The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5212/ar5111.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 
   26 #include "ah_eeprom_v3.h"
   27 
   28 #include "ar5212/ar5212.h"
   29 #include "ar5212/ar5212reg.h"
   30 #include "ar5212/ar5212phy.h"
   31 
   32 #define AH_5212_5111
   33 #include "ar5212/ar5212.ini"
   34 
   35 #define N(a)    (sizeof(a)/sizeof(a[0]))
   36 
   37 struct ar5111State {
   38         RF_HAL_FUNCS    base;           /* public state, must be first */
   39         uint16_t        pcdacTable[PWR_TABLE_SIZE];
   40 
   41         uint32_t        Bank0Data[N(ar5212Bank0_5111)];
   42         uint32_t        Bank1Data[N(ar5212Bank1_5111)];
   43         uint32_t        Bank2Data[N(ar5212Bank2_5111)];
   44         uint32_t        Bank3Data[N(ar5212Bank3_5111)];
   45         uint32_t        Bank6Data[N(ar5212Bank6_5111)];
   46         uint32_t        Bank7Data[N(ar5212Bank7_5111)];
   47 };
   48 #define AR5111(ah)      ((struct ar5111State *) AH5212(ah)->ah_rfHal)
   49 
   50 static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
   51                 const PCDACS_EEPROM *pSrcStruct);
   52 static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
   53                 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
   54 static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
   55                 const PCDACS_EEPROM *pSrcStruct,
   56                 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
   57 
   58 extern void ar5212GetLowerUpperValues(uint16_t value,
   59                 const uint16_t *pList, uint16_t listSize,
   60                 uint16_t *pLowerValue, uint16_t *pUpperValue);
   61 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
   62                 uint32_t numBits, uint32_t firstBit, uint32_t column);
   63 
   64 static void
   65 ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
   66         int writes)
   67 {
   68         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
   69         HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
   70         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
   71 }
   72 
   73 /*
   74  * Take the MHz channel value and set the Channel value
   75  *
   76  * ASSUMES: Writes enabled to analog bus
   77  */
   78 static HAL_BOOL
   79 ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
   80 {
   81 #define CI_2GHZ_INDEX_CORRECTION 19
   82         uint16_t freq = ath_hal_gethwchannel(ah, chan);
   83         uint32_t refClk, reg32, data2111;
   84         int16_t chan5111, chanIEEE;
   85 
   86         /*
   87          * Structure to hold 11b tuning information for 5111/2111
   88          * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
   89          */
   90         typedef struct {
   91                 uint32_t        refClkSel;      /* reference clock, 1 for 16 MHz */
   92                 uint32_t        channelSelect;  /* P[7:4]S[3:0] bits */
   93                 uint16_t        channel5111;    /* 11a channel for 5111 */
   94         } CHAN_INFO_2GHZ;
   95 
   96         static const CHAN_INFO_2GHZ chan2GHzData[] = {
   97                 { 1, 0x46, 96  },       /* 2312 -19 */
   98                 { 1, 0x46, 97  },       /* 2317 -18 */
   99                 { 1, 0x46, 98  },       /* 2322 -17 */
  100                 { 1, 0x46, 99  },       /* 2327 -16 */
  101                 { 1, 0x46, 100 },       /* 2332 -15 */
  102                 { 1, 0x46, 101 },       /* 2337 -14 */
  103                 { 1, 0x46, 102 },       /* 2342 -13 */
  104                 { 1, 0x46, 103 },       /* 2347 -12 */
  105                 { 1, 0x46, 104 },       /* 2352 -11 */
  106                 { 1, 0x46, 105 },       /* 2357 -10 */
  107                 { 1, 0x46, 106 },       /* 2362  -9 */
  108                 { 1, 0x46, 107 },       /* 2367  -8 */
  109                 { 1, 0x46, 108 },       /* 2372  -7 */
  110                 /* index -6 to 0 are pad to make this a nolookup table */
  111                 { 1, 0x46, 116 },       /*       -6 */
