The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5212/ar2413.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 
   26 #include "ar5212/ar5212.h"
   27 #include "ar5212/ar5212reg.h"
   28 #include "ar5212/ar5212phy.h"
   29 
   30 #include "ah_eeprom_v3.h"
   31 
   32 #define AH_5212_2413
   33 #include "ar5212/ar5212.ini"
   34 
   35 #define N(a)    (sizeof(a)/sizeof(a[0]))
   36 
   37 struct ar2413State {
   38         RF_HAL_FUNCS    base;           /* public state, must be first */
   39         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
   40 
   41         uint32_t        Bank1Data[N(ar5212Bank1_2413)];
   42         uint32_t        Bank2Data[N(ar5212Bank2_2413)];
   43         uint32_t        Bank3Data[N(ar5212Bank3_2413)];
   44         uint32_t        Bank6Data[N(ar5212Bank6_2413)];
   45         uint32_t        Bank7Data[N(ar5212Bank7_2413)];
   46 
   47         /*
   48          * Private state for reduced stack usage.
   49          */
   50         /* filled out Vpd table for all pdGains (chanL) */
   51         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
   52                             [MAX_PWR_RANGE_IN_HALF_DB];
   53         /* filled out Vpd table for all pdGains (chanR) */
   54         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
   55                             [MAX_PWR_RANGE_IN_HALF_DB];
   56         /* filled out Vpd table for all pdGains (interpolated) */
   57         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
   58                             [MAX_PWR_RANGE_IN_HALF_DB];
   59 };
   60 #define AR2413(ah)      ((struct ar2413State *) AH5212(ah)->ah_rfHal)
   61 
   62 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
   63                 uint32_t numBits, uint32_t firstBit, uint32_t column);
   64 
   65 static void
   66 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
   67         int writes)
   68 {
   69         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
   70         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
   71         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
   72 }
   73 
   74 /*
   75  * Take the MHz channel value and set the Channel value
   76  *
   77  * ASSUMES: Writes enabled to analog bus
   78  */
   79 static HAL_BOOL
   80 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
   81 {
   82         uint16_t freq = ath_hal_gethwchannel(ah, chan);
   83         uint32_t channelSel  = 0;
   84         uint32_t bModeSynth  = 0;
   85         uint32_t aModeRefSel = 0;
   86         uint32_t reg32       = 0;
   87 
   88         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
   89 
   90         if (freq < 4800) {
   91                 uint32_t txctl;
   92 
   93                 if (((freq - 2192) % 5) == 0) {
   94                         channelSel = ((freq - 672) * 2 - 3040)/10;
   95                         bModeSynth = 0;
   96                 } else if (((freq - 2224) % 5) == 0) {
   97                         channelSel = ((freq - 704) * 2 - 3040) / 10;
   98                         bModeSynth = 1;
   99                 } else {
  100                         HALDEBUG(ah, HAL_DEBUG_ANY,
  101                             "%s: invalid channel %u MHz\n",
  102                             __func__, freq);
  103                         return AH_FALSE;
  104                 }
  105 
  106                 channelSel = (channelSel << 2) & 0xff;
  107                 channelSel = ath_hal_reverseBits(channelSel, 8);
  108 
  109                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  110                 if (freq == 2484) {
  111                         /* Enable channel spreading for channel 14 */
  112                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  113                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  114                 } else {
  115                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  116                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
  117                 }
  118         } else if (((freq % 5) == 2) && (freq <= 5435)) {
  119                 freq = freq - 2; /* Align to even 5MHz raster */
  120                 channelSel = ath_hal_reverseBits(
  121                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
  122                 aModeRefSel = ath_hal_reverseBits(0, 2);
  123         } else if ((freq % 20) == 0 && freq >= 5120) {
  124                 channelSel = ath_hal_reverseBits(
  125                         ((freq - 4800) / 20 << 2), 8);
  126                 aModeRefSel = ath_hal_reverseBits(3, 2);
  127         } else if ((freq % 10) == 0) {
  128                 channelSel = ath_hal_reverseBits(
