The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5211/ar5211_reset.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2006 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 /*
   24  * Chips specific device attachment and device info collection
   25  * Connects Init Reg Vectors, EEPROM Data, and device Functions.
   26  */
   27 #include "ah.h"
   28 #include "ah_internal.h"
   29 #include "ah_devid.h"
   30 
   31 #include "ar5211/ar5211.h"
   32 #include "ar5211/ar5211reg.h"
   33 #include "ar5211/ar5211phy.h"
   34 
   35 #include "ah_eeprom_v3.h"
   36 
   37 /* Add static register initialization vectors */
   38 #include "ar5211/boss.ini"
   39 
   40 /*
   41  * Structure to hold 11b tuning information for Beanie/Sombrero
   42  * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
   43  */
   44 typedef struct {
   45         uint32_t        refClkSel;      /* reference clock, 1 for 16 MHz */
   46         uint32_t        channelSelect;  /* P[7:4]S[3:0] bits */
   47         uint16_t        channel5111;    /* 11a channel for 5111 */
   48 } CHAN_INFO_2GHZ;
   49 
   50 #define CI_2GHZ_INDEX_CORRECTION 19
   51 static const CHAN_INFO_2GHZ chan2GHzData[] = {
   52         { 1, 0x46, 96  },       /* 2312 -19 */
   53         { 1, 0x46, 97  },       /* 2317 -18 */
   54         { 1, 0x46, 98  },       /* 2322 -17 */
   55         { 1, 0x46, 99  },       /* 2327 -16 */
   56         { 1, 0x46, 100 },       /* 2332 -15 */
   57         { 1, 0x46, 101 },       /* 2337 -14 */
   58         { 1, 0x46, 102 },       /* 2342 -13 */
   59         { 1, 0x46, 103 },       /* 2347 -12 */
   60         { 1, 0x46, 104 },       /* 2352 -11 */
   61         { 1, 0x46, 105 },       /* 2357 -10 */
   62         { 1, 0x46, 106 },       /* 2362  -9 */
   63         { 1, 0x46, 107 },       /* 2367  -8 */
   64         { 1, 0x46, 108 },       /* 2372  -7 */
   65         /* index -6 to 0 are pad to make this a nolookup table */
   66         { 1, 0x46, 116 },       /*       -6 */
   67         { 1, 0x46, 116 },       /*       -5 */
   68         { 1, 0x46, 116 },       /*       -4 */
   69         { 1, 0x46, 116 },       /*       -3 */
   70         { 1, 0x46, 116 },       /*       -2 */
   71         { 1, 0x46, 116 },       /*       -1 */
   72         { 1, 0x46, 116 },       /*        0 */
   73         { 1, 0x46, 116 },       /* 2412   1 */
   74         { 1, 0x46, 117 },       /* 2417   2 */
   75         { 1, 0x46, 118 },       /* 2422   3 */
   76         { 1, 0x46, 119 },       /* 2427   4 */
   77         { 1, 0x46, 120 },       /* 2432   5 */
   78         { 1, 0x46, 121 },       /* 2437   6 */
   79         { 1, 0x46, 122 },       /* 2442   7 */
   80         { 1, 0x46, 123 },       /* 2447   8 */
   81         { 1, 0x46, 124 },       /* 2452   9 */
   82         { 1, 0x46, 125 },       /* 2457  10 */
   83         { 1, 0x46, 126 },       /* 2462  11 */
   84         { 1, 0x46, 127 },       /* 2467  12 */
   85         { 1, 0x46, 128 },       /* 2472  13 */
   86         { 1, 0x44, 124 },       /* 2484  14 */
   87         { 1, 0x46, 136 },       /* 2512  15 */
   88         { 1, 0x46, 140 },       /* 2532  16 */
   89         { 1, 0x46, 144 },       /* 2552  17 */
   90         { 1, 0x46, 148 },       /* 2572  18 */
   91         { 1, 0x46, 152 },       /* 2592  19 */
   92         { 1, 0x46, 156 },       /* 2612  20 */
   93         { 1, 0x46, 160 },       /* 2632  21 */
   94         { 1, 0x46, 164 },       /* 2652  22 */
   95         { 1, 0x46, 168 },       /* 2672  23 */
   96         { 1, 0x46, 172 },       /* 2692  24 */
   97         { 1, 0x46, 176 },       /* 2712  25 */
   98         { 1, 0x46, 180 }        /* 2732  26 */
   99 };
  100 
  101 /* Power timeouts in usec to wait for chip to wake-up. */
  102 #define POWER_UP_TIME   2000
  103 
  104 #define DELAY_PLL_SETTLE        300             /* 300 us */
  105 #define DELAY_BASE_ACTIVATE     100             /* 100 us */
  106 
  107 #define NUM_RATES       8
  108 
  109 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
  110 static HAL_BOOL ar5211SetChannel(struct ath_hal *,
  111                 const struct ieee80211_channel *);
  112 static int16_t ar5211RunNoiseFloor(struct ath_hal *,
  113                 uint8_t runTime, int16_t startingNF);
  114 static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
  115                 struct ieee80211_channel *chan);
  116 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
  117                 const struct ieee80211_channel *chan);
  118 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
  119                 const struct ieee80211_channel *chan);
  120 static void ar5211SetPowerTable(struct ath_hal *,
  121                 PCDACS_EEPROM *pSrcStruct, uint16_t channel);
  122 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
  123                 const struct ieee80211_channel *);
  124 static void ar5211SetRateTable(struct ath_hal *,
  125                 RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
  126                 uint16_t numChannels, const struct ieee80211_channel *chan);
  127 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
  128                 const PCDACS_EEPROM *pSrcStruct);
  129 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
  130                 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
  131 static uint16_t ar5211GetInterpolatedValue(uint16_t target,
  132                 uint16_t srcLeft, uint16_t srcRight,
  133                 uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
  134 static void ar5211GetLowerUpperValues(uint16_t value,
  135                 const uint16_t *pList, uint16_t listSize,
  136                 uint16_t *pLowerValue, uint16_t *pUpperValue);
  137 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
  138                 uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
  139                 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
  140 
  141 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
  142 static void ar5211RequestRfgain(struct ath_hal *);
  143 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
  144 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
  145 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
  146 static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
  147 
  148 /*
  149  * Places the device in and out of reset and then places sane
  150  * values in the registers based on EEPROM config, initialization
  151  * vectors (as determined by the mode), and station configuration
  152  *
  153  * bChannelChange is used to preserve DMA/PCU registers across
  154  * a HW Reset during channel change.
  155  */
  156 HAL_BOOL
  157 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
  158         struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
  159         HAL_RESET_TYPE resetType,
  160         HAL_STATUS *status)
  161 {
  162 uint32_t softLedCfg, softLedState;
  163 #define N(a)    (sizeof (a) /sizeof (a[0]))
  164 #define FAIL(_code)     do { ecode = _code; goto bad; } while (0)
  165         struct ath_hal_5211 *ahp = AH5211(ah);
  166         HAL_CHANNEL_INTERNAL *ichan;
  167         uint32_t i, ledstate;
  168         HAL_STATUS ecode;
  169         int q;
  170 
  171         uint32_t                data, synthDelay;
  172         uint32_t                macStaId1;    
  173         uint16_t                modesIndex = 0, freqIndex = 0;
  174         uint32_t                saveFrameSeqCount[AR_NUM_DCU];
  175         uint32_t                saveTsfLow = 0, saveTsfHigh = 0;
  176         uint32_t                saveDefAntenna;
  177 
  178         HALDEBUG(ah, HAL_DEBUG_RESET,
  179              "%s: opmode %u channel %u/0x%x %s channel\n",
  180              __func__, opmode, chan->ic_freq, chan->ic_flags,
  181              bChannelChange ? "change" : "same");
  182 
  183         OS_MARK(ah, AH_MARK_RESET, bChannelChange);
  184         /*
  185          * Map public channel to private.
  186          */
  187         ichan = ath_hal_checkchannel(ah, chan);
  188         if (ichan == AH_NULL)
  189                 FAIL(HAL_EINVAL);
  190         switch (opmode) {
  191         case HAL_M_STA:
  192         case HAL_M_IBSS:
  193         case HAL_M_HOSTAP:
  194         case HAL_M_MONITOR:
  195                 break;
  196         default:
  197                 HALDEBUG(ah, HAL_DEBUG_ANY,
  198                     "%s: invalid operating mode %u\n", __func__, opmode);
  199                 FAIL(HAL_EINVAL);
  200                 break;
  201         }
  202         HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
  203 
  204         /* Preserve certain DMA hardware registers on a channel change */
  205         if (bChannelChange) {
  206                 /*
  207                  * Need to save/restore the TSF because of an issue
  208                  * that accelerates the TSF during a chip reset.
  209                  *
  210                  * We could use system timer routines to more
  211                  * accurately restore the TSF, but
  212                  * 1. Timer routines on certain platforms are
  213                  *      not accurate enough (e.g. 1 ms resolution).
  214                  * 2. It would still not be accurate.
  215                  *
  216                  * The most important aspect of this workaround,
  217                  * is that, after reset, the TSF is behind
  218                  * other STAs TSFs.  This will allow the STA to
  219                  * properly resynchronize its TSF in adhoc mode.
