The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5212/ar2425.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 
   26 #include "ar5212/ar5212.h"
   27 #include "ar5212/ar5212reg.h"
   28 #include "ar5212/ar5212phy.h"
   29 
   30 #include "ah_eeprom_v3.h"
   31 
   32 #define AH_5212_2425
   33 #define AH_5212_2417
   34 #include "ar5212/ar5212.ini"
   35 
   36 #define N(a)    (sizeof(a)/sizeof(a[0]))
   37 
   38 struct ar2425State {
   39         RF_HAL_FUNCS    base;           /* public state, must be first */
   40         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
   41 
   42         uint32_t        Bank1Data[N(ar5212Bank1_2425)];
   43         uint32_t        Bank2Data[N(ar5212Bank2_2425)];
   44         uint32_t        Bank3Data[N(ar5212Bank3_2425)];
   45         uint32_t        Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
   46         uint32_t        Bank7Data[N(ar5212Bank7_2425)];
   47 };
   48 #define AR2425(ah)      ((struct ar2425State *) AH5212(ah)->ah_rfHal)
   49 
   50 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
   51                 uint32_t numBits, uint32_t firstBit, uint32_t column);
   52 
   53 static void
   54 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
   55         int writes)
   56 {
   57         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
   58         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
   59         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
   60 #if 0
   61         /*
   62          * for SWAN similar to Condor
   63          * Bit 0 enables link to go to L1 when MAC goes to sleep.
   64          * Bit 3 enables the loop back the link down to reset.
   65          */
   66         if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
   67                 OS_REG_WRITE(ah, AR_PCIE_PMC,
   68                     AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
   69         }
   70         /*
   71          * for Standby issue in Swan/Condor.
   72          * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
   73          *      before last Training Sequence 2 (TS2)
   74          * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
   75          *      Power Reset along with PCI Reset
   76          */
   77         OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
   78 #endif
   79 }
   80 
   81 /*
   82  * Take the MHz channel value and set the Channel value
   83  *
   84  * ASSUMES: Writes enabled to analog bus
   85  */
   86 static HAL_BOOL
   87 ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
   88 {
   89         uint16_t freq = ath_hal_gethwchannel(ah, chan);
   90         uint32_t channelSel  = 0;
   91         uint32_t bModeSynth  = 0;
   92         uint32_t aModeRefSel = 0;
   93         uint32_t reg32       = 0;
   94 
   95         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
   96 
   97         if (freq < 4800) {
   98                 uint32_t txctl;
   99 
  100         channelSel = freq - 2272;
  101         channelSel = ath_hal_reverseBits(channelSel, 8);
  102 
  103                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  104         if (freq == 2484) {
  105                         // Enable channel spreading for channel 14
  106                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  107                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  108                 } else {
  109                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  110                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
  111                 }
  112 
  113         } else if (((freq % 5) == 2) && (freq <= 5435)) {
  114                 freq = freq - 2; /* Align to even 5MHz raster */
  115                 channelSel = ath_hal_reverseBits(
  116                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
  117                 aModeRefSel = ath_hal_reverseBits(0, 2);
  118         } else if ((freq % 20) == 0 && freq >= 5120) {
  119                 channelSel = ath_hal_reverseBits(
  120                         ((freq - 4800) / 20 << 2), 8);
  121                 aModeRefSel = ath_hal_reverseBits(1, 2);
  122         } else if ((freq % 10) == 0) {
  123                 channelSel = ath_hal_reverseBits(
  124                         ((freq - 4800) / 10 << 1), 8);
  125                 aModeRefSel = ath_hal_reverseBits(1, 2);
  126         } else if ((freq % 5) == 0) {
  127                 channelSel = ath_hal_reverseBits(
  128                         (freq - 4800) / 5, 8);
  129                 aModeRefSel = ath_hal_reverseBits(1, 2);
  130         } else {
  131                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
