1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 Adrian Chadd, Xenion Pty Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_inet.h"
36 #include "opt_ath.h"
37 #include "opt_wlan.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/sysctl.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/errno.h>
50 #include <sys/callout.h>
51 #include <sys/bus.h>
52 #include <sys/endian.h>
53 #include <sys/kthread.h>
54 #include <sys/taskqueue.h>
55 #include <sys/priv.h>
56
57 #include <machine/bus.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/if_arp.h>
64 #include <net/ethernet.h>
65 #include <net/if_llc.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #ifdef IEEE80211_SUPPORT_SUPERG
70 #include <net80211/ieee80211_superg.h>
71 #endif
72 #ifdef IEEE80211_SUPPORT_TDMA
73 #include <net80211/ieee80211_tdma.h>
74 #endif
75
76 #include <net/bpf.h>
77
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_ether.h>
81 #endif
82
83 #include <dev/ath/if_athvar.h>
84 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
85 #include <dev/ath/ath_hal/ah_diagcodes.h>
86
87 #ifdef ATH_TX99_DIAG
88 #include <dev/ath/ath_tx99/ath_tx99.h>
89 #endif
90
91 #include <dev/ath/if_ath_tx.h> /* XXX for some support functions */
92 #include <dev/ath/if_ath_tx_ht.h>
93 #include <dev/ath/if_athrate.h>
94 #include <dev/ath/if_ath_debug.h>
95
96 /*
97 * XXX net80211?
98 */
99 #define IEEE80211_AMPDU_SUBFRAME_DEFAULT 32
100
101 #define ATH_AGGR_DELIM_SZ 4 /* delimiter size */
102 #define ATH_AGGR_MINPLEN 256 /* in bytes, minimum packet length */
103 /* number of delimiters for encryption padding */
104 #define ATH_AGGR_ENCRYPTDELIM 10
105
106 /*
107 * returns delimiter padding required given the packet length
108 */
109 #define ATH_AGGR_GET_NDELIM(_len) \
110 (((((_len) + ATH_AGGR_DELIM_SZ) < ATH_AGGR_MINPLEN) ? \
111 (ATH_AGGR_MINPLEN - (_len) - ATH_AGGR_DELIM_SZ) : 0) >> 2)
112
113 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
114
115 int ath_max_4ms_framelen[4][32] = {
116 [MCS_HT20] = {
117 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
118 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
119 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
120 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
121 },
122 [MCS_HT20_SGI] = {
123 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
124 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
125 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
126 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
127 },
128 [MCS_HT40] = {
129 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
130 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
131 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
132 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
133 },
134 [MCS_HT40_SGI] = {
135 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
136 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
137 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
138 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
139 }
140 };
141
142 /*
143 * XXX should be in net80211
144 */
145 static int ieee80211_mpdudensity_map[] = {
146 0, /* IEEE80211_HTCAP_MPDUDENSITY_NA */
147 25, /* IEEE80211_HTCAP_MPDUDENSITY_025 */
148 50, /* IEEE80211_HTCAP_MPDUDENSITY_05 */
149 100, /* IEEE80211_HTCAP_MPDUDENSITY_1 */
150 200, /* IEEE80211_HTCAP_MPDUDENSITY_2 */
151 400, /* IEEE80211_HTCAP_MPDUDENSITY_4 */
152 800, /* IEEE80211_HTCAP_MPDUDENSITY_8 */
153 1600, /* IEEE80211_HTCAP_MPDUDENSITY_16 */
154 };
155
156 /*
157 * XXX should be in the HAL/net80211 ?
