The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar5416/ar5416_reset.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 #include "opt_ah.h"
   22 
   23 #include "ah.h"
   24 #include "ah_internal.h"
   25 #include "ah_devid.h"
   26 
   27 #include "ah_eeprom_v14.h"
   28 
   29 #include "ar5416/ar5416.h"
   30 #include "ar5416/ar5416reg.h"
   31 #include "ar5416/ar5416phy.h"
   32 
   33 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 
   34 #define EEP_MINOR(_ah) \
   35         (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
   36 #define IS_EEP_MINOR_V2(_ah)    (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
   37 #define IS_EEP_MINOR_V3(_ah)    (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
   38 
   39 /* Additional Time delay to wait after activiting the Base band */
   40 #define BASE_ACTIVATE_DELAY     100     /* 100 usec */
   41 #define PLL_SETTLE_DELAY        300     /* 300 usec */
   42 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
   43 
   44 static void ar5416InitDMA(struct ath_hal *ah);
   45 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
   46 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
   47 static void ar5416InitQoS(struct ath_hal *ah);
   48 static void ar5416InitUserSettings(struct ath_hal *ah);
   49 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
   50 
   51 #if 0
   52 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
   53 #endif
   54 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
   55 
   56 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
   57 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
   58 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
   59         struct ar5416eeprom *pEepData, 
   60         const struct ieee80211_channel *chan, int16_t *ratesArray,
   61         uint16_t cfgCtl, uint16_t AntennaReduction,
   62         uint16_t twiceMaxRegulatoryPower, 
   63         uint16_t powerLimit);
   64 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
   65 static void ar5416MarkPhyInactive(struct ath_hal *ah);
   66 static void ar5416SetIFSTiming(struct ath_hal *ah,
   67    const struct ieee80211_channel *chan);
   68 
   69 /*
   70  * Places the device in and out of reset and then places sane
   71  * values in the registers based on EEPROM config, initialization
   72  * vectors (as determined by the mode), and station configuration
   73  *
   74  * bChannelChange is used to preserve DMA/PCU registers across
   75  * a HW Reset during channel change.
   76  */
   77 HAL_BOOL
   78 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
   79         struct ieee80211_channel *chan,
   80         HAL_BOOL bChannelChange,
   81         HAL_RESET_TYPE resetType,
   82         HAL_STATUS *status)
   83 {
   84 #define N(a)    (sizeof (a) / sizeof (a[0]))
   85 #define FAIL(_code)     do { ecode = _code; goto bad; } while (0)
   86         struct ath_hal_5212 *ahp = AH5212(ah);
   87         HAL_CHANNEL_INTERNAL *ichan;
   88         uint32_t saveDefAntenna, saveLedState;
   89         uint32_t macStaId1;
   90         uint16_t rfXpdGain[2];
   91         HAL_STATUS ecode;
   92         uint32_t powerVal, rssiThrReg;
   93         uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
   94         int i;
   95         uint64_t tsf = 0;
   96 
   97         OS_MARK(ah, AH_MARK_RESET, bChannelChange);
   98 
   99         /* Bring out of sleep mode */
  100         if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
  101                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
  102                     __func__);
  103                 FAIL(HAL_EIO);
  104         }
  105 
  106         /*
  107          * Map public channel to private.
  108          */
  109         ichan = ath_hal_checkchannel(ah, chan);
  110         if (ichan == AH_NULL)
  111                 FAIL(HAL_EINVAL);
  112         switch (opmode) {
  113         case HAL_M_STA:
  114         case HAL_M_IBSS:
  115         case HAL_M_HOSTAP:
  116         case HAL_M_MONITOR:
  117                 break;
  118         default:
  119                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
  120                     __func__, opmode);
  121                 FAIL(HAL_EINVAL);
  122                 break;
  123         }
  124         HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
  125 
  126         /* Blank the channel survey statistics */
  127         ath_hal_survey_clear(ah);
  128 
  129         /* XXX Turn on fast channel change for 5416 */
  130 
  131         /*
  132          * Preserve the bmiss rssi threshold and count threshold
  133          * across resets
  134          */
  135         rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
  136         /* If reg is zero, first time thru set to default val */
  137         if (rssiThrReg == 0)
  138                 rssiThrReg = INIT_RSSI_THR;
  139 
  140         /*
  141          * Preserve the antenna on a channel change
  142          */
  143         saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
  144 
  145         /*
  146          * Don't do this for the AR9285 - it breaks RX for single
  147          * antenna designs when diversity is disabled.
  148          *
  149          * I'm not sure what this was working around; it may be
  150          * something to do with the AR5416.  Certainly this register
  151          * isn't supposed to be used by the MIMO chips for anything
  152          * except for defining the default antenna when an external
  153          * phase array / smart antenna is connected.
  154          *
  155          * See PR: kern/179269 .
  156          */
  157         if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0)        /* XXX magic constants */
  158                 saveDefAntenna = 1;
  159 
  160         /* Save hardware flag before chip reset clears the register */
  161         macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 
  162                 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
  163 
  164         /* Save led state from pci config register */
  165         saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
  166                 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
  167                  AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
  168 
  169         /* For chips on which the RTC reset is done, save TSF before it gets cleared */
  170         if (AR_SREV_HOWL(ah) ||
  171             (AR_SREV_MERLIN(ah) &&
  172              ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
  173             (resetType == HAL_RESET_FORCE_COLD) ||
  174             (resetType == HAL_RESET_BBPANIC) ||
  175             (ah->ah_config.ah_force_full_reset))
  176                 tsf = ar5416GetTsf64(ah);
  177 
  178         /* Mark PHY as inactive; marked active in ar5416InitBB() */
  179         ar5416MarkPhyInactive(ah);
  180 
  181         if (!ar5416ChipReset(ah, chan, resetType)) {
  182                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
  183                 FAIL(HAL_EIO);
  184         }
  185 
  186         /* Restore TSF */
  187         if (tsf)
  188                 ar5416SetTsf64(ah, tsf);
  189 
  190         OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
  191         if (AR_SREV_MERLIN_10_OR_LATER(ah))
  192                 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  193 
  194         AH5416(ah)->ah_writeIni(ah, chan);
  195 
  196         if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
  197                 /* Enable ASYNC FIFO */
  198                 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  199                     AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
  200                 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
  201                 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  202                     AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  203                 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
  204                     AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
  205         }
  206 
  207         /* Override ini values (that can be overridden in this fashion) */
  208         ar5416OverrideIni(ah, chan);
  209 
  210         /* Setup 11n MAC/Phy mode registers */
  211         ar5416Set11nRegs(ah, chan);
  212 
  213         OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
  214 
  215         /*
  216          * Some AR91xx SoC devices frequently fail to accept TSF writes
  217          * right after the chip reset. When that happens, write a new
  218          * value after the initvals have been applied, with an offset
  219          * based on measured time difference
  220          */
  221         if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
  222                 tsf += 1500;
  223                 ar5416SetTsf64(ah, tsf);
  224         }
  225 
  226         HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
  227                 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
  228         HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
  229                 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));      
  230 
  231         /*
  232          * This routine swaps the analog chains - it should be done
  233          * before any radio register twiddling is done.
  234          */
  235         ar5416InitChainMasks(ah);
  236 
  237         /* Setup the open-loop power calibration if required */
  238         if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
  239                 AH5416(ah)->ah_olcInit(ah);
  240                 AH5416(ah)->ah_olcTempCompensation(ah);
  241         }
  242 
  243         /* Setup the transmit power values. */
  244         if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
  245                 HALDEBUG(ah, HAL_DEBUG_ANY,
  246                     "%s: error init'ing transmit power\n", __func__);
  247                 FAIL(HAL_EIO);
  248         }
  249 
  250         /* Write the analog registers */
  251         if (!ahp->ah_rfHal->setRfRegs(ah, chan,
  252             IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
  253                 HALDEBUG(ah, HAL_DEBUG_ANY,
  254                     "%s: ar5212SetRfRegs failed\n", __func__);
  255                 FAIL(HAL_EIO);
  256         }
  257 
  258         /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
  259         if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
  260                 ar5416SetDeltaSlope(ah, chan);
  261 
  262         AH5416(ah)->ah_spurMitigate(ah, chan);
  263 
  264         /* Setup board specific options for EEPROM version 3 */
  265         if (!ah->ah_setBoardValues(ah, chan)) {
  266                 HALDEBUG(ah, HAL_DEBUG_ANY,
  267                     "%s: error setting board options\n", __func__);
  268                 FAIL(HAL_EIO);
  269         }
  270 
  271         OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
  272 
  273         OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
  274         OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
  275                 | macStaId1
  276                 | AR_STA_ID1_RTS_USE_DEF
  277                 | ahp->ah_staId1Defaults
  278         );
  279         ar5212SetOperatingMode(ah, opmode);
  280 
  281         /* Set Venice BSSID mask according to current state */
  282         OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
  283         OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
  284 
  285         /* Restore previous led state */
  286         if (AR_SREV_HOWL(ah))
  287                 OS_REG_WRITE(ah, AR_MAC_LED,
  288                     AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
  289         else
  290                 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
  291                     saveLedState);
  292 
  293         /* Start TSF2 for generic timer 8-15 */
  294 #ifdef  NOTYET
  295         if (AR_SREV_KIWI(ah))
  296                 ar5416StartTsf2(ah);
  297 #endif
  298 
  299         /*
  300          * Enable Bluetooth Coexistence if it's enabled.
  301          */
  302         if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
  303                 ar5416InitBTCoex(ah);
  304 
  305         /* Restore previous antenna */
  306         OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  307 
  308         /* then our BSSID and associate id */
  309         OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
  310         OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
  311             (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
  312 
  313         /* Restore bmiss rssi & count thresholds */
  314         OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
  315 
  316         OS_REG_WRITE(ah, AR_ISR, ~0);           /* cleared on write */
  317 
  318         /* Restore bmiss rssi & count thresholds */
  319         OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
  320 
  321         if (!ar5212SetChannel(ah, chan))
  322                 FAIL(HAL_EIO);
  323 
  324         OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
  325 
  326         /* Set 1:1 QCU to DCU mapping for all queues */
  327         for (i = 0; i < AR_NUM_DCU; i++)
  328                 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  329 
  330         ahp->ah_intrTxqs = 0;
  331         for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
  332                 ah->ah_resetTxQueue(ah, i);
  333 
  334         ar5416InitIMR(ah, opmode);
  335         ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
  336         ar5416InitQoS(ah);
  337         /* This may override the AR_DIAG_SW register */
  338         ar5416InitUserSettings(ah);
  339 
  340         /* XXX this won't work for AR9287! */
  341         if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
  342                 ar5416SetIFSTiming(ah, chan);
  343 #if 0
  344                         /*
  345                          * AR5413?
  346                          * Force window_length for 1/2 and 1/4 rate channels,
  347                          * the ini file sets this to zero otherwise.
  348                          */
  349                         OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
  350                             AR_PHY_FRAME_CTL_WINLEN, 3);
  351                 }
  352 #endif
  353         }
  354 
  355         if (AR_SREV_KIWI_13_OR_LATER(ah)) {
  356                 /*
  357                  * Enable ASYNC FIFO
  358                  *
  359                  * If Async FIFO is enabled, the following counters change
  360                  * as MAC now runs at 117 Mhz instead of 88/44MHz when
  361                  * async FIFO is disabled.
  362                  *
  363                  * Overwrite the delay/timeouts initialized in ProcessIni()
  364                  * above.
