The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar9002/ar9285_reset.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 
   22 /*
   23  * This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
   24  * supports only 2Ghz operation.
   25  */
   26 
   27 #include "opt_ah.h"
   28 
   29 #include "ah.h"
   30 #include "ah_internal.h"
   31 #include "ah_devid.h"
   32 
   33 #include "ah_eeprom_v14.h"
   34 #include "ah_eeprom_v4k.h"
   35 
   36 #include "ar9002/ar9285.h"
   37 #include "ar5416/ar5416.h"
   38 #include "ar5416/ar5416reg.h"
   39 #include "ar5416/ar5416phy.h"
   40 #include "ar9002/ar9002phy.h"
   41 #include "ar9002/ar9285phy.h"
   42 #include "ar9002/ar9285an.h"
   43 #include "ar9002/ar9285_diversity.h"
   44 
   45 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 
   46 #define EEP_MINOR(_ah) \
   47         (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
   48 #define IS_EEP_MINOR_V2(_ah)    (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
   49 #define IS_EEP_MINOR_V3(_ah)    (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
   50 
   51 /* Additional Time delay to wait after activiting the Base band */
   52 #define BASE_ACTIVATE_DELAY     100     /* 100 usec */
   53 #define PLL_SETTLE_DELAY        300     /* 300 usec */
   54 #define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
   55 
   56 static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
   57         struct ar5416eeprom_4k *pEepData, 
   58         const struct ieee80211_channel *chan, int16_t *ratesArray,
   59         uint16_t cfgCtl, uint16_t AntennaReduction,
   60         uint16_t twiceMaxRegulatoryPower, 
   61         uint16_t powerLimit);
   62 static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
   63         struct ar5416eeprom_4k *pEepData,
   64         const struct ieee80211_channel *chan,
   65         int16_t *pTxPowerIndexOffset);
   66 static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah, 
   67         const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
   68         uint8_t * bChans, uint16_t availPiers,
   69         uint16_t tPdGainOverlap, int16_t *pMinCalPower,
   70         uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
   71         uint16_t numXpdGains);
   72 
   73 HAL_BOOL
   74 ar9285SetTransmitPower(struct ath_hal *ah,
   75         const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
   76 {
   77 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
   78 #define N(a)            (sizeof (a) / sizeof (a[0]))
   79 
   80     MODAL_EEP4K_HEADER  *pModal;
   81     struct ath_hal_5212 *ahp = AH5212(ah);
   82     int16_t             txPowerIndexOffset = 0;
   83     int                 i;
   84     
   85     uint16_t            cfgCtl;
   86     uint16_t            powerLimit;
   87     uint16_t            twiceAntennaReduction;
   88     uint16_t            twiceMaxRegulatoryPower;
   89     int16_t             maxPower;
   90     HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
   91     struct ar5416eeprom_4k *pEepData = &ee->ee_base;
   92 
   93     HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
   94 
   95     AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
   96 
   97     /* Setup info for the actual eeprom */
   98     OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
   99     cfgCtl = ath_hal_getctl(ah, chan);
  100     powerLimit = chan->ic_maxregpower * 2;
  101     twiceAntennaReduction = chan->ic_maxantgain;
  102     twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 
  103     pModal = &pEepData->modalHeader;
  104     HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
  105         __func__,chan->ic_freq, cfgCtl );      
  106   
  107     if (IS_EEP_MINOR_V2(ah)) {
  108         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  109     }
  110 
  111     if (!ar9285SetPowerPerRateTable(ah, pEepData,  chan,
  112                                     &AH5416(ah)->ah_ratesArray[0],cfgCtl,
  113                                     twiceAntennaReduction,
  114                                     twiceMaxRegulatoryPower, powerLimit)) {
  115         HALDEBUG(ah, HAL_DEBUG_ANY,
  116             "%s: unable to set tx power per rate table\n", __func__);
  117         return AH_FALSE;
  118     }
  119 
  120     if (!ar9285SetPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
  121         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
  122             __func__);
  123         return AH_FALSE;
  124     }
  125   
  126     maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
  127       AH5416(ah)->ah_ratesArray[rateHt20_0]);
  128     maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
  129 
  130     if (IEEE80211_IS_CHAN_HT40(chan)) {
  131         maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
  132     }
  133 
  134     ahp->ah_tx6PowerInHalfDbm = maxPower;   
  135     AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
  136     ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
  137 
  138     /*
  139      * txPowerIndexOffset is set by the SetPowerTable() call -
  140      *  adjust the rate table (0 offset if rates EEPROM not loaded)
  141      */
  142     for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
  143         AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
  144         /* -5 dBm offset for Merlin and later; this includes Kite */
  145         AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  146         if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
  147             AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
  148         if (AH5416(ah)->ah_ratesArray[i] < 0)
  149                 AH5416(ah)->ah_ratesArray[i] = 0;
  150     }
  151 
  152 #ifdef AH_EEPROM_DUMP
  153     ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
  154 #endif
  155 
  156     /*
  157      * Adjust the HT40 power to meet the correct target TX power
  158      * for 40MHz mode, based on TX power curves that are established
  159      * for 20MHz mode.
