The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5212/ar5413.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 
   26 #include "ah_eeprom_v3.h"
   27 
   28 #include "ar5212/ar5212.h"
   29 #include "ar5212/ar5212reg.h"
   30 #include "ar5212/ar5212phy.h"
   31 
   32 #define AH_5212_5413
   33 #include "ar5212/ar5212.ini"
   34 
   35 #define N(a)    (sizeof(a)/sizeof(a[0]))
   36 
   37 struct ar5413State {
   38         RF_HAL_FUNCS    base;           /* public state, must be first */
   39         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
   40 
   41         uint32_t        Bank1Data[N(ar5212Bank1_5413)];
   42         uint32_t        Bank2Data[N(ar5212Bank2_5413)];
   43         uint32_t        Bank3Data[N(ar5212Bank3_5413)];
   44         uint32_t        Bank6Data[N(ar5212Bank6_5413)];
   45         uint32_t        Bank7Data[N(ar5212Bank7_5413)];
   46 
   47         /*
   48          * Private state for reduced stack usage.
   49          */
   50         /* filled out Vpd table for all pdGains (chanL) */
   51         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
   52                             [MAX_PWR_RANGE_IN_HALF_DB];
   53         /* filled out Vpd table for all pdGains (chanR) */
   54         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
   55                             [MAX_PWR_RANGE_IN_HALF_DB];
   56         /* filled out Vpd table for all pdGains (interpolated) */
   57         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
   58                             [MAX_PWR_RANGE_IN_HALF_DB];
   59 };
   60 #define AR5413(ah)      ((struct ar5413State *) AH5212(ah)->ah_rfHal)
   61 
   62 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
   63                 uint32_t numBits, uint32_t firstBit, uint32_t column);
   64 
   65 static void
   66 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
   67         int writes)
   68 {
   69         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
   70         HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
   71         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
   72 }
   73 
   74 /*
   75  * Take the MHz channel value and set the Channel value
   76  *
   77  * ASSUMES: Writes enabled to analog bus
   78  */
   79 static HAL_BOOL
   80 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
   81 {
   82         uint16_t freq = ath_hal_gethwchannel(ah, chan);
   83         uint32_t channelSel  = 0;
   84         uint32_t bModeSynth  = 0;
   85         uint32_t aModeRefSel = 0;
   86         uint32_t reg32       = 0;
   87 
   88         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
   89 
   90         if (freq < 4800) {
   91                 uint32_t txctl;
   92 
   93                 if (((freq - 2192) % 5) == 0) {
   94                         channelSel = ((freq - 672) * 2 - 3040)/10;
   95                         bModeSynth = 0;
   96                 } else if (((freq - 2224) % 5) == 0) {
   97                         channelSel = ((freq - 704) * 2 - 3040) / 10;
   98                         bModeSynth = 1;
   99                 } else {
  100                         HALDEBUG(ah, HAL_DEBUG_ANY,
  101                             "%s: invalid channel %u MHz\n",
  102                             __func__, freq);
  103                         return AH_FALSE;
  104                 }
  105 
  106                 channelSel = (channelSel << 2) & 0xff;
  107                 channelSel = ath_hal_reverseBits(channelSel, 8);
  108 
  109                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  110                 if (freq == 2484) {
  111                         /* Enable channel spreading for channel 14 */
  112                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  113                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  114                 } else {
  115                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  116                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
  117                 }
  118         } else if (((freq % 5) == 2) && (freq <= 5435)) {
  119                 freq = freq - 2; /* Align to even 5MHz raster */
  120                 channelSel = ath_hal_reverseBits(
  121                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
  122                 aModeRefSel = ath_hal_reverseBits(0, 2);
  123         } else if ((freq % 20) == 0 && freq >= 5120) {
  124                 channelSel = ath_hal_reverseBits(
  125                         ((freq - 4800) / 20 << 2), 8);
  126                 aModeRefSel = ath_hal_reverseBits(1, 2);
  127         } else if ((freq % 10) == 0) {
  128                 channelSel = ath_hal_reverseBits(
  129                         ((freq - 4800) / 10 << 1), 8);
  130                 aModeRefSel = ath_hal_reverseBits(1, 2);
  131         } else if ((freq % 5) == 0) {
  132                 channelSel = ath_hal_reverseBits(
  133                         (freq - 4800) / 5, 8);
  134                 aModeRefSel = ath_hal_reverseBits(1, 2);
  135         } else {
  136                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
  137                     __func__, freq);
  138                 return AH_FALSE;
  139         }
  140 
  141         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
