1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD$
20 */
21 #include "opt_ah.h"
22
23 #include "ah.h"
24 #include "ah_internal.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #include "ah_eeprom_v3.h"
31
32 #define AH_5212_2413
33 #include "ar5212/ar5212.ini"
34
35 #define N(a) (sizeof(a)/sizeof(a[0]))
36
37 struct ar2413State {
38 RF_HAL_FUNCS base; /* public state, must be first */
39 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
40
41 uint32_t Bank1Data[N(ar5212Bank1_2413)];
42 uint32_t Bank2Data[N(ar5212Bank2_2413)];
43 uint32_t Bank3Data[N(ar5212Bank3_2413)];
44 uint32_t Bank6Data[N(ar5212Bank6_2413)];
45 uint32_t Bank7Data[N(ar5212Bank7_2413)];
46
47 /*
48 * Private state for reduced stack usage.
49 */
50 /* filled out Vpd table for all pdGains (chanL) */
51 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
52 [MAX_PWR_RANGE_IN_HALF_DB];
53 /* filled out Vpd table for all pdGains (chanR) */
54 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
55 [MAX_PWR_RANGE_IN_HALF_DB];
56 /* filled out Vpd table for all pdGains (interpolated) */
57 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
58 [MAX_PWR_RANGE_IN_HALF_DB];
59 };
60 #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal)
61
62 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
63 uint32_t numBits, uint32_t firstBit, uint32_t column);
64
65 static void
66 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
67 int writes)
68 {
69 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
70 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
71 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
72 }
73
74 /*
75 * Take the MHz channel value and set the Channel value
76 *
77 * ASSUMES: Writes enabled to analog bus
78 */
79 static HAL_BOOL
80 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
81 {
82 uint16_t freq = ath_hal_gethwchannel(ah, chan);
83 uint32_t channelSel = 0;
84 uint32_t bModeSynth = 0;
85 uint32_t aModeRefSel = 0;
86 uint32_t reg32 = 0;
87
88 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
89
90 if (freq < 4800) {
91 uint32_t txctl;
92
93 if (((freq - 2192) % 5) == 0) {
94 channelSel = ((freq - 672) * 2 - 3040)/10;
95 bModeSynth = 0;
96 } else if (((freq - 2224) % 5) == 0) {
97 channelSel = ((freq - 704) * 2 - 3040) / 10;
98 bModeSynth = 1;
99 } else {
100 HALDEBUG(ah, HAL_DEBUG_ANY,
101 "%s: invalid channel %u MHz\n",
102 __func__, freq);
103 return AH_FALSE;
104 }
105
106 channelSel = (channelSel << 2) & 0xff;
107 channelSel = ath_hal_reverseBits(channelSel, 8);
108
109 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110 if (freq == 2484) {
111 /* Enable channel spreading for channel 14 */
112 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114 } else {
115 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117 }
118 } else if (((freq % 5) == 2) && (freq <= 5435)) {
119 freq = freq - 2; /* Align to even 5MHz raster */
120 channelSel = ath_hal_reverseBits(
121 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
122 aModeRefSel = ath_hal_reverseBits(0, 2);
123 } else if ((freq % 20) == 0 && freq >= 5120) {
124 channelSel = ath_hal_reverseBits(
125 ((freq - 4800) / 20 << 2), 8);
126 aModeRefSel = ath_hal_reverseBits(3, 2);
127 } else if ((freq % 10) == 0) {
128 channelSel = ath_hal_reverseBits(
129 ((freq - 4800) / 10 << 1), 8);
130 aModeRefSel = ath_hal_reverseBits(2, 2);
131 } else if ((freq % 5) == 0) {
132 channelSel = ath_hal_reverseBits(
133 (freq - 4800) / 5, 8);
134 aModeRefSel = ath_hal_reverseBits(1, 2);
135 } else {
136 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
137 __func__, freq);
138 return AH_FALSE;
139 }
140
141 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
142 (1 << 12) | 0x1;
143 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
144
145 reg32 >>= 8;
146 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
147
148 AH_PRIVATE(ah)->ah_curchan = chan;
149
150 return AH_TRUE;
151 }
152
153 /*
154 * Reads EEPROM header info from device structure and programs
155 * all rf registers
156 *
157 * REQUIRES: Access to the analog rf device
158 */
159 static HAL_BOOL
160 ar2413SetRfRegs(struct ath_hal *ah,
161 const struct ieee80211_channel *chan,
162 uint16_t modesIndex, uint16_t *rfXpdGain)
163 {
164 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
165 int i; \
166 for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \
167 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
168 } while (0)
169 struct ath_hal_5212 *ahp = AH5212(ah);
170 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
171 uint16_t ob2GHz = 0, db2GHz = 0;
172 struct ar2413State *priv = AR2413(ah);
173 int regWrites = 0;
174
