The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/axgbe/xgbe-dev.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * AMD 10Gb Ethernet driver
    3  *
    4  * Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
    5  *
    6  * This file is available to you under your choice of the following two
    7  * licenses:
    8  *
    9  * License 1: GPLv2
   10  *
   11  * This file is free software; you may copy, redistribute and/or modify
   12  * it under the terms of the GNU General Public License as published by
   13  * the Free Software Foundation, either version 2 of the License, or (at
   14  * your option) any later version.
   15  *
   16  * This file is distributed in the hope that it will be useful, but
   17  * WITHOUT ANY WARRANTY; without even the implied warranty of
   18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
   19  * General Public License for more details.
   20  *
   21  * You should have received a copy of the GNU General Public License
   22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
   23  *
   24  * This file incorporates work covered by the following copyright and
   25  * permission notice:
   26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
   27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
   28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
   29  *     and you.
   30  *
   31  *     The Software IS NOT an item of Licensed Software or Licensed Product
   32  *     under any End User Software License Agreement or Agreement for Licensed
   33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
   34  *     granted, free of charge, to any person obtaining a copy of this software
   35  *     annotated with this license and the Software, to deal in the Software
   36  *     without restriction, including without limitation the rights to use,
   37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
   38  *     of the Software, and to permit persons to whom the Software is furnished
   39  *     to do so, subject to the following conditions:
   40  *
   41  *     The above copyright notice and this permission notice shall be included
   42  *     in all copies or substantial portions of the Software.
   43  *
   44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
   45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
   48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   54  *     THE POSSIBILITY OF SUCH DAMAGE.
   55  *
   56  *
   57  * License 2: Modified BSD
   58  *
   59  * Redistribution and use in source and binary forms, with or without
   60  * modification, are permitted provided that the following conditions are met:
   61  *     * Redistributions of source code must retain the above copyright
   62  *       notice, this list of conditions and the following disclaimer.
   63  *     * Redistributions in binary form must reproduce the above copyright
   64  *       notice, this list of conditions and the following disclaimer in the
   65  *       documentation and/or other materials provided with the distribution.
   66  *     * Neither the name of Advanced Micro Devices, Inc. nor the
   67  *       names of its contributors may be used to endorse or promote products
   68  *       derived from this software without specific prior written permission.
   69  *
   70  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   71  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   72  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   73  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
   74  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   75  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   77  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   78  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   79  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   80  *
   81  * This file incorporates work covered by the following copyright and
   82  * permission notice:
   83  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
   84  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
   85  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
   86  *     and you.
   87  *
   88  *     The Software IS NOT an item of Licensed Software or Licensed Product
   89  *     under any End User Software License Agreement or Agreement for Licensed
   90  *     Product with Synopsys or any supplement thereto.  Permission is hereby
   91  *     granted, free of charge, to any person obtaining a copy of this software
   92  *     annotated with this license and the Software, to deal in the Software
   93  *     without restriction, including without limitation the rights to use,
   94  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
   95  *     of the Software, and to permit persons to whom the Software is furnished
   96  *     to do so, subject to the following conditions:
   97  *
   98  *     The above copyright notice and this permission notice shall be included
   99  *     in all copies or substantial portions of the Software.
  100  *
  101  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
  102  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
  103  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
  104  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
  105  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  106  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  107  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  108  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  109  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  110  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  111  *     THE POSSIBILITY OF SUCH DAMAGE.
  112  */
  113 
  114 #include <sys/cdefs.h>
  115 __FBSDID("$FreeBSD$");
  116 
  117 #include "xgbe.h"
  118 #include "xgbe-common.h"
  119 
  120 #include <net/if_dl.h>
  121 
  122 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
  123 {
  124         return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
  125 }
  126 
  127 static unsigned int
  128 xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
  129 {
  130         unsigned long rate;
  131         unsigned int ret;
  132 
  133         rate = pdata->sysclk_rate;
  134 
  135         /*
  136          * Convert the input usec value to the watchdog timer value. Each
  137          * watchdog timer value is equivalent to 256 clock cycles.
  138          * Calculate the required value as:
  139          *   ( usec * ( system_clock_mhz / 10^6 ) / 256
  140          */
  141         ret = (usec * (rate / 1000000)) / 256;
  142 
  143         return (ret);
  144 }
  145 
  146 static unsigned int
  147 xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
  148 {
  149         unsigned long rate;
  150         unsigned int ret;
  151 
  152         rate = pdata->sysclk_rate;
  153 
  154         /*
  155          * Convert the input watchdog timer value to the usec value. Each
  156          * watchdog timer value is equivalent to 256 clock cycles.
  157          * Calculate the required value as:
  158          *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
  159          */
  160         ret = (riwt * 256) / (rate / 1000000);
  161 
  162         return (ret);
  163 }
  164 
  165 static int
  166 xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
  167 {
  168         unsigned int pblx8, pbl;
  169         unsigned int i;
  170 
  171         pblx8 = DMA_PBL_X8_DISABLE;
  172         pbl = pdata->pbl;
  173 
  174         if (pdata->pbl > 32) {
  175                 pblx8 = DMA_PBL_X8_ENABLE;
  176                 pbl >>= 3;
  177         }
  178 
  179         for (i = 0; i < pdata->channel_count; i++) {
  180                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
  181                     pblx8);
  182 
  183                 if (pdata->channel[i]->tx_ring)
  184                         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
  185                             PBL, pbl);
  186 
  187                 if (pdata->channel[i]->rx_ring)
  188                         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
  189                             PBL, pbl);
  190         }
  191 
  192         return (0);
  193 }
  194 
  195 static int
  196 xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
  197 {
  198         unsigned int i;
  199 
  200         for (i = 0; i < pdata->channel_count; i++) {
  201                 if (!pdata->channel[i]->tx_ring)
  202                         break;
  203 
  204                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
  205                     pdata->tx_osp_mode);
  206         }
  207 
  208         return (0);
  209 }
  210 
  211 static int
  212 xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
  213 {
  214         unsigned int i;
  215 
  216         for (i = 0; i < pdata->rx_q_count; i++)
  217                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
  218 
  219         return (0);
  220 }
  221 
  222 static int
  223 xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
  224 {
  225         unsigned int i;
  226 
  227         for (i = 0; i < pdata->tx_q_count; i++)
  228                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
  229 
  230         return (0);
  231 }
  232 
  233 static int
  234 xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
  235 {
  236         unsigned int i;
  237 
  238         for (i = 0; i < pdata->rx_q_count; i++)
  239                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
  240 
  241         return (0);
  242 }
  243 
  244 static int
  245 xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
  246 {
  247         unsigned int i;
  248 
  249         for (i = 0; i < pdata->tx_q_count; i++)
  250                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
  251 
  252         return (0);
  253 }
  254 
  255 static int
  256 xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
  257 {
  258         unsigned int i;
  259 
  260         for (i = 0; i < pdata->channel_count; i++) {
  261                 if (!pdata->channel[i]->rx_ring)
  262                         break;
  263 
  264                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
  265                     pdata->rx_riwt);
  266         }
  267 
  268         return (0);
  269 }
  270 
  271 static int
  272 xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
  273 {
  274         return (0);
  275 }
  276 
  277 static void
  278 xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
  279 {
  280         unsigned int i;
  281 
  282         for (i = 0; i < pdata->channel_count; i++) {
  283                 if (!pdata->channel[i]->rx_ring)
  284                         break;
  285 
  286                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
  287                     pdata->rx_buf_size);
  288         }
  289 }
  290 
  291 static void
  292 xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
  293 {
  294         unsigned int i;
  295 
  296         int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
  297 
  298         for (i = 0; i < pdata->channel_count; i++) {
  299                 if (!pdata->channel[i]->tx_ring)
  300                         break;
  301 
  302                 axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
  303                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
  304         }
  305 }
  306 
  307 static void
  308 xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
  309 {
  310         unsigned int i;
  311         int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
  312 
  313         axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
  314             pdata->sph_enable, sph_enable_flag);
  315 
  316         if (pdata->sph_enable && sph_enable_flag)
  317                 axgbe_printf(0, "SPH Enabled\n");
  318 
  319         for (i = 0; i < pdata->channel_count; i++) {
  320                 if (!pdata->channel[i]->rx_ring)
  321                         break;
  322                 if (pdata->sph_enable && sph_enable_flag) {
  323                         /* Enable split header feature */
  324                         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
  325                 } else {
  326                         /* Disable split header feature */
  327                         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
  328                 }
  329 
  330                 /* per-channel confirmation of SPH being disabled/enabled */
  331                 int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
  332                 axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
  333                     (val ? "enabled" : "disabled"), i);
  334         }
  335 
  336         if (pdata->sph_enable && sph_enable_flag)
  337                 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
  338 }
  339 
  340 static int
  341 xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
  342     unsigned int index, unsigned int val)
  343 {
  344         unsigned int wait;
  345         int ret = 0;
  346 
  347         mtx_lock(&pdata->rss_mutex);
  348 
  349         if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
  350                 ret = -EBUSY;
  351                 goto unlock;
  352         }
  353 
  354         XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
  355 
  356         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
  357         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
  358         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
  359         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
  360 
  361         wait = 1000;
  362         while (wait--) {
  363                 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
  364                         goto unlock;
  365 
  366                 DELAY(1000);
  367         }
  368 
  369         ret = -EBUSY;
  370 
  371 unlock:
  372         mtx_unlock(&pdata->rss_mutex);
  373 
  374         return (ret);
  375 }
  376 
  377 static int
  378 xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
  379 {
  380         unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
