1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD$
20 */
21 #include "opt_ah.h"
22
23 #include "ah.h"
24 #include "ah_internal.h"
25 #include "ah_devid.h"
26
27 #include "ar5212/ar5212.h"
28 #include "ar5212/ar5212reg.h"
29 #include "ar5212/ar5212phy.h"
30
31 #include "ah_eeprom_v3.h"
32
33 /* Additional Time delay to wait after activiting the Base band */
34 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
35 #define PLL_SETTLE_DELAY 300 /* 300 usec */
36
37 static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
38 /* NB: public for 5312 use */
39 HAL_BOOL ar5212IsSpurChannel(struct ath_hal *,
40 const struct ieee80211_channel *);
41 HAL_BOOL ar5212ChannelChange(struct ath_hal *,
42 const struct ieee80211_channel *);
43 int16_t ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
44 HAL_BOOL ar5212SetBoardValues(struct ath_hal *,
45 const struct ieee80211_channel *);
46 void ar5212SetDeltaSlope(struct ath_hal *,
47 const struct ieee80211_channel *);
48 HAL_BOOL ar5212SetTransmitPower(struct ath_hal *ah,
49 const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
50 static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
51 const struct ieee80211_channel *, int16_t tpcScaleReduction,
52 int16_t powerLimit,
53 HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
54 static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
55 static void ar5212GetTargetPowers(struct ath_hal *,
56 const struct ieee80211_channel *,
57 const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
58 TRGT_POWER_INFO *pNewPower);
59 static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
60 const RD_EDGES_POWER *pRdEdgesPower);
61 void ar5212SetRateDurationTable(struct ath_hal *,
62 const struct ieee80211_channel *);
63 void ar5212SetIFSTiming(struct ath_hal *,
64 const struct ieee80211_channel *);
65
66 /* NB: public for RF backend use */
67 void ar5212GetLowerUpperValues(uint16_t value,
68 uint16_t *pList, uint16_t listSize,
69 uint16_t *pLowerValue, uint16_t *pUpperValue);
70 void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
71 uint32_t numBits, uint32_t firstBit, uint32_t column);
72
73 static int
74 write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
75 HAL_BOOL bChannelChange, int writes)
76 {
77 #define IS_NO_RESET_TIMER_ADDR(x) \
78 ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
79 (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
80 #define V(r, c) (ia)->data[((r)*(ia)->cols) + (c)]
81 int r;
82
83 /* Write Common Array Parameters */
84 for (r = 0; r < ia->rows; r++) {
85 uint32_t reg = V(r, 0);
86 /* XXX timer/beacon setup registers? */
87 /* On channel change, don't reset the PCU registers */
88 if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
89 OS_REG_WRITE(ah, reg, V(r, 1));
90 DMA_YIELD(writes);
91 }
92 }
93 return writes;
94 #undef IS_NO_RESET_TIMER_ADDR
95 #undef V
96 }
97
98 #define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
99
100 /*
101 * XXX NDIS 5.x code had MAX_RESET_WAIT set to 2000 for AP code
102 * and 10 for Client code
103 */
104 #define MAX_RESET_WAIT 10
105
106 #define TX_QUEUEPEND_CHECK 1
107 #define TX_ENABLE_CHECK 2
108 #define RX_ENABLE_CHECK 4
109
110 /*
111 * Places the device in and out of reset and then places sane
112 * values in the registers based on EEPROM config, initialization
113 * vectors (as determined by the mode), and station configuration
114 *
115 * bChannelChange is used to preserve DMA/PCU registers across
116 * a HW Reset during channel change.
117 */
118 HAL_BOOL
119 ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
120 struct ieee80211_channel *chan,
121 HAL_BOOL bChannelChange,
122 HAL_RESET_TYPE resetType,
123 HAL_STATUS *status)
124 {
125 #define N(a) (sizeof (a) / sizeof (a[0]))
126 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
127 struct ath_hal_5212 *ahp = AH5212(ah);
128 HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
129 const HAL_EEPROM *ee;
130 uint32_t softLedCfg, softLedState;
131 uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
132 uint32_t macStaId1, synthDelay, txFrm2TxDStart;
133 uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
134 int16_t cckOfdmPwrDelta = 0;
135 u_int modesIndex, freqIndex;
136 HAL_STATUS ecode;
137 int i, regWrites;
138 uint32_t testReg, powerVal;
139 int8_t twiceAntennaGain, twiceAntennaReduction;
140 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
141 HAL_BOOL isBmode = AH_FALSE;
142
143 HALASSERT(ah->ah_magic == AR5212_MAGIC);
144 ee = AH_PRIVATE(ah)->ah_eeprom;
145
146 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
147
148 /* Bring out of sleep mode */
149 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
150 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
151 __func__);
152 FAIL(HAL_EIO);
153 }
154
155 /*
156 * Map public channel to private.
157 */
158 ichan = ath_hal_checkchannel(ah, chan);
159 if (ichan == AH_NULL)
160 FAIL(HAL_EINVAL);
161 switch (opmode) {
162 case HAL_M_STA:
163 case HAL_M_IBSS:
164 case HAL_M_HOSTAP:
165 case HAL_M_MONITOR:
166 break;
167 default:
168 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
169 __func__, opmode);
170 FAIL(HAL_EINVAL);
171 break;
172 }
173 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
174
175 SAVE_CCK(ah, chan, isBmode);
176
177 /* Preserve certain DMA hardware registers on a channel change */
178 if (bChannelChange) {
179 /*
180 * On Venice, the TSF is almost preserved across a reset;
181 * it requires doubling writes to the RESET_TSF
182 * bit in the AR_BEACON register; it also has the quirk
183 * of the TSF going back in time on the station (station
184 * latches onto the last beacon's tsf during a reset 50%
185 * of the times); the latter is not a problem for adhoc
186 * stations since as long as the TSF is behind, it will
187 * get resynchronized on receiving the next beacon; the
188 * TSF going backwards in time could be a problem for the
189 * sleep operation (supported on infrastructure stations
190 * only) - the best and most general fix for this situation
191 * is to resynchronize the various sleep/beacon timers on
192 * the receipt of the next beacon i.e. when the TSF itself
193 * gets resynchronized to the AP's TSF - power save is
194 * needed to be temporarily disabled until that time
195 *
196 * Need to save the sequence number to restore it after
197 * the reset!
198 */
199 saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
200 } else
201 saveFrameSeqCount = 0; /* NB: silence compiler */
202
203 /* Blank the channel survey statistics */
204 ath_hal_survey_clear(ah);
205
206 #if 0
207 /*
208 * XXX disable for now; this appears to sometimes cause OFDM
209 * XXX timing error floods when ani is enabled and bg scanning
210 * XXX kicks in
211 */
212 /* If the channel change is across the same mode - perform a fast channel change */
213 if (IS_2413(ah) || IS_5413(ah)) {
214 /*
215 * Fast channel change can only be used when:
216 * -channel change requested - so it's not the initial reset.
217 * -it's not a change to the current channel -
218 * often called when switching modes on a channel
219 * -the modes of the previous and requested channel are the
220 * same
221 * XXX opmode shouldn't change either?
222 */
223 if (bChannelChange &&
224 (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
225 (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
226 ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
227 (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
228 if (ar5212ChannelChange(ah, chan)) {
229 /* If ChannelChange completed - skip the rest of reset */
230 /* XXX ani? */
231 goto done;
232 }
233 }
234 }
235 #endif
236 /*
237 * Preserve the antenna on a channel change
238 */
239 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
240 if (saveDefAntenna == 0) /* XXX magic constants */
241 saveDefAntenna = 1;
242
243 /* Save hardware flag before chip reset clears the register */
244 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
245 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
246
247 /* Save led state from pci config register */
248 saveLedState = OS_REG_READ(ah, AR_PCICFG) &
249 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
250 AR_PCICFG_LEDSLOW);
251 softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
252 softLedState = OS_REG_READ(ah, AR_GPIODO);
253
254 ar5212RestoreClock(ah, opmode); /* move to refclk operation */
255
256 /*
257 * Adjust gain parameters before reset if
258 * there's an outstanding gain updated.
259 */
260 (void) ar5212GetRfgain(ah);
261
262 if (!ar5212ChipReset(ah, chan)) {
263 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
264 FAIL(HAL_EIO);
265 }
266
267 /* Setup the indices for the next set of register array writes */
268 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
269 freqIndex = 2;
270 if (IEEE80211_IS_CHAN_108G(chan))
271 modesIndex = 5;
272 else if (IEEE80211_IS_CHAN_G(chan))
273 modesIndex = 4;
274 else if (IEEE80211_IS_CHAN_B(chan))
275 modesIndex = 3;
276 else {
277 HALDEBUG(ah, HAL_DEBUG_ANY,
278 "%s: invalid channel %u/0x%x\n",
279 __func__, chan->ic_freq, chan->ic_flags);
280 FAIL(HAL_EINVAL);
281 }
282 } else {
283 freqIndex = 1;
284 if (IEEE80211_IS_CHAN_TURBO(chan))
285 modesIndex = 2;
286 else if (IEEE80211_IS_CHAN_A(chan))
287 modesIndex = 1;
288 else {
289 HALDEBUG(ah, HAL_DEBUG_ANY,
290 "%s: invalid channel %u/0x%x\n",
291 __func__, chan->ic_freq, chan->ic_flags);
292 FAIL(HAL_EINVAL);
293 }
294 }
295
296 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
297
298 /* Set correct Baseband to analog shift setting to access analog chips. */
299 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
300
301 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
302 regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
303 regWrites);
304 #ifdef AH_RXCFG_SDMAMW_4BYTES
305 /*
306 * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
307 * use 4 instead. Enabling it on all platforms would hurt performance,
308 * so we only enable it on the ones that are affected by it.
309 */
310 OS_REG_WRITE(ah, AR_RXCFG, 0);
311 #endif
312 ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
313
314 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
315
316 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
317 ar5212SetIFSTiming(ah, chan);
318 if (IS_5413(ah)) {
319 /*
320 * Force window_length for 1/2 and 1/4 rate channels,
321 * the ini file sets this to zero otherwise.