175 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
176 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
177
178 HALASSERT(priv);
179
180 /* Setup rf parameters */
181 if (IEEE80211_IS_CHAN_B(chan)) {
182 ob2GHz = ee->ee_obFor24;
183 db2GHz = ee->ee_dbFor24;
184 } else {
185 ob2GHz = ee->ee_obFor24g;
186 db2GHz = ee->ee_dbFor24g;
187 }
188
189 /* Bank 1 Write */
190 RF_BANK_SETUP(priv, 1, 1);
191
192 /* Bank 2 Write */
193 RF_BANK_SETUP(priv, 2, modesIndex);
194
195 /* Bank 3 Write */
196 RF_BANK_SETUP(priv, 3, modesIndex);
197
198 /* Bank 6 Write */
199 RF_BANK_SETUP(priv, 6, modesIndex);
200
201 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0);
202 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0);
203
204 /* Bank 7 Setup */
205 RF_BANK_SETUP(priv, 7, modesIndex);
206
207 /* Write Analog registers */
208 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
209 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
210 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
211 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
212 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
213
214 /* Now that we have reprogrammed rfgain value, clear the flag. */
215 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
216
217 return AH_TRUE;
218 #undef RF_BANK_SETUP
219 }
220
221 /*
222 * Return a reference to the requested RF Bank.
223 */
224 static uint32_t *
225 ar2413GetRfBank(struct ath_hal *ah, int bank)
226 {
227 struct ar2413State *priv = AR2413(ah);
228
229 HALASSERT(priv != AH_NULL);
230 switch (bank) {
231 case 1: return priv->Bank1Data;
232 case 2: return priv->Bank2Data;
233 case 3: return priv->Bank3Data;
234 case 6: return priv->Bank6Data;
235 case 7: return priv->Bank7Data;
236 }
237 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
238 __func__, bank);
239 return AH_NULL;
240 }
241
242 /*
243 * Return indices surrounding the value in sorted integer lists.
244 *
245 * NB: the input list is assumed to be sorted in ascending order
246 */
247 static void
248 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
249 uint32_t *vlo, uint32_t *vhi)
250 {
251 int16_t target = v;
252 const uint16_t *ep = lp+listSize;
253 const uint16_t *tp;
254
255 /*
256 * Check first and last elements for out-of-bounds conditions.
257 */
258 if (target < lp[0]) {
259 *vlo = *vhi = 0;
260 return;
261 }
262 if (target >= ep[-1]) {
263 *vlo = *vhi = listSize - 1;
264 return;
265 }
266
267 /* look for value being near or between 2 values in list */
268 for (tp = lp; tp < ep; tp++) {
269 /*
270 * If value is close to the current value of the list
271 * then target is not between values, it is one of the values
272 */
273 if (*tp == target) {
274 *vlo = *vhi = tp - (const uint16_t *) lp;
275 return;
276 }
277 /*
278 * Look for value being between current value and next value
279 * if so return these 2 values
280 */
281 if (target < tp[1]) {
282 *vlo = tp - (const uint16_t *) lp;
283 *vhi = *vlo + 1;
284 return;
285 }
286 }
287 }
288
289 /*
290 * Fill the Vpdlist for indices Pmax-Pmin
291 */
292 static HAL_BOOL
293 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
294 const int16_t *pwrList, const uint16_t *VpdList,
295 uint16_t numIntercepts, uint16_t retVpdList[][64])
296 {
297 uint16_t ii, jj, kk;
298 int16_t currPwr = (int16_t)(2*Pmin);
299 /* since Pmin is pwr*2 and pwrList is 4*pwr */
300 uint32_t idxL, idxR;
301
302 ii = 0;
303 jj = 0;
304
305 if (numIntercepts < 2)
306 return AH_FALSE;
307
308 while (ii <= (uint16_t)(Pmax - Pmin)) {
309 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310 numIntercepts, &(idxL), &(idxR));
311 if (idxR < 1)
312 idxR = 1; /* extrapolate below */
313 if (idxL == (uint32_t)(numIntercepts - 1))
314 idxL = numIntercepts - 2; /* extrapolate above */
315 if (pwrList[idxL] == pwrList[idxR])
316 kk = VpdList[idxL];
317 else
318 kk = (uint16_t)
319 (((currPwr - pwrList[idxL])*VpdList[idxR]+
320 (pwrList[idxR] - currPwr)*VpdList[idxL])/
321 (pwrList[idxR] - pwrList[idxL]));
322 retVpdList[pdGainIdx][ii] = kk;
323 ii++;
324 currPwr += 2; /* half dB steps */
325 }
326
327 return AH_TRUE;
328 }
329
330 /*
331 * Returns interpolated or the scaled up interpolated value
332 */
333 static int16_t
334 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335 int16_t targetLeft, int16_t targetRight)
336 {
337 int16_t rv;
338
339 if (srcRight != srcLeft) {
340 rv = ((target - srcLeft)*targetRight +
341 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
342 } else {
343 rv = targetLeft;
344 }
345 return rv;
346 }
347
348 /*
349 * Uses the data points read from EEPROM to reconstruct the pdadc power table
350 * Called by ar2413SetPowerTable()
351 */
352 static int