  220                  */
  221                 saveTsfLow  = OS_REG_READ(ah, AR_TSF_L32);
  222                 saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
  223 
  224                 /* Read frame sequence count */
  225                 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
  226                         saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
  227                 } else {
  228                         for (i = 0; i < AR_NUM_DCU; i++)
  229                                 saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
  230                 }
  231                 if (!IEEE80211_IS_CHAN_DFS(chan)) 
  232                         chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
  233         }
  234 
  235         /*
  236          * Preserve the antenna on a channel change
  237          */
  238         saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
  239         if (saveDefAntenna == 0)
  240                 saveDefAntenna = 1;
  241 
  242         /* Save hardware flag before chip reset clears the register */
  243         macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  244 
  245         /* Save led state from pci config register */
  246         ledstate = OS_REG_READ(ah, AR_PCICFG) &
  247                 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
  248                  AR_PCICFG_LEDSLOW);
  249         softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
  250         softLedState = OS_REG_READ(ah, AR_GPIODO);
  251 
  252         if (!ar5211ChipReset(ah, chan)) {
  253                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
  254                 FAIL(HAL_EIO);
  255         }
  256 
  257         /* Setup the indices for the next set of register array writes */
  258         if (IEEE80211_IS_CHAN_5GHZ(chan)) {
  259                 freqIndex = 1;
  260                 if (IEEE80211_IS_CHAN_TURBO(chan))
  261                         modesIndex = 2;
  262                 else if (IEEE80211_IS_CHAN_A(chan))
  263                         modesIndex = 1;
  264                 else {
  265                         HALDEBUG(ah, HAL_DEBUG_ANY,
  266                             "%s: invalid channel %u/0x%x\n",
  267                             __func__, chan->ic_freq, chan->ic_flags);
  268                         FAIL(HAL_EINVAL);
  269                 }
  270         } else {
  271                 freqIndex = 2;
  272                 if (IEEE80211_IS_CHAN_B(chan))
  273                         modesIndex = 3;
  274                 else if (IEEE80211_IS_CHAN_PUREG(chan))
  275                         modesIndex = 4;
  276                 else {
  277                         HALDEBUG(ah, HAL_DEBUG_ANY,
  278                             "%s: invalid channel %u/0x%x\n",
  279                             __func__, chan->ic_freq, chan->ic_flags);
  280                         FAIL(HAL_EINVAL);
  281                 }
  282         }
  283 
  284         /* Set correct Baseband to analog shift setting to access analog chips. */
  285         if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
  286                 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
  287         } else {
  288                 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
  289         }
  290 
  291         /* Write parameters specific to AR5211 */
  292         if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
  293                 if (IEEE80211_IS_CHAN_2GHZ(chan) &&
  294                     AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
  295                         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  296                         uint32_t ob2GHz, db2GHz;
  297 
  298                         if (IEEE80211_IS_CHAN_CCK(chan)) {
  299                                 ob2GHz = ee->ee_ob2GHz[0];
  300                                 db2GHz = ee->ee_db2GHz[0];
  301                         } else {
  302                                 ob2GHz = ee->ee_ob2GHz[1];
  303                                 db2GHz = ee->ee_db2GHz[1];
  304                         }
  305                         ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
  306                         db2GHz = ath_hal_reverseBits(db2GHz, 3);
  307                         ar5211Mode2_4[25][freqIndex] =
  308                                 (ar5211Mode2_4[25][freqIndex] & ~0xC0) |
  309                                         ((ob2GHz << 6) & 0xC0);
  310                         ar5211Mode2_4[26][freqIndex] =
  311                                 (ar5211Mode2_4[26][freqIndex] & ~0x0F) |
  312                                         (((ob2GHz >> 2) & 0x1) |
  313                                          ((db2GHz << 1) & 0x0E));
  314                 }
  315                 for (i = 0; i < N(ar5211Mode2_4); i++)
  316                         OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
  317                                 ar5211Mode2_4[i][freqIndex]);
  318         }
  319 
  320         /* Write the analog registers 6 and 7 before other config */
  321         ar5211SetRf6and7(ah, chan);
  322 
  323         /* Write registers that vary across all modes */
  324         for (i = 0; i < N(ar5211Modes); i++)
  325                 OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
  326 
  327         /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
  328         for (i = 0; i < N(ar5211BB_RfGain); i++)
  329                 OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
  330 
  331         /* Write Common Array Parameters */
  332         for (i = 0; i < N(ar5211Common); i++) {
  333                 uint32_t reg = ar5211Common[i][0];
  334                 /* On channel change, don't reset the PCU registers */
  335                 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
  336                         OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
  337         }
  338 
  339         /* Fix pre-AR5211 register values, this includes AR5311s. */
  340         if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
  341                 /*
  342                  * The TX and RX latency values have changed locations
  343                  * within the USEC register in AR5211.  Since they're
  344                  * set via the .ini, for both AR5211 and AR5311, they
  345                  * are written properly here for AR5311.
  346                  */
  347                 data = OS_REG_READ(ah, AR_USEC);
  348                 /* Must be 0 for proper write in AR5311 */
  349                 HALASSERT((data & 0x00700000) == 0);
  350                 OS_REG_WRITE(ah, AR_USEC,
  351                         (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
  352                         ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
  353                 /* The following registers exist only on AR5311. */
  354                 OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
  355 
  356                 /* Set proper ADC & DAC delays for AR5311. */
  357                 OS_REG_WRITE(ah, 0x00009878, 0x00000008);
  358 
  359                 /* Enable the PCU FIFO corruption ECO on AR5311. */
  360                 OS_REG_WRITE(ah, AR_DIAG_SW,
  361                         OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
  362         }
  363 
  364         /* Restore certain DMA hardware registers on a channel change */
  365         if (bChannelChange) {
  366                 /* Restore TSF */
  367                 OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
  368                 OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
  369 
  370                 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
  371                         OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
  372                 } else {
  373                         for (i = 0; i < AR_NUM_DCU; i++)
  374                                 OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
  375                 }
  376         }
  377 
  378         OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
  379         OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
  380                 | macStaId1
  381         );
  382         ar5211SetOperatingMode(ah, opmode);
  383 
  384         /* Restore previous led state */
  385         OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
  386         OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
  387         OS_REG_WRITE(ah, AR_GPIODO, softLedState);
  388 
  389         /* Restore previous antenna */
  390         OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  391 
  392         OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
  393         OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
  394 
  395         /* Restore bmiss rssi & count thresholds */
  396         OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
  397 
  398         OS_REG_WRITE(ah, AR_ISR, ~0);           /* cleared on write */
  399 
  400         /*
  401          * for pre-Production Oahu only.
  402          * Disable clock gating in all DMA blocks. Helps when using
  403          * 11B and AES but results in higher power consumption.
  404          */
  405         if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
  406             AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
  407                 OS_REG_WRITE(ah, AR_CFG,
  408                         OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
  409         }
  410 
  411         /* Setup the transmit power values. */
  412         if (!ar5211SetTransmitPower(ah, chan)) {
  413                 HALDEBUG(ah, HAL_DEBUG_ANY,
  414                     "%s: error init'ing transmit power\n", __func__);
  415                 FAIL(HAL_EIO);
  416         }
  417 
  418         /*
  419          * Configurable OFDM spoofing for 11n compatibility; used
  420          * only when operating in station mode.
  421          */
  422         if (opmode != HAL_M_HOSTAP &&
  423             (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
  424                 /* NB: override the .ini setting */
  425                 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
  426                         AR_PHY_FRAME_CTL_ERR_SERV,
  427                         MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
  428         }
  429 
  430         /* Setup board specific options for EEPROM version 3 */
  431         ar5211SetBoardValues(ah, chan);
  432 
  433         if (!ar5211SetChannel(ah, chan)) {
  434                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
  435                     __func__);
  436                 FAIL(HAL_EIO);
  437         }
  438 
  439         /* Activate the PHY */
  440         if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
  441             IEEE80211_IS_CHAN_2GHZ(chan))
  442                 OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
  443         OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  444 
  445         /*
  446          * Wait for the frequency synth to settle (synth goes on
  447          * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
  448          * Value is in 100ns increments.
  449          */
  450         data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
  451         if (IEEE80211_IS_CHAN_CCK(chan)) {
  452                 synthDelay = (4 * data) / 22;
  453         } else {
  454                 synthDelay = data / 10;
  455         }
  456         /*
  457          * There is an issue if the AP starts the calibration before
  458          * the baseband timeout completes.  This could result in the
  459          * rxclear false triggering.  Add an extra delay to ensure this
  460          * this does not happen.
  461          */
  462         OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
  463 
  464         /* Calibrate the AGC and wait for completion. */
  465         OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  466                  OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
  467         (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
  468 
  469         /* Perform noise floor and set status */
  470         if (!ar5211CalNoiseFloor(ah, chan)) {
  471                 if (!IEEE80211_IS_CHAN_CCK(chan))
  472                         chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
  473                 HALDEBUG(ah, HAL_DEBUG_ANY,
  474                     "%s: noise floor calibration failed\n", __func__);
  475                 FAIL(HAL_EIO);
  476         }
  477 
  478         /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
  479         if (ahp->ah_calibrationTime != 0) {
  480                 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
  481                         AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
  482                 ahp->ah_bIQCalibration = AH_TRUE;
  483         }
  484 
  485         /* set 1:1 QCU to DCU mapping for all queues */
  486         for (q = 0; q < AR_NUM_DCU; q++)
  487                 OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
  488 
  489         for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
  490                 ar5211ResetTxQueue(ah, q);
  491 
  492         /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
  493         OS_REG_WRITE(ah, AR_IMR_S0,
  494                  (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
  495                  (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
  496         OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
  497         OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
  498 
  499         /*
  500          * GBL_EIFS must always be written after writing
  501          *              to any QCUMASK register.