  381         unsigned int *key = (unsigned int *)&pdata->rss_key;
  382         int ret;
  383 
  384         while (key_regs--) {
  385                 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
  386                     key_regs, *key++);
  387                 if (ret)
  388                         return (ret);
  389         }
  390 
  391         return (0);
  392 }
  393 
  394 static int
  395 xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
  396 {
  397         unsigned int i;
  398         int ret;
  399 
  400         for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
  401                 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
  402                     pdata->rss_table[i]);
  403                 if (ret)
  404                         return (ret);
  405         }
  406 
  407         return (0);
  408 }
  409 
  410 static int
  411 xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
  412 {
  413         memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
  414 
  415         return (xgbe_write_rss_hash_key(pdata));
  416 }
  417 
  418 static int
  419 xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
  420 {
  421         unsigned int i;
  422 
  423         for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
  424                 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
  425 
  426         return (xgbe_write_rss_lookup_table(pdata));
  427 }
  428 
  429 static int
  430 xgbe_enable_rss(struct xgbe_prv_data *pdata)
  431 {
  432         int ret;
  433 
  434         if (!pdata->hw_feat.rss)
  435                 return (-EOPNOTSUPP);
  436 
  437         /* Program the hash key */
  438         ret = xgbe_write_rss_hash_key(pdata);
  439         if (ret)
  440                 return (ret);
  441 
  442         /* Program the lookup table */
  443         ret = xgbe_write_rss_lookup_table(pdata);
  444         if (ret)
  445                 return (ret);
  446 
  447         /* Set the RSS options */
  448         XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
  449 
  450         /* Enable RSS */
  451         XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
  452 
  453         axgbe_printf(0, "RSS Enabled\n");
  454 
  455         return (0);
  456 }
  457 
  458 static int
  459 xgbe_disable_rss(struct xgbe_prv_data *pdata)
  460 {
  461         if (!pdata->hw_feat.rss)
  462                 return (-EOPNOTSUPP);
  463 
  464         XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
  465 
  466         axgbe_printf(0, "RSS Disabled\n");
  467 
  468         return (0);
  469 }
  470 
  471 static void
  472 xgbe_config_rss(struct xgbe_prv_data *pdata)
  473 {
  474         int ret;
  475 
  476         if (!pdata->hw_feat.rss)
  477                 return;
  478 
  479         /* Check if the interface has RSS capability */
  480         if (pdata->enable_rss)
  481                 ret = xgbe_enable_rss(pdata);
  482         else
  483                 ret = xgbe_disable_rss(pdata);
  484 
  485         if (ret)
  486                 axgbe_error("error configuring RSS, RSS disabled\n");
  487 }
  488 
  489 static int
  490 xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
  491 {
  492         unsigned int max_q_count, q_count;
  493         unsigned int reg, reg_val;
  494         unsigned int i;
  495 
  496         /* Clear MTL flow control */
  497         for (i = 0; i < pdata->rx_q_count; i++)
  498                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
  499 
  500         /* Clear MAC flow control */
  501         max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
  502         q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
  503         reg = MAC_Q0TFCR;
  504         for (i = 0; i < q_count; i++) {
  505                 reg_val = XGMAC_IOREAD(pdata, reg);
  506                 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
  507                 XGMAC_IOWRITE(pdata, reg, reg_val);
  508 
  509                 reg += MAC_QTFCR_INC;
  510         }
  511 
  512         return (0);
  513 }
  514 
  515 static int
  516 xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
  517 {
  518         unsigned int max_q_count, q_count;
  519         unsigned int reg, reg_val;
  520         unsigned int i;
  521 
  522         /* Set MTL flow control */
  523         for (i = 0; i < pdata->rx_q_count; i++) {
  524                 unsigned int ehfc = 0;
  525 
  526                 if (pdata->rx_rfd[i]) {
  527                         /* Flow control thresholds are established */
  528                         /* TODO - enable pfc/ets support */
  529                         ehfc = 1;
  530                 }
  531 
  532                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
  533 
  534                 axgbe_printf(1, "flow control %s for RXq%u\n",
  535                     ehfc ? "enabled" : "disabled", i);
  536         }
  537 
  538         /* Set MAC flow control */
  539         max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
  540         q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
  541         reg = MAC_Q0TFCR;
  542         for (i = 0; i < q_count; i++) {
  543                 reg_val = XGMAC_IOREAD(pdata, reg);
  544 
  545                 /* Enable transmit flow control */
  546                 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
  547 
  548                 /* Set pause time */
  549                 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
  550 
  551                 XGMAC_IOWRITE(pdata, reg, reg_val);
  552 
  553                 reg += MAC_QTFCR_INC;
  554         }
  555 
  556         return (0);
  557 }
  558 
  559 static int
  560 xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
  561 {
  562         XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
  563 
  564         return (0);
  565 }
  566 
  567 static int
  568 xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
  569 {
  570         XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
  571 
  572         return (0);
  573 }
  574 
  575 static int
  576 xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
  577 {
  578         if (pdata->tx_pause)
  579                 xgbe_enable_tx_flow_control(pdata);
  580         else
  581                 xgbe_disable_tx_flow_control(pdata);
  582 
  583         return (0);
  584 }
  585 
  586 static int
  587 xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
  588 {
  589         if (pdata->rx_pause)
  590                 xgbe_enable_rx_flow_control(pdata);
  591         else
  592                 xgbe_disable_rx_flow_control(pdata);
  593 
  594         return (0);
  595 }
  596 
  597 static void
  598 xgbe_config_flow_control(struct xgbe_prv_data *pdata)
  599 {
  600         xgbe_config_tx_flow_control(pdata);
  601         xgbe_config_rx_flow_control(pdata);
  602 
  603         XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
  604 }
  605 
  606 static void
  607 xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
  608 {
  609         struct xgbe_channel *channel;
  610         unsigned int i, ver;
  611 
  612         /* Set the interrupt mode if supported */
  613         if (pdata->channel_irq_mode)
  614                 XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
  615                     pdata->channel_irq_mode);
  616 
  617         ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
  618 
  619         for (i = 0; i < pdata->channel_count; i++) {
  620                 channel = pdata->channel[i];
  621 
  622                 /* Clear all the interrupts which are set */
  623                 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
  624                                   XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
  625 
  626                 /* Clear all interrupt enable bits */
  627                 channel->curr_ier = 0;
  628 
  629                 /* Enable following interrupts
  630                  *   NIE  - Normal Interrupt Summary Enable
  631                  *   AIE  - Abnormal Interrupt Summary Enable
  632                  *   FBEE - Fatal Bus Error Enable
  633                  */
  634                 if (ver < 0x21) {
  635                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
  636                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
  637                 } else {
  638                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
  639                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
  640                 }
  641                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
  642 
  643                 if (channel->tx_ring) {
  644                         /* Enable the following Tx interrupts
  645                          *   TIE  - Transmit Interrupt Enable (unless using
  646                          *        per channel interrupts in edge triggered
  647                          *        mode)
  648                          */
  649                         if (!pdata->per_channel_irq || pdata->channel_irq_mode)
  650                                 XGMAC_SET_BITS(channel->curr_ier,
  651                                                DMA_CH_IER, TIE, 1);
  652                 }
  653                 if (channel->rx_ring) {
  654                         /* Enable following Rx interrupts
  655                          *   RBUE - Receive Buffer Unavailable Enable
  656                          *   RIE  - Receive Interrupt Enable (unless using
  657                          *        per channel interrupts in edge triggered
  658                          *        mode)
  659                          */
  660                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
  661                         if (!pdata->per_channel_irq || pdata->channel_irq_mode)
  662                                 XGMAC_SET_BITS(channel->curr_ier,
  663                                                DMA_CH_IER, RIE, 1);
  664                 }
  665 
  666                 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
  667         }
  668 }
  669 
  670 static void
  671 xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
  672 {
  673         unsigned int mtl_q_isr;
  674         unsigned int q_count, i;
  675 
  676         q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
  677         for (i = 0; i < q_count; i++) {
  678                 /* Clear all the interrupts which are set */
  679                 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
  680                 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
  681 
  682                 /* No MTL interrupts to be enabled */
  683                 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
  684         }
  685 }
  686 
  687 static void
  688 xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
  689 {
  690         unsigned int mac_ier = 0;
  691 
  692         /* Enable Timestamp interrupt */
  693         XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
  694 
  695         XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
  696 
  697         /* Enable all counter interrupts */
  698         XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
  699         XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
  700 
  701         /* Enable MDIO single command completion interrupt */
  702         XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
  703 }
  704 
  705 static int
  706 xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
  707 {
  708         unsigned int ss;
  709 
  710         switch (speed) {
  711         case SPEED_1000:
  712                 ss = 0x03;
  713                 break;
  714         case SPEED_2500:
  715                 ss = 0x02;
  716                 break;
  717         case SPEED_10000:
  718                 ss = 0x00;
  719                 break;
  720         default:
  721                 return (-EINVAL);
  722         }
  723 
  724         if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
  725                 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
  726 
  727         return (0);
  728 }
  729 
  730 static int
  731 xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
  732 {
  733         /* Put the VLAN tag in the Rx descriptor */
  734         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
  735 
  736         /* Don't check the VLAN type */
  737         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
  738 
  739         /* Check only C-TAG (0x8100) packets */
  740         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
  741 
  742         /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
  743         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
  744 
  745         /* Enable VLAN tag stripping */
  746         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
  747 
  748         axgbe_printf(0, "VLAN Stripping Enabled\n");
  749 
  750         return (0);
  751 }
  752 
  753 static int
  754 xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
  755 {
  756         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
  757 
  758         axgbe_printf(0, "VLAN Stripping Disabled\n");
  759 
  760         return (0);
  761 }
  762 
  763 static int
  764 xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
  765 {
  766         /* Enable VLAN filtering */
  767         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
  768 
  769         /* Enable VLAN Hash Table filtering */
  770         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
  771 
  772         /* Disable VLAN tag inverse matching */
  773         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
  774 
  775         /* Only filter on the lower 12-bits of the VLAN tag */
  776         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
  777 
  778         /* In order for the VLAN Hash Table filtering to be effective,
  779          * the VLAN tag identifier in the VLAN Tag Register must not
  780          * be zero.  Set the VLAN tag identifier to "1" to enable the
  781          * VLAN Hash Table filtering.  This implies that a VLAN tag of
  782          * 1 will always pass filtering.