158 */
159 #define BITS_PER_BYTE 8
160 #define OFDM_PLCP_BITS 22
161 #define HT_RC_2_MCS(_rc) ((_rc) & 0x7f)
162 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
163 #define L_STF 8
164 #define L_LTF 8
165 #define L_SIG 4
166 #define HT_SIG 8
167 #define HT_STF 4
168 #define HT_LTF(_ns) (4 * (_ns))
169 #define SYMBOL_TIME(_ns) ((_ns) << 2) // ns * 4 us
170 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) // ns * 3.6 us
171 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
172 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
173 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
174
175 const uint32_t bits_per_symbol[][2] = {
176 /* 20MHz 40MHz */
177 { 26, 54 }, // 0: BPSK
178 { 52, 108 }, // 1: QPSK 1/2
179 { 78, 162 }, // 2: QPSK 3/4
180 { 104, 216 }, // 3: 16-QAM 1/2
181 { 156, 324 }, // 4: 16-QAM 3/4
182 { 208, 432 }, // 5: 64-QAM 2/3
183 { 234, 486 }, // 6: 64-QAM 3/4
184 { 260, 540 }, // 7: 64-QAM 5/6
185 { 52, 108 }, // 8: BPSK
186 { 104, 216 }, // 9: QPSK 1/2
187 { 156, 324 }, // 10: QPSK 3/4
188 { 208, 432 }, // 11: 16-QAM 1/2
189 { 312, 648 }, // 12: 16-QAM 3/4
190 { 416, 864 }, // 13: 64-QAM 2/3
191 { 468, 972 }, // 14: 64-QAM 3/4
192 { 520, 1080 }, // 15: 64-QAM 5/6
193 { 78, 162 }, // 16: BPSK
194 { 156, 324 }, // 17: QPSK 1/2
195 { 234, 486 }, // 18: QPSK 3/4
196 { 312, 648 }, // 19: 16-QAM 1/2
197 { 468, 972 }, // 20: 16-QAM 3/4
198 { 624, 1296 }, // 21: 64-QAM 2/3
199 { 702, 1458 }, // 22: 64-QAM 3/4
200 { 780, 1620 }, // 23: 64-QAM 5/6
201 { 104, 216 }, // 24: BPSK
202 { 208, 432 }, // 25: QPSK 1/2
203 { 312, 648 }, // 26: QPSK 3/4
204 { 416, 864 }, // 27: 16-QAM 1/2
205 { 624, 1296 }, // 28: 16-QAM 3/4
206 { 832, 1728 }, // 29: 64-QAM 2/3
207 { 936, 1944 }, // 30: 64-QAM 3/4
208 { 1040, 2160 }, // 31: 64-QAM 5/6
209 };
210
211 /*
212 * Fill in the rate array information based on the current
213 * node configuration and the choices made by the rate
214 * selection code and ath_buf setup code.
215 *
216 * Later on, this may end up also being made by the
217 * rate control code, but for now it can live here.
218 *
219 * This needs to be called just before the packet is
220 * queued to the software queue or hardware queue,
221 * so all of the needed fields in bf_state are setup.
222 */
223 void
224 ath_tx_rate_fill_rcflags(struct ath_softc *sc, struct ath_buf *bf)
225 {
226 struct ieee80211_node *ni = bf->bf_node;
227 struct ieee80211vap *vap = ni->ni_vap;
228 struct ieee80211com *ic = ni->ni_ic;
229 const HAL_RATE_TABLE *rt = sc->sc_currates;
230 struct ath_rc_series *rc = bf->bf_state.bfs_rc;
231 uint8_t rate;
232 int i;
233 int do_ldpc;
234 int do_stbc;
235
236 /*
237 * We only do LDPC if the rate is 11n, both we and the
238 * receiver support LDPC and it's enabled.
239 *
240 * It's a global flag, not a per-try flag, so we clear
241 * it if any of the rate entries aren't 11n.
242 */
243 do_ldpc = 0;
244 if ((ni->ni_vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX) &&
245 (ni->ni_htcap & IEEE80211_HTCAP_LDPC))
246 do_ldpc = 1;
247
248 /*
249 * The 11n duration calculation doesn't know about LDPC,
250 * so don't enable it for positioning.
251 */
252 if (bf->bf_flags & ATH_BUF_TOA_PROBE)
253 do_ldpc = 0;
254
255 do_stbc = 0;
256
257 for (i = 0; i < ATH_RC_NUM; i++) {
258 rc[i].flags = 0;
259 if (rc[i].tries == 0)
260 continue;
261
262 rate = rt->info[rc[i].rix].rateCode;
263
264 /*
265 * Only enable short preamble for legacy rates
266 */
267 if ((! IS_HT_RATE(rate)) && bf->bf_state.bfs_shpream)
268 rate |= rt->info[rc[i].rix].shortPreamble;
269
270 /*
271 * Save this, used by the TX and completion code
272 */
273 rc[i].ratecode = rate;
274
275 if (bf->bf_state.bfs_txflags &
276 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA))
277 rc[i].flags |= ATH_RC_RTSCTS_FLAG;
278
279 /*
280 * If we can't do LDPC, don't.
281 */
282 if (! IS_HT_RATE(rate))
283 do_ldpc = 0;
284
285 /* Only enable shortgi, 2040, dual-stream if HT is set */
286 if (IS_HT_RATE(rate)) {
287 rc[i].flags |= ATH_RC_HT_FLAG;
288
289 if (ni->ni_chw == 40)
290 rc[i].flags |= ATH_RC_CW40_FLAG;
291
292 /*
293 * NOTE: Don't do short-gi for positioning frames.
