The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bce/if_bce.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright (c) 2006-2014 QLogic Corporation
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  *
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
   17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
   20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   26  * THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 /*
   33  * The following controllers are supported by this driver:
   34  *   BCM5706C A2, A3
   35  *   BCM5706S A2, A3
   36  *   BCM5708C B1, B2
   37  *   BCM5708S B1, B2
   38  *   BCM5709C A1, C0
   39  *   BCM5709S A1, C0
   40  *   BCM5716C C0
   41  *   BCM5716S C0
   42  *
   43  * The following controllers are not supported by this driver:
   44  *   BCM5706C A0, A1 (pre-production)
   45  *   BCM5706S A0, A1 (pre-production)
   46  *   BCM5708C A0, B0 (pre-production)
   47  *   BCM5708S A0, B0 (pre-production)
   48  *   BCM5709C A0  B0, B1, B2 (pre-production)
   49  *   BCM5709S A0, B0, B1, B2 (pre-production)
   50  */
   51 
   52 #include "opt_bce.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/endian.h>
   56 #include <sys/systm.h>
   57 #include <sys/sockio.h>
   58 #include <sys/lock.h>
   59 #include <sys/mbuf.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mutex.h>
   62 #include <sys/kernel.h>
   63 #include <sys/module.h>
   64 #include <sys/socket.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/queue.h>
   67 
   68 #include <net/bpf.h>
   69 #include <net/ethernet.h>
   70 #include <net/if.h>
   71 #include <net/if_var.h>
   72 #include <net/if_arp.h>
   73 #include <net/if_dl.h>
   74 #include <net/if_media.h>
   75 
   76 #include <net/if_types.h>
   77 #include <net/if_vlan_var.h>
   78 
   79 #include <netinet/in_systm.h>
   80 #include <netinet/in.h>
   81 #include <netinet/if_ether.h>
   82 #include <netinet/ip.h>
   83 #include <netinet/ip6.h>
   84 #include <netinet/tcp.h>
   85 #include <netinet/udp.h>
   86 
   87 #include <machine/bus.h>
   88 #include <machine/resource.h>
   89 #include <sys/bus.h>
   90 #include <sys/rman.h>
   91 
   92 #include <dev/mii/mii.h>
   93 #include <dev/mii/miivar.h>
   94 #include "miidevs.h"
   95 #include <dev/mii/brgphyreg.h>
   96 
   97 #include <dev/pci/pcireg.h>
   98 #include <dev/pci/pcivar.h>
   99 
  100 #include "miibus_if.h"
  101 
  102 #include <dev/bce/if_bcereg.h>
  103 #include <dev/bce/if_bcefw.h>
  104 
  105 /****************************************************************************/
  106 /* BCE Debug Options                                                        */
  107 /****************************************************************************/
  108 #ifdef BCE_DEBUG
  109         u32 bce_debug = BCE_WARN;
  110 
  111         /*          0 = Never              */
  112         /*          1 = 1 in 2,147,483,648 */
  113         /*        256 = 1 in     8,388,608 */
  114         /*       2048 = 1 in     1,048,576 */
  115         /*      65536 = 1 in        32,768 */
  116         /*    1048576 = 1 in         2,048 */
  117         /*  268435456 = 1 in             8 */
  118         /*  536870912 = 1 in             4 */
  119         /* 1073741824 = 1 in             2 */
  120 
  121         /* Controls how often the l2_fhdr frame error check will fail. */
  122         int l2fhdr_error_sim_control = 0;
  123 
  124         /* Controls how often the unexpected attention check will fail. */
  125         int unexpected_attention_sim_control = 0;
  126 
  127         /* Controls how often to simulate an mbuf allocation failure. */
  128         int mbuf_alloc_failed_sim_control = 0;
  129 
  130         /* Controls how often to simulate a DMA mapping failure. */
  131         int dma_map_addr_failed_sim_control = 0;
  132 
  133         /* Controls how often to simulate a bootcode failure. */
  134         int bootcode_running_failure_sim_control = 0;
  135 #endif
  136 
  137 /****************************************************************************/
  138 /* PCI Device ID Table                                                      */
  139 /*                                                                          */
  140 /* Used by bce_probe() to identify the devices supported by this driver.    */
  141 /****************************************************************************/
  142 #define BCE_DEVDESC_MAX         64
  143 
  144 static const struct bce_type bce_devs[] = {
  145         /* BCM5706C Controllers and OEM boards. */
  146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
  147                 "HP NC370T Multifunction Gigabit Server Adapter" },
  148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
  149                 "HP NC370i Multifunction Gigabit Server Adapter" },
  150         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
  151                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
  152         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
  153                 "HP NC371i Multifunction Gigabit Server Adapter" },
  154         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
  155                 "QLogic NetXtreme II BCM5706 1000Base-T" },
  156 
  157         /* BCM5706S controllers and OEM boards. */
  158         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
  159                 "HP NC370F Multifunction Gigabit Server Adapter" },
  160         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
  161                 "QLogic NetXtreme II BCM5706 1000Base-SX" },
  162 
  163         /* BCM5708C controllers and OEM boards. */
  164         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
  165                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
  166         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
  167                 "HP NC373i Multifunction Gigabit Server Adapter" },
  168         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
  169                 "HP NC374m PCIe Multifunction Adapter" },
  170         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
  171                 "QLogic NetXtreme II BCM5708 1000Base-T" },
  172 
  173         /* BCM5708S controllers and OEM boards. */
  174         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
  175                 "HP NC373m Multifunction Gigabit Server Adapter" },
  176         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
  177                 "HP NC373i Multifunction Gigabit Server Adapter" },
  178         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
  179                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
  180         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
  181                 "QLogic NetXtreme II BCM5708 1000Base-SX" },
  182 
  183         /* BCM5709C controllers and OEM boards. */
  184         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
  185                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
  186         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
  187                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
  188         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
  189                 "QLogic NetXtreme II BCM5709 1000Base-T" },
  190 
  191         /* BCM5709S controllers and OEM boards. */
  192         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
  193                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
  194         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
  195                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
  196         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
  197                 "QLogic NetXtreme II BCM5709 1000Base-SX" },
  198 
  199         /* BCM5716 controllers and OEM boards. */
  200         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
  201                 "QLogic NetXtreme II BCM5716 1000Base-T" },
  202         { 0, 0, 0, 0, NULL }
  203 };
  204 
  205 /****************************************************************************/
  206 /* Supported Flash NVRAM device data.                                       */
  207 /****************************************************************************/
  208 static const struct flash_spec flash_table[] =
  209 {
  210 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
  211 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
  212 
  213         /* Slow EEPROM */
  214         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  215          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  216          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  217          "EEPROM - slow"},
  218         /* Expansion entry 0001 */
  219         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  220          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  221          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  222          "Entry 0001"},
  223         /* Saifun SA25F010 (non-buffered flash) */
  224         /* strap, cfg1, & write1 need updates */
  225         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  226          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  227          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  228          "Non-buffered flash (128kB)"},
  229         /* Saifun SA25F020 (non-buffered flash) */
  230         /* strap, cfg1, & write1 need updates */
  231         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  232          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  233          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  234          "Non-buffered flash (256kB)"},
  235         /* Expansion entry 0100 */
  236         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  237          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  238          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  239          "Entry 0100"},
  240         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  241         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  242          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  243          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  244          "Entry 0101: ST M45PE10 (128kB non-buffered)"},
  245         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  246         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  247          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  248          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  249          "Entry 0110: ST M45PE20 (256kB non-buffered)"},
  250         /* Saifun SA25F005 (non-buffered flash) */
  251         /* strap, cfg1, & write1 need updates */
  252         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  253          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  254          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  255          "Non-buffered flash (64kB)"},
  256         /* Fast EEPROM */
  257         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  258          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  259          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  260          "EEPROM - fast"},
  261         /* Expansion entry 1001 */
  262         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  263          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  264          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  265          "Entry 1001"},
  266         /* Expansion entry 1010 */
  267         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  268          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  269          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  270          "Entry 1010"},
  271         /* ATMEL AT45DB011B (buffered flash) */
  272         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  273          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  274          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  275          "Buffered flash (128kB)"},
  276         /* Expansion entry 1100 */
  277         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  278          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  279          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  280          "Entry 1100"},
  281         /* Expansion entry 1101 */
  282         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  283          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  284          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  285          "Entry 1101"},
  286         /* Ateml Expansion entry 1110 */
  287         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  288          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  289          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  290          "Entry 1110 (Atmel)"},
  291         /* ATMEL AT45DB021B (buffered flash) */
  292         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  293          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  294          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  295          "Buffered flash (256kB)"},
  296 };
  297 
  298 /*
  299  * The BCM5709 controllers transparently handle the
  300  * differences between Atmel 264 byte pages and all
  301  * flash devices which use 256 byte pages, so no
  302  * logical-to-physical mapping is required in the
  303  * driver.