  160      *
  161      * XXX handle overflow/too high power level?
  162      */
  163     if (IEEE80211_IS_CHAN_HT40(chan)) {
  164         AH5416(ah)->ah_ratesArray[rateHt40_0] +=
  165           AH5416(ah)->ah_ht40PowerIncForPdadc;
  166         AH5416(ah)->ah_ratesArray[rateHt40_1] +=
  167           AH5416(ah)->ah_ht40PowerIncForPdadc;
  168         AH5416(ah)->ah_ratesArray[rateHt40_2] +=
  169           AH5416(ah)->ah_ht40PowerIncForPdadc;
  170         AH5416(ah)->ah_ratesArray[rateHt40_3] +=
  171           AH5416(ah)->ah_ht40PowerIncForPdadc;
  172         AH5416(ah)->ah_ratesArray[rateHt40_4] +=
  173           AH5416(ah)->ah_ht40PowerIncForPdadc;
  174         AH5416(ah)->ah_ratesArray[rateHt40_5] +=
  175           AH5416(ah)->ah_ht40PowerIncForPdadc;
  176         AH5416(ah)->ah_ratesArray[rateHt40_6] +=
  177           AH5416(ah)->ah_ht40PowerIncForPdadc;
  178         AH5416(ah)->ah_ratesArray[rateHt40_7] +=
  179           AH5416(ah)->ah_ht40PowerIncForPdadc;
  180     }
  181 
  182     /* Write the TX power rate registers */
  183     ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
  184 
  185     return AH_TRUE;
  186 #undef POW_SM
  187 #undef N
  188 }
  189 
  190 static void
  191 ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
  192     const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
  193 {
  194         OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
  195                   pModal->antCtrlChain[0]);
  196 
  197         OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
  198                   (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
  199                    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  200                      AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  201                   SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  202                   SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  203 
  204         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  205             AR5416_EEP_MINOR_VER_3) {
  206                 txRxAttenLocal = pModal->txRxAttenCh[0];
  207 
  208                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  209                     AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  210                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  211                     AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  212                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  213                     AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
  214                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
  215                     AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  216 
  217                 /* Set the block 1 value to block 0 value */
  218                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  219                       AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  220                       pModal->bswMargin[0]);
  221                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  222                       AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  223                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  224                       AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  225                       pModal->xatten2Margin[0]);
  226                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
  227                       AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  228         }
  229 
  230         OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  231                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  232         OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
  233                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  234 
  235         OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  236                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  237         OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
  238                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  239 }
  240 
  241 /*
  242  * Read EEPROM header info and program the device for correct operation
  243  * given the channel value.