  112                 { 1, 0x46, 116 },       /*       -5 */
  113                 { 1, 0x46, 116 },       /*       -4 */
  114                 { 1, 0x46, 116 },       /*       -3 */
  115                 { 1, 0x46, 116 },       /*       -2 */
  116                 { 1, 0x46, 116 },       /*       -1 */
  117                 { 1, 0x46, 116 },       /*        0 */
  118                 { 1, 0x46, 116 },       /* 2412   1 */
  119                 { 1, 0x46, 117 },       /* 2417   2 */
  120                 { 1, 0x46, 118 },       /* 2422   3 */
  121                 { 1, 0x46, 119 },       /* 2427   4 */
  122                 { 1, 0x46, 120 },       /* 2432   5 */
  123                 { 1, 0x46, 121 },       /* 2437   6 */
  124                 { 1, 0x46, 122 },       /* 2442   7 */
  125                 { 1, 0x46, 123 },       /* 2447   8 */
  126                 { 1, 0x46, 124 },       /* 2452   9 */
  127                 { 1, 0x46, 125 },       /* 2457  10 */
  128                 { 1, 0x46, 126 },       /* 2462  11 */
  129                 { 1, 0x46, 127 },       /* 2467  12 */
  130                 { 1, 0x46, 128 },       /* 2472  13 */
  131                 { 1, 0x44, 124 },       /* 2484  14 */
  132                 { 1, 0x46, 136 },       /* 2512  15 */
  133                 { 1, 0x46, 140 },       /* 2532  16 */
  134                 { 1, 0x46, 144 },       /* 2552  17 */
  135                 { 1, 0x46, 148 },       /* 2572  18 */
  136                 { 1, 0x46, 152 },       /* 2592  19 */
  137                 { 1, 0x46, 156 },       /* 2612  20 */
  138                 { 1, 0x46, 160 },       /* 2632  21 */
  139                 { 1, 0x46, 164 },       /* 2652  22 */
  140                 { 1, 0x46, 168 },       /* 2672  23 */
  141                 { 1, 0x46, 172 },       /* 2692  24 */
  142                 { 1, 0x46, 176 },       /* 2712  25 */
  143                 { 1, 0x46, 180 }        /* 2732  26 */
  144         };
  145 
  146         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
  147 
  148         chanIEEE = chan->ic_ieee;
  149         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
  150                 const CHAN_INFO_2GHZ* ci =
  151                         &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
  152                 uint32_t txctl;
  153 
  154                 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
  155                                 << 5)
  156                          | (ci->refClkSel << 4);
  157                 chan5111 = ci->channel5111;
  158                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  159                 if (freq == 2484) {
  160                         /* Enable channel spreading for channel 14 */
  161                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  162                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  163                 } else {
  164                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  165                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
  166                 }
  167         } else {
  168                 chan5111 = chanIEEE;    /* no conversion needed */
  169                 data2111 = 0;
  170         }
  171 
  172         /* Rest of the code is common for 5 GHz and 2.4 GHz. */
  173         if (chan5111 >= 145 || (chan5111 & 0x1)) {
  174                 reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
  175                 refClk = 1;
  176         } else {
  177                 reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
  178                 refClk = 0;
  179         }
  180 
  181         reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
  182         OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
  183         reg32 >>= 8;
  184         OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
  185 
  186         AH_PRIVATE(ah)->ah_curchan = chan;
  187         return AH_TRUE;
  188 #undef CI_2GHZ_INDEX_CORRECTION
  189 }
  190 
  191 /*
  192  * Return a reference to the requested RF Bank.