  304  */
  305 static const struct flash_spec flash_5709 = {
  306         .flags          = BCE_NV_BUFFERED,
  307         .page_bits      = BCM5709_FLASH_PAGE_BITS,
  308         .page_size      = BCM5709_FLASH_PAGE_SIZE,
  309         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
  310         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
  311         .name           = "5709/5716 buffered flash (256kB)",
  312 };
  313 
  314 /****************************************************************************/
  315 /* FreeBSD device entry points.                                             */
  316 /****************************************************************************/
  317 static int  bce_probe                   (device_t);
  318 static int  bce_attach                  (device_t);
  319 static int  bce_detach                  (device_t);
  320 static int  bce_shutdown                (device_t);
  321 
  322 /****************************************************************************/
  323 /* BCE Debug Data Structure Dump Routines                                   */
  324 /****************************************************************************/
  325 #ifdef BCE_DEBUG
  326 static u32  bce_reg_rd                          (struct bce_softc *, u32);
  327 static void bce_reg_wr                          (struct bce_softc *, u32, u32);
  328 static void bce_reg_wr16                        (struct bce_softc *, u32, u16);
  329 static u32  bce_ctx_rd                          (struct bce_softc *, u32, u32);
  330 static void bce_dump_enet                       (struct bce_softc *, struct mbuf *);
  331 static void bce_dump_mbuf                       (struct bce_softc *, struct mbuf *);
  332 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
  333 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
  334 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
  335 static void bce_dump_txbd                       (struct bce_softc *,
  336     int, struct tx_bd *);
  337 static void bce_dump_rxbd                       (struct bce_softc *,
  338     int, struct rx_bd *);
  339 static void bce_dump_pgbd                       (struct bce_softc *,
  340     int, struct rx_bd *);
  341 static void bce_dump_l2fhdr             (struct bce_softc *,
  342     int, struct l2_fhdr *);
  343 static void bce_dump_ctx                        (struct bce_softc *, u16);
  344 static void bce_dump_ftqs                       (struct bce_softc *);
  345 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
  346 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
  347 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
  348 static void bce_dump_status_block       (struct bce_softc *);
  349 static void bce_dump_stats_block        (struct bce_softc *);
  350 static void bce_dump_driver_state       (struct bce_softc *);
  351 static void bce_dump_hw_state           (struct bce_softc *);
  352 static void bce_dump_shmem_state        (struct bce_softc *);
  353 static void bce_dump_mq_regs            (struct bce_softc *);
  354 static void bce_dump_bc_state           (struct bce_softc *);
  355 static void bce_dump_txp_state          (struct bce_softc *, int);
  356 static void bce_dump_rxp_state          (struct bce_softc *, int);
  357 static void bce_dump_tpat_state (struct bce_softc *, int);
  358 static void bce_dump_cp_state           (struct bce_softc *, int);
  359 static void bce_dump_com_state          (struct bce_softc *, int);
  360 static void bce_dump_rv2p_state (struct bce_softc *);
  361 static void bce_breakpoint                      (struct bce_softc *);
  362 #endif /*BCE_DEBUG */
  363 
  364 /****************************************************************************/
  365 /* BCE Register/Memory Access Routines                                      */
  366 /****************************************************************************/
  367 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
  368 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
  369 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
  370 static u32  bce_shmem_rd                (struct bce_softc *, u32);
  371 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
  372 static int  bce_miibus_read_reg         (device_t, int, int);
  373 static int  bce_miibus_write_reg        (device_t, int, int, int);
  374 static void bce_miibus_statchg          (device_t);
  375 
  376 #ifdef BCE_DEBUG
  377 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
  378 #ifdef BCE_NVRAM_WRITE_SUPPORT
  379 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
  380 #endif
  381 #endif
  382 
  383 /****************************************************************************/
  384 /* BCE NVRAM Access Routines                                                */
  385 /****************************************************************************/
  386 static int  bce_acquire_nvram_lock      (struct bce_softc *);
  387 static int  bce_release_nvram_lock      (struct bce_softc *);
  388 static void bce_enable_nvram_access(struct bce_softc *);
  389 static void bce_disable_nvram_access(struct bce_softc *);
  390 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
  391 static int  bce_init_nvram                      (struct bce_softc *);
  392 static int  bce_nvram_read                      (struct bce_softc *, u32, u8 *, int);
  393 static int  bce_nvram_test                      (struct bce_softc *);
  394 #ifdef BCE_NVRAM_WRITE_SUPPORT
  395 static int  bce_enable_nvram_write      (struct bce_softc *);
  396 static void bce_disable_nvram_write(struct bce_softc *);
  397 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
  398 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
  399 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
  400 #endif
  401 
  402 /****************************************************************************/
  403 /*                                                                          */
  404 /****************************************************************************/
  405 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
  406 static void bce_get_media                       (struct bce_softc *);
  407 static void bce_init_media                      (struct bce_softc *);
  408 static u32 bce_get_rphy_link            (struct bce_softc *);
  409 static void bce_dma_map_addr            (void *, bus_dma_segment_t *, int, int);
  410 static int  bce_dma_alloc                       (device_t);
  411 static void bce_dma_free                        (struct bce_softc *);
  412 static void bce_release_resources       (struct bce_softc *);
  413 
  414 /****************************************************************************/
  415 /* BCE Firmware Synchronization and Load                                    */
  416 /****************************************************************************/
  417 static void bce_fw_cap_init                     (struct bce_softc *);
  418 static int  bce_fw_sync                 (struct bce_softc *, u32);
  419 static void bce_load_rv2p_fw            (struct bce_softc *, const u32 *, u32,
  420     u32);
  421 static void bce_load_cpu_fw             (struct bce_softc *,
  422     struct cpu_reg *, struct fw_info *);
  423 static void bce_start_cpu                       (struct bce_softc *, struct cpu_reg *);
  424 static void bce_halt_cpu                        (struct bce_softc *, struct cpu_reg *);
  425 static void bce_start_rxp_cpu           (struct bce_softc *);
  426 static void bce_init_rxp_cpu            (struct bce_softc *);
  427 static void bce_init_txp_cpu            (struct bce_softc *);
  428 static void bce_init_tpat_cpu           (struct bce_softc *);
  429 static void bce_init_cp_cpu             (struct bce_softc *);
  430 static void bce_init_com_cpu            (struct bce_softc *);
  431 static void bce_init_cpus                       (struct bce_softc *);
  432 
  433 static void bce_print_adapter_info      (struct bce_softc *);
  434 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
  435 static void bce_stop                            (struct bce_softc *);
  436 static int  bce_reset                           (struct bce_softc *, u32);
  437 static int  bce_chipinit                        (struct bce_softc *);
  438 static int  bce_blockinit                       (struct bce_softc *);
  439 
  440 static int  bce_init_tx_chain           (struct bce_softc *);
  441 static void bce_free_tx_chain           (struct bce_softc *);
  442 
  443 static int  bce_get_rx_buf              (struct bce_softc *, u16, u16, u32 *);
  444 static int  bce_init_rx_chain           (struct bce_softc *);
  445 static void bce_fill_rx_chain           (struct bce_softc *);
  446 static void bce_free_rx_chain           (struct bce_softc *);
  447 
  448 static int  bce_get_pg_buf              (struct bce_softc *, u16, u16);
  449 static int  bce_init_pg_chain           (struct bce_softc *);
  450 static void bce_fill_pg_chain           (struct bce_softc *);
  451 static void bce_free_pg_chain           (struct bce_softc *);
  452 
  453 static struct mbuf *bce_tso_setup       (struct bce_softc *,
  454     struct mbuf **, u16 *);
  455 static int  bce_tx_encap                        (struct bce_softc *, struct mbuf **);
  456 static void bce_start_locked            (struct ifnet *);
  457 static void bce_start                   (struct ifnet *);
  458 static int  bce_ioctl                   (struct ifnet *, u_long, caddr_t);
  459 static uint64_t bce_get_counter         (struct ifnet *, ift_counter);
  460 static void bce_watchdog                (struct bce_softc *);
  461 static int  bce_ifmedia_upd             (struct ifnet *);
  462 static int  bce_ifmedia_upd_locked      (struct ifnet *);
  463 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
  464 static void bce_ifmedia_sts_rphy        (struct bce_softc *, struct ifmediareq *);
  465 static void bce_init_locked             (struct bce_softc *);
  466 static void bce_init                            (void *);
  467 static void bce_mgmt_init_locked        (struct bce_softc *sc);
  468 
  469 static int  bce_init_ctx                        (struct bce_softc *);
  470 static void bce_get_mac_addr            (struct bce_softc *);
  471 static void bce_set_mac_addr            (struct bce_softc *);
  472 static void bce_phy_intr                        (struct bce_softc *);
  473 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
  474 static void bce_rx_intr                 (struct bce_softc *);
  475 static void bce_tx_intr                 (struct bce_softc *);
  476 static void bce_disable_intr            (struct bce_softc *);
  477 static void bce_enable_intr             (struct bce_softc *, int);
  478 
  479 static void bce_intr                            (void *);
  480 static void bce_set_rx_mode             (struct bce_softc *);
  481 static void bce_stats_update            (struct bce_softc *);
  482 static void bce_tick                            (void *);
  483 static void bce_pulse                           (void *);
  484 static void bce_add_sysctls             (struct bce_softc *);
  485 
  486 /****************************************************************************/
  487 /* FreeBSD device dispatch table.                                           */
  488 /****************************************************************************/
  489 static device_method_t bce_methods[] = {
  490         /* Device interface (device_if.h) */
  491         DEVMETHOD(device_probe,         bce_probe),
  492         DEVMETHOD(device_attach,        bce_attach),
  493         DEVMETHOD(device_detach,        bce_detach),
  494         DEVMETHOD(device_shutdown,      bce_shutdown),
  495 /* Supported by device interface but not used here. */
  496 /*      DEVMETHOD(device_identify,      bce_identify),      */
  497 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
  498 /*      DEVMETHOD(device_resume,        bce_resume),        */
  499 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
  500 
  501         /* MII interface (miibus_if.h) */
  502         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
  503         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
  504         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
  505 /* Supported by MII interface but not used here.       */
  506 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
  507 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
  508 
  509         DEVMETHOD_END
  510 };
  511 
  512 static driver_t bce_driver = {
  513         "bce",
  514         bce_methods,
  515         sizeof(struct bce_softc)
  516 };
  517 
  518 MODULE_DEPEND(bce, pci, 1, 1, 1);
  519 MODULE_DEPEND(bce, ether, 1, 1, 1);
  520 MODULE_DEPEND(bce, miibus, 1, 1, 1);
  521 
  522 DRIVER_MODULE(bce, pci, bce_driver, NULL, NULL);
  523 DRIVER_MODULE(miibus, bce, miibus_driver, NULL, NULL);
  524 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce,
  525     bce_devs, nitems(bce_devs) - 1);
  526 
  527 /****************************************************************************/
  528 /* Tunable device values                                                    */
  529 /****************************************************************************/
  530 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  531     "bce driver parameters");
  532 
  533 /* Allowable values are TRUE or FALSE */
  534 static int bce_verbose = TRUE;
  535 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
  536     "Verbose output enable/disable");
  537 
  538 /* Allowable values are TRUE or FALSE */
  539 static int bce_tso_enable = TRUE;
  540 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
  541     "TSO Enable/Disable");
  542 
  543 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
  544 /* ToDo: Add MSI-X support. */
  545 static int bce_msi_enable = 1;
  546 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
  547     "MSI-X|MSI|INTx selector");
  548 
  549 /* Allowable values are 1, 2, 4, 8. */
  550 static int bce_rx_pages = DEFAULT_RX_PAGES;
  551 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
  552     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
  553 
  554 /* Allowable values are 1, 2, 4, 8. */
  555 static int bce_tx_pages = DEFAULT_TX_PAGES;
  556 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
  557     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
  558 
  559 /* Allowable values are TRUE or FALSE. */
  560 static int bce_hdr_split = TRUE;
  561 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
  562     "Frame header/payload splitting Enable/Disable");
  563 
  564 /* Allowable values are TRUE or FALSE. */
  565 static int bce_strict_rx_mtu = FALSE;
  566 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
  567     &bce_strict_rx_mtu, 0,
  568     "Enable/Disable strict RX frame size checking");
  569 
  570 /* Allowable values are 0 ... 100 */
  571 #ifdef BCE_DEBUG
  572 /* Generate 1 interrupt for every transmit completion. */
  573 static int bce_tx_quick_cons_trip_int = 1;
  574 #else
  575 /* Generate 1 interrupt for every 20 transmit completions. */
  576 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