  244  */
  245 HAL_BOOL
  246 ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
  247 {
  248         const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
  249         const struct ar5416eeprom_4k *eep = &ee->ee_base;
  250         const MODAL_EEP4K_HEADER *pModal;
  251         uint8_t txRxAttenLocal;
  252         uint8_t ob[5], db1[5], db2[5];
  253 
  254         pModal = &eep->modalHeader;
  255         txRxAttenLocal = 23;
  256 
  257         OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  258 
  259         /* Single chain for 4K EEPROM*/
  260         ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
  261 
  262         /* Initialize Ant Diversity settings if supported */
  263         (void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
  264 
  265         /* Configure TX power calibration */
  266         if (pModal->version >= 2) {
  267                 ob[0] = pModal->ob_0;
  268                 ob[1] = pModal->ob_1;
  269                 ob[2] = pModal->ob_2;
  270                 ob[3] = pModal->ob_3;
  271                 ob[4] = pModal->ob_4;
  272 
  273                 db1[0] = pModal->db1_0;
  274                 db1[1] = pModal->db1_1;
  275                 db1[2] = pModal->db1_2;
  276                 db1[3] = pModal->db1_3;
  277                 db1[4] = pModal->db1_4;
  278 
  279                 db2[0] = pModal->db2_0;
  280                 db2[1] = pModal->db2_1;
  281                 db2[2] = pModal->db2_2;
  282                 db2[3] = pModal->db2_3;
  283                 db2[4] = pModal->db2_4;
  284         } else if (pModal->version == 1) {
  285                 ob[0] = pModal->ob_0;
  286                 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
  287                 db1[0] = pModal->db1_0;
  288                 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
  289                 db2[0] = pModal->db2_0;
  290                 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
  291         } else {
  292                 int i;
  293 
  294                 for (i = 0; i < 5; i++) {
  295                         ob[i] = pModal->ob_0;
  296                         db1[i] = pModal->db1_0;
  297                         db2[i] = pModal->db1_0;
  298                 }
  299         }
  300 
  301         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
  302         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
  303         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
  304         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
  305         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
  306 
  307         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
  308         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
  309         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
  310         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
  311         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
  312 
  313         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
  314         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
  315         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
  316         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
  317         OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
  318 
  319         OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  320                       pModal->switchSettling);
  321         OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  322                       pModal->adcDesiredSize);
  323 
  324         OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
  325                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  326                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  327                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
  328                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  329 
  330         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  331                       pModal->txEndToRxOn);
  332 
  333         OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  334                       pModal->thresh62);
  335         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  336                       pModal->thresh62);
  337 
  338         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  339             AR5416_EEP_MINOR_VER_2) {
  340                 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
  341                     pModal->txFrameToDataStart);
  342                 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
  343                     pModal->txFrameToPaOn);
  344         }
  345 
  346         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  347             AR5416_EEP_MINOR_VER_3) {
  348                 if (IEEE80211_IS_CHAN_HT40(chan))
  349                         OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  350                             AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  351         }
  352 
  353         /*
  354          * Program the CCK TX gain factor appropriately if needed.
  355          * The AR9285/AR9271 has a non-constant PA tx gain behaviour
  356          * for CCK versus OFDM rates; other chips deal with this
  357          * differently.
  358          *
  359          * The mask/shift/multiply hackery is done so place the same
  360          * value (bb_desired_scale) into multiple 5-bit fields.
  361          * For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
  362          * to three fields: (0..4), (5..9) and (10..14).