  132                     __func__, freq);
  133                 return AH_FALSE;
  134         }
  135 
  136         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
  137                         (1 << 12) | 0x1;
  138         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
  139 
  140         reg32 >>= 8;
  141         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
  142 
  143         AH_PRIVATE(ah)->ah_curchan = chan;
  144         return AH_TRUE;
  145 }
  146 
  147 /*
  148  * Reads EEPROM header info from device structure and programs
  149  * all rf registers
  150  *
  151  * REQUIRES: Access to the analog rf device
  152  */
  153 static HAL_BOOL
  154 ar2425SetRfRegs(struct ath_hal *ah,
  155         const struct ieee80211_channel *chan,
  156         uint16_t modesIndex, uint16_t *rfXpdGain)
  157 {
  158 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
  159         int i;                                                              \
  160         for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)                     \
  161                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
  162 } while (0)
  163         struct ath_hal_5212 *ahp = AH5212(ah);
  164         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  165         struct ar2425State *priv = AR2425(ah);
  166         uint16_t ob2GHz = 0, db2GHz = 0;
  167         int regWrites = 0;
  168 
  169         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
  170             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
  171 
  172         HALASSERT(priv);
  173 
  174         /* Setup rf parameters */
  175         if (IEEE80211_IS_CHAN_B(chan)) {
  176                 ob2GHz = ee->ee_obFor24;
  177                 db2GHz = ee->ee_dbFor24;
  178         } else {
  179                 ob2GHz = ee->ee_obFor24g;
  180                 db2GHz = ee->ee_dbFor24g;
  181         }
  182 
  183         /* Bank 1 Write */
  184         RF_BANK_SETUP(priv, 1, 1);
  185 
  186         /* Bank 2 Write */
  187         RF_BANK_SETUP(priv, 2, modesIndex);
  188 
  189         /* Bank 3 Write */
  190         RF_BANK_SETUP(priv, 3, modesIndex);
  191 
  192         /* Bank 6 Write */
  193         RF_BANK_SETUP(priv, 6, modesIndex);
  194 
  195         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
  196         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
  197 
  198         /* Bank 7 Setup */
  199         RF_BANK_SETUP(priv, 7, modesIndex);
  200 
  201         /* Write Analog registers */
  202         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
  203         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
  204         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
  205         if (IS_2417(ah)) {
  206                 HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
  207                 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
  208                     regWrites);
  209         } else
  210                 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
  211                     regWrites);
  212         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
  213 
  214         /* Now that we have reprogrammed rfgain value, clear the flag. */
  215         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
  216 
  217         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
  218         return AH_TRUE;
  219 #undef  RF_BANK_SETUP
  220 }
  221 
  222 /*
  223  * Return a reference to the requested RF Bank.
  224  */
  225 static uint32_t *
  226 ar2425GetRfBank(struct ath_hal *ah, int bank)
  227 {
  228         struct ar2425State *priv = AR2425(ah);
  229 
  230         HALASSERT(priv != AH_NULL);
  231         switch (bank) {
  232         case 1: return priv->Bank1Data;
  233         case 2: return priv->Bank2Data;
  234         case 3: return priv->Bank3Data;
  235         case 6: return priv->Bank6Data;
  236         case 7: return priv->Bank7Data;
  237         }
  238         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
  239             __func__, bank);
  240         return AH_NULL;
  241 }
  242 
  243 /*
  244  * Return indices surrounding the value in sorted integer lists.
  245  *
  246  * NB: the input list is assumed to be sorted in ascending order
  247  */
  248 static void
  249 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
  250                           uint32_t *vlo, uint32_t *vhi)
  251 {
  252         int16_t target = v;
  253         const uint16_t *ep = lp+listSize;
  254         const uint16_t *tp;
  255 
  256         /*
  257          * Check first and last elements for out-of-bounds conditions.
