1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 /*
36 * Driver for the Atheros Wireless LAN controller.
37 *
38 * This software is derived from work of Atsushi Onoe; his contribution
39 * is greatly appreciated.
40 */
41
42 #include "opt_inet.h"
43 #include "opt_ath.h"
44 /*
45 * This is needed for register operations which are performed
46 * by the driver - eg, calls to ath_hal_gettsf32().
47 *
48 * It's also required for any AH_DEBUG checks in here, eg the
49 * module dependencies.
50 */
51 #include "opt_ah.h"
52 #include "opt_wlan.h"
53
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysctl.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/lock.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/errno.h>
65 #include <sys/callout.h>
66 #include <sys/bus.h>
67 #include <sys/endian.h>
68 #include <sys/kthread.h>
69 #include <sys/taskqueue.h>
70 #include <sys/priv.h>
71 #include <sys/module.h>
72 #include <sys/ktr.h>
73 #include <sys/smp.h> /* for mp_ncpus */
74
75 #include <machine/bus.h>
76
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_llc.h>
85
86 #include <net80211/ieee80211_var.h>
87 #include <net80211/ieee80211_regdomain.h>
88 #ifdef IEEE80211_SUPPORT_SUPERG
89 #include <net80211/ieee80211_superg.h>
90 #endif
91 #ifdef IEEE80211_SUPPORT_TDMA
92 #include <net80211/ieee80211_tdma.h>
93 #endif
94
95 #include <net/bpf.h>
96
97 #ifdef INET
98 #include <netinet/in.h>
99 #include <netinet/if_ether.h>
100 #endif
101
102 #include <dev/ath/if_athvar.h>
103 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
104 #include <dev/ath/ath_hal/ah_diagcodes.h>
105
106 #include <dev/ath/if_ath_debug.h>
107 #include <dev/ath/if_ath_misc.h>
108 #include <dev/ath/if_ath_tsf.h>
109 #include <dev/ath/if_ath_tx.h>
110 #include <dev/ath/if_ath_sysctl.h>
111 #include <dev/ath/if_ath_led.h>
112 #include <dev/ath/if_ath_keycache.h>
113 #include <dev/ath/if_ath_rx.h>
114 #include <dev/ath/if_ath_beacon.h>
115 #include <dev/ath/if_athdfs.h>
116 #include <dev/ath/if_ath_descdma.h>
117
118 #ifdef ATH_TX99_DIAG
119 #include <dev/ath/ath_tx99/ath_tx99.h>
120 #endif
121
122 #ifdef ATH_DEBUG_ALQ
123 #include <dev/ath/if_ath_alq.h>
124 #endif
125
126 #include <dev/ath/if_ath_lna_div.h>
127
128 /*
129 * Calculate the receive filter according to the
130 * operating mode and state:
131 *
132 * o always accept unicast, broadcast, and multicast traffic
133 * o accept PHY error frames when hardware doesn't have MIB support
134 * to count and we need them for ANI (sta mode only until recently)
135 * and we are not scanning (ANI is disabled)
136 * NB: older hal's add rx filter bits out of sight and we need to
137 * blindly preserve them
138 * o probe request frames are accepted only when operating in
139 * hostap, adhoc, mesh, or monitor modes
140 * o enable promiscuous mode
141 * - when in monitor mode
142 * - if interface marked PROMISC (assumes bridge setting is filtered)
143 * o accept beacons:
144 * - when operating in station mode for collecting rssi data when
145 * the station is otherwise quiet, or
146 * - when operating in adhoc mode so the 802.11 layer creates
147 * node table entries for peers,
148 * - when scanning
149 * - when doing s/w beacon miss (e.g. for ap+sta)
150 * - when operating in ap mode in 11g to detect overlapping bss that
151 * require protection
152 * - when operating in mesh mode to detect neighbors
153 * o accept control frames:
154 * - when in monitor mode
155 * XXX HT protection for 11n
156 */
157 u_int32_t
158 ath_calcrxfilter(struct ath_softc *sc)
159 {
160 struct ieee80211com *ic = &sc->sc_ic;
161 u_int32_t rfilt;
162
163 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
164 if (!sc->sc_needmib && !sc->sc_scanning)
165 rfilt |= HAL_RX_FILTER_PHYERR;
166 if (ic->ic_opmode != IEEE80211_M_STA)
167 rfilt |= HAL_RX_FILTER_PROBEREQ;
168 /* XXX ic->ic_monvaps != 0? */
169 if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
170 rfilt |= HAL_RX_FILTER_PROM;
171
172 /*
173 * Only listen to all beacons if we're scanning.
174 *
175 * Otherwise we only really need to hear beacons from
176 * our own BSSID.
177 *
178 * IBSS? software beacon miss? Just receive all beacons.
179 * We need to hear beacons/probe requests from everyone so
180 * we can merge ibss.
181 */
182 if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
183 rfilt |= HAL_RX_FILTER_BEACON;
184 } else if (ic->ic_opmode == IEEE80211_M_STA) {
185 if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
186 rfilt |= HAL_RX_FILTER_MYBEACON;
187 } else { /* scanning, non-mybeacon chips */
188 rfilt |= HAL_RX_FILTER_BEACON;
189 }
190 }
191
192 /*
193 * NB: We don't recalculate the rx filter when
194 * ic_protmode changes; otherwise we could do
195 * this only when ic_protmode != NONE.
196 */
197 if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
198 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
199 rfilt |= HAL_RX_FILTER_BEACON;
200
201 /*
202 * Enable hardware PS-POLL RX only for hostap mode;
203 * STA mode sends PS-POLL frames but never
204 * receives them.
205 */
206 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
207 0, NULL) == HAL_OK &&
208 ic->ic_opmode == IEEE80211_M_HOSTAP)
209 rfilt |= HAL_RX_FILTER_PSPOLL;
210
211 if (sc->sc_nmeshvaps) {
212 rfilt |= HAL_RX_FILTER_BEACON;
213 if (sc->sc_hasbmatch)
214 rfilt |= HAL_RX_FILTER_BSSID;
215 else
216 rfilt |= HAL_RX_FILTER_PROM;
217 }
218 if (ic->ic_opmode == IEEE80211_M_MONITOR)
219 rfilt |= HAL_RX_FILTER_CONTROL;
220
221 /*
222 * Enable RX of compressed BAR frames only when doing
223 * 802.11n. Required for A-MPDU.