294 *
295 * For now, the ath_hal and net80211 HT duration
296 * calculation rounds up the 11n data txtime
297 * to the nearest multiple of 3.6 microseconds
298 * and doesn't return the fractional part, so
299 * we are always "out" by some amount.
300 */
301 if (ni->ni_chw == 40 &&
302 ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40 &&
303 ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 &&
304 vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40 &&
305 (bf->bf_flags & ATH_BUF_TOA_PROBE) == 0) {
306 rc[i].flags |= ATH_RC_SGI_FLAG;
307 }
308
309 if (ni->ni_chw == 20 &&
310 ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20 &&
311 ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 &&
312 vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20 &&
313 (bf->bf_flags & ATH_BUF_TOA_PROBE) == 0) {
314 rc[i].flags |= ATH_RC_SGI_FLAG;
315 }
316
317 /*
318 * If we have STBC TX enabled and the receiver
319 * can receive (at least) 1 stream STBC, AND it's
320 * MCS 0-7, AND we have at least two chains enabled,
321 * and we're not doing positioning, enable STBC.
322 */
323 if (ic->ic_htcaps & IEEE80211_HTCAP_TXSTBC &&
324 (ni->ni_vap->iv_flags_ht & IEEE80211_FHT_STBC_TX) &&
325 (ni->ni_htcap & IEEE80211_HTCAP_RXSTBC) &&
326 (sc->sc_cur_txchainmask > 1) &&
327 (HT_RC_2_STREAMS(rate) == 1) &&
328 (bf->bf_flags & ATH_BUF_TOA_PROBE) == 0) {
329 rc[i].flags |= ATH_RC_STBC_FLAG;
330 do_stbc = 1;
331 }
332
333 /*
334 * Dual / Triple stream rate?
335 */
336 if (HT_RC_2_STREAMS(rate) == 2)
337 rc[i].flags |= ATH_RC_DS_FLAG;
338 else if (HT_RC_2_STREAMS(rate) == 3)
339 rc[i].flags |= ATH_RC_TS_FLAG;
340 }
341
342 /*
343 * Calculate the maximum TX power cap for the current
344 * node.
345 */
346 rc[i].tx_power_cap = ieee80211_get_node_txpower(ni);
347
348 /*
349 * Calculate the maximum 4ms frame length based
350 * on the MCS rate, SGI and channel width flags.
351 */
352 if ((rc[i].flags & ATH_RC_HT_FLAG) &&
353 (HT_RC_2_MCS(rate) < 32)) {
354 int j;
355 if (rc[i].flags & ATH_RC_CW40_FLAG) {
356 if (rc[i].flags & ATH_RC_SGI_FLAG)
357 j = MCS_HT40_SGI;
358 else
359 j = MCS_HT40;
360 } else {
361 if (rc[i].flags & ATH_RC_SGI_FLAG)
362 j = MCS_HT20_SGI;
363 else
364 j = MCS_HT20;
365 }
366 rc[i].max4msframelen =
367 ath_max_4ms_framelen[j][HT_RC_2_MCS(rate)];
368 } else
369 rc[i].max4msframelen = 0;
370 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
371 "%s: i=%d, rate=0x%x, flags=0x%x, max4ms=%d\n",
372 __func__, i, rate, rc[i].flags, rc[i].max4msframelen);
373 }
374
375 /*
376 * LDPC is a global flag, so ...
377 */
378 if (do_ldpc) {
379 bf->bf_state.bfs_txflags |= HAL_TXDESC_LDPC;
380 sc->sc_stats.ast_tx_ldpc++;
381 }
382
383 if (do_stbc) {
384 sc->sc_stats.ast_tx_stbc++;
385 }
386 }
387
388 /*
389 * Return the number of delimiters to be added to
390 * meet the minimum required mpdudensity.
391 *
392 * Caller should make sure that the rate is HT.
393 *
394 * TODO: is this delimiter calculation supposed to be the
395 * total frame length, the hdr length, the data length (including
396 * delimiters, padding, CRC, etc) or ?
397 *
398 * TODO: this should ensure that the rate control information
399 * HAS been setup for the first rate.
400 *
401 * TODO: ensure this is only called for MCS rates.
