.ale_tx_ring,
 1336                             sc->ale_cdata.ale_tx_ring_map);
 1337                 sc->ale_cdata.ale_tx_ring = NULL;
 1338                 sc->ale_cdata.ale_tx_ring_map = NULL;
 1339                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
 1340                 sc->ale_cdata.ale_tx_ring_tag = NULL;
 1341         }
 1342         /* Rx page block. */
 1343         for (i = 0; i < ALE_RX_PAGES; i++) {
 1344                 if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
 1345                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
 1346                                 bus_dmamap_unload(
 1347                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1348                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1349                         if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
 1350                             sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
 1351                                 bus_dmamem_free(
 1352                                     sc->ale_cdata.ale_rx_page[i].page_tag,
 1353                                     sc->ale_cdata.ale_rx_page[i].page_addr,
 1354                                     sc->ale_cdata.ale_rx_page[i].page_map);
 1355                         sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
 1356                         sc->ale_cdata.ale_rx_page[i].page_map = NULL;
 1357                         bus_dma_tag_destroy(
 1358                             sc->ale_cdata.ale_rx_page[i].page_tag);
 1359                         sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
 1360                 }
 1361         }
 1362         /* Rx CMB. */
 1363         for (i = 0; i < ALE_RX_PAGES; i++) {
 1364                 if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
 1365                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
 1366                                 bus_dmamap_unload(
 1367                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1368                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1369                         if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
 1370                             sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
 1371                                 bus_dmamem_free(
 1372                                     sc->ale_cdata.ale_rx_page[i].cmb_tag,
 1373                                     sc->ale_cdata.ale_rx_page[i].cmb_addr,
 1374                                     sc->ale_cdata.ale_rx_page[i].cmb_map);
 1375                         sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
 1376                         sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
 1377                         bus_dma_tag_destroy(
 1378                             sc->ale_cdata.ale_rx_page[i].cmb_tag);
 1379                         sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
 1380                 }
 1381         }
 1382         /* Tx CMB. */
 1383         if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
 1384                 if (sc->ale_cdata.ale_tx_cmb_map != NULL)
 1385                         bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
 1386                             sc->ale_cdata.ale_tx_cmb_map);
 1387                 if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
 1388                     sc->ale_cdata.ale_tx_cmb != NULL)
 1389                         bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
 1390                             sc->ale_cdata.ale_tx_cmb,
 1391                             sc->ale_cdata.ale_tx_cmb_map);
 1392                 sc->ale_cdata.ale_tx_cmb = NULL;
 1393                 sc->ale_cdata.ale_tx_cmb_map = NULL;
 1394                 bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
 1395                 sc->ale_cdata.ale_tx_cmb_tag = NULL;
 1396         }
 1397         if (sc->ale_cdata.ale_buffer_tag != NULL) {
 1398                 bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
 1399                 sc->ale_cdata.ale_buffer_tag = NULL;
 1400         }
 1401         if (sc->ale_cdata.ale_parent_tag != NULL) {
 1402                 bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
 1403                 sc->ale_cdata.ale_parent_tag = NULL;
 1404         }
 1405 }
 1406 
 1407 static int
 1408 ale_shutdown(device_t dev)
 1409 {
 1410 
 1411         return (ale_suspend(dev));
 1412 }
 1413 
 1414 /*
 1415  * Note, this driver resets the link speed to 10/100Mbps by
 1416  * restarting auto-negotiation in suspend/shutdown phase but we
 1417  * don't know whether that auto-negotiation would succeed or not
 1418  * as driver has no control after powering off/suspend operation.
 1419  * If the renegotiation fail WOL may not work. Running at 1Gbps
 1420  * will draw more power than 375mA at 3.3V which is specified in
 1421  * PCI specification and that would result in complete
 1422  * shutdowning power to ethernet controller.
 1423  *
 1424  * TODO
 1425  * Save current negotiated media speed/duplex/flow-control to
 1426  * softc and restore the same link again after resuming. PHY
 1427  * handling such as power down/resetting to 100Mbps may be better
 1428  * handled in suspend method in phy driver.
 1429  */
 1430 static void
 1431 ale_setlinkspeed(struct ale_softc *sc)
 1432 {
 1433         struct mii_data *mii;
 1434         int aneg, i;
 1435 
 1436         mii = device_get_softc(sc->ale_miibus);
 1437         mii_pollstat(mii);
 1438         aneg = 0;
 1439         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1440             (IFM_ACTIVE | IFM_AVALID)) {
 1441                 switch IFM_SUBTYPE(mii->mii_media_active) {
 1442                 case IFM_10_T:
 1443                 case IFM_100_TX:
 1444                         return;
 1445                 case IFM_1000_T:
 1446                         aneg++;
 1447                         break;
 1448                 default:
 1449                         break;
 1450                 }
 1451         }
 1452         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
 1453         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1454             MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
 1455         ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
 1456             MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
 1457         DELAY(1000);
 1458         if (aneg != 0) {
 1459                 /*
 1460                  * Poll link state until ale(4) get a 10/100Mbps link.
 1461                  */
 1462                 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
 1463                         mii_pollstat(mii);
 1464                         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
 1465                             == (IFM_ACTIVE | IFM_AVALID)) {
 1466                                 switch (IFM_SUBTYPE(
 1467                                     mii->mii_media_active)) {
 1468                                 case IFM_10_T:
 1469                                 case IFM_100_TX:
 1470                                         ale_mac_config(sc);
 1471                                         return;
 1472                                 default:
 1473                                         break;
 1474                                 }
 1475                         }
 1476                         ALE_UNLOCK(sc);
 1477                         pause("alelnk", hz);
 1478                         ALE_LOCK(sc);
 1479                 }
 1480                 if (i == MII_ANEGTICKS_GIGE)
 1481                         device_printf(sc->ale_dev,
 1482                             "establishing a link failed, WOL may not work!");
 1483         }
 1484         /*
 1485          * No link, force MAC to have 100Mbps, full-duplex link.
 1486          * This is the last resort and may/may not work.
