1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD$
20 */
21 #include "opt_ah.h"
22
23 #include "ah.h"
24 #include "ah_internal.h"
25 #include "ah_devid.h"
26
27 #include "ah_eeprom_v14.h"
28
29 #include "ar5416/ar5416.h"
30 #include "ar5416/ar5416reg.h"
31 #include "ar5416/ar5416phy.h"
32
33 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
34 #define EEP_MINOR(_ah) \
35 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
36 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
37 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
38
39 /* Additional Time delay to wait after activiting the Base band */
40 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
41 #define PLL_SETTLE_DELAY 300 /* 300 usec */
42 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
43
44 static void ar5416InitDMA(struct ath_hal *ah);
45 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
46 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
47 static void ar5416InitQoS(struct ath_hal *ah);
48 static void ar5416InitUserSettings(struct ath_hal *ah);
49 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
50
51 #if 0
52 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
53 #endif
54 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
55
56 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
57 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
58 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
59 struct ar5416eeprom *pEepData,
60 const struct ieee80211_channel *chan, int16_t *ratesArray,
61 uint16_t cfgCtl, uint16_t AntennaReduction,
62 uint16_t twiceMaxRegulatoryPower,
63 uint16_t powerLimit);
64 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
65 static void ar5416MarkPhyInactive(struct ath_hal *ah);
66 static void ar5416SetIFSTiming(struct ath_hal *ah,
67 const struct ieee80211_channel *chan);
68
69 /*
70 * Places the device in and out of reset and then places sane
71 * values in the registers based on EEPROM config, initialization
72 * vectors (as determined by the mode), and station configuration
73 *
74 * bChannelChange is used to preserve DMA/PCU registers across
75 * a HW Reset during channel change.
76 */
77 HAL_BOOL
78 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
79 struct ieee80211_channel *chan,
80 HAL_BOOL bChannelChange,
81 HAL_RESET_TYPE resetType,
82 HAL_STATUS *status)
83 {
84 #define N(a) (sizeof (a) / sizeof (a[0]))
85 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
86 struct ath_hal_5212 *ahp = AH5212(ah);
87 HAL_CHANNEL_INTERNAL *ichan;
88 uint32_t saveDefAntenna, saveLedState;
89 uint32_t macStaId1;
90 uint16_t rfXpdGain[2];
91 HAL_STATUS ecode;
92 uint32_t powerVal, rssiThrReg;
93 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
94 int i;
95 uint64_t tsf = 0;
96
97 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
98
99 /* Bring out of sleep mode */
100 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
101 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
102 __func__);
103 FAIL(HAL_EIO);
104 }
105
106 /*
107 * Map public channel to private.
108 */
109 ichan = ath_hal_checkchannel(ah, chan);
110 if (ichan == AH_NULL)
111 FAIL(HAL_EINVAL);
112 switch (opmode) {
113 case HAL_M_STA:
114 case HAL_M_IBSS:
115 case HAL_M_HOSTAP:
116 case HAL_M_MONITOR:
117 break;
118 default:
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
120 __func__, opmode);
121 FAIL(HAL_EINVAL);
122 break;
123 }
124 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
125
126 /* Blank the channel survey statistics */
127 ath_hal_survey_clear(ah);
128
129 /* XXX Turn on fast channel change for 5416 */
130
131 /*
132 * Preserve the bmiss rssi threshold and count threshold
133 * across resets
134 */
135 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
136 /* If reg is zero, first time thru set to default val */
137 if (rssiThrReg == 0)
138 rssiThrReg = INIT_RSSI_THR;
139
140 /*
141 * Preserve the antenna on a channel change
142 */
143 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
144
145 /*
146 * Don't do this for the AR9285 - it breaks RX for single
147 * antenna designs when diversity is disabled.
148 *
149 * I'm not sure what this was working around; it may be
150 * something to do with the AR5416. Certainly this register
151 * isn't supposed to be used by the MIMO chips for anything
152 * except for defining the default antenna when an external
153 * phase array / smart antenna is connected.
154 *
155 * See PR: kern/179269 .
156 */
157 if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */
158 saveDefAntenna = 1;
159
160 /* Save hardware flag before chip reset clears the register */
161 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
162 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
163
164 /* Save led state from pci config register */
165 saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
166 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
167 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
168
169 /* For chips on which the RTC reset is done, save TSF before it gets cleared */
170 if (AR_SREV_HOWL(ah) ||
171 (AR_SREV_MERLIN(ah) &&
172 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
173 (resetType == HAL_RESET_FORCE_COLD) ||
174 (resetType == HAL_RESET_BBPANIC) ||
175 (ah->ah_config.ah_force_full_reset))
176 tsf = ar5416GetTsf64(ah);
177
178 /* Mark PHY as inactive; marked active in ar5416InitBB() */
179 ar5416MarkPhyInactive(ah);
180
181 if (!ar5416ChipReset(ah, chan, resetType)) {
182 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
183 FAIL(HAL_EIO);
184 }
185
186 /* Restore TSF */
187 if (tsf)
188 ar5416SetTsf64(ah, tsf);
189
190 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
191 if (AR_SREV_MERLIN_10_OR_LATER(ah))
192 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
193
194 AH5416(ah)->ah_writeIni(ah, chan);
195
196 if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
197 /* Enable ASYNC FIFO */
198 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
199 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
200 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
201 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
202 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
203 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
204 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
205 }
206
207 /* Override ini values (that can be overridden in this fashion) */
208 ar5416OverrideIni(ah, chan);
209
210 /* Setup 11n MAC/Phy mode registers */
211 ar5416Set11nRegs(ah, chan);
212
213 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
214
215 /*
216 * Some AR91xx SoC devices frequently fail to accept TSF writes
217 * right after the chip reset. When that happens, write a new
218 * value after the initvals have been applied, with an offset
219 * based on measured time difference
220 */
221 if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
222 tsf += 1500;
223 ar5416SetTsf64(ah, tsf);
224 }
225
226 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
227 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
228 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
229 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
230
231 /*
232 * This routine swaps the analog chains - it should be done
233 * before any radio register twiddling is done.
234 */
235 ar5416InitChainMasks(ah);
236
237 /* Setup the open-loop power calibration if required */
238 if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
239 AH5416(ah)->ah_olcInit(ah);
240 AH5416(ah)->ah_olcTempCompensation(ah);
241 }
242
243 /* Setup the transmit power values. */
244 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
245 HALDEBUG(ah, HAL_DEBUG_ANY,
246 "%s: error init'ing transmit power\n", __func__);
247 FAIL(HAL_EIO);
248 }
249
250 /* Write the analog registers */
251 if (!ahp->ah_rfHal->setRfRegs(ah, chan,
252 IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
253 HALDEBUG(ah, HAL_DEBUG_ANY,
254 "%s: ar5212SetRfRegs failed\n", __func__);
255 FAIL(HAL_EIO);
256 }
257
258 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
259 if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
260 ar5416SetDeltaSlope(ah, chan);
261
262 AH5416(ah)->ah_spurMitigate(ah, chan);
263
264 /* Setup board specific options for EEPROM version 3 */
265 if (!ah->ah_setBoardValues(ah, chan)) {
266 HALDEBUG(ah, HAL_DEBUG_ANY,
267 "%s: error setting board options\n", __func__);
268 FAIL(HAL_EIO);
269 }
270
271 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
272
273 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
274 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
275 | macStaId1
276 | AR_STA_ID1_RTS_USE_DEF
277 | ahp->ah_staId1Defaults
278 );
279 ar5212SetOperatingMode(ah, opmode);
280
281 /* Set Venice BSSID mask according to current state */
282 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
283 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
284
285 /* Restore previous led state */
286 if (AR_SREV_HOWL(ah))
287 OS_REG_WRITE(ah, AR_MAC_LED,
288 AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
289 else
290 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
291 saveLedState);
292
293 /* Start TSF2 for generic timer 8-15 */
294 #ifdef NOTYET
295 if (AR_SREV_KIWI(ah))
296 ar5416StartTsf2(ah);
297 #endif
298
299 /*
300 * Enable Bluetooth Coexistence if it's enabled.
301 */
302 if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
303 ar5416InitBTCoex(ah);
304
305 /* Restore previous antenna */
306 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
307
308 /* then our BSSID and associate id */
309 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
310 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
311 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
312
313 /* Restore bmiss rssi & count thresholds */
314 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
315
316 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
317
318 /* Restore bmiss rssi & count thresholds */
319 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
320
321 if (!ar5212SetChannel(ah, chan))
322 FAIL(HAL_EIO);
323
324 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
325
326 /* Set 1:1 QCU to DCU mapping for all queues */
327 for (i = 0; i < AR_NUM_DCU; i++)
328 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
329
330 ahp->ah_intrTxqs = 0;
331 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
332 ah->ah_resetTxQueue(ah, i);
333
334 ar5416InitIMR(ah, opmode);
335 ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
336 ar5416InitQoS(ah);
337 /* This may override the AR_DIAG_SW register */
338 ar5416InitUserSettings(ah);
339
340 /* XXX this won't work for AR9287! */
341 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
342 ar5416SetIFSTiming(ah, chan);
343 #if 0
344 /*
345 * AR5413?
346 * Force window_length for 1/2 and 1/4 rate channels,
347 * the ini file sets this to zero otherwise.
348 */
349 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
350 AR_PHY_FRAME_CTL_WINLEN, 3);
351 }
352 #endif
353 }
354
355 if (AR_SREV_KIWI_13_OR_LATER(ah)) {
356 /*
357 * Enable ASYNC FIFO
358 *
359 * If Async FIFO is enabled, the following counters change
360 * as MAC now runs at 117 Mhz instead of 88/44MHz when
361 * async FIFO is disabled.
362 *
363 * Overwrite the delay/timeouts initialized in ProcessIni()
364 * above.