402 *
403 * TODO: enforce MCS < 31
404 */
405 static int
406 ath_compute_num_delims(struct ath_softc *sc, struct ath_buf *first_bf,
407 uint16_t pktlen, int is_first)
408 {
409 const HAL_RATE_TABLE *rt = sc->sc_currates;
410 struct ieee80211_node *ni = first_bf->bf_node;
411 struct ieee80211vap *vap = ni->ni_vap;
412 int ndelim, mindelim = 0;
413 int mpdudensity; /* in 1/100'th of a microsecond */
414 int peer_mpdudensity; /* net80211 value */
415 uint8_t rc, rix, flags;
416 int width, half_gi;
417 uint32_t nsymbits, nsymbols;
418 uint16_t minlen;
419
420 /*
421 * Get the advertised density from the node.
422 */
423 peer_mpdudensity =
424 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
425
426 /*
427 * vap->iv_ampdu_density is a net80211 value, rather than the actual
428 * density. Larger values are longer A-MPDU density spacing values,
429 * and we want to obey larger configured / negotiated density values
430 * per station if we get it.
431 */
432 if (vap->iv_ampdu_density > peer_mpdudensity)
433 peer_mpdudensity = vap->iv_ampdu_density;
434
435 /*
436 * Convert the A-MPDU density net80211 value to a 1/100 microsecond
437 * value for subsequent calculations.
438 */
439 if (peer_mpdudensity > IEEE80211_HTCAP_MPDUDENSITY_16)
440 mpdudensity = 1600; /* maximum density */
441 else
442 mpdudensity = ieee80211_mpdudensity_map[peer_mpdudensity];
443
444 /* Select standard number of delimiters based on frame length */
445 ndelim = ATH_AGGR_GET_NDELIM(pktlen);
446
447 /*
448 * If encryption is enabled, add extra delimiters to let the
449 * crypto hardware catch up. This could be tuned per-MAC and
450 * per-rate, but for now we'll simply assume encryption is
451 * always enabled.
452 *
453 * Also note that the Atheros reference driver inserts two
454 * delimiters by default for pre-AR9380 peers. This will
455 * include "that" required delimiter.
456 */
457 ndelim += ATH_AGGR_ENCRYPTDELIM;
458
459 /*
460 * For AR9380, there's a minimum number of delimiters
461 * required when doing RTS.
462 *
463 * XXX TODO: this is only needed if (a) RTS/CTS is enabled for
464 * this exchange, and (b) (done) this is the first sub-frame
465 * in the aggregate.
466 */
467 if (sc->sc_use_ent && (sc->sc_ent_cfg & AH_ENT_RTSCTS_DELIM_WAR)
468 && ndelim < AH_FIRST_DESC_NDELIMS && is_first)
469 ndelim = AH_FIRST_DESC_NDELIMS;
470
471 /*
472 * If sc_delim_min_pad is non-zero, enforce it as the minimum
473 * pad delimiter count.
474 */
475 if (sc->sc_delim_min_pad != 0)
476 ndelim = MAX(ndelim, sc->sc_delim_min_pad);
477
478 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
479 "%s: pktlen=%d, ndelim=%d, mpdudensity=%d\n",
480 __func__, pktlen, ndelim, mpdudensity);
481
482 /*
483 * If the MPDU density is 0, we can return here.
484 * Otherwise, we need to convert the desired mpdudensity
485 * into a byte length, based on the rate in the subframe.
486 */
487 if (mpdudensity == 0)
488 return ndelim;
489
490 /*
491 * Convert desired mpdu density from microeconds to bytes based
492 * on highest rate in rate series (i.e. first rate) to determine
493 * required minimum length for subframe. Take into account
494 * whether high rate is 20 or 40Mhz and half or full GI.
495 */
496 rix = first_bf->bf_state.bfs_rc[0].rix;
497 rc = rt->info[rix].rateCode;
498 flags = first_bf->bf_state.bfs_rc[0].flags;
499 width = !! (flags & ATH_RC_CW40_FLAG);
500 half_gi = !! (flags & ATH_RC_SGI_FLAG);
501
502 /*
503 * mpdudensity is in 1/100th of a usec, so divide by 100
504 */
505 if (half_gi)
506 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
507 else
508 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
509 nsymbols /= 100;
510
511 if (nsymbols == 0)
512 nsymbols = 1;
513
514 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
515 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
516
517 /*
518 * Min length is the minimum frame length for the
519 * required MPDU density.