  363          */
  364         if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
  365                 uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
  366                 if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
  367                         ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
  368                         uint32_t pwrctrl, mask, clr;
  369 
  370                         mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
  371                         pwrctrl = mask * bb_desired_scale;
  372                         clr = mask * 0x1f;
  373                         OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
  374                         OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
  375                         OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
  376 
  377                         mask = (1<<0) | (1<<5) | (1<<15);
  378                         pwrctrl = mask * bb_desired_scale;
  379                         clr = mask * 0x1f;
  380                         OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
  381 
  382                         mask = (1<<0) | (1<<5);
  383                         pwrctrl = mask * bb_desired_scale;
  384                         clr = mask * 0x1f;
  385                         OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
  386                         OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
  387                 }
  388         }
  389 
  390         return AH_TRUE;
  391 }
  392 
  393 /*
  394  * Helper functions common for AP/CB/XB
  395  */
  396 
  397 static HAL_BOOL
  398 ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
  399                            const struct ieee80211_channel *chan,
  400                            int16_t *ratesArray, uint16_t cfgCtl,
  401                            uint16_t AntennaReduction, 
  402                            uint16_t twiceMaxRegulatoryPower,
  403                            uint16_t powerLimit)
  404 {
  405 #define N(a)    (sizeof(a)/sizeof(a[0]))
  406 /* Local defines to distinguish between extension and control CTL's */
  407 #define EXT_ADDITIVE (0x8000)
  408 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
  409 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
  410 
  411         uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  412         int i;
  413         int16_t  twiceLargestAntenna;
  414         CAL_CTL_DATA_4K *rep;
  415         CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
  416         CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
  417         CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
  418         int16_t scaledPower, minCtlPower;
  419 
  420 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
  421         static const uint16_t ctlModesFor11g[] = {
  422            CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  423         };
  424         const uint16_t *pCtlMode;
  425         uint16_t numCtlModes, ctlMode, freq;
  426         CHAN_CENTERS centers;
  427 
  428         ar5416GetChannelCenters(ah,  chan, &centers);
  429 
  430         /* Compute TxPower reduction due to Antenna Gain */
  431 
  432         twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  433         twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
  434 
  435         /* XXX setup for 5212 use (really used?) */
  436         ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
  437 
  438         /* 
  439          * scaledPower is the minimum of the user input power level and
  440          * the regulatory allowed power level
  441          */
  442         scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
  443 
  444         /* Get target powers from EEPROM - our baseline for TX Power */
  445         /* Setup for CTL modes */
  446         numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
  447         pCtlMode = ctlModesFor11g;
  448 
  449         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
  450                         AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
  451         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
  452                         AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
  453         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
  454                         AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
  455 
  456         if (IEEE80211_IS_CHAN_HT40(chan)) {
  457                 numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
  458 
  459                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
  460                         AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
  461                 /* Get target powers for extension channels */
  462                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
  463                         AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
  464                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
  465                         AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
  466         }
  467 
  468         /*
  469          * For MIMO, need to apply regulatory caps individually across dynamically
  470          * running modes: CCK, OFDM, HT20, HT40
  471          *
  472          * The outer loop walks through each possible applicable runtime mode.
  473          * The inner loop walks through each ctlIndex entry in EEPROM.
  474          * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
  475          *
  476          */
  477         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  478                 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  479                     (pCtlMode[ctlMode] == CTL_2GHT40);
  480                 if (isHt40CtlMode) {
  481                         freq = centers.ctl_center;
  482                 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
  483                         freq = centers.ext_center;
  484                 } else {
  485                         freq = centers.ctl_center;
  486                 }
  487 
  488                 /* walk through each CTL index stored in EEPROM */
  489                 for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  490                         uint16_t twiceMinEdgePower;
  491 
  492                         /* compare test group from regulatory channel list with test mode from pCtlMode list */
  493                         if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
  494                                 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
  495                                  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  496                                 rep = &(pEepData->ctlData[i]);
  497                                 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
  498                                                         rep->ctlEdges[
  499                                                           owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