224 */
225 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
226 rfilt |= HAL_RX_FILTER_COMPBAR;
227
228 /*
229 * Enable radar PHY errors if requested by the
230 * DFS module.
231 */
232 if (sc->sc_dodfs)
233 rfilt |= HAL_RX_FILTER_PHYRADAR;
234
235 /*
236 * Enable spectral PHY errors if requested by the
237 * spectral module.
238 */
239 if (sc->sc_dospectral)
240 rfilt |= HAL_RX_FILTER_PHYRADAR;
241
242 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
243 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
244 return rfilt;
245 }
246
247 static int
248 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
249 {
250 struct ath_hal *ah = sc->sc_ah;
251 int error;
252 struct mbuf *m;
253 struct ath_desc *ds;
254
255 /* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
256
257 m = bf->bf_m;
258 if (m == NULL) {
259 /*
260 * NB: by assigning a page to the rx dma buffer we
261 * implicitly satisfy the Atheros requirement that
262 * this buffer be cache-line-aligned and sized to be
263 * multiple of the cache line size. Not doing this
264 * causes weird stuff to happen (for the 5210 at least).
265 */
266 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
267 if (m == NULL) {
268 DPRINTF(sc, ATH_DEBUG_ANY,
269 "%s: no mbuf/cluster\n", __func__);
270 sc->sc_stats.ast_rx_nombuf++;
271 return ENOMEM;
272 }
273 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
274
275 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
276 bf->bf_dmamap, m,
277 bf->bf_segs, &bf->bf_nseg,
278 BUS_DMA_NOWAIT);
279 if (error != 0) {
280 DPRINTF(sc, ATH_DEBUG_ANY,
281 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
282 __func__, error);
283 sc->sc_stats.ast_rx_busdma++;
284 m_freem(m);
285 return error;
286 }
287 KASSERT(bf->bf_nseg == 1,
288 ("multi-segment packet; nseg %u", bf->bf_nseg));
289 bf->bf_m = m;
290 }
291 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
292
293 /*
294 * Setup descriptors. For receive we always terminate
295 * the descriptor list with a self-linked entry so we'll
296 * not get overrun under high load (as can happen with a
297 * 5212 when ANI processing enables PHY error frames).
298 *
299 * To insure the last descriptor is self-linked we create
300 * each descriptor as self-linked and add it to the end. As
301 * each additional descriptor is added the previous self-linked
302 * entry is ``fixed'' naturally. This should be safe even
303 * if DMA is happening. When processing RX interrupts we
304 * never remove/process the last, self-linked, entry on the
305 * descriptor list. This insures the hardware always has
306 * someplace to write a new frame.
307 */
308 /*
309 * 11N: we can no longer afford to self link the last descriptor.
310 * MAC acknowledges BA status as long as it copies frames to host
311 * buffer (or rx fifo). This can incorrectly acknowledge packets
312 * to a sender if last desc is self-linked.
313 */
314 ds = bf->bf_desc;
315 if (sc->sc_rxslink)
316 ds->ds_link = bf->bf_daddr; /* link to self */
317 else
318 ds->ds_link = 0; /* terminate the list */
319 ds->ds_data = bf->bf_segs[0].ds_addr;
320 ath_hal_setuprxdesc(ah, ds
321 , m->m_len /* buffer size */
322 , 0
323 );
324
325 if (sc->sc_rxlink != NULL)
326 *sc->sc_rxlink = bf->bf_daddr;
327 sc->sc_rxlink = &ds->ds_link;
328 return 0;
329 }
330
331 /*
332 * Intercept management frames to collect beacon rssi data
333 * and to do ibss merges.
334 */
335 void
336 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
337 int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
338 {
339 struct ieee80211vap *vap = ni->ni_vap;
340 struct ath_softc *sc = vap->iv_ic->ic_softc;
341 uint64_t tsf_beacon_old, tsf_beacon;
342 uint64_t nexttbtt;
343 int64_t tsf_delta;
344 int32_t tsf_delta_bmiss;
345 int32_t tsf_remainder;
346 uint64_t tsf_beacon_target;
347 int tsf_intval;
348
349 tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
350 tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
351
352 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
353 tsf_intval = 1;
354 if (ni->ni_intval > 0) {
355 tsf_intval = TU_TO_TSF(ni->ni_intval);
356 }
357 #undef TU_TO_TSF
358
359 /*
360 * Call up first so subsequent work can use information
361 * potentially stored in the node (e.g. for ibss merge).
362 */
363 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
364 switch (subtype) {
365 case IEEE80211_FC0_SUBTYPE_BEACON:
366 /*
367 * Always update the per-node beacon RSSI if we're hearing
368 * beacons from that node.
369 */
370 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgbrssi, rssi);
371
372 /*
373 * Only do the following processing if it's for
374 * the current BSS.
375 *
376 * In scan and IBSS mode we receive all beacons,
377 * which means we need to filter out stuff
378 * that isn't for us or we'll end up constantly
379 * trying to sync / merge to BSSes that aren't
380 * actually us.
381 */
382 if ((vap->iv_opmode != IEEE80211_M_HOSTAP) &&
383 IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
384 /* update rssi statistics for use by the hal */
385 /* XXX unlocked check against vap->iv_bss? */
386 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
387
388 tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
389 tsf_beacon |= le32dec(ni->ni_tstamp.data);
390
391 nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
392
393 /*
394 * Let's calculate the delta and remainder, so we can see
395 * if the beacon timer from the AP is varying by more than
396 * a few TU. (Which would be a huge, huge problem.)
397 */
398 tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
399
400 tsf_delta_bmiss = tsf_delta / tsf_intval;
401
402 /*
403 * If our delta is greater than half the beacon interval,
404 * let's round the bmiss value up to the next beacon
405 * interval. Ie, we're running really, really early
406 * on the next beacon.