322 */
323 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
324 AR_PHY_FRAME_CTL_WINLEN, 3);
325 }
326 }
327
328 /* Overwrite INI values for revised chipsets */
329 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
330 /* ADC_CTL */
331 OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
332 SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
333 SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
334 AR_PHY_ADC_CTL_OFF_PWDDAC |
335 AR_PHY_ADC_CTL_OFF_PWDADC);
336
337 /* TX_PWR_ADJ */
338 if (ichan->channel == 2484) {
339 cckOfdmPwrDelta = SCALE_OC_DELTA(
340 ee->ee_cckOfdmPwrDelta -
341 ee->ee_scaledCh14FilterCckDelta);
342 } else {
343 cckOfdmPwrDelta = SCALE_OC_DELTA(
344 ee->ee_cckOfdmPwrDelta);
345 }
346
347 if (IEEE80211_IS_CHAN_G(chan)) {
348 OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
349 SM((ee->ee_cckOfdmPwrDelta*-1),
350 AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
351 SM((cckOfdmPwrDelta*-1),
352 AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
353 } else {
354 OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
355 }
356
357 /* Add barker RSSI thresh enable as disabled */
358 OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
359 AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
360 OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
361 AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
362
363 /* Set the mute mask to the correct default */
364 OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
365 }
366
367 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
368 /* Clear reg to alllow RX_CLEAR line debug */
369 OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
370 }
371 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
372 #ifdef notyet
373 /* Enable burst prefetch for the data queues */
374 OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
375 /* Enable double-buffering */
376 OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
377 #endif
378 }
379
380 /* Set ADC/DAC select values */
381 OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
382
383 if (IS_5413(ah) || IS_2417(ah)) {
384 uint32_t newReg = 1;
385 if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
386 newReg = 0;
387 /* As it's a clock changing register, only write when the value needs to be changed */
388 if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
389 OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
390 }
391
392 /* Setup the transmit power values. */
393 if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
394 HALDEBUG(ah, HAL_DEBUG_ANY,
395 "%s: error init'ing transmit power\n", __func__);
396 FAIL(HAL_EIO);
397 }
398
399 /* Write the analog registers */
400 if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
401 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
402 __func__);
403 FAIL(HAL_EIO);
404 }
405
406 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
407 if (IEEE80211_IS_CHAN_OFDM(chan)) {
408 if (IS_5413(ah) ||
409 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
410 ar5212SetSpurMitigation(ah, chan);
411 ar5212SetDeltaSlope(ah, chan);
412 }
413
414 /* Setup board specific options for EEPROM version 3 */
415 if (!ar5212SetBoardValues(ah, chan)) {
416 HALDEBUG(ah, HAL_DEBUG_ANY,
417 "%s: error setting board options\n", __func__);
418 FAIL(HAL_EIO);
419 }
420
421 /* Restore certain DMA hardware registers on a channel change */
422 if (bChannelChange)
423 OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
424
425 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
426
427 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
428 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
429 | macStaId1
430 | AR_STA_ID1_RTS_USE_DEF
431 | ahp->ah_staId1Defaults
432 );
433 ar5212SetOperatingMode(ah, opmode);
434
435 /* Set Venice BSSID mask according to current state */
436 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
437 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
438
439 /* Restore previous led state */
440 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
441
442 /* Restore soft Led state to GPIO */
443 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
444 OS_REG_WRITE(ah, AR_GPIODO, softLedState);
445
446 /* Restore previous antenna */
447 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
448
449 /* then our BSSID and associate id */
450 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
451 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
452 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
453
454 /* Restore bmiss rssi & count thresholds */
455 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
456
457 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
458
459 if (!ar5212SetChannel(ah, chan))
460 FAIL(HAL_EIO);
461
462 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
463
464 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
465
466 ar5212SetRateDurationTable(ah, chan);
467
468 /* Set Tx frame start to tx data start delay */
469 if (IS_RAD5112_ANY(ah) &&
470 (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
471 txFrm2TxDStart =
472 IEEE80211_IS_CHAN_HALF(chan) ?
473 TX_FRAME_D_START_HALF_RATE:
474 TX_FRAME_D_START_QUARTER_RATE;
475 OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
476 AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
477 }
478
479 /*
480 * Setup fast diversity.
481 * Fast diversity can be enabled or disabled via regadd.txt.
482 * Default is enabled.
483 * For reference,
484 * Disable: reg val
485 * 0x00009860 0x00009d18 (if 11a / 11g, else no change)
486 * 0x00009970 0x192bb514
487 * 0x0000a208 0xd03e4648
488 *
489 * Enable: 0x00009860 0x00009d10 (if 11a / 11g, else no change)
490 * 0x00009970 0x192fb514
491 * 0x0000a208 0xd03e6788
492 */
493
494 /* XXX Setup pre PHY ENABLE EAR additions */
495 /*
496 * Wait for the frequency synth to settle (synth goes on
497 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
498 * Value is in 100ns increments.
499 */
500 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
501 if (IEEE80211_IS_CHAN_B(chan)) {
502 synthDelay = (4 * synthDelay) / 22;
503 } else {
504 synthDelay /= 10;
505 }
506
507 /* Activate the PHY (includes baseband activate and synthesizer on) */
508 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
509
510 /*
511 * There is an issue if the AP starts the calibration before
512 * the base band timeout completes. This could result in the
513 * rx_clear false triggering. As a workaround we add delay an
514 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
515 * does not happen.
516 */
517 if (IEEE80211_IS_CHAN_HALF(chan)) {
518 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
519 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
520 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
521 } else {
522 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
523 }
524
525 /*
526 * The udelay method is not reliable with notebooks.
527 * Need to check to see if the baseband is ready
528 */
529 testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
530 /* Selects the Tx hold */
531 OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
532 i = 0;
533 while ((i++ < 20) &&
534 (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */ OS_DELAY(200);
535 OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
536
537 /* Calibrate the AGC and start a NF calculation */
538 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
539 OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
540 | AR_PHY_AGC_CONTROL_CAL
541 | AR_PHY_AGC_CONTROL_NF);
542
543 if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
544 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
545 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
546 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
547 INIT_IQCAL_LOG_COUNT_MAX);
548 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
549 AR_PHY_TIMING_CTRL4_DO_IQCAL);
550 ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
551 } else
552 ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
553
554 /* Setup compression registers */
555 ar5212SetCompRegs(ah);
556
557 /* Set 1:1 QCU to DCU mapping for all queues */
558 for (i = 0; i < AR_NUM_DCU; i++)
559 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
560
561 ahp->ah_intrTxqs = 0;
562 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
563 ar5212ResetTxQueue(ah, i);
564
565 /*
566 * Setup interrupt handling. Note that ar5212ResetTxQueue
567 * manipulates the secondary IMR's as queues are enabled
568 * and disabled. This is done with RMW ops to insure the
569 * settings we make here are preserved.
570 */
571 ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
572 | AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
573 | AR_IMR_HIUERR
574 ;
575 if (opmode == HAL_M_HOSTAP)
576 ahp->ah_maskReg |= AR_IMR_MIB;
577 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
578 /* Enable bus errors that are OR'd to set the HIUERR bit */
579 OS_REG_WRITE(ah, AR_IMR_S2,
580 OS_REG_READ(ah, AR_IMR_S2)
581 | AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
582
583 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
584 ar5212EnableRfKill(ah);
585
586 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
587 HALDEBUG(ah, HAL_DEBUG_ANY,
588 "%s: offset calibration failed to complete in 1ms;"
589 " noisy environment?\n", __func__);
590 }
591
592 /*
593 * Set clocks back to 32kHz if they had been using refClk, then
594 * use an external 32kHz crystal when sleeping, if one exists.
595 */
596 ar5212SetupClock(ah, opmode);
597
598 /*
599 * Writing to AR_BEACON will start timers. Hence it should
600 * be the last register to be written. Do not reset tsf, do
601 * not enable beacons at this point, but preserve other values
602 * like beaconInterval.
603 */
604 OS_REG_WRITE(ah, AR_BEACON,
605 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
606
607 /* XXX Setup post reset EAR additions */
608
609 /* QoS support */
610 if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
611 (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
612 AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
613 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
614 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
615 }
616
617 /* Turn on NOACK Support for QoS packets */
618 OS_REG_WRITE(ah, AR_NOACK,
619 SM(2, AR_NOACK_2BIT_VALUE) |
620 SM(5, AR_NOACK_BIT_OFFSET) |
621 SM(0, AR_NOACK_BYTE_OFFSET));
622
623 /* Get Antenna Gain reduction */
624 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
625 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
626 } else {
627 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
628 }
629 twiceAntennaReduction =
630 ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
631
632 /* TPC for self-generated frames */
633
634 ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
635 if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
636 ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
637
638 if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
639 ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
640 + ahp->ah_txPowerIndexOffset;
641
642 ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
643 if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
644 ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
645
646 if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
647 ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
648 + ahp->ah_txPowerIndexOffset;
649
650 chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
651 if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
652 chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
653
654 if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
655 chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
656 + ahp->ah_txPowerIndexOffset;
657
658 if (ackTpcPow > 63)
659 ackTpcPow = 63;
660 if (ctsTpcPow > 63)
661 ctsTpcPow = 63;
662 if (chirpTpcPow > 63)
663 chirpTpcPow = 63;
664
665 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
666 SM(ctsTpcPow, AR_TPC_CTS) |
667 SM(chirpTpcPow, AR_TPC_CHIRP);
668
669 OS_REG_WRITE(ah, AR_TPC, powerVal);
670
671 /* Restore user-specified settings */
672 if (ahp->ah_miscMode != 0)
673 OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
674 if (ahp->ah_sifstime != (u_int) -1)
675 ar5212SetSifsTime(ah, ahp->ah_sifstime);
676 if (ahp->ah_slottime != (u_int) -1)
677 ar5212SetSlotTime(ah, ahp->ah_slottime);
678 if (ahp->ah_acktimeout != (u_int) -1)
679 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
680 if (ahp->ah_ctstimeout != (u_int) -1)
681 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
682 if (AH_PRIVATE(ah)->ah_diagreg != 0)
683 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
684
685 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
686 #if 0
687 done:
688 #endif
689 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
690 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
691
692 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
693
694 RESTORE_CCK(ah, chan, isBmode);
695
696 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
697
698 return AH_TRUE;
699 bad:
700 RESTORE_CCK(ah, chan, isBmode);
701
702 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
703 if (status != AH_NULL)
704 *status = ecode;
705 return AH_FALSE;
706 #undef FAIL
707 #undef N
708 }
709
710 /*
711 * Call the rf backend to change the channel.
712 */
713 HAL_BOOL
714 ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
715 {
716 struct ath_hal_5212 *ahp = AH5212(ah);
717
718 /* Change the synth */
719 if (!ahp->ah_rfHal->setChannel(ah, chan))
720 return AH_FALSE;
721 return AH_TRUE;
722 }
723
724 /*
725 * This channel change evaluates whether the selected hardware can
726 * perform a synthesizer-only channel change (no reset). If the
727 * TX is not stopped, or the RFBus cannot be granted in the given
728 * time, the function returns false as a reset is necessary
729 */
730 HAL_BOOL
731 ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
732 {
733 uint32_t ulCount;
734 uint32_t data, synthDelay, qnum;
735 uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
736 HAL_BOOL txStopped = AH_TRUE;
737 HAL_CHANNEL_INTERNAL *ichan;
738
739 /*
740 * Map public channel to private.