  129                         ((freq - 4800) / 10 << 1), 8);
  130                 aModeRefSel = ath_hal_reverseBits(2, 2);
  131         } else if ((freq % 5) == 0) {
  132                 channelSel = ath_hal_reverseBits(
  133                         (freq - 4800) / 5, 8);
  134                 aModeRefSel = ath_hal_reverseBits(1, 2);
  135         } else {
  136                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
  137                     __func__, freq);
  138                 return AH_FALSE;
  139         }
  140 
  141         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
  142                         (1 << 12) | 0x1;
  143         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
  144 
  145         reg32 >>= 8;
  146         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
  147 
  148         AH_PRIVATE(ah)->ah_curchan = chan;
  149 
  150         return AH_TRUE;
  151 }
  152 
  153 /*
  154  * Reads EEPROM header info from device structure and programs
  155  * all rf registers
  156  *
  157  * REQUIRES: Access to the analog rf device
  158  */
  159 static HAL_BOOL
  160 ar2413SetRfRegs(struct ath_hal *ah,
  161         const struct ieee80211_channel *chan,
  162         uint16_t modesIndex, uint16_t *rfXpdGain)
  163 {
  164 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
  165         int i;                                                              \
  166         for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)                     \
  167                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
  168 } while (0)
  169         struct ath_hal_5212 *ahp = AH5212(ah);
  170         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  171         uint16_t ob2GHz = 0, db2GHz = 0;
  172         struct ar2413State *priv = AR2413(ah);
  173         int regWrites = 0;
  174 
  175         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
  176             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
  177 
  178         HALASSERT(priv);
  179 
  180         /* Setup rf parameters */
  181         if (IEEE80211_IS_CHAN_B(chan)) {
  182                 ob2GHz = ee->ee_obFor24;
  183                 db2GHz = ee->ee_dbFor24;
  184         } else {
  185                 ob2GHz = ee->ee_obFor24g;
  186                 db2GHz = ee->ee_dbFor24g;
  187         }
  188 
  189         /* Bank 1 Write */
  190         RF_BANK_SETUP(priv, 1, 1);
  191 
  192         /* Bank 2 Write */
  193         RF_BANK_SETUP(priv, 2, modesIndex);
  194 
  195         /* Bank 3 Write */
  196         RF_BANK_SETUP(priv, 3, modesIndex);
  197 
  198         /* Bank 6 Write */
  199         RF_BANK_SETUP(priv, 6, modesIndex);
  200 
  201         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
  202         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
  203 
  204         /* Bank 7 Setup */
  205         RF_BANK_SETUP(priv, 7, modesIndex);
  206 
  207         /* Write Analog registers */
  208         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
  209         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
  210         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
  211         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
  212         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
  213 
  214         /* Now that we have reprogrammed rfgain value, clear the flag. */
  215         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
  216 
  217         return AH_TRUE;
  218 #undef  RF_BANK_SETUP
  219 }
  220 
  221 /*
  222  * Return a reference to the requested RF Bank.
  223  */
  224 static uint32_t *
  225 ar2413GetRfBank(struct ath_hal *ah, int bank)
  226 {
  227         struct ar2413State *priv = AR2413(ah);
  228 
  229         HALASSERT(priv != AH_NULL);
  230         switch (bank) {
  231         case 1: return priv->Bank1Data;
  232         case 2: return priv->Bank2Data;
  233         case 3: return priv->Bank3Data;
  234         case 6: return priv->Bank6Data;
  235         case 7: return priv->Bank7Data;
  236         }
  237         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
  238             __func__, bank);
  239         return AH_NULL;
  240 }
  241 
  242 /*
  243  * Return indices surrounding the value in sorted integer lists.
  244  *
  245  * NB: the input list is assumed to be sorted in ascending order
  246  */
  247 static void
  248 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
  249                           uint32_t *vlo, uint32_t *vhi)
  250 {
  251         int16_t target = v;
  252         const uint16_t *ep = lp+listSize;
  253         const uint16_t *tp;
  254 
  255         /*
  256          * Check first and last elements for out-of-bounds conditions.