  193  */
  194 static uint32_t *
  195 ar5111GetRfBank(struct ath_hal *ah, int bank)
  196 {
  197         struct ar5111State *priv = AR5111(ah);
  198 
  199         HALASSERT(priv != AH_NULL);
  200         switch (bank) {
  201         case 0: return priv->Bank0Data;
  202         case 1: return priv->Bank1Data;
  203         case 2: return priv->Bank2Data;
  204         case 3: return priv->Bank3Data;
  205         case 6: return priv->Bank6Data;
  206         case 7: return priv->Bank7Data;
  207         }
  208         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
  209             __func__, bank);
  210         return AH_NULL;
  211 }
  212 
  213 /*
  214  * Reads EEPROM header info from device structure and programs
  215  * all rf registers
  216  *
  217  * REQUIRES: Access to the analog rf device
  218  */
  219 static HAL_BOOL
  220 ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
  221         uint16_t modesIndex, uint16_t *rfXpdGain)
  222 {
  223         uint16_t freq = ath_hal_gethwchannel(ah, chan);
  224         struct ath_hal_5212 *ahp = AH5212(ah);
  225         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  226         uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
  227         uint16_t tempOB, tempDB;
  228         uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
  229         int i, regWrites = 0;
  230 
  231         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
  232             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
  233 
  234         /* Setup rf parameters */
  235         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
  236         case IEEE80211_CHAN_A:
  237                 if (4000 < freq && freq < 5260) {
  238                         tempOB = ee->ee_ob1;
  239                         tempDB = ee->ee_db1;
  240                 } else if (5260 <= freq && freq < 5500) {
  241                         tempOB = ee->ee_ob2;
  242                         tempDB = ee->ee_db2;
  243                 } else if (5500 <= freq && freq < 5725) {
  244                         tempOB = ee->ee_ob3;
  245                         tempDB = ee->ee_db3;
  246                 } else if (freq >= 5725) {
  247                         tempOB = ee->ee_ob4;
  248                         tempDB = ee->ee_db4;
  249                 } else {
  250                         /* XXX when does this happen??? */
  251                         tempOB = tempDB = 0;
  252                 }
  253                 ob2GHz = db2GHz = 0;
  254 
  255                 rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
  256                 rfPloSel = ee->ee_xpd[headerInfo11A];
  257                 rfPwdXpd = !ee->ee_xpd[headerInfo11A];
  258                 gainI = ee->ee_gainI[headerInfo11A];
  259                 break;
  260         case IEEE80211_CHAN_B:
  261                 tempOB = ee->ee_obFor24;
  262                 tempDB = ee->ee_dbFor24;
  263                 ob2GHz = ee->ee_ob2GHz[0];
  264                 db2GHz = ee->ee_db2GHz[0];
  265 
  266                 rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
  267                 rfPloSel = ee->ee_xpd[headerInfo11B];
  268                 rfPwdXpd = !ee->ee_xpd[headerInfo11B];
  269                 gainI = ee->ee_gainI[headerInfo11B];
  270                 break;
  271         case IEEE80211_CHAN_G:
  272         case IEEE80211_CHAN_PUREG:      /* NB: really 108G */
  273                 tempOB = ee->ee_obFor24g;
  274                 tempDB = ee->ee_dbFor24g;
  275                 ob2GHz = ee->ee_ob2GHz[1];
  276                 db2GHz = ee->ee_db2GHz[1];
  277 
  278                 rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
  279                 rfPloSel = ee->ee_xpd[headerInfo11G];
  280                 rfPwdXpd = !ee->ee_xpd[headerInfo11G];
  281                 gainI = ee->ee_gainI[headerInfo11G];
  282                 break;
  283         default:
  284                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
  285                     __func__, chan->ic_flags);
  286                 return AH_FALSE;
  287         }
  288 
  289         HALASSERT(1 <= tempOB && tempOB <= 5);
  290         HALASSERT(1 <= tempDB && tempDB <= 5);
  291 
  292         /* Bank 0 Write */
  293         for (i = 0; i < N(ar5212Bank0_5111); i++)
  294                 rfReg[i] = ar5212Bank0_5111[i][modesIndex];
  295         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
  296                 ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
  297                 ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
  298         }
  299         HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
  300 
  301         /* Bank 1 Write */
  302         HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
  303 
  304         /* Bank 2 Write */
  305         HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
  306 
  307         /* Bank 3 Write */
  308         HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
  309 
  310         /* Bank 6 Write */
  311         for (i = 0; i < N(ar5212Bank6_5111); i++)
  312                 rfReg[i] = ar5212Bank6_5111[i][modesIndex];
  313         if (IEEE80211_IS_CHAN_A(chan)) {        /* NB: CHANNEL_A | CHANNEL_T */
  314                 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
  315                 ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
  316         }
  317         ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
  318         ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
  319         /* Set 5212 OB & DB */
  320         ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
  321         ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
  322         HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
  323 
  324         /* Bank 7 Write */
  325         for (i = 0; i < N(ar5212Bank7_5111); i++)
  326                 rfReg[i] = ar5212Bank7_5111[i][modesIndex];
  327         ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);   
  328         ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);   
  329 
  330         if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
  331                 uint32_t        rfWaitI, rfWaitS, rfMaxTime;
  332 
  333                 rfWaitS = 0x1f;
  334                 rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x10 : 0x1f;
  335                 rfMaxTime = 3;
  336                 ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
  337                 ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
  338                 ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
  339         }
  340 
  341         HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
  342 
  343         /* Now that we have reprogrammed rfgain value, clear the flag. */
  344         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
  345 
  346         return AH_TRUE;
  347 }
  348 
  349 /*
  350  * Returns interpolated or the scaled up interpolated value
  351  */
  352 static uint16_t
  353 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
  354         uint16_t targetLeft, uint16_t targetRight)
  355 {
  356         uint16_t rv;
  357         int16_t lRatio;
  358 
  359         /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
  360         if ((targetLeft * targetRight) == 0)
  361                 return 0;
  362 
  363         if (srcRight != srcLeft) {
  364                 /*
  365                  * Note the ratio always need to be scaled,
  366                  * since it will be a fraction.