  502          */
  503         OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
  504 
  505         /* Now set up the Interrupt Mask Register and save it for future use */
  506         OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
  507         ahp->ah_maskReg = INIT_INTERRUPT_MASK;
  508 
  509         /* Enable bus error interrupts */
  510         OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
  511                  AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
  512 
  513         /* Enable interrupts specific to AP */
  514         if (opmode == HAL_M_HOSTAP) {
  515                 OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
  516                 ahp->ah_maskReg |= AR_IMR_MIB;
  517         }
  518 
  519         if (AH_PRIVATE(ah)->ah_rfkillEnabled)
  520                 ar5211EnableRfKill(ah);
  521 
  522         /*
  523          * Writing to AR_BEACON will start timers. Hence it should
  524          * be the last register to be written. Do not reset tsf, do
  525          * not enable beacons at this point, but preserve other values
  526          * like beaconInterval.
  527          */
  528         OS_REG_WRITE(ah, AR_BEACON,
  529                 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
  530 
  531         /* Restore user-specified slot time and timeouts */
  532         if (ahp->ah_sifstime != (u_int) -1)
  533                 ar5211SetSifsTime(ah, ahp->ah_sifstime);
  534         if (ahp->ah_slottime != (u_int) -1)
  535                 ar5211SetSlotTime(ah, ahp->ah_slottime);
  536         if (ahp->ah_acktimeout != (u_int) -1)
  537                 ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
  538         if (ahp->ah_ctstimeout != (u_int) -1)
  539                 ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
  540         if (AH_PRIVATE(ah)->ah_diagreg != 0)
  541                 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
  542 
  543         AH_PRIVATE(ah)->ah_opmode = opmode;     /* record operating mode */
  544 
  545         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
  546 
  547         return AH_TRUE;
  548 bad:
  549         if (status != AH_NULL)
  550                 *status = ecode;
  551         return AH_FALSE;
  552 #undef FAIL
  553 #undef N
  554 }
  555 
  556 /*
  557  * Places the PHY and Radio chips into reset.  A full reset
  558  * must be called to leave this state.  The PCI/MAC/PCU are
  559  * not placed into reset as we must receive interrupt to
  560  * re-enable the hardware.
  561  */
  562 HAL_BOOL
  563 ar5211PhyDisable(struct ath_hal *ah)
  564 {
  565         return ar5211SetResetReg(ah, AR_RC_BB);
  566 }
  567 
  568 /*
  569  * Places all of hardware into reset
  570  */
  571 HAL_BOOL
  572 ar5211Disable(struct ath_hal *ah)
  573 {
  574         if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
  575                 return AH_FALSE;
  576         /*
  577          * Reset the HW - PCI must be reset after the rest of the
  578          * device has been reset.
  579          */
  580         if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
  581                 return AH_FALSE;
  582         OS_DELAY(2100);    /* 8245 @ 96Mhz hangs with 2000us. */
  583 
  584         return AH_TRUE;
  585 }
  586 
  587 /*
  588  * Places the hardware into reset and then pulls it out of reset
  589  *
  590  * Only write the PLL if we're changing to or from CCK mode
  591  *
  592  * Attach calls with channelFlags = 0, as the coldreset should have
  593  * us in the correct mode and we cannot check the hwchannel flags.
  594  */
  595 HAL_BOOL
  596 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
  597 {
  598         if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
  599                 return AH_FALSE;
  600 
  601         /* NB: called from attach with chan null */
  602         if (chan != AH_NULL) {
  603                 /* Set CCK and Turbo modes correctly */
  604                 OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
  605                     AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
  606                 if (IEEE80211_IS_CHAN_B(chan)) {
  607                         OS_REG_WRITE(ah, AR5211_PHY_MODE,
  608                             AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
  609                         OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
  610                         /* Wait for the PLL to settle */
  611                         OS_DELAY(DELAY_PLL_SETTLE);
  612                 } else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
  613                         OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
  614                         OS_DELAY(DELAY_PLL_SETTLE);
  615                         OS_REG_WRITE(ah, AR5211_PHY_MODE,
  616                             AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
  617                                 AR5211_PHY_MODE_RF2GHZ :
  618                                 AR5211_PHY_MODE_RF5GHZ));
  619                 }
  620         }
  621 
  622         /*
  623          * Reset the HW - PCI must be reset after the rest of the
  624          * device has been reset
  625          */
  626         if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
  627                 return AH_FALSE;
  628         OS_DELAY(2100);    /* 8245 @ 96Mhz hangs with 2000us. */
  629 
  630         /* Bring out of sleep mode (AGAIN) */
  631         if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
  632                 return AH_FALSE;
  633 
  634         /* Clear warm reset register */
  635         return ar5211SetResetReg(ah, 0);
  636 }
  637 
  638 /*
  639  * Recalibrate the lower PHY chips to account for temperature/environment
  640  * changes.
  641  */
  642 HAL_BOOL
  643 ar5211PerCalibrationN(struct ath_hal *ah,  struct ieee80211_channel *chan,
  644         u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
  645 {
  646         struct ath_hal_5211 *ahp = AH5211(ah);
  647         HAL_CHANNEL_INTERNAL *ichan;
  648         int32_t qCoff, qCoffDenom;
  649         uint32_t data;
  650         int32_t iqCorrMeas;
  651         int32_t iCoff, iCoffDenom;
  652         uint32_t powerMeasQ, powerMeasI;
  653 
  654         ichan = ath_hal_checkchannel(ah, chan);
  655         if (ichan == AH_NULL) {
  656                 HALDEBUG(ah, HAL_DEBUG_ANY,
  657                     "%s: invalid channel %u/0x%x; no mapping\n",
  658                     __func__, chan->ic_freq, chan->ic_flags);
  659                 return AH_FALSE;
  660         }
  661         /* IQ calibration in progress. Check to see if it has finished. */
  662         if (ahp->ah_bIQCalibration &&
  663             !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
  664                 /* IQ Calibration has finished. */
  665                 ahp->ah_bIQCalibration = AH_FALSE;
  666 
  667                 /* Read calibration results. */
  668                 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
  669                 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
  670                 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
  671 
  672                 /*
  673                  * Prescale these values to remove 64-bit operation requirement at the loss
  674                  * of a little precision.
  675                  */
  676                 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
  677                 qCoffDenom = powerMeasQ / 64;
  678 
  679                 /* Protect against divide-by-0. */
  680                 if (iCoffDenom != 0 && qCoffDenom != 0) {
  681                         iCoff = (-iqCorrMeas) / iCoffDenom;
  682                         /* IQCORR_Q_I_COFF is a signed 6 bit number */
  683                         iCoff = iCoff & 0x3f;
  684 
  685                         qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
  686                         /* IQCORR_Q_Q_COFF is a signed 5 bit number */
  687                         qCoff = qCoff & 0x1f;
  688 
  689                         HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
  690                             powerMeasI);
  691                         HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
  692                             powerMeasQ);
  693                         HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
  694                             iqCorrMeas);
  695                         HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff     = %d\n",
  696                             iCoff);
  697                         HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff     = %d\n",
  698                             qCoff);
  699 
  700                         /* Write IQ */
  701                         data  = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
  702                                 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
  703                                 (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
  704                                 ((uint32_t)qCoff);
  705                         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
  706                 }
  707         }
  708         *isCalDone = !ahp->ah_bIQCalibration;
  709 
  710         if (longCal) {
  711                 /* Perform noise floor and set status */
  712                 if (!ar5211IsNfGood(ah, chan)) {
  713                         /* report up and clear internal state */
  714                         chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
  715                         return AH_FALSE;
  716                 }
  717                 if (!ar5211CalNoiseFloor(ah, chan)) {
  718                         /*
  719                          * Delay 5ms before retrying the noise floor
  720                          * just to make sure, as we are in an error
  721                          * condition here.
  722                          */
  723                         OS_DELAY(5000);
  724                         if (!ar5211CalNoiseFloor(ah, chan)) {
  725                                 if (!IEEE80211_IS_CHAN_CCK(chan))
  726                                         chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
  727                                 return AH_FALSE;
  728                         }
  729                 }
  730                 ar5211RequestRfgain(ah);
  731         }
  732         return AH_TRUE;
  733 }
  734 
  735 HAL_BOOL
  736 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
  737         HAL_BOOL *isIQdone)
  738 {
  739         return ar5211PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
  740 }
  741 
  742 HAL_BOOL
  743 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
  744 {
  745         /* XXX */
  746         return AH_TRUE;
  747 }
  748 
  749 /*
  750  * Writes the given reset bit mask into the reset register
  751  */
  752 static HAL_BOOL
  753 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
  754 {
  755         uint32_t mask = resetMask ? resetMask : ~0;
  756         HAL_BOOL rt;
  757 
  758         (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
  759         OS_REG_WRITE(ah, AR_RC, resetMask);
  760 
  761         /* need to wait at least 128 clocks when reseting PCI before read */
  762         OS_DELAY(15);
  763 
  764         resetMask &= AR_RC_MAC | AR_RC_BB;
  765         mask &= AR_RC_MAC | AR_RC_BB;
  766         rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
  767         if ((resetMask & AR_RC_MAC) == 0) {
  768                 if (isBigEndian()) {
  769                         /*
  770                          * Set CFG, little-endian for descriptor accesses.
  771                          */
  772                         mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
  773                         OS_REG_WRITE(ah, AR_CFG, mask);
  774                 } else
  775                         OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
  776         }
  777         return rt;
  778 }
  779 
  780 /*
  781  * Takes the MHz channel value and sets the Channel value
  782  *
  783  * ASSUMES: Writes enabled to analog bus before AGC is active
  784  *   or by disabling the AGC.