  257          */
  258         if (target < lp[0]) {
  259                 *vlo = *vhi = 0;
  260                 return;
  261         }
  262         if (target >= ep[-1]) {
  263                 *vlo = *vhi = listSize - 1;
  264                 return;
  265         }
  266 
  267         /* look for value being near or between 2 values in list */
  268         for (tp = lp; tp < ep; tp++) {
  269                 /*
  270                  * If value is close to the current value of the list
  271                  * then target is not between values, it is one of the values
  272                  */
  273                 if (*tp == target) {
  274                         *vlo = *vhi = tp - (const uint16_t *) lp;
  275                         return;
  276                 }
  277                 /*
  278                  * Look for value being between current value and next value
  279                  * if so return these 2 values
  280                  */
  281                 if (target < tp[1]) {
  282                         *vlo = tp - (const uint16_t *) lp;
  283                         *vhi = *vlo + 1;
  284                         return;
  285                 }
  286         }
  287 }
  288 
  289 /*
  290  * Fill the Vpdlist for indices Pmax-Pmin
  291  */
  292 static HAL_BOOL
  293 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
  294                    const int16_t *pwrList, const uint16_t *VpdList,
  295                    uint16_t numIntercepts, uint16_t retVpdList[][64])
  296 {
  297         uint16_t ii, jj, kk;
  298         int16_t currPwr = (int16_t)(2*Pmin);
  299         /* since Pmin is pwr*2 and pwrList is 4*pwr */
  300         uint32_t  idxL, idxR;
  301 
  302         ii = 0;
  303         jj = 0;
  304 
  305         if (numIntercepts < 2)
  306                 return AH_FALSE;
  307 
  308         while (ii <= (uint16_t)(Pmax - Pmin)) {
  309                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
  310                                    numIntercepts, &(idxL), &(idxR));
  311                 if (idxR < 1)
  312                         idxR = 1;                       /* extrapolate below */
  313                 if (idxL == (uint32_t)(numIntercepts - 1))
  314                         idxL = numIntercepts - 2;       /* extrapolate above */
  315                 if (pwrList[idxL] == pwrList[idxR])
  316                         kk = VpdList[idxL];
  317                 else
  318                         kk = (uint16_t)
  319                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
  320                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
  321                                  (pwrList[idxR] - pwrList[idxL]));
  322                 retVpdList[pdGainIdx][ii] = kk;
  323                 ii++;
  324                 currPwr += 2;                           /* half dB steps */
  325         }
  326 
  327         return AH_TRUE;
  328 }
  329 
  330 /*
  331  * Returns interpolated or the scaled up interpolated value
  332  */
  333 static int16_t
  334 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
  335         int16_t targetLeft, int16_t targetRight)
  336 {
  337         int16_t rv;
  338 
  339         if (srcRight != srcLeft) {
  340                 rv = ((target - srcLeft)*targetRight +
  341                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
  342         } else {
  343                 rv = targetLeft;
  344         }
  345         return rv;
  346 }
  347 
  348 /*
  349  * Uses the data points read from EEPROM to reconstruct the pdadc power table
  350  * Called by ar2413SetPowerTable()
  351  */
  352 static int 
  353 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
  354                 const RAW_DATA_STRUCT_2413 *pRawDataset,
  355                 uint16_t pdGainOverlap_t2, 
  356                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
  357                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
  358 {
  359         struct ar2413State *priv = AR2413(ah);
  360 #define VpdTable_L      priv->vpdTable_L
  361 #define VpdTable_R      priv->vpdTable_R
  362 #define VpdTable_I      priv->vpdTable_I
  363         uint32_t ii, jj, kk;
  364         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
  365         uint32_t idxL, idxR;
  366         uint32_t numPdGainsUsed = 0;
  367         /* 
  368          * If desired to support -ve power levels in future, just
  369          * change pwr_I_0 to signed 5-bits.