  367                  */
  368                 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
  369                 if (lRatio < 0) {
  370                     /* Return as Left target if value would be negative */
  371                     rv = targetLeft;
  372                 } else if (lRatio > EEP_SCALE) {
  373                     /* Return as Right target if Ratio is greater than 100% (SCALE) */
  374                     rv = targetRight;
  375                 } else {
  376                         rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
  377                                         targetLeft) / EEP_SCALE;
  378                 }
  379         } else {
  380                 rv = targetLeft;
  381         }
  382         return rv;
  383 }
  384 
  385 /*
  386  * Read the transmit power levels from the structures taken from EEPROM
  387  * Interpolate read transmit power values for this channel
  388  * Organize the transmit power values into a table for writing into the hardware
  389  */
  390 static HAL_BOOL
  391 ar5111SetPowerTable(struct ath_hal *ah,
  392         int16_t *pMinPower, int16_t *pMaxPower,
  393         const struct ieee80211_channel *chan,
  394         uint16_t *rfXpdGain)
  395 {
  396         uint16_t freq = ath_hal_gethwchannel(ah, chan);
  397         struct ath_hal_5212 *ahp = AH5212(ah);
  398         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  399         FULL_PCDAC_STRUCT pcdacStruct;
  400         int i, j;
  401 
  402         uint16_t     *pPcdacValues;
  403         int16_t      *pScaledUpDbm;
  404         int16_t      minScaledPwr;
  405         int16_t      maxScaledPwr;
  406         int16_t      pwr;
  407         uint16_t     pcdacMin = 0;
  408         uint16_t     pcdacMax = PCDAC_STOP;
  409         uint16_t     pcdacTableIndex;
  410         uint16_t     scaledPcdac;
  411         PCDACS_EEPROM *pSrcStruct;
  412         PCDACS_EEPROM eepromPcdacs;
  413 
  414         /* setup the pcdac struct to point to the correct info, based on mode */
  415         switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
  416         case IEEE80211_CHAN_A:
  417         case IEEE80211_CHAN_ST:
  418                 eepromPcdacs.numChannels     = ee->ee_numChannels11a;
  419                 eepromPcdacs.pChannelList    = ee->ee_channels11a;
  420                 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
  421                 break;
  422         case IEEE80211_CHAN_B:
  423                 eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
  424                 eepromPcdacs.pChannelList    = ee->ee_channels11b;
  425                 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
  426                 break;
  427         case IEEE80211_CHAN_G:
  428         case IEEE80211_CHAN_108G:
  429                 eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
  430                 eepromPcdacs.pChannelList    = ee->ee_channels11g;
  431                 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
  432                 break;
  433         default:
  434                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
  435                     __func__, chan->ic_flags);
  436                 return AH_FALSE;
  437         }
  438 
  439         pSrcStruct = &eepromPcdacs;
  440 
  441         OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
  442         pPcdacValues = pcdacStruct.PcdacValues;
  443         pScaledUpDbm = pcdacStruct.PwrValues;
  444 
  445         /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
  446         for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
  447                 pPcdacValues[j] = i;
  448 
  449         pcdacStruct.numPcdacValues = j;
  450         pcdacStruct.pcdacMin = PCDAC_START;
  451         pcdacStruct.pcdacMax = PCDAC_STOP;
  452 
  453         /* Fill out the power values for this channel */
  454         for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
  455                 pScaledUpDbm[j] = ar5212GetScaledPower(freq,
  456                         pPcdacValues[j], pSrcStruct);
  457 
  458         /* Now scale the pcdac values to fit in the 64 entry power table */
  459         minScaledPwr = pScaledUpDbm[0];
  460         maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
  461 
  462         /* find minimum and make monotonic */
  463         for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
  464                 if (minScaledPwr >= pScaledUpDbm[j]) {
  465                         minScaledPwr = pScaledUpDbm[j];
  466                         pcdacMin = j;
  467                 }
  468                 /*
  469                  * Make the full_hsh monotonically increasing otherwise
  470                  * interpolation algorithm will get fooled gotta start
  471                  * working from the top, hence i = 63 - j.
