The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5212/ar2317.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 
   26 #include "ar5212/ar5212.h"
   27 #include "ar5212/ar5212reg.h"
   28 #include "ar5212/ar5212phy.h"
   29 
   30 #include "ah_eeprom_v3.h"
   31 
   32 #define AH_5212_2317
   33 #include "ar5212/ar5212.ini"
   34 
   35 #define N(a)    (sizeof(a)/sizeof(a[0]))
   36 
   37 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
   38 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
   39 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
   40 
   41 struct ar2317State {
   42         RF_HAL_FUNCS    base;           /* public state, must be first */
   43         uint16_t        pcdacTable[PWR_TABLE_SIZE_2317];
   44 
   45         uint32_t        Bank1Data[N(ar5212Bank1_2317)];
   46         uint32_t        Bank2Data[N(ar5212Bank2_2317)];
   47         uint32_t        Bank3Data[N(ar5212Bank3_2317)];
   48         uint32_t        Bank6Data[N(ar5212Bank6_2317)];
   49         uint32_t        Bank7Data[N(ar5212Bank7_2317)];
   50 
   51         /*
   52          * Private state for reduced stack usage.
   53          */
   54         /* filled out Vpd table for all pdGains (chanL) */
   55         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
   56                             [MAX_PWR_RANGE_IN_HALF_DB];
   57         /* filled out Vpd table for all pdGains (chanR) */
   58         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
   59                             [MAX_PWR_RANGE_IN_HALF_DB];
   60         /* filled out Vpd table for all pdGains (interpolated) */
   61         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
   62                             [MAX_PWR_RANGE_IN_HALF_DB];
   63 };
   64 #define AR2317(ah)      ((struct ar2317State *) AH5212(ah)->ah_rfHal)
   65 
   66 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
   67                 uint32_t numBits, uint32_t firstBit, uint32_t column);
   68 
   69 static void
   70 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
   71         int writes)
   72 {
   73         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
   74         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
   75         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
   76 }
   77 
   78 /*
   79  * Take the MHz channel value and set the Channel value
   80  *
   81  * ASSUMES: Writes enabled to analog bus
   82  */
   83 static HAL_BOOL
   84 ar2317SetChannel(struct ath_hal *ah,  const struct ieee80211_channel *chan)
   85 {
   86         uint16_t freq = ath_hal_gethwchannel(ah, chan);
   87         uint32_t channelSel  = 0;
   88         uint32_t bModeSynth  = 0;
   89         uint32_t aModeRefSel = 0;
   90         uint32_t reg32       = 0;
   91 
   92         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
   93 
   94         if (freq < 4800) {
   95                 uint32_t txctl;
   96                 channelSel = freq - 2272 ;
   97                 channelSel = ath_hal_reverseBits(channelSel, 8);
   98 
   99                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  100                 if (freq == 2484) {
  101                         /* Enable channel spreading for channel 14 */
  102                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  103                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  104                 } else {
  105                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  106                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
  107                 }
  108         } else if ((freq % 20) == 0 && freq >= 5120) {
  109                 channelSel = ath_hal_reverseBits(
  110                         ((freq - 4800) / 20 << 2), 8);
  111                 aModeRefSel = ath_hal_reverseBits(3, 2);
  112         } else if ((freq % 10) == 0) {
  113                 channelSel = ath_hal_reverseBits(
  114                         ((freq - 4800) / 10 << 1), 8);
  115                 aModeRefSel = ath_hal_reverseBits(2, 2);
  116         } else if ((freq % 5) == 0) {
  117                 channelSel = ath_hal_reverseBits(
  118                         (freq - 4800) / 5, 8);
  119                 aModeRefSel = ath_hal_reverseBits(1, 2);
  120         } else {
  121                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