  365                  */
  366                 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
  367                     AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
  368                 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
  369                     AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
  370                 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
  371                     AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
  372 
  373                 OS_REG_WRITE(ah, AR_TIME_OUT,
  374                     AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
  375                 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
  376 
  377                 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  378                     AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  379                 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  380                     AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  381         }
  382 
  383         if (AR_SREV_KIWI_13_OR_LATER(ah)) {
  384                 /* Enable AGGWEP to accelerate encryption engine */
  385                 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  386                     AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  387         }
  388 
  389         /*
  390          * disable seq number generation in hw
  391          */
  392          OS_REG_WRITE(ah, AR_STA_ID1,
  393              OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  394          
  395         ar5416InitDMA(ah);
  396 
  397         /*
  398          * program OBS bus to see MAC interrupts
  399          */
  400         OS_REG_WRITE(ah, AR_OBS, 8);
  401 
  402         /*
  403          * Disable the "general" TX/RX mitigation timers.
  404          */
  405         OS_REG_WRITE(ah, AR_MIRT, 0);
  406 
  407 #ifdef  AH_AR5416_INTERRUPT_MITIGATION
  408         /*
  409          * This initialises the RX interrupt mitigation timers.
  410          *
  411          * The mitigation timers begin at idle and are triggered
  412          * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
  413          * Then, the RX mitigation interrupt will fire:
  414          *
  415          * + 250uS after the last RX'ed frame, or
  416          * + 700uS after the first RX'ed frame
  417          *
  418          * Thus, the LAST field dictates the extra latency
  419          * induced by the RX mitigation method and the FIRST
  420          * field dictates how long to delay before firing an
  421          * RX mitigation interrupt.
  422          *
  423          * Please note this only seems to be for RXOK frames;
  424          * not CRC or PHY error frames.
  425          *
  426          */
  427         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
  428         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
  429 #endif
  430         ar5416InitBB(ah, chan);
  431 
  432         /* Setup compression registers */
  433         ar5212SetCompRegs(ah);          /* XXX not needed? */
  434 
  435         /*
  436          * 5416 baseband will check the per rate power table
  437          * and select the lower of the two
  438          */
  439         ackTpcPow = 63;
  440         ctsTpcPow = 63;
  441         chirpTpcPow = 63;
  442         powerVal = SM(ackTpcPow, AR_TPC_ACK) |
  443                 SM(ctsTpcPow, AR_TPC_CTS) |
  444                 SM(chirpTpcPow, AR_TPC_CHIRP);
  445         OS_REG_WRITE(ah, AR_TPC, powerVal);
  446 
  447         if (!ar5416InitCal(ah, chan))
  448                 FAIL(HAL_ESELFTEST);
  449 
  450         ar5416RestoreChainMask(ah);
  451 
  452         AH_PRIVATE(ah)->ah_opmode = opmode;     /* record operating mode */
  453 
  454         if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 
  455                 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
  456 
  457         if (AR_SREV_HOWL(ah)) {
  458                 /*
  459                  * Enable the MBSSID block-ack fix for HOWL.
  460                  * This feature is only supported on Howl 1.4, but it is safe to
  461                  * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
  462                  * since bit 22 is unused in those Howl revisions.
  463                  */
  464                 unsigned int reg;
  465                 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
  466                 OS_REG_WRITE(ah,AR_STA_ID1, reg);
  467                 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
  468         }
  469 
  470         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
  471 
  472         OS_MARK(ah, AH_MARK_RESET_DONE, 0);
  473 
  474         return AH_TRUE;
  475 bad:
  476         OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
  477         if (status != AH_NULL)
  478                 *status = ecode;
  479         return AH_FALSE;
  480 #undef FAIL
  481 #undef N
  482 }
  483 
  484 #if 0
  485 /*
  486  * This channel change evaluates whether the selected hardware can
  487  * perform a synthesizer-only channel change (no reset).  If the
  488  * TX is not stopped, or the RFBus cannot be granted in the given
  489  * time, the function returns false as a reset is necessary
  490  */
  491 HAL_BOOL
  492 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
  493 {
  494         uint32_t       ulCount;
  495         uint32_t   data, synthDelay, qnum;
  496         uint16_t   rfXpdGain[4];
  497         struct ath_hal_5212 *ahp = AH5212(ah);
  498         HAL_CHANNEL_INTERNAL *ichan;
  499 
  500         /*
  501          * Map public channel to private.
  502          */
  503         ichan = ath_hal_checkchannel(ah, chan);
  504 
  505         /* TX must be stopped or RF Bus grant will not work */
  506         for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
  507                 if (ar5212NumTxPending(ah, qnum)) {
  508                         HALDEBUG(ah, HAL_DEBUG_ANY,
  509                             "%s: frames pending on queue %d\n", __func__, qnum);
  510                         return AH_FALSE;
  511                 }
  512         }
  513 
  514         /*
  515          * Kill last Baseband Rx Frame - Request analog bus grant
  516          */
  517         OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
  518         if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
  519                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
  520                     __func__);
  521                 return AH_FALSE;
  522         }
  523 
  524         ar5416Set11nRegs(ah, chan);     /* NB: setup 5416-specific regs */
  525 
  526         /* Change the synth */
  527         if (!ar5212SetChannel(ah, chan))
  528                 return AH_FALSE;
  529 
  530         /* Setup the transmit power values. */
  531         if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
  532                 HALDEBUG(ah, HAL_DEBUG_ANY,
  533                     "%s: error init'ing transmit power\n", __func__);
  534                 return AH_FALSE;
  535         }
  536 
  537         /*
  538          * Wait for the frequency synth to settle (synth goes on
  539          * via PHY_ACTIVE_EN).  Read the phy active delay register.
  540          * Value is in 100ns increments.
  541          */
  542         data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  543         if (IS_CHAN_CCK(ichan)) {
  544                 synthDelay = (4 * data) / 22;
  545         } else {
  546                 synthDelay = data / 10;
  547         }
  548 
  549         OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
  550 
  551         /* Release the RFBus Grant */
  552         OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  553 
  554         /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
  555         if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
  556                 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
  557                 ar5212SetSpurMitigation(ah, chan);
  558                 ar5416SetDeltaSlope(ah, chan);
  559         }
  560 
  561         /* XXX spur mitigation for Melin */
  562 
  563         if (!IEEE80211_IS_CHAN_DFS(chan)) 
  564                 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
  565 
  566         ichan->channel_time = 0;
  567         ichan->tsf_last = ar5416GetTsf64(ah);
  568         ar5212TxEnable(ah, AH_TRUE);
  569         return AH_TRUE;
  570 }
  571 #endif
  572 
  573 static void
  574 ar5416InitDMA(struct ath_hal *ah)
  575 {
  576         struct ath_hal_5212 *ahp = AH5212(ah);
  577 
  578         /*
  579          * set AHB_MODE not to do cacheline prefetches
  580          */
  581         OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  582 
  583         /*
  584          * let mac dma reads be in 128 byte chunks
  585          */
  586         OS_REG_WRITE(ah, AR_TXCFG, 
  587                 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
  588 
  589         /*
  590          * let mac dma writes be in 128 byte chunks
  591          */
  592         /*
  593          * XXX If you change this, you must change the headroom
  594          * assigned in ah_maxTxTrigLev - see ar5416InitState().
  595          */
  596         OS_REG_WRITE(ah, AR_RXCFG, 
  597                 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
  598 
  599         /* restore TX trigger level */
  600         OS_REG_WRITE(ah, AR_TXCFG,
  601                 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
  602                     SM(ahp->ah_txTrigLev, AR_FTRIG));
  603 
  604         /*
  605          * Setup receive FIFO threshold to hold off TX activities
  606          */
  607         OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  608 
  609         /*
  610          * reduce the number of usable entries in PCU TXBUF to avoid
  611          * wrap around.
  612          */
  613         if (AR_SREV_KITE(ah))
  614                 /*
  615                  * For AR9285 the number of Fifos are reduced to half.
  616                  * So set the usable tx buf size also to half to
  617                  * avoid data/delimiter underruns
  618                  */
  619                 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  620         else
  621                 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  622 }
  623 
  624 static void
  625 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
  626 {
  627         uint32_t synthDelay;
  628 
  629         /*
  630          * Wait for the frequency synth to settle (synth goes on
  631          * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
  632          * Value is in 100ns increments.
  633           */
  634         synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  635         if (IEEE80211_IS_CHAN_CCK(chan)) {
  636                 synthDelay = (4 * synthDelay) / 22;
  637         } else {
  638                 synthDelay /= 10;
  639         }
  640 
  641         /* Turn on PLL on 5416 */
  642         HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
  643             __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
  644 
  645         /* Activate the PHY (includes baseband activate and synthesizer on) */
  646         OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  647 
  648         /* 
  649          * If the AP starts the calibration before the base band timeout
  650          * completes  we could get rx_clear false triggering.  Add an
  651          * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
  652          * does not happen.
  653          */
  654         if (IEEE80211_IS_CHAN_HALF(chan)) {
  655                 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
  656         } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
  657                 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
  658         } else {
  659                 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
  660         }
  661 }
  662 
  663 static void
  664 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
  665 {
  666         struct ath_hal_5212 *ahp = AH5212(ah);
  667 
  668         /*
  669          * Setup interrupt handling.  Note that ar5212ResetTxQueue
  670          * manipulates the secondary IMR's as queues are enabled
  671          * and disabled.  This is done with RMW ops to insure the
  672          * settings we make here are preserved.
  673          */
  674         ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
  675                         | AR_IMR_RXERR | AR_IMR_RXORN
  676                         | AR_IMR_BCNMISC;
  677 
  678 #ifdef  AH_AR5416_INTERRUPT_MITIGATION
  679         ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  680 #else
  681         ahp->ah_maskReg |= AR_IMR_RXOK;
  682 #endif  
  683         ahp->ah_maskReg |= AR_IMR_TXOK;
  684 
  685         if (opmode == HAL_M_HOSTAP)
  686                 ahp->ah_maskReg |= AR_IMR_MIB;
  687         OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
  688 
  689 #ifdef  ADRIAN_NOTYET
  690         /* This is straight from ath9k */
  691         if (! AR_SREV_HOWL(ah)) {
  692                 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  693                 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  694                 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  695         }
  696 #endif
  697 
  698         /* Enable bus errors that are OR'd to set the HIUERR bit */
  699 #if 0
  700         OS_REG_WRITE(ah, AR_IMR_S2, 
  701                 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
  702 #endif
  703 }
  704 
  705 static void
  706 ar5416InitQoS(struct ath_hal *ah)
  707 {
  708         /* QoS support */
  709         OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);      /* XXX magic */
  710         OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);        /* XXX magic */
  711 
  712         /* Turn on NOACK Support for QoS packets */
  713         OS_REG_WRITE(ah, AR_NOACK,
  714                 SM(2, AR_NOACK_2BIT_VALUE) |
  715                 SM(5, AR_NOACK_BIT_OFFSET) |
  716                 SM(0, AR_NOACK_BYTE_OFFSET));
  717                 
  718         /*
  719          * initialize TXOP for all TIDs
  720          */
  721         OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  722         OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  723         OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  724         OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  725         OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  726 }
  727 
  728 static void
  729 ar5416InitUserSettings(struct ath_hal *ah)
  730 {
  731         struct ath_hal_5212 *ahp = AH5212(ah);
  732 
  733         /* Restore user-specified settings */
  734         if (ahp->ah_miscMode != 0)
  735                 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
  736                     | ahp->ah_miscMode);
  737         if (ahp->ah_sifstime != (u_int) -1)
  738                 ar5212SetSifsTime(ah, ahp->ah_sifstime);
  739         if (ahp->ah_slottime != (u_int) -1)
  740                 ar5212SetSlotTime(ah, ahp->ah_slottime);
  741         if (ahp->ah_acktimeout != (u_int) -1)
  742                 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
  743         if (ahp->ah_ctstimeout != (u_int) -1)
  744                 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
  745         if (AH_PRIVATE(ah)->ah_diagreg != 0)
  746                 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
  747         if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
  748                 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
  749 }
  750 
  751 static void
  752 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
  753 {
  754         uint32_t rfMode;
  755 
  756         if (chan == AH_NULL)
  757                 return;
  758 
  759         /* treat channel B as channel G , no  B mode suport in owl */
  760         rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
  761             AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  762 
  763         if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
  764                 /* phy mode bits for 5GHz channels require Fast Clock */
  765                 rfMode |= AR_PHY_MODE_DYNAMIC
  766                        |  AR_PHY_MODE_DYN_CCK_DISABLE;
  767         } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
  768                 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
  769                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  770         }
  771 
  772         OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
  773 }
  774 
  775 /*
  776  * Places the hardware into reset and then pulls it out of reset
  777  */
  778 HAL_BOOL
  779 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
  780     HAL_RESET_TYPE resetType)
  781 {
  782         OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
  783         /*
  784          * Warm reset is optimistic for open-loop TX power control.
