The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5212/ar5212_keycache.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 
   26 #include "ar5212/ar5212.h"
   27 #include "ar5212/ar5212reg.h"
   28 #include "ar5212/ar5212desc.h"
   29 
   30 /*
   31  * Note: The key cache hardware requires that each double-word
   32  * pair be written in even/odd order (since the destination is
   33  * a 64-bit register).  Don't reorder the writes in this code
   34  * w/o considering this!
   35  */
   36 #define KEY_XOR                 0xaa
   37 
   38 #define IS_MIC_ENABLED(ah) \
   39         (AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
   40 
   41 /*
   42  * Return the size of the hardware key cache.
   43  */
   44 uint32_t
   45 ar5212GetKeyCacheSize(struct ath_hal *ah)
   46 {
   47         return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
   48 }
   49 
   50 /*
   51  * Return true if the specific key cache entry is valid.
   52  */
   53 HAL_BOOL
   54 ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
   55 {
   56         if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
   57                 uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
   58                 if (val & AR_KEYTABLE_VALID)
   59                         return AH_TRUE;
   60         }
   61         return AH_FALSE;
   62 }
   63 
   64 /*
   65  * Clear the specified key cache entry and any associated MIC entry.
   66  */
   67 HAL_BOOL
   68 ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
   69 {
   70         uint32_t keyType;
   71 
   72         if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
   73                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
   74                     __func__, entry);
   75                 return AH_FALSE;
   76         }
   77         keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
   78 
   79         /* XXX why not clear key type/valid bit first? */
   80         OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
   81         OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
   82         OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
   83         OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
   84         OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
   85         OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
   86         OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
   87         OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
   88         if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
   89                 uint16_t micentry = entry+64;   /* MIC goes at slot+64 */
   90 
   91                 HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
   92                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
   93                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
   94                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
   95                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
   96                 /* NB: key type and MAC are known to be ok */
   97         }
   98         return AH_TRUE;
   99 }
  100 
  101 /*
  102  * Sets the mac part of the specified key cache entry (and any
  103  * associated MIC entry) and mark them valid.
  104  *
  105  * Since mac[0] is shifted off and not presented to the hardware,
  106  * it does double duty as a "don't use for unicast, use for multicast
  107  * matching" flag. This interface should later be extended to
  108  * explicitly do that rather than overloading a bit in the MAC
  109  * address.
  110  */
  111 HAL_BOOL
  112 ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
  113 {
  114         uint32_t macHi, macLo;
  115         uint32_t unicast_flag = AR_KEYTABLE_VALID;
  116 
  117         if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
  118                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
  119                     __func__, entry);
  120                 return AH_FALSE;
  121         }
  122         /*
  123          * Set MAC address -- shifted right by 1.  MacLo is
  124          * the 4 MSBs, and MacHi is the 2 LSBs.
  125          */
  126         if (mac != AH_NULL) {
  127                 /*
  128                  * AR_KEYTABLE_VALID indicates that the address is a unicast
  129                  * address, which must match the transmitter address for
  130                  * decrypting frames.
  131                  * Not setting this bit allows the hardware to use the key
  132                  * for multicast frame decryption.
  133                  */
  134                 if (mac[0] & 0x01)
  135                         unicast_flag = 0;
  136 
  137                 macHi = (mac[5] << 8) | mac[4];
  138                 macLo = (mac[3] << 24)| (mac[2] << 16)
  139                       | (mac[1] << 8) | mac[0];
  140                 macLo >>= 1;
  141                 macLo |= (macHi & 1) << 31;     /* carry */
  142                 macHi >>= 1;
  143         } else {
  144                 macLo = macHi = 0;
  145         }
  146         OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  147         OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
  148         return AH_TRUE;
  149 }
  150 
  151 /*
  152  * Sets the contents of the specified key cache entry
  153  * and any associated MIC entry.
  154  */
  155 HAL_BOOL
  156 ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
  157                        const HAL_KEYVAL *k, const uint8_t *mac,
  158                        int xorKey)
  159 {
  160         struct ath_hal_5212 *ahp = AH5212(ah);
  161         const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
  162         uint32_t key0, key1, key2, key3, key4;
  163         uint32_t keyType;
  164         uint32_t xorMask = xorKey ?