353 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354 const RAW_DATA_STRUCT_2413 *pRawDataset,
355 uint16_t pdGainOverlap_t2,
356 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
357 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
358 {
359 struct ar2413State *priv = AR2413(ah);
360 #define VpdTable_L priv->vpdTable_L
361 #define VpdTable_R priv->vpdTable_R
362 #define VpdTable_I priv->vpdTable_I
363 uint32_t ii, jj, kk;
364 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
365 uint32_t idxL, idxR;
366 uint32_t numPdGainsUsed = 0;
367 /*
368 * If desired to support -ve power levels in future, just
369 * change pwr_I_0 to signed 5-bits.
370 */
371 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
372 /* to accommodate -ve power levels later on. */
373 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
374 /* to accommodate -ve power levels later on */
375 uint16_t numVpd = 0;
376 uint16_t Vpd_step;
377 int16_t tmpVal ;
378 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
379
380 /* Get upper lower index */
381 GetLowerUpperIndex(channel, pRawDataset->pChannels,
382 pRawDataset->numChannels, &(idxL), &(idxR));
383
384 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
385 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
386 /* work backwards 'cause highest pdGain for lowest power */
387 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
388 if (numVpd > 0) {
389 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
390 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
391 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
392 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
393 }
394 Pmin_t2[numPdGainsUsed] = (int16_t)
395 (Pmin_t2[numPdGainsUsed] / 2);
396 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
397 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
398 Pmax_t2[numPdGainsUsed] =
399 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
400 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
401 ar2413FillVpdTable(
402 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
403 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
404 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
405 );
406 ar2413FillVpdTable(
407 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
408 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
409 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
410 );
411 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
412 VpdTable_I[numPdGainsUsed][kk] =
413 interpolate_signed(
414 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
415 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
416 }
417 /* fill VpdTable_I for this pdGain */
418 numPdGainsUsed++;
419 }
420 /* if this pdGain is used */
421 }
422
423 *pMinCalPower = Pmin_t2[0];
424 kk = 0; /* index for the final table */
425 for (ii = 0; ii < numPdGainsUsed; ii++) {
426 if (ii == (numPdGainsUsed - 1))
427 pPdGainBoundaries[ii] = Pmax_t2[ii] +
428 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
429 else
430 pPdGainBoundaries[ii] = (uint16_t)
431 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
432 if (pPdGainBoundaries[ii] > 63) {
433 HALDEBUG(ah, HAL_DEBUG_ANY,
434 "%s: clamp pPdGainBoundaries[%d] %d\n",
435 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
436 pPdGainBoundaries[ii] = 63;
437 }
438
439 /* Find starting index for this pdGain */
440 if (ii == 0)
441 ss = 0; /* for the first pdGain, start from index 0 */
442 else
443 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
444 pdGainOverlap_t2;
445 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
446 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
447 /*
448 *-ve ss indicates need to extrapolate data below for this pdGain
449 */
450 while (ss < 0) {
451 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
452 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
453 ss++;
454 }
455
456 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
457 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
458 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
459
460 while (ss < (int16_t)maxIndex)
461 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
462
463 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
464 VpdTable_I[ii][sizeCurrVpdTable-2]);
465 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
466 /*
467 * for last gain, pdGainBoundary == Pmax_t2, so will
468 * have to extrapolate
469 */
470 if (tgtIndex > maxIndex) { /* need to extrapolate above */
471 while(ss < (int16_t)tgtIndex) {
472 tmpVal = (uint16_t)
473 (VpdTable_I[ii][sizeCurrVpdTable-1] +
474 (ss-maxIndex)*Vpd_step);
475 pPDADCValues[kk++] = (tmpVal > 127) ?