 1487          */
 1488         mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
 1489         mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
 1490         ale_mac_config(sc);
 1491 }
 1492 
 1493 static void
 1494 ale_setwol(struct ale_softc *sc)
 1495 {
 1496         struct ifnet *ifp;
 1497         uint32_t reg, pmcs;
 1498         uint16_t pmstat;
 1499         int pmc;
 1500 
 1501         ALE_LOCK_ASSERT(sc);
 1502 
 1503         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
 1504                 /* Disable WOL. */
 1505                 CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 1506                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1507                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1508                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1509                 /* Force PHY power down. */
 1510                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1511                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1512                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
 1513                     GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
 1514                     GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
 1515                 return;
 1516         }
 1517 
 1518         ifp = sc->ale_ifp;
 1519         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
 1520                 if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
 1521                         ale_setlinkspeed(sc);
 1522         }
 1523 
 1524         pmcs = 0;
 1525         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
 1526                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
 1527         CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
 1528         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 1529         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
 1530             MAC_CFG_BCAST);
 1531         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
 1532                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
 1533         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1534                 reg |= MAC_CFG_RX_ENB;
 1535         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 1536 
 1537         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
 1538                 /* WOL disabled, PHY power down. */
 1539                 reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
 1540                 reg |= PCIE_PHYMISC_FORCE_RCV_DET;
 1541                 CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
 1542                 CSR_WRITE_2(sc, ALE_GPHY_CTRL,
 1543                     GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
 1544                     GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
 1545                     GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
 1546                     GPHY_CTRL_PWDOWN_HW);
 1547         }
 1548         /* Request PME. */
 1549         pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
 1550         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
 1551         if ((ifp->if_capenable & IFCAP_WOL) != 0)
 1552                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
 1553         pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
 1554 }
 1555 
 1556 static int
 1557 ale_suspend(device_t dev)
 1558 {
 1559         struct ale_softc *sc;
 1560 
 1561         sc = device_get_softc(dev);
 1562 
 1563         ALE_LOCK(sc);
 1564         ale_stop(sc);
 1565         ale_setwol(sc);
 1566         ALE_UNLOCK(sc);
 1567 
 1568         return (0);
 1569 }
 1570 
 1571 static int
 1572 ale_resume(device_t dev)
 1573 {
 1574         struct ale_softc *sc;
 1575         struct ifnet *ifp;
 1576         int pmc;
 1577         uint16_t pmstat;
 1578 
 1579         sc = device_get_softc(dev);
 1580 
 1581         ALE_LOCK(sc);
 1582         if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
 1583                 /* Disable PME and clear PME status. */
 1584                 pmstat = pci_read_config(sc->ale_dev,
 1585                     pmc + PCIR_POWER_STATUS, 2);
 1586                 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
 1587                         pmstat &= ~PCIM_PSTAT_PMEENABLE;
 1588                         pci_write_config(sc->ale_dev,
 1589                             pmc + PCIR_POWER_STATUS, pmstat, 2);
 1590                 }
 1591         }
 1592         /* Reset PHY. */
 1593         ale_phy_reset(sc);
 1594         ifp = sc->ale_ifp;
 1595         if ((ifp->if_flags & IFF_UP) != 0) {
 1596                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1597                 ale_init_locked(sc);
 1598         }
 1599         ALE_UNLOCK(sc);
 1600 
 1601         return (0);
 1602 }
 1603 
 1604 static int
 1605 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
 1606 {
 1607         struct ale_txdesc *txd, *txd_last;
 1608         struct tx_desc *desc;
 1609         struct mbuf *m;
 1610         struct ip *ip;
 1611         struct tcphdr *tcp;
 1612         bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
 1613         bus_dmamap_t map;
 1614         uint32_t cflags, hdrlen, ip_off, poff, vtag;
 1615         int error, i, nsegs, prod, si;
 1616 
 1617         ALE_LOCK_ASSERT(sc);
 1618 
 1619         M_ASSERTPKTHDR((*m_head));
 1620 
 1621         m = *m_head;
 1622         ip = NULL;
 1623         tcp = NULL;
 1624         cflags = vtag = 0;
 1625         ip_off = poff = 0;
 1626         if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
 1627                 /*
 1628                  * AR81xx requires offset of TCP/UDP payload in its Tx
 1629                  * descriptor to perform hardware Tx checksum offload.
 1630                  * Additionally, TSO requires IP/TCP header size and
 1631                  * modification of IP/TCP header in order to make TSO
 1632                  * engine work. This kind of operation takes many CPU
 1633                  * cycles on FreeBSD so fast host CPU is required to
 1634                  * get smooth TSO performance.
 1635                  */
 1636                 struct ether_header *eh;
 1637 
 1638                 if (M_WRITABLE(m) == 0) {
 1639                         /* Get a writable copy. */
 1640                         m = m_dup(*m_head, M_DONTWAIT);
 1641                         /* Release original mbufs. */
 1642                         m_freem(*m_head);
 1643                         if (m == NULL) {
 1644                                 *m_head = NULL;
 1645                                 return (ENOBUFS);
 1646                         }
 1647                         *m_head = m;
 1648                 }
 1649 
 1650                 /*
 1651                  * Buggy-controller requires 4 byte aligned Tx buffer
 1652                  * to make custom checksum offload work.
 1653                  */
 1654                 if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
 1655                     (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
 1656                     (mtod(m, intptr_t) & 3) != 0) {
 1657                         m = m_defrag(*m_head, M_DONTWAIT);
 1658                         if (m == NULL) {
 1659                                 *m_head = NULL;
 1660                                 return (ENOBUFS);
 1661                         }
 1662                         *m_head = m;
 1663                 }
 1664 
 1665                 ip_off = sizeof(struct ether_header);
 1666                 m = m_pullup(m, ip_off);
 1667                 if (m == NULL) {
 1668                         *m_head = NULL;
 1669                         return (ENOBUFS);
 1670                 }
 1671                 eh = mtod(m, struct ether_header *);
 1672                 /*
 1673                  * Check if hardware VLAN insertion is off.
 1674                  * Additional check for LLC/SNAP frame?
 1675                  */
 1676                 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
 1677                         ip_off = sizeof(struct ether_vlan_header);
 1678                         m = m_pullup(m, ip_off);
 1679                         if (m == NULL) {
 1680                                 *m_head = NULL;
 1681                                 return (ENOBUFS);
 1682                         }
 1683                 }
 1684                 m = m_pullup(m, ip_off + sizeof(struct ip));
 1685                 if (m == NULL) {
 1686                         *m_head = NULL;
 1687                         return (ENOBUFS);
 1688                 }
 1689                 ip = (struct ip *)(mtod(m, char *) + ip_off);
 1690                 poff = ip_off + (ip->ip_hl << 2);
 1691                 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1692                         /*
 1693                          * XXX
 1694                          * AR81xx requires the first descriptor should
 1695                          * not include any TCP playload for TSO case.
 1696                          * (i.e. ethernet header + IP + TCP header only)
 1697                          * m_pullup(9) above will ensure this too.
 1698                          * However it's not correct if the first mbuf
 1699                          * of the chain does not use cluster.
 1700                          */
 1701                         m = m_pullup(m, poff + sizeof(struct tcphdr));
 1702                         if (m == NULL) {
 1703                                 *m_head = NULL;
 1704                                 return (ENOBUFS);
 1705                         }
 1706                         ip = (struct ip *)(mtod(m, char *) + ip_off);
 1707                         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 1708                         m = m_pullup(m, poff + (tcp->th_off << 2));
 1709                         if (m == NULL) {
 1710                                 *m_head = NULL;
 1711                                 return (ENOBUFS);
 1712                         }
 1713                         /*
 1714                          * AR81xx requires IP/TCP header size and offset as
 1715                          * well as TCP pseudo checksum which complicates
 1716                          * TSO configuration. I guess this comes from the
 1717                          * adherence to Microsoft NDIS Large Send
 1718                          * specification which requires insertion of
 1719                          * pseudo checksum by upper stack. The pseudo
 1720                          * checksum that NDIS refers to doesn't include
 1721                          * TCP payload length so ale(4) should recompute
 1722                          * the pseudo checksum here. Hopefully this wouldn't
 1723                          * be much burden on modern CPUs.
 1724                          * Reset IP checksum and recompute TCP pseudo
 1725                          * checksum as NDIS specification said.
 1726                          */
 1727                         ip->ip_sum = 0;
 1728                         tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
 1729                             ip->ip_dst.s_addr, htons(IPPROTO_TCP));
 1730                 }
 1731                 *m_head = m;
 1732         }
 1733 
 1734         si = prod = sc->ale_cdata.ale_tx_prod;
 1735         txd = &sc->ale_cdata.ale_txdesc[prod];
 1736         txd_last = txd;
 1737         map = txd->tx_dmamap;
 1738 
 1739         error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1740             *m_head, txsegs, &nsegs, 0);
 1741         if (error == EFBIG) {
 1742                 m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
 1743                 if (m == NULL) {
 1744                         m_freem(*m_head);
 1745                         *m_head = NULL;
 1746                         return (ENOMEM);
 1747                 }
 1748                 *m_head = m;
 1749                 error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
 1750                     *m_head, txsegs, &nsegs, 0);
 1751                 if (error != 0) {
 1752                         m_freem(*m_head);
 1753                         *m_head = NULL;
 1754                         return (error);
 1755                 }
 1756         } else if (error != 0)
 1757                 return (error);
 1758         if (nsegs == 0) {
 1759                 m_freem(*m_head);
 1760                 *m_head = NULL;
 1761                 return (EIO);
 1762         }
 1763 
 1764         /* Check descriptor overrun. */
 1765         if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 3) {
 1766                 bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
 1767                 return (ENOBUFS);
 1768         }
 1769         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
 1770 
 1771         m = *m_head;
 1772         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1773                 /* Request TSO and set MSS. */
 1774                 cflags |= ALE_TD_TSO;
 1775                 cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
 1776                 /* Set IP/TCP header size. */
 1777                 cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
 1778                 cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
 1779         } else if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
 1780                 /*
 1781                  * AR81xx supports Tx custom checksum offload feature
 1782                  * that offloads single 16bit checksum computation.