  165                 (KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
  166 
  167         if (entry >= pCap->halKeyCacheSize) {
  168                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
  169                     __func__, entry);
  170                 return AH_FALSE;
  171         }
  172         switch (k->kv_type) {
  173         case HAL_CIPHER_AES_OCB:
  174                 keyType = AR_KEYTABLE_TYPE_AES;
  175                 break;
  176         case HAL_CIPHER_AES_CCM:
  177                 if (!pCap->halCipherAesCcmSupport) {
  178                         HALDEBUG(ah, HAL_DEBUG_ANY,
  179                             "%s: AES-CCM not supported by mac rev 0x%x\n",
  180                             __func__, AH_PRIVATE(ah)->ah_macRev);
  181                         return AH_FALSE;
  182                 }
  183                 keyType = AR_KEYTABLE_TYPE_CCM;
  184                 break;
  185         case HAL_CIPHER_TKIP:
  186                 keyType = AR_KEYTABLE_TYPE_TKIP;
  187                 if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
  188                         HALDEBUG(ah, HAL_DEBUG_ANY,
  189                             "%s: entry %u inappropriate for TKIP\n",
  190                             __func__, entry);
  191                         return AH_FALSE;
  192                 }
  193                 break;
  194         case HAL_CIPHER_WEP:
  195                 if (k->kv_len < 40 / NBBY) {
  196                         HALDEBUG(ah, HAL_DEBUG_ANY,
  197                             "%s: WEP key length %u too small\n",
  198                             __func__, k->kv_len);
  199                         return AH_FALSE;
  200                 }
  201                 if (k->kv_len <= 40 / NBBY)
  202                         keyType = AR_KEYTABLE_TYPE_40;
  203                 else if (k->kv_len <= 104 / NBBY)
  204                         keyType = AR_KEYTABLE_TYPE_104;
  205                 else
  206                         keyType = AR_KEYTABLE_TYPE_128;
  207                 break;
  208         case HAL_CIPHER_CLR:
  209                 keyType = AR_KEYTABLE_TYPE_CLR;
  210                 break;
  211         default:
  212                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
  213                     __func__, k->kv_type);
  214                 return AH_FALSE;
  215         }
  216 
  217         key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
  218         key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
  219         key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
  220         key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
  221         key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
  222         if (k->kv_len <= 104 / NBBY)
  223                 key4 &= 0xff;
  224 
  225         /*
  226          * Note: key cache hardware requires that each double-word
  227          * pair be written in even/odd order (since the destination is
  228          * a 64-bit register).  Don't reorder these writes w/o
  229          * considering this!
  230          */
  231         if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
  232                 uint16_t micentry = entry+64;   /* MIC goes at slot+64 */
  233                 uint32_t mic0, mic1, mic2, mic3, mic4;
  234 
  235                 /*
  236                  * Invalidate the encrypt/decrypt key until the MIC
  237                  * key is installed so pending rx frames will fail
  238                  * with decrypt errors rather than a MIC error.
  239                  */
  240                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  241                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  242                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  243                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  244                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  245                 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  246                 (void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
  247 
  248                 /*
  249                  * Write MIC entry according to new or old key layout.
  250                  * The MISC_MODE register is assumed already set so
  251                  * these writes will be handled properly (happens on
  252                  * attach and at every reset).
  253                  */
  254                 /* RX mic */
  255                 mic0 = LE_READ_4(k->kv_mic+0);
  256                 mic2 = LE_READ_4(k->kv_mic+4);
  257                 if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
  258                         /*
  259                          * Both RX and TX mic values can be combined into
  260                          * one cache slot entry:
  261                          *  8*N + 800         31:0    RX Michael key 0
  262                          *  8*N + 804         15:0    TX Michael key 0 [31:16]
  263                          *  8*N + 808         31:0    RX Michael key 1
  264                          *  8*N + 80C         15:0    TX Michael key 0 [15:0]
  265                          *  8*N + 810         31:0    TX Michael key 1
  266                          *  8*N + 814         15:0    reserved
  267                          *  8*N + 818         31:0    reserved
  268                          *  8*N + 81C         14:0    reserved
  269                          *                    15      key valid == 0
  270                          */
  271                         /* TX mic */
  272                         mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
  273                         mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
  274                         mic4 = LE_READ_4(k->kv_txmic+4);
  275                 } else {
  276                         mic1 = mic3 = mic4 = 0;
  277                 }
  278                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  279                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  280                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  281                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  282                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  283                 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  284                         AR_KEYTABLE_TYPE_CLR);
  285                 /* NB: MIC key is not marked valid and has no MAC address */
  286                 OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  287                 OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  288 
  289                 /* correct intentionally corrupted key */
  290                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  291                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  292         } else {
  293                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  294                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  295                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  296                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  297                 OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  298                 OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  299 
  300                 (void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
  301         }
  302         return AH_TRUE;
  303 }

Cache object: 1eecd9139a9bde427a0ba3f1a99a0d55


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.