365 */
366 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
367 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
368 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
369 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
370 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
371 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
372
373 OS_REG_WRITE(ah, AR_TIME_OUT,
374 AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
375 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
376
377 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
378 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
379 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
380 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
381 }
382
383 if (AR_SREV_KIWI_13_OR_LATER(ah)) {
384 /* Enable AGGWEP to accelerate encryption engine */
385 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
386 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
387 }
388
389 /*
390 * disable seq number generation in hw
391 */
392 OS_REG_WRITE(ah, AR_STA_ID1,
393 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
394
395 ar5416InitDMA(ah);
396
397 /*
398 * program OBS bus to see MAC interrupts
399 */
400 OS_REG_WRITE(ah, AR_OBS, 8);
401
402 /*
403 * Disable the "general" TX/RX mitigation timers.
404 */
405 OS_REG_WRITE(ah, AR_MIRT, 0);
406
407 #ifdef AH_AR5416_INTERRUPT_MITIGATION
408 /*
409 * This initialises the RX interrupt mitigation timers.
410 *
411 * The mitigation timers begin at idle and are triggered
412 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
413 * Then, the RX mitigation interrupt will fire:
414 *
415 * + 250uS after the last RX'ed frame, or
416 * + 700uS after the first RX'ed frame
417 *
418 * Thus, the LAST field dictates the extra latency
419 * induced by the RX mitigation method and the FIRST
420 * field dictates how long to delay before firing an
421 * RX mitigation interrupt.
422 *
423 * Please note this only seems to be for RXOK frames;
424 * not CRC or PHY error frames.
425 *
426 */
427 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
428 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
429 #endif
430 ar5416InitBB(ah, chan);
431
432 /* Setup compression registers */
433 ar5212SetCompRegs(ah); /* XXX not needed? */
434
435 /*
436 * 5416 baseband will check the per rate power table
437 * and select the lower of the two
438 */
439 ackTpcPow = 63;
440 ctsTpcPow = 63;
441 chirpTpcPow = 63;
442 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
443 SM(ctsTpcPow, AR_TPC_CTS) |
444 SM(chirpTpcPow, AR_TPC_CHIRP);
445 OS_REG_WRITE(ah, AR_TPC, powerVal);
446
447 if (!ar5416InitCal(ah, chan))
448 FAIL(HAL_ESELFTEST);
449
450 ar5416RestoreChainMask(ah);
451
452 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
453
454 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
455 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
456
457 if (AR_SREV_HOWL(ah)) {
458 /*
459 * Enable the MBSSID block-ack fix for HOWL.
460 * This feature is only supported on Howl 1.4, but it is safe to
461 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
462 * since bit 22 is unused in those Howl revisions.
463 */
464 unsigned int reg;
465 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
466 OS_REG_WRITE(ah,AR_STA_ID1, reg);
467 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
468 }
469
470 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
471
472 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
473
474 return AH_TRUE;
475 bad:
476 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
477 if (status != AH_NULL)
478 *status = ecode;
479 return AH_FALSE;
480 #undef FAIL
481 #undef N
482 }
483
484 #if 0
485 /*
486 * This channel change evaluates whether the selected hardware can
487 * perform a synthesizer-only channel change (no reset). If the
488 * TX is not stopped, or the RFBus cannot be granted in the given
489 * time, the function returns false as a reset is necessary
490 */
491 HAL_BOOL
492 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
493 {
494 uint32_t ulCount;
495 uint32_t data, synthDelay, qnum;
496 uint16_t rfXpdGain[4];
497 struct ath_hal_5212 *ahp = AH5212(ah);
498 HAL_CHANNEL_INTERNAL *ichan;
499
500 /*
501 * Map public channel to private.
502 */
503 ichan = ath_hal_checkchannel(ah, chan);
504
505 /* TX must be stopped or RF Bus grant will not work */
506 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
507 if (ar5212NumTxPending(ah, qnum)) {
508 HALDEBUG(ah, HAL_DEBUG_ANY,
509 "%s: frames pending on queue %d\n", __func__, qnum);
510 return AH_FALSE;
511 }
512 }
513
514 /*
515 * Kill last Baseband Rx Frame - Request analog bus grant
516 */
517 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
518 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
519 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
520 __func__);
521 return AH_FALSE;
522 }
523
524 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
525
526 /* Change the synth */
527 if (!ar5212SetChannel(ah, chan))
528 return AH_FALSE;
529
530 /* Setup the transmit power values. */
531 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
532 HALDEBUG(ah, HAL_DEBUG_ANY,
533 "%s: error init'ing transmit power\n", __func__);
534 return AH_FALSE;
535 }
536
537 /*
538 * Wait for the frequency synth to settle (synth goes on
539 * via PHY_ACTIVE_EN). Read the phy active delay register.
540 * Value is in 100ns increments.
541 */
542 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
543 if (IS_CHAN_CCK(ichan)) {
544 synthDelay = (4 * data) / 22;
545 } else {
546 synthDelay = data / 10;
547 }
548
549 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
550
551 /* Release the RFBus Grant */
552 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
553
554 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
555 if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
556 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
557 ar5212SetSpurMitigation(ah, chan);
558 ar5416SetDeltaSlope(ah, chan);
559 }
560
561 /* XXX spur mitigation for Melin */
562
563 if (!IEEE80211_IS_CHAN_DFS(chan))
564 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
565
566 ichan->channel_time = 0;
567 ichan->tsf_last = ar5416GetTsf64(ah);
568 ar5212TxEnable(ah, AH_TRUE);
569 return AH_TRUE;
570 }
571 #endif
572
573 static void
574 ar5416InitDMA(struct ath_hal *ah)
575 {
576 struct ath_hal_5212 *ahp = AH5212(ah);
577
578 /*
579 * set AHB_MODE not to do cacheline prefetches
580 */
581 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
582
583 /*
584 * let mac dma reads be in 128 byte chunks
585 */
586 OS_REG_WRITE(ah, AR_TXCFG,
587 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
588
589 /*
590 * let mac dma writes be in 128 byte chunks
591 */
592 /*
593 * XXX If you change this, you must change the headroom
594 * assigned in ah_maxTxTrigLev - see ar5416InitState().
595 */
596 OS_REG_WRITE(ah, AR_RXCFG,
597 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
598
599 /* restore TX trigger level */
600 OS_REG_WRITE(ah, AR_TXCFG,
601 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
602 SM(ahp->ah_txTrigLev, AR_FTRIG));
603
604 /*
605 * Setup receive FIFO threshold to hold off TX activities
606 */
607 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
608
609 /*
610 * reduce the number of usable entries in PCU TXBUF to avoid
611 * wrap around.
612 */
613 if (AR_SREV_KITE(ah))
614 /*
615 * For AR9285 the number of Fifos are reduced to half.
616 * So set the usable tx buf size also to half to
617 * avoid data/delimiter underruns
618 */
619 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
620 else
621 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
622 }
623
624 static void
625 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
626 {
627 uint32_t synthDelay;
628
629 /*
630 * Wait for the frequency synth to settle (synth goes on
631 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
632 * Value is in 100ns increments.
633 */
634 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
635 if (IEEE80211_IS_CHAN_CCK(chan)) {
636 synthDelay = (4 * synthDelay) / 22;
637 } else {
638 synthDelay /= 10;
639 }
640
641 /* Turn on PLL on 5416 */
642 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
643 __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
644
645 /* Activate the PHY (includes baseband activate and synthesizer on) */
646 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
647
648 /*
649 * If the AP starts the calibration before the base band timeout
650 * completes we could get rx_clear false triggering. Add an
651 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
652 * does not happen.
653 */
654 if (IEEE80211_IS_CHAN_HALF(chan)) {
655 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
656 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
657 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
658 } else {
659 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
660 }
661 }
662
663 static void
664 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
665 {
666 struct ath_hal_5212 *ahp = AH5212(ah);
667
668 /*
669 * Setup interrupt handling. Note that ar5212ResetTxQueue
670 * manipulates the secondary IMR's as queues are enabled
671 * and disabled. This is done with RMW ops to insure the
672 * settings we make here are preserved.
673 */
674 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
675 | AR_IMR_RXERR | AR_IMR_RXORN
676 | AR_IMR_BCNMISC;
677
678 #ifdef AH_AR5416_INTERRUPT_MITIGATION
679 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
680 #else
681 ahp->ah_maskReg |= AR_IMR_RXOK;
682 #endif
683 ahp->ah_maskReg |= AR_IMR_TXOK;
684
685 if (opmode == HAL_M_HOSTAP)
686 ahp->ah_maskReg |= AR_IMR_MIB;
687 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
688
689 #ifdef ADRIAN_NOTYET
690 /* This is straight from ath9k */
691 if (! AR_SREV_HOWL(ah)) {
692 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
693 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
694 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
695 }
696 #endif
697
698 /* Enable bus errors that are OR'd to set the HIUERR bit */
699 #if 0
700 OS_REG_WRITE(ah, AR_IMR_S2,
701 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
702 #endif
703 }
704
705 static void
706 ar5416InitQoS(struct ath_hal *ah)
707 {
708 /* QoS support */
709 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
710 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
711
712 /* Turn on NOACK Support for QoS packets */
713 OS_REG_WRITE(ah, AR_NOACK,
714 SM(2, AR_NOACK_2BIT_VALUE) |
715 SM(5, AR_NOACK_BIT_OFFSET) |
716 SM(0, AR_NOACK_BYTE_OFFSET));
717
718 /*
719 * initialize TXOP for all TIDs
720 */
721 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
722 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
723 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
724 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
725 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
726 }
727
728 static void
729 ar5416InitUserSettings(struct ath_hal *ah)
730 {
731 struct ath_hal_5212 *ahp = AH5212(ah);
732
733 /* Restore user-specified settings */
734 if (ahp->ah_miscMode != 0)
735 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
736 | ahp->ah_miscMode);
737 if (ahp->ah_sifstime != (u_int) -1)
738 ar5212SetSifsTime(ah, ahp->ah_sifstime);
739 if (ahp->ah_slottime != (u_int) -1)
740 ar5212SetSlotTime(ah, ahp->ah_slottime);
741 if (ahp->ah_acktimeout != (u_int) -1)
742 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
743 if (ahp->ah_ctstimeout != (u_int) -1)
744 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
745 if (AH_PRIVATE(ah)->ah_diagreg != 0)
746 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
747 if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
748 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
749 }
750
751 static void
752 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
753 {
754 uint32_t rfMode;
755
756 if (chan == AH_NULL)
757 return;
758
759 /* treat channel B as channel G , no B mode suport in owl */
760 rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
761 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
762
763 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
764 /* phy mode bits for 5GHz channels require Fast Clock */
765 rfMode |= AR_PHY_MODE_DYNAMIC
766 | AR_PHY_MODE_DYN_CCK_DISABLE;
767 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
768 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
769 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
770 }
771
772 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
773 }
774
775 /*
776 * Places the hardware into reset and then pulls it out of reset
777 */
778 HAL_BOOL
779 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
780 HAL_RESET_TYPE resetType)
781 {
782 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
783 /*
784 * Warm reset is optimistic for open-loop TX power control.
