1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2006 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD$
20 */
21 #include "opt_ah.h"
22
23 #include "ah.h"
24 #include "ah_internal.h"
25
26 #include "ar5211/ar5211.h"
27 #include "ar5211/ar5211reg.h"
28 #include "ar5211/ar5211phy.h"
29
30 #include "ah_eeprom_v3.h"
31
32 #define AR_NUM_GPIO 6 /* 6 GPIO bits */
33 #define AR_GPIOD_MASK 0x2f /* 6-bit mask */
34
35 void
36 ar5211GetMacAddress(struct ath_hal *ah, uint8_t *mac)
37 {
38 struct ath_hal_5211 *ahp = AH5211(ah);
39
40 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
41 }
42
43 HAL_BOOL
44 ar5211SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
45 {
46 struct ath_hal_5211 *ahp = AH5211(ah);
47
48 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
49 return AH_TRUE;
50 }
51
52 void
53 ar5211GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
54 {
55 static const uint8_t ones[IEEE80211_ADDR_LEN] =
56 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
57 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
58 }
59
60 HAL_BOOL
61 ar5211SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
62 {
63 return AH_FALSE;
64 }
65
66 /*
67 * Read 16 bits of data from the specified EEPROM offset.
68 */
69 HAL_BOOL
70 ar5211EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
71 {
72 OS_REG_WRITE(ah, AR_EEPROM_ADDR, off);
73 OS_REG_WRITE(ah, AR_EEPROM_CMD, AR_EEPROM_CMD_READ);
74
75 if (!ath_hal_wait(ah, AR_EEPROM_STS,
76 AR_EEPROM_STS_READ_COMPLETE | AR_EEPROM_STS_READ_ERROR,
77 AR_EEPROM_STS_READ_COMPLETE)) {
78 HALDEBUG(ah, HAL_DEBUG_ANY,
79 "%s: read failed for entry 0x%x\n", __func__, off);
80 return AH_FALSE;
81 }
82 *data = OS_REG_READ(ah, AR_EEPROM_DATA) & 0xffff;
83 return AH_TRUE;
84 }
85
86 #ifdef AH_SUPPORT_WRITE_EEPROM
87 /*
88 * Write 16 bits of data to the specified EEPROM offset.
89 */
90 HAL_BOOL
91 ar5211EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
92 {
93 return AH_FALSE;
94 }
95 #endif /* AH_SUPPORT_WRITE_EEPROM */
96
97 /*
98 * Attempt to change the cards operating regulatory domain to the given value
99 */
100 HAL_BOOL
101 ar5211SetRegulatoryDomain(struct ath_hal *ah,
102 uint16_t regDomain, HAL_STATUS *status)
103 {
104 HAL_STATUS ecode;
105
106 if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
107 ecode = HAL_EINVAL;
108 goto bad;
109 }
110 /*
111 * Check if EEPROM is configured to allow this; must
112 * be a proper version and the protection bits must
113 * permit re-writing that segment of the EEPROM.
114 */
115 if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
116 ecode = HAL_EEWRITE;
117 goto bad;
118 }
119 #ifdef AH_SUPPORT_WRITE_REGDOMAIN
120 if (ar5211EepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
121 HALDEBUG(ah, HAL_DEBUG_ANY,
122 "%s: set regulatory domain to %u (0x%x)\n",
123 __func__, regDomain, regDomain);
124 AH_PRIVATE(ah)->ah_currentRD = regDomain;
125 return AH_TRUE;
126 }
127 #endif
128 ecode = HAL_EIO;
129 bad:
130 if (status)
131 *status = ecode;
132 return AH_FALSE;
133 }
134
135 /*
136 * Return the wireless modes (a,b,g,t) supported by hardware.
137 *
138 * This value is what is actually supported by the hardware
139 * and is unaffected by regulatory/country code settings.