  258          */
  259         if (target < lp[0]) {
  260                 *vlo = *vhi = 0;
  261                 return;
  262         }
  263         if (target >= ep[-1]) {
  264                 *vlo = *vhi = listSize - 1;
  265                 return;
  266         }
  267 
  268         /* look for value being near or between 2 values in list */
  269         for (tp = lp; tp < ep; tp++) {
  270                 /*
  271                  * If value is close to the current value of the list
  272                  * then target is not between values, it is one of the values
  273                  */
  274                 if (*tp == target) {
  275                         *vlo = *vhi = tp - (const uint16_t *) lp;
  276                         return;
  277                 }
  278                 /*
  279                  * Look for value being between current value and next value
  280                  * if so return these 2 values
  281                  */
  282                 if (target < tp[1]) {
  283                         *vlo = tp - (const uint16_t *) lp;
  284                         *vhi = *vlo + 1;
  285                         return;
  286                 }
  287         }
  288 }
  289 
  290 /*
  291  * Fill the Vpdlist for indices Pmax-Pmin
  292  */
  293 static HAL_BOOL
  294 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
  295                    const int16_t *pwrList, const uint16_t *VpdList,
  296                    uint16_t numIntercepts,
  297                    uint16_t retVpdList[][64])
  298 {
  299         uint16_t ii, jj, kk;
  300         int16_t currPwr = (int16_t)(2*Pmin);
  301         /* since Pmin is pwr*2 and pwrList is 4*pwr */
  302         uint32_t  idxL, idxR;
  303 
  304         ii = 0;
  305         jj = 0;
  306 
  307         if (numIntercepts < 2)
  308                 return AH_FALSE;
  309 
  310         while (ii <= (uint16_t)(Pmax - Pmin)) {
  311                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
  312                                    numIntercepts, &(idxL), &(idxR));
  313                 if (idxR < 1)
  314                         idxR = 1;                       /* extrapolate below */
  315                 if (idxL == (uint32_t)(numIntercepts - 1))
  316                         idxL = numIntercepts - 2;       /* extrapolate above */
  317                 if (pwrList[idxL] == pwrList[idxR])
  318                         kk = VpdList[idxL];
  319                 else
  320                         kk = (uint16_t)
  321                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
  322                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
  323                                  (pwrList[idxR] - pwrList[idxL]));
  324                 retVpdList[pdGainIdx][ii] = kk;
  325                 ii++;
  326                 currPwr += 2;                           /* half dB steps */
  327         }
  328 
  329         return AH_TRUE;
  330 }
  331 
  332 /*
  333  * Returns interpolated or the scaled up interpolated value
  334  */
  335 static int16_t
  336 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
  337         int16_t targetLeft, int16_t targetRight)
  338 {
  339         int16_t rv;
  340 
  341         if (srcRight != srcLeft) {
  342                 rv = ((target - srcLeft)*targetRight +
  343                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
  344         } else {
  345                 rv = targetLeft;
  346         }
  347         return rv;
  348 }
  349 
  350 /*
  351  * Uses the data points read from EEPROM to reconstruct the pdadc power table
  352  * Called by ar2425SetPowerTable()
  353  */
  354 static void 
  355 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
  356                 const RAW_DATA_STRUCT_2413 *pRawDataset,
  357                 uint16_t pdGainOverlap_t2, 
  358                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
  359                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
  360 {
  361     /* Note the items statically allocated below are to reduce stack usage */
  362         uint32_t ii, jj, kk;
  363         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
  364         uint32_t idxL, idxR;
  365         uint32_t numPdGainsUsed = 0;
  366         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
  367         /* filled out Vpd table for all pdGains (chanL) */
  368         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
  369         /* filled out Vpd table for all pdGains (chanR) */
  370         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
  371         /* filled out Vpd table for all pdGains (interpolated) */
  372         /* 
  373          * If desired to support -ve power levels in future, just
  374          * change pwr_I_0 to signed 5-bits.
  375          */
  376         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  377         /* to accommodate -ve power levels later on. */
  378         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  379         /* to accommodate -ve power levels later on */
  380         uint16_t numVpd = 0;
  381         uint16_t Vpd_step;
  382         int16_t tmpVal ; 
  383         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
  384 
  385         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
  386     
  387         /* Get upper lower index */
  388         GetLowerUpperIndex(channel, pRawDataset->pChannels,
  389                                  pRawDataset->numChannels, &(idxL), &(idxR));
  390 
  391         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  392                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  393                 /* work backwards 'cause highest pdGain for lowest power */
  394                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
  395                 if (numVpd > 0) {
  396                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
  397                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
  398                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
  399                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
  400                         }
  401                         Pmin_t2[numPdGainsUsed] = (int16_t)
  402                                 (Pmin_t2[numPdGainsUsed] / 2);
  403                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  404                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
  405                                 Pmax_t2[numPdGainsUsed] = 
  406                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  407                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
  408                         ar2425FillVpdTable(
  409                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  410                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
  411                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
  412                                            );