520 */
521 if (pktlen < minlen) {
522 mindelim = (minlen - pktlen) / ATH_AGGR_DELIM_SZ;
523 ndelim = MAX(mindelim, ndelim);
524 }
525
526 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
527 "%s: pktlen=%d, minlen=%d, rix=%x, rc=%x, width=%d, hgi=%d, ndelim=%d\n",
528 __func__, pktlen, minlen, rix, rc, width, half_gi, ndelim);
529
530 return ndelim;
531 }
532
533 /*
534 * XXX TODO: put into net80211
535 */
536 static int
537 ath_rx_ampdu_to_byte(char a)
538 {
539 switch (a) {
540 case IEEE80211_HTCAP_MAXRXAMPDU_16K:
541 return 16384;
542 break;
543 case IEEE80211_HTCAP_MAXRXAMPDU_32K:
544 return 32768;
545 break;
546 case IEEE80211_HTCAP_MAXRXAMPDU_64K:
547 return 65536;
548 break;
549 case IEEE80211_HTCAP_MAXRXAMPDU_8K:
550 default:
551 return 8192;
552 break;
553 }
554 }
555
556 /*
557 * Fetch the aggregation limit.
558 *
559 * It's the lowest of the four rate series 4ms frame length.
560 *
561 * Also take into account the hardware specific limits (8KiB on AR5416)
562 * and per-peer limits in non-STA mode.
563 */
564 static int
565 ath_get_aggr_limit(struct ath_softc *sc, struct ieee80211_node *ni,
566 struct ath_buf *bf)
567 {
568 struct ieee80211vap *vap = ni->ni_vap;
569
570 int amin = ATH_AGGR_MAXSIZE;
571 int i;
572
573 /* Extract out the maximum configured driver A-MPDU limit */
574 if (sc->sc_aggr_limit > 0 && sc->sc_aggr_limit < ATH_AGGR_MAXSIZE)
575 amin = sc->sc_aggr_limit;
576
577 /* Check the vap configured transmit limit */
578 amin = MIN(amin, ath_rx_ampdu_to_byte(vap->iv_ampdu_limit));
579
580 /*
581 * Check the HTCAP field for the maximum size the node has
582 * negotiated. If it's smaller than what we have, cap it there.
583 */
584 amin = MIN(amin, ath_rx_ampdu_to_byte(
585 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU)));
586
587 for (i = 0; i < ATH_RC_NUM; i++) {
588 if (bf->bf_state.bfs_rc[i].tries == 0)
589 continue;
590 amin = MIN(amin, bf->bf_state.bfs_rc[i].max4msframelen);
591 }
592
593 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
594 "%s: aggr_limit=%d, iv_ampdu_limit=%d, "
595 "peer maxrxampdu=%d, max frame len=%d\n",
596 __func__,
597 sc->sc_aggr_limit,
598 vap->iv_ampdu_limit,
599 _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU),
600 amin);
601
602 return amin;
603 }
604
605 /*
606 * Setup a 11n rate series structure
607 *
608 * This should be called for both legacy and MCS rates.
609 *
610 * This uses the rate series stuf from ath_tx_rate_fill_rcflags().
611 *
612 * It, along with ath_buf_set_rate, must be called -after- a burst
613 * or aggregate is setup.
614 */
615 static void
616 ath_rateseries_setup(struct ath_softc *sc, struct ieee80211_node *ni,
617 struct ath_buf *bf, HAL_11N_RATE_SERIES *series)
618 {
619 struct ieee80211com *ic = ni->ni_ic;
620 struct ath_hal *ah = sc->sc_ah;
621 HAL_BOOL shortPreamble = AH_FALSE;
622 const HAL_RATE_TABLE *rt = sc->sc_currates;
623 int i;
624 int pktlen;
625 struct ath_rc_series *rc = bf->bf_state.bfs_rc;
626
627 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
628 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
629 shortPreamble = AH_TRUE;
630
631 /*
632 * If this is the first frame in an aggregate series,
633 * use the aggregate length.
634 */
635 if (bf->bf_state.bfs_aggr)
636 pktlen = bf->bf_state.bfs_al;
637 else
638 pktlen = bf->bf_state.bfs_pktlen;
639
640 /*
641 * XXX TODO: modify this routine to use the bfs_rc[x].flags
642 * XXX fields.
643 */
644 memset(series, 0, sizeof(HAL_11N_RATE_SERIES) * 4);
645 for (i = 0; i < ATH_RC_NUM; i++) {
646 /* Only set flags for actual TX attempts */
647 if (rc[i].tries == 0)
648 continue;
649
650 series[i].Tries = rc[i].tries;
651
652 /*
653 * XXX TODO: When the NIC is capable of three stream TX,
654 * transmit 1/2 stream rates on two streams.
655 *
656 * This reduces the power consumption of the NIC and
657 * keeps it within the PCIe slot power limits.