140 *
141 */
142 u_int
143 ar5211GetWirelessModes(struct ath_hal *ah)
144 {
145 u_int mode = 0;
146
147 if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
148 mode = HAL_MODE_11A;
149 if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
150 mode |= HAL_MODE_TURBO | HAL_MODE_108A;
151 }
152 if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
153 mode |= HAL_MODE_11B;
154 return mode;
155 }
156
157 #if 0
158 HAL_BOOL
159 ar5211GetTurboDisable(struct ath_hal *ah)
160 {
161 return (AH5211(ah)->ah_turboDisable != 0);
162 }
163 #endif
164
165 /*
166 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
167 * GPIO values so the ISR and can disable RF on a switch signal
168 */
169 void
170 ar5211EnableRfKill(struct ath_hal *ah)
171 {
172 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
173 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
174 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
175
176 /*
177 * Configure the desired GPIO port for input
178 * and enable baseband rf silence.
179 */
180 ar5211GpioCfgInput(ah, select);
181 OS_REG_SET_BIT(ah, AR_PHY_BASE, 0x00002000);
182 /*
183 * If radio disable switch connection to GPIO bit x is enabled
184 * program GPIO interrupt.
185 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
186 * verified that it is a later version of eeprom, it has a place for
187 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
188 * connection is present.
189 */
190 ar5211GpioSetIntr(ah, select, (ar5211GpioGet(ah, select) != polarity));
191 }
192
193 /*
194 * Configure GPIO Output lines
195 */
196 HAL_BOOL
197 ar5211GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
198 {
199 uint32_t reg;
200
201 HALASSERT(gpio < AR_NUM_GPIO);
202
203 reg = OS_REG_READ(ah, AR_GPIOCR);
204 reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
205 reg |= AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT);
206
207 OS_REG_WRITE(ah, AR_GPIOCR, reg);
208 return AH_TRUE;
209 }
210
211 /*
212 * Configure GPIO Input lines
213 */
214 HAL_BOOL
215 ar5211GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
216 {
217 uint32_t reg;
218
219 HALASSERT(gpio < AR_NUM_GPIO);
220
221 reg = OS_REG_READ(ah, AR_GPIOCR);
222 reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
223 reg |= AR_GPIOCR_0_CR_N << (gpio * AR_GPIOCR_CR_SHIFT);
224
225 OS_REG_WRITE(ah, AR_GPIOCR, reg);
226 return AH_TRUE;
227 }
228
229 /*
230 * Once configured for I/O - set output lines
231 */
232 HAL_BOOL
233 ar5211GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
234 {
235 uint32_t reg;
236
237 HALASSERT(gpio < AR_NUM_GPIO);
238
239 reg = OS_REG_READ(ah, AR_GPIODO);
240 reg &= ~(1 << gpio);
241 reg |= (val&1) << gpio;
242
243 OS_REG_WRITE(ah, AR_GPIODO, reg);
244 return AH_TRUE;
245 }
246
247 /*
248 * Once configured for I/O - get input lines
249 */
250 uint32_t
251 ar5211GpioGet(struct ath_hal *ah, uint32_t gpio)
252 {
253 if (gpio < AR_NUM_GPIO) {
254 uint32_t val = OS_REG_READ(ah, AR_GPIODI);
255 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
256 return val;
257 } else {
258 return 0xffffffff;
259 }
260 }
261
262 /*
263 * Set the GPIO 0 Interrupt (gpio is ignored)
264 */
265 void
266 ar5211GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
267 {
268 uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
269
270 /* Clear the bits that we will modify. */
271 val &= ~(AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
272 AR_GPIOCR_0_CR_A);
273
274 val |= AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_ENA;
275 if (ilevel)
276 val |= AR_GPIOCR_INT_SELH;
277
278 /* Don't need to change anything for low level interrupt. */
279 OS_REG_WRITE(ah, AR_GPIOCR, val);
280
281 /* Change the interrupt mask. */
282 ar5211SetInterrupts(ah, AH5211(ah)->ah_maskReg | HAL_INT_GPIO);
283 }
284
285 /*
286 * Change the LED blinking pattern to correspond to the connectivity
287 */
288 void
289 ar5211SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
290 {
291 static const uint32_t ledbits[8] = {
292 AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_INIT */
293 AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_SCAN */
294 AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_AUTH */
295 AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_ASSOC*/
296 AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_RUN */
297 AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
298 AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
299 AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
300 };
301 OS_REG_WRITE(ah, AR_PCICFG,
302 (OS_REG_READ(ah, AR_PCICFG) &~
303 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE))
304 | ledbits[state & 0x7]
305 );
306 }
307
308 /*
309 * Change association related fields programmed into the hardware.