  577 #endif
  578 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
  579     &bce_tx_quick_cons_trip_int, 0,
  580     "Transmit BD trip point during interrupts");
  581 
  582 /* Allowable values are 0 ... 100 */
  583 /* Generate 1 interrupt for every transmit completion. */
  584 #ifdef BCE_DEBUG
  585 static int bce_tx_quick_cons_trip = 1;
  586 #else
  587 /* Generate 1 interrupt for every 20 transmit completions. */
  588 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
  589 #endif
  590 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
  591     &bce_tx_quick_cons_trip, 0,
  592     "Transmit BD trip point");
  593 
  594 /* Allowable values are 0 ... 100 */
  595 #ifdef BCE_DEBUG
  596 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
  597 static int bce_tx_ticks_int = 0;
  598 #else
  599 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
  600 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
  601 #endif
  602 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
  603     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
  604 
  605 /* Allowable values are 0 ... 100 */
  606 #ifdef BCE_DEBUG
  607 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
  608 static int bce_tx_ticks = 0;
  609 #else
  610 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
  611 static int bce_tx_ticks = DEFAULT_TX_TICKS;
  612 #endif
  613 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
  614     &bce_tx_ticks, 0, "Transmit ticks count");
  615 
  616 /* Allowable values are 1 ... 100 */
  617 #ifdef BCE_DEBUG
  618 /* Generate 1 interrupt for every received frame. */
  619 static int bce_rx_quick_cons_trip_int = 1;
  620 #else
  621 /* Generate 1 interrupt for every 6 received frames. */
  622 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
  623 #endif
  624 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
  625     &bce_rx_quick_cons_trip_int, 0,
  626     "Receive BD trip point during interrupts");
  627 
  628 /* Allowable values are 1 ... 100 */
  629 #ifdef BCE_DEBUG
  630 /* Generate 1 interrupt for every received frame. */
  631 static int bce_rx_quick_cons_trip = 1;
  632 #else
  633 /* Generate 1 interrupt for every 6 received frames. */
  634 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
  635 #endif
  636 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
  637     &bce_rx_quick_cons_trip, 0,
  638     "Receive BD trip point");
  639 
  640 /* Allowable values are 0 ... 100 */
  641 #ifdef BCE_DEBUG
  642 /* Generate an int. if 0us have elapsed since the last received frame. */
  643 static int bce_rx_ticks_int = 0;
  644 #else
  645 /* Generate an int. if 18us have elapsed since the last received frame. */
  646 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
  647 #endif
  648 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
  649     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
  650 
  651 /* Allowable values are 0 ... 100 */
  652 #ifdef BCE_DEBUG
  653 /* Generate an int. if 0us have elapsed since the last received frame. */
  654 static int bce_rx_ticks = 0;
  655 #else
  656 /* Generate an int. if 18us have elapsed since the last received frame. */
  657 static int bce_rx_ticks = DEFAULT_RX_TICKS;
  658 #endif
  659 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
  660     &bce_rx_ticks, 0, "Receive ticks count");
  661 
  662 /****************************************************************************/
  663 /* Device probe function.                                                   */
  664 /*                                                                          */
  665 /* Compares the device to the driver's list of supported devices and        */
  666 /* reports back to the OS whether this is the right driver for the device.  */
  667 /*                                                                          */
  668 /* Returns:                                                                 */
  669 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
  670 /****************************************************************************/
  671 static int
  672 bce_probe(device_t dev)
  673 {
  674         const struct bce_type *t;
  675         struct bce_softc *sc;
  676         char *descbuf;
  677         u16 vid = 0, did = 0, svid = 0, sdid = 0;
  678 
  679         t = bce_devs;
  680 
  681         sc = device_get_softc(dev);
  682         sc->bce_unit = device_get_unit(dev);
  683         sc->bce_dev = dev;
  684 
  685         /* Get the data for the device to be probed. */
  686         vid  = pci_get_vendor(dev);
  687         did  = pci_get_device(dev);
  688         svid = pci_get_subvendor(dev);
  689         sdid = pci_get_subdevice(dev);
  690 
  691         DBPRINT(sc, BCE_EXTREME_LOAD,
  692             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
  693             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
  694 
  695         /* Look through the list of known devices for a match. */
  696         while(t->bce_name != NULL) {
  697                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
  698                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
  699                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
  700                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
  701 
  702                         if (descbuf == NULL)
  703                                 return(ENOMEM);
  704 
  705                         /* Print out the device identity. */
  706                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
  707                             t->bce_name, (((pci_read_config(dev,
  708                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
  709                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
  710 
  711                         device_set_desc_copy(dev, descbuf);
  712                         free(descbuf, M_TEMP);
  713                         return(BUS_PROBE_DEFAULT);
  714                 }
  715                 t++;
  716         }
  717 
  718         return(ENXIO);
  719 }
  720 
  721 /****************************************************************************/
  722 /* PCI Capabilities Probe Function.                                         */
  723 /*                                                                          */
  724 /* Walks the PCI capabiites list for the device to find what features are   */
  725 /* supported.                                                               */
  726 /*                                                                          */
  727 /* Returns:                                                                 */
  728 /*   None.                                                                  */
  729 /****************************************************************************/
  730 static void
  731 bce_print_adapter_info(struct bce_softc *sc)
  732 {
  733         int i = 0;
  734 
  735         DBENTER(BCE_VERBOSE_LOAD);
  736 
  737         if (bce_verbose || bootverbose) {
  738                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
  739                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
  740                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
  741 
  742                 /* Bus info. */
  743                 if (sc->bce_flags & BCE_PCIE_FLAG) {
  744                         printf("Bus (PCIe x%d, ", sc->link_width);
  745                         switch (sc->link_speed) {
  746                         case 1: printf("2.5Gbps); "); break;
  747                         case 2: printf("5Gbps); "); break;
  748                         default: printf("Unknown link speed); ");
  749                         }
  750                 } else {
  751                         printf("Bus (PCI%s, %s, %dMHz); ",
  752                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
  753                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
  754                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
  755                 }
  756 
  757                 /* Firmware version and device features. */
  758                 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
  759                     sc->bce_bc_ver,     sc->rx_pages, sc->tx_pages,
  760                     (bce_hdr_split == TRUE ? sc->pg_pages: 0));
  761 
  762                 if (bce_hdr_split == TRUE) {
  763                         printf("SPLT");
  764                         i++;
  765                 }
  766 
  767                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
  768                         if (i > 0) printf("|");
  769                         printf("MSI"); i++;
  770                 }
  771 
  772                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
  773                         if (i > 0) printf("|");
  774                         printf("MSI-X"); i++;
  775                 }
  776 
  777                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
  778                         if (i > 0) printf("|");
  779                         printf("2.5G"); i++;
  780                 }
  781 
  782                 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
  783                         if (i > 0) printf("|");
  784                         printf("Remote PHY(%s)",
  785                             sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
  786                             "FIBER" : "TP"); i++;
  787                 }
  788 
  789                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
  790                         if (i > 0) printf("|");
  791                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
  792                 } else {
  793                         printf(")\n");
  794                 }
  795 
  796                 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
  797                     sc->bce_rx_quick_cons_trip_int,
  798                     sc->bce_rx_quick_cons_trip,
  799                     sc->bce_rx_ticks_int,
  800                     sc->bce_rx_ticks,
  801                     sc->bce_tx_quick_cons_trip_int,
  802                     sc->bce_tx_quick_cons_trip,
  803                     sc->bce_tx_ticks_int,
  804                     sc->bce_tx_ticks);
  805         }
  806 
  807         DBEXIT(BCE_VERBOSE_LOAD);
  808 }
  809 
  810 /****************************************************************************/
  811 /* PCI Capabilities Probe Function.                                         */
  812 /*                                                                          */
  813 /* Walks the PCI capabiites list for the device to find what features are   */
  814 /* supported.                                                               */
  815 /*                                                                          */
  816 /* Returns:                                                                 */
  817 /*   None.                                                                  */
  818 /****************************************************************************/
  819 static void
  820 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
  821 {
  822         u32 reg;
  823 
  824         DBENTER(BCE_VERBOSE_LOAD);
  825 
  826         /* Check if PCI-X capability is enabled. */
  827         if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
  828                 if (reg != 0)
  829                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
  830         }
  831 
  832         /* Check if PCIe capability is enabled. */
  833         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
  834                 if (reg != 0) {
  835                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
  836                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
  837                             "0x%08X\n", link_status);
  838                         sc->link_speed = link_status & 0xf;
  839                         sc->link_width = (link_status >> 4) & 0x3f;
  840                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
  841                         sc->bce_flags |= BCE_PCIE_FLAG;
  842                 }
  843         }
  844 
  845         /* Check if MSI capability is enabled. */
  846         if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
  847                 if (reg != 0)
  848                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
  849         }
  850 
  851         /* Check if MSI-X capability is enabled. */
  852         if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
  853                 if (reg != 0)
  854                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
  855         }
  856 
  857         DBEXIT(BCE_VERBOSE_LOAD);
  858 }
  859 
  860 /****************************************************************************/
  861 /* Load and validate user tunable settings.                                 */
  862 /*                                                                          */
  863 /* Returns:                                                                 */
  864 /*   Nothing.                                                               */
  865 /****************************************************************************/
  866 static void
  867 bce_set_tunables(struct bce_softc *sc)
  868 {
  869         /* Set sysctl values for RX page count. */
  870         switch (bce_rx_pages) {
  871         case 1:
  872                 /* fall-through */
  873         case 2:
  874                 /* fall-through */
  875         case 4:
  876                 /* fall-through */
  877         case 8:
  878                 sc->rx_pages = bce_rx_pages;
  879                 break;
  880         default:
  881                 sc->rx_pages = DEFAULT_RX_PAGES;
  882                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  883                     "hw.bce.rx_pages!  Setting default of %d.\n",
  884                     __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
  885         }
  886 
  887         /* ToDo: Consider allowing user setting for pg_pages. */
  888         sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
  889 
  890         /* Set sysctl values for TX page count. */
  891         switch (bce_tx_pages) {
  892         case 1:
  893                 /* fall-through */
  894         case 2:
  895                 /* fall-through */
  896         case 4:
  897                 /* fall-through */
  898         case 8:
  899                 sc->tx_pages = bce_tx_pages;
  900                 break;
  901         default:
  902                 sc->tx_pages = DEFAULT_TX_PAGES;
  903                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  904                     "hw.bce.tx_pages!  Setting default of %d.\n",
  905                     __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
  906         }
  907 
  908         /*
  909          * Validate the TX trip point (i.e. the number of
  910          * TX completions before a status block update is
  911          * generated and an interrupt is asserted.