  785          */
  786         if (AR_SREV_MERLIN(ah) &&
  787             ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
  788                 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
  789                         return AH_FALSE;
  790         } else if (ah->ah_config.ah_force_full_reset) {
  791                 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
  792                         return AH_FALSE;
  793         } else if ((resetType == HAL_RESET_FORCE_COLD) ||
  794             (resetType == HAL_RESET_BBPANIC)) {
  795                 HALDEBUG(ah, HAL_DEBUG_RESET,
  796                     "%s: full reset; resetType=%d\n",
  797                     __func__, resetType);
  798                 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
  799                         return AH_FALSE;
  800         } else {
  801                 if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
  802                         return AH_FALSE;
  803         }
  804 
  805         /* Bring out of sleep mode (AGAIN) */
  806         if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
  807                return AH_FALSE;
  808 
  809 #ifdef notyet
  810         ahp->ah_chipFullSleep = AH_FALSE;
  811 #endif
  812 
  813         AH5416(ah)->ah_initPLL(ah, chan);
  814 
  815         /*
  816          * Perform warm reset before the mode/PLL/turbo registers
  817          * are changed in order to deactivate the radio.  Mode changes
  818          * with an active radio can result in corrupted shifts to the
  819          * radio device.
  820          */
  821         ar5416SetRfMode(ah, chan);
  822 
  823         return AH_TRUE; 
  824 }
  825 
  826 /*
  827  * Delta slope coefficient computation.
  828  * Required for OFDM operation.
  829  */
  830 static void
  831 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
  832                           uint32_t *coef_mantissa, uint32_t *coef_exponent)
  833 {
  834 #define COEF_SCALE_S 24
  835     uint32_t coef_exp, coef_man;
  836     /*
  837      * ALGO -> coef_exp = 14-floor(log2(coef));
  838      * floor(log2(x)) is the highest set bit position
  839      */
  840     for (coef_exp = 31; coef_exp > 0; coef_exp--)
  841             if ((coef_scaled >> coef_exp) & 0x1)
  842                     break;
  843     /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
  844     HALASSERT(coef_exp);
  845     coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  846 
  847     /*
  848      * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
  849      * The coefficient is already shifted up for scaling
  850      */
  851     coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  852 
  853     *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  854     *coef_exponent = coef_exp - 16;
  855 
  856 #undef COEF_SCALE_S    
  857 }
  858 
  859 void
  860 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
  861 {
  862 #define INIT_CLOCKMHZSCALED     0x64000000
  863         uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
  864         uint32_t clockMhzScaled;
  865 
  866         CHAN_CENTERS centers;
  867 
  868         /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
  869         /* scale for selected channel bandwidth */ 
  870         clockMhzScaled = INIT_CLOCKMHZSCALED;
  871         if (IEEE80211_IS_CHAN_TURBO(chan))
  872                 clockMhzScaled <<= 1;
  873         else if (IEEE80211_IS_CHAN_HALF(chan))
  874                 clockMhzScaled >>= 1;
  875         else if (IEEE80211_IS_CHAN_QUARTER(chan))
  876                 clockMhzScaled >>= 2;
  877 
  878         /*
  879          * ALGO -> coef = 1e8/fcarrier*fclock/40;
  880          * scaled coef to provide precision for this floating calculation 
  881          */
  882         ar5416GetChannelCenters(ah, chan, &centers);
  883         coef_scaled = clockMhzScaled / centers.synth_center;            
  884 
  885         ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
  886 
  887         OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  888                 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  889         OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  890                 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  891 
  892         /*
  893          * For Short GI,
  894          * scaled coeff is 9/10 that of normal coeff
  895          */ 
  896         coef_scaled = (9 * coef_scaled)/10;
  897 
  898         ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
  899 
  900         /* for short gi */
  901         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  902                 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  903         OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  904                 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);    
  905 #undef INIT_CLOCKMHZSCALED
  906 }
  907 
  908 /*
  909  * Set a limit on the overall output power.  Used for dynamic
  910  * transmit power control and the like.
  911  *
  912  * NB: limit is in units of 0.5 dbM.
  913  */
  914 HAL_BOOL
  915 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
  916 {
  917         uint16_t dummyXpdGains[2];
  918 
  919         AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
  920         return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
  921                         dummyXpdGains);
  922 }
  923 
  924 HAL_BOOL
  925 ar5416GetChipPowerLimits(struct ath_hal *ah,
  926         struct ieee80211_channel *chan)
  927 {
  928         struct ath_hal_5212 *ahp = AH5212(ah);
  929         int16_t minPower, maxPower;
  930 
  931         /*
  932          * Get Pier table max and min powers.
  933          */
  934         if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
  935                 /* NB: rf code returns 1/4 dBm units, convert */
  936                 chan->ic_maxpower = maxPower / 2;
  937                 chan->ic_minpower = minPower / 2;
  938         } else {
  939                 HALDEBUG(ah, HAL_DEBUG_ANY,
  940                     "%s: no min/max power for %u/0x%x\n",
  941                     __func__, chan->ic_freq, chan->ic_flags);
  942                 chan->ic_maxpower = AR5416_MAX_RATE_POWER;
  943                 chan->ic_minpower = 0;
  944         }
  945         HALDEBUG(ah, HAL_DEBUG_RESET,
  946             "Chan %d: MaxPow = %d MinPow = %d\n",
  947             chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
  948         return AH_TRUE;
  949 }
  950 
  951 /**************************************************************
  952  * ar5416WriteTxPowerRateRegisters
  953  *
  954  * Write the TX power rate registers from the raw values given
  955  * in ratesArray[].
  956  *
  957  * The CCK and HT40 rate registers are only written if needed.
  958  * HT20 and 11g/11a OFDM rate registers are always written.
  959  *
  960  * The values written are raw values which should be written
  961  * to the registers - so it's up to the caller to pre-adjust
  962  * them (eg CCK power offset value, or Merlin TX power offset,
  963  * etc.)
  964  */
  965 void
  966 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
  967     const struct ieee80211_channel *chan, const int16_t ratesArray[])
  968 {
  969 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
  970 
  971     /* Write the OFDM power per rate set */
  972     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  973         POW_SM(ratesArray[rate18mb], 24)
  974           | POW_SM(ratesArray[rate12mb], 16)
  975           | POW_SM(ratesArray[rate9mb], 8)
  976           | POW_SM(ratesArray[rate6mb], 0)
  977     );
  978     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  979         POW_SM(ratesArray[rate54mb], 24)
  980           | POW_SM(ratesArray[rate48mb], 16)
  981           | POW_SM(ratesArray[rate36mb], 8)
  982           | POW_SM(ratesArray[rate24mb], 0)
  983     );
  984 
  985     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
  986         /* Write the CCK power per rate set */
  987         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  988             POW_SM(ratesArray[rate2s], 24)
  989               | POW_SM(ratesArray[rate2l],  16)
  990               | POW_SM(ratesArray[rateXr],  8) /* XR target power */
  991               | POW_SM(ratesArray[rate1l],   0)
  992         );
  993         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  994             POW_SM(ratesArray[rate11s], 24)
  995               | POW_SM(ratesArray[rate11l], 16)
  996               | POW_SM(ratesArray[rate5_5s], 8)
  997               | POW_SM(ratesArray[rate5_5l], 0)
  998         );
  999     HALDEBUG(ah, HAL_DEBUG_RESET,
 1000         "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
 1001             __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
 1002             OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); 
 1003     }
 1004 
 1005     /* Write the HT20 power per rate set */
 1006     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
 1007         POW_SM(ratesArray[rateHt20_3], 24)
 1008           | POW_SM(ratesArray[rateHt20_2], 16)
 1009           | POW_SM(ratesArray[rateHt20_1], 8)
 1010           | POW_SM(ratesArray[rateHt20_0], 0)
 1011     );
 1012     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
 1013         POW_SM(ratesArray[rateHt20_7], 24)
 1014           | POW_SM(ratesArray[rateHt20_6], 16)
 1015           | POW_SM(ratesArray[rateHt20_5], 8)
 1016           | POW_SM(ratesArray[rateHt20_4], 0)
 1017     );
 1018 
 1019     if (IEEE80211_IS_CHAN_HT40(chan)) {
 1020         /* Write the HT40 power per rate set */
 1021         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
 1022             POW_SM(ratesArray[rateHt40_3], 24)
 1023               | POW_SM(ratesArray[rateHt40_2], 16)
 1024               | POW_SM(ratesArray[rateHt40_1], 8)
 1025               | POW_SM(ratesArray[rateHt40_0], 0)
 1026         );
 1027         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
 1028             POW_SM(ratesArray[rateHt40_7], 24)
 1029               | POW_SM(ratesArray[rateHt40_6], 16)
 1030               | POW_SM(ratesArray[rateHt40_5], 8)
 1031               | POW_SM(ratesArray[rateHt40_4], 0)
 1032         );
 1033         /* Write the Dup/Ext 40 power per rate set */
 1034         OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
 1035             POW_SM(ratesArray[rateExtOfdm], 24)
 1036               | POW_SM(ratesArray[rateExtCck], 16)
 1037               | POW_SM(ratesArray[rateDupOfdm], 8)
 1038               | POW_SM(ratesArray[rateDupCck], 0)
 1039         );
 1040     }
 1041 
 1042     /*
 1043      * Set max power to 30 dBm and, optionally,
 1044      * enable TPC in tx descriptors.
 1045      */
 1046     OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
 1047       (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
 1048 #undef POW_SM
 1049 }
 1050 
 1051 /**************************************************************
 1052  * ar5416SetTransmitPower
 1053  *
 1054  * Set the transmit power in the baseband for the given
 1055  * operating channel and mode.
 1056  */
 1057 HAL_BOOL
 1058 ar5416SetTransmitPower(struct ath_hal *ah,
 1059         const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
 1060 {
 1061 #define N(a)            (sizeof (a) / sizeof (a[0]))
 1062 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
 1063 
 1064     MODAL_EEP_HEADER    *pModal;
 1065     struct ath_hal_5212 *ahp = AH5212(ah);
 1066     int16_t             txPowerIndexOffset = 0;
 1067     int                 i;
 1068     
 1069     uint16_t            cfgCtl;
 1070     uint16_t            powerLimit;
 1071     uint16_t            twiceAntennaReduction;
 1072     uint16_t            twiceMaxRegulatoryPower;
 1073     int16_t             maxPower;
 1074     HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
 1075     struct ar5416eeprom *pEepData = &ee->ee_base;
 1076 
 1077     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
 1078 
 1079     /*
 1080      * Default to 2, is overridden based on the EEPROM version / value.