  785  */
  786 static HAL_BOOL
  787 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
  788 {
  789         uint32_t refClk, reg32, data2111;
  790         int16_t chan5111, chanIEEE;
  791 
  792         chanIEEE = chan->ic_ieee;
  793         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
  794                 const CHAN_INFO_2GHZ* ci =
  795                         &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
  796 
  797                 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
  798                                 << 5)
  799                          | (ci->refClkSel << 4);
  800                 chan5111 = ci->channel5111;
  801         } else {
  802                 data2111 = 0;
  803                 chan5111 = chanIEEE;
  804         }
  805 
  806         /* Rest of the code is common for 5 GHz and 2.4 GHz. */
  807         if (chan5111 >= 145 || (chan5111 & 0x1)) {
  808                 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
  809                 refClk = 1;
  810         } else {
  811                 reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
  812                 refClk = 0;
  813         }
  814 
  815         reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
  816         OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
  817         reg32 >>= 8;
  818         OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
  819 
  820         AH_PRIVATE(ah)->ah_curchan = chan;
  821         return AH_TRUE;
  822 }
  823 
  824 static int16_t
  825 ar5211GetNoiseFloor(struct ath_hal *ah)
  826 {
  827         int16_t nf;
  828 
  829         nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
  830         if (nf & 0x100)
  831                 nf = 0 - ((nf ^ 0x1ff) + 1);
  832         return nf;
  833 }
  834 
  835 /*
  836  * Peform the noisefloor calibration for the length of time set
  837  * in runTime (valid values 1 to 7)
  838  *
  839  * Returns: The NF value at the end of the given time (or 0 for failure)
  840  */
  841 int16_t
  842 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
  843 {
  844         int i, searchTime;
  845 
  846         HALASSERT(runTime <= 7);
  847 
  848         /* Setup  noise floor run time and starting value */
  849         OS_REG_WRITE(ah, AR_PHY(25),
  850                 (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
  851                          ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
  852         /* Calibrate the noise floor */
  853         OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  854                 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
  855 
  856         /* Compute the required amount of searchTime needed to finish NF */
  857         if (runTime == 0) {
  858                 /* 8 search windows * 6.4us each */
  859                 searchTime = 8  * 7;
  860         } else {
  861                 /* 512 * runtime search windows * 6.4us each */
  862                 searchTime = (runTime * 512)  * 7;
  863         }
  864 
  865         /*
  866          * Do not read noise floor until it has been updated
  867          *
  868          * As a guesstimate - we may only get 1/60th the time on
  869          * the air to see search windows  in a heavily congested
  870          * network (40 us every 2400 us of time)
  871          */
  872         for (i = 0; i < 60; i++) {
  873                 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
  874                         break;
  875                 OS_DELAY(searchTime);
  876         }
  877         if (i >= 60) {
  878                 HALDEBUG(ah, HAL_DEBUG_NFCAL,
  879                     "NF with runTime %d failed to end on channel %d\n",
  880                     runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
  881                 HALDEBUG(ah, HAL_DEBUG_NFCAL,
  882                     "  PHY NF Reg state:         0x%x\n",
  883                     OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
  884                 HALDEBUG(ah, HAL_DEBUG_NFCAL,
  885                     "  PHY Active Reg state: 0x%x\n",
  886                     OS_REG_READ(ah, AR_PHY_ACTIVE));
  887                 return 0;
  888         }
  889 
  890         return ar5211GetNoiseFloor(ah);
  891 }
  892 
  893 static HAL_BOOL
  894 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
  895         int16_t *nft)
  896 {
  897         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  898 
  899         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
  900         case IEEE80211_CHAN_A:
  901                 *nft = ee->ee_noiseFloorThresh[0];
  902                 break;
  903         case IEEE80211_CHAN_B:
  904                 *nft = ee->ee_noiseFloorThresh[1];
  905                 break;
  906         case IEEE80211_CHAN_PUREG:
  907                 *nft = ee->ee_noiseFloorThresh[2];
  908                 break;
  909         default:
  910                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
  911                     __func__, chan->ic_flags);
  912                 return AH_FALSE;
  913         }
  914         return AH_TRUE;
  915 }
  916 
  917 /*
  918  * Read the NF and check it against the noise floor threshold
  919  *
  920  * Returns: TRUE if the NF is good
  921  */
  922 static HAL_BOOL
  923 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
  924 {
  925         HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
  926         int16_t nf, nfThresh;
  927 
  928         if (!getNoiseFloorThresh(ah, chan, &nfThresh))
  929                 return AH_FALSE;
  930         if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
  931                 HALDEBUG(ah, HAL_DEBUG_ANY,
  932                     "%s: NF did not complete in calibration window\n", __func__);
  933         }
  934         nf = ar5211GetNoiseFloor(ah);
  935         if (nf > nfThresh) {
  936                 HALDEBUG(ah, HAL_DEBUG_ANY,
  937                     "%s: noise floor failed; detected %u, threshold %u\n",
  938                     __func__, nf, nfThresh);
  939                 /*
  940                  * NB: Don't discriminate 2.4 vs 5Ghz, if this
  941                  *     happens it indicates a problem regardless
  942                  *     of the band.
  943                  */
  944                 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
  945         }
  946         ichan->rawNoiseFloor = nf;
  947         return (nf <= nfThresh);
  948 }
  949 
  950 /*
  951  * Peform the noisefloor calibration and check for any constant channel
  952  * interference.
  953  *
  954  * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
  955  * it is if'ed for MKK regulatory domain only.
  956  *
  957  * Returns: TRUE for a successful noise floor calibration; else FALSE
  958  */
  959 HAL_BOOL
  960 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
  961 {
  962 #define N(a)    (sizeof (a) / sizeof (a[0]))
  963         /* Check for Carrier Wave interference in MKK regulatory zone */
  964         if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
  965             (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
  966                 static const uint8_t runtime[3] = { 0, 2, 7 };
  967                 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
  968                 int16_t nf, nfThresh;
  969                 int i;
  970 
  971                 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
  972                         return AH_FALSE;
  973                 /*
  974                  * Run a quick noise floor that will hopefully
  975                  * complete (decrease delay time).
  976                  */
  977                 for (i = 0; i < N(runtime); i++) {
  978                         nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
  979                         if (nf > nfThresh) {
  980                                 HALDEBUG(ah, HAL_DEBUG_ANY,
  981                                     "%s: run failed with %u > threshold %u "
  982                                     "(runtime %u)\n", __func__,
  983                                     nf, nfThresh, runtime[i]);
  984                                 ichan->rawNoiseFloor = 0;
  985                         } else
  986                                 ichan->rawNoiseFloor = nf;
  987                 }
  988                 return (i <= N(runtime));
  989         } else {
  990                 /* Calibrate the noise floor */
  991                 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
  992                         OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
  993                                  AR_PHY_AGC_CONTROL_NF);
  994         }
  995         return AH_TRUE;
  996 #undef N
  997 }
  998 
  999 /*
 1000  * Adjust NF based on statistical values for 5GHz frequencies.
 1001  */
 1002 int16_t
 1003 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
 1004 {
 1005         static const struct {
 1006                 uint16_t freqLow;
 1007                 int16_t   adjust;
 1008         } adjust5111[] = {
 1009                 { 5790, 11 },   /* NB: ordered high -> low */
 1010                 { 5730, 10 },
 1011                 { 5690,  9 },
 1012                 { 5660,  8 },
 1013                 { 5610,  7 },
 1014                 { 5530,  5 },
 1015                 { 5450,  4 },
 1016                 { 5379,  2 },
 1017                 { 5209,  0 },   /* XXX? bogus but doesn't matter */
 1018                 {    0,  1 },
 1019         };
 1020         int i;
 1021 
 1022         for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
 1023                 ;
 1024         /* NB: placeholder for 5111's less severe requirement */
 1025         return adjust5111[i].adjust / 3;
 1026 }
 1027 
 1028 /*
 1029  * Reads EEPROM header info from device structure and programs
 1030  * analog registers 6 and 7
 1031  *
 1032  * REQUIRES: Access to the analog device
 1033  */
 1034 static HAL_BOOL
 1035 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
 1036 {
 1037 #define N(a)    (sizeof (a) / sizeof (a[0]))
 1038         uint16_t freq = ath_hal_gethwchannel(ah, chan);
 1039         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
 1040         struct ath_hal_5211 *ahp = AH5211(ah);
 1041         uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
 1042         uint16_t tempOB, tempDB;
 1043         uint16_t freqIndex;
 1044         int i;
 1045 
 1046         freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
 1047 
 1048         /*
 1049          * TODO: This array mode correspondes with the index used
 1050          *       during the read.