  370          */
  371         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  372         /* to accommodate -ve power levels later on. */
  373         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  374         /* to accommodate -ve power levels later on */
  375         uint16_t numVpd = 0;
  376         uint16_t Vpd_step;
  377         int16_t tmpVal ; 
  378         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
  379 
  380         /* Get upper lower index */
  381         GetLowerUpperIndex(channel, pRawDataset->pChannels,
  382                                  pRawDataset->numChannels, &(idxL), &(idxR));
  383 
  384         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  385                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  386                 /* work backwards 'cause highest pdGain for lowest power */
  387                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
  388                 if (numVpd > 0) {
  389                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
  390                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
  391                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
  392                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
  393                         }
  394                         Pmin_t2[numPdGainsUsed] = (int16_t)
  395                                 (Pmin_t2[numPdGainsUsed] / 2);
  396                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  397                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
  398                                 Pmax_t2[numPdGainsUsed] = 
  399                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  400                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
  401                         ar2413FillVpdTable(
  402                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  403                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
  404                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
  405                                            );
  406                         ar2413FillVpdTable(
  407                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  408                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
  409                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
  410                                            );
  411                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
  412                                 VpdTable_I[numPdGainsUsed][kk] = 
  413                                         interpolate_signed(
  414                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
  415                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
  416                         }
  417                         /* fill VpdTable_I for this pdGain */
  418                         numPdGainsUsed++;
  419                 }
  420                 /* if this pdGain is used */
  421         }
  422 
  423         *pMinCalPower = Pmin_t2[0];
  424         kk = 0; /* index for the final table */
  425         for (ii = 0; ii < numPdGainsUsed; ii++) {
  426                 if (ii == (numPdGainsUsed - 1))
  427                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
  428                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
  429                 else 
  430                         pPdGainBoundaries[ii] = (uint16_t)
  431                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
  432                 if (pPdGainBoundaries[ii] > 63) {
  433                         HALDEBUG(ah, HAL_DEBUG_ANY,
  434                             "%s: clamp pPdGainBoundaries[%d] %d\n",
  435                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
  436                         pPdGainBoundaries[ii] = 63;
  437                 }
  438 
  439                 /* Find starting index for this pdGain */
  440                 if (ii == 0) 
  441                         ss = 0; /* for the first pdGain, start from index 0 */
  442                 else 
  443                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
  444                                 pdGainOverlap_t2;
  445                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
  446                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
  447                 /*
  448                  *-ve ss indicates need to extrapolate data below for this pdGain
  449                  */
  450                 while (ss < 0) {
  451                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
  452                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
  453                         ss++;
  454                 }
  455 
  456                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
  457                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
  458                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
  459 
  460                 while (ss < (int16_t)maxIndex)
  461                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
  462 
  463                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
  464                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
  465                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
  466                 /*
  467                  * for last gain, pdGainBoundary == Pmax_t2, so will 
  468                  * have to extrapolate
  469                  */
  470                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
  471                         while(ss < (int16_t)tgtIndex) {
  472                                 tmpVal = (uint16_t)
  473                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
  474                                          (ss-maxIndex)*Vpd_step);
  475                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
  476                                         127 : tmpVal;
  477                                 ss++;
  478                         }