407 */
408 if (tsf_delta % tsf_intval > (tsf_intval / 2))
409 tsf_delta_bmiss ++;
410
411 tsf_beacon_target = tsf_beacon_old +
412 (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
413
414 /*
415 * The remainder using '%' is between 0 .. intval-1.
416 * If we're actually running too fast, then the remainder
417 * will be some large number just under intval-1.
418 * So we need to look at whether we're running
419 * before or after the target beacon interval
420 * and if we are, modify how we do the remainder
421 * calculation.
422 */
423 if (tsf_beacon < tsf_beacon_target) {
424 tsf_remainder =
425 -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
426 } else {
427 tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
428 }
429
430 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: old_tsf=%llu (%u), new_tsf=%llu (%u), target_tsf=%llu (%u), delta=%lld, bmiss=%d, remainder=%d\n",
431 __func__,
432 ieee80211_get_vap_ifname(vap),
433 (unsigned long long) tsf_beacon_old,
434 (unsigned int) (tsf_beacon_old >> 10),
435 (unsigned long long) tsf_beacon,
436 (unsigned int ) (tsf_beacon >> 10),
437 (unsigned long long) tsf_beacon_target,
438 (unsigned int) (tsf_beacon_target >> 10),
439 (long long) tsf_delta,
440 tsf_delta_bmiss,
441 tsf_remainder);
442
443 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: ni=%6D bssid=%6D tsf=%llu (%u), nexttbtt=%llu (%u), delta=%d\n",
444 __func__,
445 ieee80211_get_vap_ifname(vap),
446 ni->ni_bssid, ":",
447 vap->iv_bss->ni_bssid, ":",
448 (unsigned long long) tsf_beacon,
449 (unsigned int) (tsf_beacon >> 10),
450 (unsigned long long) nexttbtt,
451 (unsigned int) (nexttbtt >> 10),
452 (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
453
454 /*
455 * We only do syncbeacon on STA VAPs; not on IBSS;
456 * but don't do it with swbmiss enabled or we
457 * may end up overwriting AP mode beacon config.
458 *
459 * The driver (and net80211) should be smarter about
460 * this..
461 */
462 if (vap->iv_opmode == IEEE80211_M_STA &&
463 sc->sc_syncbeacon &&
464 (!sc->sc_swbmiss) &&
465 ni == vap->iv_bss &&
466 ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) &&
467 (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
468 DPRINTF(sc, ATH_DEBUG_BEACON,
469 "%s: syncbeacon=1; syncing\n",
470 __func__);
471 /*
472 * Resync beacon timers using the tsf of the beacon
473 * frame we just received.
474 */
475 ath_beacon_config(sc, vap);
476 sc->sc_syncbeacon = 0;
477 }
478 }
479
480 /* fall thru... */
481 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
482 if (vap->iv_opmode == IEEE80211_M_IBSS &&
483 vap->iv_state == IEEE80211_S_RUN &&
484 ieee80211_ibss_merge_check(ni)) {
485 uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
486 uint64_t tsf = ath_extend_tsf(sc, rstamp,
487 ath_hal_gettsf64(sc->sc_ah));
488 /*
489 * Handle ibss merge as needed; check the tsf on the
490 * frame before attempting the merge. The 802.11 spec
491 * says the station should change it's bssid to match
492 * the oldest station with the same ssid, where oldest
493 * is determined by the tsf. Note that hardware
494 * reconfiguration happens through callback to
495 * ath_newstate as the state machine will go from
496 * RUN -> RUN when this happens.
497 */
498 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
499 DPRINTF(sc, ATH_DEBUG_STATE,
500 "ibss merge, rstamp %u tsf %ju "
501 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
502 (uintmax_t)ni->ni_tstamp.tsf);
503 (void) ieee80211_ibss_merge(ni);
504 }
505 }
506 break;
507 }
508 }
509
510 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
511 static void
512 ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
513 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
514 {
515
516 /* Fill in the extension bitmap */
517 sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
518
519 /* Fill in the vendor header */
520 sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
521 sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
522 sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
523
524 /* XXX what should this be? */
525 sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
526 sc->sc_rx_th.wr_vh.vh_skip_len =
527 htole16(sizeof(struct ath_radiotap_vendor_hdr));
528
529 /* General version info */
530 sc->sc_rx_th.wr_v.vh_version = 1;
531
532 sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
533
534 /* rssi */
535 sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
536 sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
537 sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
538 sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
539 sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
540 sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
541
542 /* evm */
543 sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
544 sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
545 sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
546 /* These are only populated from the AR9300 or later */
547 sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
548 sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
549
550 /* direction */
551 sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
552
553 /* RX rate */
554 sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
555
556 /* RX flags */
557 sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
558
559 if (rs->rs_isaggr)
560 sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
561 if (rs->rs_moreaggr)
562 sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
563
564 /* phyerr info */
565 if (rs->rs_status & HAL_RXERR_PHY) {
566 sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
567 sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
568 } else {
569 sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
570 }
571 sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
572 sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
573 }
574 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
575
576 static void
577 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
578 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
579 {
580 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20)
581 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U)
582 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D)
583 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
584 const HAL_RATE_TABLE *rt;
585 uint8_t rix;
586
587 rt = sc->sc_currates;
588 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
589 rix = rt->rateCodeToIndex[rs->rs_rate];
590 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
591 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
592
593 /* 802.11 specific flags */
594 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
595 if (rs->rs_status & HAL_RXERR_PHY) {
596 /*
597 * PHY error - make sure the channel flags
598 * reflect the actual channel configuration,
599 * not the received frame.