  472                  */
  473                 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
  474                 if (i == 0)
  475                         break;
  476                 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
  477                         /*
  478                          * It could be a glitch, so make the power for
  479                          * this pcdac the same as the power from the
  480                          * next highest pcdac.
  481                          */
  482                         pScaledUpDbm[i - 1] = pScaledUpDbm[i];
  483                 }
  484         }
  485 
  486         for (j = 0; j < pcdacStruct.numPcdacValues; j++)
  487                 if (maxScaledPwr < pScaledUpDbm[j]) {
  488                         maxScaledPwr = pScaledUpDbm[j];
  489                         pcdacMax = j;
  490                 }
  491 
  492         /* Find the first power level with a pcdac */
  493         pwr = (uint16_t)(PWR_STEP *
  494                 ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
  495 
  496         /* Write all the first pcdac entries based off the pcdacMin */
  497         pcdacTableIndex = 0;
  498         for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
  499                 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
  500                 ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
  501         }
  502 
  503         i = 0;
  504         while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
  505             pcdacTableIndex < PWR_TABLE_SIZE) {
  506                 pwr += PWR_STEP;
  507                 /* stop if dbM > max_power_possible */
  508                 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
  509                        (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
  510                         i++;
  511                 /* scale by 2 and add 1 to enable round up or down as needed */
  512                 scaledPcdac = (uint16_t)(interpolate(pwr,
  513                         pScaledUpDbm[i], pScaledUpDbm[i + 1],
  514                         (uint16_t)(pPcdacValues[i] * 2),
  515                         (uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
  516 
  517                 HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
  518                 ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
  519                 if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
  520                         ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
  521                 pcdacTableIndex++;
  522         }
  523 
  524         /* Write all the last pcdac entries based off the last valid pcdac */
  525         while (pcdacTableIndex < PWR_TABLE_SIZE) {
  526                 ahp->ah_pcdacTable[pcdacTableIndex] =
  527                         ahp->ah_pcdacTable[pcdacTableIndex - 1];
  528                 pcdacTableIndex++;
  529         }
  530 
  531         /* No power table adjustment for 5111 */
  532         ahp->ah_txPowerIndexOffset = 0;
  533 
  534         return AH_TRUE;
  535 }
  536 
  537 /*
  538  * Get or interpolate the pcdac value from the calibrated data.
  539  */
  540 static uint16_t
  541 ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
  542         const PCDACS_EEPROM *pSrcStruct)
  543 {
  544         uint16_t powerValue;
  545         uint16_t lFreq, rFreq;          /* left and right frequency values */
  546         uint16_t llPcdac, ulPcdac;      /* lower and upper left pcdac values */
  547         uint16_t lrPcdac, urPcdac;      /* lower and upper right pcdac values */
  548         uint16_t lPwr, uPwr;            /* lower and upper temp pwr values */
  549         uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
  550 
  551         if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
  552                 /* value was copied from srcStruct */
  553                 return powerValue;
  554         }
  555 
  556         ar5212GetLowerUpperValues(channel,
  557                 pSrcStruct->pChannelList, pSrcStruct->numChannels,
  558                 &lFreq, &rFreq);
  559         ar5212GetLowerUpperPcdacs(pcdacValue,
  560                 lFreq, pSrcStruct, &llPcdac, &ulPcdac);
  561         ar5212GetLowerUpperPcdacs(pcdacValue,
  562                 rFreq, pSrcStruct, &lrPcdac, &urPcdac);
  563 
  564         /* get the power index for the pcdac value */
  565         ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
  566         ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
  567         lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
  568 
  569         ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
  570         ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
  571         rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
  572 
  573         return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
  574 }
  575 
  576 /*
  577  * Find the value from the calibrated source data struct
  578  */
  579 static HAL_BOOL
  580 ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
  581         const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
  582 {
  583         const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
  584         int i;
  585 
  586         for (i = 0; i < pSrcStruct->numChannels; i++ ) {
  587                 if (pChannelData->channelValue == channel) {
  588                         const uint16_t* pPcdac = pChannelData->PcdacValues;
  589                         int j;
  590 
  591                         for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
  592                                 if (*pPcdac == pcdacValue) {
  593                                         *powerValue = pChannelData->PwrValues[j];
  594                                         return AH_TRUE;
  595                                 }
  596                                 pPcdac++;
  597                         }
  598                 }
  599                 pChannelData++;
  600         }
  601         return AH_FALSE;
  602 }
  603 
  604 /*
  605  * Get the upper and lower pcdac given the channel and the pcdac
  606  * used in the search
  607  */
  608 static void
  609 ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
  610         const PCDACS_EEPROM *pSrcStruct,
  611         uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
  612 {
  613         const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
  614         int i;
  615 
  616         /* Find the channel information */
  617         for (i = 0; i < pSrcStruct->numChannels; i++) {
  618                 if (pChannelData->channelValue == channel)
  619                         break;
  620                 pChannelData++;
  621         }
  622         ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
  623                       pChannelData->numPcdacValues,
  624                       pLowerPcdac, pUpperPcdac);
  625 }
  626 
  627 static HAL_BOOL
  628 ar5111GetChannelMaxMinPower(struct ath_hal *ah,
  629         const struct ieee80211_channel *chan,
  630         int16_t *maxPow, int16_t *minPow)
  631 {
  632         /* XXX - Get 5111 power limits! */
  633         /* NB: caller will cope */
  634         return AH_FALSE;
  635 }
  636 
  637 /*
  638  * Adjust NF based on statistical values for 5GHz frequencies.