 1051          * For readability, this should be changed to an enum or #define
 1052          */
 1053         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
 1054         case IEEE80211_CHAN_A:
 1055                 if (freq > 4000 && freq < 5260) {
 1056                         tempOB = ee->ee_ob1;
 1057                         tempDB = ee->ee_db1;
 1058                 } else if (freq >= 5260 && freq < 5500) {
 1059                         tempOB = ee->ee_ob2;
 1060                         tempDB = ee->ee_db2;
 1061                 } else if (freq >= 5500 && freq < 5725) {
 1062                         tempOB = ee->ee_ob3;
 1063                         tempDB = ee->ee_db3;
 1064                 } else if (freq >= 5725) {
 1065                         tempOB = ee->ee_ob4;
 1066                         tempDB = ee->ee_db4;
 1067                 } else {
 1068                         /* XXX panic?? */
 1069                         tempOB = tempDB = 0;
 1070                 }
 1071 
 1072                 rfXpdGain = ee->ee_xgain[0];
 1073                 rfPloSel  = ee->ee_xpd[0];
 1074                 rfPwdXpd  = !ee->ee_xpd[0];
 1075 
 1076                 ar5211Rf6n7[5][freqIndex]  =
 1077                         (ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
 1078                                 (ee->ee_cornerCal.pd84<< 28);
 1079                 ar5211Rf6n7[6][freqIndex]  =
 1080                         (ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
 1081                                 (ee->ee_cornerCal.pd90 << 26);
 1082                 ar5211Rf6n7[21][freqIndex] =
 1083                         (ar5211Rf6n7[21][freqIndex] & ~0x08) |
 1084                                 (ee->ee_cornerCal.gSel << 3);
 1085                 break;
 1086         case IEEE80211_CHAN_B:
 1087                 tempOB = ee->ee_obFor24;
 1088                 tempDB = ee->ee_dbFor24;
 1089                 rfXpdGain = ee->ee_xgain[1];
 1090                 rfPloSel  = ee->ee_xpd[1];
 1091                 rfPwdXpd  = !ee->ee_xpd[1];
 1092                 break;
 1093         case IEEE80211_CHAN_PUREG:
 1094                 tempOB = ee->ee_obFor24g;
 1095                 tempDB = ee->ee_dbFor24g;
 1096                 rfXpdGain = ee->ee_xgain[2];
 1097                 rfPloSel  = ee->ee_xpd[2];
 1098                 rfPwdXpd  = !ee->ee_xpd[2];
 1099                 break;
 1100         default:
 1101                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
 1102                     __func__, chan->ic_flags);
 1103                 return AH_FALSE;
 1104         }
 1105 
 1106         HALASSERT(1 <= tempOB && tempOB <= 5);
 1107         HALASSERT(1 <= tempDB && tempDB <= 5);
 1108 
 1109         /* Set rfXpdGain and rfPwdXpd */
 1110         ar5211Rf6n7[11][freqIndex] =  (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
 1111                 (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
 1112         ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x07) |
 1113                 ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
 1114 
 1115         /* Set OB */
 1116         ar5211Rf6n7[12][freqIndex] =  (ar5211Rf6n7[12][freqIndex] & ~0x80) |
 1117                 ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
 1118         ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x03) |
 1119                 ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
 1120 
 1121         /* Set DB */
 1122         ar5211Rf6n7[13][freqIndex] =  (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
 1123                 ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
 1124 
 1125         /* Set rfPloSel */
 1126         ar5211Rf6n7[17][freqIndex] =  (ar5211Rf6n7[17][freqIndex] & ~0x08) |
 1127                 ((rfPloSel << 3) & 0x08);
 1128 
 1129         /* Write the Rf registers 6 & 7 */
 1130         for (i = 0; i < N(ar5211Rf6n7); i++)
 1131                 OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
 1132 
 1133         /* Now that we have reprogrammed rfgain value, clear the flag. */
 1134         ahp->ah_rfgainState = RFGAIN_INACTIVE;
 1135 
 1136         return AH_TRUE;
 1137 #undef N
 1138 }
 1139 
 1140 HAL_BOOL
 1141 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
 1142         const struct ieee80211_channel *chan)
 1143 {
 1144 #define ANT_SWITCH_TABLE1       0x9960
 1145 #define ANT_SWITCH_TABLE2       0x9964
 1146         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
 1147         struct ath_hal_5211 *ahp = AH5211(ah);
 1148         uint32_t antSwitchA, antSwitchB;
 1149         int ix;
 1150 
 1151         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
 1152         case IEEE80211_CHAN_A:          ix = 0; break;
 1153         case IEEE80211_CHAN_B:          ix = 1; break;
 1154         case IEEE80211_CHAN_PUREG:      ix = 2; break;
 1155         default:
 1156                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
 1157                     __func__, chan->ic_flags);
 1158                 return AH_FALSE;
 1159         }
 1160 
 1161         antSwitchA =  ee->ee_antennaControl[1][ix]
 1162                    | (ee->ee_antennaControl[2][ix] << 6)
 1163                    | (ee->ee_antennaControl[3][ix] << 12) 
 1164                    | (ee->ee_antennaControl[4][ix] << 18)
 1165                    | (ee->ee_antennaControl[5][ix] << 24)
 1166                    ;
 1167         antSwitchB =  ee->ee_antennaControl[6][ix]
 1168                    | (ee->ee_antennaControl[7][ix] << 6)
 1169                    | (ee->ee_antennaControl[8][ix] << 12)
 1170                    | (ee->ee_antennaControl[9][ix] << 18)
 1171                    | (ee->ee_antennaControl[10][ix] << 24)
 1172                    ;
 1173         /*
 1174          * For fixed antenna, give the same setting for both switch banks
 1175          */
 1176         switch (settings) {
 1177         case HAL_ANT_FIXED_A:
 1178                 antSwitchB = antSwitchA;
 1179                 break;
 1180         case HAL_ANT_FIXED_B:
 1181                 antSwitchA = antSwitchB;
 1182                 break;
 1183         case HAL_ANT_VARIABLE:
 1184                 break;
 1185         default:
 1186                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
 1187                     __func__, settings);
 1188                 return AH_FALSE;
 1189         }
 1190         ahp->ah_diversityControl = settings;
 1191 
 1192         OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
 1193         OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
 1194 
 1195         return AH_TRUE;
 1196 #undef ANT_SWITCH_TABLE1
 1197 #undef ANT_SWITCH_TABLE2
 1198 }
 1199 
 1200 /*
 1201  * Reads EEPROM header info and programs the device for correct operation
 1202  * given the channel value
 1203  */
 1204 static HAL_BOOL
 1205 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
 1206 {
 1207         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
 1208         struct ath_hal_5211 *ahp = AH5211(ah);
 1209         int arrayMode, falseDectectBackoff;
 1210 
 1211         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
 1212         case IEEE80211_CHAN_A:
 1213                 arrayMode = 0;
 1214                 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
 1215                         AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
 1216                 break;
 1217         case IEEE80211_CHAN_B:
 1218                 arrayMode = 1;
 1219                 break;
 1220         case IEEE80211_CHAN_PUREG:
 1221                 arrayMode = 2;
 1222                 break;
 1223         default:
 1224                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
 1225                     __func__, chan->ic_flags);
 1226                 return AH_FALSE;
 1227         }
 1228 
 1229         /* Set the antenna register(s) correctly for the chip revision */
 1230         if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
 1231                 OS_REG_WRITE(ah, AR_PHY(68),
 1232                         (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
 1233         } else {
 1234                 OS_REG_WRITE(ah, AR_PHY(68),
 1235                         (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
 1236                         (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
 1237 
 1238                 ar5211SetAntennaSwitchInternal(ah,
 1239                         ahp->ah_diversityControl, chan);
 1240 
 1241                 /* Set the Noise Floor Thresh on ar5211 devices */
 1242                 OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
 1243                         (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
 1244         }
 1245         OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
 1246                 (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
 1247                 ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
 1248         OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
 1249                 (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
 1250                 ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
 1251         OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
 1252                 (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
 1253                 ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
 1254                 (ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
 1255         OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
 1256                 (ee->ee_txEndToXPAOff[arrayMode] << 24) |
 1257                 (ee->ee_txEndToXPAOff[arrayMode] << 16) |
 1258                 (ee->ee_txFrameToXPAOn[arrayMode] << 8) |
 1259                 ee->ee_txFrameToXPAOn[arrayMode]);
 1260         OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
 1261                 (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
 1262                 (ee->ee_txEndToXLNAOn[arrayMode] << 8));
 1263         OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
 1264                 (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
 1265                 ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
 1266 
 1267 #define NO_FALSE_DETECT_BACKOFF   2
 1268 #define CB22_FALSE_DETECT_BACKOFF 6
 1269         /*
 1270          * False detect backoff - suspected 32 MHz spur causes
 1271          * false detects in OFDM, causing Tx Hangs.  Decrease
 1272          * weak signal sensitivity for this card.
 1273          */
 1274         falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
 1275         if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
 1276                 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
 1277                     IEEE80211_IS_CHAN_OFDM(chan))
 1278                         falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
 1279         } else {
 1280                 uint16_t freq = ath_hal_gethwchannel(ah, chan);
 1281                 uint32_t remainder = freq % 32;
 1282 
 1283                 if (remainder && (remainder < 10 || remainder > 22))
 1284                         falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
 1285         }
 1286         OS_REG_WRITE(ah, 0x9924,
 1287                 (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
 1288                 | ((falseDectectBackoff << 1) & 0xF7));
 1289 
 1290         return AH_TRUE;
 1291 #undef NO_FALSE_DETECT_BACKOFF
 1292 #undef CB22_FALSE_DETECT_BACKOFF
 1293 }
 1294 
 1295 /*
 1296  * Set the limit on the overall output power.  Used for dynamic
 1297  * transmit power control and the like.
 1298  *
 1299  * NOTE: The power is passed in is in units of 0.5 dBm.
 1300  */
 1301 HAL_BOOL
 1302 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
 1303 {
 1304 
 1305         AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
 1306         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
 1307         return AH_TRUE;
 1308 }
 1309 
 1310 /*
 1311  * Sets the transmit power in the baseband for the given
 1312  * operating channel and mode.