785 */
786 if (AR_SREV_MERLIN(ah) &&
787 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
788 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
789 return AH_FALSE;
790 } else if (ah->ah_config.ah_force_full_reset) {
791 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
792 return AH_FALSE;
793 } else if ((resetType == HAL_RESET_FORCE_COLD) ||
794 (resetType == HAL_RESET_BBPANIC)) {
795 HALDEBUG(ah, HAL_DEBUG_RESET,
796 "%s: full reset; resetType=%d\n",
797 __func__, resetType);
798 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
799 return AH_FALSE;
800 } else {
801 if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
802 return AH_FALSE;
803 }
804
805 /* Bring out of sleep mode (AGAIN) */
806 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
807 return AH_FALSE;
808
809 #ifdef notyet
810 ahp->ah_chipFullSleep = AH_FALSE;
811 #endif
812
813 AH5416(ah)->ah_initPLL(ah, chan);
814
815 /*
816 * Perform warm reset before the mode/PLL/turbo registers
817 * are changed in order to deactivate the radio. Mode changes
818 * with an active radio can result in corrupted shifts to the
819 * radio device.
820 */
821 ar5416SetRfMode(ah, chan);
822
823 return AH_TRUE;
824 }
825
826 /*
827 * Delta slope coefficient computation.
828 * Required for OFDM operation.
829 */
830 static void
831 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
832 uint32_t *coef_mantissa, uint32_t *coef_exponent)
833 {
834 #define COEF_SCALE_S 24
835 uint32_t coef_exp, coef_man;
836 /*
837 * ALGO -> coef_exp = 14-floor(log2(coef));
838 * floor(log2(x)) is the highest set bit position
839 */
840 for (coef_exp = 31; coef_exp > 0; coef_exp--)
841 if ((coef_scaled >> coef_exp) & 0x1)
842 break;
843 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
844 HALASSERT(coef_exp);
845 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
846
847 /*
848 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
849 * The coefficient is already shifted up for scaling
850 */
851 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
852
853 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
854 *coef_exponent = coef_exp - 16;
855
856 #undef COEF_SCALE_S
857 }
858
859 void
860 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
861 {
862 #define INIT_CLOCKMHZSCALED 0x64000000
863 uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
864 uint32_t clockMhzScaled;
865
866 CHAN_CENTERS centers;
867
868 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
869 /* scale for selected channel bandwidth */
870 clockMhzScaled = INIT_CLOCKMHZSCALED;
871 if (IEEE80211_IS_CHAN_TURBO(chan))
872 clockMhzScaled <<= 1;
873 else if (IEEE80211_IS_CHAN_HALF(chan))
874 clockMhzScaled >>= 1;
875 else if (IEEE80211_IS_CHAN_QUARTER(chan))
876 clockMhzScaled >>= 2;
877
878 /*
879 * ALGO -> coef = 1e8/fcarrier*fclock/40;
880 * scaled coef to provide precision for this floating calculation
881 */
882 ar5416GetChannelCenters(ah, chan, ¢ers);
883 coef_scaled = clockMhzScaled / centers.synth_center;
884
885 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
886
887 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
888 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
889 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
890 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
891
892 /*
893 * For Short GI,
894 * scaled coeff is 9/10 that of normal coeff
895 */
896 coef_scaled = (9 * coef_scaled)/10;
897
898 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
899
900 /* for short gi */
901 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
902 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
903 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
904 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
905 #undef INIT_CLOCKMHZSCALED
906 }
907
908 /*
909 * Set a limit on the overall output power. Used for dynamic
910 * transmit power control and the like.
911 *
912 * NB: limit is in units of 0.5 dbM.
913 */
914 HAL_BOOL
915 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
916 {
917 uint16_t dummyXpdGains[2];
918
919 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
920 return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
921 dummyXpdGains);
922 }
923
924 HAL_BOOL
925 ar5416GetChipPowerLimits(struct ath_hal *ah,
926 struct ieee80211_channel *chan)
927 {
928 struct ath_hal_5212 *ahp = AH5212(ah);
929 int16_t minPower, maxPower;
930
931 /*
932 * Get Pier table max and min powers.
933 */
934 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
935 /* NB: rf code returns 1/4 dBm units, convert */
936 chan->ic_maxpower = maxPower / 2;
937 chan->ic_minpower = minPower / 2;
938 } else {
939 HALDEBUG(ah, HAL_DEBUG_ANY,
940 "%s: no min/max power for %u/0x%x\n",
941 __func__, chan->ic_freq, chan->ic_flags);
942 chan->ic_maxpower = AR5416_MAX_RATE_POWER;
943 chan->ic_minpower = 0;
944 }
945 HALDEBUG(ah, HAL_DEBUG_RESET,
946 "Chan %d: MaxPow = %d MinPow = %d\n",
947 chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
948 return AH_TRUE;
949 }
950
951 /**************************************************************
952 * ar5416WriteTxPowerRateRegisters
953 *
954 * Write the TX power rate registers from the raw values given
955 * in ratesArray[].
956 *
957 * The CCK and HT40 rate registers are only written if needed.
958 * HT20 and 11g/11a OFDM rate registers are always written.
959 *
960 * The values written are raw values which should be written
961 * to the registers - so it's up to the caller to pre-adjust
962 * them (eg CCK power offset value, or Merlin TX power offset,
963 * etc.)
964 */
965 void
966 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
967 const struct ieee80211_channel *chan, const int16_t ratesArray[])
968 {
969 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
970
971 /* Write the OFDM power per rate set */
972 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
973 POW_SM(ratesArray[rate18mb], 24)
974 | POW_SM(ratesArray[rate12mb], 16)
975 | POW_SM(ratesArray[rate9mb], 8)
976 | POW_SM(ratesArray[rate6mb], 0)
977 );
978 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
979 POW_SM(ratesArray[rate54mb], 24)
980 | POW_SM(ratesArray[rate48mb], 16)
981 | POW_SM(ratesArray[rate36mb], 8)
982 | POW_SM(ratesArray[rate24mb], 0)
983 );
984
985 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
986 /* Write the CCK power per rate set */
987 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
988 POW_SM(ratesArray[rate2s], 24)
989 | POW_SM(ratesArray[rate2l], 16)
990 | POW_SM(ratesArray[rateXr], 8) /* XR target power */
991 | POW_SM(ratesArray[rate1l], 0)
992 );
993 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
994 POW_SM(ratesArray[rate11s], 24)
995 | POW_SM(ratesArray[rate11l], 16)
996 | POW_SM(ratesArray[rate5_5s], 8)
997 | POW_SM(ratesArray[rate5_5l], 0)
998 );
999 HALDEBUG(ah, HAL_DEBUG_RESET,
1000 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1001 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1002 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1003 }
1004
1005 /* Write the HT20 power per rate set */
1006 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1007 POW_SM(ratesArray[rateHt20_3], 24)
1008 | POW_SM(ratesArray[rateHt20_2], 16)
1009 | POW_SM(ratesArray[rateHt20_1], 8)
1010 | POW_SM(ratesArray[rateHt20_0], 0)
1011 );
1012 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1013 POW_SM(ratesArray[rateHt20_7], 24)
1014 | POW_SM(ratesArray[rateHt20_6], 16)
1015 | POW_SM(ratesArray[rateHt20_5], 8)
1016 | POW_SM(ratesArray[rateHt20_4], 0)
1017 );
1018
1019 if (IEEE80211_IS_CHAN_HT40(chan)) {
1020 /* Write the HT40 power per rate set */
1021 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1022 POW_SM(ratesArray[rateHt40_3], 24)
1023 | POW_SM(ratesArray[rateHt40_2], 16)
1024 | POW_SM(ratesArray[rateHt40_1], 8)
1025 | POW_SM(ratesArray[rateHt40_0], 0)
1026 );
1027 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1028 POW_SM(ratesArray[rateHt40_7], 24)
1029 | POW_SM(ratesArray[rateHt40_6], 16)
1030 | POW_SM(ratesArray[rateHt40_5], 8)
1031 | POW_SM(ratesArray[rateHt40_4], 0)
1032 );
1033 /* Write the Dup/Ext 40 power per rate set */
1034 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1035 POW_SM(ratesArray[rateExtOfdm], 24)
1036 | POW_SM(ratesArray[rateExtCck], 16)
1037 | POW_SM(ratesArray[rateDupOfdm], 8)
1038 | POW_SM(ratesArray[rateDupCck], 0)
1039 );
1040 }
1041
1042 /*
1043 * Set max power to 30 dBm and, optionally,
1044 * enable TPC in tx descriptors.
