The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/ath/ath_hal/ar9002/ar9287_reset.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: ISC
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
    6  *
    7  * Permission to use, copy, modify, and/or distribute this software for any
    8  * purpose with or without fee is hereby granted, provided that the above
    9  * copyright notice and this permission notice appear in all copies.
   10  *
   11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
   13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
   14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
   15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   18  *
   19  * $FreeBSD$
   20  */
   21 
   22 #include "opt_ah.h"
   23 
   24 #include "ah.h"
   25 #include "ah_internal.h"
   26 #include "ah_devid.h"
   27 
   28 #include "ah_eeprom_v14.h"
   29 #include "ah_eeprom_9287.h"
   30 
   31 #include "ar5416/ar5416.h"
   32 #include "ar5416/ar5416reg.h"
   33 #include "ar5416/ar5416phy.h"
   34 
   35 #include "ar9002/ar9287phy.h"
   36 #include "ar9002/ar9287an.h"
   37 
   38 #include "ar9002/ar9287_olc.h"
   39 #include "ar9002/ar9287_reset.h"
   40 
   41 /*
   42  * Set the TX power calibration table per-chain.
   43  *
   44  * This only supports open-loop TX power control for the AR9287.
   45  */
   46 static void
   47 ar9287SetPowerCalTable(struct ath_hal *ah,
   48     const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
   49 {
   50         struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
   51         uint8_t *pCalBChans = NULL;
   52         uint16_t pdGainOverlap_t2;
   53         uint16_t numPiers = 0, i;
   54         uint16_t numXpdGain, xpdMask;
   55         uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
   56         uint32_t regChainOffset;
   57         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
   58         struct ar9287_eeprom *pEepData = &ee->ee_base;
   59 
   60         xpdMask = pEepData->modalHeader.xpdGain;
   61 
   62         if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
   63             AR9287_EEP_MINOR_VER_2)
   64                 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
   65         else
   66                 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
   67                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
   68 
   69         /* Note: Kiwi should only be 2ghz.. */
   70         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
   71                 pCalBChans = pEepData->calFreqPier2G;
   72                 numPiers = AR9287_NUM_2G_CAL_PIERS;
   73                 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
   74                 AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
   75         }
   76         numXpdGain = 0;
   77 
   78         /* Calculate the value of xpdgains from the xpdGain Mask */
   79         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
   80                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
   81                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
   82                                 break;
   83                         xpdGainValues[numXpdGain] =
   84                                 (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
   85                         numXpdGain++;
   86                 }
   87         }
   88 
   89         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
   90                       (numXpdGain - 1) & 0x3);
   91         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
   92                       xpdGainValues[0]);
   93         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
   94                       xpdGainValues[1]);
   95         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
   96                       xpdGainValues[2]);
   97 
   98         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
   99                 regChainOffset = i * 0x1000;
  100 
  101                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
  102                         int8_t txPower;
  103                         pRawDatasetOpenLoop =
  104                         (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  105                                 ar9287olcGetTxGainIndex(ah, chan,
  106                                     pRawDatasetOpenLoop,
  107                                     pCalBChans, numPiers,
  108                                     &txPower);
  109                                 ar9287olcSetPDADCs(ah, txPower, i);
  110                 }
  111         }
  112 
  113         *pTxPowerIndexOffset = 0;
  114 }
  115 
  116 /* XXX hard-coded values? */
  117 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
  118 
  119 /*
  120  * ar9287SetPowerPerRateTable
  121  *
  122  * Sets the transmit power in the baseband for the given
  123  * operating channel and mode.
  124  *
  125  * This is like the v14 EEPROM table except the 5GHz code.