 1313  */
 1314 static HAL_BOOL
 1315 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
 1316 {
 1317         uint16_t freq = ath_hal_gethwchannel(ah, chan);
 1318         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
 1319         TRGT_POWER_INFO *pi;
 1320         RD_EDGES_POWER *rep;
 1321         PCDACS_EEPROM eepromPcdacs;
 1322         u_int nchan, cfgCtl;
 1323         int i;
 1324 
 1325         /* setup the pcdac struct to point to the correct info, based on mode */
 1326         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
 1327         case IEEE80211_CHAN_A:
 1328                 eepromPcdacs.numChannels = ee->ee_numChannels11a;
 1329                 eepromPcdacs.pChannelList= ee->ee_channels11a;
 1330                 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
 1331                 nchan = ee->ee_numTargetPwr_11a;
 1332                 pi = ee->ee_trgtPwr_11a;
 1333                 break;
 1334         case IEEE80211_CHAN_PUREG:
 1335                 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
 1336                 eepromPcdacs.pChannelList= ee->ee_channels11g;
 1337                 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
 1338                 nchan = ee->ee_numTargetPwr_11g;
 1339                 pi = ee->ee_trgtPwr_11g;
 1340                 break;
 1341         case IEEE80211_CHAN_B:
 1342                 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
 1343                 eepromPcdacs.pChannelList= ee->ee_channels11b;
 1344                 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
 1345                 nchan = ee->ee_numTargetPwr_11b;
 1346                 pi = ee->ee_trgtPwr_11b;
 1347                 break;
 1348         default:
 1349                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
 1350                     __func__, chan->ic_flags);
 1351                 return AH_FALSE;
 1352         }
 1353 
 1354         ar5211SetPowerTable(ah, &eepromPcdacs, freq);
 1355 
 1356         rep = AH_NULL;
 1357         /* Match CTL to EEPROM value */
 1358         cfgCtl = ath_hal_getctl(ah, chan);
 1359         for (i = 0; i < ee->ee_numCtls; i++)
 1360                 if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
 1361                         rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
 1362                         break;
 1363                 }
 1364         ar5211SetRateTable(ah, rep, pi, nchan, chan);
 1365 
 1366         return AH_TRUE;
 1367 }
 1368 
 1369 /*
 1370  * Read the transmit power levels from the structures taken
 1371  * from EEPROM. Interpolate read transmit power values for
 1372  * this channel. Organize the transmit power values into a
 1373  * table for writing into the hardware.
 1374  */
 1375 void
 1376 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
 1377         uint16_t channel)
 1378 {
 1379         static FULL_PCDAC_STRUCT pcdacStruct;
 1380         static uint16_t pcdacTable[PWR_TABLE_SIZE];
 1381 
 1382         uint16_t         i, j;
 1383         uint16_t         *pPcdacValues;
 1384         int16_t   *pScaledUpDbm;
 1385         int16_t   minScaledPwr;
 1386         int16_t   maxScaledPwr;
 1387         int16_t   pwr;
 1388         uint16_t         pcdacMin = 0;
 1389         uint16_t         pcdacMax = 63;
 1390         uint16_t         pcdacTableIndex;
 1391         uint16_t         scaledPcdac;
 1392         uint32_t         addr;
 1393         uint32_t         temp32;
 1394 
 1395         OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
 1396         OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
 1397         pPcdacValues = pcdacStruct.PcdacValues;
 1398         pScaledUpDbm = pcdacStruct.PwrValues;
 1399 
 1400         /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
 1401         for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
 1402                 pPcdacValues[j] = i;
 1403 
 1404         pcdacStruct.numPcdacValues = j;
 1405         pcdacStruct.pcdacMin = PCDAC_START;
 1406         pcdacStruct.pcdacMax = PCDAC_STOP;
 1407 
 1408         /* Fill out the power values for this channel */
 1409         for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
 1410                 pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
 1411 
 1412         /* Now scale the pcdac values to fit in the 64 entry power table */
 1413         minScaledPwr = pScaledUpDbm[0];
 1414         maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
 1415 
 1416         /* find minimum and make monotonic */
 1417         for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
 1418                 if (minScaledPwr >= pScaledUpDbm[j]) {
 1419                         minScaledPwr = pScaledUpDbm[j];
 1420                         pcdacMin = j;
 1421                 }
 1422                 /*
 1423                  * Make the full_hsh monotonically increasing otherwise
 1424                  * interpolation algorithm will get fooled gotta start
 1425                  * working from the top, hence i = 63 - j.
 1426                  */
 1427                 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
 1428                 if (i == 0)
 1429                         break;
 1430                 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
 1431                         /*
 1432                          * It could be a glitch, so make the power for
 1433                          * this pcdac the same as the power from the
 1434                          * next highest pcdac.
 1435                          */
 1436                         pScaledUpDbm[i - 1] = pScaledUpDbm[i];
 1437                 }
 1438         }
 1439 
 1440         for (j = 0; j < pcdacStruct.numPcdacValues; j++)
 1441                 if (maxScaledPwr < pScaledUpDbm[j]) {
 1442                         maxScaledPwr = pScaledUpDbm[j];
 1443                         pcdacMax = j;
 1444                 }
 1445 
 1446         /* Find the first power level with a pcdac */
 1447         pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP)  + PWR_MIN);
 1448 
 1449         /* Write all the first pcdac entries based off the pcdacMin */
 1450         pcdacTableIndex = 0;
 1451         for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
 1452                 pcdacTable[pcdacTableIndex++] = pcdacMin;
 1453 
 1454         i = 0;
 1455         while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
 1456                 pwr += PWR_STEP;
 1457                 /* stop if dbM > max_power_possible */
 1458                 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
 1459                        (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
 1460                         i++;
 1461                 /* scale by 2 and add 1 to enable round up or down as needed */
 1462                 scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
 1463                                 pScaledUpDbm[i], pScaledUpDbm[i+1],
 1464                                 (uint16_t)(pPcdacValues[i] * 2),
 1465                                 (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
 1466 
 1467                 pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
 1468                 if (pcdacTable[pcdacTableIndex] > pcdacMax)
 1469                         pcdacTable[pcdacTableIndex] = pcdacMax;
 1470                 pcdacTableIndex++;
 1471         }
 1472 
 1473         /* Write all the last pcdac entries based off the last valid pcdac */
 1474         while (pcdacTableIndex < PWR_TABLE_SIZE) {
 1475                 pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
 1476                 pcdacTableIndex++;
 1477         }
 1478 
 1479         /* Finally, write the power values into the baseband power table */
 1480         addr = AR_PHY_BASE + (608 << 2);
 1481         for (i = 0; i < 32; i++) {
 1482                 temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
 1483                 temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
 1484                 OS_REG_WRITE(ah, addr, temp32);
 1485                 addr += 4;
 1486         }
 1487 
 1488 }
 1489 
 1490 /*
 1491  * Set the transmit power in the baseband for the given
 1492  * operating channel and mode.
 1493  */
 1494 static void
 1495 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
 1496         TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
 1497         const struct ieee80211_channel *chan)
 1498 {
 1499         uint16_t freq = ath_hal_gethwchannel(ah, chan);
 1500         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
 1501         struct ath_hal_5211 *ahp = AH5211(ah);
 1502         static uint16_t ratesArray[NUM_RATES];
 1503         static const uint16_t tpcScaleReductionTable[5] =
 1504                 { 0, 3, 6, 9, MAX_RATE_POWER };
 1505 
 1506         uint16_t        *pRatesPower;
 1507         uint16_t        lowerChannel, lowerIndex=0, lowerPower=0;
 1508         uint16_t        upperChannel, upperIndex=0, upperPower=0;
 1509         uint16_t        twiceMaxEdgePower=63;
 1510         uint16_t        twicePower = 0;
 1511         uint16_t        i, numEdges;
 1512         uint16_t        tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
 1513         uint16_t        twiceMaxRDPower;
 1514         int16_t  scaledPower = 0;               /* for gcc -O2 */
 1515         uint16_t        mask = 0x3f;
 1516         HAL_BOOL          paPreDEnable = 0;
 1517         int8_t    twiceAntennaGain, twiceAntennaReduction = 0;
 1518 
 1519         pRatesPower = ratesArray;
 1520         twiceMaxRDPower = chan->ic_maxregpower * 2;
 1521 
 1522         if (IEEE80211_IS_CHAN_5GHZ(chan)) {
 1523                 twiceAntennaGain = ee->ee_antennaGainMax[0];
 1524         } else {
 1525                 twiceAntennaGain = ee->ee_antennaGainMax[1];
 1526         }
 1527 
 1528         twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
 1529 
 1530         if (pRdEdgesPower) {
 1531                 /* Get the edge power */
 1532                 for (i = 0; i < NUM_EDGES; i++) {
 1533                         if (pRdEdgesPower[i].rdEdge == 0)
 1534                                 break;
 1535                         tempChannelList[i] = pRdEdgesPower[i].rdEdge;
 1536                 }
 1537                 numEdges = i;
 1538 
 1539                 ar5211GetLowerUpperValues(freq, tempChannelList,
 1540                         numEdges, &lowerChannel, &upperChannel);
 1541                 /* Get the index for this channel */
 1542                 for (i = 0; i < numEdges; i++)
 1543                         if (lowerChannel == tempChannelList[i])
 1544                                 break;
 1545                 HALASSERT(i != numEdges);
 1546 
 1547                 if ((lowerChannel == upperChannel &&
 1548                      lowerChannel == freq) ||
 1549                     pRdEdgesPower[i].flag) {
 1550                         twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
 1551                         HALASSERT(twiceMaxEdgePower > 0);
 1552                 }
 1553         }
 1554 
 1555         /* extrapolate the power values for the test Groups */
 1556         for (i = 0; i < numChannels; i++)
 1557                 tempChannelList[i] = pPowerInfo[i].testChannel;
 1558 
 1559         ar5211GetLowerUpperValues(freq, tempChannelList,
 1560                 numChannels, &lowerChannel, &upperChannel);
 1561 
 1562         /* get the index for the channel */
 1563         for (i = 0; i < numChannels; i++) {
 1564                 if (lowerChannel == tempChannelList[i])
 1565                         lowerIndex = i;
 1566                 if (upperChannel == tempChannelList[i]) {
 1567                         upperIndex = i;
 1568                         break;
 1569                 }
 1570         }
 1571 
 1572         for (i = 0; i < NUM_RATES; i++) {
 1573                 if (IEEE80211_IS_CHAN_OFDM(chan)) {
 1574                         /* power for rates 6,9,12,18,24 is all the same */
 1575                         if (i < 5) {
 1576                                 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
 1577                                 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
 1578                         } else if (i == 5) {
 1579                                 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
 1580                                 upperPower = pPowerInfo[upperIndex].twicePwr36;
 1581                         } else if (i == 6) {
 1582                                 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
 1583                                 upperPower = pPowerInfo[upperIndex].twicePwr48;
 1584                         } else if (i == 7) {
 1585                                 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
 1586                                 upperPower = pPowerInfo[upperIndex].twicePwr54;
 1587                         }
 1588                 } else {
 1589                         switch (i) {
 1590                         case 0:
 1591                         case 1:
 1592                                 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
 1593                                 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
 1594                                 break;
 1595                         case 2:
 1596                         case 3:
 1597                                 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
 1598                                 upperPower = pPowerInfo[upperIndex].twicePwr36;
 1599                                 break;
 1600                         case 4:
 1601                         case 5:
 1602                                 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
 1603                                 upperPower = pPowerInfo[upperIndex].twicePwr48;
 1604                                 break;
 1605                         case 6:
 1606                         case 7:
 1607                                 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
 1608                                 upperPower = pPowerInfo[upperIndex].twicePwr54;
 1609                                 break;
 1610                         }
 1611                 }
 1612 
 1613                 twicePower = ar5211GetInterpolatedValue(freq,
 1614                         lowerChannel, upperChannel, lowerPower, upperPower, 0);
 1615 
 1616                 /* Reduce power by band edge restrictions */
 1617                 twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
 1618 
 1619                 /*
 1620                  * If turbo is set, reduce power to keep power
 1621                  * consumption under 2 Watts.  Note that we always do
 1622                  * this unless specially configured.  Then we limit
 1623                  * power only for non-AP operation.