476 127 : tmpVal;
477 ss++;
478 }
479 } /* extrapolated above */
480 } /* for all pdGainUsed */
481
482 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
483 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
484 ii++;
485 }
486 while (kk < 128) {
487 pPDADCValues[kk] = pPDADCValues[kk-1];
488 kk++;
489 }
490
491 return numPdGainsUsed;
492 #undef VpdTable_L
493 #undef VpdTable_R
494 #undef VpdTable_I
495 }
496
497 static HAL_BOOL
498 ar2413SetPowerTable(struct ath_hal *ah,
499 int16_t *minPower, int16_t *maxPower,
500 const struct ieee80211_channel *chan,
501 uint16_t *rfXpdGain)
502 {
503 uint16_t freq = ath_hal_gethwchannel(ah, chan);
504 struct ath_hal_5212 *ahp = AH5212(ah);
505 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
506 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
507 uint16_t pdGainOverlap_t2;
508 int16_t minCalPower2413_t2;
509 uint16_t *pdadcValues = ahp->ah_pcdacTable;
510 uint16_t gainBoundaries[4];
511 uint32_t reg32, regoffset;
512 int i, numPdGainsUsed;
513 #ifndef AH_USE_INIPDGAIN
514 uint32_t tpcrg1;
515 #endif
516
517 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
518 __func__, freq, chan->ic_flags);
519
520 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
521 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
522 else if (IEEE80211_IS_CHAN_B(chan))
523 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
524 else {
525 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
526 return AH_FALSE;
527 }
528
529 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
530 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
531
532 numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
533 freq, pRawDataset, pdGainOverlap_t2,
534 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
535 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
536
537 #ifdef AH_USE_INIPDGAIN
538 /*
539 * Use pd_gains curve from eeprom; Atheros always uses
540 * the default curve from the ini file but some vendors
541 * (e.g. Zcomax) want to override this curve and not
542 * honoring their settings results in tx power 5dBm low.
543 */
544 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
545 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
546 #else
547 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
548 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
549 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
550 switch (numPdGainsUsed) {
551 case 3:
552 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
553 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
554 /* fall thru... */
555 case 2:
556 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
557 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
558 /* fall thru... */
559 case 1:
560 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
561 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
562 break;
563 }
564 #ifdef AH_DEBUG
565 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
566 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
567 "pd_gains (default 0x%x, calculated 0x%x)\n",
568 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
569 #endif
570 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
571 #endif
572
573 /*
574 * Note the pdadc table may not start at 0 dBm power, could be
575 * negative or greater than 0. Need to offset the power
576 * values by the amount of minPower for griffin
577 */
578 if (minCalPower2413_t2 != 0)
579 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
580 else
581 ahp->ah_txPowerIndexOffset = 0;
582
583 /* Finally, write the power values into the baseband power table */
584 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
585 for (i = 0; i < 32; i++) {
586 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
587 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
588 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
589 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
590 OS_REG_WRITE(ah, regoffset, reg32);
591 regoffset += 4;
592 }
593
594 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
595 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
596 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
597 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
598 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
599 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
600
601 return AH_TRUE;
602 }
603
604 static int16_t
605 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
606 {
607 uint32_t ii,jj;
608 uint16_t Pmin=0,numVpd;
609
610 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