  912          */
  913         if (bce_tx_quick_cons_trip_int <= 100) {
  914                 sc->bce_tx_quick_cons_trip_int =
  915                     bce_tx_quick_cons_trip_int;
  916         } else {
  917                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  918                     "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
  919                     __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
  920                     DEFAULT_TX_QUICK_CONS_TRIP_INT);
  921                 sc->bce_tx_quick_cons_trip_int =
  922                     DEFAULT_TX_QUICK_CONS_TRIP_INT;
  923         }
  924 
  925         if (bce_tx_quick_cons_trip <= 100) {
  926                 sc->bce_tx_quick_cons_trip =
  927                     bce_tx_quick_cons_trip;
  928         } else {
  929                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  930                     "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
  931                     __FILE__, __LINE__, bce_tx_quick_cons_trip,
  932                     DEFAULT_TX_QUICK_CONS_TRIP);
  933                 sc->bce_tx_quick_cons_trip =
  934                     DEFAULT_TX_QUICK_CONS_TRIP;
  935         }
  936 
  937         /*
  938          * Validate the TX ticks count (i.e. the maximum amount
  939          * of time to wait after the last TX completion has
  940          * occurred before a status block update is generated
  941          * and an interrupt is asserted.
  942          */
  943         if (bce_tx_ticks_int <= 100) {
  944                 sc->bce_tx_ticks_int =
  945                     bce_tx_ticks_int;
  946         } else {
  947                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  948                     "hw.bce.tx_ticks_int!  Setting default of %d.\n",
  949                     __FILE__, __LINE__, bce_tx_ticks_int,
  950                     DEFAULT_TX_TICKS_INT);
  951                 sc->bce_tx_ticks_int =
  952                     DEFAULT_TX_TICKS_INT;
  953            }
  954 
  955         if (bce_tx_ticks <= 100) {
  956                 sc->bce_tx_ticks =
  957                     bce_tx_ticks;
  958         } else {
  959                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  960                     "hw.bce.tx_ticks!  Setting default of %d.\n",
  961                     __FILE__, __LINE__, bce_tx_ticks,
  962                     DEFAULT_TX_TICKS);
  963                 sc->bce_tx_ticks =
  964                     DEFAULT_TX_TICKS;
  965         }
  966 
  967         /*
  968          * Validate the RX trip point (i.e. the number of
  969          * RX frames received before a status block update is
  970          * generated and an interrupt is asserted.
  971          */
  972         if (bce_rx_quick_cons_trip_int <= 100) {
  973                 sc->bce_rx_quick_cons_trip_int =
  974                     bce_rx_quick_cons_trip_int;
  975         } else {
  976                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  977                     "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
  978                     __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
  979                     DEFAULT_RX_QUICK_CONS_TRIP_INT);
  980                 sc->bce_rx_quick_cons_trip_int =
  981                     DEFAULT_RX_QUICK_CONS_TRIP_INT;
  982         }
  983 
  984         if (bce_rx_quick_cons_trip <= 100) {
  985                 sc->bce_rx_quick_cons_trip =
  986                     bce_rx_quick_cons_trip;
  987         } else {
  988                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
  989                     "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
  990                     __FILE__, __LINE__, bce_rx_quick_cons_trip,
  991                     DEFAULT_RX_QUICK_CONS_TRIP);
  992                 sc->bce_rx_quick_cons_trip =
  993                     DEFAULT_RX_QUICK_CONS_TRIP;
  994         }
  995 
  996         /*
  997          * Validate the RX ticks count (i.e. the maximum amount
  998          * of time to wait after the last RX frame has been
  999          * received before a status block update is generated
 1000          * and an interrupt is asserted.
 1001          */
 1002         if (bce_rx_ticks_int <= 100) {
 1003                 sc->bce_rx_ticks_int = bce_rx_ticks_int;
 1004         } else {
 1005                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
 1006                     "hw.bce.rx_ticks_int!  Setting default of %d.\n",
 1007                     __FILE__, __LINE__, bce_rx_ticks_int,
 1008                     DEFAULT_RX_TICKS_INT);
 1009                 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
 1010         }
 1011 
 1012         if (bce_rx_ticks <= 100) {
 1013                 sc->bce_rx_ticks = bce_rx_ticks;
 1014         } else {
 1015                 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
 1016                     "hw.bce.rx_ticks!  Setting default of %d.\n",
 1017                     __FILE__, __LINE__, bce_rx_ticks,
 1018                     DEFAULT_RX_TICKS);
 1019                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
 1020         }
 1021 
 1022         /* Disabling both RX ticks and RX trips will prevent interrupts. */
 1023         if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
 1024                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
 1025                     "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
 1026                    __FILE__, __LINE__);
 1027                 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
 1028                 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
 1029         }
 1030 
 1031         /* Disabling both TX ticks and TX trips will prevent interrupts. */
 1032         if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
 1033                 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
 1034                     "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
 1035                    __FILE__, __LINE__);
 1036                 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
 1037                 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
 1038         }
 1039 }
 1040 
 1041 /****************************************************************************/
 1042 /* Device attach function.                                                  */
 1043 /*                                                                          */
 1044 /* Allocates device resources, performs secondary chip identification,      */
 1045 /* resets and initializes the hardware, and initializes driver instance     */
 1046 /* variables.                                                               */
 1047 /*                                                                          */
 1048 /* Returns:                                                                 */
 1049 /*   0 on success, positive value on failure.                               */
 1050 /****************************************************************************/
 1051 static int
 1052 bce_attach(device_t dev)
 1053 {
 1054         struct bce_softc *sc;
 1055         struct ifnet *ifp;
 1056         u32 val;
 1057         int count, error, rc = 0, rid;
 1058 
 1059         sc = device_get_softc(dev);
 1060         sc->bce_dev = dev;
 1061 
 1062         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 1063 
 1064         sc->bce_unit = device_get_unit(dev);
 1065 
 1066         /* Set initial device and PHY flags */
 1067         sc->bce_flags = 0;
 1068         sc->bce_phy_flags = 0;
 1069 
 1070         bce_set_tunables(sc);
 1071 
 1072         pci_enable_busmaster(dev);
 1073 
 1074         /* Allocate PCI memory resources. */
 1075         rid = PCIR_BAR(0);
 1076         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 1077                 &rid, RF_ACTIVE);
 1078 
 1079         if (sc->bce_res_mem == NULL) {
 1080                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
 1081                     __FILE__, __LINE__);
 1082                 rc = ENXIO;
 1083                 goto bce_attach_fail;
 1084         }
 1085 
 1086         /* Get various resource handles. */
 1087         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
 1088         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
 1089         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
 1090 
 1091         bce_probe_pci_caps(dev, sc);
 1092 
 1093         rid = 1;
 1094         count = 0;
 1095 #if 0
 1096         /* Try allocating MSI-X interrupts. */
 1097         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
 1098                 (bce_msi_enable >= 2) &&
 1099                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
 1100                 &rid, RF_ACTIVE)) != NULL)) {
 1101                 msi_needed = count = 1;
 1102 
 1103                 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
 1104                         (count != msi_needed)) {
 1105                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
 1106                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
 1107                                 msi_needed, count, error);
 1108                         count = 0;
 1109                         pci_release_msi(dev);
 1110                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
 1111                                 sc->bce_res_irq);
 1112                         sc->bce_res_irq = NULL;
 1113                 } else {
 1114                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
 1115                                 __FUNCTION__);
 1116                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
 1117                 }
 1118         }
 1119 #endif
 1120 
 1121         /* Try allocating a MSI interrupt. */
 1122         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
 1123                 (bce_msi_enable >= 1) && (count == 0)) {
 1124                 count = 1;
 1125                 if ((error = pci_alloc_msi(dev, &count)) != 0) {
 1126                         BCE_PRINTF("%s(%d): MSI allocation failed! "
 1127                             "error = %d\n", __FILE__, __LINE__, error);
 1128                         count = 0;
 1129                         pci_release_msi(dev);
 1130                 } else {
 1131                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
 1132                             "interrupt.\n", __FUNCTION__);
 1133                         sc->bce_flags |= BCE_USING_MSI_FLAG;
 1134                         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
 1135                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
 1136                         rid = 1;
 1137                 }
 1138         }
 1139 
 1140         /* Try allocating a legacy interrupt. */
 1141         if (count == 0) {
 1142                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
 1143                         __FUNCTION__);
 1144                 rid = 0;
 1145         }
 1146 
 1147         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
 1148             &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
 1149 
 1150         /* Report any IRQ allocation errors. */
 1151         if (sc->bce_res_irq == NULL) {
 1152                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
 1153                     __FILE__, __LINE__);
 1154                 rc = ENXIO;
 1155                 goto bce_attach_fail;
 1156         }
 1157 
 1158         /* Initialize mutex for the current device instance. */
 1159         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
 1160 
 1161         /*
 1162          * Configure byte swap and enable indirect register access.
 1163          * Rely on CPU to do target byte swapping on big endian systems.
 1164          * Access to registers outside of PCI configurtion space are not
 1165          * valid until this is done.
 1166          */
 1167         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
 1168             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 1169             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
 1170 
 1171         /* Save ASIC revsion info. */
 1172         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
 1173 
 1174         /* Weed out any non-production controller revisions. */
 1175         switch(BCE_CHIP_ID(sc)) {
 1176         case BCE_CHIP_ID_5706_A0:
 1177         case BCE_CHIP_ID_5706_A1:
 1178         case BCE_CHIP_ID_5708_A0:
 1179         case BCE_CHIP_ID_5708_B0:
 1180         case BCE_CHIP_ID_5709_A0:
 1181         case BCE_CHIP_ID_5709_B0:
 1182         case BCE_CHIP_ID_5709_B1:
 1183         case BCE_CHIP_ID_5709_B2:
 1184                 BCE_PRINTF("%s(%d): Unsupported controller "
 1185                     "revision (%c%d)!\n", __FILE__, __LINE__,
 1186                     (((pci_read_config(dev, PCIR_REVID, 4) &
 1187                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
 1188                     PCIR_REVID, 4) & 0xf));
 1189                 rc = ENODEV;
 1190                 goto bce_attach_fail;
 1191         }
 1192 
 1193         /*
 1194          * The embedded PCIe to PCI-X bridge (EPB)
 1195          * in the 5708 cannot address memory above
 1196          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
 1197          */
 1198         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
 1199                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
 1200         else
 1201                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
 1202 
 1203         /*
 1204          * Find the base address for shared memory access.
 1205          * Newer versions of bootcode use a signature and offset
 1206          * while older versions use a fixed address.