1045 */
1046 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1047 (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1048 #undef POW_SM
1049 }
1050
1051 /**************************************************************
1052 * ar5416SetTransmitPower
1053 *
1054 * Set the transmit power in the baseband for the given
1055 * operating channel and mode.
1056 */
1057 HAL_BOOL
1058 ar5416SetTransmitPower(struct ath_hal *ah,
1059 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1060 {
1061 #define N(a) (sizeof (a) / sizeof (a[0]))
1062 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
1063
1064 MODAL_EEP_HEADER *pModal;
1065 struct ath_hal_5212 *ahp = AH5212(ah);
1066 int16_t txPowerIndexOffset = 0;
1067 int i;
1068
1069 uint16_t cfgCtl;
1070 uint16_t powerLimit;
1071 uint16_t twiceAntennaReduction;
1072 uint16_t twiceMaxRegulatoryPower;
1073 int16_t maxPower;
1074 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1075 struct ar5416eeprom *pEepData = &ee->ee_base;
1076
1077 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1078
1079 /*
1080 * Default to 2, is overridden based on the EEPROM version / value.
1081 */
1082 AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1083
1084 /* Setup info for the actual eeprom */
1085 OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1086 cfgCtl = ath_hal_getctl(ah, chan);
1087 powerLimit = chan->ic_maxregpower * 2;
1088 twiceAntennaReduction = chan->ic_maxantgain;
1089 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1090 pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1091 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1092 __func__,chan->ic_freq, cfgCtl );
1093
1094 if (IS_EEP_MINOR_V2(ah)) {
1095 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1096 }
1097
1098 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
1099 &AH5416(ah)->ah_ratesArray[0],
1100 cfgCtl,
1101 twiceAntennaReduction,
1102 twiceMaxRegulatoryPower, powerLimit)) {
1103 HALDEBUG(ah, HAL_DEBUG_ANY,
1104 "%s: unable to set tx power per rate table\n", __func__);
1105 return AH_FALSE;
1106 }
1107
1108 if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
1109 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1110 __func__);
1111 return AH_FALSE;
1112 }
1113
1114 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1115 AH5416(ah)->ah_ratesArray[rateHt20_0]);
1116
1117 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1118 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1119 }
1120
1121 if (IEEE80211_IS_CHAN_HT40(chan)) {
1122 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1123 }
1124
1125 ahp->ah_tx6PowerInHalfDbm = maxPower;
1126 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1127 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1128
1129 /*
1130 * txPowerIndexOffset is set by the SetPowerTable() call -
1131 * adjust the rate table (0 offset if rates EEPROM not loaded)
1132 */
1133 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1134 AH5416(ah)->ah_ratesArray[i] =
1135 (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1136 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1137 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1138 }
1139
1140 #ifdef AH_EEPROM_DUMP
1141 /*
1142 * Dump the rate array whilst it represents the intended dBm*2
1143 * values versus what's being adjusted before being programmed
1144 * in. Keep this in mind if you code up this function and enable
1145 * this debugging; the values won't necessarily be what's being
1146 * programmed into the hardware.
1147 */
1148 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1149 #endif
1150
1151 /*
1152 * Merlin and later have a power offset, so subtract
1153 * pwr_table_offset * 2 from each value. The default
1154 * power offset is -5 dBm - ie, a register value of 0
1155 * equates to a TX power of -5 dBm.
1156 */
1157 if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1158 int8_t pwr_table_offset;
1159
1160 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1161 &pwr_table_offset);
1162 /* Underflow power gets clamped at raw value 0 */
1163 /* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1164 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1165 /*
1166 * + pwr_table_offset is in dBm
1167 * + ratesArray is in 1/2 dBm
1168 */
1169 AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1170 if (AH5416(ah)->ah_ratesArray[i] < 0)
1171 AH5416(ah)->ah_ratesArray[i] = 0;
1172 else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1173 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1174 }
1175 }
1176
1177 /*
1178 * Adjust rates for OLC where needed
1179 *
1180 * The following CCK rates need adjusting when doing 2.4ghz
1181 * CCK transmission.
1182 *
1183 * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1184 * + rateExtCck, rateDupCck
1185 *
1186 * They're adjusted here regardless. The hardware then gets
1187 * programmed as needed. 5GHz operation doesn't program in CCK
1188 * rates for legacy mode but they seem to be initialised for
1189 * HT40 regardless of channel type.
1190 */
1191 if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1192 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1193 int adj[] = {
1194 rate2s, rate2l, rate1l, rate11s, rate11l,
1195 rate5_5s, rate5_5l, rateExtCck, rateDupCck
1196 };
1197 int cck_ofdm_delta = 2;
1198 int i;
1199 for (i = 0; i < N(adj); i++) {
1200 AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1201 if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1202 AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1203 }
1204 }
1205
1206 /*
1207 * Adjust the HT40 power to meet the correct target TX power
1208 * for 40MHz mode, based on TX power curves that are established
1209 * for 20MHz mode.
1210 *
1211 * XXX handle overflow/too high power level?
1212 */
1213 if (IEEE80211_IS_CHAN_HT40(chan)) {
1214 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1215 AH5416(ah)->ah_ht40PowerIncForPdadc;
1216 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1217 AH5416(ah)->ah_ht40PowerIncForPdadc;
1218 AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1219 AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1220 AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1221 AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1222 AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1223 AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1224 }
1225
1226 /* Write the TX power rate registers */
1227 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1228
1229 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1230 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1231 POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1232 | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1233 );
1234 return AH_TRUE;
1235 #undef POW_SM
1236 #undef N
1237 }
1238
1239 /*
1240 * Exported call to check for a recent gain reading and return
1241 * the current state of the thermal calibration gain engine.
1242 */
1243 HAL_RFGAIN
1244 ar5416GetRfgain(struct ath_hal *ah)
1245 {
1246
1247 return (HAL_RFGAIN_INACTIVE);
1248 }
1249
1250 /*
1251 * Places all of hardware into reset
1252 */
1253 HAL_BOOL
1254 ar5416Disable(struct ath_hal *ah)
1255 {
1256
1257 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1258 return AH_FALSE;
1259 if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1260 return AH_FALSE;
1261
1262 AH5416(ah)->ah_initPLL(ah, AH_NULL);
1263 return (AH_TRUE);
1264 }
1265
1266 /*
1267 * Places the PHY and Radio chips into reset. A full reset
1268 * must be called to leave this state. The PCI/MAC/PCU are
1269 * not placed into reset as we must receive interrupt to
1270 * re-enable the hardware.
1271 */
1272 HAL_BOOL
1273 ar5416PhyDisable(struct ath_hal *ah)
1274 {
1275
1276 if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1277 return AH_FALSE;
1278
1279 AH5416(ah)->ah_initPLL(ah, AH_NULL);
1280 return (AH_TRUE);
1281 }
1282
1283 /*
1284 * Write the given reset bit mask into the reset register
1285 */
1286 HAL_BOOL
1287 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1288 {
1289 /*
1290 * Set force wake
1291 */
1292 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1293 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1294
1295 switch (type) {
1296 case HAL_RESET_POWER_ON:
1297 return ar5416SetResetPowerOn(ah);
1298 case HAL_RESET_WARM:
1299 case HAL_RESET_COLD:
1300 return ar5416SetReset(ah, type);
1301 default:
1302 HALASSERT(AH_FALSE);
1303 return AH_FALSE;
1304 }
1305 }
1306
1307 static HAL_BOOL
1308 ar5416SetResetPowerOn(struct ath_hal *ah)
1309 {
1310 /* Power On Reset (Hard Reset) */
1311
1312 /*
1313 * Set force wake
1314 *
1315 * If the MAC was running, previously calling
1316 * reset will wake up the MAC but it may go back to sleep
1317 * before we can start polling.
1318 * Set force wake stops that
1319 * This must be called before initiating a hard reset.
1320 */
1321 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1322 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1323
1324 /*
1325 * PowerOn reset can be used in open loop power control or failure recovery.
1326 * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1327 * Therefore, we need to reset AHB first to stop DMA.
1328 */
1329 if (! AR_SREV_HOWL(ah))
1330 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1331 /*
1332 * RTC reset and clear
1333 */
1334 OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1335 OS_DELAY(20);
1336
1337 if (! AR_SREV_HOWL(ah))
1338 OS_REG_WRITE(ah, AR_RC, 0);
1339
1340 OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1341
1342 /*
1343 * Poll till RTC is ON
1344 */
1345 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1346 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1347 return AH_FALSE;
1348 }
1349
1350 return ar5416SetReset(ah, HAL_RESET_COLD);
1351 }
1352
1353 static HAL_BOOL
1354 ar5416SetReset(struct ath_hal *ah, int type)
1355 {
1356 uint32_t tmpReg, mask;
1357 uint32_t rst_flags;
1358
1359 #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */
1360 if (AR_SREV_HOWL(ah)) {
1361 HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1362 uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1363 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1364 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1365 OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1366 (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1367 }
1368 #endif /* AH_SUPPORT_AR9130 */
1369
1370 /*
1371 * Force wake
1372 */
1373 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1374 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1375
1376 #ifdef AH_SUPPORT_AR9130
1377 if (AR_SREV_HOWL(ah)) {
1378 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1379 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1380 } else {
1381 #endif /* AH_SUPPORT_AR9130 */
1382 /*
1383 * Reset AHB
1384 *
1385 * (In case the last interrupt source was a bus timeout.)
1386 * XXX TODO: this is not the way to do it! It should be recorded
1387 * XXX by the interrupt handler and passed _into_ the
1388 * XXX reset path routine so this occurs.
