1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD$
20 */
21 #include "opt_ah.h"
22
23 /*
24 * NB: Merlin and later have a simpler RF backend.
25 */
26 #include "ah.h"
27 #include "ah_internal.h"
28
29 #include "ah_eeprom_v14.h"
30
31 #include "ar9002/ar9280.h"
32 #include "ar5416/ar5416reg.h"
33 #include "ar5416/ar5416phy.h"
34
35 #define N(a) (sizeof(a)/sizeof(a[0]))
36
37 struct ar9280State {
38 RF_HAL_FUNCS base; /* public state, must be first */
39 uint16_t pcdacTable[1]; /* XXX */
40 };
41 #define AR9280(ah) ((struct ar9280State *) AH5212(ah)->ah_rfHal)
42
43 static HAL_BOOL ar9280GetChannelMaxMinPower(struct ath_hal *,
44 const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
45 int16_t ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
46
47 static void
48 ar9280WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
49 int writes)
50 {
51 (void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
52 freqIndex, writes);
53 }
54
55 /*
56 * Take the MHz channel value and set the Channel value
57 *
58 * ASSUMES: Writes enabled to analog bus
59 *
60 * Actual Expression,
61 *
62 * For 2GHz channel,
63 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
64 * (freq_ref = 40MHz)
65 *
66 * For 5GHz channel,
67 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
68 * (freq_ref = 40MHz/(24>>amodeRefSel))
69 *
70 * For 5GHz channels which are 5MHz spaced,
71 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
72 * (freq_ref = 40MHz)
73 */
74 static HAL_BOOL
75 ar9280SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
76 {
77 uint16_t bMode, fracMode, aModeRefSel = 0;
78 uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
79 CHAN_CENTERS centers;
80 uint32_t refDivA = 24;
81 uint8_t frac_n_5g;
82
83 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
84
85 ar5416GetChannelCenters(ah, chan, ¢ers);
86 freq = centers.synth_center;
87
88 reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
89 reg32 &= 0xc0000000;
90
91 if (ath_hal_eepromGet(ah, AR_EEP_FRAC_N_5G, &frac_n_5g) != HAL_OK)
92 frac_n_5g = 0;
93
94 if (freq < 4800) { /* 2 GHz, fractional mode */
95 uint32_t txctl;
96
97 bMode = 1;
98 fracMode = 1;
99 aModeRefSel = 0;
100 channelSel = (freq * 0x10000)/15;
101
102 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
103 if (freq == 2484) {
104 /* Enable channel spreading for channel 14 */
105 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
106 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
107 } else {
108 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
109 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
110 }
111 } else {
112 bMode = 0;
113 fracMode = 0;
114
115 switch (frac_n_5g) {
116 case 0:
117 /*
118 * Enable fractional mode for half/quarter rate
119 * channels.
120 *
121 * This is from the Linux ath9k code, rather than
122 * the Atheros HAL code.
123 */
124 if (IEEE80211_IS_CHAN_QUARTER(chan) ||
125 IEEE80211_IS_CHAN_HALF(chan))
126 aModeRefSel = 0;
127 else if ((freq % 20) == 0) {
128 aModeRefSel = 3;
129 } else if ((freq % 10) == 0) {
130 aModeRefSel = 2;
131 }
132 if (aModeRefSel) break;
133 case 1:
134 default:
135 aModeRefSel = 0;
136 /* Enable 2G (fractional) mode for channels which are 5MHz spaced */
137
138 /*
139 * Workaround for talking on PSB non-5MHz channels;
140 * the pre-Merlin chips only had a 2.5MHz channel
141 * spacing so some channels aren't reachable.
142
143 *
144 * This interoperates on the quarter rate channels
145 * with the AR5112 and later RF synths. Please note
146 * that the synthesiser isn't able to completely
147 * accurately represent these frequencies (as the
148 * resolution in this reference is 2.5MHz) and thus
149 * it will be slightly "off centre." This matches
150 * the same slightly incorrect centre frequency
151 * behaviour that the AR5112 and later channel
152 * selection code has.
153 *
154 * This also interoperates with the AR5416
155 * synthesiser modification for programming
156 * fractional frequencies in 5GHz mode. However
157 * that modification is also disabled by default.
158 *
159 * This is disabled because it hasn't been tested for
160 * regulatory compliance and neither have the NICs
161 * which would use it. So if you enable this code,
162 * you must first ensure that you've re-certified the
163 * NICs in question beforehand or you will be
164 * violating your local regulatory rules and breaking
165 * the law.