 1081      */
 1082     AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
 1083 
 1084     /* Setup info for the actual eeprom */
 1085     OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
 1086     cfgCtl = ath_hal_getctl(ah, chan);
 1087     powerLimit = chan->ic_maxregpower * 2;
 1088     twiceAntennaReduction = chan->ic_maxantgain;
 1089     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 
 1090     pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
 1091     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
 1092         __func__,chan->ic_freq, cfgCtl );      
 1093   
 1094     if (IS_EEP_MINOR_V2(ah)) {
 1095         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
 1096     }
 1097 
 1098     if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
 1099                                     &AH5416(ah)->ah_ratesArray[0],
 1100                                     cfgCtl,
 1101                                     twiceAntennaReduction,
 1102                                     twiceMaxRegulatoryPower, powerLimit)) {
 1103         HALDEBUG(ah, HAL_DEBUG_ANY,
 1104             "%s: unable to set tx power per rate table\n", __func__);
 1105         return AH_FALSE;
 1106     }
 1107 
 1108     if (!AH5416(ah)->ah_setPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
 1109         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
 1110             __func__);
 1111         return AH_FALSE;
 1112     }
 1113   
 1114     maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
 1115       AH5416(ah)->ah_ratesArray[rateHt20_0]);
 1116 
 1117     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 1118         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
 1119     }
 1120 
 1121     if (IEEE80211_IS_CHAN_HT40(chan)) {
 1122         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
 1123     }
 1124 
 1125     ahp->ah_tx6PowerInHalfDbm = maxPower;   
 1126     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
 1127     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
 1128 
 1129     /*
 1130      * txPowerIndexOffset is set by the SetPowerTable() call -
 1131      *  adjust the rate table (0 offset if rates EEPROM not loaded)
 1132      */
 1133     for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
 1134         AH5416(ah)->ah_ratesArray[i] =
 1135           (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
 1136         if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
 1137             AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
 1138     }
 1139 
 1140 #ifdef AH_EEPROM_DUMP
 1141     /*
 1142      * Dump the rate array whilst it represents the intended dBm*2
 1143      * values versus what's being adjusted before being programmed
 1144      * in. Keep this in mind if you code up this function and enable
 1145      * this debugging; the values won't necessarily be what's being
 1146      * programmed into the hardware.
 1147      */
 1148     ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
 1149 #endif
 1150 
 1151     /*
 1152      * Merlin and later have a power offset, so subtract
 1153      * pwr_table_offset * 2 from each value. The default
 1154      * power offset is -5 dBm - ie, a register value of 0
 1155      * equates to a TX power of -5 dBm.
 1156      */
 1157     if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
 1158         int8_t pwr_table_offset;
 1159 
 1160         (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
 1161             &pwr_table_offset);
 1162         /* Underflow power gets clamped at raw value 0 */
 1163         /* Overflow power gets camped at AR5416_MAX_RATE_POWER */
 1164         for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
 1165                 /*
 1166                  * + pwr_table_offset is in dBm
 1167                  * + ratesArray is in 1/2 dBm
 1168                  */
 1169                 AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
 1170                 if (AH5416(ah)->ah_ratesArray[i] < 0)
 1171                         AH5416(ah)->ah_ratesArray[i] = 0;
 1172                 else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
 1173                     AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
 1174         }
 1175     }
 1176 
 1177     /*
 1178      * Adjust rates for OLC where needed
 1179      *
 1180      * The following CCK rates need adjusting when doing 2.4ghz
 1181      * CCK transmission.
 1182      *
 1183      * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
 1184      * + rateExtCck, rateDupCck
 1185      *
 1186      * They're adjusted here regardless. The hardware then gets
 1187      * programmed as needed. 5GHz operation doesn't program in CCK
 1188      * rates for legacy mode but they seem to be initialised for
 1189      * HT40 regardless of channel type.
 1190      */
 1191     if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
 1192             ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
 1193         int adj[] = {
 1194                       rate2s, rate2l, rate1l, rate11s, rate11l,
 1195                       rate5_5s, rate5_5l, rateExtCck, rateDupCck
 1196                     };
 1197         int cck_ofdm_delta = 2;
 1198         int i;
 1199         for (i = 0; i < N(adj); i++) {
 1200             AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
 1201             if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
 1202                 AH5416(ah)->ah_ratesArray[adj[i]] = 0;
 1203         }
 1204     }
 1205 
 1206     /*
 1207      * Adjust the HT40 power to meet the correct target TX power
 1208      * for 40MHz mode, based on TX power curves that are established
 1209      * for 20MHz mode.
 1210      *
 1211      * XXX handle overflow/too high power level?
 1212      */
 1213     if (IEEE80211_IS_CHAN_HT40(chan)) {
 1214         AH5416(ah)->ah_ratesArray[rateHt40_0] +=
 1215           AH5416(ah)->ah_ht40PowerIncForPdadc;
 1216         AH5416(ah)->ah_ratesArray[rateHt40_1] +=
 1217           AH5416(ah)->ah_ht40PowerIncForPdadc;
 1218         AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
 1219         AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
 1220         AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
 1221         AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
 1222         AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
 1223         AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
 1224     }
 1225 
 1226     /* Write the TX power rate registers */
 1227     ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
 1228 
 1229     /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
 1230     OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
 1231         POW_SM(pModal->pwrDecreaseFor3Chain, 6)
 1232           | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
 1233     );
 1234     return AH_TRUE;
 1235 #undef POW_SM
 1236 #undef N
 1237 }
 1238 
 1239 /*
 1240  * Exported call to check for a recent gain reading and return
 1241  * the current state of the thermal calibration gain engine.
 1242  */
 1243 HAL_RFGAIN
 1244 ar5416GetRfgain(struct ath_hal *ah)
 1245 {
 1246 
 1247         return (HAL_RFGAIN_INACTIVE);
 1248 }
 1249 
 1250 /*
 1251  * Places all of hardware into reset
 1252  */
 1253 HAL_BOOL
 1254 ar5416Disable(struct ath_hal *ah)
 1255 {
 1256 
 1257         if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
 1258                 return AH_FALSE;
 1259         if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
 1260                 return AH_FALSE;
 1261 
 1262         AH5416(ah)->ah_initPLL(ah, AH_NULL);
 1263         return (AH_TRUE);
 1264 }
 1265 
 1266 /*
 1267  * Places the PHY and Radio chips into reset.  A full reset
 1268  * must be called to leave this state.  The PCI/MAC/PCU are
 1269  * not placed into reset as we must receive interrupt to
 1270  * re-enable the hardware.
 1271  */
 1272 HAL_BOOL
 1273 ar5416PhyDisable(struct ath_hal *ah)
 1274 {
 1275 
 1276         if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
 1277                 return AH_FALSE;
 1278 
 1279         AH5416(ah)->ah_initPLL(ah, AH_NULL);
 1280         return (AH_TRUE);
 1281 }
 1282 
 1283 /*
 1284  * Write the given reset bit mask into the reset register
 1285  */
 1286 HAL_BOOL
 1287 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
 1288 {
 1289         /*
 1290          * Set force wake
 1291          */
 1292         OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
 1293             AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
 1294 
 1295         switch (type) {
 1296         case HAL_RESET_POWER_ON:
 1297                 return ar5416SetResetPowerOn(ah);
 1298         case HAL_RESET_WARM:
 1299         case HAL_RESET_COLD:
 1300                 return ar5416SetReset(ah, type);
 1301         default:
 1302                 HALASSERT(AH_FALSE);
 1303                 return AH_FALSE;
 1304         }
 1305 }
 1306 
 1307 static HAL_BOOL
 1308 ar5416SetResetPowerOn(struct ath_hal *ah)
 1309 {
 1310     /* Power On Reset (Hard Reset) */
 1311 
 1312     /*
 1313      * Set force wake
 1314      *  
 1315      * If the MAC was running, previously calling
 1316      * reset will wake up the MAC but it may go back to sleep
 1317      * before we can start polling. 
 1318      * Set force wake  stops that 
 1319      * This must be called before initiating a hard reset.
 1320      */
 1321     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
 1322             AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);    
 1323 
 1324     /*
 1325      * PowerOn reset can be used in open loop power control or failure recovery.
 1326      * If we do RTC reset while DMA is still running, hardware may corrupt memory.
 1327      * Therefore, we need to reset AHB first to stop DMA.
 1328      */
 1329     if (! AR_SREV_HOWL(ah))
 1330         OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
 1331     /*
 1332      * RTC reset and clear
 1333      */
 1334     OS_REG_WRITE(ah, AR_RTC_RESET, 0);
 1335     OS_DELAY(20);
 1336 
 1337     if (! AR_SREV_HOWL(ah))
 1338         OS_REG_WRITE(ah, AR_RC, 0);
 1339 
 1340     OS_REG_WRITE(ah, AR_RTC_RESET, 1);
 1341 
 1342     /*
 1343      * Poll till RTC is ON
 1344      */
 1345     if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
 1346         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
 1347         return AH_FALSE;
 1348     }
 1349 
 1350     return ar5416SetReset(ah, HAL_RESET_COLD);
 1351 }
 1352 
 1353 static HAL_BOOL
 1354 ar5416SetReset(struct ath_hal *ah, int type)
 1355 {
 1356     uint32_t tmpReg, mask;
 1357     uint32_t rst_flags;
 1358 
 1359 #ifdef  AH_SUPPORT_AR9130       /* Because of the AR9130 specific registers */
 1360     if (AR_SREV_HOWL(ah)) {
 1361         HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
 1362         uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
 1363         val &= ~AR_RTC_DERIVED_CLK_PERIOD;
 1364         val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
 1365         OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
 1366         (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
 1367     }
 1368 #endif  /* AH_SUPPORT_AR9130 */
 1369 
 1370     /*
 1371      * Force wake
 1372      */
 1373     OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
 1374         AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
 1375 
 1376 #ifdef  AH_SUPPORT_AR9130
 1377     if (AR_SREV_HOWL(ah)) {
 1378         rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
 1379           AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
 1380     } else {
 1381 #endif  /* AH_SUPPORT_AR9130 */
 1382         /*
 1383          * Reset AHB
 1384          *
 1385          * (In case the last interrupt source was a bus timeout.)
 1386          * XXX TODO: this is not the way to do it! It should be recorded
 1387          * XXX by the interrupt handler and passed _into_ the
 1388          * XXX reset path routine so this occurs.
 1389          */
 1390         tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
 1391         if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
 1392             OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
 1393             OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
 1394         } else {
 1395             OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
 1396         }
 1397         rst_flags = AR_RTC_RC_MAC_WARM;
 1398         if (type == HAL_RESET_COLD)
 1399             rst_flags |= AR_RTC_RC_MAC_COLD;
 1400 #ifdef  AH_SUPPORT_AR9130
 1401     }
 1402 #endif  /* AH_SUPPORT_AR9130 */
 1403 
 1404     OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
 1405 
 1406     if (AR_SREV_HOWL(ah))
 1407         OS_DELAY(10000);
 1408     else
 1409         OS_DELAY(100);
 1410 
 1411     /*
 1412      * Clear resets and force wakeup
 1413      */
 1414     OS_REG_WRITE(ah, AR_RTC_RC, 0);
 1415     if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
 1416         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
 1417         return AH_FALSE;
 1418     }
 1419 
 1420     /* Clear AHB reset */
 1421     if (! AR_SREV_HOWL(ah))
 1422         OS_REG_WRITE(ah, AR_RC, 0);
 1423 
 1424     if (AR_SREV_HOWL(ah))
 1425         OS_DELAY(50);
 1426 
 1427     if (AR_SREV_HOWL(ah)) {
 1428                 uint32_t mask;
 1429                 mask = OS_REG_READ(ah, AR_CFG);
 1430                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
 1431                         HALDEBUG(ah, HAL_DEBUG_RESET,
 1432                                 "CFG Byte Swap Set 0x%x\n", mask);
 1433                 } else {
 1434                         mask =  
 1435                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
 1436                         OS_REG_WRITE(ah, AR_CFG, mask);
 1437                         HALDEBUG(ah, HAL_DEBUG_RESET,
 1438                                 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
 1439                 }
 1440     } else {
 1441         if (type == HAL_RESET_COLD) {
 1442                 if (isBigEndian()) {
 1443                         /*
 1444                          * Set CFG, little-endian for descriptor accesses.