1389 */
1390 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1391 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1392 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1393 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1394 } else {
1395 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1396 }
1397 rst_flags = AR_RTC_RC_MAC_WARM;
1398 if (type == HAL_RESET_COLD)
1399 rst_flags |= AR_RTC_RC_MAC_COLD;
1400 #ifdef AH_SUPPORT_AR9130
1401 }
1402 #endif /* AH_SUPPORT_AR9130 */
1403
1404 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1405
1406 if (AR_SREV_HOWL(ah))
1407 OS_DELAY(10000);
1408 else
1409 OS_DELAY(100);
1410
1411 /*
1412 * Clear resets and force wakeup
1413 */
1414 OS_REG_WRITE(ah, AR_RTC_RC, 0);
1415 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1416 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1417 return AH_FALSE;
1418 }
1419
1420 /* Clear AHB reset */
1421 if (! AR_SREV_HOWL(ah))
1422 OS_REG_WRITE(ah, AR_RC, 0);
1423
1424 if (AR_SREV_HOWL(ah))
1425 OS_DELAY(50);
1426
1427 if (AR_SREV_HOWL(ah)) {
1428 uint32_t mask;
1429 mask = OS_REG_READ(ah, AR_CFG);
1430 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1431 HALDEBUG(ah, HAL_DEBUG_RESET,
1432 "CFG Byte Swap Set 0x%x\n", mask);
1433 } else {
1434 mask =
1435 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1436 OS_REG_WRITE(ah, AR_CFG, mask);
1437 HALDEBUG(ah, HAL_DEBUG_RESET,
1438 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1439 }
1440 } else {
1441 if (type == HAL_RESET_COLD) {
1442 if (isBigEndian()) {
1443 /*
1444 * Set CFG, little-endian for descriptor accesses.
1445 */
1446 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1447 #ifndef AH_NEED_DESC_SWAP
1448 mask |= AR_CFG_SWTD;
1449 #endif
1450 HALDEBUG(ah, HAL_DEBUG_RESET,
1451 "%s Applying descriptor swap\n", __func__);
1452 OS_REG_WRITE(ah, AR_CFG, mask);
1453 } else
1454 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1455 }
1456 }
1457
1458 return AH_TRUE;
1459 }
1460
1461 void
1462 ar5416InitChainMasks(struct ath_hal *ah)
1463 {
1464 int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1465
1466 /* Flip this for this chainmask regardless of chip */
1467 if (rx_chainmask == 0x5)
1468 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1469
1470 /*
1471 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1472 * then set true mask after calibration.
1473 */
1474 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1475 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1476 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1477 } else {
1478 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1479 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1480 }
1481 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1482
1483 if (AH5416(ah)->ah_tx_chainmask == 0x5)
1484 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1485
1486 if (AR_SREV_HOWL(ah)) {
1487 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1488 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1489 }
1490 }
1491
1492 /*
1493 * Work-around for Owl 1.0 calibration failure.
1494 *
1495 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1496 * due to init calibration failures. ar5416RestoreChainMask restores
1497 * these registers to the correct setting.
1498 */
1499 void
1500 ar5416RestoreChainMask(struct ath_hal *ah)
1501 {
1502 int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1503
1504 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1505 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1506 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1507 }
1508 }
1509
1510 void
1511 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1512 {
1513 uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1514 if (chan != AH_NULL) {
1515 if (IEEE80211_IS_CHAN_HALF(chan))
1516 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1517 else if (IEEE80211_IS_CHAN_QUARTER(chan))
1518 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1519
1520 if (IEEE80211_IS_CHAN_5GHZ(chan))
1521 pll |= SM(0xa, AR_RTC_PLL_DIV);
1522 else
1523 pll |= SM(0xb, AR_RTC_PLL_DIV);
1524 } else
1525 pll |= SM(0xb, AR_RTC_PLL_DIV);
1526
1527 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1528
1529 /* TODO:
1530 * For multi-band owl, switch between bands by reiniting the PLL.
1531 */
1532
1533 OS_DELAY(RTC_PLL_SETTLE_DELAY);
1534
1535 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1536 }
1537
1538 static void
1539 ar5416SetDefGainValues(struct ath_hal *ah,
1540 const MODAL_EEP_HEADER *pModal,
1541 const struct ar5416eeprom *eep,
1542 uint8_t txRxAttenLocal, int regChainOffset, int i)
1543 {
1544
1545 if (IS_EEP_MINOR_V3(ah)) {
1546 txRxAttenLocal = pModal->txRxAttenCh[i];
1547
1548 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1549 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1550 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1551 pModal->bswMargin[i]);
1552 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1553 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1554 pModal->bswAtten[i]);
1555 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1556 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1557 pModal->xatten2Margin[i]);
1558 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1559 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1560 pModal->xatten2Db[i]);
1561 } else {
1562 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1563 AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1564 pModal->bswMargin[i]);
1565 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1566 AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1567 pModal->bswAtten[i]);
1568 }
1569 }
1570
1571 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1572 OS_REG_RMW_FIELD(ah,
1573 AR_PHY_RXGAIN + regChainOffset,
1574 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1575 OS_REG_RMW_FIELD(ah,
1576 AR_PHY_RXGAIN + regChainOffset,
1577 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1578 } else {
1579 OS_REG_RMW_FIELD(ah,
1580 AR_PHY_RXGAIN + regChainOffset,
1581 AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1582 OS_REG_RMW_FIELD(ah,
1583 AR_PHY_GAIN_2GHZ + regChainOffset,
1584 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1585 }
1586 }
1587
1588 /*
1589 * Get the register chain offset for the given chain.
1590 *
1591 * Take into account the register chain swapping with AR5416 v2.0.
1592 *
1593 * XXX make sure that the reg chain swapping is only done for
1594 * XXX AR5416 v2.0 or greater, and not later chips?
1595 */
1596 int
1597 ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1598 {
1599 int regChainOffset;
1600
1601 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1602 (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1603 AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1604 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1605 * only chains 0 and 2 populated
1606 */
1607 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1608 } else {
1609 regChainOffset = i * 0x1000;
1610 }
1611
1612 return regChainOffset;
1613 }
1614
1615 /*
1616 * Read EEPROM header info and program the device for correct operation
1617 * given the channel value.
1618 */
1619 HAL_BOOL
1620 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1621 {
1622 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1623 const struct ar5416eeprom *eep = &ee->ee_base;
1624 const MODAL_EEP_HEADER *pModal;
1625 int i, regChainOffset;
1626 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
1627
1628 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1629 pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1630
1631 /* NB: workaround for eeprom versions <= 14.2 */
1632 txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1633
1634 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1635 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1636 if (AR_SREV_MERLIN(ah)) {
1637 if (i >= 2) break;
1638 }
1639 regChainOffset = ar5416GetRegChainOffset(ah, i);
1640
1641 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1642
1643 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1644 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1645 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1646 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1647 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1648
1649 /*
1650 * Large signal upgrade,
1651 * If 14.3 or later EEPROM, use
1652 * txRxAttenLocal = pModal->txRxAttenCh[i]
1653 * else txRxAttenLocal is fixed value above.
1654 */
1655
1656 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1657 ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1658 }
1659
1660 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1661 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1662 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1663 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1664 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1665 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1666 } else {
1667 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1668 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1669 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1670 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1671 }
1672 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1673 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1674 !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1675 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1676 !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1677 }
1678
1679 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1680 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1681
1682 if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1683 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1684
1685 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1686 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1687 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1688 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1689 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1690
1691 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1692 pModal->txEndToRxOn);
1693
1694 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1695 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1696 pModal->thresh62);
1697 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1698 pModal->thresh62);
1699 } else {
1700 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1701 pModal->thresh62);
1702 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1703 pModal->thresh62);
1704 }
1705
1706 /* Minor Version Specific application */
1707 if (IS_EEP_MINOR_V2(ah)) {
1708 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1709 pModal->txFrameToDataStart);
1710 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1711 pModal->txFrameToPaOn);
1712 }
1713
1714 if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1715 /* Overwrite switch settling with HT40 value */
1716 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1717 pModal->swSettleHt40);
1718
1719 if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1720 OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1721
1722 if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1723 if (IEEE80211_IS_CHAN_2GHZ(chan))
1724 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1725 eep->baseEepHeader.dacLpMode);
1726 else if (eep->baseEepHeader.dacHiPwrMode_5G)
1727 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1728 else
1729 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1730 eep->baseEepHeader.dacLpMode);
1731
1732 OS_DELAY(100);
1733
1734 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1735 pModal->miscBits >> 2);
1736 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1737 eep->baseEepHeader.desiredScaleCCK);
1738 }
1739
1740 return (AH_TRUE);
1741 }
1742
1743 /*
1744 * Helper functions common for AP/CB/XB
1745 */
1746
1747 /*
1748 * Set the target power array "ratesArray" from the
1749 * given set of target powers.
1750 *
1751 * This is used by the various chipset/EEPROM TX power
1752 * setup routines.
1753 */
1754 void
1755 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1756 const struct ieee80211_channel *chan,
1757 int16_t *ratesArray,
1758 const CAL_TARGET_POWER_LEG *targetPowerCck,
1759 const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1760 const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1761 const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1762 const CAL_TARGET_POWER_HT *targetPowerHt20,
1763 const CAL_TARGET_POWER_HT *targetPowerHt40)
1764 {
1765 #define N(a) (sizeof(a)/sizeof(a[0]))
1766 int i;
1767
1768 /* Blank the rates array, to be consistent */
1769 for (i = 0; i < Ar5416RateSize; i++)
1770 ratesArray[i] = 0;
1771
1772 /* Set rates Array from collected data */
1773 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1774 ratesArray[rate18mb] = ratesArray[rate24mb] =
1775 targetPowerOfdm->tPow2x[0];
1776 ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1777 ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1778 ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1779 ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1780
1781 for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1782 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1783 }
1784
1785 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1786 ratesArray[rate1l] = targetPowerCck->tPow2x[0];
1787 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1];
1788 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1789 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1790 }
1791 if (IEEE80211_IS_CHAN_HT40(chan)) {
1792 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1793 ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1794 }
1795 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1796 ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0];
1797 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1798 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1799 ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0];
1800 }
1801 }
1802 #undef N
1803 }
1804
1805 /*
1806 * ar5416SetPowerPerRateTable
1807 *
1808 * Sets the transmit power in the baseband for the given
1809 * operating channel and mode.