  479                 }                               /* extrapolated above */
  480         }                                       /* for all pdGainUsed */
  481 
  482         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
  483                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
  484                 ii++;
  485         }
  486         while (kk < 128) {
  487                 pPDADCValues[kk] = pPDADCValues[kk-1];
  488                 kk++;
  489         }
  490 
  491         return numPdGainsUsed;
  492 #undef VpdTable_L
  493 #undef VpdTable_R
  494 #undef VpdTable_I
  495 }
  496 
  497 static HAL_BOOL
  498 ar2413SetPowerTable(struct ath_hal *ah,
  499         int16_t *minPower, int16_t *maxPower,
  500         const struct ieee80211_channel *chan, 
  501         uint16_t *rfXpdGain)
  502 {
  503         uint16_t freq = ath_hal_gethwchannel(ah, chan);
  504         struct ath_hal_5212 *ahp = AH5212(ah);
  505         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  506         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
  507         uint16_t pdGainOverlap_t2;
  508         int16_t minCalPower2413_t2;
  509         uint16_t *pdadcValues = ahp->ah_pcdacTable;
  510         uint16_t gainBoundaries[4];
  511         uint32_t reg32, regoffset;
  512         int i, numPdGainsUsed;
  513 #ifndef AH_USE_INIPDGAIN
  514         uint32_t tpcrg1;
  515 #endif
  516 
  517         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
  518             __func__, freq, chan->ic_flags);
  519 
  520         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  521                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  522         else if (IEEE80211_IS_CHAN_B(chan))
  523                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  524         else {
  525                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
  526                 return AH_FALSE;
  527         }
  528 
  529         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
  530                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
  531     
  532         numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
  533                 freq, pRawDataset, pdGainOverlap_t2,
  534                 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
  535         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
  536 
  537 #ifdef AH_USE_INIPDGAIN
  538         /*
  539          * Use pd_gains curve from eeprom; Atheros always uses
  540          * the default curve from the ini file but some vendors
  541          * (e.g. Zcomax) want to override this curve and not
  542          * honoring their settings results in tx power 5dBm low.
  543          */
  544         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
  545                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
  546 #else
  547         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
  548         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
  549                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
  550         switch (numPdGainsUsed) {
  551         case 3:
  552                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
  553                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
  554                 /* fall thru... */
  555         case 2:
  556                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
  557                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
  558                 /* fall thru... */
  559         case 1:
  560                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
  561                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
  562                 break;
  563         }
  564 #ifdef AH_DEBUG
  565         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
  566                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
  567                     "pd_gains (default 0x%x, calculated 0x%x)\n",
  568                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
  569 #endif
  570         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
  571 #endif
  572 
  573         /*
  574          * Note the pdadc table may not start at 0 dBm power, could be
  575          * negative or greater than 0.  Need to offset the power
  576          * values by the amount of minPower for griffin
  577          */
  578         if (minCalPower2413_t2 != 0)
  579                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
  580         else
  581                 ahp->ah_txPowerIndexOffset = 0;
  582 
  583         /* Finally, write the power values into the baseband power table */
  584         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
  585         for (i = 0; i < 32; i++) {
  586                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
  587                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
  588                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
  589                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
  590                 OS_REG_WRITE(ah, regoffset, reg32);
  591                 regoffset += 4;
  592         }
  593 
  594         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
  595                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
  596                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
  597                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
  598                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
  599                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  600 
  601         return AH_TRUE;
  602 }
  603 
  604 static int16_t
  605 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
  606 {
  607         uint32_t ii,jj;
  608         uint16_t Pmin=0,numVpd;
  609 
  610         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  611                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  612                 /* work backwards 'cause highest pdGain for lowest power */