 1207          */
 1208         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
 1209         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
 1210                 /* Multi-port devices use different offsets in shared memory. */
 1211                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
 1212                     (pci_get_function(sc->bce_dev) << 2));
 1213         else
 1214                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
 1215 
 1216         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
 1217             __FUNCTION__, sc->bce_shmem_base);
 1218 
 1219         /* Fetch the bootcode revision. */
 1220         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
 1221         for (int i = 0, j = 0; i < 3; i++) {
 1222                 u8 num;
 1223 
 1224                 num = (u8) (val >> (24 - (i * 8)));
 1225                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
 1226                         if (num >= k || !skip0 || k == 1) {
 1227                                 sc->bce_bc_ver[j++] = (num / k) + '';
 1228                                 skip0 = 0;
 1229                         }
 1230                 }
 1231 
 1232                 if (i != 2)
 1233                         sc->bce_bc_ver[j++] = '.';
 1234         }
 1235 
 1236         /* Check if any management firwmare is enabled. */
 1237         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
 1238         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
 1239                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
 1240 
 1241                 /* Allow time for firmware to enter the running state. */
 1242                 for (int i = 0; i < 30; i++) {
 1243                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
 1244                         if (val & BCE_CONDITION_MFW_RUN_MASK)
 1245                                 break;
 1246                         DELAY(10000);
 1247                 }
 1248 
 1249                 /* Check if management firmware is running. */
 1250                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
 1251                 val &= BCE_CONDITION_MFW_RUN_MASK;
 1252                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
 1253                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
 1254                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
 1255                         int i = 0;
 1256 
 1257                         /* Read the management firmware version string. */
 1258                         for (int j = 0; j < 3; j++) {
 1259                                 val = bce_reg_rd_ind(sc, addr + j * 4);
 1260                                 val = bswap32(val);
 1261                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
 1262                                 i += 4;
 1263                         }
 1264                 } else {
 1265                         /* May cause firmware synchronization timeouts. */
 1266                         BCE_PRINTF("%s(%d): Management firmware enabled "
 1267                             "but not running!\n", __FILE__, __LINE__);
 1268                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
 1269 
 1270                         /* ToDo: Any action the driver should take? */
 1271                 }
 1272         }
 1273 
 1274         /* Get PCI bus information (speed and type). */
 1275         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
 1276         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
 1277                 u32 clkreg;
 1278 
 1279                 sc->bce_flags |= BCE_PCIX_FLAG;
 1280 
 1281                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
 1282 
 1283                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
 1284                 switch (clkreg) {
 1285                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
 1286                         sc->bus_speed_mhz = 133;
 1287                         break;
 1288 
 1289                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
 1290                         sc->bus_speed_mhz = 100;
 1291                         break;
 1292 
 1293                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
 1294                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
 1295                         sc->bus_speed_mhz = 66;
 1296                         break;
 1297 
 1298                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
 1299                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
 1300                         sc->bus_speed_mhz = 50;
 1301                         break;
 1302 
 1303                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
 1304                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
 1305                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
 1306                         sc->bus_speed_mhz = 33;
 1307                         break;
 1308                 }
 1309         } else {
 1310                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
 1311                         sc->bus_speed_mhz = 66;
 1312                 else
 1313                         sc->bus_speed_mhz = 33;
 1314         }
 1315 
 1316         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
 1317                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
 1318 
 1319         /* Find the media type for the adapter. */
 1320         bce_get_media(sc);
 1321 
 1322         /* Reset controller and announce to bootcode that driver is present. */
 1323         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
 1324                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
 1325                     __FILE__, __LINE__);
 1326                 rc = ENXIO;
 1327                 goto bce_attach_fail;
 1328         }
 1329 
 1330         /* Initialize the controller. */
 1331         if (bce_chipinit(sc)) {
 1332                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
 1333                     __FILE__, __LINE__);
 1334                 rc = ENXIO;
 1335                 goto bce_attach_fail;
 1336         }
 1337 
 1338         /* Perform NVRAM test. */
 1339         if (bce_nvram_test(sc)) {
 1340                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
 1341                     __FILE__, __LINE__);
 1342                 rc = ENXIO;
 1343                 goto bce_attach_fail;
 1344         }
 1345 
 1346         /* Fetch the permanent Ethernet MAC address. */
 1347         bce_get_mac_addr(sc);
 1348 
 1349         /* Update statistics once every second. */
 1350         sc->bce_stats_ticks = 1000000 & 0xffff00;
 1351 
 1352         /* Store data needed by PHY driver for backplane applications */
 1353         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
 1354         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
 1355 
 1356         /* Allocate DMA memory resources. */
 1357         if (bce_dma_alloc(dev)) {
 1358                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
 1359                     __FILE__, __LINE__);
 1360                 rc = ENXIO;
 1361                 goto bce_attach_fail;
 1362         }
 1363 
 1364         /* Allocate an ifnet structure. */
 1365         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
 1366         if (ifp == NULL) {
 1367                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
 1368                     __FILE__, __LINE__);
 1369                 rc = ENXIO;
 1370                 goto bce_attach_fail;
 1371         }
 1372 
 1373         /* Initialize the ifnet interface. */
 1374         ifp->if_softc   = sc;
 1375         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1376         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1377         ifp->if_ioctl   = bce_ioctl;
 1378         ifp->if_start   = bce_start;
 1379         ifp->if_get_counter = bce_get_counter;
 1380         ifp->if_init    = bce_init;
 1381         ifp->if_mtu     = ETHERMTU;
 1382 
 1383         if (bce_tso_enable) {
 1384                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
 1385                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
 1386                     IFCAP_VLAN_HWTSO;
 1387         } else {
 1388                 ifp->if_hwassist = BCE_IF_HWASSIST;
 1389                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
 1390         }
 1391 
 1392         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
 1393                 ifp->if_capabilities |= IFCAP_LINKSTATE;
 1394 
 1395         ifp->if_capenable = ifp->if_capabilities;
 1396 
 1397         /*
 1398          * Assume standard mbuf sizes for buffer allocation.
 1399          * This may change later if the MTU size is set to
 1400          * something other than 1500.
 1401          */
 1402         bce_get_rx_buffer_sizes(sc,
 1403             (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
 1404 
 1405         /* Recalculate our buffer allocation sizes. */
 1406         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
 1407         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 1408         IFQ_SET_READY(&ifp->if_snd);
 1409 
 1410         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
 1411                 ifp->if_baudrate = IF_Mbps(2500ULL);
 1412         else
 1413                 ifp->if_baudrate = IF_Mbps(1000);
 1414 
 1415         /* Handle any special PHY initialization for SerDes PHYs. */
 1416         bce_init_media(sc);
 1417 
 1418         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
 1419                 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
 1420                     bce_ifmedia_sts);
 1421                 /*
 1422                  * We can't manually override remote PHY's link and assume
 1423                  * PHY port configuration(Fiber or TP) is not changed after
 1424                  * device attach.  This may not be correct though.
 1425                  */
 1426                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
 1427                         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
 1428                                 ifmedia_add(&sc->bce_ifmedia,
 1429                                     IFM_ETHER | IFM_2500_SX, 0, NULL);
 1430                                 ifmedia_add(&sc->bce_ifmedia,
 1431                                     IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
 1432                         }
 1433                         ifmedia_add(&sc->bce_ifmedia,
 1434                             IFM_ETHER | IFM_1000_SX, 0, NULL);
 1435                         ifmedia_add(&sc->bce_ifmedia,
 1436                             IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
 1437                 } else {
 1438                         ifmedia_add(&sc->bce_ifmedia,
 1439                             IFM_ETHER | IFM_10_T, 0, NULL);
 1440                         ifmedia_add(&sc->bce_ifmedia,
 1441                             IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
 1442                         ifmedia_add(&sc->bce_ifmedia,
 1443                             IFM_ETHER | IFM_100_TX, 0, NULL);
 1444                         ifmedia_add(&sc->bce_ifmedia,
 1445                             IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
 1446                         ifmedia_add(&sc->bce_ifmedia,
 1447                             IFM_ETHER | IFM_1000_T, 0, NULL);
 1448                         ifmedia_add(&sc->bce_ifmedia,
 1449                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
 1450                 }
 1451                 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 1452                 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
 1453                 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
 1454         } else {
 1455                 /* MII child bus by attaching the PHY. */
 1456                 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
 1457                     bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
 1458                     MII_OFFSET_ANY, MIIF_DOPAUSE);
 1459                 if (rc != 0) {
 1460                         BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
 1461                             __LINE__);
 1462                         goto bce_attach_fail;
 1463                 }
 1464         }
 1465 
 1466         /* Attach to the Ethernet interface list. */
 1467         ether_ifattach(ifp, sc->eaddr);
 1468 
 1469         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
 1470         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
 1471 
 1472         /* Hookup IRQ last. */
 1473         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1474                 NULL, bce_intr, sc, &sc->bce_intrhand);
 1475 
 1476         if (rc) {
 1477                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
 1478                     __FILE__, __LINE__);
 1479                 bce_detach(dev);
 1480                 goto bce_attach_exit;
 1481         }
 1482 
 1483         /*
 1484          * At this point we've acquired all the resources
 1485          * we need to run so there's no turning back, we're
 1486          * cleared for launch.
 1487          */
 1488 
 1489         /* Print some important debugging info. */
 1490         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
 1491 
 1492         /* Add the supported sysctls to the kernel. */
 1493         bce_add_sysctls(sc);
 1494 
 1495         BCE_LOCK(sc);
 1496 
 1497         /*
 1498          * The chip reset earlier notified the bootcode that
 1499          * a driver is present.  We now need to start our pulse
 1500          * routine so that the bootcode is reminded that we're
 1501          * still running.