 1624                  */
 1625                 if (IEEE80211_IS_CHAN_TURBO(chan) &&
 1626                     AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
 1627 #ifdef AH_ENABLE_AP_SUPPORT
 1628                     && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
 1629 #endif
 1630                 ) {
 1631                         twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
 1632                 }
 1633 
 1634                 /* Reduce power by max regulatory domain allowed restrictions */
 1635                 pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
 1636 
 1637                 /* Use 6 Mb power level for transmit power scaling reduction */
 1638                 /* We don't want to reduce higher rates if its not needed */
 1639                 if (i == 0) {
 1640                         scaledPower = pRatesPower[0] -
 1641                                 (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
 1642                         if (scaledPower < 1)
 1643                                 scaledPower = 1;
 1644                 }
 1645 
 1646                 pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
 1647         }
 1648 
 1649         /* Record txPower at Rate 6 for info gathering */
 1650         ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
 1651 
 1652 #ifdef AH_DEBUG
 1653         HALDEBUG(ah, HAL_DEBUG_RESET,
 1654             "%s: final output power setting %d MHz:\n",
 1655             __func__, chan->ic_freq);
 1656         HALDEBUG(ah, HAL_DEBUG_RESET,
 1657             "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
 1658             scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
 1659         HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
 1660             tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
 1661             twiceAntennaReduction / 2);
 1662         if (IEEE80211_IS_CHAN_TURBO(chan) &&
 1663             AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
 1664                 HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
 1665                     ee->ee_turbo2WMaxPower5);
 1666         HALDEBUG(ah, HAL_DEBUG_RESET,
 1667             "  %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
 1668             pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
 1669             pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
 1670             pRatesPower[6] / 2, pRatesPower[7] / 2);
 1671 #endif /* AH_DEBUG */
 1672 
 1673         /* Write the power table into the hardware */
 1674         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
 1675                  ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
 1676                  ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
 1677                  ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
 1678                  ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[0] & mask));
 1679         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
 1680                  ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
 1681                  ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
 1682                  ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
 1683                  ((paPreDEnable & 1)<< 6 ) |  (pRatesPower[4] & mask));
 1684 
 1685         /* set max power to the power value at rate 6 */
 1686         ar5211SetTxPowerLimit(ah, pRatesPower[0]);
 1687 
 1688         AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
 1689 }
 1690 
 1691 /*
 1692  * Get or interpolate the pcdac value from the calibrated data
 1693  */
 1694 uint16_t
 1695 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
 1696         const PCDACS_EEPROM *pSrcStruct)
 1697 {
 1698         uint16_t powerValue;
 1699         uint16_t lFreq, rFreq;          /* left and right frequency values */
 1700         uint16_t llPcdac, ulPcdac;      /* lower and upper left pcdac values */
 1701         uint16_t lrPcdac, urPcdac;      /* lower and upper right pcdac values */
 1702         uint16_t lPwr, uPwr;            /* lower and upper temp pwr values */
 1703         uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
 1704 
 1705         if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
 1706                 /* value was copied from srcStruct */
 1707                 return powerValue;
 1708 
 1709         ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
 1710                 pSrcStruct->numChannels, &lFreq, &rFreq);
 1711         ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
 1712                 &llPcdac, &ulPcdac);
 1713         ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
 1714                 &lrPcdac, &urPcdac);
 1715 
 1716         /* get the power index for the pcdac value */
 1717         ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
 1718         ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
 1719         lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
 1720                                 llPcdac, ulPcdac, lPwr, uPwr, 0);
 1721 
 1722         ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
 1723         ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
 1724         rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
 1725                                 lrPcdac, urPcdac, lPwr, uPwr, 0);
 1726 
 1727         return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
 1728                 lScaledPwr, rScaledPwr, 0);
 1729 }
 1730 
 1731 /*
 1732  * Find the value from the calibrated source data struct
 1733  */
 1734 HAL_BOOL
 1735 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
 1736         const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
 1737 {
 1738         const DATA_PER_CHANNEL *pChannelData;
 1739         const uint16_t *pPcdac;
 1740         uint16_t i, j;
 1741 
 1742         pChannelData = pSrcStruct->pDataPerChannel;
 1743         for (i = 0; i < pSrcStruct->numChannels; i++ ) {
 1744                 if (pChannelData->channelValue == channel) {
 1745                         pPcdac = pChannelData->PcdacValues;
 1746                         for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
 1747                                 if (*pPcdac == pcdacValue) {
 1748                                         *powerValue = pChannelData->PwrValues[j];
 1749                                         return AH_TRUE;
 1750                                 }
 1751                                 pPcdac++;
 1752                         }
 1753                 }
 1754                 pChannelData++;
 1755         }
 1756         return AH_FALSE;
 1757 }
 1758 
 1759 /*
 1760  * Returns interpolated or the scaled up interpolated value
 1761  */
 1762 uint16_t
 1763 ar5211GetInterpolatedValue(uint16_t target,
 1764         uint16_t srcLeft, uint16_t srcRight,
 1765         uint16_t targetLeft, uint16_t targetRight,
 1766         HAL_BOOL scaleUp)
 1767 {
 1768         uint16_t rv;
 1769         int16_t lRatio;
 1770         uint16_t scaleValue = EEP_SCALE;
 1771 
 1772         /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
 1773         if ((targetLeft * targetRight) == 0)
 1774                 return 0;
 1775         if (scaleUp)
 1776                 scaleValue = 1;
 1777 
 1778         if (srcRight != srcLeft) {
 1779                 /*
 1780                  * Note the ratio always need to be scaled,
 1781                  * since it will be a fraction.