  126  */
  127 static HAL_BOOL
  128 ar9287SetPowerPerRateTable(struct ath_hal *ah,
  129     struct ar9287_eeprom *pEepData,
  130     const struct ieee80211_channel *chan,
  131     int16_t *ratesArray, uint16_t cfgCtl,
  132     uint16_t AntennaReduction, 
  133     uint16_t twiceMaxRegulatoryPower,
  134     uint16_t powerLimit)
  135 {
  136 #define N(a)    (sizeof(a)/sizeof(a[0]))
  137 /* Local defines to distinguish between extension and control CTL's */
  138 #define EXT_ADDITIVE (0x8000)
  139 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
  140 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
  141 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
  142 
  143         uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  144         int i;
  145         int16_t  twiceLargestAntenna;
  146         struct cal_ctl_data_ar9287 *rep;
  147         CAL_TARGET_POWER_LEG targetPowerOfdm;
  148         CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
  149         CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
  150         CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
  151         CAL_TARGET_POWER_HT  targetPowerHt20;
  152         CAL_TARGET_POWER_HT  targetPowerHt40 = {0, {0, 0, 0, 0}};
  153         int16_t scaledPower, minCtlPower;
  154 
  155 #define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
  156         static const uint16_t ctlModesFor11g[] = {
  157            CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  158         };
  159         const uint16_t *pCtlMode;
  160         uint16_t numCtlModes, ctlMode, freq;
  161         CHAN_CENTERS centers;
  162 
  163         ar5416GetChannelCenters(ah,  chan, &centers);
  164 
  165         /* Compute TxPower reduction due to Antenna Gain */
  166 
  167         twiceLargestAntenna = AH_MAX(
  168             pEepData->modalHeader.antennaGainCh[0],
  169             pEepData->modalHeader.antennaGainCh[1]);
  170 
  171         twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
  172 
  173         /* XXX setup for 5212 use (really used?) */
  174         ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
  175 
  176         /* 
  177          * scaledPower is the minimum of the user input power level and
  178          * the regulatory allowed power level
  179          */
  180         scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
  181 
  182         /* Reduce scaled Power by number of chains active to get to per chain tx power level */
  183         /* TODO: better value than these? */
  184         switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
  185         case 1:
  186                 break;
  187         case 2:
  188                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  189                 break;
  190         default:
  191                 return AH_FALSE; /* Unsupported number of chains */
  192         }
  193 
  194         scaledPower = AH_MAX(0, scaledPower);
  195 
  196         /* Get target powers from EEPROM - our baseline for TX Power */
  197         /* XXX assume channel is 2ghz */
  198         if (1) {
  199                 /* Setup for CTL modes */
  200                 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
  201                 pCtlMode = ctlModesFor11g;
  202 
  203                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
  204                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
  205                 ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
  206                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
  207                 ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
  208                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
  209 
  210                 if (IEEE80211_IS_CHAN_HT40(chan)) {
  211                         numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
  212 
  213                         ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
  214                                 AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
  215                         /* Get target powers for extension channels */
  216                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
  217                                 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
  218                         ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
  219                                 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
  220                 }
  221         }
  222 
  223         /*
  224          * For MIMO, need to apply regulatory caps individually across dynamically
  225          * running modes: CCK, OFDM, HT20, HT40
  226          *
  227          * The outer loop walks through each possible applicable runtime mode.
  228          * The inner loop walks through each ctlIndex entry in EEPROM.
  229          * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
  230          *
  231          */
  232         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  233                 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  234                     (pCtlMode[ctlMode] == CTL_2GHT40);
  235                 if (isHt40CtlMode) {
  236                         freq = centers.ctl_center;
  237                 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
  238                         freq = centers.ext_center;
  239                 } else {
  240                         freq = centers.ctl_center;
  241                 }
  242 
  243                 /* walk through each CTL index stored in EEPROM */
  244                 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  245                         uint16_t twiceMinEdgePower;
  246 
  247                         /* compare test group from regulatory channel list with test mode from pCtlMode list */
  248                         if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
  249                                 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 
  250                                  ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  251                                 rep = &(pEepData->ctlData[i]);
  252                                 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
  253                                                         rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
  254                                                         IEEE80211_IS_CHAN_2GHZ(chan));
  255                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  256                                         /* Find the minimum of all CTL edge powers that apply to this channel */
  257                                         twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
  258                                 } else {
  259                                         /* specific */
  260                                         twiceMaxEdgePower = twiceMinEdgePower;
  261                                         break;
  262                                 }
  263                         }
  264                 }
  265                 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
  266                 /* Apply ctl mode to correct target power set */
  267                 switch(pCtlMode[ctlMode]) {
  268                 case CTL_11B:
  269                         for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
  270                                 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
  271                         }
  272                         break;
  273                 case CTL_11A:
  274                 case CTL_11G:
  275                         for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
  276                                 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
  277                         }
  278                         break;
  279                 case CTL_5GHT20:
  280                 case CTL_2GHT20:
  281                         for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
  282                                 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
  283                         }
  284                         break;
  285                 case CTL_11B_EXT:
  286                         targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
  287                         break;
  288                 case CTL_11A_EXT:
  289                 case CTL_11G_EXT:
  290                         targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
  291                         break;
  292                 case CTL_5GHT40:
  293                 case CTL_2GHT40:
  294                         for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
  295                                 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
  296                         }
  297                         break;
  298                 default:
  299                         return AH_FALSE;
  300                         break;
  301                 }
  302         } /* end ctl mode checking */
  303 
  304         /* Set rates Array from collected data */
  305         ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
  306             &targetPowerCck,
  307             &targetPowerCckExt,
  308             &targetPowerOfdm,
  309             &targetPowerOfdmExt,
  310             &targetPowerHt20,
  311             &targetPowerHt40);
  312         return AH_TRUE;
  313 #undef EXT_ADDITIVE
  314 #undef CTL_11A_EXT
  315 #undef CTL_11G_EXT
  316 #undef CTL_11B_EXT
  317 #undef SUB_NUM_CTL_MODES_AT_5G_40
  318 #undef SUB_NUM_CTL_MODES_AT_2G_40
  319 #undef N
  320 }
  321 
  322 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  323 
  324 /*
  325  * This is based off of the AR5416/AR9285 code and likely could
  326  * be unified in the future.