 1502          */
 1503         bce_pulse(sc);
 1504 
 1505         bce_mgmt_init_locked(sc);
 1506         BCE_UNLOCK(sc);
 1507 
 1508         /* Finally, print some useful adapter info */
 1509         bce_print_adapter_info(sc);
 1510         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
 1511                 __FUNCTION__, sc);
 1512 
 1513         goto bce_attach_exit;
 1514 
 1515 bce_attach_fail:
 1516         bce_release_resources(sc);
 1517 
 1518 bce_attach_exit:
 1519 
 1520         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 1521 
 1522         return(rc);
 1523 }
 1524 
 1525 /****************************************************************************/
 1526 /* Device detach function.                                                  */
 1527 /*                                                                          */
 1528 /* Stops the controller, resets the controller, and releases resources.     */
 1529 /*                                                                          */
 1530 /* Returns:                                                                 */
 1531 /*   0 on success, positive value on failure.                               */
 1532 /****************************************************************************/
 1533 static int
 1534 bce_detach(device_t dev)
 1535 {
 1536         struct bce_softc *sc = device_get_softc(dev);
 1537         struct ifnet *ifp;
 1538         u32 msg;
 1539 
 1540         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
 1541 
 1542         ifp = sc->bce_ifp;
 1543 
 1544         /* Stop and reset the controller. */
 1545         BCE_LOCK(sc);
 1546 
 1547         /* Stop the pulse so the bootcode can go to driver absent state. */
 1548         callout_stop(&sc->bce_pulse_callout);
 1549 
 1550         bce_stop(sc);
 1551         if (sc->bce_flags & BCE_NO_WOL_FLAG)
 1552                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
 1553         else
 1554                 msg = BCE_DRV_MSG_CODE_UNLOAD;
 1555         bce_reset(sc, msg);
 1556 
 1557         BCE_UNLOCK(sc);
 1558 
 1559         ether_ifdetach(ifp);
 1560 
 1561         /* If we have a child device on the MII bus remove it too. */
 1562         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
 1563                 ifmedia_removeall(&sc->bce_ifmedia);
 1564         else {
 1565                 bus_generic_detach(dev);
 1566                 device_delete_child(dev, sc->bce_miibus);
 1567         }
 1568 
 1569         /* Release all remaining resources. */
 1570         bce_release_resources(sc);
 1571 
 1572         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
 1573 
 1574         return(0);
 1575 }
 1576 
 1577 /****************************************************************************/
 1578 /* Device shutdown function.                                                */
 1579 /*                                                                          */
 1580 /* Stops and resets the controller.                                         */
 1581 /*                                                                          */
 1582 /* Returns:                                                                 */
 1583 /*   0 on success, positive value on failure.                               */
 1584 /****************************************************************************/
 1585 static int
 1586 bce_shutdown(device_t dev)
 1587 {
 1588         struct bce_softc *sc = device_get_softc(dev);
 1589         u32 msg;
 1590 
 1591         DBENTER(BCE_VERBOSE);
 1592 
 1593         BCE_LOCK(sc);
 1594         bce_stop(sc);
 1595         if (sc->bce_flags & BCE_NO_WOL_FLAG)
 1596                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
 1597         else
 1598                 msg = BCE_DRV_MSG_CODE_UNLOAD;
 1599         bce_reset(sc, msg);
 1600         BCE_UNLOCK(sc);
 1601 
 1602         DBEXIT(BCE_VERBOSE);
 1603 
 1604         return (0);
 1605 }
 1606 
 1607 #ifdef BCE_DEBUG
 1608 /****************************************************************************/
 1609 /* Register read.                                                           */
 1610 /*                                                                          */
 1611 /* Returns:                                                                 */
 1612 /*   The value of the register.                                             */
 1613 /****************************************************************************/
 1614 static u32
 1615 bce_reg_rd(struct bce_softc *sc, u32 offset)
 1616 {
 1617         u32 val = REG_RD(sc, offset);
 1618         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1619                 __FUNCTION__, offset, val);
 1620         return val;
 1621 }
 1622 
 1623 /****************************************************************************/
 1624 /* Register write (16 bit).                                                 */
 1625 /*                                                                          */
 1626 /* Returns:                                                                 */
 1627 /*   Nothing.                                                               */
 1628 /****************************************************************************/
 1629 static void
 1630 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
 1631 {
 1632         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
 1633                 __FUNCTION__, offset, val);
 1634         REG_WR16(sc, offset, val);
 1635 }
 1636 
 1637 /****************************************************************************/
 1638 /* Register write.                                                          */
 1639 /*                                                                          */
 1640 /* Returns:                                                                 */
 1641 /*   Nothing.                                                               */
 1642 /****************************************************************************/
 1643 static void
 1644 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
 1645 {
 1646         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1647                 __FUNCTION__, offset, val);
 1648         REG_WR(sc, offset, val);
 1649 }
 1650 #endif
 1651 
 1652 /****************************************************************************/
 1653 /* Indirect register read.                                                  */
 1654 /*                                                                          */
 1655 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
 1656 /* configuration space.  Using this mechanism avoids issues with posted     */
 1657 /* reads but is much slower than memory-mapped I/O.                         */
 1658 /*                                                                          */
 1659 /* Returns:                                                                 */
 1660 /*   The value of the register.                                             */
 1661 /****************************************************************************/
 1662 static u32
 1663 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
 1664 {
 1665         device_t dev;
 1666         dev = sc->bce_dev;
 1667 
 1668         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
 1669 #ifdef BCE_DEBUG
 1670         {
 1671                 u32 val;
 1672                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
 1673                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1674                         __FUNCTION__, offset, val);
 1675                 return val;
 1676         }
 1677 #else
 1678         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
 1679 #endif
 1680 }
 1681 
 1682 /****************************************************************************/
 1683 /* Indirect register write.                                                 */
 1684 /*                                                                          */
 1685 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
 1686 /* configuration space.  Using this mechanism avoids issues with posted     */
 1687 /* writes but is muchh slower than memory-mapped I/O.                       */
 1688 /*                                                                          */
 1689 /* Returns:                                                                 */
 1690 /*   Nothing.                                                               */
 1691 /****************************************************************************/
 1692 static void
 1693 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
 1694 {
 1695         device_t dev;
 1696         dev = sc->bce_dev;
 1697 
 1698         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1699                 __FUNCTION__, offset, val);
 1700 
 1701         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
 1702         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
 1703 }
 1704 
 1705 /****************************************************************************/
 1706 /* Shared memory write.                                                     */
 1707 /*                                                                          */
 1708 /* Writes NetXtreme II shared memory region.                                */
 1709 /*                                                                          */
 1710 /* Returns:                                                                 */
 1711 /*   Nothing.                                                               */
 1712 /****************************************************************************/
 1713 static void
 1714 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
 1715 {
 1716         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
 1717             "0x%08X\n", __FUNCTION__, val, offset);
 1718 
 1719         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
 1720 }
 1721 
 1722 /****************************************************************************/
 1723 /* Shared memory read.                                                      */
 1724 /*                                                                          */
 1725 /* Reads NetXtreme II shared memory region.                                 */
 1726 /*                                                                          */
 1727 /* Returns:                                                                 */
 1728 /*   The 32 bit value read.                                                 */
 1729 /****************************************************************************/
 1730 static u32
 1731 bce_shmem_rd(struct bce_softc *sc, u32 offset)
 1732 {
 1733         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
 1734 
 1735         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
 1736             "0x%08X\n", __FUNCTION__, val, offset);
 1737 
 1738         return val;
 1739 }
 1740 
 1741 #ifdef BCE_DEBUG
 1742 /****************************************************************************/
 1743 /* Context memory read.                                                     */
 1744 /*                                                                          */
 1745 /* The NetXtreme II controller uses context memory to track connection      */
 1746 /* information for L2 and higher network protocols.                         */
 1747 /*                                                                          */
 1748 /* Returns:                                                                 */
 1749 /*   The requested 32 bit value of context memory.                          */
 1750 /****************************************************************************/
 1751 static u32
 1752 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
 1753 {
 1754         u32 idx, offset, retry_cnt = 5, val;
 1755 
 1756         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
 1757             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
 1758             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
 1759 
 1760         offset = ctx_offset + cid_addr;
 1761 
 1762         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 1763                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
 1764 
 1765                 for (idx = 0; idx < retry_cnt; idx++) {
 1766                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
 1767                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
 1768                                 break;
 1769                         DELAY(5);
 1770                 }
 1771 
 1772                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
 1773                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
 1774                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
 1775                             __FILE__, __LINE__, cid_addr, ctx_offset);
 1776 
 1777                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
 1778         } else {
 1779                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
 1780                 val = REG_RD(sc, BCE_CTX_DATA);
 1781         }
 1782 
 1783         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
 1784                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
 1785 
 1786         return(val);
 1787 }
 1788 #endif
 1789 
 1790 /****************************************************************************/
 1791 /* Context memory write.                                                    */
 1792 /*                                                                          */
 1793 /* The NetXtreme II controller uses context memory to track connection      */
 1794 /* information for L2 and higher network protocols.                         */
 1795 /*                                                                          */
 1796 /* Returns:                                                                 */
 1797 /*   Nothing.                                                               */
 1798 /****************************************************************************/
 1799 static void
 1800 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
 1801 {
 1802         u32 idx, offset = ctx_offset + cid_addr;
 1803         u32 val, retry_cnt = 5;
 1804 
 1805         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
 1806                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
 1807 
 1808         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
 1809                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
 1810                     __FUNCTION__, cid_addr));
 1811 
 1812         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 1813                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
 1814                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
 1815 
 1816                 for (idx = 0; idx < retry_cnt; idx++) {
 1817                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
 1818                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
 1819                                 break;
 1820                         DELAY(5);
 1821                 }
 1822 
 1823                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
 1824                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
 1825                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
 1826                             __FILE__, __LINE__, cid_addr, ctx_offset);
 1827 
 1828         } else {
 1829                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
 1830                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
 1831         }
 1832 }
 1833 
 1834 /****************************************************************************/
 1835 /* PHY register read.                                                       */
 1836 /*                                                                          */
 1837 /* Implements register reads on the MII bus.                                */
 1838 /*                                                                          */
 1839 /* Returns:                                                                 */
 1840 /*   The value of the register.                                             */
 1841 /****************************************************************************/
 1842 static int
 1843 bce_miibus_read_reg(device_t dev, int phy, int reg)
 1844 {
 1845         struct bce_softc *sc;
 1846         u32 val;
 1847         int i;
 1848 
 1849         sc = device_get_softc(dev);
 1850 
 1851     /*
 1852      * The 5709S PHY is an IEEE Clause 45 PHY
 1853      * with special mappings to work with IEEE
 1854      * Clause 22 register accesses.
 1855      */
 1856         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
 1857                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
 1858                         reg += 0x10;
 1859         }
 1860 
 1861     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1862                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1863                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1864 
 1865                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
 1866                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1867 
 1868                 DELAY(40);
 1869         }
 1870 
 1871         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
 1872             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
 1873             BCE_EMAC_MDIO_COMM_START_BUSY;
 1874         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
 1875 
 1876         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
 1877                 DELAY(10);
 1878 
 1879                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1880                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
 1881                         DELAY(5);
 1882 
 1883                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1884                         val &= BCE_EMAC_MDIO_COMM_DATA;
 1885 
 1886                         break;
 1887                 }
 1888         }
 1889 
 1890         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
 1891                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
 1892                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
 1893                 val = 0x0;
 1894         } else {
 1895                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1896         }
 1897 
 1898         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1899                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1900                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1901 
 1902                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
 1903                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1904 
 1905                 DELAY(40);
 1906         }
 1907 
 1908         DB_PRINT_PHY_REG(reg, val);
 1909         return (val & 0xffff);
 1910 }
 1911 
 1912 /****************************************************************************/
 1913 /* PHY register write.                                                      */
 1914 /*                                                                          */
 1915 /* Implements register writes on the MII bus.                               */
 1916 /*                                                                          */
 1917 /* Returns:                                                                 */
 1918 /*   The value of the register.                                             */
 1919 /****************************************************************************/
 1920 static int
 1921 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
 1922 {
 1923         struct bce_softc *sc;
 1924         u32 val1;
 1925         int i;
 1926 
 1927         sc = device_get_softc(dev);
 1928 
 1929         DB_PRINT_PHY_REG(reg, val);
 1930 
 1931         /*
 1932          * The 5709S PHY is an IEEE Clause 45 PHY
 1933          * with special mappings to work with IEEE
 1934          * Clause 22 register accesses.