1810 */
1811 static HAL_BOOL
1812 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1813 const struct ieee80211_channel *chan,
1814 int16_t *ratesArray, uint16_t cfgCtl,
1815 uint16_t AntennaReduction,
1816 uint16_t twiceMaxRegulatoryPower,
1817 uint16_t powerLimit)
1818 {
1819 #define N(a) (sizeof(a)/sizeof(a[0]))
1820 /* Local defines to distinguish between extension and control CTL's */
1821 #define EXT_ADDITIVE (0x8000)
1822 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1823 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1824 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1825
1826 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1827 int i;
1828 int16_t twiceLargestAntenna;
1829 CAL_CTL_DATA *rep;
1830 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1831 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1832 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1833 int16_t scaledPower, minCtlPower;
1834
1835 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
1836 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
1837 static const uint16_t ctlModesFor11a[] = {
1838 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1839 };
1840 static const uint16_t ctlModesFor11g[] = {
1841 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1842 };
1843 const uint16_t *pCtlMode;
1844 uint16_t numCtlModes, ctlMode, freq;
1845 CHAN_CENTERS centers;
1846
1847 ar5416GetChannelCenters(ah, chan, ¢ers);
1848
1849 /* Compute TxPower reduction due to Antenna Gain */
1850
1851 twiceLargestAntenna = AH_MAX(AH_MAX(
1852 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1853 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1854 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1855 #if 0
1856 /* Turn it back on if we need to calculate per chain antenna gain reduction */
1857 /* Use only if the expected gain > 6dbi */
1858 /* Chain 0 is always used */
1859 twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1860
1861 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1862 if (ahp->ah_tx_chainmask & 0x2)
1863 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1864 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1865
1866 if (ahp->ah_tx_chainmask & 0x4)
1867 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1868 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1869 #endif
1870 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1871
1872 /* XXX setup for 5212 use (really used?) */
1873 ath_hal_eepromSet(ah,
1874 IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1875 twiceLargestAntenna);
1876
1877 /*
1878 * scaledPower is the minimum of the user input power level and
1879 * the regulatory allowed power level
1880 */
1881 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1882
1883 /* Reduce scaled Power by number of chains active to get to per chain tx power level */
1884 /* TODO: better value than these? */
1885 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1886 case 1:
1887 break;
1888 case 2:
1889 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1890 break;
1891 case 3:
1892 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1893 break;
1894 default:
1895 return AH_FALSE; /* Unsupported number of chains */
1896 }
1897
1898 scaledPower = AH_MAX(0, scaledPower);
1899
1900 /* Get target powers from EEPROM - our baseline for TX Power */
1901 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1902 /* Setup for CTL modes */
1903 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1904 pCtlMode = ctlModesFor11g;
1905
1906 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
1907 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1908 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
1909 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1910 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
1911 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1912
1913 if (IEEE80211_IS_CHAN_HT40(chan)) {
1914 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
1915
1916 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
1917 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1918 /* Get target powers for extension channels */
1919 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
1920 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1921 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
1922 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1923 }
1924 } else {
1925 /* Setup for CTL modes */
1926 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1927 pCtlMode = ctlModesFor11a;
1928
1929 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
1930 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1931 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
1932 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1933
1934 if (IEEE80211_IS_CHAN_HT40(chan)) {
1935 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1936
1937 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
1938 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1939 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
1940 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1941 }
1942 }
1943
1944 /*
1945 * For MIMO, need to apply regulatory caps individually across dynamically
1946 * running modes: CCK, OFDM, HT20, HT40
1947 *
1948 * The outer loop walks through each possible applicable runtime mode.
1949 * The inner loop walks through each ctlIndex entry in EEPROM.
1950 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1951 *
1952 */
1953 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1954 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1955 (pCtlMode[ctlMode] == CTL_2GHT40);
1956 if (isHt40CtlMode) {
1957 freq = centers.ctl_center;
1958 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1959 freq = centers.ext_center;
1960 } else {
1961 freq = centers.ctl_center;
1962 }
1963
1964 /* walk through each CTL index stored in EEPROM */
1965 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1966 uint16_t twiceMinEdgePower;
1967
1968 /* compare test group from regulatory channel list with test mode from pCtlMode list */
1969 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1970 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1971 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1972 rep = &(pEepData->ctlData[i]);
1973 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1974 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1975 IEEE80211_IS_CHAN_2GHZ(chan));
1976 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1977 /* Find the minimum of all CTL edge powers that apply to this channel */
1978 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1979 } else {
1980 /* specific */
1981 twiceMaxEdgePower = twiceMinEdgePower;
1982 break;
1983 }
1984 }
1985 }
1986 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1987 /* Apply ctl mode to correct target power set */
1988 switch(pCtlMode[ctlMode]) {
1989 case CTL_11B:
1990 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1991 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1992 }
1993 break;
1994 case CTL_11A:
1995 case CTL_11G:
1996 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1997 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1998 }
1999 break;
2000 case CTL_5GHT20:
2001 case CTL_2GHT20:
2002 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2003 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2004 }
2005 break;
2006 case CTL_11B_EXT:
2007 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2008 break;
2009 case CTL_11A_EXT:
2010 case CTL_11G_EXT:
2011 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2012 break;
2013 case CTL_5GHT40:
2014 case CTL_2GHT40:
2015 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2016 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2017 }
2018 break;
2019 default:
2020 return AH_FALSE;
2021 break;
2022 }
2023 } /* end ctl mode checking */
2024
2025 /* Set rates Array from collected data */
2026 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2027 &targetPowerCck,
2028 &targetPowerCckExt,
2029 &targetPowerOfdm,
2030 &targetPowerOfdmExt,
2031 &targetPowerHt20,
2032 &targetPowerHt40);
2033 return AH_TRUE;
2034 #undef EXT_ADDITIVE
2035 #undef CTL_11A_EXT
2036 #undef CTL_11G_EXT
2037 #undef CTL_11B_EXT
2038 #undef SUB_NUM_CTL_MODES_AT_5G_40
2039 #undef SUB_NUM_CTL_MODES_AT_2G_40
2040 #undef N
2041 }
2042
2043 /**************************************************************************
2044 * fbin2freq
2045 *
2046 * Get channel value from binary representation held in eeprom
2047 * RETURNS: the frequency in MHz
2048 */
2049 static uint16_t
2050 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2051 {
2052 /*
2053 * Reserved value 0xFF provides an empty definition both as
2054 * an fbin and as a frequency - do not convert
2055 */
2056 if (fbin == AR5416_BCHAN_UNUSED) {
2057 return fbin;
2058 }
2059
2060 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2061 }
2062
2063 /*
2064 * ar5416GetMaxEdgePower
2065 *
2066 * Find the maximum conformance test limit for the given channel and CTL info
2067 */
2068 uint16_t
2069 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2070 {
2071 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2072 int i;
2073
2074 /* Get the edge power */
2075 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2076 /*
2077 * If there's an exact channel match or an inband flag set
2078 * on the lower channel use the given rdEdgePower
2079 */
2080 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2081 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2082 break;
2083 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2084 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2085 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2086 }
2087 /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2088 break;
2089 }
2090 }
2091 HALASSERT(twiceMaxEdgePower > 0);
2092 return twiceMaxEdgePower;
2093 }
2094
2095 /**************************************************************
2096 * ar5416GetTargetPowers
2097 *
2098 * Return the rates of target power for the given target power table
2099 * channel, and number of channels
2100 */
2101 void
2102 ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2103 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2104 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2105 HAL_BOOL isHt40Target)
2106 {
2107 uint16_t clo, chi;
2108 int i;
2109 int matchIndex = -1, lowIndex = -1;
2110 uint16_t freq;
2111 CHAN_CENTERS centers;
2112
2113 ar5416GetChannelCenters(ah, chan, ¢ers);
2114 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2115
2116 /* Copy the target powers into the temp channel list */
2117 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2118 matchIndex = 0;
2119 } else {
2120 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2121 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2122 matchIndex = i;
2123 break;
2124 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2125 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2126 {
2127 lowIndex = i - 1;
2128 break;
2129 }
2130 }
2131 if ((matchIndex == -1) && (lowIndex == -1)) {
2132 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2133 matchIndex = i - 1;
2134 }
2135 }
2136
2137 if (matchIndex != -1) {
2138 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2139 } else {
2140 HALASSERT(lowIndex != -1);
2141 /*
2142 * Get the lower and upper channels, target powers,
2143 * and interpolate between them.