166 */
167 #if 0
168 if (freq % 5 == 0) {
169 #endif
170 /* Normal */
171 fracMode = 1;
172 refDivA = 1;
173 channelSel = (freq * 0x8000)/15;
174 #if 0
175 } else {
176 /* Offset by 500KHz */
177 uint32_t f, ch, ch2;
178
179 fracMode = 1;
180 refDivA = 1;
181
182 /* Calculate the "adjusted" frequency */
183 f = freq - 2;
184 ch = (((f - 4800) * 10) / 25) + 1;
185
186 ch2 = ((ch * 25) / 5) + 9600;
187 channelSel = (ch2 * 0x4000) / 15;
188 //ath_hal_printf(ah,
189 // "%s: freq=%d, ch=%d, ch2=%d, "
190 // "channelSel=%d\n",
191 // __func__, freq, ch, ch2, channelSel);
192 }
193 #endif
194
195 /* RefDivA setting */
196 OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
197 AR_AN_SYNTH9_REFDIVA, refDivA);
198 }
199
200 if (!fracMode) {
201 ndiv = (freq * (refDivA >> aModeRefSel))/60;
202 channelSel = ndiv & 0x1ff;
203 channelFrac = (ndiv & 0xfffffe00) * 2;
204 channelSel = (channelSel << 17) | channelFrac;
205 }
206 }
207
208 reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
209 (aModeRefSel << 26) | (channelSel);
210
211 OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
212
213 AH_PRIVATE(ah)->ah_curchan = chan;
214
215 return AH_TRUE;
216 }
217
218 /*
219 * Return a reference to the requested RF Bank.
220 */
221 static uint32_t *
222 ar9280GetRfBank(struct ath_hal *ah, int bank)
223 {
224 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
225 __func__, bank);
226 return AH_NULL;
227 }
228
229 /*
230 * Reads EEPROM header info from device structure and programs
231 * all rf registers
232 */
233 static HAL_BOOL
234 ar9280SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
235 uint16_t modesIndex, uint16_t *rfXpdGain)
236 {
237 return AH_TRUE; /* nothing to do */
238 }
239
240 /*
241 * Read the transmit power levels from the structures taken from EEPROM
242 * Interpolate read transmit power values for this channel
243 * Organize the transmit power values into a table for writing into the hardware
244 */
245
246 static HAL_BOOL
247 ar9280SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
248 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
249 {
250 return AH_TRUE;
251 }
252
253 #if 0
254 static int16_t
255 ar9280GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
256 {
257 int i, minIndex;
258 int16_t minGain,minPwr,minPcdac,retVal;
259
260 /* Assume NUM_POINTS_XPD0 > 0 */
261 minGain = data->pDataPerXPD[0].xpd_gain;
262 for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
263 if (data->pDataPerXPD[i].xpd_gain < minGain) {
264 minIndex = i;
265 minGain = data->pDataPerXPD[i].xpd_gain;
266 }
267 }
268 minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
269 minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
270 for (i=1; i<NUM_POINTS_XPD0; i++) {
271 if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
272 minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
273 minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
274 }
275 }
276 retVal = minPwr - (minPcdac*2);
277 return(retVal);
278 }
279 #endif
280
281 static HAL_BOOL
282 ar9280GetChannelMaxMinPower(struct ath_hal *ah,
283 const struct ieee80211_channel *chan,
284 int16_t *maxPow, int16_t *minPow)
285 {
286 #if 0
287 struct ath_hal_5212 *ahp = AH5212(ah);
288 int numChannels=0,i,last;
289 int totalD, totalF,totalMin;
290 EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
291 EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
292
293 *maxPow = 0;
294 if (IS_CHAN_A(chan)) {
295 powerArray = ahp->ah_modePowerArray5112;
296 data = powerArray[headerInfo11A].pDataPerChannel;
297 numChannels = powerArray[headerInfo11A].numChannels;
298 } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
299 /* XXX - is this correct? Should we also use the same power for turbo G? */
300 powerArray = ahp->ah_modePowerArray5112;
301 data = powerArray[headerInfo11G].pDataPerChannel;
302 numChannels = powerArray[headerInfo11G].numChannels;
303 } else if (IS_CHAN_B(chan)) {
304 powerArray = ahp->ah_modePowerArray5112;
305 data = powerArray[headerInfo11B].pDataPerChannel;
306 numChannels = powerArray[headerInfo11B].numChannels;
307 } else {
308 return (AH_TRUE);
309 }
310 /* Make sure the channel is in the range of the TP values
311 * (freq piers)
312 */
313 if ((numChannels < 1) ||