658 */
659 series[i].ChSel = sc->sc_cur_txchainmask;
660
661 /*
662 * Setup rate and TX power cap for this series.
663 */
664 series[i].Rate = rt->info[rc[i].rix].rateCode;
665 series[i].RateIndex = rc[i].rix;
666 series[i].tx_power_cap = rc[i].tx_power_cap;
667
668 /*
669 * Enable RTS/CTS as appropriate.
670 */
671 if (rc[i].flags & ATH_RC_RTSCTS_FLAG)
672 series[i].RateFlags |= HAL_RATESERIES_RTS_CTS;
673
674 /*
675 * 11n rate? Update 11n flags.
676 */
677 if (rc[i].flags & ATH_RC_HT_FLAG) {
678 if (rc[i].flags & ATH_RC_CW40_FLAG)
679 series[i].RateFlags |= HAL_RATESERIES_2040;
680
681 if (rc[i].flags & ATH_RC_SGI_FLAG)
682 series[i].RateFlags |= HAL_RATESERIES_HALFGI;
683
684 if (rc[i].flags & ATH_RC_STBC_FLAG)
685 series[i].RateFlags |= HAL_RATESERIES_STBC;
686 }
687
688 /*
689 * TODO: If we're all doing 11n rates then we can set LDPC.
690 * If we've been asked to /do/ LDPC but we are handed a
691 * legacy rate, then we should complain. Loudly.
692 */
693
694 /*
695 * PktDuration doesn't include slot, ACK, RTS, etc timing -
696 * it's just the packet duration
697 */
698 if (rc[i].flags & ATH_RC_HT_FLAG) {
699 series[i].PktDuration =
700 ath_computedur_ht(pktlen
701 , series[i].Rate
702 , HT_RC_2_STREAMS(series[i].Rate)
703 , series[i].RateFlags & HAL_RATESERIES_2040
704 , series[i].RateFlags & HAL_RATESERIES_HALFGI);
705 } else {
706 if (shortPreamble)
707 series[i].Rate |=
708 rt->info[rc[i].rix].shortPreamble;
709 /* XXX TODO: don't include SIFS */
710 series[i].PktDuration = ath_hal_computetxtime(ah,
711 rt, pktlen, rc[i].rix, shortPreamble, AH_TRUE);
712 }
713 }
714 }
715
716 #ifdef ATH_DEBUG
717 static void
718 ath_rateseries_print(struct ath_softc *sc, HAL_11N_RATE_SERIES *series)
719 {
720 int i;
721 for (i = 0; i < ATH_RC_NUM; i++) {
722 device_printf(sc->sc_dev ,"series %d: rate %x; tries %d; "
723 "pktDuration %d; chSel %d; txpowcap %d, rateFlags %x\n",
724 i,
725 series[i].Rate,
726 series[i].Tries,
727 series[i].PktDuration,
728 series[i].ChSel,
729 series[i].tx_power_cap,
730 series[i].RateFlags);
731 }
732 }
733 #endif
734
735 /*
736 * Setup the 11n rate scenario and burst duration for the given TX descriptor
737 * list.
738 *
739 * This isn't useful for sending beacon frames, which has different needs
740 * wrt what's passed into the rate scenario function.
741 */
742 void
743 ath_buf_set_rate(struct ath_softc *sc, struct ieee80211_node *ni,
744 struct ath_buf *bf)
745 {
746 HAL_11N_RATE_SERIES series[4];
747 struct ath_desc *ds = bf->bf_desc;
748 struct ath_hal *ah = sc->sc_ah;
749 int is_pspoll = (bf->bf_state.bfs_atype == HAL_PKT_TYPE_PSPOLL);
750 int ctsrate = bf->bf_state.bfs_ctsrate;
751 int flags = bf->bf_state.bfs_txflags;
752
753 /* Setup rate scenario */
754 memset(&series, 0, sizeof(series));
755
756 ath_rateseries_setup(sc, ni, bf, series);
757
758 #ifdef ATH_DEBUG
759 if (sc->sc_debug & ATH_DEBUG_XMIT)
760 ath_rateseries_print(sc, series);
761 #endif
762
763 /* Set rate scenario */
764 /*
765 * Note: Don't allow hardware to override the duration on
766 * ps-poll packets.
767 */
768 ath_hal_set11nratescenario(ah, ds,
769 !is_pspoll, /* whether to override the duration or not */
770 ctsrate, /* rts/cts rate */
771 series, /* 11n rate series */
772 4, /* number of series */
773 flags);
774
775 /* Set burst duration */
776 /*
777 * This is only required when doing 11n burst, not aggregation
778 * ie, if there's a second frame in a RIFS or A-MPDU burst
779 * w/ >1 A-MPDU frame bursting back to back.