  122                     __func__, freq);
  123                 return AH_FALSE;
  124         }
  125 
  126         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
  127                         (1 << 12) | 0x1;
  128         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
  129 
  130         reg32 >>= 8;
  131         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
  132 
  133         AH_PRIVATE(ah)->ah_curchan = chan;
  134         return AH_TRUE;
  135 }
  136 
  137 /*
  138  * Reads EEPROM header info from device structure and programs
  139  * all rf registers
  140  *
  141  * REQUIRES: Access to the analog rf device
  142  */
  143 static HAL_BOOL
  144 ar2317SetRfRegs(struct ath_hal *ah,
  145         const struct ieee80211_channel *chan,
  146         uint16_t modesIndex, uint16_t *rfXpdGain)
  147 {
  148 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
  149         int i;                                                              \
  150         for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)                     \
  151                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
  152 } while (0)
  153         struct ath_hal_5212 *ahp = AH5212(ah);
  154         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  155         uint16_t ob2GHz = 0, db2GHz = 0;
  156         struct ar2317State *priv = AR2317(ah);
  157         int regWrites = 0;
  158 
  159         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
  160             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
  161 
  162         HALASSERT(priv);
  163 
  164         /* Setup rf parameters */
  165         if (IEEE80211_IS_CHAN_B(chan)) {
  166                 ob2GHz = ee->ee_obFor24;
  167                 db2GHz = ee->ee_dbFor24;
  168         } else {
  169                 ob2GHz = ee->ee_obFor24g;
  170                 db2GHz = ee->ee_dbFor24g;
  171         }
  172 
  173         /* Bank 1 Write */
  174         RF_BANK_SETUP(priv, 1, 1);
  175 
  176         /* Bank 2 Write */
  177         RF_BANK_SETUP(priv, 2, modesIndex);
  178 
  179         /* Bank 3 Write */
  180         RF_BANK_SETUP(priv, 3, modesIndex);
  181 
  182         /* Bank 6 Write */
  183         RF_BANK_SETUP(priv, 6, modesIndex);
  184 
  185         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
  186         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
  187 
  188         /* Bank 7 Setup */
  189         RF_BANK_SETUP(priv, 7, modesIndex);
  190 
  191         /* Write Analog registers */
  192         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
  193         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
  194         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
  195         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
  196         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);   
  197         /* Now that we have reprogrammed rfgain value, clear the flag. */
  198         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
  199 
  200         return AH_TRUE;
  201 #undef  RF_BANK_SETUP
  202 }
  203 
  204 /*
  205  * Return a reference to the requested RF Bank.
  206  */
  207 static uint32_t *
  208 ar2317GetRfBank(struct ath_hal *ah, int bank)
  209 {
  210         struct ar2317State *priv = AR2317(ah);
  211 
  212         HALASSERT(priv != AH_NULL);
  213         switch (bank) {
  214         case 1: return priv->Bank1Data;
  215         case 2: return priv->Bank2Data;
  216         case 3: return priv->Bank3Data;
  217         case 6: return priv->Bank6Data;
  218         case 7: return priv->Bank7Data;
  219         }
  220         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
  221             __func__, bank);
  222         return AH_NULL;
  223 }
  224 
  225 /*
  226  * Return indices surrounding the value in sorted integer lists.
  227  *
  228  * NB: the input list is assumed to be sorted in ascending order
  229  */
  230 static void
  231 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
  232                           uint32_t *vlo, uint32_t *vhi)
  233 {
  234         int16_t target = v;
  235         const int16_t *ep = lp+listSize;
  236         const int16_t *tp;
  237 
  238         /*
  239          * Check first and last elements for out-of-bounds conditions.