600 */
601 if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
602 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
603 else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
604 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
605 else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
606 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
607 } else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */
608 struct ieee80211com *ic = &sc->sc_ic;
609
610 if ((rs->rs_flags & HAL_RX_2040) == 0)
611 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
612 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
613 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
614 else
615 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
616
617 if (rs->rs_flags & HAL_RX_GI)
618 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
619 }
620
621 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
622 if (rs->rs_status & HAL_RXERR_CRC)
623 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
624 /* XXX propagate other error flags from descriptor */
625 sc->sc_rx_th.wr_antnoise = nf;
626 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
627 sc->sc_rx_th.wr_antenna = rs->rs_antenna;
628 #undef CHAN_HT
629 #undef CHAN_HT20
630 #undef CHAN_HT40U
631 #undef CHAN_HT40D
632 }
633
634 static void
635 ath_handle_micerror(struct ieee80211com *ic,
636 struct ieee80211_frame *wh, int keyix)
637 {
638 struct ieee80211_node *ni;
639
640 /* XXX recheck MIC to deal w/ chips that lie */
641 /* XXX discard MIC errors on !data frames */
642 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
643 if (ni != NULL) {
644 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
645 ieee80211_free_node(ni);
646 }
647 }
648
649 /*
650 * Process a single packet.
651 *
652 * The mbuf must already be synced, unmapped and removed from bf->bf_m
653 * by this stage.
654 *
655 * The mbuf must be consumed by this routine - either passed up the
656 * net80211 stack, put on the holding queue, or freed.
657 */
658 int
659 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
660 uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
661 struct mbuf *m)
662 {
663 uint64_t rstamp;
664 /* XXX TODO: make this an mbuf tag? */
665 struct ieee80211_rx_stats rxs;
666 int len, type, i;
667 struct ieee80211com *ic = &sc->sc_ic;
668 struct ieee80211_node *ni;
669 int is_good = 0;
670 struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
671
672 NET_EPOCH_ASSERT();
673
674 /*
675 * Calculate the correct 64 bit TSF given
676 * the TSF64 register value and rs_tstamp.
677 */
678 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
679
680 /* 802.11 return codes - These aren't specifically errors */
681 if (rs->rs_flags & HAL_RX_GI)
682 sc->sc_stats.ast_rx_halfgi++;
683 if (rs->rs_flags & HAL_RX_2040)
684 sc->sc_stats.ast_rx_2040++;
685 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
686 sc->sc_stats.ast_rx_pre_crc_err++;
687 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
688 sc->sc_stats.ast_rx_post_crc_err++;
689 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
690 sc->sc_stats.ast_rx_decrypt_busy_err++;
691 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
692 sc->sc_stats.ast_rx_hi_rx_chain++;
693 if (rs->rs_flags & HAL_RX_STBC)
694 sc->sc_stats.ast_rx_stbc++;
695
696 if (rs->rs_status != 0) {
697 if (rs->rs_status & HAL_RXERR_CRC)
698 sc->sc_stats.ast_rx_crcerr++;
699 if (rs->rs_status & HAL_RXERR_FIFO)
700 sc->sc_stats.ast_rx_fifoerr++;
701 if (rs->rs_status & HAL_RXERR_PHY) {
702 sc->sc_stats.ast_rx_phyerr++;
703 /* Process DFS radar events */
704 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
705 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
706 /* Now pass it to the radar processing code */
707 ath_dfs_process_phy_err(sc, m, rstamp, rs);
708 }
709
710 /*
711 * Be suitably paranoid about receiving phy errors
712 * out of the stats array bounds
713 */
714 if (rs->rs_phyerr < ATH_IOCTL_STATS_NUM_RX_PHYERR)
715 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
716 goto rx_error; /* NB: don't count in ierrors */
717 }
718 if (rs->rs_status & HAL_RXERR_DECRYPT) {
719 /*
720 * Decrypt error. If the error occurred
721 * because there was no hardware key, then
722 * let the frame through so the upper layers
723 * can process it. This is necessary for 5210
724 * parts which have no way to setup a ``clear''
725 * key cache entry.
726 *
727 * XXX do key cache faulting
728 */
729 if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
730 goto rx_accept;
731 sc->sc_stats.ast_rx_badcrypt++;
732 }
733 /*
734 * Similar as above - if the failure was a keymiss
735 * just punt it up to the upper layers for now.
736 */
737 if (rs->rs_status & HAL_RXERR_KEYMISS) {
738 sc->sc_stats.ast_rx_keymiss++;
739 goto rx_accept;
740 }
741 if (rs->rs_status & HAL_RXERR_MIC) {
742 sc->sc_stats.ast_rx_badmic++;
743 /*
744 * Do minimal work required to hand off
745 * the 802.11 header for notification.
746 */
747 /* XXX frag's and qos frames */
748 len = rs->rs_datalen;
749 if (len >= sizeof (struct ieee80211_frame)) {
750 ath_handle_micerror(ic,
751 mtod(m, struct ieee80211_frame *),
752 sc->sc_splitmic ?
753 rs->rs_keyix-32 : rs->rs_keyix);
754 }
755 }
756 counter_u64_add(ic->ic_ierrors, 1);
757 rx_error:
758 /*
759 * Cleanup any pending partial frame.
760 */
761 if (re->m_rxpending != NULL) {
762 m_freem(re->m_rxpending);
763 re->m_rxpending = NULL;
764 }
765 /*
766 * When a tap is present pass error frames
767 * that have been requested. By default we
768 * pass decrypt+mic errors but others may be
769 * interesting (e.g. crc).
770 */
771 if (ieee80211_radiotap_active(ic) &&
772 (rs->rs_status & sc->sc_monpass)) {
773 /* NB: bpf needs the mbuf length setup */
774 len = rs->rs_datalen;
775 m->m_pkthdr.len = m->m_len = len;
776 ath_rx_tap(sc, m, rs, rstamp, nf);
777 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
778 ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
779 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
780 ieee80211_radiotap_rx_all(ic, m);
781 }
782 /* XXX pass MIC errors up for s/w reclaculation */
783 m_freem(m); m = NULL;
784 goto rx_next;
785 }
786 rx_accept:
787 len = rs->rs_datalen;
788 m->m_len = len;
789
790 if (rs->rs_more) {
791 /*
792 * Frame spans multiple descriptors; save
793 * it for the next completed descriptor, it
794 * will be used to construct a jumbogram.