780 * Normal A-MPDU doesn't do bursting -between- aggregates.
781 *
782 * .. and it's highly likely this won't ever be implemented
783 */
784 //ath_hal_set11nburstduration(ah, ds, 8192);
785 }
786
787 /*
788 * Form an aggregate packet list.
789 *
790 * This function enforces the aggregate restrictions/requirements.
791 *
792 * These are:
793 *
794 * + The aggregate size maximum (64k for AR9160 and later, 8K for
795 * AR5416 when doing RTS frame protection.)
796 * + Maximum number of sub-frames for an aggregate
797 * + The aggregate delimiter size, giving MACs time to do whatever is
798 * needed before each frame
799 * + Enforce the BAW limit
800 *
801 * Each descriptor queued should have the DMA setup.
802 * The rate series, descriptor setup, linking, etc is all done
803 * externally. This routine simply chains them together.
804 * ath_tx_setds_11n() will take care of configuring the per-
805 * descriptor setup, and ath_buf_set_rate() will configure the
806 * rate control.
807 *
808 * The TID lock is required for the entirety of this function.
809 *
810 * If some code in another thread adds to the head of this
811 * list, very strange behaviour will occur. Since retransmission is the
812 * only reason this will occur, and this routine is designed to be called
813 * from within the scheduler task, it won't ever clash with the completion
814 * task.
815 *
816 * So if you want to call this from an upper layer context (eg, to direct-
817 * dispatch aggregate frames to the hardware), please keep this in mind.
818 */
819 ATH_AGGR_STATUS
820 ath_tx_form_aggr(struct ath_softc *sc, struct ath_node *an,
821 struct ath_tid *tid, ath_bufhead *bf_q)
822 {
823 //struct ieee80211_node *ni = &an->an_node;
824 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
825 int nframes = 0;
826 uint16_t aggr_limit = 0, al = 0, bpad = 0, al_delta, h_baw;
827 struct ieee80211_tx_ampdu *tap;
828 int status = ATH_AGGR_DONE;
829 int prev_frames = 0; /* XXX for AR5416 burst, not done here */
830 int prev_al = 0; /* XXX also for AR5416 burst */
831
832 ATH_TX_LOCK_ASSERT(sc);
833
834 tap = ath_tx_get_tx_tid(an, tid->tid);
835 if (tap == NULL) {
836 status = ATH_AGGR_ERROR;
837 goto finish;
838 }
839
840 /*
841 * Limit the maximum number of frames in this A-MPDU
842 * to half of the window size. This is done to prevent
843 * sending a LOT of frames that may fail in one batch
844 * when operating in higher MCS rates. If there are more
845 * frames available to send then up to two A-MPDUs will
846 * be queued per hardware queue, so we'll "just" get
847 * a second A-MPDU.
848 */
849 h_baw = tap->txa_wnd / 2;
850
851 for (;;) {
852 bf = ATH_TID_FIRST(tid);
853 if (bf == NULL) {
854 status = ATH_AGGR_DONE;
855 break;
856 }
857 if (bf_first == NULL) {
858 bf_first = bf;
859 /*
860 * It's the first frame;
861 * set the aggregation limit based on the
862 * rate control decision that has been made.
863 */
864 aggr_limit = ath_get_aggr_limit(sc, &an->an_node,
865 bf_first);
866 if (bf_first->bf_state.bfs_rc_maxpktlen > 0) {
867 aggr_limit = MIN(aggr_limit,
868 bf_first->bf_state.bfs_rc_maxpktlen);
869 }
870 }
871
872 /* Set this early just so things don't get confused */
873 bf->bf_next = NULL;
874
875 /*
876 * If the frame doesn't have a sequence number that we're
877 * tracking in the BAW (eg NULL QOS data frame), we can't
878 * aggregate it. Stop the aggregation process; the sender
879 * can then TX what's in the list thus far and then
880 * TX the frame individually.
881 */
882 if (! bf->bf_state.bfs_dobaw) {
883 status = ATH_AGGR_NONAGGR;
884 break;
885 }
886
887 /*
888 * If any of the rates are non-HT, this packet
889 * can't be aggregated.
890 * XXX TODO: add a bf_state flag which gets marked
891 * if any active rate is non-HT.