 1783                  * So you can choose one among IP, TCP and UDP.
 1784                  * Normally driver sets checksum start/insertion
 1785                  * position from the information of TCP/UDP frame as
 1786                  * TCP/UDP checksum takes more time than that of IP.
 1787                  * However it seems that custom checksum offload
 1788                  * requires 4 bytes aligned Tx buffers due to hardware
 1789                  * bug.
 1790                  * AR81xx also supports explicit Tx checksum computation
 1791                  * if it is told that the size of IP header and TCP
 1792                  * header(for UDP, the header size does not matter
 1793                  * because it's fixed length). However with this scheme
 1794                  * TSO does not work so you have to choose one either
 1795                  * TSO or explicit Tx checksum offload. I chosen TSO
 1796                  * plus custom checksum offload with work-around which
 1797                  * will cover most common usage for this consumer
 1798                  * ethernet controller. The work-around takes a lot of
 1799                  * CPU cycles if Tx buffer is not aligned on 4 bytes
 1800                  * boundary, though.
 1801                  */
 1802                 cflags |= ALE_TD_CXSUM;
 1803                 /* Set checksum start offset. */
 1804                 cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
 1805                 /* Set checksum insertion position of TCP/UDP. */
 1806                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
 1807                     ALE_TD_CSUM_XSUMOFFSET_SHIFT);
 1808         }
 1809 
 1810         /* Configure VLAN hardware tag insertion. */
 1811         if ((m->m_flags & M_VLANTAG) != 0) {
 1812                 vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
 1813                 vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
 1814                 cflags |= ALE_TD_INSERT_VLAN_TAG;
 1815         }
 1816 
 1817         i = 0;
 1818         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1819                 /*
 1820                  * Make sure the first fragment contains
 1821                  * only ethernet and IP/TCP header with options.
 1822                  */
 1823                 hdrlen =  poff + (tcp->th_off << 2);
 1824                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1825                 desc->addr = htole64(txsegs[i].ds_addr);
 1826                 desc->len = htole32(ALE_TX_BYTES(hdrlen) | vtag);
 1827                 desc->flags = htole32(cflags);
 1828                 sc->ale_cdata.ale_tx_cnt++;
 1829                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1830                 if (m->m_len - hdrlen > 0) {
 1831                         /* Handle remaining payload of the first fragment. */
 1832                         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1833                         desc->addr = htole64(txsegs[i].ds_addr + hdrlen);
 1834                         desc->len = htole32(ALE_TX_BYTES(m->m_len - hdrlen) |
 1835                             vtag);
 1836                         desc->flags = htole32(cflags);
 1837                         sc->ale_cdata.ale_tx_cnt++;
 1838                         ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1839                 }
 1840                 i = 1;
 1841         }
 1842         for (; i < nsegs; i++) {
 1843                 desc = &sc->ale_cdata.ale_tx_ring[prod];
 1844                 desc->addr = htole64(txsegs[i].ds_addr);
 1845                 desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
 1846                 desc->flags = htole32(cflags);
 1847                 sc->ale_cdata.ale_tx_cnt++;
 1848                 ALE_DESC_INC(prod, ALE_TX_RING_CNT);
 1849         }
 1850         /* Update producer index. */
 1851         sc->ale_cdata.ale_tx_prod = prod;
 1852         /* Set TSO header on the first descriptor. */
 1853         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 1854                 desc = &sc->ale_cdata.ale_tx_ring[si];
 1855                 desc->flags |= htole32(ALE_TD_TSO_HDR);
 1856         }
 1857 
 1858         /* Finally set EOP on the last descriptor. */
 1859         prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
 1860         desc = &sc->ale_cdata.ale_tx_ring[prod];
 1861         desc->flags |= htole32(ALE_TD_EOP);
 1862 
 1863         /* Swap dmamap of the first and the last. */
 1864         txd = &sc->ale_cdata.ale_txdesc[prod];
 1865         map = txd_last->tx_dmamap;
 1866         txd_last->tx_dmamap = txd->tx_dmamap;
 1867         txd->tx_dmamap = map;
 1868         txd->tx_m = m;
 1869 
 1870         /* Sync descriptors. */
 1871         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 1872             sc->ale_cdata.ale_tx_ring_map,
 1873             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1874 
 1875         return (0);
 1876 }
 1877 
 1878 static void
 1879 ale_start(struct ifnet *ifp)
 1880 {
 1881         struct ale_softc *sc;
 1882 
 1883         sc = ifp->if_softc;
 1884         ALE_LOCK(sc);
 1885         ale_start_locked(ifp);
 1886         ALE_UNLOCK(sc);
 1887 }
 1888 
 1889 static void
 1890 ale_start_locked(struct ifnet *ifp)
 1891 {
 1892         struct ale_softc *sc;
 1893         struct mbuf *m_head;
 1894         int enq;
 1895 
 1896         sc = ifp->if_softc;
 1897 
 1898         ALE_LOCK_ASSERT(sc);
 1899 
 1900         /* Reclaim transmitted frames. */
 1901         if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
 1902                 ale_txeof(sc);
 1903 
 1904         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 1905             IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0)
 1906                 return;
 1907 
 1908         for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 1909                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 1910                 if (m_head == NULL)
 1911                         break;
 1912                 /*
 1913                  * Pack the data into the transmit ring. If we
 1914                  * don't have room, set the OACTIVE flag and wait
 1915                  * for the NIC to drain the ring.
 1916                  */
 1917                 if (ale_encap(sc, &m_head)) {
 1918                         if (m_head == NULL)
 1919                                 break;
 1920                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 1921                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 1922                         break;
 1923                 }
 1924 
 1925                 enq++;
 1926                 /*
 1927                  * If there's a BPF listener, bounce a copy of this frame
 1928                  * to him.