  413                         ar2425FillVpdTable(
  414                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  415                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
  416                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
  417                                            );
  418                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
  419                                 VpdTable_I[numPdGainsUsed][kk] = 
  420                                         interpolate_signed(
  421                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
  422                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
  423                         }
  424                         /* fill VpdTable_I for this pdGain */
  425                         numPdGainsUsed++;
  426                 }
  427                 /* if this pdGain is used */
  428         }
  429 
  430         *pMinCalPower = Pmin_t2[0];
  431         kk = 0; /* index for the final table */
  432         for (ii = 0; ii < numPdGainsUsed; ii++) {
  433                 if (ii == (numPdGainsUsed - 1))
  434                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
  435                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
  436                 else 
  437                         pPdGainBoundaries[ii] = (uint16_t)
  438                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
  439 
  440                 /* Find starting index for this pdGain */
  441                 if (ii == 0) 
  442                         ss = 0; /* for the first pdGain, start from index 0 */
  443                 else 
  444                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
  445                                 pdGainOverlap_t2;
  446                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
  447                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
  448                 /*
  449                  *-ve ss indicates need to extrapolate data below for this pdGain
  450                  */
  451                 while (ss < 0) {
  452                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
  453                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
  454                         ss++;
  455                 }
  456 
  457                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
  458                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
  459                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
  460 
  461                 while (ss < (int16_t)maxIndex)
  462                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
  463 
  464                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
  465                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
  466                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
  467                 /*
  468                  * for last gain, pdGainBoundary == Pmax_t2, so will 
  469                  * have to extrapolate
  470                  */
  471                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
  472                         while(ss < (int16_t)tgtIndex) {
  473                                 tmpVal = (uint16_t)
  474                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
  475                                          (ss-maxIndex)*Vpd_step);
  476                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
  477                                         127 : tmpVal;
  478                                 ss++;
  479                         }
  480                 }                               /* extrapolated above */
  481         }                                       /* for all pdGainUsed */
  482 
  483         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
  484                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
  485                 ii++;
  486         }
  487         while (kk < 128) {
  488                 pPDADCValues[kk] = pPDADCValues[kk-1];
  489                 kk++;
  490         }
  491 
  492         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
  493 }
  494 
  495 /* Same as 2413 set power table */
  496 static HAL_BOOL
  497 ar2425SetPowerTable(struct ath_hal *ah,
  498         int16_t *minPower, int16_t *maxPower,
  499         const struct ieee80211_channel *chan, 
  500         uint16_t *rfXpdGain)
  501 {
  502         uint16_t freq = ath_hal_gethwchannel(ah, chan);
  503         struct ath_hal_5212 *ahp = AH5212(ah);
  504         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  505         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
  506         uint16_t pdGainOverlap_t2;
  507         int16_t minCalPower2413_t2;
  508         uint16_t *pdadcValues = ahp->ah_pcdacTable;
  509         uint16_t gainBoundaries[4];
  510         uint32_t i, reg32, regoffset;
  511 
  512         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
  513             __func__, freq, chan->ic_flags);
  514 
  515         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  516                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  517         else if (IEEE80211_IS_CHAN_B(chan))
  518                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  519         else {
  520                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
  521                 return AH_FALSE;
  522         }
  523 
  524         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
  525                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
  526     
  527         ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
  528                 pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
  529                 rfXpdGain, pdadcValues);
  530 
  531         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
  532                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
  533 
  534         /*
  535          * Note the pdadc table may not start at 0 dBm power, could be
  536          * negative or greater than 0.  Need to offset the power
  537          * values by the amount of minPower for griffin
  538          */
  539         if (minCalPower2413_t2 != 0)
  540                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
  541         else
  542                 ahp->ah_txPowerIndexOffset = 0;
  543 
  544         /* Finally, write the power values into the baseband power table */
  545         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
  546         for (i = 0; i < 32; i++) {
  547                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
  548                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
  549                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
  550                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
  551                 OS_REG_WRITE(ah, regoffset, reg32);
  552                 regoffset += 4;
  553         }