  327  */
  328 HAL_BOOL
  329 ar9287SetTransmitPower(struct ath_hal *ah,
  330         const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
  331 {
  332 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
  333 #define N(a)        (sizeof (a) / sizeof (a[0]))
  334 
  335         const struct modal_eep_ar9287_header *pModal;
  336         struct ath_hal_5212 *ahp = AH5212(ah);
  337         int16_t      txPowerIndexOffset = 0;
  338         int              i;
  339 
  340         uint16_t            cfgCtl;
  341         uint16_t            powerLimit;
  342         uint16_t            twiceAntennaReduction;
  343         uint16_t            twiceMaxRegulatoryPower;
  344         int16_t      maxPower;
  345         HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
  346         struct ar9287_eeprom *pEepData = &ee->ee_base;
  347 
  348         AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
  349 
  350         /* Setup info for the actual eeprom */
  351         OS_MEMZERO(AH5416(ah)->ah_ratesArray,
  352           sizeof(AH5416(ah)->ah_ratesArray));
  353         cfgCtl = ath_hal_getctl(ah, chan);
  354         powerLimit = chan->ic_maxregpower * 2;
  355         twiceAntennaReduction = chan->ic_maxantgain;
  356         twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
  357             AH_PRIVATE(ah)->ah_powerLimit);
  358         pModal = &pEepData->modalHeader;
  359         HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
  360             __func__,chan->ic_freq, cfgCtl );
  361 
  362         /* XXX Assume Minor is v2 or later */
  363         AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  364 
  365         /* Fetch per-rate power table for the given channel */
  366         if (! ar9287SetPowerPerRateTable(ah, pEepData,  chan,
  367             &AH5416(ah)->ah_ratesArray[0],
  368             cfgCtl,
  369             twiceAntennaReduction,
  370             twiceMaxRegulatoryPower, powerLimit)) {
  371                 HALDEBUG(ah, HAL_DEBUG_ANY,
  372                     "%s: unable to set tx power per rate table\n", __func__);
  373                 return AH_FALSE;
  374         }
  375 
  376         /* Set TX power control calibration curves for each TX chain */
  377         ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
  378 
  379         /* Calculate maximum power level */
  380         maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
  381             AH5416(ah)->ah_ratesArray[rateHt20_0]);
  382         maxPower = AH_MAX(maxPower,
  383             AH5416(ah)->ah_ratesArray[rate1l]);
  384 
  385         if (IEEE80211_IS_CHAN_HT40(chan))
  386                 maxPower = AH_MAX(maxPower,
  387                     AH5416(ah)->ah_ratesArray[rateHt40_0]);
  388 
  389         ahp->ah_tx6PowerInHalfDbm = maxPower;
  390         AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
  391         ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
  392 
  393         /*
  394          * txPowerIndexOffset is set by the SetPowerTable() call -
  395          *  adjust the rate table (0 offset if rates EEPROM not loaded)
  396          */
  397         /* XXX what about the pwrTableOffset? */
  398         for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
  399                 AH5416(ah)->ah_ratesArray[i] =
  400                     (int16_t)(txPowerIndexOffset +
  401                       AH5416(ah)->ah_ratesArray[i]);
  402                 /* -5 dBm offset for Merlin and later; this includes Kiwi */
  403                 AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
  404                 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
  405                         AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
  406                 if (AH5416(ah)->ah_ratesArray[i] < 0)
  407                         AH5416(ah)->ah_ratesArray[i] = 0;
  408         }
  409 
  410 #ifdef AH_EEPROM_DUMP
  411         ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
  412 #endif
  413 
  414         /*
  415          * Adjust the HT40 power to meet the correct target TX power
  416          * for 40MHz mode, based on TX power curves that are established
  417          * for 20MHz mode.