 1445                          */
 1446                         mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
 1447 #ifndef AH_NEED_DESC_SWAP
 1448                         mask |= AR_CFG_SWTD;
 1449 #endif
 1450                         HALDEBUG(ah, HAL_DEBUG_RESET,
 1451                             "%s Applying descriptor swap\n", __func__);
 1452                         OS_REG_WRITE(ah, AR_CFG, mask);
 1453                 } else
 1454                         OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
 1455         }
 1456     }
 1457 
 1458     return AH_TRUE;
 1459 }
 1460 
 1461 void
 1462 ar5416InitChainMasks(struct ath_hal *ah)
 1463 {
 1464         int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
 1465 
 1466         /* Flip this for this chainmask regardless of chip */
 1467         if (rx_chainmask == 0x5)
 1468                 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
 1469 
 1470         /*
 1471          * Workaround for OWL 1.0 calibration failure; enable multi-chain;
 1472          * then set true mask after calibration.
 1473          */
 1474         if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
 1475                 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
 1476                 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
 1477         } else {
 1478                 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
 1479                 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
 1480         }
 1481         OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
 1482 
 1483         if (AH5416(ah)->ah_tx_chainmask == 0x5)
 1484                 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
 1485 
 1486         if (AR_SREV_HOWL(ah)) {
 1487                 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
 1488                 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
 1489         }
 1490 }
 1491 
 1492 /*
 1493  * Work-around for Owl 1.0 calibration failure.
 1494  *
 1495  * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
 1496  * due to init calibration failures. ar5416RestoreChainMask restores
 1497  * these registers to the correct setting.
 1498  */
 1499 void
 1500 ar5416RestoreChainMask(struct ath_hal *ah)
 1501 {
 1502         int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
 1503 
 1504         if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
 1505                 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
 1506                 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
 1507         }
 1508 }
 1509 
 1510 void
 1511 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
 1512 {
 1513         uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
 1514         if (chan != AH_NULL) {
 1515                 if (IEEE80211_IS_CHAN_HALF(chan))
 1516                         pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
 1517                 else if (IEEE80211_IS_CHAN_QUARTER(chan))
 1518                         pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
 1519 
 1520                 if (IEEE80211_IS_CHAN_5GHZ(chan))
 1521                         pll |= SM(0xa, AR_RTC_PLL_DIV);
 1522                 else
 1523                         pll |= SM(0xb, AR_RTC_PLL_DIV);
 1524         } else
 1525                 pll |= SM(0xb, AR_RTC_PLL_DIV);
 1526 
 1527         OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 1528 
 1529         /* TODO:
 1530         * For multi-band owl, switch between bands by reiniting the PLL.
 1531         */
 1532 
 1533         OS_DELAY(RTC_PLL_SETTLE_DELAY);
 1534 
 1535         OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
 1536 }
 1537 
 1538 static void
 1539 ar5416SetDefGainValues(struct ath_hal *ah,
 1540     const MODAL_EEP_HEADER *pModal,
 1541     const struct ar5416eeprom *eep,
 1542     uint8_t txRxAttenLocal, int regChainOffset, int i)
 1543 {
 1544 
 1545         if (IS_EEP_MINOR_V3(ah)) {
 1546                 txRxAttenLocal = pModal->txRxAttenCh[i];
 1547 
 1548                 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
 1549                         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 1550                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
 1551                               pModal->bswMargin[i]);
 1552                         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 1553                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
 1554                               pModal->bswAtten[i]);
 1555                         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 1556                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
 1557                               pModal->xatten2Margin[i]);
 1558                         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 1559                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
 1560                               pModal->xatten2Db[i]);
 1561                 } else {
 1562                         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 1563                               AR_PHY_GAIN_2GHZ_BSW_MARGIN,
 1564                               pModal->bswMargin[i]);
 1565                         OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 1566                               AR_PHY_GAIN_2GHZ_BSW_ATTEN,
 1567                               pModal->bswAtten[i]);
 1568                 }
 1569         }
 1570 
 1571         if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
 1572                 OS_REG_RMW_FIELD(ah,
 1573                       AR_PHY_RXGAIN + regChainOffset,
 1574                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
 1575                 OS_REG_RMW_FIELD(ah,
 1576                       AR_PHY_RXGAIN + regChainOffset,
 1577                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
 1578         } else {
 1579                 OS_REG_RMW_FIELD(ah,
 1580                           AR_PHY_RXGAIN + regChainOffset,
 1581                           AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
 1582                 OS_REG_RMW_FIELD(ah,
 1583                           AR_PHY_GAIN_2GHZ + regChainOffset,
 1584                           AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
 1585         }
 1586 }
 1587 
 1588 /*
 1589  * Get the register chain offset for the given chain.
 1590  *
 1591  * Take into account the register chain swapping with AR5416 v2.0.
 1592  *
 1593  * XXX make sure that the reg chain swapping is only done for
 1594  * XXX AR5416 v2.0 or greater, and not later chips?
 1595  */
 1596 int
 1597 ar5416GetRegChainOffset(struct ath_hal *ah, int i)
 1598 {
 1599         int regChainOffset;
 1600 
 1601         if (AR_SREV_5416_V20_OR_LATER(ah) && 
 1602             (AH5416(ah)->ah_rx_chainmask == 0x5 ||
 1603             AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
 1604                 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with 
 1605                  * only chains 0 and 2 populated 
 1606                  */
 1607                 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
 1608         } else {
 1609                 regChainOffset = i * 0x1000;
 1610         }
 1611 
 1612         return regChainOffset;
 1613 }
 1614 
 1615 /*
 1616  * Read EEPROM header info and program the device for correct operation
 1617  * given the channel value.
 1618  */
 1619 HAL_BOOL
 1620 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
 1621 {
 1622     const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
 1623     const struct ar5416eeprom *eep = &ee->ee_base;
 1624     const MODAL_EEP_HEADER *pModal;
 1625     int                 i, regChainOffset;
 1626     uint8_t             txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
 1627 
 1628     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
 1629     pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
 1630 
 1631     /* NB: workaround for eeprom versions <= 14.2 */
 1632     txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
 1633 
 1634     OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
 1635     for (i = 0; i < AR5416_MAX_CHAINS; i++) { 
 1636            if (AR_SREV_MERLIN(ah)) {
 1637                 if (i >= 2) break;
 1638            }
 1639         regChainOffset = ar5416GetRegChainOffset(ah, i);
 1640 
 1641         OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
 1642 
 1643         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, 
 1644                 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
 1645                 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
 1646                 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
 1647                 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
 1648 
 1649         /*
 1650          * Large signal upgrade,
 1651          * If 14.3 or later EEPROM, use
 1652          * txRxAttenLocal = pModal->txRxAttenCh[i]
 1653          * else txRxAttenLocal is fixed value above.
 1654          */
 1655 
 1656         if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
 1657             ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
 1658     }
 1659 
 1660         if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
 1661                 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 1662                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
 1663                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
 1664                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
 1665                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
 1666                 } else {
 1667                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
 1668                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
 1669                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
 1670                         OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
 1671                 }
 1672                 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
 1673                 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
 1674                     !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
 1675                 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
 1676                     !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
 1677         }
 1678 
 1679     OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
 1680     OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
 1681 
 1682     if (! AR_SREV_MERLIN_10_OR_LATER(ah))
 1683         OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
 1684 
 1685     OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
 1686         SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
 1687         | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
 1688         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
 1689         | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
 1690 
 1691     OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
 1692         pModal->txEndToRxOn);
 1693 
 1694     if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
 1695         OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
 1696             pModal->thresh62);
 1697         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
 1698             pModal->thresh62);
 1699     } else {
 1700         OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
 1701             pModal->thresh62);
 1702         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
 1703             pModal->thresh62);
 1704     }
 1705     
 1706     /* Minor Version Specific application */
 1707     if (IS_EEP_MINOR_V2(ah)) {
 1708         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
 1709             pModal->txFrameToDataStart);
 1710         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
 1711             pModal->txFrameToPaOn);    
 1712     }   
 1713 
 1714     if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
 1715                 /* Overwrite switch settling with HT40 value */
 1716                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
 1717                     pModal->swSettleHt40);
 1718 
 1719     if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
 1720          OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
 1721 
 1722         if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
 1723                 if (IEEE80211_IS_CHAN_2GHZ(chan))
 1724                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
 1725                             eep->baseEepHeader.dacLpMode);
 1726                 else if (eep->baseEepHeader.dacHiPwrMode_5G)
 1727                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
 1728                 else
 1729                         OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
 1730                             eep->baseEepHeader.dacLpMode);
 1731 
 1732                 OS_DELAY(100);
 1733 
 1734                 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
 1735                     pModal->miscBits >> 2);
 1736                 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
 1737                     eep->baseEepHeader.desiredScaleCCK);
 1738         }
 1739 
 1740     return (AH_TRUE);
 1741 }
 1742 
 1743 /*
 1744  * Helper functions common for AP/CB/XB
 1745  */
 1746 
 1747 /*
 1748  * Set the target power array "ratesArray" from the
 1749  * given set of target powers.
 1750  *
 1751  * This is used by the various chipset/EEPROM TX power
 1752  * setup routines.
 1753  */ 
 1754 void
 1755 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
 1756     const struct ieee80211_channel *chan,
 1757     int16_t *ratesArray,
 1758     const CAL_TARGET_POWER_LEG *targetPowerCck,
 1759     const CAL_TARGET_POWER_LEG *targetPowerCckExt,
 1760     const CAL_TARGET_POWER_LEG *targetPowerOfdm,
 1761     const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
 1762     const CAL_TARGET_POWER_HT *targetPowerHt20,
 1763     const CAL_TARGET_POWER_HT *targetPowerHt40)
 1764 {
 1765 #define N(a)    (sizeof(a)/sizeof(a[0]))
 1766         int i;
 1767 
 1768         /* Blank the rates array, to be consistent */
 1769         for (i = 0; i < Ar5416RateSize; i++)
 1770                 ratesArray[i] = 0;
 1771 
 1772         /* Set rates Array from collected data */
 1773         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
 1774         ratesArray[rate18mb] = ratesArray[rate24mb] =
 1775             targetPowerOfdm->tPow2x[0];
 1776         ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
 1777         ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
 1778         ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
 1779         ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
 1780 
 1781         for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
 1782                 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
 1783         }
 1784 
 1785         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 1786                 ratesArray[rate1l]  = targetPowerCck->tPow2x[0];
 1787                 ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck->tPow2x[1];
 1788                 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
 1789                 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
 1790         }
 1791         if (IEEE80211_IS_CHAN_HT40(chan)) {
 1792                 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
 1793                         ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
 1794                 }
 1795                 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
 1796                 ratesArray[rateDupCck]  = targetPowerHt40->tPow2x[0];
 1797                 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
 1798                 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 1799                         ratesArray[rateExtCck]  = targetPowerCckExt->tPow2x[0];
 1800                 }
 1801         }
 1802 #undef  N
 1803 }
 1804 
 1805 /*
 1806  * ar5416SetPowerPerRateTable
 1807  *
 1808  * Sets the transmit power in the baseband for the given
 1809  * operating channel and mode.