  783          */
  784         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
  785 
  786         axgbe_printf(0, "VLAN filtering Enabled\n");
  787 
  788         return (0);
  789 }
  790 
  791 static int
  792 xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
  793 {
  794         /* Disable VLAN filtering */
  795         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
  796 
  797         axgbe_printf(0, "VLAN filtering Disabled\n");
  798 
  799         return (0);
  800 }
  801 
  802 static uint32_t
  803 xgbe_vid_crc32_le(__le16 vid_le)
  804 {
  805         uint32_t crc = ~0;
  806         uint32_t temp = 0;
  807         unsigned char *data = (unsigned char *)&vid_le;
  808         unsigned char data_byte = 0;
  809         int i, bits;
  810 
  811         bits = get_bitmask_order(VLAN_VID_MASK);
  812         for (i = 0; i < bits; i++) {
  813                 if ((i % 8) == 0)
  814                         data_byte = data[i / 8];
  815 
  816                 temp = ((crc & 1) ^ data_byte) & 1;
  817                 crc >>= 1;
  818                 data_byte >>= 1;
  819 
  820                 if (temp)
  821                         crc ^= CRC32_POLY_LE;
  822         }
  823 
  824         return (crc);
  825 }
  826 
  827 static int
  828 xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
  829 {
  830         uint32_t crc;
  831         uint16_t vid;
  832         uint16_t vlan_hash_table = 0;
  833         __le16 vid_le = 0;
  834 
  835         axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
  836             XGMAC_IOREAD(pdata, MAC_VLANHTR));
  837  
  838         /* Generate the VLAN Hash Table value */
  839         for_each_set_bit(vid, pdata->active_vlans, VLAN_NVID) {
  840 
  841                 /* Get the CRC32 value of the VLAN ID */
  842                 vid_le = cpu_to_le16(vid);
  843                 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
  844 
  845                 vlan_hash_table |= (1 << crc);
  846                 axgbe_printf(1, "%s: vid 0x%x vid_le 0x%x crc 0x%x "
  847                     "vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
  848                     vlan_hash_table);
  849         }
  850 
  851         /* Set the VLAN Hash Table filtering register */
  852         XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
  853 
  854         axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
  855                 XGMAC_IOREAD(pdata, MAC_VLANHTR));
  856  
  857         return (0);
  858 }
  859 
  860 static int
  861 xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
  862 {
  863         unsigned int val = enable ? 1 : 0;
  864 
  865         if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
  866                 return (0);
  867 
  868         axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
  869 
  870         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
  871 
  872         /* Hardware will still perform VLAN filtering in promiscuous mode */
  873         if (enable) {
  874                 axgbe_printf(1, "Disabling rx vlan filtering\n");
  875                 xgbe_disable_rx_vlan_filtering(pdata);
  876         } else {
  877                 if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
  878                         axgbe_printf(1, "Enabling rx vlan filtering\n");
  879                         xgbe_enable_rx_vlan_filtering(pdata);
  880                 }
  881         }
  882 
  883         return (0);
  884 }
  885 
  886 static int
  887 xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
  888 {
  889         unsigned int val = enable ? 1 : 0;
  890 
  891         if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
  892                 return (0);
  893 
  894         axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
  895         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
  896 
  897         return (0);
  898 }
  899 
  900 static void
  901 xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
  902 {
  903         unsigned int mac_addr_hi, mac_addr_lo;
  904         uint8_t *mac_addr;
  905 
  906         mac_addr_lo = 0;
  907         mac_addr_hi = 0;
  908 
  909         if (addr) {
  910                 mac_addr = (uint8_t *)&mac_addr_lo;
  911                 mac_addr[0] = addr[0];
  912                 mac_addr[1] = addr[1];
  913                 mac_addr[2] = addr[2];
  914                 mac_addr[3] = addr[3];
  915                 mac_addr = (uint8_t *)&mac_addr_hi;
  916                 mac_addr[0] = addr[4];
  917                 mac_addr[1] = addr[5];
  918 
  919                 axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
  920 
  921                 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
  922         }
  923 
  924         XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
  925         *mac_reg += MAC_MACA_INC;
  926         XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
  927         *mac_reg += MAC_MACA_INC;
  928 }
  929 
  930 static void
  931 xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
  932 {
  933         unsigned int mac_reg;
  934         unsigned int addn_macs;
  935 
  936         mac_reg = MAC_MACA1HR;
  937         addn_macs = pdata->hw_feat.addn_mac;
  938 
  939         xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
  940         addn_macs--;
  941 
  942         /* Clear remaining additional MAC address entries */
  943         while (addn_macs--)
  944                 xgbe_set_mac_reg(pdata, NULL, &mac_reg);
  945 }
  946 
  947 static int
  948 xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
  949 {
  950         /* TODO - add support to set mac hash table */
  951         xgbe_set_mac_addn_addrs(pdata);
  952 
  953         return (0);
  954 }
  955 
  956 static int
  957 xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
  958 {
  959         unsigned int mac_addr_hi, mac_addr_lo;
  960 
  961         mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
  962         mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
  963                       (addr[1] <<  8) | (addr[0] <<  0);
  964 
  965         XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
  966         XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
  967 
  968         return (0);
  969 }
  970 
  971 static int
  972 xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
  973 {
  974         unsigned int pr_mode, am_mode;
  975 
  976         pr_mode = ((pdata->netdev->if_flags & IFF_PPROMISC) != 0);
  977         am_mode = ((pdata->netdev->if_flags & IFF_ALLMULTI) != 0);
  978 
  979         xgbe_set_promiscuous_mode(pdata, pr_mode);
  980         xgbe_set_all_multicast_mode(pdata, am_mode);
  981 
  982         xgbe_add_mac_addresses(pdata);
  983 
  984         return (0);
  985 }
  986 
  987 static int
  988 xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
  989 {
  990         unsigned int reg;
  991 
  992         if (gpio > 15)
  993                 return (-EINVAL);
  994 
  995         reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
  996 
  997         reg &= ~(1 << (gpio + 16));
  998         XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
  999 
 1000         return (0);
 1001 }
 1002 
 1003 static int
 1004 xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
 1005 {
 1006         unsigned int reg;
 1007 
 1008         if (gpio > 15)
 1009                 return (-EINVAL);
 1010 
 1011         reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
 1012 
 1013         reg |= (1 << (gpio + 16));
 1014         XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
 1015 
 1016         return (0);
 1017 }
 1018 
 1019 static int
 1020 xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
 1021 {
 1022         unsigned long flags;
 1023         unsigned int mmd_address, index, offset;
 1024         int mmd_data;
 1025 
 1026         if (mmd_reg & MII_ADDR_C45)
 1027                 mmd_address = mmd_reg & ~MII_ADDR_C45;
 1028         else
 1029                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
 1030 
 1031         /* The PCS registers are accessed using mmio. The underlying
 1032          * management interface uses indirect addressing to access the MMD
 1033          * register sets. This requires accessing of the PCS register in two
 1034          * phases, an address phase and a data phase.
 1035          *
 1036          * The mmio interface is based on 16-bit offsets and values. All
 1037          * register offsets must therefore be adjusted by left shifting the
 1038          * offset 1 bit and reading 16 bits of data.
 1039          */
 1040         mmd_address <<= 1;
 1041         index = mmd_address & ~pdata->xpcs_window_mask;
 1042         offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
 1043 
 1044         spin_lock_irqsave(&pdata->xpcs_lock, flags);
 1045         XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
 1046         mmd_data = XPCS16_IOREAD(pdata, offset);
 1047         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
 1048 
 1049         return (mmd_data);
 1050 }
 1051 
 1052 static void
 1053 xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
 1054     int mmd_data)
 1055 {
 1056         unsigned long flags;
 1057         unsigned int mmd_address, index, offset;
 1058 
 1059         if (mmd_reg & MII_ADDR_C45)
 1060                 mmd_address = mmd_reg & ~MII_ADDR_C45;
 1061         else
 1062                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
 1063 
 1064         /* The PCS registers are accessed using mmio. The underlying
 1065          * management interface uses indirect addressing to access the MMD
 1066          * register sets. This requires accessing of the PCS register in two
 1067          * phases, an address phase and a data phase.
 1068          *
 1069          * The mmio interface is based on 16-bit offsets and values. All
 1070          * register offsets must therefore be adjusted by left shifting the
 1071          * offset 1 bit and writing 16 bits of data.
 1072          */
 1073         mmd_address <<= 1;
 1074         index = mmd_address & ~pdata->xpcs_window_mask;
 1075         offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
 1076 
 1077         spin_lock_irqsave(&pdata->xpcs_lock, flags);
 1078         XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
 1079         XPCS16_IOWRITE(pdata, offset, mmd_data);
 1080         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
 1081 }
 1082 
 1083 static int
 1084 xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
 1085 {
 1086         unsigned long flags;
 1087         unsigned int mmd_address;
 1088         int mmd_data;
 1089 
 1090         if (mmd_reg & MII_ADDR_C45)
 1091                 mmd_address = mmd_reg & ~MII_ADDR_C45;
 1092         else
 1093                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
 1094 
 1095         /* The PCS registers are accessed using mmio. The underlying APB3
 1096          * management interface uses indirect addressing to access the MMD
 1097          * register sets. This requires accessing of the PCS register in two
 1098          * phases, an address phase and a data phase.
 1099          *
 1100          * The mmio interface is based on 32-bit offsets and values. All
 1101          * register offsets must therefore be adjusted by left shifting the
 1102          * offset 2 bits and reading 32 bits of data.
 1103          */
 1104         spin_lock_irqsave(&pdata->xpcs_lock, flags);
 1105         XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
 1106         mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
 1107         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
 1108 
 1109         return (mmd_data);
 1110 }
 1111 
 1112 static void
 1113 xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
 1114     int mmd_data)
 1115 {
 1116         unsigned int mmd_address;
 1117         unsigned long flags;
 1118 
 1119         if (mmd_reg & MII_ADDR_C45)
 1120                 mmd_address = mmd_reg & ~MII_ADDR_C45;
 1121         else
 1122                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
 1123 
 1124         /* The PCS registers are accessed using mmio. The underlying APB3
 1125          * management interface uses indirect addressing to access the MMD
 1126          * register sets. This requires accessing of the PCS register in two
 1127          * phases, an address phase and a data phase.
 1128          *
 1129          * The mmio interface is based on 32-bit offsets and values. All
 1130          * register offsets must therefore be adjusted by left shifting the
 1131          * offset 2 bits and writing 32 bits of data.