310 * Writing a valid BSSID to the hardware effectively enables the hardware
311 * to synchronize its TSF to the correct beacons and receive frames coming
312 * from that BSSID. It is called by the SME JOIN operation.
313 */
314 void
315 ar5211WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
316 {
317 struct ath_hal_5211 *ahp = AH5211(ah);
318
319 /* XXX save bssid for possible re-use on reset */
320 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
321 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
322 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
323 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
324 }
325
326 /*
327 * Get the current hardware tsf for stamlme.
328 */
329 uint64_t
330 ar5211GetTsf64(struct ath_hal *ah)
331 {
332 uint32_t low1, low2, u32;
333
334 /* sync multi-word read */
335 low1 = OS_REG_READ(ah, AR_TSF_L32);
336 u32 = OS_REG_READ(ah, AR_TSF_U32);
337 low2 = OS_REG_READ(ah, AR_TSF_L32);
338 if (low2 < low1) { /* roll over */
339 /*
340 * If we are not preempted this will work. If we are
341 * then we re-reading AR_TSF_U32 does no good as the
342 * low bits will be meaningless. Likewise reading
343 * L32, U32, U32, then comparing the last two reads
344 * to check for rollover doesn't help if preempted--so
345 * we take this approach as it costs one less PCI
346 * read which can be noticeable when doing things
347 * like timestamping packets in monitor mode.
348 */
349 u32++;
350 }
351 return (((uint64_t) u32) << 32) | ((uint64_t) low2);
352 }
353
354 /*
355 * Get the current hardware tsf for stamlme.
356 */
357 uint32_t
358 ar5211GetTsf32(struct ath_hal *ah)
359 {
360 return OS_REG_READ(ah, AR_TSF_L32);
361 }
362
363 /*
364 * Reset the current hardware tsf for stamlme
365 */
366 void
367 ar5211ResetTsf(struct ath_hal *ah)
368 {
369 uint32_t val = OS_REG_READ(ah, AR_BEACON);
370
371 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
372 }
373
374 /*
375 * Grab a semi-random value from hardware registers - may not
376 * change often
377 */
378 uint32_t
379 ar5211GetRandomSeed(struct ath_hal *ah)
380 {
381 uint32_t nf;
382
383 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
384 if (nf & 0x100)
385 nf = 0 - ((nf ^ 0x1ff) + 1);
386 return (OS_REG_READ(ah, AR_TSF_U32) ^
387 OS_REG_READ(ah, AR_TSF_L32) ^ nf);
388 }
389
390 /*
391 * Detect if our card is present
392 */
393 HAL_BOOL
394 ar5211DetectCardPresent(struct ath_hal *ah)
395 {
396 uint16_t macVersion, macRev;
397 uint32_t v;
398
399 /*
400 * Read the Silicon Revision register and compare that
401 * to what we read at attach time. If the same, we say
402 * a card/device is present.