892 */
893
894 /*
895 * do not exceed aggregation limit
896 */
897 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_state.bfs_pktlen;
898 if (nframes &&
899 (aggr_limit < (al + bpad + al_delta + prev_al))) {
900 status = ATH_AGGR_LIMITED;
901 break;
902 }
903
904 /*
905 * If RTS/CTS is set on the first frame, enforce
906 * the RTS aggregate limit.
907 */
908 if (bf_first->bf_state.bfs_txflags &
909 (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
910 if (nframes &&
911 (sc->sc_rts_aggr_limit <
912 (al + bpad + al_delta + prev_al))) {
913 status = ATH_AGGR_8K_LIMITED;
914 break;
915 }
916 }
917
918 /*
919 * Do not exceed subframe limit.
920 */
921 if ((nframes + prev_frames) >= MIN((h_baw),
922 IEEE80211_AMPDU_SUBFRAME_DEFAULT)) {
923 status = ATH_AGGR_LIMITED;
924 break;
925 }
926
927 /*
928 * If the current frame has an RTS/CTS configuration
929 * that differs from the first frame, override the
930 * subsequent frame with this config.
931 */
932 if (bf != bf_first) {
933 bf->bf_state.bfs_txflags &=
934 ~ (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
935 bf->bf_state.bfs_txflags |=
936 bf_first->bf_state.bfs_txflags &
937 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA);
938 }
939
940 /*
941 * If the packet has a sequence number, do not
942 * step outside of the block-ack window.
943 */
944 if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
945 SEQNO(bf->bf_state.bfs_seqno))) {
946 status = ATH_AGGR_BAW_CLOSED;
947 break;
948 }
949
950 /*
951 * this packet is part of an aggregate.
952 */
953 ATH_TID_REMOVE(tid, bf, bf_list);
954
955 /* The TID lock is required for the BAW update */
956 ath_tx_addto_baw(sc, an, tid, bf);
957 bf->bf_state.bfs_addedbaw = 1;
958
959 /*
960 * XXX enforce ACK for aggregate frames (this needs to be
961 * XXX handled more gracefully?
962 */
963 if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) {
964 device_printf(sc->sc_dev,
965 "%s: HAL_TXDESC_NOACK set for an aggregate frame?\n",
966 __func__);
967 bf->bf_state.bfs_txflags &= (~HAL_TXDESC_NOACK);
968 }
969
970 /*
971 * Add the now owned buffer (which isn't
972 * on the software TXQ any longer) to our
973 * aggregate frame list.
974 */
975 TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
976 nframes ++;
977
978 /* Completion handler */
979 bf->bf_comp = ath_tx_aggr_comp;
980
981 /*
982 * add padding for previous frame to aggregation length
983 */
984 al += bpad + al_delta;
985
986 /*
987 * Calculate delimiters needed for the current frame
988 */
989 bf->bf_state.bfs_ndelim =
990 ath_compute_num_delims(sc, bf_first,
991 bf->bf_state.bfs_pktlen, (bf_first == bf));
992
993 /*
994 * Calculate the padding needed from this set of delimiters,
995 * used when calculating if the next frame will fit in
996 * the aggregate.
997 */
998 bpad = PADBYTES(al_delta) + (bf->bf_state.bfs_ndelim << 2);
999
1000 /*
1001 * Chain the buffers together
1002 */
1003 if (bf_prev)
1004 bf_prev->bf_next = bf;
1005 bf_prev = bf;
1006
1007 /*
1008 * If we're leaking frames, just return at this point;
1009 * we've queued a single frame and we don't want to add
1010 * any more.
1011 */
1012 if (tid->an->an_leak_count) {
1013 status = ATH_AGGR_LEAK_CLOSED;
1014 break;
1015 }
1016
1017 #if 0
1018 /*
1019 * terminate aggregation on a small packet boundary
1020 */
1021 if (bf->bf_state.bfs_pktlen < ATH_AGGR_MINPLEN) {
1022 status = ATH_AGGR_SHORTPKT;
1023 break;
1024 }
1025 #endif
1026 }
1027
1028 finish:
1029 /*
1030 * Just in case the list was empty when we tried to
1031 * dequeue a packet ..
1032 */
1033 if (bf_first) {
1034 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
1035 "%s: al=%d bytes; requested %d bytes\n",
1036 __func__, al, bf_first->bf_state.bfs_rc_maxpktlen);
1037
1038 bf_first->bf_state.bfs_al = al;
1039 bf_first->bf_state.bfs_nframes = nframes;
1040 }
1041 return status;
1042 }
Cache object: 17556a9bfb39cd48de5cdd2df89cc94b
|