 1132          */
 1133         spin_lock_irqsave(&pdata->xpcs_lock, flags);
 1134         XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
 1135         XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
 1136         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
 1137 }
 1138 
 1139 static int
 1140 xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
 1141 {
 1142         switch (pdata->vdata->xpcs_access) {
 1143         case XGBE_XPCS_ACCESS_V1:
 1144                 return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
 1145 
 1146         case XGBE_XPCS_ACCESS_V2:
 1147         default:
 1148                 return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
 1149         }
 1150 }
 1151 
 1152 static void
 1153 xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
 1154     int mmd_data)
 1155 {
 1156         switch (pdata->vdata->xpcs_access) {
 1157         case XGBE_XPCS_ACCESS_V1:
 1158                 return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
 1159 
 1160         case XGBE_XPCS_ACCESS_V2:
 1161         default:
 1162                 return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
 1163         }
 1164 }
 1165 
 1166 static unsigned int
 1167 xgbe_create_mdio_sca(int port, int reg)
 1168 {
 1169         unsigned int mdio_sca, da;
 1170 
 1171         da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
 1172 
 1173         mdio_sca = 0;
 1174         XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
 1175         XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
 1176         XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
 1177 
 1178         return (mdio_sca);
 1179 }
 1180 
 1181 static int
 1182 xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
 1183     uint16_t val)
 1184 {
 1185         unsigned int mdio_sca, mdio_sccd;
 1186 
 1187         mtx_lock_spin(&pdata->mdio_mutex);
 1188 
 1189         mdio_sca = xgbe_create_mdio_sca(addr, reg);
 1190         XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
 1191 
 1192         mdio_sccd = 0;
 1193         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
 1194         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
 1195         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
 1196         XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
 1197 
 1198         if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) == 
 1199             EWOULDBLOCK) {
 1200                 axgbe_error("%s: MDIO write error\n", __func__);
 1201                 mtx_unlock_spin(&pdata->mdio_mutex);
 1202                 return (-ETIMEDOUT);
 1203         }
 1204 
 1205         mtx_unlock_spin(&pdata->mdio_mutex);
 1206         return (0);
 1207 }
 1208 
 1209 static int
 1210 xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
 1211 {
 1212         unsigned int mdio_sca, mdio_sccd;
 1213 
 1214         mtx_lock_spin(&pdata->mdio_mutex);
 1215 
 1216         mdio_sca = xgbe_create_mdio_sca(addr, reg);
 1217         XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
 1218 
 1219         mdio_sccd = 0;
 1220         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
 1221         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
 1222         XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
 1223 
 1224         if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
 1225             EWOULDBLOCK) {
 1226                 axgbe_error("%s: MDIO read error\n", __func__);
 1227                 mtx_unlock_spin(&pdata->mdio_mutex);
 1228                 return (-ETIMEDOUT);
 1229         }
 1230 
 1231         mtx_unlock_spin(&pdata->mdio_mutex);
 1232 
 1233         return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
 1234 }
 1235 
 1236 static int
 1237 xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
 1238     enum xgbe_mdio_mode mode)
 1239 {
 1240         unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
 1241 
 1242         switch (mode) {
 1243         case XGBE_MDIO_MODE_CL22:
 1244                 if (port > XGMAC_MAX_C22_PORT)
 1245                         return (-EINVAL);
 1246                 reg_val |= (1 << port);
 1247                 break;
 1248         case XGBE_MDIO_MODE_CL45:
 1249                 break;
 1250         default:
 1251                 return (-EINVAL);
 1252         }
 1253 
 1254         XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
 1255 
 1256         return (0);
 1257 }
 1258 
 1259 static int
 1260 xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
 1261 {
 1262         return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
 1263 }
 1264 
 1265 static int
 1266 xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
 1267 {
 1268         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
 1269 
 1270         axgbe_printf(0, "Receive checksum offload Disabled\n");
 1271         return (0);
 1272 }
 1273 
 1274 static int
 1275 xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
 1276 {
 1277         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
 1278 
 1279         axgbe_printf(0, "Receive checksum offload Enabled\n");
 1280         return (0);
 1281 }
 1282 
 1283 static void
 1284 xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
 1285 {
 1286         struct xgbe_ring_desc *rdesc = rdata->rdesc;
 1287 
 1288         /* Reset the Tx descriptor
 1289          *   Set buffer 1 (lo) address to zero
 1290          *   Set buffer 1 (hi) address to zero
 1291          *   Reset all other control bits (IC, TTSE, B2L & B1L)
 1292          *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
 1293          */
 1294         rdesc->desc0 = 0;
 1295         rdesc->desc1 = 0;
 1296         rdesc->desc2 = 0;
 1297         rdesc->desc3 = 0;
 1298 
 1299         wmb();
 1300 }
 1301 
 1302 static void
 1303 xgbe_tx_desc_init(struct xgbe_channel *channel)
 1304 {
 1305         struct xgbe_ring *ring = channel->tx_ring;
 1306         struct xgbe_ring_data *rdata;
 1307         int i;
 1308         int start_index = ring->cur;
 1309 
 1310         /* Initialze all descriptors */
 1311         for (i = 0; i < ring->rdesc_count; i++) {
 1312                 rdata = XGBE_GET_DESC_DATA(ring, i);
 1313 
 1314                 /* Initialize Tx descriptor */
 1315                 xgbe_tx_desc_reset(rdata);
 1316         }
 1317 
 1318         /* Update the total number of Tx descriptors */
 1319         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
 1320 
 1321         /* Update the starting address of descriptor ring */
 1322         rdata = XGBE_GET_DESC_DATA(ring, start_index);
 1323         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
 1324             upper_32_bits(rdata->rdata_paddr));
 1325         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
 1326             lower_32_bits(rdata->rdata_paddr));
 1327 }
 1328 
 1329 static void
 1330 xgbe_rx_desc_init(struct xgbe_channel *channel)
 1331 {
 1332         struct xgbe_ring *ring = channel->rx_ring;
 1333         struct xgbe_ring_data *rdata;
 1334         unsigned int start_index = ring->cur;
 1335 
 1336         /* 
 1337          * Just set desc_count and the starting address of the desc list
 1338          * here. Rest will be done as part of the txrx path.
 1339          */
 1340 
 1341         /* Update the total number of Rx descriptors */
 1342         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
 1343 
 1344         /* Update the starting address of descriptor ring */
 1345         rdata = XGBE_GET_DESC_DATA(ring, start_index);
 1346         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
 1347             upper_32_bits(rdata->rdata_paddr));
 1348         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
 1349             lower_32_bits(rdata->rdata_paddr));
 1350 }
 1351 
 1352 static int
 1353 xgbe_dev_read(struct xgbe_channel *channel)
 1354 {
 1355         struct xgbe_prv_data *pdata = channel->pdata;
 1356         struct xgbe_ring *ring = channel->rx_ring;
 1357         struct xgbe_ring_data *rdata;
 1358         struct xgbe_ring_desc *rdesc;
 1359         struct xgbe_packet_data *packet = &ring->packet_data;
 1360         unsigned int err, etlt, l34t = 0;
 1361 
 1362         axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
 1363 
 1364         rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
 1365         rdesc = rdata->rdesc;
 1366 
 1367         /* Check for data availability */
 1368         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
 1369                 return (1);
 1370 
 1371         rmb();
 1372 
 1373         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
 1374                 /* TODO - Timestamp Context Descriptor */
 1375                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1376                     CONTEXT, 1);
 1377                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1378                     CONTEXT_NEXT, 0);
 1379                 return (0);
 1380         }
 1381 
 1382         /* Normal Descriptor, be sure Context Descriptor bit is off */
 1383         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
 1384 
 1385         /* Indicate if a Context Descriptor is next */
 1386         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
 1387                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1388                     CONTEXT_NEXT, 1);
 1389 
 1390         /* Get the header length */
 1391         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
 1392                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1393                     FIRST, 1);
 1394                 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
 1395                     RX_NORMAL_DESC2, HL);
 1396                 if (rdata->rx.hdr_len)
 1397                         pdata->ext_stats.rx_split_header_packets++;
 1398         } else
 1399                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1400                     FIRST, 0);
 1401 
 1402         /* Get the RSS hash */
 1403         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
 1404                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1405                     RSS_HASH, 1);
 1406 
 1407                 packet->rss_hash = le32_to_cpu(rdesc->desc1);
 1408 
 1409                 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
 1410                 switch (l34t) {
 1411                 case RX_DESC3_L34T_IPV4_TCP:
 1412                         packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
 1413                         break;
 1414                 case RX_DESC3_L34T_IPV4_UDP:
 1415                         packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
 1416                         break;
 1417                 case RX_DESC3_L34T_IPV6_TCP:
 1418                         packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
 1419                         break;
 1420                 case RX_DESC3_L34T_IPV6_UDP:
 1421                         packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
 1422                         break;
 1423                 default:
 1424                         packet->rss_hash_type = M_HASHTYPE_OPAQUE;
 1425                         break;
 1426                 }
 1427         }
 1428 
 1429         /* Not all the data has been transferred for this packet */
 1430         if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
 1431                 /* This is not the last of the data for this packet */
 1432                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1433                     LAST, 0);
 1434                 return (0);
 1435         }
 1436 
 1437         /* This is the last of the data for this packet */
 1438         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1439             LAST, 1);
 1440 
 1441         /* Get the packet length */
 1442         rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
 1443 
 1444         /* Set checksum done indicator as appropriate */
 1445         /* TODO - add tunneling support */
 1446         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1447             CSUM_DONE, 1);
 1448 
 1449         /* Check for errors (only valid in last descriptor) */
 1450         err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
 1451         etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
 1452         axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
 1453 
 1454         if (!err || !etlt) {
 1455                 /* No error if err is 0 or etlt is 0 */
 1456                 if (etlt == 0x09) {
 1457                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1458                             VLAN_CTAG, 1);
 1459                         packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
 1460                             RX_NORMAL_DESC0, OVT);
 1461                         axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
 1462                 }
 1463         } else {
 1464                 unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
 1465                     RX_PACKET_ATTRIBUTES, TNP);
 1466 
 1467                 if ((etlt == 0x05) || (etlt == 0x06)) {
 1468                         axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
 1469                             __func__, l34t, err, etlt);
 1470                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1471                             CSUM_DONE, 0);
 1472                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1473                             TNPCSUM_DONE, 0);
 1474                         pdata->ext_stats.rx_csum_errors++;
 1475                 } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
 1476                         axgbe_printf(1, "%s: err2  l34t %d err 0x%x etlt 0x%x\n",
 1477                             __func__, l34t, err, etlt);
 1478                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1479                             CSUM_DONE, 0);
 1480                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
 1481                             TNPCSUM_DONE, 0);
 1482                         pdata->ext_stats.rx_vxlan_csum_errors++;
 1483                 } else {
 1484                         axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
 1485                             __func__, tnp, l34t, err, etlt);
 1486                         axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
 1487                             __func__, channel->queue_index,
 1488                             XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
 1489                             XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