2144 */
2145 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2146 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2147
2148 for (i = 0; i < numRates; i++) {
2149 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2150 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2151 }
2152 }
2153 }
2154 /**************************************************************
2155 * ar5416GetTargetPowersLeg
2156 *
2157 * Return the four rates of target power for the given target power table
2158 * channel, and number of channels
2159 */
2160 void
2161 ar5416GetTargetPowersLeg(struct ath_hal *ah,
2162 const struct ieee80211_channel *chan,
2163 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2164 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2165 HAL_BOOL isExtTarget)
2166 {
2167 uint16_t clo, chi;
2168 int i;
2169 int matchIndex = -1, lowIndex = -1;
2170 uint16_t freq;
2171 CHAN_CENTERS centers;
2172
2173 ar5416GetChannelCenters(ah, chan, ¢ers);
2174 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2175
2176 /* Copy the target powers into the temp channel list */
2177 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2178 matchIndex = 0;
2179 } else {
2180 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2181 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2182 matchIndex = i;
2183 break;
2184 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2185 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2186 {
2187 lowIndex = i - 1;
2188 break;
2189 }
2190 }
2191 if ((matchIndex == -1) && (lowIndex == -1)) {
2192 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2193 matchIndex = i - 1;
2194 }
2195 }
2196
2197 if (matchIndex != -1) {
2198 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2199 } else {
2200 HALASSERT(lowIndex != -1);
2201 /*
2202 * Get the lower and upper channels, target powers,
2203 * and interpolate between them.
2204 */
2205 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2206 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2207
2208 for (i = 0; i < numRates; i++) {
2209 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2210 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2211 }
2212 }
2213 }
2214
2215 /*
2216 * Set the gain boundaries for the given radio chain.
2217 *
2218 * The gain boundaries tell the hardware at what point in the
2219 * PDADC array to "switch over" from one PD gain setting
2220 * to another. There's also a gain overlap between two
2221 * PDADC array gain curves where there's valid PD values
2222 * for 2 gain settings.
2223 *
2224 * The hardware uses the gain overlap and gain boundaries
2225 * to determine which gain curve to use for the given
2226 * target TX power.
2227 */
2228 void
2229 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2230 uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2231 {
2232 int regChainOffset;
2233
2234 regChainOffset = ar5416GetRegChainOffset(ah, i);
2235
2236 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2237 " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2238 gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2239 gainBoundaries[3]);
2240 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2241 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2242 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
2243 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
2244 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
2245 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2246 }
2247
2248 /*
2249 * Get the gain values and the number of gain levels given
2250 * in xpdMask.
2251 *
2252 * The EEPROM xpdMask determines which power detector gain
2253 * levels were used during calibration. Each of these mask
2254 * bits maps to a fixed gain level in hardware.
2255 */
2256 uint16_t
2257 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2258 uint16_t xpdGainValues[])
2259 {
2260 int i;
2261 uint16_t numXpdGain = 0;
2262
2263 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2264 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2265 if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2266 HALASSERT(0);
2267 break;
2268 }
2269 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2270 numXpdGain++;
2271 }
2272 }
2273 return numXpdGain;
2274 }
2275
2276 /*
2277 * Write the detector gain and biases.
2278 *
2279 * There are four power detector gain levels. The xpdMask in the EEPROM
2280 * determines which power detector gain levels have TX power calibration
2281 * data associated with them. This function writes the number of
2282 * PD gain levels and their values into the hardware.
2283 *
2284 * This is valid for all TX chains - the calibration data itself however
2285 * will likely differ per-chain.
2286 */
2287 void
2288 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2289 uint16_t xpdGainValues[])
2290 {
2291 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2292 " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2293 xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2294
2295 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2296 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2297 AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2298 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2299 SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2300 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2301 SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
2302 }
2303
2304 /*
2305 * Write the PDADC array to the given radio chain i.
2306 *
2307 * The 32 PDADC registers are written without any care about
2308 * their contents - so if various chips treat values as "special",
2309 * this routine will not care.
2310 */
2311 void
2312 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2313 {
2314 int regOffset, regChainOffset;
2315 int j;
2316 int reg32;
2317
2318 regChainOffset = ar5416GetRegChainOffset(ah, i);
2319 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2320
2321 for (j = 0; j < 32; j++) {
2322 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
2323 ((pdadcValues[4*j + 1] & 0xFF) << 8) |
2324 ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2325 ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2326 OS_REG_WRITE(ah, regOffset, reg32);
2327 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2328 " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2329 " Value %3d | PDADC %3d Value %3d |\n",
2330 i,
2331 4*j, pdadcValues[4*j],
2332 4*j+1, pdadcValues[4*j + 1],
2333 4*j+2, pdadcValues[4*j + 2],
2334 4*j+3, pdadcValues[4*j + 3]);
2335 regOffset += 4;
2336 }
2337 }
2338
2339 /**************************************************************
2340 * ar5416SetPowerCalTable
2341 *
2342 * Pull the PDADC piers from cal data and interpolate them across the given
2343 * points as well as from the nearest pier(s) to get a power detector
2344 * linear voltage to power level table.
2345 */
2346 HAL_BOOL
2347 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2348 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2349 {
2350 CAL_DATA_PER_FREQ *pRawDataset;
2351 uint8_t *pCalBChans = AH_NULL;
2352 uint16_t pdGainOverlap_t2;
2353 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
2354 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2355 uint16_t numPiers, i;
2356 int16_t tMinCalPower;
2357 uint16_t numXpdGain, xpdMask;
2358 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2359 uint32_t regChainOffset;
2360
2361 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2362
2363 xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2364
2365 if (IS_EEP_MINOR_V2(ah)) {
2366 pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2367 } else {
2368 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2369 }
2370
2371 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2372 pCalBChans = pEepData->calFreqPier2G;
2373 numPiers = AR5416_NUM_2G_CAL_PIERS;
2374 } else {
2375 pCalBChans = pEepData->calFreqPier5G;
2376 numPiers = AR5416_NUM_5G_CAL_PIERS;
2377 }
2378
2379 /* Calculate the value of xpdgains from the xpdGain Mask */
2380 numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2381
2382 /* Write the detector gain biases and their number */
2383 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2384
2385 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2386 regChainOffset = ar5416GetRegChainOffset(ah, i);
2387
2388 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2389 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2390 pRawDataset = pEepData->calPierData2G[i];
2391 } else {
2392 pRawDataset = pEepData->calPierData5G[i];
2393 }
2394
2395 /* Fetch the gain boundaries and the PDADC values */
2396 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
2397 pCalBChans, numPiers,
2398 pdGainOverlap_t2,
2399 &tMinCalPower, gainBoundaries,
2400 pdadcValues, numXpdGain);
2401
2402 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2403 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2404 gainBoundaries);
2405 }
2406
2407 /* Write the power values into the baseband power table */
2408 ar5416WritePdadcValues(ah, i, pdadcValues);
2409 }
2410 }
2411 *pTxPowerIndexOffset = 0;
2412
2413 return AH_TRUE;
2414 }
2415
2416 /**************************************************************
2417 * ar5416GetGainBoundariesAndPdadcs
2418 *
2419 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2420 * Called by ar5416SetPowerCalTable only.
2421 */
2422 void
2423 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2424 const struct ieee80211_channel *chan,
2425 CAL_DATA_PER_FREQ *pRawDataSet,
2426 uint8_t * bChans, uint16_t availPiers,
2427 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2428 uint8_t * pPDADCValues, uint16_t numXpdGains)
2429 {
2430
2431 int i, j, k;
2432 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
2433 uint16_t idxL, idxR, numPiers; /* Pier indexes */
2434
2435 /* filled out Vpd table for all pdGains (chanL) */
2436 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2437
2438 /* filled out Vpd table for all pdGains (chanR) */
2439 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2440
2441 /* filled out Vpd table for all pdGains (interpolated) */
2442 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2443
2444 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2445 uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
2446 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
2447 int16_t vpdStep;
2448 int16_t tmpVal;
2449 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
2450 HAL_BOOL match;
2451 int16_t minDelta = 0;
2452 CHAN_CENTERS centers;
2453
2454 ar5416GetChannelCenters(ah, chan, ¢ers);
2455
2456 /* Trim numPiers for the number of populated channel Piers */
2457 for (numPiers = 0; numPiers < availPiers; numPiers++) {
2458 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2459 break;
2460 }
2461 }
2462
2463 /* Find pier indexes around the current channel */
2464 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2465 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2466
2467 if (match) {
2468 /* Directly fill both vpd tables from the matching index */
2469 for (i = 0; i < numXpdGains; i++) {
2470 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2471 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2472 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2473 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2474 }
2475 } else {
2476 for (i = 0; i < numXpdGains; i++) {
2477 pVpdL = pRawDataSet[idxL].vpdPdg[i];
2478 pPwrL = pRawDataSet[idxL].pwrPdg[i];
2479 pVpdR = pRawDataSet[idxR].vpdPdg[i];
2480 pPwrR = pRawDataSet[idxR].pwrPdg[i];
2481
2482 /* Start Vpd interpolation from the max of the minimum powers */
2483 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2484
2485 /* End Vpd interpolation from the min of the max powers */
2486 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2487 HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2488
2489 /* Fill pier Vpds */
2490 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2491 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2492
2493 /* Interpolate the final vpd */
2494 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2495 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2496 IEEE80211_IS_CHAN_2GHZ(chan)),
2497 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2498 }
2499 }
2500 }
2501 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2502
2503 k = 0; /* index for the final table */
2504 for (i = 0; i < numXpdGains; i++) {
2505 if (i == (numXpdGains - 1)) {
2506 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2507 } else {
2508 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2509 }
2510
2511 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2512
2513 /* NB: only applies to owl 1.0 */
2514 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2515 /*
2516 * fix the gain delta, but get a delta that can be applied to min to
2517 * keep the upper power values accurate, don't think max needs to
2518 * be adjusted because should not be at that area of the table?