 1810  */
 1811 static HAL_BOOL
 1812 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
 1813                            const struct ieee80211_channel *chan,
 1814                            int16_t *ratesArray, uint16_t cfgCtl,
 1815                            uint16_t AntennaReduction, 
 1816                            uint16_t twiceMaxRegulatoryPower,
 1817                            uint16_t powerLimit)
 1818 {
 1819 #define N(a)    (sizeof(a)/sizeof(a[0]))
 1820 /* Local defines to distinguish between extension and control CTL's */
 1821 #define EXT_ADDITIVE (0x8000)
 1822 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
 1823 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
 1824 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
 1825 
 1826         uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
 1827         int i;
 1828         int16_t  twiceLargestAntenna;
 1829         CAL_CTL_DATA *rep;
 1830         CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
 1831         CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
 1832         CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
 1833         int16_t scaledPower, minCtlPower;
 1834 
 1835 #define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
 1836 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
 1837         static const uint16_t ctlModesFor11a[] = {
 1838            CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
 1839         };
 1840         static const uint16_t ctlModesFor11g[] = {
 1841            CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
 1842         };
 1843         const uint16_t *pCtlMode;
 1844         uint16_t numCtlModes, ctlMode, freq;
 1845         CHAN_CENTERS centers;
 1846 
 1847         ar5416GetChannelCenters(ah,  chan, &centers);
 1848 
 1849         /* Compute TxPower reduction due to Antenna Gain */
 1850 
 1851         twiceLargestAntenna = AH_MAX(AH_MAX(
 1852             pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
 1853             pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
 1854             pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
 1855 #if 0
 1856         /* Turn it back on if we need to calculate per chain antenna gain reduction */
 1857         /* Use only if the expected gain > 6dbi */
 1858         /* Chain 0 is always used */
 1859         twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
 1860 
 1861         /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
 1862         if (ahp->ah_tx_chainmask & 0x2)
 1863                 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
 1864                         pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
 1865 
 1866         if (ahp->ah_tx_chainmask & 0x4)
 1867                 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
 1868                         pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
 1869 #endif
 1870         twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
 1871 
 1872         /* XXX setup for 5212 use (really used?) */
 1873         ath_hal_eepromSet(ah,
 1874             IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
 1875             twiceLargestAntenna);
 1876 
 1877         /* 
 1878          * scaledPower is the minimum of the user input power level and
 1879          * the regulatory allowed power level
 1880          */
 1881         scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
 1882 
 1883         /* Reduce scaled Power by number of chains active to get to per chain tx power level */
 1884         /* TODO: better value than these? */
 1885         switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
 1886         case 1:
 1887                 break;
 1888         case 2:
 1889                 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
 1890                 break;
 1891         case 3:
 1892                 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
 1893                 break;
 1894         default:
 1895                 return AH_FALSE; /* Unsupported number of chains */
 1896         }
 1897 
 1898         scaledPower = AH_MAX(0, scaledPower);
 1899 
 1900         /* Get target powers from EEPROM - our baseline for TX Power */
 1901         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 1902                 /* Setup for CTL modes */
 1903                 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
 1904                 pCtlMode = ctlModesFor11g;
 1905 
 1906                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
 1907                                 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
 1908                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
 1909                                 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
 1910                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
 1911                                 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
 1912 
 1913                 if (IEEE80211_IS_CHAN_HT40(chan)) {
 1914                         numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
 1915 
 1916                         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
 1917                                 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
 1918                         /* Get target powers for extension channels */
 1919                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
 1920                                 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
 1921                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
 1922                                 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
 1923                 }
 1924         } else {
 1925                 /* Setup for CTL modes */
 1926                 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
 1927                 pCtlMode = ctlModesFor11a;
 1928 
 1929                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
 1930                                 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
 1931                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
 1932                                 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
 1933 
 1934                 if (IEEE80211_IS_CHAN_HT40(chan)) {
 1935                         numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
 1936 
 1937                         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
 1938                                 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
 1939                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
 1940                                 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
 1941                 }
 1942         }
 1943 
 1944         /*
 1945          * For MIMO, need to apply regulatory caps individually across dynamically
 1946          * running modes: CCK, OFDM, HT20, HT40
 1947          *
 1948          * The outer loop walks through each possible applicable runtime mode.
 1949          * The inner loop walks through each ctlIndex entry in EEPROM.
 1950          * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
 1951          *
 1952          */
 1953         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
 1954                 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
 1955                     (pCtlMode[ctlMode] == CTL_2GHT40);
 1956                 if (isHt40CtlMode) {
 1957                         freq = centers.ctl_center;
 1958                 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
 1959                         freq = centers.ext_center;
 1960                 } else {
 1961                         freq = centers.ctl_center;
 1962                 }
 1963 
 1964                 /* walk through each CTL index stored in EEPROM */
 1965                 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
 1966                         uint16_t twiceMinEdgePower;
 1967 
 1968                         /* compare test group from regulatory channel list with test mode from pCtlMode list */
 1969                         if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
 1970                                 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
 1971                                  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
 1972                                 rep = &(pEepData->ctlData[i]);
 1973                                 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
 1974                                                         rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
 1975                                                         IEEE80211_IS_CHAN_2GHZ(chan));
 1976                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
 1977                                         /* Find the minimum of all CTL edge powers that apply to this channel */
 1978                                         twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
 1979                                 } else {
 1980                                         /* specific */
 1981                                         twiceMaxEdgePower = twiceMinEdgePower;
 1982                                         break;
 1983                                 }
 1984                         }
 1985                 }
 1986                 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
 1987                 /* Apply ctl mode to correct target power set */
 1988                 switch(pCtlMode[ctlMode]) {
 1989                 case CTL_11B:
 1990                         for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
 1991                                 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
 1992                         }
 1993                         break;
 1994                 case CTL_11A:
 1995                 case CTL_11G:
 1996                         for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
 1997                                 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
 1998                         }
 1999                         break;
 2000                 case CTL_5GHT20:
 2001                 case CTL_2GHT20:
 2002                         for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
 2003                                 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
 2004                         }
 2005                         break;
 2006                 case CTL_11B_EXT:
 2007                         targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
 2008                         break;
 2009                 case CTL_11A_EXT:
 2010                 case CTL_11G_EXT:
 2011                         targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
 2012                         break;
 2013                 case CTL_5GHT40:
 2014                 case CTL_2GHT40:
 2015                         for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
 2016                                 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
 2017                         }
 2018                         break;
 2019                 default:
 2020                         return AH_FALSE;
 2021                         break;
 2022                 }
 2023         } /* end ctl mode checking */
 2024 
 2025         /* Set rates Array from collected data */
 2026         ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
 2027             &targetPowerCck,
 2028             &targetPowerCckExt,
 2029             &targetPowerOfdm,
 2030             &targetPowerOfdmExt,
 2031             &targetPowerHt20,
 2032             &targetPowerHt40);
 2033         return AH_TRUE;
 2034 #undef EXT_ADDITIVE
 2035 #undef CTL_11A_EXT
 2036 #undef CTL_11G_EXT
 2037 #undef CTL_11B_EXT
 2038 #undef SUB_NUM_CTL_MODES_AT_5G_40
 2039 #undef SUB_NUM_CTL_MODES_AT_2G_40
 2040 #undef N
 2041 }
 2042 
 2043 /**************************************************************************
 2044  * fbin2freq
 2045  *
 2046  * Get channel value from binary representation held in eeprom
 2047  * RETURNS: the frequency in MHz
 2048  */
 2049 static uint16_t
 2050 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
 2051 {
 2052     /*
 2053      * Reserved value 0xFF provides an empty definition both as
 2054      * an fbin and as a frequency - do not convert
 2055      */
 2056     if (fbin == AR5416_BCHAN_UNUSED) {
 2057         return fbin;
 2058     }
 2059 
 2060     return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
 2061 }
 2062 
 2063 /*
 2064  * ar5416GetMaxEdgePower
 2065  *
 2066  * Find the maximum conformance test limit for the given channel and CTL info
 2067  */
 2068 uint16_t
 2069 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
 2070 {
 2071     uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
 2072     int      i;
 2073 
 2074     /* Get the edge power */
 2075     for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
 2076         /*
 2077          * If there's an exact channel match or an inband flag set
 2078          * on the lower channel use the given rdEdgePower
 2079          */
 2080         if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
 2081             twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
 2082             break;
 2083         } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
 2084             if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
 2085                 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
 2086             }
 2087             /* Leave loop - no more affecting edges possible in this monotonic increasing list */
 2088             break;
 2089         }
 2090     }
 2091     HALASSERT(twiceMaxEdgePower > 0);
 2092     return twiceMaxEdgePower;
 2093 }
 2094 
 2095 /**************************************************************
 2096  * ar5416GetTargetPowers
 2097  *
 2098  * Return the rates of target power for the given target power table
 2099  * channel, and number of channels
 2100  */
 2101 void
 2102 ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
 2103                       CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
 2104                       CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
 2105                       HAL_BOOL isHt40Target)
 2106 {
 2107     uint16_t clo, chi;
 2108     int i;
 2109     int matchIndex = -1, lowIndex = -1;
 2110     uint16_t freq;
 2111     CHAN_CENTERS centers;
 2112 
 2113     ar5416GetChannelCenters(ah,  chan, &centers);
 2114     freq = isHt40Target ? centers.synth_center : centers.ctl_center;
 2115 
 2116     /* Copy the target powers into the temp channel list */
 2117     if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
 2118         matchIndex = 0;
 2119     } else {
 2120         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 2121             if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
 2122                 matchIndex = i;
 2123                 break;
 2124             } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
 2125                        (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
 2126             {
 2127                 lowIndex = i - 1;
 2128                 break;
 2129             }
 2130         }
 2131         if ((matchIndex == -1) && (lowIndex == -1)) {
 2132             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
 2133             matchIndex = i - 1;
 2134         }
 2135     }
 2136 
 2137     if (matchIndex != -1) {
 2138         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
 2139     } else {
 2140         HALASSERT(lowIndex != -1);
 2141         /*
 2142          * Get the lower and upper channels, target powers,
 2143          * and interpolate between them.
 2144          */
 2145         clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
 2146         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
 2147 
 2148         for (i = 0; i < numRates; i++) {
 2149             pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
 2150                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
 2151         }
 2152     }
 2153 }
 2154 /**************************************************************
 2155  * ar5416GetTargetPowersLeg
 2156  *
 2157  * Return the four rates of target power for the given target power table
 2158  * channel, and number of channels
 2159  */
 2160 void
 2161 ar5416GetTargetPowersLeg(struct ath_hal *ah, 
 2162                          const struct ieee80211_channel *chan,
 2163                          CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
 2164                          CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
 2165                          HAL_BOOL isExtTarget)
 2166 {
 2167     uint16_t clo, chi;
 2168     int i;
 2169     int matchIndex = -1, lowIndex = -1;
 2170     uint16_t freq;
 2171     CHAN_CENTERS centers;
 2172 
 2173     ar5416GetChannelCenters(ah,  chan, &centers);
 2174     freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
 2175 
 2176     /* Copy the target powers into the temp channel list */
 2177     if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
 2178         matchIndex = 0;
 2179     } else {
 2180         for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 2181             if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
 2182                 matchIndex = i;
 2183                 break;
 2184             } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
 2185                        (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
 2186             {
 2187                 lowIndex = i - 1;
 2188                 break;
 2189             }
 2190         }
 2191         if ((matchIndex == -1) && (lowIndex == -1)) {
 2192             HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
 2193             matchIndex = i - 1;
 2194         }
 2195     }
 2196 
 2197     if (matchIndex != -1) {
 2198         OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
 2199     } else {
 2200         HALASSERT(lowIndex != -1);
 2201         /*
 2202          * Get the lower and upper channels, target powers,
 2203          * and interpolate between them.
 2204          */
 2205         clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
 2206         chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
 2207 
 2208         for (i = 0; i < numRates; i++) {
 2209             pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
 2210                                    powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
 2211         }
 2212     }
 2213 }
 2214 
 2215 /*
 2216  * Set the gain boundaries for the given radio chain.