  142                         (1 << 12) | 0x1;
  143         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
  144 
  145         reg32 >>= 8;
  146         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
  147 
  148         AH_PRIVATE(ah)->ah_curchan = chan;
  149         return AH_TRUE;
  150 }
  151 
  152 /*
  153  * Reads EEPROM header info from device structure and programs
  154  * all rf registers
  155  *
  156  * REQUIRES: Access to the analog rf device
  157  */
  158 static HAL_BOOL
  159 ar5413SetRfRegs(struct ath_hal *ah,
  160         const struct ieee80211_channel *chan,
  161         uint16_t modesIndex, uint16_t *rfXpdGain)
  162 {
  163 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
  164         int i;                                                              \
  165         for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)                     \
  166                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
  167 } while (0)
  168         struct ath_hal_5212 *ahp = AH5212(ah);
  169         uint16_t freq = ath_hal_gethwchannel(ah, chan);
  170         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  171         uint16_t ob5GHz = 0, db5GHz = 0;        
  172         uint16_t ob2GHz = 0, db2GHz = 0;
  173         struct ar5413State *priv = AR5413(ah);
  174         int regWrites = 0;
  175 
  176         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
  177             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
  178 
  179         HALASSERT(priv != AH_NULL);
  180 
  181         /* Setup rf parameters */
  182         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
  183         case IEEE80211_CHAN_A:
  184                 if (freq > 4000 && freq < 5260) {
  185                         ob5GHz = ee->ee_ob1;
  186                         db5GHz = ee->ee_db1;
  187                 } else if (freq >= 5260 && freq < 5500) {
  188                         ob5GHz = ee->ee_ob2;
  189                         db5GHz = ee->ee_db2;
  190                 } else if (freq >= 5500 && freq < 5725) {
  191                         ob5GHz = ee->ee_ob3;
  192                         db5GHz = ee->ee_db3;
  193                 } else if (freq >= 5725) {
  194                         ob5GHz = ee->ee_ob4;
  195                         db5GHz = ee->ee_db4;
  196                 } else {
  197                         /* XXX else */
  198                 }
  199                 break;
  200         case IEEE80211_CHAN_B:
  201                 ob2GHz = ee->ee_obFor24;
  202                 db2GHz = ee->ee_dbFor24;
  203                 break;
  204         case IEEE80211_CHAN_G:
  205         case IEEE80211_CHAN_PUREG:      /* NB: really 108G */
  206                 ob2GHz = ee->ee_obFor24g;
  207                 db2GHz = ee->ee_dbFor24g;
  208                 break;
  209         default:
  210                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
  211                     __func__, chan->ic_flags);
  212                 return AH_FALSE;
  213         }
  214 
  215         /* Bank 1 Write */
  216         RF_BANK_SETUP(priv, 1, 1);
  217 
  218         /* Bank 2 Write */
  219         RF_BANK_SETUP(priv, 2, modesIndex);
  220 
  221         /* Bank 3 Write */
  222         RF_BANK_SETUP(priv, 3, modesIndex);
  223 
  224         /* Bank 6 Write */
  225         RF_BANK_SETUP(priv, 6, modesIndex);
  226 
  227         /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
  228         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
  229                 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
  230                 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
  231 
  232                         /* TODO - only for Eagle 1.0 2GHz - remove for production */
  233                         /* XXX: but without this bit G doesn't work. */
  234                         ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
  235 
  236                         /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
  237                         if (AH_PRIVATE(ah)->ah_ispcie) {
  238                                 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
  239                                                  3, 131, 3);
  240                         }
  241         } else {
  242                 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
  243                 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
  244         }
  245 
  246         /* Bank 7 Setup */
  247         RF_BANK_SETUP(priv, 7, modesIndex);
  248 
  249         /* Write Analog registers */
  250         HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
  251         HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
  252         HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
  253         HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
  254         HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
  255 
  256         /* Now that we have reprogrammed rfgain value, clear the flag. */
  257         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
  258 
  259         return AH_TRUE;
  260 #undef  RF_BANK_SETUP
  261 }
  262 
  263 /*
  264  * Return a reference to the requested RF Bank.