  613                 numVpd = data->pDataPerPDGain[jj].numVpd;
  614                 if (numVpd > 0) {
  615                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
  616                         return(Pmin);
  617                 }
  618         }
  619         return(Pmin);
  620 }
  621 
  622 static int16_t
  623 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
  624 {
  625         uint32_t ii;
  626         uint16_t Pmax=0,numVpd;
  627 
  628         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  629                 /* work forwards cuase lowest pdGain for highest power */
  630                 numVpd = data->pDataPerPDGain[ii].numVpd;
  631                 if (numVpd > 0) {
  632                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
  633                         return(Pmax);
  634                 }
  635         }
  636         return(Pmax);
  637 }
  638 
  639 static HAL_BOOL
  640 ar2413GetChannelMaxMinPower(struct ath_hal *ah,
  641         const struct ieee80211_channel *chan,
  642         int16_t *maxPow, int16_t *minPow)
  643 {
  644         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
  645         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  646         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
  647         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
  648         uint16_t numChannels;
  649         int totalD,totalF, totalMin,last, i;
  650 
  651         *maxPow = 0;
  652 
  653         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  654                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  655         else if (IEEE80211_IS_CHAN_B(chan))
  656                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  657         else
  658                 return(AH_FALSE);
  659 
  660         numChannels = pRawDataset->numChannels;
  661         data = pRawDataset->pDataPerChannel;
  662 
  663         /* Make sure the channel is in the range of the TP values 
  664          *  (freq piers)
  665          */
  666         if (numChannels < 1)
  667                 return(AH_FALSE);
  668 
  669         if ((freq < data[0].channelValue) ||
  670             (freq > data[numChannels-1].channelValue)) {
  671                 if (freq < data[0].channelValue) {
  672                         *maxPow = ar2413GetMaxPower(ah, &data[0]);
  673                         *minPow = ar2413GetMinPower(ah, &data[0]);
  674                         return(AH_TRUE);
  675                 } else {
  676                         *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
  677                         *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
  678                         return(AH_TRUE);
  679                 }
  680         }
  681 
  682         /* Linearly interpolate the power value now */
  683         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
  684              last = i++);
  685         totalD = data[i].channelValue - data[last].channelValue;
  686         if (totalD > 0) {
  687                 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
  688                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
  689                                      ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
  690                 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
  691                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
  692                                      ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
  693                 return(AH_TRUE);
  694         } else {
  695                 if (freq == data[i].channelValue) {
  696                         *maxPow = ar2413GetMaxPower(ah, &data[i]);
  697                         *minPow = ar2413GetMinPower(ah, &data[i]);
  698                         return(AH_TRUE);
  699                 } else
  700                         return(AH_FALSE);
  701         }
  702 }
  703 
  704 /*
  705  * Free memory for analog bank scratch buffers
  706  */
  707 static void
  708 ar2413RfDetach(struct ath_hal *ah)
  709 {
  710         struct ath_hal_5212 *ahp = AH5212(ah);
  711 
  712         HALASSERT(ahp->ah_rfHal != AH_NULL);
  713         ath_hal_free(ahp->ah_rfHal);
  714         ahp->ah_rfHal = AH_NULL;
  715 }
  716 
  717 /*
  718  * Allocate memory for analog bank scratch buffers
  719  * Scratch Buffer will be reinitialized every reset so no need to zero now
  720  */
  721 static HAL_BOOL
  722 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
  723 {
  724         struct ath_hal_5212 *ahp = AH5212(ah);
  725         struct ar2413State *priv;
  726 
  727         HALASSERT(ah->ah_magic == AR5212_MAGIC);
  728 
  729         HALASSERT(ahp->ah_rfHal == AH_NULL);
  730         priv = ath_hal_malloc(sizeof(struct ar2413State));
  731         if (priv == AH_NULL) {
  732                 HALDEBUG(ah, HAL_DEBUG_ANY,
  733                     "%s: cannot allocate private state\n", __func__);
  734                 *status = HAL_ENOMEM;           /* XXX */
  735                 return AH_FALSE;
  736         }
  737         priv->base.rfDetach             = ar2413RfDetach;
  738         priv->base.writeRegs            = ar2413WriteRegs;
  739         priv->base.getRfBank            = ar2413GetRfBank;
  740         priv->base.setChannel           = ar2413SetChannel;
  741         priv->base.setRfRegs            = ar2413SetRfRegs;
  742         priv->base.setPowerTable        = ar2413SetPowerTable;
  743         priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
  744         priv->base.getNfAdjust          = ar5212GetNfAdjust;
  745 
  746         ahp->ah_pcdacTable = priv->pcdacTable;
  747         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
  748         ahp->ah_rfHal = &priv->base;
  749 
  750         return AH_TRUE;
  751 }
  752 
  753 static HAL_BOOL
  754 ar2413Probe(struct ath_hal *ah)
  755 {
  756         return IS_2413(ah);
  757 }
  758 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);

Cache object: 198eeec9e17b045e50c329a4321cfade


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.