314 (chan->channel < data[0].channelValue) ||
315 (chan->channel > data[numChannels-1].channelValue))
316 return(AH_FALSE);
317
318 /* Linearly interpolate the power value now */
319 for (last=0,i=0;
320 (i<numChannels) && (chan->channel > data[i].channelValue);
321 last=i++);
322 totalD = data[i].channelValue - data[last].channelValue;
323 if (totalD > 0) {
324 totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
325 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
326
327 totalMin = ar9280GetMinPower(ah,&data[i]) - ar9280GetMinPower(ah, &data[last]);
328 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9280GetMinPower(ah, &data[last])*totalD)/totalD);
329 return (AH_TRUE);
330 } else {
331 if (chan->channel == data[i].channelValue) {
332 *maxPow = data[i].maxPower_t4;
333 *minPow = ar9280GetMinPower(ah, &data[i]);
334 return(AH_TRUE);
335 } else
336 return(AH_FALSE);
337 }
338 #else
339 *maxPow = *minPow = 0;
340 return AH_FALSE;
341 #endif
342 }
343
344 /*
345 * The ordering of nfarray is thus:
346 *
347 * nfarray[0]: Chain 0 ctl
348 * nfarray[1]: Chain 1 ctl
349 * nfarray[2]: Chain 2 ctl
350 * nfarray[3]: Chain 0 ext
351 * nfarray[4]: Chain 1 ext
352 * nfarray[5]: Chain 2 ext
353 */
354 static void
355 ar9280GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
356 {
357 int16_t nf;
358
359 nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
360 if (nf & 0x100)
361 nf = 0 - ((nf ^ 0x1ff) + 1);
362 HALDEBUG(ah, HAL_DEBUG_NFCAL,
363 "NF calibrated [ctl] [chain 0] is %d\n", nf);
364 nfarray[0] = nf;
365
366 nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
367 if (nf & 0x100)
368 nf = 0 - ((nf ^ 0x1ff) + 1);
369 HALDEBUG(ah, HAL_DEBUG_NFCAL,
370 "NF calibrated [ctl] [chain 1] is %d\n", nf);
371 nfarray[1] = nf;
372
373 nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
374 if (nf & 0x100)
375 nf = 0 - ((nf ^ 0x1ff) + 1);
376 HALDEBUG(ah, HAL_DEBUG_NFCAL,
377 "NF calibrated [ext] [chain 0] is %d\n", nf);
378 nfarray[3] = nf;
379
380 nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
381 if (nf & 0x100)
382 nf = 0 - ((nf ^ 0x1ff) + 1);
383 HALDEBUG(ah, HAL_DEBUG_NFCAL,
384 "NF calibrated [ext] [chain 1] is %d\n", nf);
385 nfarray[4] = nf;
386
387 /* Chain 2 - invalid */
388 nfarray[2] = 0;
389 nfarray[5] = 0;
390
391 }
392
393 /*
394 * Adjust NF based on statistical values for 5GHz frequencies.
395 * Stubbed:Not used by Fowl
396 */
397 int16_t
398 ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
399 {
400 return 0;
401 }
402
403 /*
404 * Free memory for analog bank scratch buffers
405 */
406 static void
407 ar9280RfDetach(struct ath_hal *ah)
408 {
409 struct ath_hal_5212 *ahp = AH5212(ah);
410
411 HALASSERT(ahp->ah_rfHal != AH_NULL);
412 ath_hal_free(ahp->ah_rfHal);
413 ahp->ah_rfHal = AH_NULL;
414 }
415
416 HAL_BOOL
417 ar9280RfAttach(struct ath_hal *ah, HAL_STATUS *status)
418 {
419 struct ath_hal_5212 *ahp = AH5212(ah);
420 struct ar9280State *priv;
421
422 HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
423
424 HALASSERT(ahp->ah_rfHal == AH_NULL);
425 priv = ath_hal_malloc(sizeof(struct ar9280State));
426 if (priv == AH_NULL) {
427 HALDEBUG(ah, HAL_DEBUG_ANY,
428 "%s: cannot allocate private state\n", __func__);
429 *status = HAL_ENOMEM; /* XXX */
430 return AH_FALSE;
431 }
432 priv->base.rfDetach = ar9280RfDetach;
433 priv->base.writeRegs = ar9280WriteRegs;
434 priv->base.getRfBank = ar9280GetRfBank;
435 priv->base.setChannel = ar9280SetChannel;
436 priv->base.setRfRegs = ar9280SetRfRegs;
437 priv->base.setPowerTable = ar9280SetPowerTable;
438 priv->base.getChannelMaxMinPower = ar9280GetChannelMaxMinPower;
439 priv->base.getNfAdjust = ar9280GetNfAdjust;
440
441 ahp->ah_pcdacTable = priv->pcdacTable;
442 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
443 ahp->ah_rfHal = &priv->base;
444 /*
445 * Set noise floor adjust method; we arrange a
446 * direct call instead of thunking.
447 */
448 AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
449 AH_PRIVATE(ah)->ah_getNoiseFloor = ar9280GetNoiseFloor;
450
451 return AH_TRUE;
452 }
453
454 static HAL_BOOL
455 ar9280RfProbe(struct ath_hal *ah)
456 {
457 return (AR_SREV_MERLIN(ah));
458 }
459
460 AH_RF(RF9280, ar9280RfProbe, ar9280RfAttach);
Cache object: 8116284c74ca7ca5dedf68eebc45edd7
|