 1490                         axgbe_printf(1, "%s: ring cur %d dirty %d\n",
 1491                             __func__, ring->cur, ring->dirty);
 1492                         axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
 1493                             __func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
 1494                             rdesc->desc3);
 1495                         XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
 1496                             FRAME, 1);
 1497                 }
 1498         }
 1499 
 1500         axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
 1501             channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
 1502 
 1503         return (0);
 1504 }
 1505 
 1506 static int
 1507 xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
 1508 {
 1509         /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
 1510         return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
 1511 }
 1512 
 1513 static int
 1514 xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
 1515 {
 1516         /* Rx and Tx share LD bit, so check TDES3.LD bit */
 1517         return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
 1518 }
 1519 
 1520 static int
 1521 xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
 1522 {
 1523         struct xgbe_prv_data *pdata = channel->pdata;
 1524 
 1525         axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
 1526             channel->curr_ier);
 1527 
 1528         switch (int_id) {
 1529         case XGMAC_INT_DMA_CH_SR_TI:
 1530                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
 1531                 break;
 1532         case XGMAC_INT_DMA_CH_SR_TPS:
 1533                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
 1534                 break;
 1535         case XGMAC_INT_DMA_CH_SR_TBU:
 1536                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
 1537                 break;
 1538         case XGMAC_INT_DMA_CH_SR_RI:
 1539                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
 1540                 break;
 1541         case XGMAC_INT_DMA_CH_SR_RBU:
 1542                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
 1543                 break;
 1544         case XGMAC_INT_DMA_CH_SR_RPS:
 1545                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
 1546                 break;
 1547         case XGMAC_INT_DMA_CH_SR_TI_RI:
 1548                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
 1549                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
 1550                 break;
 1551         case XGMAC_INT_DMA_CH_SR_FBE:
 1552                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
 1553                 break;
 1554         case XGMAC_INT_DMA_ALL:
 1555                 channel->curr_ier |= channel->saved_ier;
 1556                 break;
 1557         default:
 1558                 return (-1);
 1559         }
 1560 
 1561         XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
 1562 
 1563         axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
 1564             channel->curr_ier);
 1565 
 1566         return (0);
 1567 }
 1568 
 1569 static int
 1570 xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
 1571 {
 1572         struct xgbe_prv_data *pdata = channel->pdata;
 1573 
 1574         axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
 1575             channel->curr_ier);
 1576 
 1577         switch (int_id) {
 1578         case XGMAC_INT_DMA_CH_SR_TI:
 1579                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
 1580                 break;
 1581         case XGMAC_INT_DMA_CH_SR_TPS:
 1582                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
 1583                 break;
 1584         case XGMAC_INT_DMA_CH_SR_TBU:
 1585                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
 1586                 break;
 1587         case XGMAC_INT_DMA_CH_SR_RI:
 1588                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
 1589                 break;
 1590         case XGMAC_INT_DMA_CH_SR_RBU:
 1591                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
 1592                 break;
 1593         case XGMAC_INT_DMA_CH_SR_RPS:
 1594                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
 1595                 break;
 1596         case XGMAC_INT_DMA_CH_SR_TI_RI:
 1597                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
 1598                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
 1599                 break;
 1600         case XGMAC_INT_DMA_CH_SR_FBE:
 1601                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
 1602                 break;
 1603         case XGMAC_INT_DMA_ALL:
 1604                 channel->saved_ier = channel->curr_ier;
 1605                 channel->curr_ier = 0;
 1606                 break;
 1607         default:
 1608                 return (-1);
 1609         }
 1610 
 1611         XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
 1612 
 1613         axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
 1614             channel->curr_ier);
 1615 
 1616         return (0);
 1617 }
 1618 
 1619 static int
 1620 __xgbe_exit(struct xgbe_prv_data *pdata)
 1621 {
 1622         unsigned int count = 2000;
 1623 
 1624         /* Issue a software reset */
 1625         XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
 1626         DELAY(10);
 1627 
 1628         /* Poll Until Poll Condition */
 1629         while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
 1630                 DELAY(500);
 1631 
 1632         if (!count)
 1633                 return (-EBUSY);
 1634 
 1635         return (0);
 1636 }
 1637 
 1638 static int
 1639 xgbe_exit(struct xgbe_prv_data *pdata)
 1640 {
 1641         int ret;
 1642 
 1643         /* To guard against possible incorrectly generated interrupts,
 1644          * issue the software reset twice.
 1645          */
 1646         ret = __xgbe_exit(pdata);
 1647         if (ret) {
 1648                 axgbe_error("%s: exit error %d\n", __func__, ret);
 1649                 return (ret);
 1650         }
 1651 
 1652         return (__xgbe_exit(pdata));
 1653 }
 1654 
 1655 static int
 1656 xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
 1657 {
 1658         unsigned int i, count;
 1659 
 1660         if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
 1661                 return (0);
 1662 
 1663         for (i = 0; i < pdata->tx_q_count; i++)
 1664                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
 1665 
 1666         /* Poll Until Poll Condition */
 1667         for (i = 0; i < pdata->tx_q_count; i++) {
 1668                 count = 2000;
 1669                 while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
 1670                                                         MTL_Q_TQOMR, FTQ))
 1671                         DELAY(500);
 1672 
 1673                 if (!count)
 1674                         return (-EBUSY);
 1675         }
 1676 
 1677         return (0);
 1678 }
 1679 
 1680 static void
 1681 xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
 1682 {
 1683         unsigned int sbmr;
 1684 
 1685         sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
 1686 
 1687         /* Set enhanced addressing mode */
 1688         XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
 1689 
 1690         /* Set the System Bus mode */
 1691         XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
 1692         XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
 1693         XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
 1694         XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
 1695         XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
 1696 
 1697         XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
 1698 
 1699         /* Set descriptor fetching threshold */
 1700         if (pdata->vdata->tx_desc_prefetch)
 1701                 XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
 1702                     pdata->vdata->tx_desc_prefetch);
 1703 
 1704         if (pdata->vdata->rx_desc_prefetch)
 1705                 XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
 1706                     pdata->vdata->rx_desc_prefetch);
 1707 }
 1708 
 1709 static void
 1710 xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
 1711 {
 1712         XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
 1713         XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
 1714         if (pdata->awarcr)
 1715                 XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
 1716 }
 1717 
 1718 static void
 1719 xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
 1720 {
 1721         unsigned int i;
 1722 
 1723         /* Set Tx to weighted round robin scheduling algorithm */
 1724         XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
 1725 
 1726         /* Set Tx traffic classes to use WRR algorithm with equal weights */
 1727         for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
 1728                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
 1729                     MTL_TSA_ETS);
 1730                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
 1731         }
 1732 
 1733         /* Set Rx to strict priority algorithm */
 1734         XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
 1735 }
 1736 
 1737 static void
 1738 xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
 1739     unsigned int queue, unsigned int q_fifo_size)
 1740 {
 1741         unsigned int frame_fifo_size;
 1742         unsigned int rfa, rfd;
 1743 
 1744         frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
 1745         axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
 1746             __func__, queue, q_fifo_size, frame_fifo_size);
 1747 
 1748         /* TODO - add pfc/ets related support */
 1749 
 1750         /* This path deals with just maximum frame sizes which are
 1751          * limited to a jumbo frame of 9,000 (plus headers, etc.)
 1752          * so we can never exceed the maximum allowable RFA/RFD
 1753          * values.
 1754          */
 1755         if (q_fifo_size <= 2048) {
 1756                 /* rx_rfd to zero to signal no flow control */
 1757                 pdata->rx_rfa[queue] = 0;
 1758                 pdata->rx_rfd[queue] = 0;
 1759                 return;
 1760         }
 1761 
 1762         if (q_fifo_size <= 4096) {
 1763                 /* Between 2048 and 4096 */
 1764                 pdata->rx_rfa[queue] = 0;       /* Full - 1024 bytes */
 1765                 pdata->rx_rfd[queue] = 1;       /* Full - 1536 bytes */
 1766                 return;
 1767         }
 1768 
 1769         if (q_fifo_size <= frame_fifo_size) {
 1770                 /* Between 4096 and max-frame */
 1771                 pdata->rx_rfa[queue] = 2;       /* Full - 2048 bytes */
 1772                 pdata->rx_rfd[queue] = 5;       /* Full - 3584 bytes */
 1773                 return;
 1774         }
 1775 
 1776         if (q_fifo_size <= (frame_fifo_size * 3)) {
 1777                 /* Between max-frame and 3 max-frames,
 1778                  * trigger if we get just over a frame of data and
 1779                  * resume when we have just under half a frame left.
 1780                  */
 1781                 rfa = q_fifo_size - frame_fifo_size;
 1782                 rfd = rfa + (frame_fifo_size / 2);
 1783         } else {
 1784                 /* Above 3 max-frames - trigger when just over
 1785                  * 2 frames of space available
 1786                  */
 1787                 rfa = frame_fifo_size * 2;
 1788                 rfa += XGMAC_FLOW_CONTROL_UNIT;
 1789                 rfd = rfa + frame_fifo_size;
 1790         }
 1791 
 1792         pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
 1793         pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
 1794         axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
 1795             queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
 1796 }
 1797 
 1798 static void
 1799 xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
 1800     unsigned int *fifo)
 1801 {
 1802         unsigned int q_fifo_size;
 1803         unsigned int i;
 1804 
 1805         for (i = 0; i < pdata->rx_q_count; i++) {
 1806                 q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
 1807 
 1808                 axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
 1809                     __func__, i, fifo[i], q_fifo_size);
 1810                 xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
 1811         }
 1812 }
 1813 
 1814 static void
 1815 xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
 1816 {
 1817         unsigned int i;
 1818 
 1819         for (i = 0; i < pdata->rx_q_count; i++) {
 1820                 axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
 1821                     pdata->rx_rfa[i], pdata->rx_rfd[i]);
 1822 
 1823                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
 1824                                        pdata->rx_rfa[i]);
 1825                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
 1826                                        pdata->rx_rfd[i]);
 1827 
 1828                 axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
 1829                     XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
 1830         }
 1831 }
 1832 
 1833 static unsigned int
 1834 xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
 1835 {
 1836         /* The configured value may not be the actual amount of fifo RAM */
 1837         return (min_t(unsigned int, pdata->tx_max_fifo_size,
 1838             pdata->hw_feat.tx_fifo_size));
 1839 }
 1840 
 1841 static unsigned int
 1842 xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
 1843 {
 1844         /* The configured value may not be the actual amount of fifo RAM */
 1845         return (min_t(unsigned int, pdata->rx_max_fifo_size,
 1846             pdata->hw_feat.rx_fifo_size));
 1847 }
 1848 
 1849 static void
 1850 xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
 1851     unsigned int *fifo)
 1852 {
 1853         unsigned int q_fifo_size;
 1854         unsigned int p_fifo;
 1855         unsigned int i;
 1856 
 1857         q_fifo_size = fifo_size / queue_count;
 1858 
 1859         /* Calculate the fifo setting by dividing the queue's fifo size
 1860          * by the fifo allocation increment (with 0 representing the
 1861          * base allocation increment so decrement the result by 1).