 1782                  */
 1783                 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
 1784                 if (lRatio < 0) {
 1785                     /* Return as Left target if value would be negative */
 1786                     rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
 1787                 } else if (lRatio > EEP_SCALE) {
 1788                     /* Return as Right target if Ratio is greater than 100% (SCALE) */
 1789                     rv = targetRight * (scaleUp ? EEP_SCALE : 1);
 1790                 } else {
 1791                         rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
 1792                                         targetLeft) / scaleValue;
 1793                 }
 1794         } else {
 1795                 rv = targetLeft;
 1796                 if (scaleUp)
 1797                         rv *= EEP_SCALE;
 1798         }
 1799         return rv;
 1800 }
 1801 
 1802 /*
 1803  *  Look for value being within 0.1 of the search values
 1804  *  however, NDIS can't do float calculations, so multiply everything
 1805  *  up by EEP_SCALE so can do integer arithmatic
 1806  *
 1807  * INPUT  value    -value to search for
 1808  * INPUT  pList    -ptr to the list to search
 1809  * INPUT  listSize      -number of entries in list
 1810  * OUTPUT pLowerValue -return the lower value
 1811  * OUTPUT pUpperValue -return the upper value
 1812  */
 1813 void
 1814 ar5211GetLowerUpperValues(uint16_t value,
 1815         const uint16_t *pList, uint16_t listSize,
 1816         uint16_t *pLowerValue, uint16_t *pUpperValue)
 1817 {
 1818         const uint16_t listEndValue = *(pList + listSize - 1);
 1819         uint32_t target = value * EEP_SCALE;
 1820         int i;
 1821 
 1822         /*
 1823          * See if value is lower than the first value in the list
 1824          * if so return first value
 1825          */
 1826         if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
 1827                 *pLowerValue = *pList;
 1828                 *pUpperValue = *pList;
 1829                 return;
 1830         }
 1831 
 1832         /*
 1833          * See if value is greater than last value in list
 1834          * if so return last value
 1835          */
 1836         if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
 1837                 *pLowerValue = listEndValue;
 1838                 *pUpperValue = listEndValue;
 1839                 return;
 1840         }
 1841 
 1842         /* look for value being near or between 2 values in list */
 1843         for (i = 0; i < listSize; i++) {
 1844                 /*
 1845                  * If value is close to the current value of the list
 1846                  * then target is not between values, it is one of the values
 1847                  */
 1848                 if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
 1849                         *pLowerValue = pList[i];
 1850                         *pUpperValue = pList[i];
 1851                         return;
 1852                 }
 1853 
 1854                 /*
 1855                  * Look for value being between current value and next value
 1856                  * if so return these 2 values
 1857                  */
 1858                 if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
 1859                         *pLowerValue = pList[i];
 1860                         *pUpperValue = pList[i + 1];
 1861                         return;
 1862                 }
 1863         }
 1864 }
 1865 
 1866 /*
 1867  * Get the upper and lower pcdac given the channel and the pcdac
 1868  * used in the search
 1869  */
 1870 void
 1871 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
 1872         const PCDACS_EEPROM *pSrcStruct,
 1873         uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
 1874 {
 1875         const DATA_PER_CHANNEL *pChannelData;
 1876         int i;
 1877 
 1878         /* Find the channel information */
 1879         pChannelData = pSrcStruct->pDataPerChannel;
 1880         for (i = 0; i < pSrcStruct->numChannels; i++) {
 1881                 if (pChannelData->channelValue == channel)
 1882                         break;
 1883                 pChannelData++;
 1884         }
 1885         ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
 1886                 pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
 1887 }
 1888 
 1889 #define DYN_ADJ_UP_MARGIN       15
 1890 #define DYN_ADJ_LO_MARGIN       20
 1891 
 1892 static const GAIN_OPTIMIZATION_LADDER gainLadder = {
 1893         9,                                      /* numStepsInLadder */
 1894         4,                                      /* defaultStepNum */
 1895         { { {4, 1, 1, 1},  6, "FG8"},
 1896           { {4, 0, 1, 1},  4, "FG7"},
 1897           { {3, 1, 1, 1},  3, "FG6"},
 1898           { {4, 0, 0, 1},  1, "FG5"},
 1899           { {4, 1, 1, 0},  0, "FG4"},   /* noJack */
 1900           { {4, 0, 1, 0}, -2, "FG3"},   /* halfJack */
 1901           { {3, 1, 1, 0}, -3, "FG2"},   /* clip3 */
 1902           { {4, 0, 0, 0}, -4, "FG1"},   /* noJack */
 1903           { {2, 1, 1, 0}, -6, "FG0"}    /* clip2 */
 1904         }
 1905 };
 1906 
 1907 /*
 1908  * Initialize the gain structure to good values
 1909  */
 1910 void
 1911 ar5211InitializeGainValues(struct ath_hal *ah)
 1912 {
 1913         struct ath_hal_5211 *ahp = AH5211(ah);
 1914         GAIN_VALUES *gv = &ahp->ah_gainValues;
 1915 
 1916         /* initialize gain optimization values */
 1917         gv->currStepNum = gainLadder.defaultStepNum;
 1918         gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
 1919         gv->active = AH_TRUE;
 1920         gv->loTrig = 20;
 1921         gv->hiTrig = 35;
 1922 }
 1923 
 1924 static HAL_BOOL
 1925 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
 1926 {
 1927         const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
 1928         uint32_t gStep, g;
 1929         uint32_t L1, L2, L3, L4;
 1930 
 1931         if (IEEE80211_IS_CHAN_CCK(chan)) {
 1932                 gStep = 0x18;
 1933                 L1 = 0;
 1934                 L2 = gStep + 4;
 1935                 L3 = 0x40;
 1936                 L4 = L3 + 50;
 1937 
 1938                 gv->loTrig = L1;
 1939                 gv->hiTrig = L4+5;
 1940         } else {
 1941                 gStep = 0x3f;
 1942                 L1 = 0;
 1943                 L2 = 50;
 1944                 L3 = L1;
 1945                 L4 = L3 + 50;
 1946 
 1947                 gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
 1948                 gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
 1949         }
 1950         g = gv->currGain;
 1951 
 1952         return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
 1953 }
 1954 
 1955 /*
 1956  * Enable the probe gain check on the next packet
 1957  */
 1958 static void
 1959 ar5211RequestRfgain(struct ath_hal *ah)
 1960 {
 1961         struct ath_hal_5211 *ahp = AH5211(ah);
 1962 
 1963         /* Enable the gain readback probe */
 1964         OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
 1965                   SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
 1966                 | AR_PHY_PAPD_PROBE_NEXT_TX);
 1967 
 1968         ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
 1969 }
 1970 
 1971 /*
 1972  * Exported call to check for a recent gain reading and return
 1973  * the current state of the thermal calibration gain engine.
 1974  */
 1975 HAL_RFGAIN
 1976 ar5211GetRfgain(struct ath_hal *ah)
 1977 {
 1978         struct ath_hal_5211 *ahp = AH5211(ah);
 1979         GAIN_VALUES *gv = &ahp->ah_gainValues;
 1980         uint32_t rddata;
 1981 
 1982         if (!gv->active)
 1983                 return HAL_RFGAIN_INACTIVE;
 1984 
 1985         if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
 1986                 /* Caller had asked to setup a new reading. Check it. */
 1987                 rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
 1988 
 1989                 if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
 1990                         /* bit got cleared, we have a new reading. */
 1991                         gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
 1992                         /* inactive by default */
 1993                         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
 1994 
 1995                         if (!ar5211InvalidGainReadback(ah, gv) &&
 1996                             ar5211IsGainAdjustNeeded(ah, gv) &&
 1997                             ar5211AdjustGain(ah, gv) > 0) {
 1998                                 /*
 1999                                  * Change needed. Copy ladder info
 2000                                  * into eeprom info.
 2001                                  */
 2002                                 ar5211SetRfgain(ah, gv);
 2003                                 ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
 2004                         }
 2005                 }
 2006         }
 2007         return ahp->ah_rfgainState;
 2008 }
 2009 
 2010 /*
 2011  * Check to see if our readback gain level sits within the linear
 2012  * region of our current variable attenuation window
 2013  */
 2014 static HAL_BOOL
 2015 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
 2016 {
 2017         return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
 2018 }
 2019 
 2020 /*
 2021  * Move the rabbit ears in the correct direction.
 2022  */
 2023 static int32_t 
 2024 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
 2025 {
 2026         /* return > 0 for valid adjustments. */
 2027         if (!gv->active)
 2028                 return -1;
 2029 
 2030         gv->currStep = &gainLadder.optStep[gv->currStepNum];
 2031         if (gv->currGain >= gv->hiTrig) {
 2032                 if (gv->currStepNum == 0) {
 2033                         HALDEBUG(ah, HAL_DEBUG_RFPARAM,
 2034                             "%s: Max gain limit.\n", __func__);
 2035                         return -1;
 2036                 }
 2037                 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
 2038                     "%s: Adding gain: currG=%d [%s] --> ",
 2039                     __func__, gv->currGain, gv->currStep->stepName);
 2040                 gv->targetGain = gv->currGain;
 2041                 while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
 2042                         gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
 2043                                 gv->currStep->stepGain);
 2044                         gv->currStep = &gainLadder.optStep[gv->currStepNum];
 2045                 }
 2046                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
 2047                     gv->targetGain, gv->currStep->stepName);
 2048                 return 1;
 2049         }
 2050         if (gv->currGain <= gv->loTrig) {
 2051                 if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
 2052                         HALDEBUG(ah, HAL_DEBUG_RFPARAM,
 2053                             "%s: Min gain limit.\n", __func__);
 2054                         return -2;
 2055                 }
 2056                 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
 2057                     "%s: Deducting gain: currG=%d [%s] --> ",
 2058                     __func__, gv->currGain, gv->currStep->stepName);
 2059                 gv->targetGain = gv->currGain;
 2060                 while (gv->targetGain <= gv->loTrig &&
 2061                       gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
 2062                         gv->targetGain -= 2 *
 2063                                 (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
 2064                         gv->currStep = &gainLadder.optStep[gv->currStepNum];
 2065                 }
 2066                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
 2067                     gv->targetGain, gv->currStep->stepName);
 2068                 return 2;
 2069         }
 2070         return 0;               /* caller didn't call needAdjGain first */
 2071 }
 2072 
 2073 /*
 2074  * Adjust the 5GHz EEPROM information with the desired calibration values.
 2075  */
 2076 static void
 2077 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
 2078 {
 2079         HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
 2080 
 2081         if (!gv->active)
 2082                 return;
 2083         ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
 2084         ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
 2085         ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
 2086         ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
 2087 }
 2088 
 2089 static void
 2090 ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
 2091 {
 2092         struct ath_hal_5211 *ahp = AH5211(ah);
 2093         uint32_t val;
 2094 
 2095         val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
 2096         switch (opmode) {
 2097         case HAL_M_HOSTAP:
 2098                 OS_REG_WRITE(ah, AR_STA_ID1, val
 2099                         | AR_STA_ID1_STA_AP
 2100                         | AR_STA_ID1_RTS_USE_DEF
 2101                         | ahp->ah_staId1Defaults);
 2102                 break;
 2103         case HAL_M_IBSS:
 2104                 OS_REG_WRITE(ah, AR_STA_ID1, val
 2105                         | AR_STA_ID1_ADHOC
 2106                         | AR_STA_ID1_DESC_ANTENNA
 2107                         | ahp->ah_staId1Defaults);
 2108                 break;
 2109         case HAL_M_STA:
 2110         case HAL_M_MONITOR:
 2111                 OS_REG_WRITE(ah, AR_STA_ID1, val
 2112                         | AR_STA_ID1_DEFAULT_ANTENNA
 2113                         | ahp->ah_staId1Defaults);
 2114                 break;
 2115         }
 2116 }
 2117 
 2118 void
 2119 ar5211SetPCUConfig(struct ath_hal *ah)
 2120 {
 2121         ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
 2122 }

Cache object: ed611afd6c6d9caef014003a41a5ee5a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.