2519 */
2520 minDelta = pPdGainBoundaries[0] - 23;
2521 pPdGainBoundaries[0] = 23;
2522 }
2523 else {
2524 minDelta = 0;
2525 }
2526
2527 /* Find starting index for this pdGain */
2528 if (i == 0) {
2529 if (AR_SREV_MERLIN_10_OR_LATER(ah))
2530 ss = (int16_t)(0 - (minPwrT4[i] / 2));
2531 else
2532 ss = 0; /* for the first pdGain, start from index 0 */
2533 } else {
2534 /* need overlap entries extrapolated below. */
2535 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2536 }
2537 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2538 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2539 /*
2540 *-ve ss indicates need to extrapolate data below for this pdGain
2541 */
2542 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2543 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2544 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2545 ss++;
2546 }
2547
2548 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2549 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2550 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2551
2552 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2553 pPDADCValues[k++] = vpdTableI[i][ss++];
2554 }
2555
2556 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2557 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2558 /*
2559 * for last gain, pdGainBoundary == Pmax_t2, so will
2560 * have to extrapolate
2561 */
2562 if (tgtIndex >= maxIndex) { /* need to extrapolate above */
2563 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2564 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2565 (ss - maxIndex +1) * vpdStep));
2566 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2567 ss++;
2568 }
2569 } /* extrapolated above */
2570 } /* for all pdGainUsed */
2571
2572 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2573 while (i < AR5416_PD_GAINS_IN_MASK) {
2574 pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2575 i++;
2576 }
2577
2578 while (k < AR5416_NUM_PDADC_VALUES) {
2579 pPDADCValues[k] = pPDADCValues[k-1];
2580 k++;
2581 }
2582 return;
2583 }
2584
2585 /*
2586 * The linux ath9k driver and (from what I've been told) the reference
2587 * Atheros driver enables the 11n PHY by default whether or not it's
2588 * configured.
2589 */
2590 static void
2591 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2592 {
2593 uint32_t phymode;
2594 uint32_t enableDacFifo = 0;
2595 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
2596
2597 if (AR_SREV_KITE_10_OR_LATER(ah))
2598 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2599
2600 /* Enable 11n HT, 20 MHz */
2601 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2602 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2603
2604 /* Configure baseband for dynamic 20/40 operation */
2605 if (IEEE80211_IS_CHAN_HT40(chan)) {
2606 phymode |= AR_PHY_FC_DYN2040_EN;
2607
2608 /* Configure control (primary) channel at +-10MHz */
2609 if (IEEE80211_IS_CHAN_HT40U(chan))
2610 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2611 #if 0
2612 /* Configure 20/25 spacing */
2613 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2614 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2615 #endif
2616 macmode = HAL_HT_MACMODE_2040;
2617 } else
2618 macmode = HAL_HT_MACMODE_20;
2619 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2620
2621 /* Configure MAC for 20/40 operation */
2622 ar5416Set11nMac2040(ah, macmode);
2623
2624 /* global transmit timeout (25 TUs default)*/
2625 /* XXX - put this elsewhere??? */
2626 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2627
2628 /* carrier sense timeout */
2629 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2630 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2631 }
2632
2633 void
2634 ar5416GetChannelCenters(struct ath_hal *ah,
2635 const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2636 {
2637 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2638
2639 centers->ctl_center = freq;
2640 centers->synth_center = freq;
2641 /*
2642 * In 20/40 phy mode, the center frequency is
2643 * "between" the control and extension channels.
2644 */
2645 if (IEEE80211_IS_CHAN_HT40U(chan)) {
2646 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2647 centers->ext_center =
2648 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2649 } else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2650 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2651 centers->ext_center =
2652 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2653 } else {
2654 centers->ext_center = freq;
2655 }
2656 }
2657
2658 /*
2659 * Override the INI vals being programmed.
2660 */
2661 static void
2662 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2663 {
2664 uint32_t val;
2665
2666 /*
2667 * Set the RX_ABORT and RX_DIS and clear if off only after
2668 * RXE is set for MAC. This prevents frames with corrupted
2669 * descriptor status.
2670 */
2671 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2672
2673 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2674 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2675 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2676 if (!AR_SREV_9271(ah))
2677 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2678
2679 if (AR_SREV_KIWI_10_OR_LATER(ah))
2680 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2681
2682 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2683 }
2684
2685 /*
2686 * Disable RIFS search on some chips to avoid baseband
2687 * hang issues.
2688 */
2689 if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2690 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2691
2692 if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2693 return;
2694
2695 /*
2696 * Disable BB clock gating
2697 * Necessary to avoid issues on AR5416 2.0
2698 */
2699 OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2700 }
2701
2702 struct ini {
2703 uint32_t *data; /* NB: !const */
2704 int rows, cols;
2705 };
2706
2707 /*
2708 * Override XPA bias level based on operating frequency.
2709 * This is a v14 EEPROM specific thing for the AR9160.
2710 */
2711 void
2712 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2713 {
2714 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
2715 MODAL_EEP_HEADER *pModal;
2716 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2717 struct ar5416eeprom *eep = &ee->ee_base;
2718 uint8_t biaslevel;
2719
2720 if (! AR_SREV_SOWL(ah))
2721 return;
2722
2723 if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2724 return;
2725
2726 pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2727
2728 if (pModal->xpaBiasLvl != 0xff)
2729 biaslevel = pModal->xpaBiasLvl;
2730 else {
2731 uint16_t resetFreqBin, freqBin, freqCount = 0;
2732 CHAN_CENTERS centers;
2733
2734 ar5416GetChannelCenters(ah, chan, ¢ers);
2735
2736 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2737 freqBin = XPA_LVL_FREQ(0) & 0xff;
2738 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2739
2740 freqCount++;
2741
2742 while (freqCount < 3) {
2743 if (XPA_LVL_FREQ(freqCount) == 0x0)
2744 break;
2745
2746 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2747 if (resetFreqBin >= freqBin)
2748 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2749 else
2750 break;
2751 freqCount++;
2752 }
2753 }
2754
2755 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2756 __func__, biaslevel);
2757
2758 /*
2759 * This is a dirty workaround for the const initval data,
2760 * which will upset multiple AR9160's on the same board.
2761 *
2762 * The HAL should likely just have a private copy of the addac
2763 * data per instance.
2764 */
2765 if (IEEE80211_IS_CHAN_2GHZ(chan))
2766 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2767 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2768 else
2769 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2770 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2771 #undef XPA_LVL_FREQ
2772 }
2773
2774 static void
2775 ar5416MarkPhyInactive(struct ath_hal *ah)
2776 {
2777 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2778 }
2779
2780 #define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */
2781 #define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */
2782 #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */
2783
2784 #define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */
2785 #define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */
2786 #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */
2787
2788 #define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */
2789 #define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */
2790 #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */
2791
2792 #define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */
2793 #define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */
2794 #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */
2795
2796 #define AR5416_INIT_USEC_40 40
2797 #define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */
2798 #define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */
2799
2800 #define AR5416_INIT_USEC_44 44
2801 #define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */
2802 #define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */
2803
2804 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2805 #define AR5416_RX_NON_FULL_RATE_LATENCY 63
2806 #define AR5416_TX_HALF_RATE_LATENCY 108
2807 #define AR5416_TX_QUARTER_RATE_LATENCY 216
2808
2809 /*
2810 * Adjust various register settings based on half/quarter rate clock setting.
2811 * This includes:
2812 *
2813 * + USEC, TX/RX latency,
2814 * + IFS params: slot, eifs, misc etc.
2815 *
2816 * TODO:
2817 *
2818 * + Verify which other registers need to be tweaked;
2819 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2820 * + This just plain won't work for long distance links - the coverage class
2821 * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2822 * change;
2823 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2824 * series chips?
2825 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2826 */
2827 static void
2828 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2829 {
2830 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2831 int clk_44 = 0;
2832
2833 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2834 IEEE80211_IS_CHAN_QUARTER(chan));
2835
2836 /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2837 if (IEEE80211_IS_CHAN_2GHZ(chan))
2838 clk_44 = 1;
2839 else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2840 IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2841 clk_44 = 1;
2842
2843 /* XXX does this need save/restoring for the 11n chips? */
2844 /*
2845 * XXX TODO: should mask out the txlat/rxlat/usec values?
2846 */
2847 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2848
2849 /*
2850 * XXX This really should calculate things, not use
2851 * hard coded values! Ew.
2852 */
2853 if (IEEE80211_IS_CHAN_HALF(chan)) {
2854 if (clk_44) {
2855 slot = AR5416_IFS_SLOT_HALF_RATE_44;
2856 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2857 AR5416_USEC_RX_LAT_S;
2858 txLat = AR5416_TX_HALF_RATE_LATENCY <<
2859 AR5416_USEC_TX_LAT_S;
2860 usec = AR5416_HALF_RATE_USEC_44;
2861 eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2862 init_usec = AR5416_INIT_USEC_44 >> 1;
2863 } else {
2864 slot = AR5416_IFS_SLOT_HALF_RATE_40;
2865 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2866 AR5416_USEC_RX_LAT_S;
2867 txLat = AR5416_TX_HALF_RATE_LATENCY <<
2868 AR5416_USEC_TX_LAT_S;
2869 usec = AR5416_HALF_RATE_USEC_40;
2870 eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2871 init_usec = AR5416_INIT_USEC_40 >> 1;
2872 }
2873 } else { /* quarter rate */
2874 if (clk_44) {
2875 slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2876 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2877 AR5416_USEC_RX_LAT_S;
2878 txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2879 AR5416_USEC_TX_LAT_S;
2880 usec = AR5416_QUARTER_RATE_USEC_44;
2881 eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2882 init_usec = AR5416_INIT_USEC_44 >> 2;
2883 } else {
2884 slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2885 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2886 AR5416_USEC_RX_LAT_S;
2887 txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2888 AR5416_USEC_TX_LAT_S;
2889 usec = AR5416_QUARTER_RATE_USEC_40;
2890 eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2891 init_usec = AR5416_INIT_USEC_40 >> 2;
2892 }
2893 }
2894
2895 /* XXX verify these! */
2896 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2897 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2898 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2899 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2900 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2901 }
Cache object: 90205f407bca68c30265111326d21557
|