  639  */
  640 static int16_t
  641 ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
  642 {
  643         static const struct {
  644                 uint16_t freqLow;
  645                 int16_t   adjust;
  646         } adjust5111[] = {
  647                 { 5790, 6 },    /* NB: ordered high -> low */
  648                 { 5730, 4 },
  649                 { 5690, 3 },
  650                 { 5660, 2 },
  651                 { 5610, 1 },
  652                 { 5530, 0 },
  653                 { 5450, 0 },
  654                 { 5379, 1 },
  655                 { 5209, 3 },
  656                 { 3000, 5 },
  657                 {    0, 0 },
  658         };
  659         int i;
  660 
  661         for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
  662                 ;
  663         return adjust5111[i].adjust;
  664 }
  665 
  666 /*
  667  * Free memory for analog bank scratch buffers
  668  */
  669 static void
  670 ar5111RfDetach(struct ath_hal *ah)
  671 {
  672         struct ath_hal_5212 *ahp = AH5212(ah);
  673 
  674         HALASSERT(ahp->ah_rfHal != AH_NULL);
  675         ath_hal_free(ahp->ah_rfHal);
  676         ahp->ah_rfHal = AH_NULL;
  677 }
  678 
  679 /*
  680  * Allocate memory for analog bank scratch buffers
  681  * Scratch Buffer will be reinitialized every reset so no need to zero now
  682  */
  683 static HAL_BOOL
  684 ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
  685 {
  686         struct ath_hal_5212 *ahp = AH5212(ah);
  687         struct ar5111State *priv;
  688 
  689         HALASSERT(ah->ah_magic == AR5212_MAGIC);
  690 
  691         HALASSERT(ahp->ah_rfHal == AH_NULL);
  692         priv = ath_hal_malloc(sizeof(struct ar5111State));
  693         if (priv == AH_NULL) {
  694                 HALDEBUG(ah, HAL_DEBUG_ANY,
  695                     "%s: cannot allocate private state\n", __func__);
  696                 *status = HAL_ENOMEM;           /* XXX */
  697                 return AH_FALSE;
  698         }
  699         priv->base.rfDetach             = ar5111RfDetach;
  700         priv->base.writeRegs            = ar5111WriteRegs;
  701         priv->base.getRfBank            = ar5111GetRfBank;
  702         priv->base.setChannel           = ar5111SetChannel;
  703         priv->base.setRfRegs            = ar5111SetRfRegs;
  704         priv->base.setPowerTable        = ar5111SetPowerTable;
  705         priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
  706         priv->base.getNfAdjust          = ar5111GetNfAdjust;
  707 
  708         ahp->ah_pcdacTable = priv->pcdacTable;
  709         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
  710         ahp->ah_rfHal = &priv->base;
  711 
  712         return AH_TRUE;
  713 }
  714 
  715 static HAL_BOOL
  716 ar5111Probe(struct ath_hal *ah)
  717 {
  718         return IS_RAD5111(ah);
  719 }
  720 AH_RF(RF5111, ar5111Probe, ar5111RfAttach);

Cache object: b4b289d15bbf6d911bd28dcb60fb2ceb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.