 1929                  */
 1930                 ETHER_BPF_MTAP(ifp, m_head);
 1931         }
 1932 
 1933         if (enq > 0) {
 1934                 /* Kick. */
 1935                 CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
 1936                     sc->ale_cdata.ale_tx_prod);
 1937                 /* Set a timeout in case the chip goes out to lunch. */
 1938                 sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
 1939         }
 1940 }
 1941 
 1942 static void
 1943 ale_watchdog(struct ale_softc *sc)
 1944 {
 1945         struct ifnet *ifp;
 1946 
 1947         ALE_LOCK_ASSERT(sc);
 1948 
 1949         if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
 1950                 return;
 1951 
 1952         ifp = sc->ale_ifp;
 1953         if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
 1954                 if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
 1955                 ifp->if_oerrors++;
 1956                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1957                 ale_init_locked(sc);
 1958                 return;
 1959         }
 1960         if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
 1961         ifp->if_oerrors++;
 1962         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1963         ale_init_locked(sc);
 1964         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 1965                 ale_start_locked(ifp);
 1966 }
 1967 
 1968 static int
 1969 ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 1970 {
 1971         struct ale_softc *sc;
 1972         struct ifreq *ifr;
 1973         struct mii_data *mii;
 1974         int error, mask;
 1975 
 1976         sc = ifp->if_softc;
 1977         ifr = (struct ifreq *)data;
 1978         error = 0;
 1979         switch (cmd) {
 1980         case SIOCSIFMTU:
 1981                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
 1982                     ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
 1983                     ifr->ifr_mtu > ETHERMTU))
 1984                         error = EINVAL;
 1985                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 1986                         ALE_LOCK(sc);
 1987                         ifp->if_mtu = ifr->ifr_mtu;
 1988                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1989                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 1990                                 ale_init_locked(sc);
 1991                         }
 1992                         ALE_UNLOCK(sc);
 1993                 }
 1994                 break;
 1995         case SIOCSIFFLAGS:
 1996                 ALE_LOCK(sc);
 1997                 if ((ifp->if_flags & IFF_UP) != 0) {
 1998                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 1999                                 if (((ifp->if_flags ^ sc->ale_if_flags)
 2000                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
 2001                                         ale_rxfilter(sc);
 2002                         } else {
 2003                                 ale_init_locked(sc);
 2004                         }
 2005                 } else {
 2006                         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2007                                 ale_stop(sc);
 2008                 }
 2009                 sc->ale_if_flags = ifp->if_flags;
 2010                 ALE_UNLOCK(sc);
 2011                 break;
 2012         case SIOCADDMULTI:
 2013         case SIOCDELMULTI:
 2014                 ALE_LOCK(sc);
 2015                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2016                         ale_rxfilter(sc);
 2017                 ALE_UNLOCK(sc);
 2018                 break;
 2019         case SIOCSIFMEDIA:
 2020         case SIOCGIFMEDIA:
 2021                 mii = device_get_softc(sc->ale_miibus);
 2022                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
 2023                 break;
 2024         case SIOCSIFCAP:
 2025                 ALE_LOCK(sc);
 2026                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 2027                 if ((mask & IFCAP_TXCSUM) != 0 &&
 2028                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 2029                         ifp->if_capenable ^= IFCAP_TXCSUM;
 2030                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 2031                                 ifp->if_hwassist |= ALE_CSUM_FEATURES;
 2032                         else
 2033                                 ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
 2034                 }
 2035                 if ((mask & IFCAP_RXCSUM) != 0 &&
 2036                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 2037                         ifp->if_capenable ^= IFCAP_RXCSUM;
 2038                 if ((mask & IFCAP_TSO4) != 0 &&
 2039                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 2040                         ifp->if_capenable ^= IFCAP_TSO4;
 2041                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 2042                                 ifp->if_hwassist |= CSUM_TSO;
 2043                         else
 2044                                 ifp->if_hwassist &= ~CSUM_TSO;
 2045                 }
 2046 
 2047                 if ((mask & IFCAP_WOL_MCAST) != 0 &&
 2048                     (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
 2049                         ifp->if_capenable ^= IFCAP_WOL_MCAST;
 2050                 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
 2051                     (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
 2052                         ifp->if_capenable ^= IFCAP_WOL_MAGIC;
 2053                 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
 2054                     (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
 2055                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 2056                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 2057                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 2058                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 2059                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 2060                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 2061                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 2062                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 2063                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 2064                         ale_rxvlan(sc);
 2065                 }
 2066                 ALE_UNLOCK(sc);
 2067                 VLAN_CAPABILITIES(ifp);
 2068                 break;
 2069         default:
 2070                 error = ether_ioctl(ifp, cmd, data);
 2071                 break;
 2072         }
 2073 
 2074         return (error);
 2075 }
 2076 
 2077 static void
 2078 ale_mac_config(struct ale_softc *sc)
 2079 {
 2080         struct mii_data *mii;
 2081         uint32_t reg;
 2082 
 2083         ALE_LOCK_ASSERT(sc);
 2084 
 2085         mii = device_get_softc(sc->ale_miibus);
 2086         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2087         reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
 2088             MAC_CFG_SPEED_MASK);
 2089         /* Reprogram MAC with resolved speed/duplex. */
 2090         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 2091         case IFM_10_T:
 2092         case IFM_100_TX:
 2093                 reg |= MAC_CFG_SPEED_10_100;
 2094                 break;
 2095         case IFM_1000_T:
 2096                 reg |= MAC_CFG_SPEED_1000;
 2097                 break;
 2098         }
 2099         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 2100                 reg |= MAC_CFG_FULL_DUPLEX;
 2101                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 2102                         reg |= MAC_CFG_TX_FC;
 2103                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 2104                         reg |= MAC_CFG_RX_FC;
 2105         }
 2106         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2107 }
 2108 
 2109 static void
 2110 ale_stats_clear(struct ale_softc *sc)
 2111 {
 2112         struct smb sb;
 2113         uint32_t *reg;
 2114         int i;
 2115 
 2116         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2117                 CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2118                 i += sizeof(uint32_t);
 2119         }
 2120         /* Read Tx statistics. */
 2121         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2122                 CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2123                 i += sizeof(uint32_t);
 2124         }
 2125 }
 2126 
 2127 static void
 2128 ale_stats_update(struct ale_softc *sc)
 2129 {
 2130         struct ale_hw_stats *stat;
 2131         struct smb sb, *smb;
 2132         struct ifnet *ifp;
 2133         uint32_t *reg;
 2134         int i;
 2135 
 2136         ALE_LOCK_ASSERT(sc);
 2137 
 2138         ifp = sc->ale_ifp;
 2139         stat = &sc->ale_stats;
 2140         smb = &sb;
 2141 
 2142         /* Read Rx statistics. */
 2143         for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
 2144                 *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
 2145                 i += sizeof(uint32_t);
 2146         }
 2147         /* Read Tx statistics. */
 2148         for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
 2149                 *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
 2150                 i += sizeof(uint32_t);
 2151         }
 2152 
 2153         /* Rx stats. */
 2154         stat->rx_frames += smb->rx_frames;
 2155         stat->rx_bcast_frames += smb->rx_bcast_frames;
 2156         stat->rx_mcast_frames += smb->rx_mcast_frames;
 2157         stat->rx_pause_frames += smb->rx_pause_frames;
 2158         stat->rx_control_frames += smb->rx_control_frames;
 2159         stat->rx_crcerrs += smb->rx_crcerrs;
 2160         stat->rx_lenerrs += smb->rx_lenerrs;
 2161         stat->rx_bytes += smb->rx_bytes;
 2162         stat->rx_runts += smb->rx_runts;
 2163         stat->rx_fragments += smb->rx_fragments;
 2164         stat->rx_pkts_64 += smb->rx_pkts_64;
 2165         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
 2166         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
 2167         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
 2168         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
 2169         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
 2170         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
 2171         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
 2172         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
 2173         stat->rx_rrs_errs += smb->rx_rrs_errs;
 2174         stat->rx_alignerrs += smb->rx_alignerrs;
 2175         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
 2176         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
 2177         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
 2178 
 2179         /* Tx stats. */
 2180         stat->tx_frames += smb->tx_frames;
 2181         stat->tx_bcast_frames += smb->tx_bcast_frames;
 2182         stat->tx_mcast_frames += smb->tx_mcast_frames;
 2183         stat->tx_pause_frames += smb->tx_pause_frames;
 2184         stat->tx_excess_defer += smb->tx_excess_defer;
 2185         stat->tx_control_frames += smb->tx_control_frames;
 2186         stat->tx_deferred += smb->tx_deferred;
 2187         stat->tx_bytes += smb->tx_bytes;
 2188         stat->tx_pkts_64 += smb->tx_pkts_64;
 2189         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
 2190         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
 2191         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
 2192         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
 2193         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
 2194         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
 2195         stat->tx_single_colls += smb->tx_single_colls;
 2196         stat->tx_multi_colls += smb->tx_multi_colls;
 2197         stat->tx_late_colls += smb->tx_late_colls;
 2198         stat->tx_excess_colls += smb->tx_excess_colls;
 2199         stat->tx_abort += smb->tx_abort;
 2200         stat->tx_underrun += smb->tx_underrun;
 2201         stat->tx_desc_underrun += smb->tx_desc_underrun;
 2202         stat->tx_lenerrs += smb->tx_lenerrs;
 2203         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
 2204         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
 2205         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
 2206 
 2207         /* Update counters in ifnet. */
 2208         ifp->if_opackets += smb->tx_frames;
 2209 
 2210         ifp->if_collisions += smb->tx_single_colls +
 2211             smb->tx_multi_colls * 2 + smb->tx_late_colls +
 2212             smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
 2213 
 2214         /*
 2215          * XXX
 2216          * tx_pkts_truncated counter looks suspicious. It constantly
 2217          * increments with no sign of Tx errors. This may indicate
 2218          * the counter name is not correct one so I've removed the
 2219          * counter in output errors.