741 */
742 ichan = ath_hal_checkchannel(ah, chan);
743
744 /* TX must be stopped or RF Bus grant will not work */
745 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
746 if (ar5212NumTxPending(ah, qnum)) {
747 txStopped = AH_FALSE;
748 break;
749 }
750 }
751 if (!txStopped)
752 return AH_FALSE;
753
754 /* Kill last Baseband Rx Frame */
755 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
756 for (ulCount = 0; ulCount < 100; ulCount++) {
757 if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
758 break;
759 OS_DELAY(5);
760 }
761 if (ulCount >= 100)
762 return AH_FALSE;
763
764 /* Change the synth */
765 if (!ar5212SetChannel(ah, chan))
766 return AH_FALSE;
767
768 /*
769 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
770 * Read the phy active delay register. Value is in 100ns increments.
771 */
772 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
773 if (IEEE80211_IS_CHAN_B(chan)) {
774 synthDelay = (4 * data) / 22;
775 } else {
776 synthDelay = data / 10;
777 }
778 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
779
780 /* Setup the transmit power values. */
781 if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
782 HALDEBUG(ah, HAL_DEBUG_ANY,
783 "%s: error init'ing transmit power\n", __func__);
784 return AH_FALSE;
785 }
786
787 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
788 if (IEEE80211_IS_CHAN_OFDM(chan)) {
789 if (IS_5413(ah) ||
790 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
791 ar5212SetSpurMitigation(ah, chan);
792 ar5212SetDeltaSlope(ah, chan);
793 }
794
795 /* Release the RFBus Grant */
796 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
797
798 /* Start Noise Floor Cal */
799 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
800 return AH_TRUE;
801 }
802
803 void
804 ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
805 {
806 uint32_t val;
807
808 val = OS_REG_READ(ah, AR_STA_ID1);
809 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
810 switch (opmode) {
811 case HAL_M_HOSTAP:
812 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
813 | AR_STA_ID1_KSRCH_MODE);
814 OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
815 break;
816 case HAL_M_IBSS:
817 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
818 | AR_STA_ID1_KSRCH_MODE);
819 OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
820 break;
821 case HAL_M_STA:
822 case HAL_M_MONITOR:
823 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
824 break;
825 }
826 }
827
828 /*
829 * Places the PHY and Radio chips into reset. A full reset
830 * must be called to leave this state. The PCI/MAC/PCU are
831 * not placed into reset as we must receive interrupt to
832 * re-enable the hardware.
833 */
834 HAL_BOOL
835 ar5212PhyDisable(struct ath_hal *ah)
836 {
837 return ar5212SetResetReg(ah, AR_RC_BB);
838 }
839
840 /*
841 * Places all of hardware into reset
842 */
843 HAL_BOOL
844 ar5212Disable(struct ath_hal *ah)
845 {
846 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
847 return AH_FALSE;
848 /*
849 * Reset the HW - PCI must be reset after the rest of the
850 * device has been reset.
851 */
852 return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
853 }
854
855 /*
856 * Places the hardware into reset and then pulls it out of reset
857 *
858 * TODO: Only write the PLL if we're changing to or from CCK mode
859 *
860 * WARNING: The order of the PLL and mode registers must be correct.
861 */
862 HAL_BOOL
863 ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
864 {
865
866 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
867
868 /*
869 * Reset the HW - PCI must be reset after the rest of the
870 * device has been reset
871 */
872 if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
873 return AH_FALSE;
874
875 /* Bring out of sleep mode (AGAIN) */
876 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
877 return AH_FALSE;
878
879 /* Clear warm reset register */
880 if (!ar5212SetResetReg(ah, 0))
881 return AH_FALSE;
882
883 /*
884 * Perform warm reset before the mode/PLL/turbo registers
885 * are changed in order to deactivate the radio. Mode changes
886 * with an active radio can result in corrupted shifts to the
887 * radio device.
888 */
889
890 /*
891 * Set CCK and Turbo modes correctly.
892 */
893 if (chan != AH_NULL) { /* NB: can be null during attach */
894 uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
895
896 if (IS_5413(ah)) { /* NB: =>'s 5424 also */
897 rfMode = AR_PHY_MODE_AR5112;
898 if (IEEE80211_IS_CHAN_HALF(chan))
899 rfMode |= AR_PHY_MODE_HALF;
900 else if (IEEE80211_IS_CHAN_QUARTER(chan))
901 rfMode |= AR_PHY_MODE_QUARTER;
902
903 if (IEEE80211_IS_CHAN_CCK(chan))
904 phyPLL = AR_PHY_PLL_CTL_44_5112;
905 else
906 phyPLL = AR_PHY_PLL_CTL_40_5413;
907 } else if (IS_RAD5111(ah)) {
908 rfMode = AR_PHY_MODE_AR5111;
909 if (IEEE80211_IS_CHAN_CCK(chan))
910 phyPLL = AR_PHY_PLL_CTL_44;
911 else
912 phyPLL = AR_PHY_PLL_CTL_40;
913 if (IEEE80211_IS_CHAN_HALF(chan))
914 phyPLL = AR_PHY_PLL_CTL_HALF;
915 else if (IEEE80211_IS_CHAN_QUARTER(chan))
916 phyPLL = AR_PHY_PLL_CTL_QUARTER;
917 } else { /* 5112, 2413, 2316, 2317 */
918 rfMode = AR_PHY_MODE_AR5112;
919 if (IEEE80211_IS_CHAN_CCK(chan))
920 phyPLL = AR_PHY_PLL_CTL_44_5112;
921 else
922 phyPLL = AR_PHY_PLL_CTL_40_5112;
923 if (IEEE80211_IS_CHAN_HALF(chan))
924 phyPLL |= AR_PHY_PLL_CTL_HALF;
925 else if (IEEE80211_IS_CHAN_QUARTER(chan))
926 phyPLL |= AR_PHY_PLL_CTL_QUARTER;
927 }
928 if (IEEE80211_IS_CHAN_G(chan))
929 rfMode |= AR_PHY_MODE_DYNAMIC;
930 else if (IEEE80211_IS_CHAN_OFDM(chan))
931 rfMode |= AR_PHY_MODE_OFDM;
932 else
933 rfMode |= AR_PHY_MODE_CCK;
934 if (IEEE80211_IS_CHAN_5GHZ(chan))
935 rfMode |= AR_PHY_MODE_RF5GHZ;
936 else
937 rfMode |= AR_PHY_MODE_RF2GHZ;
938 turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
939 (AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
940 curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
941 /*
942 * PLL, Mode, and Turbo values must be written in the correct
943 * order to ensure:
944 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
945 * mode bit is set
946 * - Turbo cannot be set at the same time as CCK or DYNAMIC
947 */
948 if (IEEE80211_IS_CHAN_CCK(chan)) {
949 OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
950 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
951 if (curPhyPLL != phyPLL) {
952 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
953 /* Wait for the PLL to settle */
954 OS_DELAY(PLL_SETTLE_DELAY);
955 }
956 } else {
957 if (curPhyPLL != phyPLL) {
958 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, phyPLL);
959 /* Wait for the PLL to settle */
960 OS_DELAY(PLL_SETTLE_DELAY);
961 }
962 OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
963 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
964 }
965 }
966 return AH_TRUE;
967 }
968
969 /*
970 * Recalibrate the lower PHY chips to account for temperature/environment
971 * changes.
972 */
973 HAL_BOOL
974 ar5212PerCalibrationN(struct ath_hal *ah,
975 struct ieee80211_channel *chan,
976 u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
977 {
978 #define IQ_CAL_TRIES 10
979 struct ath_hal_5212 *ahp = AH5212(ah);
980 HAL_CHANNEL_INTERNAL *ichan;
981 int32_t qCoff, qCoffDenom;
982 int32_t iqCorrMeas, iCoff, iCoffDenom;
983 uint32_t powerMeasQ, powerMeasI;
984 HAL_BOOL isBmode = AH_FALSE;
985
986 OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
987 *isCalDone = AH_FALSE;
988 ichan = ath_hal_checkchannel(ah, chan);
989 if (ichan == AH_NULL) {
990 HALDEBUG(ah, HAL_DEBUG_ANY,
991 "%s: invalid channel %u/0x%x; no mapping\n",
992 __func__, chan->ic_freq, chan->ic_flags);
993 return AH_FALSE;
994 }
995 SAVE_CCK(ah, chan, isBmode);
996
997 if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
998 ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
999 *isCalDone = AH_TRUE;
1000
1001 /* IQ calibration in progress. Check to see if it has finished. */
1002 if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
1003 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
1004 int i;
1005
1006 /* IQ Calibration has finished. */
1007 ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
1008 *isCalDone = AH_TRUE;
1009
1010 /* workaround for misgated IQ Cal results */
1011 i = 0;
1012 do {
1013 /* Read calibration results. */
1014 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
1015 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
1016 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
1017 if (powerMeasI && powerMeasQ)
1018 break;
1019 /* Do we really need this??? */
1020 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1021 AR_PHY_TIMING_CTRL4_DO_IQCAL);
1022 } while (++i < IQ_CAL_TRIES);
1023
1024 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1025 "%s: IQ cal finished: %d tries\n", __func__, i);
1026 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1027 "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
1028 __func__, powerMeasI, powerMeasQ, iqCorrMeas);
1029
1030 /*
1031 * Prescale these values to remove 64-bit operation
1032 * requirement at the loss of a little precision.
1033 */
1034 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1035 qCoffDenom = powerMeasQ / 128;
1036
1037 /* Protect against divide-by-0 and loss of sign bits. */
1038 if (iCoffDenom != 0 && qCoffDenom >= 2) {
1039 iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1040 /* IQCORR_Q_I_COFF is a signed 6 bit number */
1041 if (iCoff < -32) {
1042 iCoff = -32;
1043 } else if (iCoff > 31) {
1044 iCoff = 31;
1045 }
1046
1047 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
1048 qCoff = (powerMeasI / qCoffDenom) - 128;
1049 if (qCoff < -16) {
1050 qCoff = -16;
1051 } else if (qCoff > 15) {
1052 qCoff = 15;
1053 }
1054
1055 HALDEBUG(ah, HAL_DEBUG_PERCAL,
1056 "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
1057
1058 /* Write values and enable correction */
1059 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1060 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1061 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1062 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1063 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1064 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1065
1066 ahp->ah_bIQCalibration = IQ_CAL_DONE;
1067 ichan->privFlags |= CHANNEL_IQVALID;
1068 ichan->iCoff = iCoff;
1069 ichan->qCoff = qCoff;
1070 }
1071 } else if (!IEEE80211_IS_CHAN_B(chan) &&
1072 ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1073 (ichan->privFlags & CHANNEL_IQVALID) == 0) {
1074 /*
1075 * Start IQ calibration if configured channel has changed.
1076 * Use a magic number of 15 based on default value.