  265  */
  266 static uint32_t *
  267 ar5413GetRfBank(struct ath_hal *ah, int bank)
  268 {
  269         struct ar5413State *priv = AR5413(ah);
  270 
  271         HALASSERT(priv != AH_NULL);
  272         switch (bank) {
  273         case 1: return priv->Bank1Data;
  274         case 2: return priv->Bank2Data;
  275         case 3: return priv->Bank3Data;
  276         case 6: return priv->Bank6Data;
  277         case 7: return priv->Bank7Data;
  278         }
  279         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
  280             __func__, bank);
  281         return AH_NULL;
  282 }
  283 
  284 /*
  285  * Return indices surrounding the value in sorted integer lists.
  286  *
  287  * NB: the input list is assumed to be sorted in ascending order
  288  */
  289 static void
  290 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
  291                           uint32_t *vlo, uint32_t *vhi)
  292 {
  293         int16_t target = v;
  294         const uint16_t *ep = lp+listSize;
  295         const uint16_t *tp;
  296 
  297         /*
  298          * Check first and last elements for out-of-bounds conditions.
  299          */
  300         if (target < lp[0]) {
  301                 *vlo = *vhi = 0;
  302                 return;
  303         }
  304         if (target >= ep[-1]) {
  305                 *vlo = *vhi = listSize - 1;
  306                 return;
  307         }
  308 
  309         /* look for value being near or between 2 values in list */
  310         for (tp = lp; tp < ep; tp++) {
  311                 /*
  312                  * If value is close to the current value of the list
  313                  * then target is not between values, it is one of the values
  314                  */
  315                 if (*tp == target) {
  316                         *vlo = *vhi = tp - (const uint16_t *) lp;
  317                         return;
  318                 }
  319                 /*
  320                  * Look for value being between current value and next value
  321                  * if so return these 2 values
  322                  */
  323                 if (target < tp[1]) {
  324                         *vlo = tp - (const uint16_t *) lp;
  325                         *vhi = *vlo + 1;
  326                         return;
  327                 }
  328         }
  329 }
  330 
  331 /*
  332  * Fill the Vpdlist for indices Pmax-Pmin
  333  */
  334 static HAL_BOOL
  335 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
  336                    const int16_t *pwrList, const uint16_t *VpdList,
  337                    uint16_t numIntercepts,
  338                    uint16_t retVpdList[][64])
  339 {
  340         uint16_t ii, jj, kk;
  341         int16_t currPwr = (int16_t)(2*Pmin);
  342         /* since Pmin is pwr*2 and pwrList is 4*pwr */
  343         uint32_t  idxL, idxR;
  344 
  345         ii = 0;
  346         jj = 0;
  347 
  348         if (numIntercepts < 2)
  349                 return AH_FALSE;
  350 
  351         while (ii <= (uint16_t)(Pmax - Pmin)) {
  352                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
  353                                    numIntercepts, &(idxL), &(idxR));
  354                 if (idxR < 1)
  355                         idxR = 1;                       /* extrapolate below */
  356                 if (idxL == (uint32_t)(numIntercepts - 1))
  357                         idxL = numIntercepts - 2;       /* extrapolate above */
  358                 if (pwrList[idxL] == pwrList[idxR])
  359                         kk = VpdList[idxL];
  360                 else
  361                         kk = (uint16_t)
  362                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
  363                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
  364                                  (pwrList[idxR] - pwrList[idxL]));
  365                 retVpdList[pdGainIdx][ii] = kk;
  366                 ii++;
  367                 currPwr += 2;                           /* half dB steps */
  368         }
  369 
  370         return AH_TRUE;
  371 }
  372 
  373 /*
  374  * Returns interpolated or the scaled up interpolated value
  375  */
  376 static int16_t
  377 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
  378         int16_t targetLeft, int16_t targetRight)
  379 {
  380         int16_t rv;
  381 
  382         if (srcRight != srcLeft) {
  383                 rv = ((target - srcLeft)*targetRight +
  384                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
  385         } else {
  386                 rv = targetLeft;
  387         }
  388         return rv;
  389 }
  390 
  391 /*
  392  * Uses the data points read from EEPROM to reconstruct the pdadc power table
  393  * Called by ar5413SetPowerTable()
  394  */
  395 static int 
  396 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
  397                 const RAW_DATA_STRUCT_2413 *pRawDataset,
  398                 uint16_t pdGainOverlap_t2, 
  399                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
  400                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
  401 {
  402         struct ar5413State *priv = AR5413(ah);
  403 #define VpdTable_L      priv->vpdTable_L
  404 #define VpdTable_R      priv->vpdTable_R
  405 #define VpdTable_I      priv->vpdTable_I
  406         uint32_t ii, jj, kk;
  407         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
  408         uint32_t idxL, idxR;
  409         uint32_t numPdGainsUsed = 0;
  410         /* 
  411          * If desired to support -ve power levels in future, just
  412          * change pwr_I_0 to signed 5-bits.