 2220          */
 2221         ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
 2222             smb->tx_underrun;
 2223 
 2224         ifp->if_ipackets += smb->rx_frames;
 2225 
 2226         ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
 2227             smb->rx_runts + smb->rx_pkts_truncated +
 2228             smb->rx_fifo_oflows + smb->rx_rrs_errs +
 2229             smb->rx_alignerrs;
 2230 }
 2231 
 2232 static int
 2233 ale_intr(void *arg)
 2234 {
 2235         struct ale_softc *sc;
 2236         uint32_t status;
 2237 
 2238         sc = (struct ale_softc *)arg;
 2239 
 2240         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2241         if ((status & ALE_INTRS) == 0)
 2242                 return (FILTER_STRAY);
 2243         /* Disable interrupts. */
 2244         CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
 2245         taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2246 
 2247         return (FILTER_HANDLED);
 2248 }
 2249 
 2250 static void
 2251 ale_int_task(void *arg, int pending)
 2252 {
 2253         struct ale_softc *sc;
 2254         struct ifnet *ifp;
 2255         uint32_t status;
 2256         int more;
 2257 
 2258         sc = (struct ale_softc *)arg;
 2259 
 2260         status = CSR_READ_4(sc, ALE_INTR_STATUS);
 2261         ALE_LOCK(sc);
 2262         if (sc->ale_morework != 0)
 2263                 status |= INTR_RX_PKT;
 2264         if ((status & ALE_INTRS) == 0)
 2265                 goto done;
 2266 
 2267         /* Acknowledge interrupts but still disable interrupts. */
 2268         CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
 2269 
 2270         ifp = sc->ale_ifp;
 2271         more = 0;
 2272         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
 2273                 more = ale_rxeof(sc, sc->ale_process_limit);
 2274                 if (more == EAGAIN)
 2275                         sc->ale_morework = 1;
 2276                 else if (more == EIO) {
 2277                         sc->ale_stats.reset_brk_seq++;
 2278                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2279                         ale_init_locked(sc);
 2280                         ALE_UNLOCK(sc);
 2281                         return;
 2282                 }
 2283 
 2284                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
 2285                         if ((status & INTR_DMA_RD_TO_RST) != 0)
 2286                                 device_printf(sc->ale_dev,
 2287                                     "DMA read error! -- resetting\n");
 2288                         if ((status & INTR_DMA_WR_TO_RST) != 0)
 2289                                 device_printf(sc->ale_dev,
 2290                                     "DMA write error! -- resetting\n");
 2291                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2292                         ale_init_locked(sc);
 2293                         ALE_UNLOCK(sc);
 2294                         return;
 2295                 }
 2296                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 2297                         ale_start_locked(ifp);
 2298         }
 2299 
 2300         if (more == EAGAIN ||
 2301             (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
 2302                 ALE_UNLOCK(sc);
 2303                 taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
 2304                 return;
 2305         }
 2306 
 2307 done:
 2308         ALE_UNLOCK(sc);
 2309 
 2310         /* Re-enable interrupts. */
 2311         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
 2312 }
 2313 
 2314 static void
 2315 ale_txeof(struct ale_softc *sc)
 2316 {
 2317         struct ifnet *ifp;
 2318         struct ale_txdesc *txd;
 2319         uint32_t cons, prod;
 2320         int prog;
 2321 
 2322         ALE_LOCK_ASSERT(sc);
 2323 
 2324         ifp = sc->ale_ifp;
 2325 
 2326         if (sc->ale_cdata.ale_tx_cnt == 0)
 2327                 return;
 2328 
 2329         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2330             sc->ale_cdata.ale_tx_ring_map,
 2331             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2332         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
 2333                 bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2334                     sc->ale_cdata.ale_tx_cmb_map,
 2335                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2336                 prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
 2337         } else
 2338                 prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
 2339         cons = sc->ale_cdata.ale_tx_cons;
 2340         /*
 2341          * Go through our Tx list and free mbufs for those
 2342          * frames which have been transmitted.
 2343          */
 2344         for (prog = 0; cons != prod; prog++,
 2345             ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
 2346                 if (sc->ale_cdata.ale_tx_cnt <= 0)
 2347                         break;
 2348                 prog++;
 2349                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2350                 sc->ale_cdata.ale_tx_cnt--;
 2351                 txd = &sc->ale_cdata.ale_txdesc[cons];
 2352                 if (txd->tx_m != NULL) {
 2353                         /* Reclaim transmitted mbufs. */
 2354                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2355                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2356                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2357                             txd->tx_dmamap);
 2358                         m_freem(txd->tx_m);
 2359                         txd->tx_m = NULL;
 2360                 }
 2361         }
 2362 
 2363         if (prog > 0) {
 2364                 sc->ale_cdata.ale_tx_cons = cons;
 2365                 /*
 2366                  * Unarm watchdog timer only when there is no pending
 2367                  * Tx descriptors in queue.
 2368                  */
 2369                 if (sc->ale_cdata.ale_tx_cnt == 0)
 2370                         sc->ale_watchdog_timer = 0;
 2371         }
 2372 }
 2373 
 2374 static void
 2375 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
 2376     uint32_t length, uint32_t *prod)
 2377 {
 2378         struct ale_rx_page *rx_page;
 2379 
 2380         rx_page = *page;
 2381         /* Update consumer position. */
 2382         rx_page->cons += roundup(length + sizeof(struct rx_rs),
 2383             ALE_RX_PAGE_ALIGN);
 2384         if (rx_page->cons >= ALE_RX_PAGE_SZ) {
 2385                 /*
 2386                  * End of Rx page reached, let hardware reuse
 2387                  * this page.
 2388                  */
 2389                 rx_page->cons = 0;
 2390                 *rx_page->cmb_addr = 0;
 2391                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2392                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2393                 CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
 2394                     RXF_VALID);
 2395                 /* Switch to alternate Rx page. */
 2396                 sc->ale_cdata.ale_rx_curp ^= 1;
 2397                 rx_page = *page =
 2398                     &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2399                 /* Page flipped, sync CMB and Rx page. */
 2400                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2401                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2402                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2403                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2404                 /* Sync completed, cache updated producer index. */
 2405                 *prod = *rx_page->cmb_addr;
 2406         }
 2407 }
 2408 
 2409 
 2410 /*
 2411  * It seems that AR81xx controller can compute partial checksum.
 2412  * The partial checksum value can be used to accelerate checksum
 2413  * computation for fragmented TCP/UDP packets. Upper network stack
 2414  * already takes advantage of the partial checksum value in IP
 2415  * reassembly stage. But I'm not sure the correctness of the
 2416  * partial hardware checksum assistance due to lack of data sheet.
 2417  * In addition, the Rx feature of controller that requires copying
 2418  * for every frames effectively nullifies one of most nice offload
 2419  * capability of controller.