1077 */
1078 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1079 AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1080 INIT_IQCAL_LOG_COUNT_MAX);
1081 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1082 AR_PHY_TIMING_CTRL4_DO_IQCAL);
1083 ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1084 }
1085 /* XXX EAR */
1086
1087 if (longCal) {
1088 /* Check noise floor results */
1089 ar5212GetNf(ah, chan);
1090 if (!IEEE80211_IS_CHAN_CWINT(chan)) {
1091 /* Perform cal for 5Ghz channels and any OFDM on 5112 */
1092 if (IEEE80211_IS_CHAN_5GHZ(chan) ||
1093 (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
1094 ar5212RequestRfgain(ah);
1095 }
1096 }
1097 RESTORE_CCK(ah, chan, isBmode);
1098
1099 return AH_TRUE;
1100 #undef IQ_CAL_TRIES
1101 }
1102
1103 HAL_BOOL
1104 ar5212PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
1105 HAL_BOOL *isIQdone)
1106 {
1107 return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1108 }
1109
1110 HAL_BOOL
1111 ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
1112 {
1113 HAL_CHANNEL_INTERNAL *ichan;
1114
1115 ichan = ath_hal_checkchannel(ah, chan);
1116 if (ichan == AH_NULL) {
1117 HALDEBUG(ah, HAL_DEBUG_ANY,
1118 "%s: invalid channel %u/0x%x; no mapping\n",
1119 __func__, chan->ic_freq, chan->ic_flags);
1120 return AH_FALSE;
1121 }
1122 ichan->privFlags &= ~CHANNEL_IQVALID;
1123 return AH_TRUE;
1124 }
1125
1126 /**************************************************************
1127 * ar5212MacStop
1128 *
1129 * Disables all active QCUs and ensure that the mac is in a
1130 * quiessence state.
1131 */
1132 static HAL_BOOL
1133 ar5212MacStop(struct ath_hal *ah)
1134 {
1135 HAL_BOOL status;
1136 uint32_t count;
1137 uint32_t pendFrameCount;
1138 uint32_t macStateFlag;
1139 uint32_t queue;
1140
1141 status = AH_FALSE;
1142
1143 /* Disable Rx Operation ***********************************/
1144 OS_REG_SET_BIT(ah, AR_CR, AR_CR_RXD);
1145
1146 /* Disable TX Operation ***********************************/
1147 #ifdef NOT_YET
1148 ar5212SetTxdpInvalid(ah);
1149 #endif
1150 OS_REG_SET_BIT(ah, AR_Q_TXD, AR_Q_TXD_M);
1151
1152 /* Polling operation for completion of disable ************/
1153 macStateFlag = TX_ENABLE_CHECK | RX_ENABLE_CHECK;
1154
1155 for (count = 0; count < MAX_RESET_WAIT; count++) {
1156 if (macStateFlag & RX_ENABLE_CHECK) {
1157 if (!OS_REG_IS_BIT_SET(ah, AR_CR, AR_CR_RXE)) {
1158 macStateFlag &= ~RX_ENABLE_CHECK;
1159 }
1160 }
1161
1162 if (macStateFlag & TX_ENABLE_CHECK) {
1163 if (!OS_REG_IS_BIT_SET(ah, AR_Q_TXE, AR_Q_TXE_M)) {
1164 macStateFlag &= ~TX_ENABLE_CHECK;
1165 macStateFlag |= TX_QUEUEPEND_CHECK;
1166 }
1167 }
1168 if (macStateFlag & TX_QUEUEPEND_CHECK) {
1169 pendFrameCount = 0;
1170 for (queue = 0; queue < AR_NUM_DCU; queue++) {
1171 pendFrameCount += OS_REG_READ(ah,
1172 AR_Q0_STS + (queue * 4)) &
1173 AR_Q_STS_PEND_FR_CNT;
1174 }
1175 if (pendFrameCount == 0) {
1176 macStateFlag &= ~TX_QUEUEPEND_CHECK;
1177 }
1178 }
1179 if (macStateFlag == 0) {
1180 status = AH_TRUE;
1181 break;
1182 }
1183 OS_DELAY(50);
1184 }
1185
1186 if (status != AH_TRUE) {
1187 HALDEBUG(ah, HAL_DEBUG_RESET,
1188 "%s:Failed to stop the MAC state 0x%x\n",
1189 __func__, macStateFlag);
1190 }
1191
1192 return status;
1193 }
1194
1195 /*
1196 * Write the given reset bit mask into the reset register
1197 */
1198 static HAL_BOOL
1199 ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1200 {
1201 uint32_t mask = resetMask ? resetMask : ~0;
1202 HAL_BOOL rt;
1203
1204 /* Never reset the PCIE core */
1205 if (AH_PRIVATE(ah)->ah_ispcie) {
1206 resetMask &= ~AR_RC_PCI;
1207 }
1208
1209 if (resetMask & (AR_RC_MAC | AR_RC_PCI)) {
1210 /*
1211 * To ensure that the driver can reset the
1212 * MAC, wake up the chip
1213 */
1214 rt = ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE);
1215
1216 if (rt != AH_TRUE) {
1217 return rt;
1218 }
1219
1220 /*
1221 * Disable interrupts
1222 */
1223 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
1224 OS_REG_READ(ah, AR_IER);
1225
1226 if (ar5212MacStop(ah) != AH_TRUE) {
1227 /*
1228 * Failed to stop the MAC gracefully; let's be more forceful then
1229 */
1230
1231 /* need some delay before flush any pending MMR writes */
1232 OS_DELAY(15);
1233 OS_REG_READ(ah, AR_RXDP);
1234
1235 resetMask |= AR_RC_MAC | AR_RC_BB;
1236 /* _Never_ reset PCI Express core */
1237 if (! AH_PRIVATE(ah)->ah_ispcie) {
1238 resetMask |= AR_RC_PCI;
1239 }
1240 #if 0
1241 /*
1242 * Flush the park address of the PCI controller
1243 */
1244 /* Read PCI slot information less than Hainan revision */
1245 if (AH_PRIVATE(ah)->ah_bustype == HAL_BUS_TYPE_PCI) {
1246 if (!IS_5112_REV5_UP(ah)) {
1247 #define PCI_COMMON_CONFIG_STATUS 0x06
1248 u_int32_t i;
1249 u_int16_t reg16;
1250
1251 for (i = 0; i < 32; i++) {
1252 ath_hal_read_pci_config_space(ah,
1253 PCI_COMMON_CONFIG_STATUS,
1254 ®16, sizeof(reg16));
1255 }
1256 }
1257 #undef PCI_COMMON_CONFIG_STATUS
1258 }
1259 #endif
1260 } else {
1261 /*
1262 * MAC stopped gracefully; no need to warm-reset the PCI bus
1263 */
1264
1265 resetMask &= ~AR_RC_PCI;
1266
1267 /* need some delay before flush any pending MMR writes */
1268 OS_DELAY(15);
1269 OS_REG_READ(ah, AR_RXDP);
1270 }
1271 }
1272
1273 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1274 OS_REG_WRITE(ah, AR_RC, resetMask);
1275 OS_DELAY(15); /* need to wait at least 128 clocks
1276 when reseting PCI before read */
1277 mask &= (AR_RC_MAC | AR_RC_BB);
1278 resetMask &= (AR_RC_MAC | AR_RC_BB);
1279 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1280 if ((resetMask & AR_RC_MAC) == 0) {
1281 if (isBigEndian()) {
1282 /*
1283 * Set CFG, little-endian for descriptor accesses.
1284 */
1285 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1286 #ifndef AH_NEED_DESC_SWAP
1287 mask |= AR_CFG_SWTD;
1288 #endif
1289 OS_REG_WRITE(ah, AR_CFG, mask);
1290 } else
1291 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1292 if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1293 (void) OS_REG_READ(ah, AR_ISR_RAC);
1294 }
1295
1296 /* track PHY power state so we don't try to r/w BB registers */
1297 AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1298 return rt;
1299 }
1300
1301 int16_t
1302 ar5212GetNoiseFloor(struct ath_hal *ah)
1303 {
1304 int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1305 if (nf & 0x100)
1306 nf = 0 - ((nf ^ 0x1ff) + 1);
1307 return nf;
1308 }
1309
1310 static HAL_BOOL
1311 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
1312 int16_t *nft)
1313 {
1314 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1315
1316 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1317
1318 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1319 case IEEE80211_CHAN_A:
1320 *nft = ee->ee_noiseFloorThresh[headerInfo11A];
1321 break;
1322 case IEEE80211_CHAN_B:
1323 *nft = ee->ee_noiseFloorThresh[headerInfo11B];
1324 break;
1325 case IEEE80211_CHAN_G:
1326 case IEEE80211_CHAN_PUREG: /* NB: really 108G */
1327 *nft = ee->ee_noiseFloorThresh[headerInfo11G];
1328 break;
1329 default:
1330 HALDEBUG(ah, HAL_DEBUG_ANY,
1331 "%s: invalid channel flags %u/0x%x\n",
1332 __func__, chan->ic_freq, chan->ic_flags);
1333 return AH_FALSE;
1334 }
1335 return AH_TRUE;
1336 }
1337
1338 /*
1339 * Setup the noise floor cal history buffer.
1340 */
1341 void
1342 ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1343 {
1344 struct ath_hal_5212 *ahp = AH5212(ah);
1345 int i;
1346
1347 ahp->ah_nfCalHist.first_run = 1;
1348 ahp->ah_nfCalHist.currIndex = 0;
1349 ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1350 ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1351 for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1352 ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1353 }
1354
1355 /*
1356 * Add a noise floor value to the ring buffer.
1357 */
1358 static __inline void
1359 updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1360 {
1361 h->nfCalBuffer[h->currIndex] = nf;
1362 if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1363 h->currIndex = 0;
1364 }
1365
1366 /*
1367 * Return the median noise floor value in the ring buffer.
1368 */
1369 int16_t
1370 ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1371 {
1372 int16_t sort[AR512_NF_CAL_HIST_MAX];
1373 int i, j;
1374
1375 OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1376 for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1377 for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1378 if (sort[j] > sort[j-1]) {
1379 int16_t nf = sort[j];
1380 sort[j] = sort[j-1];
1381 sort[j-1] = nf;
1382 }
1383 }
1384 }
1385 return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1386 }
1387
1388 /*
1389 * Read the NF and check it against the noise floor threshold
1390 */
1391 int16_t
1392 ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
1393 {
1394 struct ath_hal_5212 *ahp = AH5212(ah);
1395 struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1396 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1397 int16_t nf, nfThresh;
1398 int32_t val;
1399
1400 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1401 HALDEBUG(ah, HAL_DEBUG_ANY,
1402 "%s: NF did not complete in calibration window\n", __func__);
1403 ichan->rawNoiseFloor = h->privNF; /* most recent value */
1404 return ichan->rawNoiseFloor;
1405 }
1406
1407 /*
1408 * Finished NF cal, check against threshold.