  554 
  555         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
  556                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
  557                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
  558                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
  559                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
  560                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  561 
  562         return AH_TRUE;
  563 }
  564 
  565 static int16_t
  566 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
  567 {
  568         uint32_t ii,jj;
  569         uint16_t Pmin=0,numVpd;
  570 
  571         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  572                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  573                 /* work backwards 'cause highest pdGain for lowest power */
  574                 numVpd = data->pDataPerPDGain[jj].numVpd;
  575                 if (numVpd > 0) {
  576                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
  577                         return(Pmin);
  578                 }
  579         }
  580         return(Pmin);
  581 }
  582 
  583 static int16_t
  584 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
  585 {
  586         uint32_t ii;
  587         uint16_t Pmax=0,numVpd;
  588 
  589         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  590                 /* work forwards cuase lowest pdGain for highest power */
  591                 numVpd = data->pDataPerPDGain[ii].numVpd;
  592                 if (numVpd > 0) {
  593                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
  594                         return(Pmax);
  595                 }
  596         }
  597         return(Pmax);
  598 }
  599 
  600 static
  601 HAL_BOOL
  602 ar2425GetChannelMaxMinPower(struct ath_hal *ah,
  603         const struct ieee80211_channel *chan,
  604         int16_t *maxPow, int16_t *minPow)
  605 {
  606         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
  607         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  608         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
  609         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
  610         uint16_t numChannels;
  611         int totalD,totalF, totalMin,last, i;
  612 
  613         *maxPow = 0;
  614 
  615         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  616                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  617         else if (IEEE80211_IS_CHAN_B(chan))
  618                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  619         else
  620                 return(AH_FALSE);
  621 
  622         numChannels = pRawDataset->numChannels;
  623         data = pRawDataset->pDataPerChannel;
  624 
  625         /* Make sure the channel is in the range of the TP values 
  626          *  (freq piers)
  627          */
  628         if (numChannels < 1)
  629                 return(AH_FALSE);
  630 
  631         if ((freq < data[0].channelValue) ||
  632             (freq > data[numChannels-1].channelValue)) {
  633                 if (freq < data[0].channelValue) {
  634                         *maxPow = ar2425GetMaxPower(ah, &data[0]);
  635                         *minPow = ar2425GetMinPower(ah, &data[0]);
  636                         return(AH_TRUE);
  637                 } else {
  638                         *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
  639                         *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
  640                         return(AH_TRUE);
  641                 }
  642         }
  643 
  644         /* Linearly interpolate the power value now */
  645         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
  646              last = i++);
  647         totalD = data[i].channelValue - data[last].channelValue;
  648         if (totalD > 0) {
  649                 totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
  650                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
  651                                      ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
  652                 totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
  653                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
  654                                      ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
  655                 return(AH_TRUE);
  656         } else {
  657                 if (freq == data[i].channelValue) {
  658                         *maxPow = ar2425GetMaxPower(ah, &data[i]);
  659                         *minPow = ar2425GetMinPower(ah, &data[i]);
  660                         return(AH_TRUE);
  661                 } else
  662                         return(AH_FALSE);
  663         }
  664 }
  665 
  666 /*
  667  * Free memory for analog bank scratch buffers
  668  */
  669 static void
  670 ar2425RfDetach(struct ath_hal *ah)
  671 {
  672         struct ath_hal_5212 *ahp = AH5212(ah);
  673 
  674         HALASSERT(ahp->ah_rfHal != AH_NULL);
  675         ath_hal_free(ahp->ah_rfHal);
  676         ahp->ah_rfHal = AH_NULL;
  677 }
  678 
  679 /*
  680  * Allocate memory for analog bank scratch buffers
  681  * Scratch Buffer will be reinitialized every reset so no need to zero now
  682  */
  683 static HAL_BOOL
  684 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
  685 {
  686         struct ath_hal_5212 *ahp = AH5212(ah);
  687         struct ar2425State *priv;
  688 
  689         HALASSERT(ah->ah_magic == AR5212_MAGIC);
  690 
  691         HALASSERT(ahp->ah_rfHal == AH_NULL);
  692         priv = ath_hal_malloc(sizeof(struct ar2425State));
  693         if (priv == AH_NULL) {
  694                 HALDEBUG(ah, HAL_DEBUG_ANY,
  695                     "%s: cannot allocate private state\n", __func__);
  696                 *status = HAL_ENOMEM;           /* XXX */
  697                 return AH_FALSE;
  698         }
  699         priv->base.rfDetach             = ar2425RfDetach;
  700         priv->base.writeRegs            = ar2425WriteRegs;
  701         priv->base.getRfBank            = ar2425GetRfBank;
  702         priv->base.setChannel           = ar2425SetChannel;
  703         priv->base.setRfRegs            = ar2425SetRfRegs;
  704         priv->base.setPowerTable        = ar2425SetPowerTable;
  705         priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
  706         priv->base.getNfAdjust          = ar5212GetNfAdjust;
  707 
  708         ahp->ah_pcdacTable = priv->pcdacTable;
  709         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
  710         ahp->ah_rfHal = &priv->base;
  711 
  712         return AH_TRUE;
  713 }
  714 
  715 static HAL_BOOL
  716 ar2425Probe(struct ath_hal *ah)
  717 {
  718         return IS_2425(ah) || IS_2417(ah);
  719 }
  720 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);

Cache object: 412c06d9e5dece545fbf04a7a9a4eac8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.