795 */
796 if (re->m_rxpending != NULL) {
797 /* NB: max frame size is currently 2 clusters */
798 sc->sc_stats.ast_rx_toobig++;
799 m_freem(re->m_rxpending);
800 }
801 m->m_pkthdr.len = len;
802 re->m_rxpending = m;
803 m = NULL;
804 goto rx_next;
805 } else if (re->m_rxpending != NULL) {
806 /*
807 * This is the second part of a jumbogram,
808 * chain it to the first mbuf, adjust the
809 * frame length, and clear the rxpending state.
810 */
811 re->m_rxpending->m_next = m;
812 re->m_rxpending->m_pkthdr.len += len;
813 m = re->m_rxpending;
814 re->m_rxpending = NULL;
815 } else {
816 /*
817 * Normal single-descriptor receive; setup packet length.
818 */
819 m->m_pkthdr.len = len;
820 }
821
822 /*
823 * Validate rs->rs_antenna.
824 *
825 * Some users w/ AR9285 NICs have reported crashes
826 * here because rs_antenna field is bogusly large.
827 * Let's enforce the maximum antenna limit of 8
828 * (and it shouldn't be hard coded, but that's a
829 * separate problem) and if there's an issue, print
830 * out an error and adjust rs_antenna to something
831 * sensible.
832 *
833 * This code should be removed once the actual
834 * root cause of the issue has been identified.
835 * For example, it may be that the rs_antenna
836 * field is only valid for the last frame of
837 * an aggregate and it just happens that it is
838 * "mostly" right. (This is a general statement -
839 * the majority of the statistics are only valid
840 * for the last frame in an aggregate.
841 */
842 if (rs->rs_antenna >= ATH_IOCTL_STATS_NUM_RX_ANTENNA) {
843 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
844 __func__, rs->rs_antenna);
845 #ifdef ATH_DEBUG
846 ath_printrxbuf(sc, bf, 0, status == HAL_OK);
847 #endif /* ATH_DEBUG */
848 rs->rs_antenna = 0; /* XXX better than nothing */
849 }
850
851 /*
852 * If this is an AR9285/AR9485, then the receive and LNA
853 * configuration is stored in RSSI[2] / EXTRSSI[2].
854 * We can extract this out to build a much better
855 * receive antenna profile.
856 *
857 * Yes, this just blurts over the above RX antenna field
858 * for now. It's fine, the AR9285 doesn't really use
859 * that.
860 *
861 * Later on we should store away the fine grained LNA
862 * information and keep separate counters just for
863 * that. It'll help when debugging the AR9285/AR9485
864 * combined diversity code.
865 */
866 if (sc->sc_rx_lnamixer) {
867 rs->rs_antenna = 0;
868
869 /* Bits 0:1 - the LNA configuration used */
870 rs->rs_antenna |=
871 ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
872 >> HAL_RX_LNA_CFG_USED_S);
873
874 /* Bit 2 - the external RX antenna switch */
875 if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
876 rs->rs_antenna |= 0x4;
877 }
878
879 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
880
881 /*
882 * Populate the rx status block. When there are bpf
883 * listeners we do the additional work to provide
884 * complete status. Otherwise we fill in only the
885 * material required by ieee80211_input. Note that
886 * noise setting is filled in above.
887 */
888 if (ieee80211_radiotap_active(ic)) {
889 ath_rx_tap(sc, m, rs, rstamp, nf);
890 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
891 ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
892 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
893 }
894
895 /*
896 * From this point on we assume the frame is at least
897 * as large as ieee80211_frame_min; verify that.
898 */
899 if (len < IEEE80211_MIN_LEN) {
900 if (!ieee80211_radiotap_active(ic)) {
901 DPRINTF(sc, ATH_DEBUG_RECV,
902 "%s: short packet %d\n", __func__, len);
903 sc->sc_stats.ast_rx_tooshort++;
904 } else {
905 /* NB: in particular this captures ack's */
906 ieee80211_radiotap_rx_all(ic, m);
907 }
908 m_freem(m); m = NULL;
909 goto rx_next;
910 }
911
912 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
913 const HAL_RATE_TABLE *rt = sc->sc_currates;
914 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
915
916 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
917 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
918 }
919
920 m_adj(m, -IEEE80211_CRC_LEN);
921
922 /*
923 * Locate the node for sender, track state, and then
924 * pass the (referenced) node up to the 802.11 layer
925 * for its use.
926 */
927 ni = ieee80211_find_rxnode_withkey(ic,
928 mtod(m, const struct ieee80211_frame_min *),
929 rs->rs_keyix == HAL_RXKEYIX_INVALID ?
930 IEEE80211_KEYIX_NONE : rs->rs_keyix);
931 sc->sc_lastrs = rs;
932
933 if (rs->rs_isaggr)
934 sc->sc_stats.ast_rx_agg++;
935
936 /*
937 * Populate the per-chain RSSI values where appropriate.
938 */
939 bzero(&rxs, sizeof(rxs));
940 rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI |
941 IEEE80211_R_C_CHAIN |
942 IEEE80211_R_C_NF |
943 IEEE80211_R_C_RSSI |
944 IEEE80211_R_TSF64 |
945 IEEE80211_R_TSF_START; /* XXX TODO: validate */
946 rxs.c_rssi = rs->rs_rssi;
947 rxs.c_nf = nf;
948 rxs.c_chain = 3; /* XXX TODO: check */
949 rxs.c_rx_tsf = rstamp;
950
951 for (i = 0; i < 3; i++) {
952 rxs.c_rssi_ctl[i] = rs->rs_rssi_ctl[i];
953 rxs.c_rssi_ext[i] = rs->rs_rssi_ext[i];
954 /*
955 * XXX note: we currently don't track
956 * per-chain noisefloor.
957 */
958 rxs.c_nf_ctl[i] = nf;
959 rxs.c_nf_ext[i] = nf;
960 }
961
962 if (ni != NULL) {
963 /*
964 * Only punt packets for ampdu reorder processing for
965 * 11n nodes; net80211 enforces that M_AMPDU is only
966 * set for 11n nodes.