  240          */
  241         if (target < lp[0]) {
  242                 *vlo = *vhi = 0;
  243                 return;
  244         }
  245         if (target >= ep[-1]) {
  246                 *vlo = *vhi = listSize - 1;
  247                 return;
  248         }
  249 
  250         /* look for value being near or between 2 values in list */
  251         for (tp = lp; tp < ep; tp++) {
  252                 /*
  253                  * If value is close to the current value of the list
  254                  * then target is not between values, it is one of the values
  255                  */
  256                 if (*tp == target) {
  257                         *vlo = *vhi = tp - (const int16_t *) lp;
  258                         return;
  259                 }
  260                 /*
  261                  * Look for value being between current value and next value
  262                  * if so return these 2 values
  263                  */
  264                 if (target < tp[1]) {
  265                         *vlo = tp - (const int16_t *) lp;
  266                         *vhi = *vlo + 1;
  267                         return;
  268                 }
  269         }
  270 }
  271 
  272 /*
  273  * Fill the Vpdlist for indices Pmax-Pmin
  274  */
  275 static HAL_BOOL
  276 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
  277                    const int16_t *pwrList, const int16_t *VpdList,
  278                    uint16_t numIntercepts, uint16_t retVpdList[][64])
  279 {
  280         uint16_t ii, jj, kk;
  281         int16_t currPwr = (int16_t)(2*Pmin);
  282         /* since Pmin is pwr*2 and pwrList is 4*pwr */
  283         uint32_t  idxL, idxR;
  284 
  285         ii = 0;
  286         jj = 0;
  287 
  288         if (numIntercepts < 2)
  289                 return AH_FALSE;
  290 
  291         while (ii <= (uint16_t)(Pmax - Pmin)) {
  292                 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 
  293                                          &(idxL), &(idxR));
  294                 if (idxR < 1)
  295                         idxR = 1;                       /* extrapolate below */
  296                 if (idxL == (uint32_t)(numIntercepts - 1))
  297                         idxL = numIntercepts - 2;       /* extrapolate above */
  298                 if (pwrList[idxL] == pwrList[idxR])
  299                         kk = VpdList[idxL];
  300                 else
  301                         kk = (uint16_t)
  302                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
  303                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
  304                                  (pwrList[idxR] - pwrList[idxL]));
  305                 retVpdList[pdGainIdx][ii] = kk;
  306                 ii++;
  307                 currPwr += 2;                           /* half dB steps */
  308         }
  309 
  310         return AH_TRUE;
  311 }
  312 
  313 /*
  314  * Returns interpolated or the scaled up interpolated value
  315  */
  316 static int16_t
  317 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
  318         int16_t targetLeft, int16_t targetRight)
  319 {
  320         int16_t rv;
  321 
  322         if (srcRight != srcLeft) {
  323                 rv = ((target - srcLeft)*targetRight +
  324                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
  325         } else {
  326                 rv = targetLeft;
  327         }
  328         return rv;
  329 }
  330 
  331 /*
  332  * Uses the data points read from EEPROM to reconstruct the pdadc power table
  333  * Called by ar2317SetPowerTable()
  334  */
  335 static int 
  336 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
  337                 const RAW_DATA_STRUCT_2317 *pRawDataset,
  338                 uint16_t pdGainOverlap_t2, 
  339                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
  340                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
  341 {
  342         struct ar2317State *priv = AR2317(ah);
  343 #define VpdTable_L      priv->vpdTable_L
  344 #define VpdTable_R      priv->vpdTable_R
  345 #define VpdTable_I      priv->vpdTable_I
  346         /* XXX excessive stack usage? */
  347         uint32_t ii, jj, kk;
  348         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
  349         uint32_t idxL, idxR;
  350         uint32_t numPdGainsUsed = 0;
  351         /* 
  352          * If desired to support -ve power levels in future, just
  353          * change pwr_I_0 to signed 5-bits.