  413          */
  414         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  415         /* to accommodate -ve power levels later on. */
  416         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
  417         /* to accommodate -ve power levels later on */
  418         uint16_t numVpd = 0;
  419         uint16_t Vpd_step;
  420         int16_t tmpVal ; 
  421         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
  422     
  423         /* Get upper lower index */
  424         GetLowerUpperIndex(channel, pRawDataset->pChannels,
  425                                  pRawDataset->numChannels, &(idxL), &(idxR));
  426 
  427         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  428                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  429                 /* work backwards 'cause highest pdGain for lowest power */
  430                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
  431                 if (numVpd > 0) {
  432                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
  433                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
  434                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
  435                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
  436                         }
  437                         Pmin_t2[numPdGainsUsed] = (int16_t)
  438                                 (Pmin_t2[numPdGainsUsed] / 2);
  439                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  440                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
  441                                 Pmax_t2[numPdGainsUsed] = 
  442                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
  443                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
  444                         ar5413FillVpdTable(
  445                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  446                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
  447                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
  448                                            );
  449                         ar5413FillVpdTable(
  450                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
  451                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
  452                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
  453                                            );
  454                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
  455                                 VpdTable_I[numPdGainsUsed][kk] = 
  456                                         interpolate_signed(
  457                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
  458                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
  459                         }
  460                         /* fill VpdTable_I for this pdGain */
  461                         numPdGainsUsed++;
  462                 }
  463                 /* if this pdGain is used */
  464         }
  465 
  466         *pMinCalPower = Pmin_t2[0];
  467         kk = 0; /* index for the final table */
  468         for (ii = 0; ii < numPdGainsUsed; ii++) {
  469                 if (ii == (numPdGainsUsed - 1))
  470                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
  471                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
  472                 else 
  473                         pPdGainBoundaries[ii] = (uint16_t)
  474                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
  475                 if (pPdGainBoundaries[ii] > 63) {
  476                         HALDEBUG(ah, HAL_DEBUG_ANY,
  477                             "%s: clamp pPdGainBoundaries[%d] %d\n",
  478                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
  479                         pPdGainBoundaries[ii] = 63;
  480                 }
  481 
  482                 /* Find starting index for this pdGain */
  483                 if (ii == 0) 
  484                         ss = 0; /* for the first pdGain, start from index 0 */
  485                 else 
  486                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
  487                                 pdGainOverlap_t2;
  488                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
  489                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
  490                 /*
  491                  *-ve ss indicates need to extrapolate data below for this pdGain
  492                  */
  493                 while (ss < 0) {
  494                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
  495                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
  496                         ss++;
  497                 }
  498 
  499                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
  500                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
  501                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
  502 
  503                 while (ss < (int16_t)maxIndex)
  504                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
  505 
  506                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
  507                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
  508                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
  509                 /*
  510                  * for last gain, pdGainBoundary == Pmax_t2, so will 
  511                  * have to extrapolate
  512                  */
  513                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
  514                         while(ss < (int16_t)tgtIndex) {
  515                                 tmpVal = (uint16_t)
  516                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
  517                                          (ss-maxIndex)*Vpd_step);
  518                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
  519                                         127 : tmpVal;
  520                                 ss++;
  521                         }
  522                 }                               /* extrapolated above */