967 */
968 if (ni->ni_flags & IEEE80211_NODE_HT)
969 m->m_flags |= M_AMPDU;
970
971 /*
972 * Inform rate control about the received RSSI.
973 * It can then use this information to potentially drastically
974 * alter the available rate based on the RSSI estimate.
975 *
976 * This is super important when associating to a far away station;
977 * you don't want to waste time trying higher rates at some low
978 * packet exchange rate (like during DHCP) just to establish
979 * that higher MCS rates aren't available.
980 */
981 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgrssi,
982 rs->rs_rssi);
983 ath_rate_update_rx_rssi(sc, ATH_NODE(ni),
984 ATH_RSSI(ATH_NODE(ni)->an_node_stats.ns_avgrssi));
985
986 /*
987 * Sending station is known, dispatch directly.
988 */
989 (void) ieee80211_add_rx_params(m, &rxs);
990 type = ieee80211_input_mimo(ni, m);
991 ieee80211_free_node(ni);
992 m = NULL;
993 /*
994 * Arrange to update the last rx timestamp only for
995 * frames from our ap when operating in station mode.
996 * This assumes the rx key is always setup when
997 * associated.
998 */
999 if (ic->ic_opmode == IEEE80211_M_STA &&
1000 rs->rs_keyix != HAL_RXKEYIX_INVALID)
1001 is_good = 1;
1002 } else {
1003 (void) ieee80211_add_rx_params(m, &rxs);
1004 type = ieee80211_input_mimo_all(ic, m);
1005 m = NULL;
1006 }
1007
1008 /*
1009 * At this point we have passed the frame up the stack; thus
1010 * the mbuf is no longer ours.
1011 */
1012
1013 /*
1014 * Track legacy station RX rssi and do any rx antenna management.
1015 */
1016 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
1017 if (sc->sc_diversity) {
1018 /*
1019 * When using fast diversity, change the default rx
1020 * antenna if diversity chooses the other antenna 3
1021 * times in a row.
1022 */
1023 if (sc->sc_defant != rs->rs_antenna) {
1024 if (++sc->sc_rxotherant >= 3)
1025 ath_setdefantenna(sc, rs->rs_antenna);
1026 } else
1027 sc->sc_rxotherant = 0;
1028 }
1029
1030 /* Handle slow diversity if enabled */
1031 if (sc->sc_dolnadiv) {
1032 ath_lna_rx_comb_scan(sc, rs, ticks, hz);
1033 }
1034
1035 if (sc->sc_softled) {
1036 /*
1037 * Blink for any data frame. Otherwise do a
1038 * heartbeat-style blink when idle. The latter
1039 * is mainly for station mode where we depend on
1040 * periodic beacon frames to trigger the poll event.
1041 */
1042 if (type == IEEE80211_FC0_TYPE_DATA) {
1043 const HAL_RATE_TABLE *rt = sc->sc_currates;
1044 ath_led_event(sc,
1045 rt->rateCodeToIndex[rs->rs_rate]);
1046 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1047 ath_led_event(sc, 0);
1048 }
1049 rx_next:
1050 /*
1051 * Debugging - complain if we didn't NULL the mbuf pointer
1052 * here.
1053 */
1054 if (m != NULL) {
1055 device_printf(sc->sc_dev,
1056 "%s: mbuf %p should've been freed!\n",
1057 __func__,
1058 m);
1059 }
1060 return (is_good);
1061 }
1062
1063 #define ATH_RX_MAX 128
1064
1065 /*
1066 * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
1067 * the EDMA code does.
1068 *
1069 * XXX TODO: then, do all of the RX list management stuff inside
1070 * ATH_RX_LOCK() so we don't end up potentially racing. The EDMA
1071 * code is doing it right.
1072 */
1073 static void
1074 ath_rx_proc(struct ath_softc *sc, int resched)
1075 {
1076 #define PA2DESC(_sc, _pa) \
1077 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1078 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1079 struct ath_buf *bf;
1080 struct ath_hal *ah = sc->sc_ah;
1081 #ifdef IEEE80211_SUPPORT_SUPERG
1082 struct ieee80211com *ic = &sc->sc_ic;
1083 #endif
1084 struct ath_desc *ds;
1085 struct ath_rx_status *rs;
1086 struct mbuf *m;
1087 int ngood;
1088 HAL_STATUS status;
1089 int16_t nf;
1090 u_int64_t tsf;
1091 int npkts = 0;
1092 int kickpcu = 0;
1093 int ret;
1094
1095 NET_EPOCH_ASSERT();
1096
1097 /* XXX we must not hold the ATH_LOCK here */
1098 ATH_UNLOCK_ASSERT(sc);
1099 ATH_PCU_UNLOCK_ASSERT(sc);
1100
1101 ATH_PCU_LOCK(sc);
1102 sc->sc_rxproc_cnt++;
1103 kickpcu = sc->sc_kickpcu;
1104 ATH_PCU_UNLOCK(sc);
1105
1106 ATH_LOCK(sc);
1107 ath_power_set_power_state(sc, HAL_PM_AWAKE);
1108 ATH_UNLOCK(sc);
1109
1110 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1111 ngood = 0;
1112 nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1113 sc->sc_stats.ast_rx_noise = nf;
1114 tsf = ath_hal_gettsf64(ah);
1115 do {
1116 /*
1117 * Don't process too many packets at a time; give the
1118 * TX thread time to also run - otherwise the TX
1119 * latency can jump by quite a bit, causing throughput
1120 * degredation.
1121 */
1122 if (!kickpcu && npkts >= ATH_RX_MAX)
1123 break;
1124
1125 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1126 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */
1127 device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1128 break;
1129 } else if (bf == NULL) {
1130 /*
1131 * End of List:
1132 * this can happen for non-self-linked RX chains
1133 */
1134 sc->sc_stats.ast_rx_hitqueueend++;
1135 break;
1136 }
1137 m = bf->bf_m;
1138 if (m == NULL) { /* NB: shouldn't happen */
1139 /*
1140 * If mbuf allocation failed previously there
1141 * will be no mbuf; try again to re-populate it.