  354          */
  355         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  356         /* to accommodate -ve power levels later on. */
  357         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  358         /* to accommodate -ve power levels later on */
  359         uint16_t numVpd = 0;
  360         uint16_t Vpd_step;
  361         int16_t tmpVal ; 
  362         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
  363 
  364         /* Get upper lower index */
  365         GetLowerUpperIndex(channel, pRawDataset->pChannels,
  366                                  pRawDataset->numChannels, &(idxL), &(idxR));
  367 
  368         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  369                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  370                 /* work backwards 'cause highest pdGain for lowest power */
  371                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
  372                 if (numVpd > 0) {
  373                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
  374                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
  375                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
  376                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
  377                         }
  378                         Pmin_t2[numPdGainsUsed] = (int16_t)
  379                                 (Pmin_t2[numPdGainsUsed] / 2);
  380                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  381                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
  382                                 Pmax_t2[numPdGainsUsed] = 
  383                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  384                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
  385                         ar2317FillVpdTable(
  386                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  387                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
  388                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
  389                                            );
  390                         ar2317FillVpdTable(
  391                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  392                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
  393                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
  394                                            );
  395                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
  396                                 VpdTable_I[numPdGainsUsed][kk] = 
  397                                         interpolate_signed(
  398                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
  399                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
  400                         }
  401                         /* fill VpdTable_I for this pdGain */
  402                         numPdGainsUsed++;
  403                 }
  404                 /* if this pdGain is used */
  405         }
  406 
  407         *pMinCalPower = Pmin_t2[0];
  408         kk = 0; /* index for the final table */
  409         for (ii = 0; ii < numPdGainsUsed; ii++) {
  410                 if (ii == (numPdGainsUsed - 1))
  411                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
  412                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
  413                 else 
  414                         pPdGainBoundaries[ii] = (uint16_t)
  415                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
  416                 if (pPdGainBoundaries[ii] > 63) {
  417                         HALDEBUG(ah, HAL_DEBUG_ANY,
  418                             "%s: clamp pPdGainBoundaries[%d] %d\n",
  419                            __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
  420                         pPdGainBoundaries[ii] = 63;
  421                 }
  422 
  423                 /* Find starting index for this pdGain */
  424                 if (ii == 0) 
  425                         ss = 0; /* for the first pdGain, start from index 0 */
  426                 else 
  427                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
  428                                 pdGainOverlap_t2;
  429                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
  430                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
  431                 /*
  432                  *-ve ss indicates need to extrapolate data below for this pdGain
  433                  */
  434                 while (ss < 0) {
  435                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
  436                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
  437                         ss++;
  438                 }
  439 
  440                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
  441                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
  442                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
  443 
  444                 while (ss < (int16_t)maxIndex)
  445                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
  446 
  447                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
  448                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
  449                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
  450                 /*
  451                  * for last gain, pdGainBoundary == Pmax_t2, so will 
  452                  * have to extrapolate
  453                  */
  454                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
  455                         while(ss < (int16_t)tgtIndex) {
  456                                 tmpVal = (uint16_t)
  457                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
  458                                          (ss-maxIndex)*Vpd_step);
  459                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
  460                                         127 : tmpVal;
  461                                 ss++;
  462                         }
  463                 }                               /* extrapolated above */
  464         }                                       /* for all pdGainUsed */
  465 
  466         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
  467                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
  468                 ii++;
  469         }
  470         while (kk < 128) {
  471                 pPDADCValues[kk] = pPDADCValues[kk-1];
  472                 kk++;
  473         }
  474 
  475         return numPdGainsUsed;
  476 #undef VpdTable_L
  477 #undef VpdTable_R
  478 #undef VpdTable_I
  479 }
  480 
  481 static HAL_BOOL
  482 ar2317SetPowerTable(struct ath_hal *ah,
  483         int16_t *minPower, int16_t *maxPower,
  484         const struct ieee80211_channel *chan, 
  485         uint16_t *rfXpdGain)
  486 {
  487         struct ath_hal_5212 *ahp = AH5212(ah);
  488         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  489         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
  490         uint16_t pdGainOverlap_t2;
  491         int16_t minCalPower2317_t2;
  492         uint16_t *pdadcValues = ahp->ah_pcdacTable;
  493         uint16_t gainBoundaries[4];
  494         uint32_t reg32, regoffset;
  495         int i, numPdGainsUsed;
  496 #ifndef AH_USE_INIPDGAIN
  497         uint32_t tpcrg1;
  498 #endif
  499 
  500         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
  501             __func__, chan->ic_freq, chan->ic_flags);
  502 
  503         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  504                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  505         else if (IEEE80211_IS_CHAN_B(chan))
  506                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  507         else {
  508                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
  509                 return AH_FALSE;
  510         }
  511 
  512         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
  513                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
  514     
  515         numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
  516                 chan->channel, pRawDataset, pdGainOverlap_t2,
  517                 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
  518         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
  519 
  520 #ifdef AH_USE_INIPDGAIN
  521         /*
  522          * Use pd_gains curve from eeprom; Atheros always uses
  523          * the default curve from the ini file but some vendors
  524          * (e.g. Zcomax) want to override this curve and not
  525          * honoring their settings results in tx power 5dBm low.