  418          *
  419          * XXX handle overflow/too high power level?
  420          */
  421         if (IEEE80211_IS_CHAN_HT40(chan)) {
  422                 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
  423                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  424                 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
  425                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  426                 AH5416(ah)->ah_ratesArray[rateHt40_2] +=
  427                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  428                 AH5416(ah)->ah_ratesArray[rateHt40_3] +=
  429                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  430                 AH5416(ah)->ah_ratesArray[rateHt40_4] +=
  431                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  432                 AH5416(ah)->ah_ratesArray[rateHt40_5] +=
  433                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  434                 AH5416(ah)->ah_ratesArray[rateHt40_6] +=
  435                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  436                 AH5416(ah)->ah_ratesArray[rateHt40_7] +=
  437                   AH5416(ah)->ah_ht40PowerIncForPdadc;
  438         }
  439 
  440         /* Write the TX power rate registers */
  441         ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
  442 
  443         return AH_TRUE;
  444 #undef POW_SM
  445 #undef N
  446 }
  447 
  448 /*
  449  * Read EEPROM header info and program the device for correct operation
  450  * given the channel value.
  451  */
  452 HAL_BOOL
  453 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
  454 {
  455         const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
  456         const struct ar9287_eeprom *eep = &ee->ee_base;
  457         const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  458         uint16_t antWrites[AR9287_ANT_16S];
  459         uint32_t regChainOffset, regval;
  460         uint8_t txRxAttenLocal;
  461         int i, j, offset_num;
  462 
  463         pModal = &eep->modalHeader;
  464 
  465         antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
  466         antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
  467         antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
  468         antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
  469         antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
  470         antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
  471         antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4)  & 0xF);
  472         antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
  473 
  474         offset_num = 8;
  475 
  476         for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
  477                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
  478                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
  479                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
  480                 antWrites[j++] = 0;
  481                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
  482                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
  483                 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
  484                 antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
  485         }
  486 
  487         OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  488 
  489         for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  490                 regChainOffset = i * 0x1000;
  491 
  492                 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  493                           pModal->antCtrlChain[i]);
  494 
  495                 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
  496                           (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
  497                               + regChainOffset)
  498                            & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  499                                AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  500                           SM(pModal->iqCalICh[i],
  501                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  502                           SM(pModal->iqCalQCh[i],
  503                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  504 
  505                 txRxAttenLocal = pModal->txRxAttenCh[i];
  506 
  507                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  508                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  509                               pModal->bswMargin[i]);
  510                 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  511                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  512                               pModal->bswAtten[i]);
  513                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  514                               AR9280_PHY_RXGAIN_TXRX_ATTEN,
  515                               txRxAttenLocal);
  516                 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  517                               AR9280_PHY_RXGAIN_TXRX_MARGIN,
  518                               pModal->rxTxMarginCh[i]);
  519         }
  520 
  521         if (IEEE80211_IS_CHAN_HT40(chan))
  522                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  523                               AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  524         else
  525                 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  526                               AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  527 
  528         OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  529                       AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  530 
  531         OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
  532                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  533                   | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  534                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  535                   | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  536 
  537         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  538                       AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  539 
  540         OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
  541                       AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  542         OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  543                       AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  544 
  545         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
  546         regval &= ~(AR9287_AN_RF2G3_DB1 |
  547                     AR9287_AN_RF2G3_DB2 |
  548                     AR9287_AN_RF2G3_OB_CCK |
  549                     AR9287_AN_RF2G3_OB_PSK |
  550                     AR9287_AN_RF2G3_OB_QAM |
  551                     AR9287_AN_RF2G3_OB_PAL_OFF);
  552         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  553                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  554                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  555                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  556                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  557                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  558 
  559         /* Analog write - requires a 100usec delay */
  560         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
  561 
  562         regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
  563         regval &= ~(AR9287_AN_RF2G3_DB1 |
  564                     AR9287_AN_RF2G3_DB2 |
  565                     AR9287_AN_RF2G3_OB_CCK |
  566                     AR9287_AN_RF2G3_OB_PSK |
  567                     AR9287_AN_RF2G3_OB_QAM |
  568                     AR9287_AN_RF2G3_OB_PAL_OFF);
  569         regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  570                    SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  571                    SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  572                    SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  573                    SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  574                    SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  575 
  576         OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
  577 
  578         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  579             AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
  580         OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  581             AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
  582 
  583         OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
  584             AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
  585 
  586         return AH_TRUE;
  587 }

Cache object: 81cc19023378fa429491a99644e7c6c5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.