1142 */
1143 /* XXX make debug msg */
1144 device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1145 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1146 goto rx_proc_next;
1147 }
1148 ds = bf->bf_desc;
1149 if (ds->ds_link == bf->bf_daddr) {
1150 /* NB: never process the self-linked entry at the end */
1151 sc->sc_stats.ast_rx_hitqueueend++;
1152 break;
1153 }
1154 /* XXX sync descriptor memory */
1155 /*
1156 * Must provide the virtual address of the current
1157 * descriptor, the physical address, and the virtual
1158 * address of the next descriptor in the h/w chain.
1159 * This allows the HAL to look ahead to see if the
1160 * hardware is done with a descriptor by checking the
1161 * done bit in the following descriptor and the address
1162 * of the current descriptor the DMA engine is working
1163 * on. All this is necessary because of our use of
1164 * a self-linked list to avoid rx overruns.
1165 */
1166 rs = &bf->bf_status.ds_rxstat;
1167 status = ath_hal_rxprocdesc(ah, ds,
1168 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1169 #ifdef ATH_DEBUG
1170 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1171 ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1172 #endif
1173
1174 #ifdef ATH_DEBUG_ALQ
1175 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1176 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1177 sc->sc_rx_statuslen, (char *) ds);
1178 #endif /* ATH_DEBUG_ALQ */
1179
1180 if (status == HAL_EINPROGRESS)
1181 break;
1182
1183 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1184 npkts++;
1185
1186 /*
1187 * Process a single frame.
1188 */
1189 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1190 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1191 bf->bf_m = NULL;
1192 if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1193 ngood++;
1194 rx_proc_next:
1195 /*
1196 * If there's a holding buffer, insert that onto
1197 * the RX list; the hardware is now definitely not pointing
1198 * to it now.
1199 */
1200 ret = 0;
1201 if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1202 TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1203 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1204 bf_list);
1205 ret = ath_rxbuf_init(sc,
1206 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1207 }
1208 /*
1209 * Next, throw our buffer into the holding entry. The hardware
1210 * may use the descriptor to read the link pointer before
1211 * DMAing the next descriptor in to write out a packet.
1212 */
1213 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1214 } while (ret == 0);
1215
1216 /* rx signal state monitoring */
1217 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1218 if (ngood)
1219 sc->sc_lastrx = tsf;
1220
1221 ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1222 /* Queue DFS tasklet if needed */
1223 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1224 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1225
1226 /*
1227 * Now that all the RX frames were handled that
1228 * need to be handled, kick the PCU if there's
1229 * been an RXEOL condition.
1230 */
1231 if (resched && kickpcu) {
1232 ATH_PCU_LOCK(sc);
1233 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1234 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1235 __func__, npkts);
1236
1237 /*
1238 * Go through the process of fully tearing down
1239 * the RX buffers and reinitialising them.
1240 *
1241 * There's a hardware bug that causes the RX FIFO
1242 * to get confused under certain conditions and
1243 * constantly write over the same frame, leading
1244 * the RX driver code here to get heavily confused.
1245 */
1246 /*
1247 * XXX Has RX DMA stopped enough here to just call
1248 * ath_startrecv()?
1249 * XXX Do we need to use the holding buffer to restart
1250 * RX DMA by appending entries to the final
1251 * descriptor? Quite likely.
1252 */
1253 #if 1
1254 ath_startrecv(sc);
1255 #else
1256 /*
1257 * Disabled for now - it'd be nice to be able to do
1258 * this in order to limit the amount of CPU time spent
1259 * reinitialising the RX side (and thus minimise RX
1260 * drops) however there's a hardware issue that
1261 * causes things to get too far out of whack.
1262 */
1263 /*
1264 * XXX can we hold the PCU lock here?
1265 * Are there any net80211 buffer calls involved?
1266 */
1267 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1268 ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1269 ath_hal_rxena(ah); /* enable recv descriptors */
1270 ath_mode_init(sc); /* set filters, etc. */
1271 ath_hal_startpcurecv(ah, (!! sc->sc_scanning)); /* re-enable PCU/DMA engine */
1272 #endif
1273
1274 ath_hal_intrset(ah, sc->sc_imask);
1275 sc->sc_kickpcu = 0;
1276 ATH_PCU_UNLOCK(sc);
1277 }
1278
1279 #ifdef IEEE80211_SUPPORT_SUPERG
1280 if (resched)
1281 ieee80211_ff_age_all(ic, 100);
1282 #endif
1283
1284 /*
1285 * Put the hardware to sleep again if we're done with it.
1286 */
1287 ATH_LOCK(sc);
1288 ath_power_restore_power_state(sc);
1289 ATH_UNLOCK(sc);
1290
1291 /*
1292 * If we hit the maximum number of frames in this round,
1293 * reschedule for another immediate pass. This gives
1294 * the TX and TX completion routines time to run, which
1295 * will reduce latency.
1296 */
1297 if (npkts >= ATH_RX_MAX)
1298 sc->sc_rx.recv_sched(sc, resched);
1299
1300 ATH_PCU_LOCK(sc);
1301 sc->sc_rxproc_cnt--;
1302 ATH_PCU_UNLOCK(sc);
1303 }
1304 #undef PA2DESC
1305 #undef ATH_RX_MAX
1306
1307 /*
1308 * Only run the RX proc if it's not already running.
1309 * Since this may get run as part of the reset/flush path,
1310 * the task can't clash with an existing, running tasklet.