1409 */
1410 nf = ar5212GetNoiseFloor(ah);
1411 if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1412 if (nf > nfThresh) {
1413 HALDEBUG(ah, HAL_DEBUG_ANY,
1414 "%s: noise floor failed detected; detected %u, "
1415 "threshold %u\n", __func__, nf, nfThresh);
1416 /*
1417 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1418 * happens it indicates a problem regardless
1419 * of the band.
1420 */
1421 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
1422 nf = 0;
1423 }
1424 } else
1425 nf = 0;
1426
1427 /*
1428 * Pass through histogram and write median value as
1429 * calculated from the accrued window. We require a
1430 * full window of in-range values to be seen before we
1431 * start using the history.
1432 */
1433 updateNFHistBuff(h, nf);
1434 if (h->first_run) {
1435 if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1436 nf > AR5212_CCA_MAX_HIGH_VALUE) {
1437 nf = AR5212_CCA_MAX_GOOD_VALUE;
1438 h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1439 } else if (--(h->invalidNFcount) == 0) {
1440 h->first_run = 0;
1441 h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1442 } else {
1443 nf = AR5212_CCA_MAX_GOOD_VALUE;
1444 }
1445 } else {
1446 h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1447 }
1448
1449 val = OS_REG_READ(ah, AR_PHY(25));
1450 val &= 0xFFFFFE00;
1451 val |= (((uint32_t)nf << 1) & 0x1FF);
1452 OS_REG_WRITE(ah, AR_PHY(25), val);
1453 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1454 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1455 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1456
1457 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1458 #ifdef AH_DEBUG
1459 ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1460 __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1461 #endif
1462 }
1463
1464 /*
1465 * Now load a high maxCCAPower value again so that we're
1466 * not capped by the median we just loaded
1467 */
1468 val &= 0xFFFFFE00;
1469 val |= (((uint32_t)(-50) << 1) & 0x1FF);
1470 OS_REG_WRITE(ah, AR_PHY(25), val);
1471 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1472 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1473 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1474
1475 return (ichan->rawNoiseFloor = nf);
1476 }
1477
1478 /*
1479 * Set up compression configuration registers
1480 */
1481 void
1482 ar5212SetCompRegs(struct ath_hal *ah)
1483 {
1484 struct ath_hal_5212 *ahp = AH5212(ah);
1485 int i;
1486
1487 /* Check if h/w supports compression */
1488 if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1489 return;
1490
1491 OS_REG_WRITE(ah, AR_DCCFG, 1);
1492
1493 OS_REG_WRITE(ah, AR_CCFG,
1494 (AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1495
1496 OS_REG_WRITE(ah, AR_CCFG,
1497 OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1498 OS_REG_WRITE(ah, AR_CCUCFG,
1499 AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1500
1501 OS_REG_WRITE(ah, AR_CPCOVF, 0);
1502
1503 /* reset decompression mask */
1504 for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1505 OS_REG_WRITE(ah, AR_DCM_A, i);
1506 OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1507 }
1508 }
1509
1510 HAL_BOOL
1511 ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1512 const struct ieee80211_channel *chan)
1513 {
1514 #define ANT_SWITCH_TABLE1 AR_PHY(88)
1515 #define ANT_SWITCH_TABLE2 AR_PHY(89)
1516 struct ath_hal_5212 *ahp = AH5212(ah);
1517 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1518 uint32_t antSwitchA, antSwitchB;
1519 int ix;
1520
1521 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1522 HALASSERT(ahp->ah_phyPowerOn);
1523
1524 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1525 case IEEE80211_CHAN_A:
1526 ix = 0;
1527 break;
1528 case IEEE80211_CHAN_G:
1529 case IEEE80211_CHAN_PUREG: /* NB: 108G */
1530 ix = 2;
1531 break;
1532 case IEEE80211_CHAN_B:
1533 if (IS_2425(ah) || IS_2417(ah)) {
1534 /* NB: Nala/Swan: 11b is handled using 11g */
1535 ix = 2;
1536 } else
1537 ix = 1;
1538 break;
1539 default:
1540 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1541 __func__, chan->ic_flags);
1542 return AH_FALSE;
1543 }
1544
1545 antSwitchA = ee->ee_antennaControl[1][ix]
1546 | (ee->ee_antennaControl[2][ix] << 6)
1547 | (ee->ee_antennaControl[3][ix] << 12)
1548 | (ee->ee_antennaControl[4][ix] << 18)
1549 | (ee->ee_antennaControl[5][ix] << 24)
1550 ;
1551 antSwitchB = ee->ee_antennaControl[6][ix]
1552 | (ee->ee_antennaControl[7][ix] << 6)
1553 | (ee->ee_antennaControl[8][ix] << 12)
1554 | (ee->ee_antennaControl[9][ix] << 18)
1555 | (ee->ee_antennaControl[10][ix] << 24)
1556 ;
1557 /*
1558 * For fixed antenna, give the same setting for both switch banks
1559 */
1560 switch (settings) {
1561 case HAL_ANT_FIXED_A:
1562 antSwitchB = antSwitchA;
1563 break;
1564 case HAL_ANT_FIXED_B:
1565 antSwitchA = antSwitchB;
1566 break;
1567 case HAL_ANT_VARIABLE:
1568 break;
1569 default:
1570 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1571 __func__, settings);
1572 return AH_FALSE;
1573 }
1574 if (antSwitchB == antSwitchA) {
1575 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1576 "%s: Setting fast diversity off.\n", __func__);
1577 OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1578 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1579 ahp->ah_diversity = AH_FALSE;
1580 } else {
1581 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1582 "%s: Setting fast diversity on.\n", __func__);
1583 OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1584 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1585 ahp->ah_diversity = AH_TRUE;
1586 }
1587 ahp->ah_antControl = settings;
1588
1589 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1590 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1591
1592 return AH_TRUE;
1593 #undef ANT_SWITCH_TABLE2
1594 #undef ANT_SWITCH_TABLE1
1595 }
1596
1597 HAL_BOOL
1598 ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
1599 {
1600 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1601 uint32_t clockFreq =
1602 ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1603 return ( ((freq % clockFreq) != 0)
1604 && (((freq % clockFreq) < 10)
1605 || (((freq) % clockFreq) > 22)) );
1606 }
1607
1608 /*
1609 * Read EEPROM header info and program the device for correct operation
1610 * given the channel value.
1611 */
1612 HAL_BOOL
1613 ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1614 {
1615 #define NO_FALSE_DETECT_BACKOFF 2
1616 #define CB22_FALSE_DETECT_BACKOFF 6
1617 #define AR_PHY_BIS(_ah, _reg, _mask, _val) \
1618 OS_REG_WRITE(_ah, AR_PHY(_reg), \
1619 (OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1620 struct ath_hal_5212 *ahp = AH5212(ah);
1621 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1622 int arrayMode, falseDectectBackoff;
1623 int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1624 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1625 int8_t adcDesiredSize, pgaDesiredSize;
1626 uint16_t switchSettling, txrxAtten, rxtxMargin;
1627 int iCoff, qCoff;
1628
1629 HALASSERT(ah->ah_magic == AR5212_MAGIC);
1630
1631 switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
1632 case IEEE80211_CHAN_A:
1633 case IEEE80211_CHAN_ST:
1634 arrayMode = headerInfo11A;
1635 if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1636 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1637 AR_PHY_FRAME_CTL_TX_CLIP,
1638 ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1639 break;
1640 case IEEE80211_CHAN_B:
1641 arrayMode = headerInfo11B;
1642 break;
1643 case IEEE80211_CHAN_G:
1644 case IEEE80211_CHAN_108G:
1645 arrayMode = headerInfo11G;
1646 break;
1647 default:
1648 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1649 __func__, chan->ic_flags);
1650 return AH_FALSE;
1651 }
1652
1653 /* Set the antenna register(s) correctly for the chip revision */
1654 AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1655 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1656
1657 ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1658
1659 /* Set the Noise Floor Thresh on ar5211 devices */
1660 OS_REG_WRITE(ah, AR_PHY(90),
1661 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1662 | (1 << 9));
1663
1664 if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
1665 switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1666 adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1667 pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1668 txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1669 rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1670 } else {
1671 switchSettling = ee->ee_switchSettling[arrayMode];
1672 adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1673 pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1674 txrxAtten = ee->ee_txrxAtten[is2GHz];
1675 rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1676 }
1677
1678 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1679 AR_PHY_SETTLING_SWITCH, switchSettling);
1680 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1681 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1682 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1683 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1684 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1685 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1686 OS_REG_WRITE(ah, AR_PHY(13),
1687 (ee->ee_txEndToXPAOff[arrayMode] << 24)
1688 | (ee->ee_txEndToXPAOff[arrayMode] << 16)
1689 | (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1690 | ee->ee_txFrameToXPAOn[arrayMode]);
1691 AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1692 ee->ee_txEndToXLNAOn[arrayMode] << 8);
1693 AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1694 (ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1695
1696 /*
1697 * False detect backoff - suspected 32 MHz spur causes false
1698 * detects in OFDM, causing Tx Hangs. Decrease weak signal
1699 * sensitivity for this card.
1700 */
1701 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1702 if (ee->ee_version < AR_EEPROM_VER3_3) {
1703 /* XXX magic number */
1704 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1705 IEEE80211_IS_CHAN_OFDM(chan))
1706 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1707 } else {
1708 if (ar5212IsSpurChannel(ah, chan))
1709 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1710 }
1711 AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1712
1713 if (ichan->privFlags & CHANNEL_IQVALID) {
1714 iCoff = ichan->iCoff;
1715 qCoff = ichan->qCoff;
1716 } else {
1717 iCoff = ee->ee_iqCalI[is2GHz];
1718 qCoff = ee->ee_iqCalQ[is2GHz];
1719 }
1720
1721 /* write previous IQ results */
1722 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1723 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1724 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1725 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1726 OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1727 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1728
1729 if (ee->ee_version >= AR_EEPROM_VER4_1) {
1730 if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1731 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1732 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1733 }
1734 if (ee->ee_version >= AR_EEPROM_VER5_1) {
1735 /* for now always disabled */
1736 OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_ENABLE, 0);
1737 }
1738
1739 return AH_TRUE;
1740 #undef AR_PHY_BIS
1741 #undef NO_FALSE_DETECT_BACKOFF
1742 #undef CB22_FALSE_DETECT_BACKOFF
1743 }
1744
1745 /*
1746 * Apply Spur Immunity to Boards that require it.
1747 * Applies only to OFDM RX operation.