  526          */
  527         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
  528                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
  529 #else
  530         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
  531         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
  532                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
  533         switch (numPdGainsUsed) {
  534         case 3:
  535                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
  536                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
  537                 /* fall thru... */
  538         case 2:
  539                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
  540                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
  541                 /* fall thru... */
  542         case 1:
  543                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
  544                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
  545                 break;
  546         }
  547 #ifdef AH_DEBUG
  548         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
  549                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
  550                     "pd_gains (default 0x%x, calculated 0x%x)\n",
  551                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
  552 #endif
  553         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
  554 #endif
  555 
  556         /*
  557          * Note the pdadc table may not start at 0 dBm power, could be
  558          * negative or greater than 0.  Need to offset the power
  559          * values by the amount of minPower for griffin
  560          */
  561         if (minCalPower2317_t2 != 0)
  562                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
  563         else
  564                 ahp->ah_txPowerIndexOffset = 0;
  565 
  566         /* Finally, write the power values into the baseband power table */
  567         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
  568         for (i = 0; i < 32; i++) {
  569                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
  570                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
  571                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
  572                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
  573                 OS_REG_WRITE(ah, regoffset, reg32);
  574                 regoffset += 4;
  575         }
  576 
  577         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
  578                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
  579                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
  580                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
  581                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
  582                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  583 
  584         return AH_TRUE;
  585 }
  586 
  587 static int16_t
  588 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
  589 {
  590         uint32_t ii,jj;
  591         uint16_t Pmin=0,numVpd;
  592 
  593         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  594                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  595                 /* work backwards 'cause highest pdGain for lowest power */
  596                 numVpd = data->pDataPerPDGain[jj].numVpd;
  597                 if (numVpd > 0) {
  598                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
  599                         return(Pmin);
  600                 }
  601         }
  602         return(Pmin);
  603 }
  604 
  605 static int16_t
  606 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
  607 {
  608         uint32_t ii;
  609         uint16_t Pmax=0,numVpd;
  610         uint16_t vpdmax;
  611 
  612         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  613                 /* work forwards cuase lowest pdGain for highest power */
  614                 numVpd = data->pDataPerPDGain[ii].numVpd;
  615                 if (numVpd > 0) {
  616                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
  617                         vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
  618                         return(Pmax);
  619                 }
  620         }
  621         return(Pmax);
  622 }
  623 
  624 static HAL_BOOL
  625 ar2317GetChannelMaxMinPower(struct ath_hal *ah,
  626         const struct ieee80211_channel *chan,
  627         int16_t *maxPow, int16_t *minPow)
  628 {
  629         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
  630         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  631         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