 2217  *
 2218  * The gain boundaries tell the hardware at what point in the
 2219  * PDADC array to "switch over" from one PD gain setting
 2220  * to another. There's also a gain overlap between two
 2221  * PDADC array gain curves where there's valid PD values
 2222  * for 2 gain settings.
 2223  *
 2224  * The hardware uses the gain overlap and gain boundaries
 2225  * to determine which gain curve to use for the given
 2226  * target TX power.
 2227  */
 2228 void
 2229 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
 2230     uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
 2231 {
 2232         int regChainOffset;
 2233 
 2234         regChainOffset = ar5416GetRegChainOffset(ah, i);
 2235 
 2236         HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
 2237             " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
 2238             gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
 2239             gainBoundaries[3]);
 2240         OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
 2241             SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
 2242             SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
 2243             SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
 2244             SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
 2245             SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
 2246 }
 2247 
 2248 /*
 2249  * Get the gain values and the number of gain levels given
 2250  * in xpdMask.
 2251  *
 2252  * The EEPROM xpdMask determines which power detector gain
 2253  * levels were used during calibration. Each of these mask
 2254  * bits maps to a fixed gain level in hardware.
 2255  */
 2256 uint16_t
 2257 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
 2258     uint16_t xpdGainValues[])
 2259 {
 2260     int i;
 2261     uint16_t numXpdGain = 0;
 2262 
 2263     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
 2264         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
 2265             if (numXpdGain >= AR5416_NUM_PD_GAINS) {
 2266                 HALASSERT(0);
 2267                 break;
 2268             }
 2269             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
 2270             numXpdGain++;
 2271         }
 2272     }
 2273     return numXpdGain;
 2274 }
 2275 
 2276 /*
 2277  * Write the detector gain and biases.
 2278  *
 2279  * There are four power detector gain levels. The xpdMask in the EEPROM
 2280  * determines which power detector gain levels have TX power calibration
 2281  * data associated with them. This function writes the number of
 2282  * PD gain levels and their values into the hardware.
 2283  *
 2284  * This is valid for all TX chains - the calibration data itself however
 2285  * will likely differ per-chain.
 2286  */
 2287 void
 2288 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
 2289     uint16_t xpdGainValues[])
 2290 {
 2291     HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
 2292       " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
 2293       xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
 2294 
 2295     OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & 
 2296         ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
 2297         AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | 
 2298         SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
 2299         SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
 2300         SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
 2301         SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
 2302 }
 2303 
 2304 /*
 2305  * Write the PDADC array to the given radio chain i.
 2306  *
 2307  * The 32 PDADC registers are written without any care about
 2308  * their contents - so if various chips treat values as "special",
 2309  * this routine will not care.
 2310  */
 2311 void
 2312 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
 2313 {
 2314         int regOffset, regChainOffset;
 2315         int j;
 2316         int reg32;
 2317 
 2318         regChainOffset = ar5416GetRegChainOffset(ah, i);
 2319         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
 2320 
 2321         for (j = 0; j < 32; j++) {
 2322                 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
 2323                     ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
 2324                     ((pdadcValues[4*j + 2] & 0xFF) << 16) |
 2325                     ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
 2326                 OS_REG_WRITE(ah, regOffset, reg32);
 2327                 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
 2328                     " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
 2329                     " Value %3d | PDADC %3d Value %3d |\n",
 2330                     i,
 2331                     4*j, pdadcValues[4*j],
 2332                     4*j+1, pdadcValues[4*j + 1],
 2333                     4*j+2, pdadcValues[4*j + 2],
 2334                     4*j+3, pdadcValues[4*j + 3]);
 2335                 regOffset += 4;
 2336         }
 2337 }
 2338 
 2339 /**************************************************************
 2340  * ar5416SetPowerCalTable
 2341  *
 2342  * Pull the PDADC piers from cal data and interpolate them across the given
 2343  * points as well as from the nearest pier(s) to get a power detector
 2344  * linear voltage to power level table.
 2345  */
 2346 HAL_BOOL
 2347 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
 2348         const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
 2349 {
 2350     CAL_DATA_PER_FREQ *pRawDataset;
 2351     uint8_t  *pCalBChans = AH_NULL;
 2352     uint16_t pdGainOverlap_t2;
 2353     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
 2354     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
 2355     uint16_t numPiers, i;
 2356     int16_t  tMinCalPower;
 2357     uint16_t numXpdGain, xpdMask;
 2358     uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
 2359     uint32_t regChainOffset;
 2360 
 2361     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
 2362     
 2363     xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
 2364 
 2365     if (IS_EEP_MINOR_V2(ah)) {
 2366         pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
 2367     } else { 
 2368         pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
 2369     }
 2370 
 2371     if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2372         pCalBChans = pEepData->calFreqPier2G;
 2373         numPiers = AR5416_NUM_2G_CAL_PIERS;
 2374     } else {
 2375         pCalBChans = pEepData->calFreqPier5G;
 2376         numPiers = AR5416_NUM_5G_CAL_PIERS;
 2377     }
 2378 
 2379     /* Calculate the value of xpdgains from the xpdGain Mask */
 2380     numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
 2381     
 2382     /* Write the detector gain biases and their number */
 2383     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
 2384 
 2385     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 2386         regChainOffset = ar5416GetRegChainOffset(ah, i);
 2387 
 2388         if (pEepData->baseEepHeader.txMask & (1 << i)) {
 2389             if (IEEE80211_IS_CHAN_2GHZ(chan)) {
 2390                 pRawDataset = pEepData->calPierData2G[i];
 2391             } else {
 2392                 pRawDataset = pEepData->calPierData5G[i];
 2393             }
 2394 
 2395             /* Fetch the gain boundaries and the PDADC values */
 2396             ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
 2397                                              pCalBChans, numPiers,
 2398                                              pdGainOverlap_t2,
 2399                                              &tMinCalPower, gainBoundaries,
 2400                                              pdadcValues, numXpdGain);
 2401 
 2402             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
 2403                 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
 2404                   gainBoundaries);
 2405             }
 2406 
 2407             /* Write the power values into the baseband power table */
 2408             ar5416WritePdadcValues(ah, i, pdadcValues);
 2409         }
 2410     }
 2411     *pTxPowerIndexOffset = 0;
 2412 
 2413     return AH_TRUE;
 2414 }
 2415 
 2416 /**************************************************************
 2417  * ar5416GetGainBoundariesAndPdadcs
 2418  *
 2419  * Uses the data points read from EEPROM to reconstruct the pdadc power table
 2420  * Called by ar5416SetPowerCalTable only.
 2421  */
 2422 void
 2423 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, 
 2424                                  const struct ieee80211_channel *chan,
 2425                                  CAL_DATA_PER_FREQ *pRawDataSet,
 2426                                  uint8_t * bChans,  uint16_t availPiers,
 2427                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
 2428                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
 2429 {
 2430 
 2431     int       i, j, k;
 2432     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
 2433     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
 2434 
 2435     /* filled out Vpd table for all pdGains (chanL) */
 2436     static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 2437 
 2438     /* filled out Vpd table for all pdGains (chanR) */
 2439     static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 2440 
 2441     /* filled out Vpd table for all pdGains (interpolated) */
 2442     static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 2443 
 2444     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
 2445     uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
 2446     uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
 2447     int16_t   vpdStep;
 2448     int16_t   tmpVal;
 2449     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
 2450     HAL_BOOL    match;
 2451     int16_t  minDelta = 0;
 2452     CHAN_CENTERS centers;
 2453 
 2454     ar5416GetChannelCenters(ah, chan, &centers);
 2455 
 2456     /* Trim numPiers for the number of populated channel Piers */
 2457     for (numPiers = 0; numPiers < availPiers; numPiers++) {
 2458         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
 2459             break;
 2460         }
 2461     }
 2462 
 2463     /* Find pier indexes around the current channel */
 2464     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
 2465         IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
 2466 
 2467     if (match) {
 2468         /* Directly fill both vpd tables from the matching index */
 2469         for (i = 0; i < numXpdGains; i++) {
 2470             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
 2471             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
 2472             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
 2473                                pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
 2474         }
 2475     } else {
 2476         for (i = 0; i < numXpdGains; i++) {
 2477             pVpdL = pRawDataSet[idxL].vpdPdg[i];
 2478             pPwrL = pRawDataSet[idxL].pwrPdg[i];
 2479             pVpdR = pRawDataSet[idxR].vpdPdg[i];
 2480             pPwrR = pRawDataSet[idxR].pwrPdg[i];
 2481 
 2482             /* Start Vpd interpolation from the max of the minimum powers */
 2483             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
 2484 
 2485             /* End Vpd interpolation from the min of the max powers */
 2486             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
 2487             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
 2488 
 2489             /* Fill pier Vpds */
 2490             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
 2491             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
 2492 
 2493             /* Interpolate the final vpd */
 2494             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
 2495                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
 2496                     IEEE80211_IS_CHAN_2GHZ(chan)),
 2497                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
 2498             }
 2499         }
 2500     }
 2501     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
 2502 
 2503     k = 0; /* index for the final table */
 2504     for (i = 0; i < numXpdGains; i++) {
 2505         if (i == (numXpdGains - 1)) {
 2506             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
 2507         } else {
 2508             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
 2509         }
 2510 
 2511         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
 2512 
 2513         /* NB: only applies to owl 1.0 */
 2514         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
 2515             /*
 2516              * fix the gain delta, but get a delta that can be applied to min to
 2517              * keep the upper power values accurate, don't think max needs to
 2518              * be adjusted because should not be at that area of the table?
 2519              */
 2520             minDelta = pPdGainBoundaries[0] - 23;
 2521             pPdGainBoundaries[0] = 23;
 2522         }
 2523         else {
 2524             minDelta = 0;
 2525         }
 2526 
 2527         /* Find starting index for this pdGain */
 2528         if (i == 0) {
 2529             if (AR_SREV_MERLIN_10_OR_LATER(ah))
 2530                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
 2531             else
 2532                 ss = 0; /* for the first pdGain, start from index 0 */
 2533         } else {
 2534             /* need overlap entries extrapolated below. */
 2535             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
 2536         }
 2537         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
 2538         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 2539         /*
 2540          *-ve ss indicates need to extrapolate data below for this pdGain
 2541          */
 2542         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 2543             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
 2544             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
 2545             ss++;
 2546         }
 2547 
 2548         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
 2549         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
 2550         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
 2551 
 2552         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 2553             pPDADCValues[k++] = vpdTableI[i][ss++];
 2554         }
 2555 
 2556         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
 2557         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 2558         /*
 2559          * for last gain, pdGainBoundary == Pmax_t2, so will
 2560          * have to extrapolate
 2561          */
 2562         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
 2563             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 2564                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
 2565                           (ss - maxIndex +1) * vpdStep));
 2566                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
 2567                 ss++;
 2568             }
 2569         }               /* extrapolated above */
 2570     }                   /* for all pdGainUsed */
 2571 
 2572     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
 2573     while (i < AR5416_PD_GAINS_IN_MASK) {
 2574         pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
 2575         i++;
 2576     }
 2577 
 2578     while (k < AR5416_NUM_PDADC_VALUES) {
 2579         pPDADCValues[k] = pPDADCValues[k-1];
 2580         k++;
 2581     }
 2582     return;
 2583 }
 2584 
 2585 /*
 2586  * The linux ath9k driver and (from what I've been told) the reference
 2587  * Atheros driver enables the 11n PHY by default whether or not it's
 2588  * configured.