611 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
612 /* work backwards 'cause highest pdGain for lowest power */
613 numVpd = data->pDataPerPDGain[jj].numVpd;
614 if (numVpd > 0) {
615 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
616 return(Pmin);
617 }
618 }
619 return(Pmin);
620 }
621
622 static int16_t
623 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
624 {
625 uint32_t ii;
626 uint16_t Pmax=0,numVpd;
627
628 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
629 /* work forwards cuase lowest pdGain for highest power */
630 numVpd = data->pDataPerPDGain[ii].numVpd;
631 if (numVpd > 0) {
632 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
633 return(Pmax);
634 }
635 }
636 return(Pmax);
637 }
638
639 static HAL_BOOL
640 ar2413GetChannelMaxMinPower(struct ath_hal *ah,
641 const struct ieee80211_channel *chan,
642 int16_t *maxPow, int16_t *minPow)
643 {
644 uint16_t freq = chan->ic_freq; /* NB: never mapped */
645 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
646 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
647 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
648 uint16_t numChannels;
649 int totalD,totalF, totalMin,last, i;
650
651 *maxPow = 0;
652
653 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
654 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
655 else if (IEEE80211_IS_CHAN_B(chan))
656 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
657 else
658 return(AH_FALSE);
659
660 numChannels = pRawDataset->numChannels;
661 data = pRawDataset->pDataPerChannel;
662
663 /* Make sure the channel is in the range of the TP values
664 * (freq piers)
665 */
666 if (numChannels < 1)
667 return(AH_FALSE);
668
669 if ((freq < data[0].channelValue) ||
670 (freq > data[numChannels-1].channelValue)) {
671 if (freq < data[0].channelValue) {
672 *maxPow = ar2413GetMaxPower(ah, &data[0]);
673 *minPow = ar2413GetMinPower(ah, &data[0]);
674 return(AH_TRUE);
675 } else {
676 *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
677 *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
678 return(AH_TRUE);
679 }
680 }
681
682 /* Linearly interpolate the power value now */
683 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
684 last = i++);
685 totalD = data[i].channelValue - data[last].channelValue;
686 if (totalD > 0) {
687 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
688 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
689 ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
690 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
691 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
692 ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
693 return(AH_TRUE);
694 } else {
695 if (freq == data[i].channelValue) {
696 *maxPow = ar2413GetMaxPower(ah, &data[i]);
697 *minPow = ar2413GetMinPower(ah, &data[i]);
698 return(AH_TRUE);
699 } else
700 return(AH_FALSE);
701 }
702 }
703
704 /*
705 * Free memory for analog bank scratch buffers
706 */
707 static void
708 ar2413RfDetach(struct ath_hal *ah)
709 {
710 struct ath_hal_5212 *ahp = AH5212(ah);
711
712 HALASSERT(ahp->ah_rfHal != AH_NULL);
713 ath_hal_free(ahp->ah_rfHal);
714 ahp->ah_rfHal = AH_NULL;
715 }
716
717 /*
718 * Allocate memory for analog bank scratch buffers
719 * Scratch Buffer will be reinitialized every reset so no need to zero now
720 */
721 static HAL_BOOL
722 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
723 {
724 struct ath_hal_5212 *ahp = AH5212(ah);
725 struct ar2413State *priv;
726
727 HALASSERT(ah->ah_magic == AR5212_MAGIC);
728
729 HALASSERT(ahp->ah_rfHal == AH_NULL);
730 priv = ath_hal_malloc(sizeof(struct ar2413State));
731 if (priv == AH_NULL) {
732 HALDEBUG(ah, HAL_DEBUG_ANY,
733 "%s: cannot allocate private state\n", __func__);
734 *status = HAL_ENOMEM; /* XXX */
735 return AH_FALSE;
736 }
737 priv->base.rfDetach = ar2413RfDetach;
738 priv->base.writeRegs = ar2413WriteRegs;
739 priv->base.getRfBank = ar2413GetRfBank;
740 priv->base.setChannel = ar2413SetChannel;
741 priv->base.setRfRegs = ar2413SetRfRegs;
742 priv->base.setPowerTable = ar2413SetPowerTable;
743 priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
744 priv->base.getNfAdjust = ar5212GetNfAdjust;
745
746 ahp->ah_pcdacTable = priv->pcdacTable;
747 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
748 ahp->ah_rfHal = &priv->base;
749
750 return AH_TRUE;
751 }
752
753 static HAL_BOOL
754 ar2413Probe(struct ath_hal *ah)
755 {
756 return IS_2413(ah);
757 }
758 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
Cache object: 198eeec9e17b045e50c329a4321cfade
|