 2420  */
 2421 static void
 2422 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
 2423 {
 2424         struct ifnet *ifp;
 2425         struct ip *ip;
 2426         char *p;
 2427 
 2428         ifp = sc->ale_ifp;
 2429         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2430         if ((status & ALE_RD_IPCSUM_NOK) == 0)
 2431                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2432 
 2433         if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
 2434                 if (((status & ALE_RD_IPV4_FRAG) == 0) &&
 2435                     ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
 2436                     ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
 2437                         m->m_pkthdr.csum_flags |=
 2438                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2439                         m->m_pkthdr.csum_data = 0xffff;
 2440                 }
 2441         } else {
 2442                 if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
 2443                     (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
 2444                         p = mtod(m, char *);
 2445                         p += ETHER_HDR_LEN;
 2446                         if ((status & ALE_RD_802_3) != 0)
 2447                                 p += LLC_SNAPFRAMELEN;
 2448                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
 2449                             (status & ALE_RD_VLAN) != 0)
 2450                                 p += ETHER_VLAN_ENCAP_LEN;
 2451                         ip = (struct ip *)p;
 2452                         if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
 2453                                 return;
 2454                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 2455                             CSUM_PSEUDO_HDR;
 2456                         m->m_pkthdr.csum_data = 0xffff;
 2457                 }
 2458         }
 2459         /*
 2460          * Don't mark bad checksum for TCP/UDP frames
 2461          * as fragmented frames may always have set
 2462          * bad checksummed bit of frame status.
 2463          */
 2464 }
 2465 
 2466 /* Process received frames. */
 2467 static int
 2468 ale_rxeof(struct ale_softc *sc, int count)
 2469 {
 2470         struct ale_rx_page *rx_page;
 2471         struct rx_rs *rs;
 2472         struct ifnet *ifp;
 2473         struct mbuf *m;
 2474         uint32_t length, prod, seqno, status, vtags;
 2475         int prog;
 2476 
 2477         ifp = sc->ale_ifp;
 2478         rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
 2479         bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2480             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2481         bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2482             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 2483         /*
 2484          * Don't directly access producer index as hardware may
 2485          * update it while Rx handler is in progress. It would
 2486          * be even better if there is a way to let hardware
 2487          * know how far driver processed its received frames.
 2488          * Alternatively, hardware could provide a way to disable
 2489          * CMB updates until driver acknowledges the end of CMB
 2490          * access.
 2491          */
 2492         prod = *rx_page->cmb_addr;
 2493         for (prog = 0; prog < count; prog++) {
 2494                 if (rx_page->cons >= prod)
 2495                         break;
 2496                 rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
 2497                 seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
 2498                 if (sc->ale_cdata.ale_rx_seqno != seqno) {
 2499                         /*
 2500                          * Normally I believe this should not happen unless
 2501                          * severe driver bug or corrupted memory. However
 2502                          * it seems to happen under certain conditions which
 2503                          * is triggered by abrupt Rx events such as initiation
 2504                          * of bulk transfer of remote host. It's not easy to
 2505                          * reproduce this and I doubt it could be related
 2506                          * with FIFO overflow of hardware or activity of Tx
 2507                          * CMB updates. I also remember similar behaviour
 2508                          * seen on RealTek 8139 which uses resembling Rx
 2509                          * scheme.
 2510                          */
 2511                         if (bootverbose)
 2512                                 device_printf(sc->ale_dev,
 2513                                     "garbled seq: %u, expected: %u -- "
 2514                                     "resetting!\n", seqno,
 2515                                     sc->ale_cdata.ale_rx_seqno);
 2516                         return (EIO);
 2517                 }
 2518                 /* Frame received. */
 2519                 sc->ale_cdata.ale_rx_seqno++;
 2520                 length = ALE_RX_BYTES(le32toh(rs->length));
 2521                 status = le32toh(rs->flags);
 2522                 if ((status & ALE_RD_ERROR) != 0) {
 2523                         /*
 2524                          * We want to pass the following frames to upper
 2525                          * layer regardless of error status of Rx return
 2526                          * status.
 2527                          *
 2528                          *  o IP/TCP/UDP checksum is bad.
 2529                          *  o frame length and protocol specific length
 2530                          *     does not match.
 2531                          */
 2532                         if ((status & (ALE_RD_CRC | ALE_RD_CODE |
 2533                             ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
 2534                             ALE_RD_TRUNC)) != 0) {
 2535                                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2536                                 continue;
 2537                         }
 2538                 }
 2539                 /*
 2540                  * m_devget(9) is major bottle-neck of ale(4)(It comes
 2541                  * from hardware limitation). For jumbo frames we could
 2542                  * get a slightly better performance if driver use
 2543                  * m_getjcl(9) with proper buffer size argument. However
 2544                  * that would make code more complicated and I don't
 2545                  * think users would expect good Rx performance numbers
 2546                  * on these low-end consumer ethernet controller.
 2547                  */
 2548                 m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
 2549                     ETHER_ALIGN, ifp, NULL);
 2550                 if (m == NULL) {
 2551                         ifp->if_iqdrops++;
 2552                         ale_rx_update_page(sc, &rx_page, length, &prod);
 2553                         continue;
 2554                 }
 2555                 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
 2556                     (status & ALE_RD_IPV4) != 0)
 2557                         ale_rxcsum(sc, m, status);
 2558                 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
 2559                     (status & ALE_RD_VLAN) != 0) {
 2560                         vtags = ALE_RX_VLAN(le32toh(rs->vtags));
 2561                         m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
 2562                         m->m_flags |= M_VLANTAG;
 2563                 }
 2564 
 2565                 /* Pass it to upper layer. */
 2566                 ALE_UNLOCK(sc);
 2567                 (*ifp->if_input)(ifp, m);
 2568                 ALE_LOCK(sc);
 2569 
 2570                 ale_rx_update_page(sc, &rx_page, length, &prod);
 2571         }
 2572 
 2573         return (count > 0 ? 0 : EAGAIN);
 2574 }
 2575 
 2576 static void
 2577 ale_tick(void *arg)
 2578 {
 2579         struct ale_softc *sc;
 2580         struct mii_data *mii;
 2581 
 2582         sc = (struct ale_softc *)arg;
 2583 
 2584         ALE_LOCK_ASSERT(sc);
 2585 
 2586         mii = device_get_softc(sc->ale_miibus);
 2587         mii_tick(mii);
 2588         ale_stats_update(sc);
 2589         /*
 2590          * Reclaim Tx buffers that have been transferred. It's not
 2591          * needed here but it would release allocated mbuf chains
 2592          * faster and limit the maximum delay to a hz.
 2593          */
 2594         ale_txeof(sc);
 2595         ale_watchdog(sc);
 2596         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2597 }
 2598 
 2599 static void
 2600 ale_reset(struct ale_softc *sc)
 2601 {
 2602         uint32_t reg;
 2603         int i;
 2604 
 2605         /* Initialize PCIe module. From Linux. */
 2606         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
 2607 
 2608         CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
 2609         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2610                 DELAY(10);
 2611                 if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
 2612                         break;
 2613         }
 2614         if (i == 0)
 2615                 device_printf(sc->ale_dev, "master reset timeout!\n");
 2616 
 2617         for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
 2618                 if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
 2619                         break;
 2620                 DELAY(10);
 2621         }
 2622 
 2623         if (i == 0)
 2624                 device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
 2625 }
 2626 
 2627 static void
 2628 ale_init(void *xsc)
 2629 {
 2630         struct ale_softc *sc;
 2631 
 2632         sc = (struct ale_softc *)xsc;
 2633         ALE_LOCK(sc);
 2634         ale_init_locked(sc);
 2635         ALE_UNLOCK(sc);
 2636 }
 2637 
 2638 static void
 2639 ale_init_locked(struct ale_softc *sc)
 2640 {
 2641         struct ifnet *ifp;
 2642         struct mii_data *mii;
 2643         uint8_t eaddr[ETHER_ADDR_LEN];
 2644         bus_addr_t paddr;
 2645         uint32_t reg, rxf_hi, rxf_lo;
 2646 
 2647         ALE_LOCK_ASSERT(sc);
 2648 
 2649         ifp = sc->ale_ifp;
 2650         mii = device_get_softc(sc->ale_miibus);
 2651 
 2652         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 2653                 return;
 2654         /*
 2655          * Cancel any pending I/O.