403 */
404 v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID_M;
405 macVersion = v >> AR_SREV_ID_S;
406 macRev = v & AR_SREV_REVISION_M;
407 return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
408 AH_PRIVATE(ah)->ah_macRev == macRev);
409 }
410
411 /*
412 * Update MIB Counters
413 */
414 void
415 ar5211UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
416 {
417 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
418 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
419 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
420 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
421 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
422 }
423
424 HAL_BOOL
425 ar5211SetSifsTime(struct ath_hal *ah, u_int us)
426 {
427 struct ath_hal_5211 *ahp = AH5211(ah);
428
429 if (us > ath_hal_mac_usec(ah, 0xffff)) {
430 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
431 __func__, us);
432 ahp->ah_sifstime = (u_int) -1; /* restore default handling */
433 return AH_FALSE;
434 } else {
435 /* convert to system clocks */
436 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
437 ahp->ah_slottime = us;
438 return AH_TRUE;
439 }
440 }
441
442 u_int
443 ar5211GetSifsTime(struct ath_hal *ah)
444 {
445 u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
446 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
447 }
448
449 HAL_BOOL
450 ar5211SetSlotTime(struct ath_hal *ah, u_int us)
451 {
452 struct ath_hal_5211 *ahp = AH5211(ah);
453
454 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
455 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
456 __func__, us);
457 ahp->ah_slottime = us; /* restore default handling */
458 return AH_FALSE;
459 } else {
460 /* convert to system clocks */
461 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
462 ahp->ah_slottime = us;
463 return AH_TRUE;
464 }
465 }
466
467 u_int
468 ar5211GetSlotTime(struct ath_hal *ah)
469 {
470 u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
471 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
472 }
473
474 HAL_BOOL
475 ar5211SetAckTimeout(struct ath_hal *ah, u_int us)
476 {
477 struct ath_hal_5211 *ahp = AH5211(ah);
478
479 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
480 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
481 __func__, us);
482 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
483 return AH_FALSE;
484 } else {
485 /* convert to system clocks */
486 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
487 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
488 ahp->ah_acktimeout = us;
489 return AH_TRUE;
490 }
491 }
492
493 u_int
494 ar5211GetAckTimeout(struct ath_hal *ah)
495 {
496 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
497 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
498 }
499
500 u_int
501 ar5211GetAckCTSRate(struct ath_hal *ah)
502 {
503 return ((AH5211(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
504 }
505
506 HAL_BOOL
507 ar5211SetAckCTSRate(struct ath_hal *ah, u_int high)
508 {
509 struct ath_hal_5211 *ahp = AH5211(ah);
510
511 if (high) {
512 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
513 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
514 } else {
515 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
516 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
517 }
518 return AH_TRUE;
519 }
520
521 HAL_BOOL
522 ar5211SetCTSTimeout(struct ath_hal *ah, u_int us)
523 {
524 struct ath_hal_5211 *ahp = AH5211(ah);
525
526 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
527 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
528 __func__, us);
529 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
530 return AH_FALSE;
531 } else {
532 /* convert to system clocks */
533 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
534 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
535 ahp->ah_ctstimeout = us;
536 return AH_TRUE;
537 }
538 }
539
540 u_int
541 ar5211GetCTSTimeout(struct ath_hal *ah)
542 {
543 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
544 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
545 }
546
547 HAL_BOOL
548 ar5211SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
549 {
550 /* nothing to do */
551 return AH_TRUE;
552 }
553
554 void
555 ar5211SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
556 {
557 }
558
559 HAL_STATUS
560 ar5211SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
561 uint32_t next_start, HAL_QUIET_FLAG flags)
562 {
563 return HAL_OK;
564 }
565
566 /*
567 * Control Adaptive Noise Immunity Parameters
568 */
569 HAL_BOOL
570 ar5211AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
571 {
572 return AH_FALSE;
573 }
574
575 void
576 ar5211AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
577 {
578 }
579
580 void
581 ar5211RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
582 const struct ieee80211_channel *chan)
583 {
584 }
585
586 void
587 ar5211MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
588 {
589 }
590
591 /*
592 * Get the rssi of frame curently being received.