  632         const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
  633         uint16_t numChannels;
  634         int totalD,totalF, totalMin,last, i;
  635 
  636         *maxPow = 0;
  637 
  638         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  639                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  640         else if (IEEE80211_IS_CHAN_B(chan))
  641                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  642         else
  643                 return(AH_FALSE);
  644 
  645         numChannels = pRawDataset->numChannels;
  646         data = pRawDataset->pDataPerChannel;
  647 
  648         /* Make sure the channel is in the range of the TP values 
  649          *  (freq piers)
  650          */
  651         if (numChannels < 1)
  652                 return(AH_FALSE);
  653 
  654         if ((freq < data[0].channelValue) ||
  655             (freq > data[numChannels-1].channelValue)) {
  656                 if (freq < data[0].channelValue) {
  657                         *maxPow = ar2317GetMaxPower(ah, &data[0]);
  658                         *minPow = ar2317GetMinPower(ah, &data[0]);
  659                         return(AH_TRUE);
  660                 } else {
  661                         *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
  662                         *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
  663                         return(AH_TRUE);
  664                 }
  665         }
  666 
  667         /* Linearly interpolate the power value now */
  668         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
  669              last = i++);
  670         totalD = data[i].channelValue - data[last].channelValue;
  671         if (totalD > 0) {
  672                 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
  673                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
  674                                      ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
  675                 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
  676                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
  677                                      ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
  678                 return(AH_TRUE);
  679         } else {
  680                 if (freq == data[i].channelValue) {
  681                         *maxPow = ar2317GetMaxPower(ah, &data[i]);
  682                         *minPow = ar2317GetMinPower(ah, &data[i]);
  683                         return(AH_TRUE);
  684                 } else
  685                         return(AH_FALSE);
  686         }
  687 }
  688 
  689 /*
  690  * Free memory for analog bank scratch buffers
  691  */
  692 static void
  693 ar2317RfDetach(struct ath_hal *ah)
  694 {
  695         struct ath_hal_5212 *ahp = AH5212(ah);
  696 
  697         HALASSERT(ahp->ah_rfHal != AH_NULL);
  698         ath_hal_free(ahp->ah_rfHal);
  699         ahp->ah_rfHal = AH_NULL;
  700 }
  701 
  702 /*
  703  * Allocate memory for analog bank scratch buffers
  704  * Scratch Buffer will be reinitialized every reset so no need to zero now
  705  */
  706 static HAL_BOOL
  707 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
  708 {
  709         struct ath_hal_5212 *ahp = AH5212(ah);
  710         struct ar2317State *priv;
  711 
  712         HALASSERT(ah->ah_magic == AR5212_MAGIC);
  713 
  714         HALASSERT(ahp->ah_rfHal == AH_NULL);
  715         priv = ath_hal_malloc(sizeof(struct ar2317State));
  716         if (priv == AH_NULL) {
  717                 HALDEBUG(ah, HAL_DEBUG_ANY,
  718                     "%s: cannot allocate private state\n", __func__);
  719                 *status = HAL_ENOMEM;           /* XXX */
  720                 return AH_FALSE;
  721         }
  722         priv->base.rfDetach             = ar2317RfDetach;
  723         priv->base.writeRegs            = ar2317WriteRegs;
  724         priv->base.getRfBank            = ar2317GetRfBank;
  725         priv->base.setChannel           = ar2317SetChannel;
  726         priv->base.setRfRegs            = ar2317SetRfRegs;
  727         priv->base.setPowerTable        = ar2317SetPowerTable;
  728         priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
  729         priv->base.getNfAdjust          = ar5212GetNfAdjust;
  730 
  731         ahp->ah_pcdacTable = priv->pcdacTable;
  732         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
  733         ahp->ah_rfHal = &priv->base;
  734 
  735         return AH_TRUE;
  736 }
  737 
  738 static HAL_BOOL
  739 ar2317Probe(struct ath_hal *ah)
  740 {
  741         return IS_2317(ah);
  742 }
  743 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);

Cache object: e9def334c80fbfa3adfca2e848a65da1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.