 2656          */
 2657         ale_stop(sc);
 2658         /*
 2659          * Reset the chip to a known state.
 2660          */
 2661         ale_reset(sc);
 2662         /* Initialize Tx descriptors, DMA memory blocks. */
 2663         ale_init_rx_pages(sc);
 2664         ale_init_tx_ring(sc);
 2665 
 2666         /* Reprogram the station address. */
 2667         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
 2668         CSR_WRITE_4(sc, ALE_PAR0,
 2669             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
 2670         CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
 2671         /*
 2672          * Clear WOL status and disable all WOL feature as WOL
 2673          * would interfere Rx operation under normal environments.
 2674          */
 2675         CSR_READ_4(sc, ALE_WOL_CFG);
 2676         CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
 2677         /*
 2678          * Set Tx descriptor/RXF0/CMB base addresses. They share
 2679          * the same high address part of DMAable region.
 2680          */
 2681         paddr = sc->ale_cdata.ale_tx_ring_paddr;
 2682         CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
 2683         CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
 2684         CSR_WRITE_4(sc, ALE_TPD_CNT,
 2685             (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
 2686         /* Set Rx page base address, note we use single queue. */
 2687         paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
 2688         CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
 2689         paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
 2690         CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
 2691         /* Set Tx/Rx CMB addresses. */
 2692         paddr = sc->ale_cdata.ale_tx_cmb_paddr;
 2693         CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
 2694         paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
 2695         CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
 2696         paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
 2697         CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
 2698         /* Mark RXF0 is valid. */
 2699         CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
 2700         CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
 2701         /*
 2702          * No need to initialize RFX1/RXF2/RXF3. We don't use
 2703          * multi-queue yet.
 2704          */
 2705 
 2706         /* Set Rx page size, excluding guard frame size. */
 2707         CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
 2708         /* Tell hardware that we're ready to load DMA blocks. */
 2709         CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
 2710 
 2711         /* Set Rx/Tx interrupt trigger threshold. */
 2712         CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
 2713             (4 << INT_TRIG_TX_THRESH_SHIFT));
 2714         /*
 2715          * XXX
 2716          * Set interrupt trigger timer, its purpose and relation
 2717          * with interrupt moderation mechanism is not clear yet.
 2718          */
 2719         CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
 2720             ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
 2721             (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
 2722 
 2723         /* Configure interrupt moderation timer. */
 2724         reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
 2725         reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
 2726         CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
 2727         reg = CSR_READ_4(sc, ALE_MASTER_CFG);
 2728         reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
 2729         reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
 2730         if (ALE_USECS(sc->ale_int_rx_mod) != 0)
 2731                 reg |= MASTER_IM_RX_TIMER_ENB;
 2732         if (ALE_USECS(sc->ale_int_tx_mod) != 0)
 2733                 reg |= MASTER_IM_TX_TIMER_ENB;
 2734         CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
 2735         CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
 2736 
 2737         /* Set Maximum frame size of controller. */
 2738         if (ifp->if_mtu < ETHERMTU)
 2739                 sc->ale_max_frame_size = ETHERMTU;
 2740         else
 2741                 sc->ale_max_frame_size = ifp->if_mtu;
 2742         sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 2743             ETHER_CRC_LEN;
 2744         CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
 2745         /* Configure IPG/IFG parameters. */
 2746         CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
 2747             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
 2748             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
 2749             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
 2750             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
 2751         /* Set parameters for half-duplex media. */
 2752         CSR_WRITE_4(sc, ALE_HDPX_CFG,
 2753             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
 2754             HDPX_CFG_LCOL_MASK) |
 2755             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
 2756             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
 2757             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
 2758             HDPX_CFG_ABEBT_MASK) |
 2759             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
 2760             HDPX_CFG_JAMIPG_MASK));
 2761 
 2762         /* Configure Tx jumbo frame parameters. */
 2763         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2764                 if (ifp->if_mtu < ETHERMTU)
 2765                         reg = sc->ale_max_frame_size;
 2766                 else if (ifp->if_mtu < 6 * 1024)
 2767                         reg = (sc->ale_max_frame_size * 2) / 3;
 2768                 else
 2769                         reg = sc->ale_max_frame_size / 2;
 2770                 CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
 2771                     roundup(reg, TX_JUMBO_THRESH_UNIT) >>
 2772                     TX_JUMBO_THRESH_UNIT_SHIFT);
 2773         }
 2774         /* Configure TxQ. */
 2775         reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
 2776             << TXQ_CFG_TX_FIFO_BURST_SHIFT;
 2777         reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
 2778             TXQ_CFG_TPD_BURST_MASK;
 2779         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
 2780 
 2781         /* Configure Rx jumbo frame & flow control parameters. */
 2782         if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
 2783                 reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
 2784                 CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
 2785                     (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
 2786                     RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
 2787                     ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
 2788                     RX_JUMBO_LKAH_MASK));
 2789                 reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
 2790                 rxf_hi = (reg * 7) / 10;
 2791                 rxf_lo = (reg * 3)/ 10;
 2792                 CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
 2793                     ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
 2794                     RX_FIFO_PAUSE_THRESH_LO_MASK) |
 2795                     ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
 2796                     RX_FIFO_PAUSE_THRESH_HI_MASK));
 2797         }
 2798 
 2799         /* Disable RSS. */
 2800         CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
 2801         CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
 2802 
 2803         /* Configure RxQ. */
 2804         CSR_WRITE_4(sc, ALE_RXQ_CFG,
 2805             RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
 2806 
 2807         /* Configure DMA parameters. */
 2808         reg = 0;
 2809         if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
 2810                 reg |= DMA_CFG_TXCMB_ENB;
 2811         CSR_WRITE_4(sc, ALE_DMA_CFG,
 2812             DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
 2813             sc->ale_dma_rd_burst | reg |
 2814             sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
 2815             ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
 2816             DMA_CFG_RD_DELAY_CNT_MASK) |
 2817             ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
 2818             DMA_CFG_WR_DELAY_CNT_MASK));
 2819 
 2820         /*
 2821          * Hardware can be configured to issue SMB interrupt based
 2822          * on programmed interval. Since there is a callout that is
 2823          * invoked for every hz in driver we use that instead of
 2824          * relying on periodic SMB interrupt.
 2825          */
 2826         CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
 2827         /* Clear MAC statistics. */
 2828         ale_stats_clear(sc);
 2829 
 2830         /*
 2831          * Configure Tx/Rx MACs.
 2832          *  - Auto-padding for short frames.
 2833          *  - Enable CRC generation.
 2834          *  Actual reconfiguration of MAC for resolved speed/duplex
 2835          *  is followed after detection of link establishment.
 2836          *  AR81xx always does checksum computation regardless of
 2837          *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
 2838          *  cause Rx handling issue for fragmented IP datagrams due
 2839          *  to silicon bug.