 1935          */
 1936         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
 1937                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
 1938                         reg += 0x10;
 1939         }
 1940 
 1941         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1942                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1943                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1944 
 1945                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
 1946                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1947 
 1948                 DELAY(40);
 1949         }
 1950 
 1951         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
 1952             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
 1953             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
 1954         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
 1955 
 1956         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
 1957                 DELAY(10);
 1958 
 1959                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1960                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
 1961                         DELAY(5);
 1962                         break;
 1963                 }
 1964         }
 1965 
 1966         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
 1967                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
 1968                     __FILE__, __LINE__);
 1969 
 1970         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1971                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1972                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1973 
 1974                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
 1975                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1976 
 1977                 DELAY(40);
 1978         }
 1979 
 1980         return 0;
 1981 }
 1982 
 1983 /****************************************************************************/
 1984 /* MII bus status change.                                                   */
 1985 /*                                                                          */
 1986 /* Called by the MII bus driver when the PHY establishes link to set the    */
 1987 /* MAC interface registers.                                                 */
 1988 /*                                                                          */
 1989 /* Returns:                                                                 */
 1990 /*   Nothing.                                                               */
 1991 /****************************************************************************/
 1992 static void
 1993 bce_miibus_statchg(device_t dev)
 1994 {
 1995         struct bce_softc *sc;
 1996         struct mii_data *mii;
 1997         struct ifmediareq ifmr;
 1998         int media_active, media_status, val;
 1999 
 2000         sc = device_get_softc(dev);
 2001 
 2002         DBENTER(BCE_VERBOSE_PHY);
 2003 
 2004         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
 2005                 bzero(&ifmr, sizeof(ifmr));
 2006                 bce_ifmedia_sts_rphy(sc, &ifmr);
 2007                 media_active = ifmr.ifm_active;
 2008                 media_status = ifmr.ifm_status;
 2009         } else {
 2010                 mii = device_get_softc(sc->bce_miibus);
 2011                 media_active = mii->mii_media_active;
 2012                 media_status = mii->mii_media_status;
 2013         }
 2014 
 2015         /* Ignore invalid media status. */
 2016         if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
 2017             (IFM_ACTIVE | IFM_AVALID))
 2018                 goto bce_miibus_statchg_exit;
 2019 
 2020         val = REG_RD(sc, BCE_EMAC_MODE);
 2021         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
 2022             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
 2023             BCE_EMAC_MODE_25G);
 2024 
 2025         /* Set MII or GMII interface based on the PHY speed. */
 2026         switch (IFM_SUBTYPE(media_active)) {
 2027         case IFM_10_T:
 2028                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
 2029                         DBPRINT(sc, BCE_INFO_PHY,
 2030                             "Enabling 10Mb interface.\n");
 2031                         val |= BCE_EMAC_MODE_PORT_MII_10;
 2032                         break;
 2033                 }
 2034                 /* fall-through */
 2035         case IFM_100_TX:
 2036                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
 2037                 val |= BCE_EMAC_MODE_PORT_MII;
 2038                 break;
 2039         case IFM_2500_SX:
 2040                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
 2041                 val |= BCE_EMAC_MODE_25G;
 2042                 /* fall-through */
 2043         case IFM_1000_T:
 2044         case IFM_1000_SX:
 2045                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
 2046                 val |= BCE_EMAC_MODE_PORT_GMII;
 2047                 break;
 2048         default:
 2049                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
 2050                     "default GMII interface.\n");
 2051                 val |= BCE_EMAC_MODE_PORT_GMII;
 2052         }
 2053 
 2054         /* Set half or full duplex based on PHY settings. */
 2055         if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
 2056                 DBPRINT(sc, BCE_INFO_PHY,
 2057                     "Setting Half-Duplex interface.\n");
 2058                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
 2059         } else
 2060                 DBPRINT(sc, BCE_INFO_PHY,
 2061                     "Setting Full-Duplex interface.\n");
 2062 
 2063         REG_WR(sc, BCE_EMAC_MODE, val);
 2064 
 2065         if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
 2066                 DBPRINT(sc, BCE_INFO_PHY,
 2067                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
 2068                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
 2069                 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
 2070         } else {
 2071                 DBPRINT(sc, BCE_INFO_PHY,
 2072                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
 2073                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
 2074                 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
 2075         }
 2076 
 2077         if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
 2078                 DBPRINT(sc, BCE_INFO_PHY,
 2079                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
 2080                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
 2081                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
 2082         } else {
 2083                 DBPRINT(sc, BCE_INFO_PHY,
 2084                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
 2085                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
 2086                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
 2087         }
 2088 
 2089         /* ToDo: Update watermarks in bce_init_rx_context(). */
 2090 
 2091 bce_miibus_statchg_exit:
 2092         DBEXIT(BCE_VERBOSE_PHY);
 2093 }
 2094 
 2095 /****************************************************************************/
 2096 /* Acquire NVRAM lock.                                                      */
 2097 /*                                                                          */
 2098 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
 2099 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
 2100 /* for use by the driver.                                                   */
 2101 /*                                                                          */
 2102 /* Returns:                                                                 */
 2103 /*   0 on success, positive value on failure.                               */
 2104 /****************************************************************************/
 2105 static int
 2106 bce_acquire_nvram_lock(struct bce_softc *sc)
 2107 {
 2108         u32 val;
 2109         int j, rc = 0;
 2110 
 2111         DBENTER(BCE_VERBOSE_NVRAM);
 2112 
 2113         /* Request access to the flash interface. */
 2114         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
 2115         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2116                 val = REG_RD(sc, BCE_NVM_SW_ARB);
 2117                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
 2118                         break;
 2119 
 2120                 DELAY(5);
 2121         }
 2122 
 2123         if (j >= NVRAM_TIMEOUT_COUNT) {
 2124                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
 2125                 rc = EBUSY;
 2126         }
 2127 
 2128         DBEXIT(BCE_VERBOSE_NVRAM);
 2129         return (rc);
 2130 }
 2131 
 2132 /****************************************************************************/
 2133 /* Release NVRAM lock.                                                      */
 2134 /*                                                                          */
 2135 /* When the caller is finished accessing NVRAM the lock must be released.   */
 2136 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
 2137 /* for use by the driver.                                                   */
 2138 /*                                                                          */
 2139 /* Returns:                                                                 */
 2140 /*   0 on success, positive value on failure.                               */
 2141 /****************************************************************************/
 2142 static int
 2143 bce_release_nvram_lock(struct bce_softc *sc)
 2144 {
 2145         u32 val;
 2146         int j, rc = 0;
 2147 
 2148         DBENTER(BCE_VERBOSE_NVRAM);
 2149 
 2150         /*
 2151          * Relinquish nvram interface.
 2152          */
 2153         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
 2154 
 2155         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2156                 val = REG_RD(sc, BCE_NVM_SW_ARB);
 2157                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
 2158                         break;
 2159 
 2160                 DELAY(5);
 2161         }
 2162 
 2163         if (j >= NVRAM_TIMEOUT_COUNT) {
 2164                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
 2165                 rc = EBUSY;
 2166         }
 2167 
 2168         DBEXIT(BCE_VERBOSE_NVRAM);
 2169         return (rc);
 2170 }
 2171 
 2172 #ifdef BCE_NVRAM_WRITE_SUPPORT
 2173 /****************************************************************************/
 2174 /* Enable NVRAM write access.                                               */
 2175 /*                                                                          */
 2176 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
 2177 /*                                                                          */
 2178 /* Returns:                                                                 */
 2179 /*   0 on success, positive value on failure.                               */
 2180 /****************************************************************************/
 2181 static int
 2182 bce_enable_nvram_write(struct bce_softc *sc)
 2183 {
 2184         u32 val;
 2185         int rc = 0;
 2186 
 2187         DBENTER(BCE_VERBOSE_NVRAM);
 2188 
 2189         val = REG_RD(sc, BCE_MISC_CFG);
 2190         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
 2191 
 2192         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2193                 int j;
 2194 
 2195                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2196                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
 2197 
 2198                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2199                         DELAY(5);
 2200 
 2201                         val = REG_RD(sc, BCE_NVM_COMMAND);
 2202                         if (val & BCE_NVM_COMMAND_DONE)
 2203                                 break;
 2204                 }
 2205 
 2206                 if (j >= NVRAM_TIMEOUT_COUNT) {
 2207                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
 2208                         rc = EBUSY;
 2209                 }
 2210         }
 2211 
 2212         DBENTER(BCE_VERBOSE_NVRAM);
 2213         return (rc);
 2214 }
 2215 
 2216 /****************************************************************************/
 2217 /* Disable NVRAM write access.                                              */
 2218 /*                                                                          */
 2219 /* When the caller is finished writing to NVRAM write access must be        */
 2220 /* disabled.                                                                */
 2221 /*                                                                          */
 2222 /* Returns:                                                                 */
 2223 /*   Nothing.                                                               */
 2224 /****************************************************************************/
 2225 static void
 2226 bce_disable_nvram_write(struct bce_softc *sc)
 2227 {
 2228         u32 val;
 2229 
 2230         DBENTER(BCE_VERBOSE_NVRAM);
 2231 
 2232         val = REG_RD(sc, BCE_MISC_CFG);
 2233         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
 2234 
 2235         DBEXIT(BCE_VERBOSE_NVRAM);
 2236 
 2237 }
 2238 #endif
 2239 
 2240 /****************************************************************************/
 2241 /* Enable NVRAM access.                                                     */
 2242 /*                                                                          */
 2243 /* Before accessing NVRAM for read or write operations the caller must      */
 2244 /* enabled NVRAM access.                                                    */
 2245 /*                                                                          */
 2246 /* Returns:                                                                 */
 2247 /*   Nothing.                                                               */
 2248 /****************************************************************************/
 2249 static void
 2250 bce_enable_nvram_access(struct bce_softc *sc)
 2251 {
 2252         u32 val;
 2253 
 2254         DBENTER(BCE_VERBOSE_NVRAM);
 2255 
 2256         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
 2257         /* Enable both bits, even on read. */
 2258         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
 2259             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
 2260 
 2261         DBEXIT(BCE_VERBOSE_NVRAM);
 2262 }
 2263 
 2264 /****************************************************************************/
 2265 /* Disable NVRAM access.                                                    */
 2266 /*                                                                          */
 2267 /* When the caller is finished accessing NVRAM access must be disabled.     */
 2268 /*                                                                          */
 2269 /* Returns:                                                                 */
 2270 /*   Nothing.                                                               */
 2271 /****************************************************************************/
 2272 static void
 2273 bce_disable_nvram_access(struct bce_softc *sc)
 2274 {
 2275         u32 val;
 2276 
 2277         DBENTER(BCE_VERBOSE_NVRAM);
 2278 
 2279         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
 2280 
 2281         /* Disable both bits, even after read. */
 2282         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
 2283             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
 2284 
 2285         DBEXIT(BCE_VERBOSE_NVRAM);
 2286 }
 2287 
 2288 #ifdef BCE_NVRAM_WRITE_SUPPORT
 2289 /****************************************************************************/
 2290 /* Erase NVRAM page before writing.                                         */
 2291 /*                                                                          */
 2292 /* Non-buffered flash parts require that a page be erased before it is      */
 2293 /* written.                                                                 */
 2294 /*                                                                          */
 2295 /* Returns:                                                                 */
 2296 /*   0 on success, positive value on failure.                               */
 2297 /****************************************************************************/
 2298 static int
 2299 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
 2300 {
 2301         u32 cmd;
 2302         int j, rc = 0;
 2303 
 2304         DBENTER(BCE_VERBOSE_NVRAM);
 2305 
 2306         /* Buffered flash doesn't require an erase. */
 2307         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
 2308                 goto bce_nvram_erase_page_exit;
 2309 
 2310         /* Build an erase command. */
 2311         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
 2312             BCE_NVM_COMMAND_DOIT;
 2313 
 2314         /*
 2315          * Clear the DONE bit separately, set the NVRAM address to erase,
 2316          * and issue the erase command.