1748 */
1749
1750 void
1751 ar5212SetSpurMitigation(struct ath_hal *ah,
1752 const struct ieee80211_channel *chan)
1753 {
1754 uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1755 uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1756 int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1757 int16_t numBinOffsets;
1758 static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1759 static const uint16_t magMapFor3[3] = {1, 2, 1};
1760 const uint16_t *pMagMap;
1761 HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1762 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1763 uint32_t val;
1764
1765 #define CHAN_TO_SPUR(_f, _freq) ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1766 if (IS_2417(ah)) {
1767 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1768 __func__);
1769 return;
1770 }
1771
1772 curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1773
1774 if (ichan->mainSpur) {
1775 /* Pull out the saved spur value */
1776 finalSpur = ichan->mainSpur;
1777 } else {
1778 /*
1779 * Check if spur immunity should be performed for this channel
1780 * Should only be performed once per channel and then saved
1781 */
1782 finalSpur = AR_NO_SPUR;
1783 spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1784 if (IEEE80211_IS_CHAN_TURBO(chan))
1785 spurDetectWidth *= 2;
1786
1787 /* Decide if any spur affects the current channel */
1788 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1789 spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1790 if (spurChan == AR_NO_SPUR) {
1791 break;
1792 }
1793 if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1794 (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1795 finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1796 break;
1797 }
1798 }
1799 /* Save detected spur (or no spur) for this channel */
1800 ichan->mainSpur = finalSpur;
1801 }
1802
1803 /* Write spur immunity data */
1804 if (finalSpur == AR_NO_SPUR) {
1805 /* Disable Spur Immunity Regs if they appear set */
1806 if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1807 /* Clear Spur Delta Phase, Spur Freq, and enable bits */
1808 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1809 val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1810 val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1811 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1812 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1813 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1814 OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1815
1816 /* Clear pilot masks */
1817 OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1818 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1819 OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1820 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1821
1822 /* Clear magnitude masks */
1823 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1824 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1825 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1826 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1827 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1828 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1829 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1830 OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1831 }
1832 } else {
1833 spurOffset = finalSpur - curChanAsSpur;
1834 /*
1835 * Spur calculations:
1836 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1837 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1838 */
1839 if (IEEE80211_IS_CHAN_TURBO(chan)) {
1840 /* Chip Frequency & sampleFrequency are 80 MHz */
1841 spurDeltaPhase = (spurOffset << 16) / 25;
1842 spurFreqSd = spurDeltaPhase >> 10;
1843 binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1844 } else if (IEEE80211_IS_CHAN_G(chan)) {
1845 /* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1846 spurFreqSd = (spurOffset << 8) / 55;
1847 spurDeltaPhase = (spurOffset << 17) / 25;
1848 binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1849 } else {
1850 HALASSERT(!IEEE80211_IS_CHAN_B(chan));
1851 /* Chip Frequency & sampleFrequency are 40 MHz */
1852 spurDeltaPhase = (spurOffset << 17) / 25;
1853 spurFreqSd = spurDeltaPhase >> 10;
1854 binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1855 }
1856
1857 /* Compute Pilot Mask */
1858 binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1859 /* The spur is on a bin if it's remainder at times 16 is 0 */
1860 if (binOffsetNumT16 & 0xF) {
1861 numBinOffsets = 4;
1862 pMagMap = magMapFor4;
1863 } else {
1864 numBinOffsets = 3;
1865 pMagMap = magMapFor3;
1866 }
1867 for (i = 0; i < numBinOffsets; i++) {
1868 if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1869 HALDEBUG(ah, HAL_DEBUG_ANY,
1870 "Too man bins in spur mitigation\n");
1871 return;
1872 }
1873
1874 /* Get Pilot Mask values */
1875 curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1876 if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1877 if (curBinOffset <= 25)
1878 pilotMask[0] |= 1 << curBinOffset;
1879 else if (curBinOffset >= 27)
1880 pilotMask[0] |= 1 << (curBinOffset - 1);
1881 } else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1882 pilotMask[1] |= 1 << (curBinOffset - 33);
1883
1884 /* Get viterbi values */
1885 if ((curBinOffset >= -1) && (curBinOffset <= 14))
1886 binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1887 else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1888 binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1889 else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1890 binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1891 else if((curBinOffset >= 47) && (curBinOffset <= 53))
1892 binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1893 }
1894
1895 /* Write Spur Delta Phase, Spur Freq, and enable bits */
1896 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1897 val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1898 val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1899 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1900 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1901 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1902 OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1903 SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1904 SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1905
1906 /* Write pilot masks */
1907 OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1908 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1909 OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1910 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1911
1912 /* Write magnitude masks */
1913 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1914 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1915 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1916 OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1917 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1918 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1919 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1920 OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1921 }
1922 #undef CHAN_TO_SPUR
1923 }
1924
1925 /*
1926 * Delta slope coefficient computation.
1927 * Required for OFDM operation.
1928 */
1929 void
1930 ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
1931 {
1932 #define COEF_SCALE_S 24
1933 #define INIT_CLOCKMHZSCALED 0x64000000
1934 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1935 unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1936 unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1937
1938 if (IEEE80211_IS_CHAN_TURBO(chan))
1939 clockMhzScaled *= 2;
1940 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1941 /* scale for selected channel bandwidth */
1942 if (IEEE80211_IS_CHAN_HALF(chan)) {
1943 clockMhzScaled = clockMhzScaled >> 1;
1944 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
1945 clockMhzScaled = clockMhzScaled >> 2;
1946 }
1947
1948 /*
1949 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1950 * scaled coef to provide precision for this floating calculation
1951 */
1952 coef_scaled = clockMhzScaled / freq;
1953
1954 /*
1955 * ALGO -> coef_exp = 14-floor(log2(coef));
1956 * floor(log2(x)) is the highest set bit position
1957 */
1958 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1959 if ((coef_scaled >> coef_exp) & 0x1)
1960 break;
1961 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1962 HALASSERT(coef_exp);
1963 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1964
1965 /*
1966 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1967 * The coefficient is already shifted up for scaling
1968 */
1969 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1970 ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1971 ds_coef_exp = coef_exp - 16;
1972
1973 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1974 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1975 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1976 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1977 #undef INIT_CLOCKMHZSCALED
1978 #undef COEF_SCALE_S
1979 }
1980
1981 /*
1982 * Set a limit on the overall output power. Used for dynamic
1983 * transmit power control and the like.
1984 *
1985 * NB: limit is in units of 0.5 dbM.
1986 */
1987 HAL_BOOL
1988 ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1989 {
1990 /* XXX blech, construct local writable copy */
1991 struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
1992 uint16_t dummyXpdGains[2];
1993 HAL_BOOL isBmode;
1994
1995 SAVE_CCK(ah, &dummy, isBmode);
1996 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1997 return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
1998 }
1999
2000 /*
2001 * Set the transmit power in the baseband for the given
2002 * operating channel and mode.
2003 */
2004 HAL_BOOL
2005 ar5212SetTransmitPower(struct ath_hal *ah,
2006 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
2007 {
2008 #define POW_OFDM(_r, _s) (((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
2009 #define POW_CCK(_r, _s) (((_r) & 0x3f) << (_s))
2010 #define N(a) (sizeof (a) / sizeof (a[0]))
2011 static const uint16_t tpcScaleReductionTable[5] =
2012 { 0, 3, 6, 9, MAX_RATE_POWER };
2013 struct ath_hal_5212 *ahp = AH5212(ah);
2014 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2015 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2016 int16_t minPower, maxPower, tpcInDb, powerLimit;
2017 int i;
2018
2019 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2020
2021 OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
2022 OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
2023
2024 powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2025 if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2026 tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2027 else
2028 tpcInDb = 0;
2029 if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2030 AH_TRUE, &minPower, &maxPower)) {
2031 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
2032 __func__);
2033 return AH_FALSE;
2034 }
2035 if (!ahp->ah_rfHal->setPowerTable(ah,
2036 &minPower, &maxPower, chan, rfXpdGain)) {
2037 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
2038 __func__);
2039 return AH_FALSE;
2040 }
2041
2042 /*
2043 * Adjust XR power/rate up by 2 dB to account for greater peak
2044 * to avg ratio - except in newer avg power designs
2045 */
2046 if (!IS_2413(ah) && !IS_5413(ah))
2047 ahp->ah_ratesArray[15] += 4;
2048 /*
2049 * txPowerIndexOffset is set by the SetPowerTable() call -
2050 * adjust the rate table
2051 */
2052 for (i = 0; i < N(ahp->ah_ratesArray); i++) {
2053 ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
2054 if (ahp->ah_ratesArray[i] > 63)
2055 ahp->ah_ratesArray[i] = 63;
2056 }
2057
2058 if (ee->ee_eepMap < 2) {
2059 /*
2060 * Correct gain deltas for 5212 G operation -
2061 * Removed with revised chipset
2062 */
2063 if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
2064 IEEE80211_IS_CHAN_G(chan)) {
2065 uint16_t cckOfdmPwrDelta;
2066
2067 if (freq == 2484)
2068 cckOfdmPwrDelta = SCALE_OC_DELTA(
2069 ee->ee_cckOfdmPwrDelta -
2070 ee->ee_scaledCh14FilterCckDelta);
2071 else
2072 cckOfdmPwrDelta = SCALE_OC_DELTA(
2073 ee->ee_cckOfdmPwrDelta);
2074 ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
2075 }
2076 /*
2077 * Finally, write the power values into the
2078 * baseband power table
2079 */
2080 for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
2081 OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
2082 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
2083 | (((ahp->ah_pcdacTable[2*i] << 8) | 0xff) & 0xffff)
2084 );
2085 }
2086 }
2087
2088 /* Write the OFDM power per rate set */
2089 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2090 POW_OFDM(ahp->ah_ratesArray[3], 24)
2091 | POW_OFDM(ahp->ah_ratesArray[2], 16)
2092 | POW_OFDM(ahp->ah_ratesArray[1], 8)
2093 | POW_OFDM(ahp->ah_ratesArray[0], 0)
2094 );
2095 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2096 POW_OFDM(ahp->ah_ratesArray[7], 24)
2097 | POW_OFDM(ahp->ah_ratesArray[6], 16)
2098 | POW_OFDM(ahp->ah_ratesArray[5], 8)
2099 | POW_OFDM(ahp->ah_ratesArray[4], 0)
2100 );
2101
2102 /* Write the CCK power per rate set */
2103 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2104 POW_CCK(ahp->ah_ratesArray[10], 24)
2105 | POW_CCK(ahp->ah_ratesArray[9], 16)
2106 | POW_CCK(ahp->ah_ratesArray[15], 8) /* XR target power */
2107 | POW_CCK(ahp->ah_ratesArray[8], 0)
2108 );
2109 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2110 POW_CCK(ahp->ah_ratesArray[14], 24)
2111 | POW_CCK(ahp->ah_ratesArray[13], 16)
2112 | POW_CCK(ahp->ah_ratesArray[12], 8)
2113 | POW_CCK(ahp->ah_ratesArray[11], 0)
2114 );
2115
2116 /*
2117 * Set max power to 30 dBm and, optionally,
2118 * enable TPC in tx descriptors.
2119 */
2120 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
2121 (ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
2122
2123 return AH_TRUE;
2124 #undef N
2125 #undef POW_CCK
2126 #undef POW_OFDM
2127 }
2128
2129 /*
2130 * Sets the transmit power in the baseband for the given
2131 * operating channel and mode.