 1862          */
 1863         p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
 1864         if (p_fifo)
 1865                 p_fifo--;
 1866 
 1867         /* Distribute the fifo equally amongst the queues */
 1868         for (i = 0; i < queue_count; i++)
 1869                 fifo[i] = p_fifo;
 1870 }
 1871 
 1872 static unsigned int
 1873 xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
 1874     unsigned int *fifo)
 1875 {
 1876         unsigned int i;
 1877 
 1878         MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
 1879 
 1880         if (queue_count <= IEEE_8021QAZ_MAX_TCS)
 1881                 return (fifo_size);
 1882 
 1883         /* Rx queues 9 and up are for specialized packets,
 1884          * such as PTP or DCB control packets, etc. and
 1885          * don't require a large fifo
 1886          */
 1887         for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
 1888                 fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
 1889                 fifo_size -= XGMAC_FIFO_MIN_ALLOC;
 1890         }
 1891 
 1892         return (fifo_size);
 1893 }
 1894 
 1895 static void
 1896 xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
 1897 {
 1898         unsigned int fifo_size;
 1899         unsigned int fifo[XGBE_MAX_QUEUES];
 1900         unsigned int i;
 1901 
 1902         fifo_size = xgbe_get_tx_fifo_size(pdata);
 1903         axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
 1904 
 1905         xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
 1906 
 1907         for (i = 0; i < pdata->tx_q_count; i++) {
 1908                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
 1909                 axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
 1910                     XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
 1911         }
 1912 
 1913         axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
 1914             pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
 1915 }
 1916 
 1917 static void
 1918 xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
 1919 {
 1920         unsigned int fifo_size;
 1921         unsigned int fifo[XGBE_MAX_QUEUES];
 1922         unsigned int prio_queues;
 1923         unsigned int i;
 1924 
 1925         /* TODO - add pfc/ets related support */
 1926 
 1927         /* Clear any DCB related fifo/queue information */
 1928         fifo_size = xgbe_get_rx_fifo_size(pdata);
 1929         prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
 1930         axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
 1931             fifo_size, pdata->rx_q_count, prio_queues);
 1932 
 1933         /* Assign a minimum fifo to the non-VLAN priority queues */
 1934         fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
 1935 
 1936         xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
 1937 
 1938         for (i = 0; i < pdata->rx_q_count; i++) {
 1939                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
 1940                 axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
 1941                     XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
 1942         }
 1943 
 1944         xgbe_calculate_flow_control_threshold(pdata, fifo);
 1945         xgbe_config_flow_control_threshold(pdata);
 1946 
 1947         axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
 1948             pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
 1949 }
 1950 
 1951 static void
 1952 xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
 1953 {
 1954         unsigned int qptc, qptc_extra, queue;
 1955         unsigned int prio_queues;
 1956         unsigned int ppq, ppq_extra, prio;
 1957         unsigned int mask;
 1958         unsigned int i, j, reg, reg_val;
 1959 
 1960         /* Map the MTL Tx Queues to Traffic Classes
 1961          *   Note: Tx Queues >= Traffic Classes
 1962          */
 1963         qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
 1964         qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
 1965 
 1966         for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
 1967                 for (j = 0; j < qptc; j++) {
 1968                         axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
 1969                         XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
 1970                             Q2TCMAP, i);
 1971                         pdata->q2tc_map[queue++] = i;
 1972                 }
 1973 
 1974                 if (i < qptc_extra) {
 1975                         axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
 1976                         XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
 1977                             Q2TCMAP, i);
 1978                         pdata->q2tc_map[queue++] = i;
 1979                 }
 1980         }
 1981 
 1982         /* Map the 8 VLAN priority values to available MTL Rx queues */
 1983         prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
 1984         ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
 1985         ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
 1986 
 1987         reg = MAC_RQC2R;
 1988         reg_val = 0;
 1989         for (i = 0, prio = 0; i < prio_queues;) {
 1990                 mask = 0;
 1991                 for (j = 0; j < ppq; j++) {
 1992                         axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
 1993                         mask |= (1 << prio);
 1994                         pdata->prio2q_map[prio++] = i;
 1995                 }
 1996 
 1997                 if (i < ppq_extra) {
 1998                         axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
 1999                         mask |= (1 << prio);
 2000                         pdata->prio2q_map[prio++] = i;
 2001                 }
 2002 
 2003                 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
 2004 
 2005                 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
 2006                         continue;
 2007 
 2008                 XGMAC_IOWRITE(pdata, reg, reg_val);
 2009                 reg += MAC_RQC2_INC;
 2010                 reg_val = 0;
 2011         }
 2012 
 2013         /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
 2014         reg = MTL_RQDCM0R;
 2015         reg_val = 0;
 2016         for (i = 0; i < pdata->rx_q_count;) {
 2017                 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
 2018 
 2019                 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
 2020                         continue;
 2021 
 2022                 XGMAC_IOWRITE(pdata, reg, reg_val);
 2023 
 2024                 reg += MTL_RQDCM_INC;
 2025                 reg_val = 0;
 2026         }
 2027 }
 2028 
 2029 static void
 2030 xgbe_config_mac_address(struct xgbe_prv_data *pdata)
 2031 {
 2032         xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
 2033 
 2034         /* Filtering is done using perfect filtering and hash filtering */
 2035         if (pdata->hw_feat.hash_table_size) {
 2036                 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
 2037                 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
 2038                 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
 2039         }
 2040 }
 2041 
 2042 static void
 2043 xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
 2044 {
 2045         unsigned int val;
 2046 
 2047         val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
 2048 
 2049         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
 2050 }
 2051 
 2052 static void
 2053 xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
 2054 {
 2055         xgbe_set_speed(pdata, pdata->phy_speed);
 2056 }
 2057 
 2058 static void
 2059 xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
 2060 {
 2061         if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
 2062                 xgbe_enable_rx_csum(pdata);
 2063         else
 2064                 xgbe_disable_rx_csum(pdata);
 2065 }
 2066 
 2067 static void
 2068 xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
 2069 {
 2070         /* Indicate that VLAN Tx CTAGs come from context descriptors */
 2071         XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
 2072         XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
 2073 
 2074         /* Set the current VLAN Hash Table register value */
 2075         xgbe_update_vlan_hash_table(pdata);
 2076 
 2077         if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
 2078                 axgbe_printf(1, "Enabling rx vlan filtering\n");
 2079                 xgbe_enable_rx_vlan_filtering(pdata);
 2080         } else {
 2081                 axgbe_printf(1, "Disabling rx vlan filtering\n");
 2082                 xgbe_disable_rx_vlan_filtering(pdata);
 2083         }
 2084         
 2085         if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
 2086                 axgbe_printf(1, "Enabling rx vlan stripping\n");
 2087                 xgbe_enable_rx_vlan_stripping(pdata);
 2088         } else {
 2089                 axgbe_printf(1, "Disabling rx vlan stripping\n");
 2090                 xgbe_disable_rx_vlan_stripping(pdata);
 2091         }
 2092 }
 2093 
 2094 static uint64_t
 2095 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
 2096 {
 2097         bool read_hi;
 2098         uint64_t val;
 2099 
 2100         if (pdata->vdata->mmc_64bit) {
 2101                 switch (reg_lo) {
 2102                 /* These registers are always 32 bit */
 2103                 case MMC_RXRUNTERROR:
 2104                 case MMC_RXJABBERERROR:
 2105                 case MMC_RXUNDERSIZE_G:
 2106                 case MMC_RXOVERSIZE_G:
 2107                 case MMC_RXWATCHDOGERROR:
 2108                         read_hi = false;
 2109                         break;
 2110 
 2111                 default:
 2112                         read_hi = true;
 2113                 }
 2114         } else {
 2115                 switch (reg_lo) {
 2116                 /* These registers are always 64 bit */
 2117                 case MMC_TXOCTETCOUNT_GB_LO:
 2118                 case MMC_TXOCTETCOUNT_G_LO:
 2119                 case MMC_RXOCTETCOUNT_GB_LO:
 2120                 case MMC_RXOCTETCOUNT_G_LO:
 2121                         read_hi = true;
 2122                         break;
 2123 
 2124                 default:
 2125                         read_hi = false;
 2126                 }
 2127         }
 2128 
 2129         val = XGMAC_IOREAD(pdata, reg_lo);
 2130 
 2131         if (read_hi)
 2132                 val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
 2133 
 2134         return (val);
 2135 }
 2136 
 2137 static void
 2138 xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
 2139 {
 2140         struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
 2141         unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
 2142 
 2143         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
 2144                 stats->txoctetcount_gb +=
 2145                     xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
 2146 
 2147         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
 2148                 stats->txframecount_gb +=
 2149                     xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
 2150 
 2151         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
 2152                 stats->txbroadcastframes_g +=
 2153                     xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
 2154 
 2155         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
 2156                 stats->txmulticastframes_g +=
 2157                     xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
 2158 
 2159         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
 2160                 stats->tx64octets_gb +=
 2161                     xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
 2162 
 2163         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
 2164                 stats->tx65to127octets_gb +=
 2165                     xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
 2166 
 2167         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
 2168                 stats->tx128to255octets_gb +=
 2169                     xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
 2170 
 2171         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
 2172                 stats->tx256to511octets_gb +=
 2173                     xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
 2174 
 2175         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
 2176                 stats->tx512to1023octets_gb +=
 2177                     xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
 2178 
 2179         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
 2180                 stats->tx1024tomaxoctets_gb +=
 2181                     xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
 2182 
 2183         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
 2184                 stats->txunicastframes_gb +=
 2185                     xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
 2186 
 2187         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
 2188                 stats->txmulticastframes_gb +=
 2189                     xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
 2190 
 2191         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
 2192                 stats->txbroadcastframes_g +=
 2193                     xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
 2194 
 2195         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
 2196                 stats->txunderflowerror +=
 2197                     xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
 2198 
 2199         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
 2200                 stats->txoctetcount_g +=
 2201                     xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
 2202 
 2203         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
 2204                 stats->txframecount_g +=
 2205                     xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
 2206 
 2207         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
 2208                 stats->txpauseframes +=
 2209                     xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
 2210 
 2211         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
 2212                 stats->txvlanframes_g +=
 2213                     xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
 2214 }
 2215 
 2216 static void
 2217 xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
 2218 {
 2219         struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
 2220         unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
 2221 
 2222         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
 2223                 stats->rxframecount_gb +=