  500                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  501                                         /* Find the minimum of all CTL edge powers that apply to this channel */
  502                                         twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
  503                                 } else {
  504                                         /* specific */
  505                                         twiceMaxEdgePower = twiceMinEdgePower;
  506                                         break;
  507                                 }
  508                         }
  509                 }
  510                 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
  511                 /* Apply ctl mode to correct target power set */
  512                 switch(pCtlMode[ctlMode]) {
  513                 case CTL_11B:
  514                         for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
  515                                 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
  516                         }
  517                         break;
  518                 case CTL_11A:
  519                 case CTL_11G:
  520                         for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
  521                                 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
  522                         }
  523                         break;
  524                 case CTL_5GHT20:
  525                 case CTL_2GHT20:
  526                         for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
  527                                 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
  528                         }
  529                         break;
  530                 case CTL_11B_EXT:
  531                         targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
  532                         break;
  533                 case CTL_11G_EXT:
  534                         targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
  535                         break;
  536                 case CTL_5GHT40:
  537                 case CTL_2GHT40:
  538                         for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
  539                                 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
  540                         }
  541                         break;
  542                 default:
  543                         return AH_FALSE;
  544                         break;
  545                 }
  546         } /* end ctl mode checking */
  547 
  548         /* Set rates Array from collected data */
  549         ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
  550             &targetPowerCck,
  551             &targetPowerCckExt,
  552             &targetPowerOfdm,
  553             &targetPowerOfdmExt,
  554             &targetPowerHt20,
  555             &targetPowerHt40);
  556 
  557         return AH_TRUE;
  558 #undef EXT_ADDITIVE
  559 #undef CTL_11G_EXT
  560 #undef CTL_11B_EXT
  561 #undef SUB_NUM_CTL_MODES_AT_2G_40
  562 #undef N
  563 }
  564 
  565 static HAL_BOOL
  566 ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
  567         const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
  568 {
  569     CAL_DATA_PER_FREQ_4K *pRawDataset;
  570     uint8_t  *pCalBChans = AH_NULL;
  571     uint16_t pdGainOverlap_t2;
  572     static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
  573     uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  574     uint16_t numPiers, i;
  575     int16_t  tMinCalPower;
  576     uint16_t numXpdGain, xpdMask;
  577     uint16_t xpdGainValues[4];  /* v4k eeprom has 2; the other two stay 0 */
  578     uint32_t regChainOffset;
  579 
  580     OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
  581     
  582     xpdMask = pEepData->modalHeader.xpdGain;
  583 
  584     if (IS_EEP_MINOR_V2(ah)) {
  585         pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  586     } else { 
  587         pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  588     }
  589 
  590     pCalBChans = pEepData->calFreqPier2G;
  591     numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
  592     numXpdGain = 0;
  593 
  594     /* Calculate the value of xpdgains from the xpdGain Mask */
  595     for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  596         if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  597             if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
  598                 HALASSERT(0);
  599                 break;
  600             }
  601             xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
  602             numXpdGain++;
  603         }
  604     }
  605     
  606     /* Write the detector gain biases and their number */
  607     ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
  608 
  609     for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  610         regChainOffset = ar5416GetRegChainOffset(ah, i);
  611         if (pEepData->baseEepHeader.txMask & (1 << i)) {
  612             pRawDataset = pEepData->calPierData2G[i];
  613 
  614             ar9285GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
  615                                              pCalBChans, numPiers,
  616                                              pdGainOverlap_t2,
  617                                              &tMinCalPower, gainBoundaries,
  618                                              pdadcValues, numXpdGain);
  619 
  620             if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  621                 /*
  622                  * Note the pdadc table may not start at 0 dBm power, could be
  623                  * negative or greater than 0.  Need to offset the power
  624                  * values by the amount of minPower for griffin
  625                  */
  626                 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries); 
  627             }
  628 
  629             /* Write the power values into the baseband power table */
  630             ar5416WritePdadcValues(ah, i, pdadcValues);
  631         }
  632     }
  633     *pTxPowerIndexOffset = 0;
  634 
  635     return AH_TRUE;
  636 }
  637 
  638 static void
  639 ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah, 
  640                                  const struct ieee80211_channel *chan,
  641                                  CAL_DATA_PER_FREQ_4K *pRawDataSet,
  642                                  uint8_t * bChans,  uint16_t availPiers,
  643                                  uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
  644                                  uint8_t * pPDADCValues, uint16_t numXpdGains)
  645 {
  646 
  647     int       i, j, k;
  648     int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
  649     uint16_t  idxL, idxR, numPiers; /* Pier indexes */
  650 
  651     /* filled out Vpd table for all pdGains (chanL) */