  523         }                                       /* for all pdGainUsed */
  524 
  525         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
  526                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
  527                 ii++;
  528         }
  529         while (kk < 128) {
  530                 pPDADCValues[kk] = pPDADCValues[kk-1];
  531                 kk++;
  532         }
  533 
  534         return numPdGainsUsed;
  535 #undef VpdTable_L
  536 #undef VpdTable_R
  537 #undef VpdTable_I
  538 }
  539 
  540 static HAL_BOOL
  541 ar5413SetPowerTable(struct ath_hal *ah,
  542         int16_t *minPower, int16_t *maxPower,
  543         const struct ieee80211_channel *chan, 
  544         uint16_t *rfXpdGain)
  545 {
  546         struct ath_hal_5212 *ahp = AH5212(ah);
  547         uint16_t freq = ath_hal_gethwchannel(ah, chan);
  548         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  549         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
  550         uint16_t pdGainOverlap_t2;
  551         int16_t minCalPower5413_t2;
  552         uint16_t *pdadcValues = ahp->ah_pcdacTable;
  553         uint16_t gainBoundaries[4];
  554         uint32_t reg32, regoffset;
  555         int i, numPdGainsUsed;
  556 #ifndef AH_USE_INIPDGAIN
  557         uint32_t tpcrg1;
  558 #endif
  559 
  560         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
  561             __func__, chan->ic_freq, chan->ic_flags);
  562 
  563         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  564                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  565         else if (IEEE80211_IS_CHAN_B(chan))
  566                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  567         else {
  568                 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
  569                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
  570         }
  571 
  572         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
  573                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
  574     
  575         numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
  576                 freq, pRawDataset, pdGainOverlap_t2,
  577                 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
  578         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
  579 
  580 #ifdef AH_USE_INIPDGAIN
  581         /*
  582          * Use pd_gains curve from eeprom; Atheros always uses
  583          * the default curve from the ini file but some vendors
  584          * (e.g. Zcomax) want to override this curve and not
  585          * honoring their settings results in tx power 5dBm low.
  586          */
  587         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
  588                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
  589 #else
  590         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
  591         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
  592                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
  593         switch (numPdGainsUsed) {
  594         case 3:
  595                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
  596                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
  597                 /* fall thru... */
  598         case 2:
  599                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
  600                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
  601                 /* fall thru... */
  602         case 1:
  603                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
  604                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
  605                 break;
  606         }
  607 #ifdef AH_DEBUG
  608         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
  609                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
  610                     "pd_gains (default 0x%x, calculated 0x%x)\n",
  611                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
  612 #endif
  613         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
  614 #endif
  615 
  616         /*
  617          * Note the pdadc table may not start at 0 dBm power, could be
  618          * negative or greater than 0.  Need to offset the power
  619          * values by the amount of minPower for griffin
  620          */
  621         if (minCalPower5413_t2 != 0)
  622                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
  623         else
  624                 ahp->ah_txPowerIndexOffset = 0;
  625 
  626         /* Finally, write the power values into the baseband power table */
  627         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
  628         for (i = 0; i < 32; i++) {
  629                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
  630                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
  631                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
  632                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
  633                 OS_REG_WRITE(ah, regoffset, reg32);
  634                 regoffset += 4;
  635         }
  636 
  637         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
  638                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
  639                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
  640                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
  641                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
  642                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  643 
  644         return AH_TRUE;
  645 }
  646 
  647 static int16_t
  648 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
  649 {
  650         uint32_t ii,jj;
  651         uint16_t Pmin=0,numVpd;
  652 
  653         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  654                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
  655                 /* work backwards 'cause highest pdGain for lowest power */
  656                 numVpd = data->pDataPerPDGain[jj].numVpd;
  657                 if (numVpd > 0) {