 2224                     xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
 2225 
 2226         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
 2227                 stats->rxoctetcount_gb +=
 2228                     xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
 2229 
 2230         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
 2231                 stats->rxoctetcount_g +=
 2232                     xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
 2233 
 2234         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
 2235                 stats->rxbroadcastframes_g +=
 2236                     xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
 2237 
 2238         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
 2239                 stats->rxmulticastframes_g +=
 2240                     xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
 2241 
 2242         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
 2243                 stats->rxcrcerror +=
 2244                     xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
 2245 
 2246         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
 2247                 stats->rxrunterror +=
 2248                     xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
 2249 
 2250         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
 2251                 stats->rxjabbererror +=
 2252                     xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
 2253 
 2254         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
 2255                 stats->rxundersize_g +=
 2256                     xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
 2257 
 2258         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
 2259                 stats->rxoversize_g +=
 2260                     xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
 2261 
 2262         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
 2263                 stats->rx64octets_gb +=
 2264                     xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
 2265 
 2266         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
 2267                 stats->rx65to127octets_gb +=
 2268                     xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
 2269 
 2270         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
 2271                 stats->rx128to255octets_gb +=
 2272                     xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
 2273 
 2274         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
 2275                 stats->rx256to511octets_gb +=
 2276                     xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
 2277 
 2278         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
 2279                 stats->rx512to1023octets_gb +=
 2280                     xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
 2281 
 2282         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
 2283                 stats->rx1024tomaxoctets_gb +=
 2284                     xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
 2285 
 2286         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
 2287                 stats->rxunicastframes_g +=
 2288                     xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
 2289 
 2290         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
 2291                 stats->rxlengtherror +=
 2292                     xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
 2293 
 2294         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
 2295                 stats->rxoutofrangetype +=
 2296                     xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
 2297 
 2298         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
 2299                 stats->rxpauseframes +=
 2300                     xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
 2301 
 2302         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
 2303                 stats->rxfifooverflow +=
 2304                     xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
 2305 
 2306         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
 2307                 stats->rxvlanframes_gb +=
 2308                     xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
 2309 
 2310         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
 2311                 stats->rxwatchdogerror +=
 2312                     xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
 2313 }
 2314 
 2315 static void
 2316 xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
 2317 {
 2318         struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
 2319 
 2320         /* Freeze counters */
 2321         XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
 2322 
 2323         stats->txoctetcount_gb +=
 2324             xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
 2325 
 2326         stats->txframecount_gb +=
 2327             xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
 2328 
 2329         stats->txbroadcastframes_g +=
 2330             xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
 2331 
 2332         stats->txmulticastframes_g +=
 2333             xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
 2334 
 2335         stats->tx64octets_gb +=
 2336             xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
 2337 
 2338         stats->tx65to127octets_gb +=
 2339             xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
 2340 
 2341         stats->tx128to255octets_gb +=
 2342             xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
 2343 
 2344         stats->tx256to511octets_gb +=
 2345             xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
 2346 
 2347         stats->tx512to1023octets_gb +=
 2348             xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
 2349 
 2350         stats->tx1024tomaxoctets_gb +=
 2351             xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
 2352 
 2353         stats->txunicastframes_gb +=
 2354             xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
 2355 
 2356         stats->txmulticastframes_gb +=
 2357             xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
 2358 
 2359         stats->txbroadcastframes_gb +=
 2360             xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
 2361 
 2362         stats->txunderflowerror +=
 2363             xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
 2364 
 2365         stats->txoctetcount_g +=
 2366             xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
 2367 
 2368         stats->txframecount_g +=
 2369             xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
 2370 
 2371         stats->txpauseframes +=
 2372             xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
 2373 
 2374         stats->txvlanframes_g +=
 2375             xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
 2376 
 2377         stats->rxframecount_gb +=
 2378             xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
 2379 
 2380         stats->rxoctetcount_gb +=
 2381             xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
 2382 
 2383         stats->rxoctetcount_g +=
 2384             xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
 2385 
 2386         stats->rxbroadcastframes_g +=
 2387             xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
 2388 
 2389         stats->rxmulticastframes_g +=
 2390             xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
 2391 
 2392         stats->rxcrcerror +=
 2393             xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
 2394 
 2395         stats->rxrunterror +=
 2396             xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
 2397 
 2398         stats->rxjabbererror +=
 2399             xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
 2400 
 2401         stats->rxundersize_g +=
 2402             xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
 2403 
 2404         stats->rxoversize_g +=
 2405             xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
 2406 
 2407         stats->rx64octets_gb +=
 2408             xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
 2409 
 2410         stats->rx65to127octets_gb +=
 2411             xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
 2412 
 2413         stats->rx128to255octets_gb +=
 2414             xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
 2415 
 2416         stats->rx256to511octets_gb +=
 2417             xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
 2418 
 2419         stats->rx512to1023octets_gb +=
 2420             xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
 2421 
 2422         stats->rx1024tomaxoctets_gb +=
 2423             xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
 2424 
 2425         stats->rxunicastframes_g +=
 2426             xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
 2427 
 2428         stats->rxlengtherror +=
 2429             xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
 2430 
 2431         stats->rxoutofrangetype +=
 2432             xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
 2433 
 2434         stats->rxpauseframes +=
 2435             xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
 2436 
 2437         stats->rxfifooverflow +=
 2438             xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
 2439 
 2440         stats->rxvlanframes_gb +=
 2441             xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
 2442 
 2443         stats->rxwatchdogerror +=
 2444             xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
 2445 
 2446         /* Un-freeze counters */
 2447         XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
 2448 }
 2449 
 2450 static void
 2451 xgbe_config_mmc(struct xgbe_prv_data *pdata)
 2452 {
 2453         /* Set counters to reset on read */
 2454         XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
 2455 
 2456         /* Reset the counters */
 2457         XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
 2458 }
 2459 
 2460 static void
 2461 xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
 2462 {
 2463         unsigned int tx_status;
 2464         unsigned long tx_timeout;
 2465 
 2466         /* The Tx engine cannot be stopped if it is actively processing
 2467          * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
 2468          * wait forever though...
 2469          */
 2470         tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
 2471         while (ticks < tx_timeout) {
 2472                 tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
 2473                 if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
 2474                     (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
 2475                         break;
 2476 
 2477                 DELAY(500);
 2478         }
 2479 
 2480         if (ticks >= tx_timeout)
 2481                 axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
 2482                     queue);
 2483 }
 2484 
 2485 static void
 2486 xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
 2487 {
 2488         unsigned int tx_dsr, tx_pos, tx_qidx;
 2489         unsigned int tx_status;
 2490         unsigned long tx_timeout;
 2491 
 2492         if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
 2493                 return (xgbe_txq_prepare_tx_stop(pdata, queue));
 2494 
 2495         /* Calculate the status register to read and the position within */
 2496         if (queue < DMA_DSRX_FIRST_QUEUE) {
 2497                 tx_dsr = DMA_DSR0;
 2498                 tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
 2499         } else {
 2500                 tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
 2501 
 2502                 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
 2503                 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
 2504                          DMA_DSRX_TPS_START;
 2505         }
 2506 
 2507         /* The Tx engine cannot be stopped if it is actively processing
 2508          * descriptors. Wait for the Tx engine to enter the stopped or
 2509          * suspended state.  Don't wait forever though...
 2510          */
 2511         tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
 2512         while (ticks < tx_timeout) {
 2513                 tx_status = XGMAC_IOREAD(pdata, tx_dsr);
 2514                 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
 2515                 if ((tx_status == DMA_TPS_STOPPED) ||
 2516                     (tx_status == DMA_TPS_SUSPENDED))
 2517                         break;
 2518 
 2519                 DELAY(500);
 2520         }
 2521 
 2522         if (ticks >= tx_timeout)
 2523                 axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
 2524                     queue);
 2525 }
 2526 
 2527 static void
 2528 xgbe_enable_tx(struct xgbe_prv_data *pdata)
 2529 {
 2530         unsigned int i;
 2531 
 2532         /* Enable each Tx DMA channel */
 2533         for (i = 0; i < pdata->channel_count; i++) {
 2534                 if (!pdata->channel[i]->tx_ring)
 2535                         break;
 2536 
 2537                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
 2538         }
 2539 
 2540         /* Enable each Tx queue */
 2541         for (i = 0; i < pdata->tx_q_count; i++)
 2542                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
 2543                     MTL_Q_ENABLED);
 2544 
 2545         /* Enable MAC Tx */
 2546         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
 2547 }
 2548 
 2549 static void
 2550 xgbe_disable_tx(struct xgbe_prv_data *pdata)
 2551 {
 2552         unsigned int i;
 2553 
 2554         /* Prepare for Tx DMA channel stop */
 2555         for (i = 0; i < pdata->tx_q_count; i++)
 2556                 xgbe_prepare_tx_stop(pdata, i);
 2557 
 2558         /* Disable MAC Tx */
 2559         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
 2560 
 2561         /* Disable each Tx queue */
 2562         for (i = 0; i < pdata->tx_q_count; i++)
 2563                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
 2564 
 2565         /* Disable each Tx DMA channel */
 2566         for (i = 0; i < pdata->channel_count; i++) {
 2567                 if (!pdata->channel[i]->tx_ring)
 2568                         break;
 2569 
 2570                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
 2571         }
 2572 }
 2573 
 2574 static void
 2575 xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
 2576 {
 2577         unsigned int rx_status;
 2578         unsigned long rx_timeout;
 2579 
 2580         /* The Rx engine cannot be stopped if it is actively processing
 2581          * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
 2582          * wait forever though...