  652     static uint8_t   vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  653 
  654     /* filled out Vpd table for all pdGains (chanR) */
  655     static uint8_t   vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  656 
  657     /* filled out Vpd table for all pdGains (interpolated) */
  658     static uint8_t   vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  659 
  660     uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  661     uint8_t   minPwrT4[AR5416_4K_NUM_PD_GAINS];
  662     uint8_t   maxPwrT4[AR5416_4K_NUM_PD_GAINS];
  663     int16_t   vpdStep;
  664     int16_t   tmpVal;
  665     uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
  666     HAL_BOOL    match;
  667     int16_t  minDelta = 0;
  668     CHAN_CENTERS centers;
  669 
  670     ar5416GetChannelCenters(ah, chan, &centers);
  671 
  672     /* Trim numPiers for the number of populated channel Piers */
  673     for (numPiers = 0; numPiers < availPiers; numPiers++) {
  674         if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
  675             break;
  676         }
  677     }
  678 
  679     /* Find pier indexes around the current channel */
  680     match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
  681       IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
  682 
  683     if (match) {
  684         /* Directly fill both vpd tables from the matching index */
  685         for (i = 0; i < numXpdGains; i++) {
  686             minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  687             maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  688             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
  689                                pRawDataSet[idxL].pwrPdg[i],
  690                                pRawDataSet[idxL].vpdPdg[i],
  691                                AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
  692         }
  693     } else {
  694         for (i = 0; i < numXpdGains; i++) {
  695             pVpdL = pRawDataSet[idxL].vpdPdg[i];
  696             pPwrL = pRawDataSet[idxL].pwrPdg[i];
  697             pVpdR = pRawDataSet[idxR].vpdPdg[i];
  698             pPwrR = pRawDataSet[idxR].pwrPdg[i];
  699 
  700             /* Start Vpd interpolation from the max of the minimum powers */
  701             minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
  702 
  703             /* End Vpd interpolation from the min of the max powers */
  704             maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  705             HALASSERT(maxPwrT4[i] > minPwrT4[i]);
  706 
  707             /* Fill pier Vpds */
  708             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
  709                                AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
  710             ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
  711                                AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
  712 
  713             /* Interpolate the final vpd */
  714             for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  715                 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
  716                     IEEE80211_IS_CHAN_2GHZ(chan)),
  717                     bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
  718             }
  719         }
  720     }
  721     *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  722 
  723     k = 0; /* index for the final table */
  724     for (i = 0; i < numXpdGains; i++) {
  725         if (i == (numXpdGains - 1)) {
  726             pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
  727         } else {
  728             pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
  729         }
  730 
  731         pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  732 
  733         /* NB: only applies to owl 1.0 */
  734         if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
  735             /*
  736              * fix the gain delta, but get a delta that can be applied to min to
  737              * keep the upper power values accurate, don't think max needs to
  738              * be adjusted because should not be at that area of the table?
  739              */
  740             minDelta = pPdGainBoundaries[0] - 23;
  741             pPdGainBoundaries[0] = 23;
  742         }
  743         else {
  744             minDelta = 0;
  745         }
  746 
  747         /* Find starting index for this pdGain */
  748         if (i == 0) {
  749             if (AR_SREV_MERLIN_20_OR_LATER(ah))
  750                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
  751             else
  752                 ss = 0; /* for the first pdGain, start from index 0 */
  753         } else {
  754             /* need overlap entries extrapolated below. */
  755             ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
  756         }
  757         vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  758         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  759         /*
  760          *-ve ss indicates need to extrapolate data below for this pdGain
  761          */
  762         while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  763             tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  764             pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
  765             ss++;
  766         }
  767 
  768         sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
  769         tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
  770         maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
  771 
  772         while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  773             pPDADCValues[k++] = vpdTableI[i][ss++];
  774         }
  775 
  776         vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
  777         vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  778         /*
  779          * for last gain, pdGainBoundary == Pmax_t2, so will
  780          * have to extrapolate
  781          */
  782         if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
  783             while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  784                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  785                           (ss - maxIndex +1) * vpdStep));
  786                 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
  787                 ss++;
  788             }
  789         }               /* extrapolated above */
  790     }                   /* for all pdGainUsed */
  791 
  792     /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
  793     while (i < AR5416_PD_GAINS_IN_MASK) {
  794         pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
  795         i++;
  796     }
  797 
  798     while (k < AR5416_NUM_PDADC_VALUES) {
  799         pPDADCValues[k] = pPDADCValues[k-1];
  800         k++;
  801     }
  802     return;
  803 }

Cache object: 0ecf1abc9e05eb0bf79f77e0a5c89c51


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.