  658                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
  659                         return(Pmin);
  660                 }
  661         }
  662         return(Pmin);
  663 }
  664 
  665 static int16_t
  666 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
  667 {
  668         uint32_t ii;
  669         uint16_t Pmax=0,numVpd;
  670 
  671         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
  672                 /* work forwards cuase lowest pdGain for highest power */
  673                 numVpd = data->pDataPerPDGain[ii].numVpd;
  674                 if (numVpd > 0) {
  675                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
  676                         return(Pmax);
  677                 }
  678         }
  679         return(Pmax);
  680 }
  681 
  682 static HAL_BOOL
  683 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
  684         const struct ieee80211_channel *chan,
  685         int16_t *maxPow, int16_t *minPow)
  686 {
  687         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
  688         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
  689         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
  690         const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
  691         uint16_t numChannels;
  692         int totalD,totalF, totalMin,last, i;
  693 
  694         *maxPow = 0;
  695 
  696         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
  697                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
  698         else if (IEEE80211_IS_CHAN_B(chan))
  699                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
  700         else {
  701                 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
  702                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
  703         }
  704 
  705         numChannels = pRawDataset->numChannels;
  706         data = pRawDataset->pDataPerChannel;
  707 
  708         /* Make sure the channel is in the range of the TP values 
  709          *  (freq piers)
  710          */
  711         if (numChannels < 1)
  712                 return(AH_FALSE);
  713 
  714         if ((freq < data[0].channelValue) ||
  715             (freq > data[numChannels-1].channelValue)) {
  716                 if (freq < data[0].channelValue) {
  717                         *maxPow = ar5413GetMaxPower(ah, &data[0]);
  718                         *minPow = ar5413GetMinPower(ah, &data[0]);
  719                         return(AH_TRUE);
  720                 } else {
  721                         *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
  722                         *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
  723                         return(AH_TRUE);
  724                 }
  725         }
  726 
  727         /* Linearly interpolate the power value now */
  728         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
  729              last = i++);
  730         totalD = data[i].channelValue - data[last].channelValue;
  731         if (totalD > 0) {
  732                 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
  733                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
  734                                      ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
  735                 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
  736                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
  737                                      ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
  738                 return(AH_TRUE);
  739         } else {
  740                 if (freq == data[i].channelValue) {
  741                         *maxPow = ar5413GetMaxPower(ah, &data[i]);
  742                         *minPow = ar5413GetMinPower(ah, &data[i]);
  743                         return(AH_TRUE);
  744                 } else
  745                         return(AH_FALSE);
  746         }
  747 }
  748 
  749 /*
  750  * Free memory for analog bank scratch buffers
  751  */
  752 static void
  753 ar5413RfDetach(struct ath_hal *ah)
  754 {
  755         struct ath_hal_5212 *ahp = AH5212(ah);
  756 
  757         HALASSERT(ahp->ah_rfHal != AH_NULL);
  758         ath_hal_free(ahp->ah_rfHal);
  759         ahp->ah_rfHal = AH_NULL;
  760 }
  761 
  762 /*
  763  * Allocate memory for analog bank scratch buffers
  764  * Scratch Buffer will be reinitialized every reset so no need to zero now
  765  */
  766 static HAL_BOOL
  767 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
  768 {
  769         struct ath_hal_5212 *ahp = AH5212(ah);
  770         struct ar5413State *priv;
  771 
  772         HALASSERT(ah->ah_magic == AR5212_MAGIC);
  773 
  774         HALASSERT(ahp->ah_rfHal == AH_NULL);
  775         priv = ath_hal_malloc(sizeof(struct ar5413State));
  776         if (priv == AH_NULL) {
  777                 HALDEBUG(ah, HAL_DEBUG_ANY,
  778                     "%s: cannot allocate private state\n", __func__);
  779                 *status = HAL_ENOMEM;           /* XXX */
  780                 return AH_FALSE;
  781         }
  782         priv->base.rfDetach             = ar5413RfDetach;
  783         priv->base.writeRegs            = ar5413WriteRegs;
  784         priv->base.getRfBank            = ar5413GetRfBank;
  785         priv->base.setChannel           = ar5413SetChannel;
  786         priv->base.setRfRegs            = ar5413SetRfRegs;
  787         priv->base.setPowerTable        = ar5413SetPowerTable;
  788         priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
  789         priv->base.getNfAdjust          = ar5212GetNfAdjust;
  790 
  791         ahp->ah_pcdacTable = priv->pcdacTable;
  792         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
  793         ahp->ah_rfHal = &priv->base;
  794 
  795         return AH_TRUE;
  796 }
  797 
  798 static HAL_BOOL
  799 ar5413Probe(struct ath_hal *ah)
  800 {
  801         return IS_5413(ah);
  802 }
  803 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);

Cache object: ebdb6015907d9a2d16dc40e3f2cc5060


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.