 2589  */
 2590 static void
 2591 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
 2592 {
 2593         uint32_t phymode;
 2594         uint32_t enableDacFifo = 0;
 2595         HAL_HT_MACMODE macmode;         /* MAC - 20/40 mode */
 2596 
 2597         if (AR_SREV_KITE_10_OR_LATER(ah))
 2598                 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
 2599 
 2600         /* Enable 11n HT, 20 MHz */
 2601         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
 2602                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
 2603 
 2604         /* Configure baseband for dynamic 20/40 operation */
 2605         if (IEEE80211_IS_CHAN_HT40(chan)) {
 2606                 phymode |= AR_PHY_FC_DYN2040_EN;
 2607 
 2608                 /* Configure control (primary) channel at +-10MHz */
 2609                 if (IEEE80211_IS_CHAN_HT40U(chan))
 2610                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
 2611 #if 0
 2612                 /* Configure 20/25 spacing */
 2613                 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
 2614                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
 2615 #endif
 2616                 macmode = HAL_HT_MACMODE_2040;
 2617         } else
 2618                 macmode = HAL_HT_MACMODE_20;
 2619         OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
 2620 
 2621         /* Configure MAC for 20/40 operation */
 2622         ar5416Set11nMac2040(ah, macmode);
 2623 
 2624         /* global transmit timeout (25 TUs default)*/
 2625         /* XXX - put this elsewhere??? */
 2626         OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
 2627 
 2628         /* carrier sense timeout */
 2629         OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
 2630         OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
 2631 }
 2632 
 2633 void
 2634 ar5416GetChannelCenters(struct ath_hal *ah,
 2635         const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
 2636 {
 2637         uint16_t freq = ath_hal_gethwchannel(ah, chan);
 2638 
 2639         centers->ctl_center = freq;
 2640         centers->synth_center = freq;
 2641         /*
 2642          * In 20/40 phy mode, the center frequency is
 2643          * "between" the control and extension channels.
 2644          */
 2645         if (IEEE80211_IS_CHAN_HT40U(chan)) {
 2646                 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
 2647                 centers->ext_center =
 2648                     centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
 2649         } else if (IEEE80211_IS_CHAN_HT40D(chan)) {
 2650                 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
 2651                 centers->ext_center =
 2652                     centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
 2653         } else {
 2654                 centers->ext_center = freq;
 2655         }
 2656 }
 2657 
 2658 /*
 2659  * Override the INI vals being programmed.
 2660  */
 2661 static void
 2662 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
 2663 {
 2664         uint32_t val;
 2665 
 2666         /*
 2667          * Set the RX_ABORT and RX_DIS and clear if off only after
 2668          * RXE is set for MAC. This prevents frames with corrupted
 2669          * descriptor status.
 2670          */
 2671         OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
 2672 
 2673         if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
 2674                 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
 2675                 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
 2676                 if (!AR_SREV_9271(ah))
 2677                         val &= ~AR_PCU_MISC_MODE2_HWWAR1;
 2678 
 2679                 if (AR_SREV_KIWI_10_OR_LATER(ah))
 2680                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
 2681 
 2682                 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
 2683         }
 2684 
 2685         /*
 2686          * Disable RIFS search on some chips to avoid baseband
 2687          * hang issues.
 2688          */
 2689         if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
 2690                 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
 2691 
 2692         if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
 2693                 return;
 2694 
 2695         /*
 2696          * Disable BB clock gating
 2697          * Necessary to avoid issues on AR5416 2.0
 2698          */
 2699         OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
 2700 }
 2701 
 2702 struct ini {
 2703         uint32_t        *data;          /* NB: !const */
 2704         int             rows, cols;
 2705 };
 2706 
 2707 /*
 2708  * Override XPA bias level based on operating frequency.
 2709  * This is a v14 EEPROM specific thing for the AR9160.
 2710  */
 2711 void
 2712 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
 2713 {
 2714 #define XPA_LVL_FREQ(cnt)       (pModal->xpaBiasLvlFreq[cnt])
 2715         MODAL_EEP_HEADER        *pModal;
 2716         HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
 2717         struct ar5416eeprom     *eep = &ee->ee_base;
 2718         uint8_t biaslevel;
 2719 
 2720         if (! AR_SREV_SOWL(ah))
 2721                 return;
 2722 
 2723         if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
 2724                 return;
 2725 
 2726         pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
 2727 
 2728         if (pModal->xpaBiasLvl != 0xff)
 2729                 biaslevel = pModal->xpaBiasLvl;
 2730         else {
 2731                 uint16_t resetFreqBin, freqBin, freqCount = 0;
 2732                 CHAN_CENTERS centers;
 2733 
 2734                 ar5416GetChannelCenters(ah, chan, &centers);
 2735 
 2736                 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
 2737                 freqBin = XPA_LVL_FREQ(0) & 0xff;
 2738                 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
 2739 
 2740                 freqCount++;
 2741 
 2742                 while (freqCount < 3) {
 2743                         if (XPA_LVL_FREQ(freqCount) == 0x0)
 2744                         break;
 2745 
 2746                         freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
 2747                         if (resetFreqBin >= freqBin)
 2748                                 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
 2749                         else
 2750                                 break;
 2751                         freqCount++;
 2752                 }
 2753         }
 2754 
 2755         HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
 2756             __func__, biaslevel);
 2757 
 2758         /*
 2759          * This is a dirty workaround for the const initval data,
 2760          * which will upset multiple AR9160's on the same board.
 2761          *
 2762          * The HAL should likely just have a private copy of the addac
 2763          * data per instance.
 2764          */
 2765         if (IEEE80211_IS_CHAN_2GHZ(chan))
 2766                 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
 2767                     (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
 2768         else
 2769                 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
 2770                     (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
 2771 #undef XPA_LVL_FREQ
 2772 }
 2773 
 2774 static void
 2775 ar5416MarkPhyInactive(struct ath_hal *ah)
 2776 {
 2777         OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
 2778 }
 2779 
 2780 #define AR5416_IFS_SLOT_FULL_RATE_40    0x168   /* 9 us half, 40 MHz core clock (9*40) */
 2781 #define AR5416_IFS_SLOT_HALF_RATE_40    0x104   /* 13 us half, 20 MHz core clock (13*20) */
 2782 #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2    /* 21 us quarter, 10 MHz core clock (21*10) */
 2783 
 2784 #define AR5416_IFS_EIFS_FULL_RATE_40    0xE60   /* (74 + (2 * 9)) * 40MHz core clock */
 2785 #define AR5416_IFS_EIFS_HALF_RATE_40    0xDAC   /* (149 + (2 * 13)) * 20MHz core clock */
 2786 #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48   /* (298 + (2 * 21)) * 10MHz core clock */
 2787 
 2788 #define AR5416_IFS_SLOT_FULL_RATE_44    0x18c   /* 9 us half, 44 MHz core clock (9*44) */
 2789 #define AR5416_IFS_SLOT_HALF_RATE_44    0x11e   /* 13 us half, 22 MHz core clock (13*22) */
 2790 #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7    /* 21 us quarter, 11 MHz core clock (21*11) */
 2791 
 2792 #define AR5416_IFS_EIFS_FULL_RATE_44    0xfd0   /* (74 + (2 * 9)) * 44MHz core clock */
 2793 #define AR5416_IFS_EIFS_HALF_RATE_44    0xf0a   /* (149 + (2 * 13)) * 22MHz core clock */
 2794 #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c   /* (298 + (2 * 21)) * 11MHz core clock */
 2795 
 2796 #define AR5416_INIT_USEC_40             40
 2797 #define AR5416_HALF_RATE_USEC_40        19 /* ((40 / 2) - 1 ) */
 2798 #define AR5416_QUARTER_RATE_USEC_40     9  /* ((40 / 4) - 1 ) */
 2799 
 2800 #define AR5416_INIT_USEC_44             44
 2801 #define AR5416_HALF_RATE_USEC_44        21 /* ((44 / 2) - 1 ) */
 2802 #define AR5416_QUARTER_RATE_USEC_44     10  /* ((44 / 4) - 1 ) */
 2803 
 2804 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
 2805 #define AR5416_RX_NON_FULL_RATE_LATENCY         63
 2806 #define AR5416_TX_HALF_RATE_LATENCY             108
 2807 #define AR5416_TX_QUARTER_RATE_LATENCY          216
 2808 
 2809 /*
 2810  * Adjust various register settings based on half/quarter rate clock setting.
 2811  * This includes:
 2812  *
 2813  * + USEC, TX/RX latency,
 2814  * + IFS params: slot, eifs, misc etc.
 2815  *
 2816  * TODO:
 2817  *
 2818  * + Verify which other registers need to be tweaked;
 2819  * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
 2820  * + This just plain won't work for long distance links - the coverage class
 2821  *   code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
 2822  *   change;
 2823  * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
 2824  *   series chips?
 2825  * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
 2826  */
 2827 static void
 2828 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
 2829 {
 2830         uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
 2831         int clk_44 = 0;
 2832 
 2833         HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
 2834             IEEE80211_IS_CHAN_QUARTER(chan));
 2835 
 2836         /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
 2837         if (IEEE80211_IS_CHAN_2GHZ(chan))
 2838                 clk_44 = 1;
 2839         else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
 2840             IS_5GHZ_FAST_CLOCK_EN(ah, chan))
 2841                 clk_44 = 1;
 2842 
 2843         /* XXX does this need save/restoring for the 11n chips? */
 2844         /*
 2845          * XXX TODO: should mask out the txlat/rxlat/usec values?
 2846          */
 2847         refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
 2848 
 2849         /*
 2850          * XXX This really should calculate things, not use
 2851          * hard coded values! Ew.
 2852          */
 2853         if (IEEE80211_IS_CHAN_HALF(chan)) {
 2854                 if (clk_44) {
 2855                         slot = AR5416_IFS_SLOT_HALF_RATE_44;
 2856                         rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
 2857                             AR5416_USEC_RX_LAT_S;
 2858                         txLat = AR5416_TX_HALF_RATE_LATENCY <<
 2859                             AR5416_USEC_TX_LAT_S;
 2860                         usec = AR5416_HALF_RATE_USEC_44;
 2861                         eifs = AR5416_IFS_EIFS_HALF_RATE_44;
 2862                         init_usec = AR5416_INIT_USEC_44 >> 1;
 2863                 } else {
 2864                         slot = AR5416_IFS_SLOT_HALF_RATE_40;
 2865                         rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
 2866                             AR5416_USEC_RX_LAT_S;
 2867                         txLat = AR5416_TX_HALF_RATE_LATENCY <<
 2868                             AR5416_USEC_TX_LAT_S;
 2869                         usec = AR5416_HALF_RATE_USEC_40;
 2870                         eifs = AR5416_IFS_EIFS_HALF_RATE_40;
 2871                         init_usec = AR5416_INIT_USEC_40 >> 1;
 2872                 }
 2873         } else { /* quarter rate */
 2874                 if (clk_44) {
 2875                         slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
 2876                         rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
 2877                             AR5416_USEC_RX_LAT_S;
 2878                         txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
 2879                             AR5416_USEC_TX_LAT_S;
 2880                         usec = AR5416_QUARTER_RATE_USEC_44;
 2881                         eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
 2882                         init_usec = AR5416_INIT_USEC_44 >> 2;
 2883                 } else {
 2884                         slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
 2885                         rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
 2886                             AR5416_USEC_RX_LAT_S;
 2887                         txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
 2888                             AR5416_USEC_TX_LAT_S;
 2889                         usec = AR5416_QUARTER_RATE_USEC_40;
 2890                         eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
 2891                         init_usec = AR5416_INIT_USEC_40 >> 2;
 2892                 }
 2893         }
 2894 
 2895         /* XXX verify these! */
 2896         OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
 2897         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
 2898         OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
 2899         OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
 2900             AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
 2901 }

Cache object: 90205f407bca68c30265111326d21557


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.