2132 */
2133 static HAL_BOOL
2134 ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
2135 int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
2136 int16_t *pMinPower, int16_t *pMaxPower)
2137 {
2138 struct ath_hal_5212 *ahp = AH5212(ah);
2139 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2140 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2141 uint16_t *rpow = ahp->ah_ratesArray;
2142 uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
2143 uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
2144 uint16_t twiceMaxRDPower = MAX_RATE_POWER;
2145 int i;
2146 uint8_t cfgCtl;
2147 int8_t twiceAntennaGain, twiceAntennaReduction;
2148 const RD_EDGES_POWER *rep;
2149 TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2150 int16_t scaledPower, maxAvailPower = 0;
2151 int16_t r13, r9, r7, r0;
2152
2153 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2154
2155 twiceMaxRDPower = chan->ic_maxregpower * 2;
2156 *pMaxPower = -MAX_RATE_POWER;
2157 *pMinPower = MAX_RATE_POWER;
2158
2159 /* Get conformance test limit maximum for this channel */
2160 cfgCtl = ath_hal_getctl(ah, chan);
2161 for (i = 0; i < ee->ee_numCtls; i++) {
2162 uint16_t twiceMinEdgePower;
2163
2164 if (ee->ee_ctl[i] == 0)
2165 continue;
2166 if (ee->ee_ctl[i] == cfgCtl ||
2167 cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2168 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2169 twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
2170 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2171 /* Find the minimum of all CTL edge powers that apply to this channel */
2172 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2173 } else {
2174 twiceMaxEdgePower = twiceMinEdgePower;
2175 break;
2176 }
2177 }
2178 }
2179
2180 if (IEEE80211_IS_CHAN_G(chan)) {
2181 /* Check for a CCK CTL for 11G CCK powers */
2182 cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2183 for (i = 0; i < ee->ee_numCtls; i++) {
2184 uint16_t twiceMinEdgePowerCck;
2185
2186 if (ee->ee_ctl[i] == 0)
2187 continue;
2188 if (ee->ee_ctl[i] == cfgCtl ||
2189 cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2190 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2191 twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
2192 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2193 /* Find the minimum of all CTL edge powers that apply to this channel */
2194 twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2195 } else {
2196 twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2197 break;
2198 }
2199 }
2200 }
2201 } else {
2202 /* Set the 11B cck edge power to the one found before */
2203 twiceMaxEdgePowerCck = twiceMaxEdgePower;
2204 }
2205
2206 /* Get Antenna Gain reduction */
2207 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
2208 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2209 } else {
2210 ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2211 }
2212 twiceAntennaReduction =
2213 ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2214
2215 if (IEEE80211_IS_CHAN_OFDM(chan)) {
2216 /* Get final OFDM target powers */
2217 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2218 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2219 ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2220 } else {
2221 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2222 ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2223 }
2224
2225 /* Get Maximum OFDM power */
2226 /* Minimum of target and edge powers */
2227 scaledPower = AH_MIN(twiceMaxEdgePower,
2228 twiceMaxRDPower - twiceAntennaReduction);
2229
2230 /*
2231 * If turbo is set, reduce power to keep power
2232 * consumption under 2 Watts. Note that we always do
2233 * this unless specially configured. Then we limit
2234 * power only for non-AP operation.
2235 */
2236 if (IEEE80211_IS_CHAN_TURBO(chan)
2237 #ifdef AH_ENABLE_AP_SUPPORT
2238 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2239 #endif
2240 ) {
2241 /*
2242 * If turbo is set, reduce power to keep power
2243 * consumption under 2 Watts
2244 */
2245 if (ee->ee_version >= AR_EEPROM_VER3_1)
2246 scaledPower = AH_MIN(scaledPower,
2247 ee->ee_turbo2WMaxPower5);
2248 /*
2249 * EEPROM version 4.0 added an additional
2250 * constraint on 2.4GHz channels.
2251 */
2252 if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2253 IEEE80211_IS_CHAN_2GHZ(chan))
2254 scaledPower = AH_MIN(scaledPower,
2255 ee->ee_turbo2WMaxPower2);
2256 }
2257
2258 maxAvailPower = AH_MIN(scaledPower,
2259 targetPowerOfdm.twicePwr6_24);
2260
2261 /* Reduce power by max regulatory domain allowed restrictions */
2262 scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2263 scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2264 scaledPower = AH_MIN(scaledPower, powerLimit);
2265
2266 if (commit) {
2267 /* Set OFDM rates 9, 12, 18, 24 */
2268 r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2269
2270 /* Set OFDM rates 36, 48, 54, XR */
2271 rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2272 rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2273 r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2274
2275 if (ee->ee_version >= AR_EEPROM_VER4_0) {
2276 /* Setup XR target power from EEPROM */
2277 rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
2278 ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2279 } else {
2280 /* XR uses 6mb power */
2281 rpow[15] = rpow[0];
2282 }
2283 ahp->ah_ofdmTxPower = *pMaxPower;
2284
2285 } else {
2286 r0 = scaledPower;
2287 r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2288 }
2289 *pMinPower = r7;
2290 *pMaxPower = r0;
2291
2292 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2293 "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2294 "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2295 __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2296 twiceMaxEdgePower, tpcScaleReduction * 2,
2297 chan->ic_freq, chan->ic_flags,
2298 maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2299 }
2300
2301 if (IEEE80211_IS_CHAN_CCK(chan)) {
2302 /* Get final CCK target powers */
2303 ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2304 ee->ee_numTargetPwr_11b, &targetPowerCck);
2305
2306 /* Reduce power by max regulatory domain allowed restrictions */
2307 scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2308 twiceMaxRDPower - twiceAntennaReduction);
2309 if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2310 maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2311
2312 /* Reduce power by user selection */
2313 scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2314 scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2315 scaledPower = AH_MIN(scaledPower, powerLimit);
2316
2317 if (commit) {
2318 /* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2319 rpow[8] = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2320 r9 = rpow[9] = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2321 rpow[10] = rpow[9];
2322 rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2323 rpow[12] = rpow[11];
2324 r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2325 rpow[14] = rpow[13];
2326 } else {
2327 r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2328 r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2329 }
2330
2331 /* Set min/max power based off OFDM values or initialization */
2332 if (r13 < *pMinPower)
2333 *pMinPower = r13;
2334 if (r9 > *pMaxPower)
2335 *pMaxPower = r9;
2336
2337 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2338 "%s: cck: MaxRD: %d MaxCTL: %d "
2339 "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2340 __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2341 tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
2342 maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2343 }
2344 if (commit) {
2345 ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2346 AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2347 }
2348 return AH_TRUE;
2349 }
2350
2351 HAL_BOOL
2352 ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
2353 {
2354 struct ath_hal_5212 *ahp = AH5212(ah);
2355 #if 0
2356 static const uint16_t tpcScaleReductionTable[5] =
2357 { 0, 3, 6, 9, MAX_RATE_POWER };
2358 int16_t tpcInDb, powerLimit;
2359 #endif
2360 int16_t minPower, maxPower;
2361
2362 /*
2363 * Get Pier table max and min powers.
2364 */
2365 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2366 /* NB: rf code returns 1/4 dBm units, convert */
2367 chan->ic_maxpower = maxPower / 2;
2368 chan->ic_minpower = minPower / 2;
2369 } else {
2370 HALDEBUG(ah, HAL_DEBUG_ANY,
2371 "%s: no min/max power for %u/0x%x\n",
2372 __func__, chan->ic_freq, chan->ic_flags);
2373 chan->ic_maxpower = MAX_RATE_POWER;
2374 chan->ic_minpower = 0;
2375 }
2376 #if 0
2377 /*
2378 * Now adjust to reflect any global scale and/or CTL's.
2379 * (XXX is that correct?)
2380 */
2381 powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2382 if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2383 tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2384 else
2385 tpcInDb = 0;
2386 if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2387 AH_FALSE, &minPower, &maxPower)) {
2388 HALDEBUG(ah, HAL_DEBUG_ANY,
2389 "%s: unable to find max/min power\n",__func__);
2390 return AH_FALSE;
2391 }
2392 if (maxPower < chan->ic_maxpower)
2393 chan->ic_maxpower = maxPower;
2394 if (minPower < chan->ic_minpower)
2395 chan->ic_minpower = minPower;
2396 HALDEBUG(ah, HAL_DEBUG_RESET,
2397 "Chan %d: MaxPow = %d MinPow = %d\n",
2398 chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
2399 #endif
2400 return AH_TRUE;
2401 }
2402
2403 /*
2404 * Correct for the gain-delta between ofdm and cck mode target
2405 * powers. Write the results to the rate table and the power table.
2406 *
2407 * Conventions :
2408 * 1. rpow[ii] is the integer value of 2*(desired power
2409 * for the rate ii in dBm) to provide 0.5dB resolution. rate
2410 * mapping is as following :
2411 * [0..7] --> ofdm 6, 9, .. 48, 54
2412 * [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2413 * [15] --> XR (all rates get the same power)
2414 * 2. powv[ii] is the pcdac corresponding to ii/2 dBm.
2415 */
2416 static void
2417 ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2418 {
2419 #define N(_a) (sizeof(_a) / sizeof(_a[0]))
2420 struct ath_hal_5212 *ahp = AH5212(ah);
2421 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2422 int16_t ratesIndex[N(ahp->ah_ratesArray)];
2423 uint16_t ii, jj, iter;
2424 int32_t cckIndex;
2425 int16_t gainDeltaAdjust;
2426
2427 HALASSERT(ah->ah_magic == AR5212_MAGIC);
2428
2429 gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2430
2431 /* make a local copy of desired powers as initial indices */
2432 OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2433
2434 /* fix only the CCK indices */
2435 for (ii = 8; ii < 15; ii++) {
2436 /* apply a gain_delta correction of -15 for CCK */
2437 ratesIndex[ii] -= gainDeltaAdjust;
2438
2439 /* Now check for contention with all ofdm target powers */
2440 jj = 0;
2441 iter = 0;
2442 /* indicates not all ofdm rates checked forcontention yet */
2443 while (jj < 16) {
2444 if (ratesIndex[ii] < 0)
2445 ratesIndex[ii] = 0;
2446 if (jj == 8) { /* skip CCK rates */
2447 jj = 15;
2448 continue;
2449 }
2450 if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2451 if (ahp->ah_ratesArray[jj] == 0)
2452 ratesIndex[ii]++;
2453 else if (iter > 50) {
2454 /*
2455 * To avoid pathological case of of
2456 * dm target powers 0 and 0.5dBm
2457 */
2458 ratesIndex[ii]++;
2459 } else
2460 ratesIndex[ii]--;
2461 /* check with all rates again */
2462 jj = 0;
2463 iter++;
2464 } else
2465 jj++;
2466 }
2467 if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2468 ratesIndex[ii] = PWR_TABLE_SIZE -1;
2469 cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2470 if (cckIndex < 0)
2471 cckIndex = 0;
2472
2473 /*
2474 * Validate that the indexes for the powv are not
2475 * out of bounds.