1311 */
1312 static void
1313 ath_legacy_rx_tasklet(void *arg, int npending)
1314 {
1315 struct ath_softc *sc = arg;
1316 struct epoch_tracker et;
1317
1318 ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1319 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1320 ATH_PCU_LOCK(sc);
1321 if (sc->sc_inreset_cnt > 0) {
1322 device_printf(sc->sc_dev,
1323 "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1324 ATH_PCU_UNLOCK(sc);
1325 return;
1326 }
1327 ATH_PCU_UNLOCK(sc);
1328
1329 NET_EPOCH_ENTER(et);
1330 ath_rx_proc(sc, 1);
1331 NET_EPOCH_EXIT(et);
1332 }
1333
1334 static void
1335 ath_legacy_flushrecv(struct ath_softc *sc)
1336 {
1337 struct epoch_tracker et;
1338 NET_EPOCH_ENTER(et);
1339 ath_rx_proc(sc, 0);
1340 NET_EPOCH_EXIT(et);
1341 }
1342
1343 static void
1344 ath_legacy_flush_rxpending(struct ath_softc *sc)
1345 {
1346
1347 /* XXX ATH_RX_LOCK_ASSERT(sc); */
1348
1349 if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1350 m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1351 sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1352 }
1353 if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1354 m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1355 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1356 }
1357 }
1358
1359 static int
1360 ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1361 {
1362 struct ath_buf *bf;
1363
1364 /* XXX ATH_RX_LOCK_ASSERT(sc); */
1365 /*
1366 * If there are RX holding buffers, free them here and return
1367 * them to the list.
1368 *
1369 * XXX should just verify that bf->bf_m is NULL, as it must
1370 * be at this point!
1371 */
1372 bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1373 if (bf != NULL) {
1374 if (bf->bf_m != NULL)
1375 m_freem(bf->bf_m);
1376 bf->bf_m = NULL;
1377 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1378 (void) ath_rxbuf_init(sc, bf);
1379 }
1380 sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1381
1382 bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1383 if (bf != NULL) {
1384 if (bf->bf_m != NULL)
1385 m_freem(bf->bf_m);
1386 bf->bf_m = NULL;
1387 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1388 (void) ath_rxbuf_init(sc, bf);
1389 }
1390 sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1391
1392 return (0);
1393 }
1394
1395 /*
1396 * Disable the receive h/w in preparation for a reset.
1397 */
1398 static void
1399 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1400 {
1401 #define PA2DESC(_sc, _pa) \
1402 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1403 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1404 struct ath_hal *ah = sc->sc_ah;
1405
1406 ATH_RX_LOCK(sc);
1407
1408 ath_hal_stoppcurecv(ah); /* disable PCU */
1409 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
1410 ath_hal_stopdmarecv(ah); /* disable DMA engine */
1411 /*
1412 * TODO: see if this particular DELAY() is required; it may be
1413 * masking some missing FIFO flush or DMA sync.
1414 */
1415 #if 0
1416 if (dodelay)
1417 #endif
1418 DELAY(3000); /* 3ms is long enough for 1 frame */
1419 #ifdef ATH_DEBUG
1420 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1421 struct ath_buf *bf;
1422 u_int ix;
1423
1424 device_printf(sc->sc_dev,
1425 "%s: rx queue %p, link %p\n",
1426 __func__,
1427 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1428 sc->sc_rxlink);
1429 ix = 0;
1430 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1431 struct ath_desc *ds = bf->bf_desc;
1432 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1433 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1434 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1435 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1436 ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1437 ix++;
1438 }
1439 }
1440 #endif
1441
1442 (void) ath_legacy_flush_rxpending(sc);
1443 (void) ath_legacy_flush_rxholdbf(sc);
1444
1445 sc->sc_rxlink = NULL; /* just in case */
1446
1447 ATH_RX_UNLOCK(sc);
1448 #undef PA2DESC
1449 }
1450
1451 /*
1452 * XXX TODO: something was calling startrecv without calling
1453 * stoprecv. Let's figure out what/why. It was showing up
1454 * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1455 */
1456
1457 /*
1458 * Enable the receive h/w following a reset.
1459 */
1460 static int
1461 ath_legacy_startrecv(struct ath_softc *sc)
1462 {
1463 struct ath_hal *ah = sc->sc_ah;
1464 struct ath_buf *bf;
1465
1466 ATH_RX_LOCK(sc);
1467
1468 /*
1469 * XXX should verify these are already all NULL!
1470 */
1471 sc->sc_rxlink = NULL;
1472 (void) ath_legacy_flush_rxpending(sc);
1473 (void) ath_legacy_flush_rxholdbf(sc);
1474
1475 /*
1476 * Re-chain all of the buffers in the RX buffer list.
1477 */
1478 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1479 int error = ath_rxbuf_init(sc, bf);
1480 if (error != 0) {
1481 DPRINTF(sc, ATH_DEBUG_RECV,
1482 "%s: ath_rxbuf_init failed %d\n",
1483 __func__, error);
1484 return error;
1485 }
1486 }
1487
1488 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1489 ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1490 ath_hal_rxena(ah); /* enable recv descriptors */
1491 ath_mode_init(sc); /* set filters, etc. */
1492 ath_hal_startpcurecv(ah, (!! sc->sc_scanning)); /* re-enable PCU/DMA engine */
1493
1494 ATH_RX_UNLOCK(sc);
1495 return 0;
1496 }
1497
1498 static int
1499 ath_legacy_dma_rxsetup(struct ath_softc *sc)
1500 {
1501 int error;
1502
1503 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1504 "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1505 if (error != 0)
1506 return (error);
1507
1508 return (0);
1509 }
1510
1511 static int
1512 ath_legacy_dma_rxteardown(struct ath_softc *sc)
1513 {
1514
1515 if (sc->sc_rxdma.dd_desc_len != 0)
1516 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1517 return (0);
1518 }
1519
1520 static void
1521 ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1522 {
1523
1524 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1525 }
1526
1527 static void
1528 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1529 int dosched)
1530 {
1531
1532 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1533 }
1534
1535 void
1536 ath_recv_setup_legacy(struct ath_softc *sc)
1537 {
1538
1539 /* Sensible legacy defaults */
1540 /*
1541 * XXX this should be changed to properly support the
1542 * exact RX descriptor size for each HAL.
1543 */
1544 sc->sc_rx_statuslen = sizeof(struct ath_desc);
1545
1546 sc->sc_rx.recv_start = ath_legacy_startrecv;
1547 sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1548 sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1549 sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1550 sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1551
1552 sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1553 sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1554 sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1555 sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1556 }
Cache object: 2de123a273ee56e0ed97a04b0e9f9cf7
|