 2840          */
 2841         reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
 2842             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
 2843             MAC_CFG_PREAMBLE_MASK);
 2844         if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
 2845                 reg |= MAC_CFG_SPEED_10_100;
 2846         else
 2847                 reg |= MAC_CFG_SPEED_1000;
 2848         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2849 
 2850         /* Set up the receive filter. */
 2851         ale_rxfilter(sc);
 2852         ale_rxvlan(sc);
 2853 
 2854         /* Acknowledge all pending interrupts and clear it. */
 2855         CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
 2856         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2857         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
 2858 
 2859         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 2860         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 2861 
 2862         sc->ale_flags &= ~ALE_FLAG_LINK;
 2863         /* Switch to the current media. */
 2864         mii_mediachg(mii);
 2865 
 2866         callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
 2867 }
 2868 
 2869 static void
 2870 ale_stop(struct ale_softc *sc)
 2871 {
 2872         struct ifnet *ifp;
 2873         struct ale_txdesc *txd;
 2874         uint32_t reg;
 2875         int i;
 2876 
 2877         ALE_LOCK_ASSERT(sc);
 2878         /*
 2879          * Mark the interface down and cancel the watchdog timer.
 2880          */
 2881         ifp = sc->ale_ifp;
 2882         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 2883         sc->ale_flags &= ~ALE_FLAG_LINK;
 2884         callout_stop(&sc->ale_tick_ch);
 2885         sc->ale_watchdog_timer = 0;
 2886         ale_stats_update(sc);
 2887         /* Disable interrupts. */
 2888         CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
 2889         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2890         /* Disable queue processing and DMA. */
 2891         reg = CSR_READ_4(sc, ALE_TXQ_CFG);
 2892         reg &= ~TXQ_CFG_ENB;
 2893         CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
 2894         reg = CSR_READ_4(sc, ALE_RXQ_CFG);
 2895         reg &= ~RXQ_CFG_ENB;
 2896         CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
 2897         reg = CSR_READ_4(sc, ALE_DMA_CFG);
 2898         reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
 2899         CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
 2900         DELAY(1000);
 2901         /* Stop Rx/Tx MACs. */
 2902         ale_stop_mac(sc);
 2903         /* Disable interrupts which might be touched in taskq handler. */
 2904         CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
 2905 
 2906         /*
 2907          * Free TX mbufs still in the queues.
 2908          */
 2909         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2910                 txd = &sc->ale_cdata.ale_txdesc[i];
 2911                 if (txd->tx_m != NULL) {
 2912                         bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
 2913                             txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
 2914                         bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
 2915                             txd->tx_dmamap);
 2916                         m_freem(txd->tx_m);
 2917                         txd->tx_m = NULL;
 2918                 }
 2919         }
 2920 }
 2921 
 2922 static void
 2923 ale_stop_mac(struct ale_softc *sc)
 2924 {
 2925         uint32_t reg;
 2926         int i;
 2927 
 2928         ALE_LOCK_ASSERT(sc);
 2929 
 2930         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 2931         if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
 2932                 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
 2933                 CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 2934         }
 2935 
 2936         for (i = ALE_TIMEOUT; i > 0; i--) {
 2937                 reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
 2938                 if (reg == 0)
 2939                         break;
 2940                 DELAY(10);
 2941         }
 2942         if (i == 0)
 2943                 device_printf(sc->ale_dev,
 2944                     "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
 2945 }
 2946 
 2947 static void
 2948 ale_init_tx_ring(struct ale_softc *sc)
 2949 {
 2950         struct ale_txdesc *txd;
 2951         int i;
 2952 
 2953         ALE_LOCK_ASSERT(sc);
 2954 
 2955         sc->ale_cdata.ale_tx_prod = 0;
 2956         sc->ale_cdata.ale_tx_cons = 0;
 2957         sc->ale_cdata.ale_tx_cnt = 0;
 2958 
 2959         bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
 2960         bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
 2961         for (i = 0; i < ALE_TX_RING_CNT; i++) {
 2962                 txd = &sc->ale_cdata.ale_txdesc[i];
 2963                 txd->tx_m = NULL;
 2964         }
 2965         *sc->ale_cdata.ale_tx_cmb = 0;
 2966         bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
 2967             sc->ale_cdata.ale_tx_cmb_map,
 2968             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2969         bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
 2970             sc->ale_cdata.ale_tx_ring_map,
 2971             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2972 }
 2973 
 2974 static void
 2975 ale_init_rx_pages(struct ale_softc *sc)
 2976 {
 2977         struct ale_rx_page *rx_page;
 2978         int i;
 2979 
 2980         ALE_LOCK_ASSERT(sc);
 2981 
 2982         sc->ale_morework = 0;
 2983         sc->ale_cdata.ale_rx_seqno = 0;
 2984         sc->ale_cdata.ale_rx_curp = 0;
 2985 
 2986         for (i = 0; i < ALE_RX_PAGES; i++) {
 2987                 rx_page = &sc->ale_cdata.ale_rx_page[i];
 2988                 bzero(rx_page->page_addr, sc->ale_pagesize);
 2989                 bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
 2990                 rx_page->cons = 0;
 2991                 *rx_page->cmb_addr = 0;
 2992                 bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
 2993                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2994                 bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
 2995                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2996         }
 2997 }
 2998 
 2999 static void
 3000 ale_rxvlan(struct ale_softc *sc)
 3001 {
 3002         struct ifnet *ifp;
 3003         uint32_t reg;
 3004 
 3005         ALE_LOCK_ASSERT(sc);
 3006 
 3007         ifp = sc->ale_ifp;
 3008         reg = CSR_READ_4(sc, ALE_MAC_CFG);
 3009         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
 3010         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
 3011                 reg |= MAC_CFG_VLAN_TAG_STRIP;
 3012         CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
 3013 }
 3014 
 3015 static void
 3016 ale_rxfilter(struct ale_softc *sc)
 3017 {
 3018         struct ifnet *ifp;
 3019         struct ifmultiaddr *ifma;
 3020         uint32_t crc;
 3021         uint32_t mchash[2];
 3022         uint32_t rxcfg;
 3023 
 3024         ALE_LOCK_ASSERT(sc);
 3025 
 3026         ifp = sc->ale_ifp;
 3027 
 3028         rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
 3029         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
 3030         if ((ifp->if_flags & IFF_BROADCAST) != 0)
 3031                 rxcfg |= MAC_CFG_BCAST;
 3032         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
 3033                 if ((ifp->if_flags & IFF_PROMISC) != 0)
 3034                         rxcfg |= MAC_CFG_PROMISC;
 3035                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
 3036                         rxcfg |= MAC_CFG_ALLMULTI;
 3037                 CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
 3038                 CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
 3039                 CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3040                 return;
 3041         }
 3042 
 3043         /* Program new filter. */
 3044         bzero(mchash, sizeof(mchash));
 3045 
 3046         if_maddr_rlock(ifp);
 3047         TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
 3048                 if (ifma->ifma_addr->sa_family != AF_LINK)
 3049                         continue;
 3050                 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
 3051                     ifma->ifma_addr), ETHER_ADDR_LEN);
 3052                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
 3053         }
 3054         if_maddr_runlock(ifp);
 3055 
 3056         CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
 3057         CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
 3058         CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
 3059 }
 3060 
 3061 static int
 3062 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
 3063 {
 3064         int error, value;
 3065 
 3066         if (arg1 == NULL)
 3067                 return (EINVAL);
 3068         value = *(int *)arg1;
 3069         error = sysctl_handle_int(oidp, &value, 0, req);
 3070         if (error || req->newptr == NULL)
 3071                 return (error);
 3072         if (value < low || value > high)
 3073                 return (EINVAL);
 3074         *(int *)arg1 = value;
 3075 
 3076         return (0);
 3077 }
 3078 
 3079 static int
 3080 sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
 3081 {
 3082         return (sysctl_int_range(oidp, arg1, arg2, req,
 3083             ALE_PROC_MIN, ALE_PROC_MAX));
 3084 }
 3085 
 3086 static int
 3087 sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
 3088 {
 3089 
 3090         return (sysctl_int_range(oidp, arg1, arg2, req,
 3091             ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
 3092 }

Cache object: dba1ad4553b465f188bf80d74235cd90


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.