2476 */
2477 HALASSERT(cckIndex < PWR_TABLE_SIZE);
2478 HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2479 ahp->ah_pcdacTable[ratesIndex[ii]] =
2480 ahp->ah_pcdacTable[cckIndex];
2481 }
2482 /* Override rate per power table with new values */
2483 for (ii = 8; ii < 15; ii++)
2484 ahp->ah_ratesArray[ii] = ratesIndex[ii];
2485 #undef N
2486 }
2487
2488 /*
2489 * Find the maximum conformance test limit for the given channel and CTL info
2490 */
2491 static uint16_t
2492 ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2493 {
2494 /* temp array for holding edge channels */
2495 uint16_t tempChannelList[NUM_EDGES];
2496 uint16_t clo, chi, twiceMaxEdgePower;
2497 int i, numEdges;
2498
2499 /* Get the edge power */
2500 for (i = 0; i < NUM_EDGES; i++) {
2501 if (pRdEdgesPower[i].rdEdge == 0)
2502 break;
2503 tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2504 }
2505 numEdges = i;
2506
2507 ar5212GetLowerUpperValues(channel, tempChannelList,
2508 numEdges, &clo, &chi);
2509 /* Get the index for the lower channel */
2510 for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2511 ;
2512 /* Is lower channel ever outside the rdEdge? */
2513 HALASSERT(i != numEdges);
2514
2515 if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2516 /*
2517 * If there's an exact channel match or an inband flag set
2518 * on the lower channel use the given rdEdgePower
2519 */
2520 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2521 HALASSERT(twiceMaxEdgePower > 0);
2522 } else
2523 twiceMaxEdgePower = MAX_RATE_POWER;
2524 return twiceMaxEdgePower;
2525 }
2526
2527 /*
2528 * Returns interpolated or the scaled up interpolated value
2529 */
2530 static uint16_t
2531 interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2532 uint16_t targetLeft, uint16_t targetRight)
2533 {
2534 uint16_t rv;
2535 int16_t lRatio;
2536
2537 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2538 if ((targetLeft * targetRight) == 0)
2539 return 0;
2540
2541 if (srcRight != srcLeft) {
2542 /*
2543 * Note the ratio always need to be scaled,
2544 * since it will be a fraction.
2545 */
2546 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2547 if (lRatio < 0) {
2548 /* Return as Left target if value would be negative */
2549 rv = targetLeft;
2550 } else if (lRatio > EEP_SCALE) {
2551 /* Return as Right target if Ratio is greater than 100% (SCALE) */
2552 rv = targetRight;
2553 } else {
2554 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2555 targetLeft) / EEP_SCALE;
2556 }
2557 } else {
2558 rv = targetLeft;
2559 }
2560 return rv;
2561 }
2562
2563 /*
2564 * Return the four rates of target power for the given target power table
2565 * channel, and number of channels
2566 */
2567 static void
2568 ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2569 const TRGT_POWER_INFO *powInfo,
2570 uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2571 {
2572 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2573 /* temp array for holding target power channels */
2574 uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2575 uint16_t clo, chi, ixlo, ixhi;
2576 int i;
2577
2578 /* Copy the target powers into the temp channel list */
2579 for (i = 0; i < numChannels; i++)
2580 tempChannelList[i] = powInfo[i].testChannel;
2581
2582 ar5212GetLowerUpperValues(freq, tempChannelList,
2583 numChannels, &clo, &chi);
2584
2585 /* Get the indices for the channel */
2586 ixlo = ixhi = 0;
2587 for (i = 0; i < numChannels; i++) {
2588 if (clo == tempChannelList[i]) {
2589 ixlo = i;
2590 }
2591 if (chi == tempChannelList[i]) {
2592 ixhi = i;
2593 break;
2594 }
2595 }
2596
2597 /*
2598 * Get the lower and upper channels, target powers,
2599 * and interpolate between them.
2600 */
2601 pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
2602 powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2603 pNewPower->twicePwr36 = interpolate(freq, clo, chi,
2604 powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2605 pNewPower->twicePwr48 = interpolate(freq, clo, chi,
2606 powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2607 pNewPower->twicePwr54 = interpolate(freq, clo, chi,
2608 powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2609 }
2610
2611 static uint32_t
2612 udiff(uint32_t u, uint32_t v)
2613 {
2614 return (u >= v ? u - v : v - u);
2615 }
2616
2617 /*
2618 * Search a list for a specified value v that is within
2619 * EEP_DELTA of the search values. Return the closest
2620 * values in the list above and below the desired value.
2621 * EEP_DELTA is a factional value; everything is scaled
2622 * so only integer arithmetic is used.
2623 *
2624 * NB: the input list is assumed to be sorted in ascending order
2625 */
2626 void
2627 ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2628 uint16_t *vlo, uint16_t *vhi)
2629 {
2630 uint32_t target = v * EEP_SCALE;
2631 uint16_t *ep = lp+listSize;
2632
2633 /*
2634 * Check first and last elements for out-of-bounds conditions.
2635 */
2636 if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2637 *vlo = *vhi = lp[0];
2638 return;
2639 }
2640 if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2641 *vlo = *vhi = ep[-1];
2642 return;
2643 }
2644
2645 /* look for value being near or between 2 values in list */
2646 for (; lp < ep; lp++) {
2647 /*
2648 * If value is close to the current value of the list
2649 * then target is not between values, it is one of the values
2650 */
2651 if (udiff(lp[0] * EEP_SCALE, target) < EEP_DELTA) {
2652 *vlo = *vhi = lp[0];
2653 return;
2654 }
2655 /*
2656 * Look for value being between current value and next value
2657 * if so return these 2 values
2658 */
2659 if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2660 *vlo = lp[0];
2661 *vhi = lp[1];
2662 return;
2663 }
2664 }
2665 HALASSERT(AH_FALSE); /* should not reach here */
2666 }
2667
2668 /*
2669 * Perform analog "swizzling" of parameters into their location
2670 *
2671 * NB: used by RF backends
2672 */
2673 void
2674 ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2675 uint32_t firstBit, uint32_t column)
2676 {
2677 #define MAX_ANALOG_START 319 /* XXX */
2678 uint32_t tmp32, mask, arrayEntry, lastBit;
2679 int32_t bitPosition, bitsLeft;
2680
2681 HALASSERT(column <= 3);
2682 HALASSERT(numBits <= 32);
2683 HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2684
2685 tmp32 = ath_hal_reverseBits(reg32, numBits);
2686 arrayEntry = (firstBit - 1) / 8;
2687 bitPosition = (firstBit - 1) % 8;
2688 bitsLeft = numBits;
2689 while (bitsLeft > 0) {
2690 lastBit = (bitPosition + bitsLeft > 8) ?
2691 8 : bitPosition + bitsLeft;
2692 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2693 (column * 8);
2694 rfBuf[arrayEntry] &= ~mask;
2695 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2696 (column * 8)) & mask;
2697 bitsLeft -= 8 - bitPosition;
2698 tmp32 = tmp32 >> (8 - bitPosition);
2699 bitPosition = 0;
2700 arrayEntry++;
2701 }
2702 #undef MAX_ANALOG_START
2703 }
2704
2705 /*
2706 * Sets the rate to duration values in MAC - used for multi-
2707 * rate retry.
2708 * The rate duration table needs to cover all valid rate codes;
2709 * the 11g table covers all ofdm rates, while the 11b table
2710 * covers all cck rates => all valid rates get covered between
2711 * these two mode's ratetables!
2712 * But if we're turbo, the ofdm phy is replaced by the turbo phy
2713 * and cck is not valid with turbo => all rates get covered
2714 * by the turbo ratetable only
2715 */
2716 void
2717 ar5212SetRateDurationTable(struct ath_hal *ah,
2718 const struct ieee80211_channel *chan)
2719 {
2720 const HAL_RATE_TABLE *rt;
2721 int i;
2722
2723 /* NB: band doesn't matter for 1/2 and 1/4 rate */
2724 if (IEEE80211_IS_CHAN_HALF(chan)) {
2725 rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2726 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
2727 rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2728 } else {
2729 rt = ar5212GetRateTable(ah,
2730 IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2731 }
2732
2733 for (i = 0; i < rt->rateCount; ++i)
2734 OS_REG_WRITE(ah,
2735 AR_RATE_DURATION(rt->info[i].rateCode),
2736 ath_hal_computetxtime(ah, rt,
2737 WLAN_CTRL_FRAME_SIZE,
2738 rt->info[i].controlRate, AH_FALSE, AH_TRUE));
2739 if (!IEEE80211_IS_CHAN_TURBO(chan)) {
2740 /* 11g Table is used to cover the CCK rates. */
2741 rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2742 for (i = 0; i < rt->rateCount; ++i) {
2743 uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2744
2745 if (rt->info[i].phy != IEEE80211_T_CCK)
2746 continue;
2747
2748 OS_REG_WRITE(ah, reg,
2749 ath_hal_computetxtime(ah, rt,
2750 WLAN_CTRL_FRAME_SIZE,
2751 rt->info[i].controlRate, AH_FALSE,
2752 AH_TRUE));
2753 /* cck rates have short preamble option also */
2754 if (rt->info[i].shortPreamble) {
2755 reg += rt->info[i].shortPreamble << 2;
2756 OS_REG_WRITE(ah, reg,
2757 ath_hal_computetxtime(ah, rt,
2758 WLAN_CTRL_FRAME_SIZE,
2759 rt->info[i].controlRate,
2760 AH_TRUE, AH_TRUE));
2761 }
2762 }
2763 }
2764 }
2765
2766 /* Adjust various register settings based on half/quarter rate clock setting.
2767 * This includes: +USEC, TX/RX latency,
2768 * + IFS params: slot, eifs, misc etc.
2769 */
2770 void
2771 ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2772 {
2773 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2774
2775 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2776 IEEE80211_IS_CHAN_QUARTER(chan));
2777
2778 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2779 if (IEEE80211_IS_CHAN_HALF(chan)) {
2780 slot = IFS_SLOT_HALF_RATE;
2781 rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2782 txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2783 usec = HALF_RATE_USEC;
2784 eifs = IFS_EIFS_HALF_RATE;
2785 init_usec = INIT_USEC >> 1;
2786 } else { /* quarter rate */
2787 slot = IFS_SLOT_QUARTER_RATE;
2788 rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2789 txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2790 usec = QUARTER_RATE_USEC;
2791 eifs = IFS_EIFS_QUARTER_RATE;
2792 init_usec = INIT_USEC >> 2;
2793 }
2794
2795 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2796 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2797 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2798 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2799 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2800 }
Cache object: 1dc48d81aeb206838f9d85d82e210c31
|