 2583          */
 2584         rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
 2585         while (ticks < rx_timeout) {
 2586                 rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
 2587                 if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
 2588                     (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
 2589                         break;
 2590 
 2591                 DELAY(500);
 2592         }
 2593 
 2594         if (ticks >= rx_timeout)
 2595                 axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
 2596                     queue);
 2597 }
 2598 
 2599 static void
 2600 xgbe_enable_rx(struct xgbe_prv_data *pdata)
 2601 {
 2602         unsigned int reg_val, i;
 2603 
 2604         /* Enable each Rx DMA channel */
 2605         for (i = 0; i < pdata->channel_count; i++) {
 2606                 if (!pdata->channel[i]->rx_ring)
 2607                         break;
 2608 
 2609                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
 2610         }
 2611 
 2612         /* Enable each Rx queue */
 2613         reg_val = 0;
 2614         for (i = 0; i < pdata->rx_q_count; i++)
 2615                 reg_val |= (0x02 << (i << 1));
 2616         XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
 2617 
 2618         /* Enable MAC Rx */
 2619         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
 2620         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
 2621         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
 2622         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
 2623 }
 2624 
 2625 static void
 2626 xgbe_disable_rx(struct xgbe_prv_data *pdata)
 2627 {
 2628         unsigned int i;
 2629 
 2630         /* Disable MAC Rx */
 2631         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
 2632         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
 2633         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
 2634         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
 2635 
 2636         /* Prepare for Rx DMA channel stop */
 2637         for (i = 0; i < pdata->rx_q_count; i++)
 2638                 xgbe_prepare_rx_stop(pdata, i);
 2639 
 2640         /* Disable each Rx queue */
 2641         XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
 2642 
 2643         /* Disable each Rx DMA channel */
 2644         for (i = 0; i < pdata->channel_count; i++) {
 2645                 if (!pdata->channel[i]->rx_ring)
 2646                         break;
 2647 
 2648                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
 2649         }
 2650 }
 2651 
 2652 static void
 2653 xgbe_powerup_tx(struct xgbe_prv_data *pdata)
 2654 {
 2655         unsigned int i;
 2656 
 2657         /* Enable each Tx DMA channel */
 2658         for (i = 0; i < pdata->channel_count; i++) {
 2659                 if (!pdata->channel[i]->tx_ring)
 2660                         break;
 2661 
 2662                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
 2663         }
 2664 
 2665         /* Enable MAC Tx */
 2666         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
 2667 }
 2668 
 2669 static void
 2670 xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
 2671 {
 2672         unsigned int i;
 2673 
 2674         /* Prepare for Tx DMA channel stop */
 2675         for (i = 0; i < pdata->tx_q_count; i++)
 2676                 xgbe_prepare_tx_stop(pdata, i);
 2677 
 2678         /* Disable MAC Tx */
 2679         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
 2680 
 2681         /* Disable each Tx DMA channel */
 2682         for (i = 0; i < pdata->channel_count; i++) {
 2683                 if (!pdata->channel[i]->tx_ring)
 2684                         break;
 2685 
 2686                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
 2687         }
 2688 }
 2689 
 2690 static void
 2691 xgbe_powerup_rx(struct xgbe_prv_data *pdata)
 2692 {
 2693         unsigned int i;
 2694 
 2695         /* Enable each Rx DMA channel */
 2696         for (i = 0; i < pdata->channel_count; i++) {
 2697                 if (!pdata->channel[i]->rx_ring)
 2698                         break;
 2699 
 2700                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
 2701         }
 2702 }
 2703 
 2704 static void
 2705 xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
 2706 {
 2707         unsigned int i;
 2708 
 2709         /* Disable each Rx DMA channel */
 2710         for (i = 0; i < pdata->channel_count; i++) {
 2711                 if (!pdata->channel[i]->rx_ring)
 2712                         break;
 2713 
 2714                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
 2715         }
 2716 }
 2717 
 2718 static int
 2719 xgbe_init(struct xgbe_prv_data *pdata)
 2720 {
 2721         struct xgbe_desc_if *desc_if = &pdata->desc_if;
 2722         int ret;
 2723 
 2724         /* Flush Tx queues */
 2725         ret = xgbe_flush_tx_queues(pdata);
 2726         if (ret) {
 2727                 axgbe_error("error flushing TX queues\n");
 2728                 return (ret);
 2729         }
 2730 
 2731         /*
 2732          * Initialize DMA related features
 2733          */
 2734         xgbe_config_dma_bus(pdata);
 2735         xgbe_config_dma_cache(pdata);
 2736         xgbe_config_osp_mode(pdata);
 2737         xgbe_config_pbl_val(pdata);
 2738         xgbe_config_rx_coalesce(pdata);
 2739         xgbe_config_tx_coalesce(pdata);
 2740         xgbe_config_rx_buffer_size(pdata);
 2741         xgbe_config_tso_mode(pdata);
 2742         xgbe_config_sph_mode(pdata);
 2743         xgbe_config_rss(pdata);
 2744         desc_if->wrapper_tx_desc_init(pdata);
 2745         desc_if->wrapper_rx_desc_init(pdata);
 2746         xgbe_enable_dma_interrupts(pdata);
 2747 
 2748         /*
 2749          * Initialize MTL related features
 2750          */
 2751         xgbe_config_mtl_mode(pdata);
 2752         xgbe_config_queue_mapping(pdata);
 2753         xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
 2754         xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
 2755         xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
 2756         xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
 2757         xgbe_config_tx_fifo_size(pdata);
 2758         xgbe_config_rx_fifo_size(pdata);
 2759         /*TODO: Error Packet and undersized good Packet forwarding enable
 2760                 (FEP and FUP)
 2761          */
 2762         xgbe_enable_mtl_interrupts(pdata);
 2763 
 2764         /*
 2765          * Initialize MAC related features
 2766          */
 2767         xgbe_config_mac_address(pdata);
 2768         xgbe_config_rx_mode(pdata);
 2769         xgbe_config_jumbo_enable(pdata);
 2770         xgbe_config_flow_control(pdata);
 2771         xgbe_config_mac_speed(pdata);
 2772         xgbe_config_checksum_offload(pdata);
 2773         xgbe_config_vlan_support(pdata);
 2774         xgbe_config_mmc(pdata);
 2775         xgbe_enable_mac_interrupts(pdata);
 2776 
 2777         return (0);
 2778 }
 2779 
 2780 void
 2781 xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
 2782 {
 2783 
 2784         hw_if->tx_complete = xgbe_tx_complete;
 2785 
 2786         hw_if->set_mac_address = xgbe_set_mac_address;
 2787         hw_if->config_rx_mode = xgbe_config_rx_mode;
 2788 
 2789         hw_if->enable_rx_csum = xgbe_enable_rx_csum;
 2790         hw_if->disable_rx_csum = xgbe_disable_rx_csum;
 2791 
 2792         hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
 2793         hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
 2794         hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
 2795         hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
 2796         hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
 2797 
 2798         hw_if->read_mmd_regs = xgbe_read_mmd_regs;
 2799         hw_if->write_mmd_regs = xgbe_write_mmd_regs;
 2800 
 2801         hw_if->set_speed = xgbe_set_speed;
 2802 
 2803         hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
 2804         hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
 2805         hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
 2806 
 2807         hw_if->set_gpio = xgbe_set_gpio;
 2808         hw_if->clr_gpio = xgbe_clr_gpio;
 2809 
 2810         hw_if->enable_tx = xgbe_enable_tx;
 2811         hw_if->disable_tx = xgbe_disable_tx;
 2812         hw_if->enable_rx = xgbe_enable_rx;
 2813         hw_if->disable_rx = xgbe_disable_rx;
 2814 
 2815         hw_if->powerup_tx = xgbe_powerup_tx;
 2816         hw_if->powerdown_tx = xgbe_powerdown_tx;
 2817         hw_if->powerup_rx = xgbe_powerup_rx;
 2818         hw_if->powerdown_rx = xgbe_powerdown_rx;
 2819 
 2820         hw_if->dev_read = xgbe_dev_read;
 2821         hw_if->enable_int = xgbe_enable_int;
 2822         hw_if->disable_int = xgbe_disable_int;
 2823         hw_if->init = xgbe_init;
 2824         hw_if->exit = xgbe_exit;
 2825 
 2826         /* Descriptor related Sequences have to be initialized here */
 2827         hw_if->tx_desc_init = xgbe_tx_desc_init;
 2828         hw_if->rx_desc_init = xgbe_rx_desc_init;
 2829         hw_if->tx_desc_reset = xgbe_tx_desc_reset;
 2830         hw_if->is_last_desc = xgbe_is_last_desc;
 2831         hw_if->is_context_desc = xgbe_is_context_desc;
 2832 
 2833         /* For FLOW ctrl */
 2834         hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
 2835         hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
 2836 
 2837         /* For RX coalescing */
 2838         hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
 2839         hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
 2840         hw_if->usec_to_riwt = xgbe_usec_to_riwt;
 2841         hw_if->riwt_to_usec = xgbe_riwt_to_usec;
 2842 
 2843         /* For RX and TX threshold config */
 2844         hw_if->config_rx_threshold = xgbe_config_rx_threshold;
 2845         hw_if->config_tx_threshold = xgbe_config_tx_threshold;
 2846 
 2847         /* For RX and TX Store and Forward Mode config */
 2848         hw_if->config_rsf_mode = xgbe_config_rsf_mode;
 2849         hw_if->config_tsf_mode = xgbe_config_tsf_mode;
 2850 
 2851         /* For TX DMA Operating on Second Frame config */
 2852         hw_if->config_osp_mode = xgbe_config_osp_mode;
 2853 
 2854         /* For MMC statistics support */
 2855         hw_if->tx_mmc_int = xgbe_tx_mmc_int;
 2856         hw_if->rx_mmc_int = xgbe_rx_mmc_int;
 2857         hw_if->read_mmc_stats = xgbe_read_mmc_stats;
 2858 
 2859         /* For Receive Side Scaling */
 2860         hw_if->enable_rss = xgbe_enable_rss;
 2861         hw_if->disable_rss = xgbe_disable_rss;
 2862         hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
 2863         hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
 2864 }

Cache object: be7df3e9db83cdb6817ff7e35ea7ca83


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.