593 */
594 uint32_t
595 ar5211GetCurRssi(struct ath_hal *ah)
596 {
597 return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
598 }
599
600 u_int
601 ar5211GetDefAntenna(struct ath_hal *ah)
602 {
603 return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
604 }
605
606 void
607 ar5211SetDefAntenna(struct ath_hal *ah, u_int antenna)
608 {
609 OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
610 }
611
612 HAL_ANT_SETTING
613 ar5211GetAntennaSwitch(struct ath_hal *ah)
614 {
615 return AH5211(ah)->ah_diversityControl;
616 }
617
618 HAL_BOOL
619 ar5211SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
620 {
621 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
622
623 if (chan == AH_NULL) {
624 AH5211(ah)->ah_diversityControl = settings;
625 return AH_TRUE;
626 }
627 return ar5211SetAntennaSwitchInternal(ah, settings, chan);
628 }
629
630 HAL_STATUS
631 ar5211GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
632 uint32_t capability, uint32_t *result)
633 {
634
635 switch (type) {
636 case HAL_CAP_CIPHER: /* cipher handled in hardware */
637 switch (capability) {
638 case HAL_CIPHER_AES_OCB:
639 case HAL_CIPHER_WEP:
640 case HAL_CIPHER_CLR:
641 return HAL_OK;
642 default:
643 return HAL_ENOTSUPP;
644 }
645 default:
646 return ath_hal_getcapability(ah, type, capability, result);
647 }
648 }
649
650 HAL_BOOL
651 ar5211SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
652 uint32_t capability, uint32_t setting, HAL_STATUS *status)
653 {
654 switch (type) {
655 case HAL_CAP_DIAG: /* hardware diagnostic support */
656 /*
657 * NB: could split this up into virtual capabilities,
658 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
659 * seems worth the additional complexity.
660 */
661 #ifdef AH_DEBUG
662 AH_PRIVATE(ah)->ah_diagreg = setting;
663 #else
664 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
665 #endif
666 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
667 return AH_TRUE;
668 default:
669 return ath_hal_setcapability(ah, type, capability,
670 setting, status);
671 }
672 }
673
674 HAL_BOOL
675 ar5211GetDiagState(struct ath_hal *ah, int request,
676 const void *args, uint32_t argsize,
677 void **result, uint32_t *resultsize)
678 {
679 struct ath_hal_5211 *ahp = AH5211(ah);
680
681 (void) ahp;
682 if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
683 return AH_TRUE;
684 switch (request) {
685 case HAL_DIAG_EEPROM:
686 return ath_hal_eepromDiag(ah, request,
687 args, argsize, result, resultsize);
688 case HAL_DIAG_RFGAIN:
689 *result = &ahp->ah_gainValues;
690 *resultsize = sizeof(GAIN_VALUES);
691 return AH_TRUE;
692 case HAL_DIAG_RFGAIN_CURSTEP:
693 *result = __DECONST(void *, ahp->ah_gainValues.currStep);
694 *resultsize = (*result == AH_NULL) ?
695 0 : sizeof(GAIN_OPTIMIZATION_STEP);
696 return AH_TRUE;
697 }
698 return AH_FALSE;
699 }
700
701 /*
702 * Return what percentage of the extension channel is busy.
703 * This is always disabled for AR5211 series NICs.
704 */
705 uint32_t
706 ar5211Get11nExtBusy(struct ath_hal *ah)
707 {
708 return (0);
709 }
710
711 /*
712 * There's no channel survey support for the AR5211.
713 */
714 HAL_BOOL
715 ar5211GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
716 {
717
718 return (AH_FALSE);
719 }
720
721 void
722 ar5211SetChainMasks(struct ath_hal *ah, uint32_t txchainmask,
723 uint32_t rxchainmask)
724 {
725 }
726
727 void
728 ar5211EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
729 {
730 }
731
732 void
733 ar5211GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
734 {
735 }
736
737 /*
738 * Get the current NAV value from the hardware.
739 */
740 u_int
741 ar5211GetNav(struct ath_hal *ah)
742 {
743 uint32_t reg;
744
745 reg = OS_REG_READ(ah, AR_NAV);
746 return (reg);
747 }
748
749 /*
750 * Set the current NAV value to the hardware.
751 */
752 void
753 ar5211SetNav(struct ath_hal *ah, u_int val)
754 {
755
756 OS_REG_WRITE(ah, AR_NAV, val);
757 }
758
Cache object: bb5754e7663c65d1c6155605da65e6f2
|