 2317          */
 2318         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2319         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
 2320         REG_WR(sc, BCE_NVM_COMMAND, cmd);
 2321 
 2322         /* Wait for completion. */
 2323         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2324                 u32 val;
 2325 
 2326                 DELAY(5);
 2327 
 2328                 val = REG_RD(sc, BCE_NVM_COMMAND);
 2329                 if (val & BCE_NVM_COMMAND_DONE)
 2330                         break;
 2331         }
 2332 
 2333         if (j >= NVRAM_TIMEOUT_COUNT) {
 2334                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
 2335                 rc = EBUSY;
 2336         }
 2337 
 2338 bce_nvram_erase_page_exit:
 2339         DBEXIT(BCE_VERBOSE_NVRAM);
 2340         return (rc);
 2341 }
 2342 #endif /* BCE_NVRAM_WRITE_SUPPORT */
 2343 
 2344 /****************************************************************************/
 2345 /* Read a dword (32 bits) from NVRAM.                                       */
 2346 /*                                                                          */
 2347 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
 2348 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
 2349 /*                                                                          */
 2350 /* Returns:                                                                 */
 2351 /*   0 on success and the 32 bit value read, positive value on failure.     */
 2352 /****************************************************************************/
 2353 static int
 2354 bce_nvram_read_dword(struct bce_softc *sc,
 2355     u32 offset, u8 *ret_val, u32 cmd_flags)
 2356 {
 2357         u32 cmd;
 2358         int i, rc = 0;
 2359 
 2360         DBENTER(BCE_EXTREME_NVRAM);
 2361 
 2362         /* Build the command word. */
 2363         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
 2364 
 2365         /* Calculate the offset for buffered flash if translation is used. */
 2366         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
 2367                 offset = ((offset / sc->bce_flash_info->page_size) <<
 2368                     sc->bce_flash_info->page_bits) +
 2369                     (offset % sc->bce_flash_info->page_size);
 2370         }
 2371 
 2372         /*
 2373          * Clear the DONE bit separately, set the address to read,
 2374          * and issue the read.
 2375          */
 2376         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2377         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
 2378         REG_WR(sc, BCE_NVM_COMMAND, cmd);
 2379 
 2380         /* Wait for completion. */
 2381         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
 2382                 u32 val;
 2383 
 2384                 DELAY(5);
 2385 
 2386                 val = REG_RD(sc, BCE_NVM_COMMAND);
 2387                 if (val & BCE_NVM_COMMAND_DONE) {
 2388                         val = REG_RD(sc, BCE_NVM_READ);
 2389 
 2390                         val = bce_be32toh(val);
 2391                         memcpy(ret_val, &val, 4);
 2392                         break;
 2393                 }
 2394         }
 2395 
 2396         /* Check for errors. */
 2397         if (i >= NVRAM_TIMEOUT_COUNT) {
 2398                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
 2399                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
 2400                 rc = EBUSY;
 2401         }
 2402 
 2403         DBEXIT(BCE_EXTREME_NVRAM);
 2404         return(rc);
 2405 }
 2406 
 2407 #ifdef BCE_NVRAM_WRITE_SUPPORT
 2408 /****************************************************************************/
 2409 /* Write a dword (32 bits) to NVRAM.                                        */
 2410 /*                                                                          */
 2411 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
 2412 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
 2413 /* enabled NVRAM write access.                                              */
 2414 /*                                                                          */
 2415 /* Returns:                                                                 */
 2416 /*   0 on success, positive value on failure.                               */
 2417 /****************************************************************************/
 2418 static int
 2419 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
 2420         u32 cmd_flags)
 2421 {
 2422         u32 cmd, val32;
 2423         int j, rc = 0;
 2424 
 2425         DBENTER(BCE_VERBOSE_NVRAM);
 2426 
 2427         /* Build the command word. */
 2428         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
 2429 
 2430         /* Calculate the offset for buffered flash if translation is used. */
 2431         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
 2432                 offset = ((offset / sc->bce_flash_info->page_size) <<
 2433                     sc->bce_flash_info->page_bits) +
 2434                     (offset % sc->bce_flash_info->page_size);
 2435         }
 2436 
 2437         /*
 2438          * Clear the DONE bit separately, convert NVRAM data to big-endian,
 2439          * set the NVRAM address to write, and issue the write command
 2440          */
 2441         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2442         memcpy(&val32, val, 4);
 2443         val32 = htobe32(val32);
 2444         REG_WR(sc, BCE_NVM_WRITE, val32);
 2445         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
 2446         REG_WR(sc, BCE_NVM_COMMAND, cmd);
 2447 
 2448         /* Wait for completion. */
 2449         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2450                 DELAY(5);
 2451 
 2452                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
 2453                         break;
 2454         }
 2455         if (j >= NVRAM_TIMEOUT_COUNT) {
 2456                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
 2457                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
 2458                 rc = EBUSY;
 2459         }
 2460 
 2461         DBEXIT(BCE_VERBOSE_NVRAM);
 2462         return (rc);
 2463 }
 2464 #endif /* BCE_NVRAM_WRITE_SUPPORT */
 2465 
 2466 /****************************************************************************/
 2467 /* Initialize NVRAM access.                                                 */
 2468 /*                                                                          */
 2469 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
 2470 /* access that device.                                                      */
 2471 /*                                                                          */
 2472 /* Returns:                                                                 */
 2473 /*   0 on success, positive value on failure.                               */
 2474 /****************************************************************************/
 2475 static int
 2476 bce_init_nvram(struct bce_softc *sc)
 2477 {
 2478         u32 val;
 2479         int j, entry_count, rc = 0;
 2480         const struct flash_spec *flash;
 2481 
 2482         DBENTER(BCE_VERBOSE_NVRAM);
 2483 
 2484         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 2485                 sc->bce_flash_info = &flash_5709;
 2486                 goto bce_init_nvram_get_flash_size;
 2487         }
 2488 
 2489         /* Determine the selected interface. */
 2490         val = REG_RD(sc, BCE_NVM_CFG1);
 2491 
 2492         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
 2493 
 2494         /*
 2495          * Flash reconfiguration is required to support additional
 2496          * NVRAM devices not directly supported in hardware.
 2497          * Check if the flash interface was reconfigured
 2498          * by the bootcode.
 2499          */
 2500 
 2501         if (val & 0x40000000) {
 2502                 /* Flash interface reconfigured by bootcode. */
 2503 
 2504                 DBPRINT(sc,BCE_INFO_LOAD,
 2505                         "bce_init_nvram(): Flash WAS reconfigured.\n");
 2506 
 2507                 for (j = 0, flash = &flash_table[0]; j < entry_count;
 2508                      j++, flash++) {
 2509                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
 2510                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
 2511                                 sc->bce_flash_info = flash;
 2512                                 break;
 2513                         }
 2514                 }
 2515         } else {
 2516                 /* Flash interface not yet reconfigured. */
 2517                 u32 mask;
 2518 
 2519                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
 2520                         __FUNCTION__);
 2521 
 2522                 if (val & (1 << 23))
 2523                         mask = FLASH_BACKUP_STRAP_MASK;
 2524                 else
 2525                         mask = FLASH_STRAP_MASK;
 2526 
 2527                 /* Look for the matching NVRAM device configuration data. */
 2528                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
 2529                         /* Check if the device matches any of the known devices. */
 2530                         if ((val & mask) == (flash->strapping & mask)) {
 2531                                 /* Found a device match. */
 2532                                 sc->bce_flash_info = flash;
 2533 
 2534                                 /* Request access to the flash interface. */
 2535                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
 2536                                         return rc;
 2537 
 2538                                 /* Reconfigure the flash interface. */
 2539                                 bce_enable_nvram_access(sc);
 2540                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
 2541                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
 2542                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
 2543                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
 2544                                 bce_disable_nvram_access(sc);
 2545                                 bce_release_nvram_lock(sc);
 2546 
 2547                                 break;
 2548                         }
 2549                 }
 2550         }
 2551 
 2552         /* Check if a matching device was found. */
 2553         if (j == entry_count) {
 2554                 sc->bce_flash_info = NULL;
 2555                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
 2556                     __FILE__, __LINE__);
 2557                 DBEXIT(BCE_VERBOSE_NVRAM);
 2558                 return (ENODEV);
 2559         }
 2560 
 2561 bce_init_nvram_get_flash_size:
 2562         /* Write the flash config data to the shared memory interface. */
 2563         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
 2564         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
 2565         if (val)
 2566                 sc->bce_flash_size = val;
 2567         else
 2568                 sc->bce_flash_size = sc->bce_flash_info->total_size;
 2569 
 2570         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
 2571             __FUNCTION__, sc->bce_flash_info->name,
 2572             sc->bce_flash_info->total_size);
 2573 
 2574         DBEXIT(BCE_VERBOSE_NVRAM);
 2575         return rc;
 2576 }
 2577 
 2578 /****************************************************************************/
 2579 /* Read an arbitrary range of data from NVRAM.                              */
 2580 /*                                                                          */
 2581 /* Prepares the NVRAM interface for access and reads the requested data     */
 2582 /* into the supplied buffer.                                                */
 2583 /*                                                                          */
 2584 /* Returns:                                                                 */
 2585 /*   0 on success and the data read, positive value on failure.             */
 2586 /****************************************************************************/
 2587 static int
 2588 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
 2589         int buf_size)
 2590 {
 2591         int rc = 0;
 2592         u32 cmd_flags, offset32, len32, extra;
 2593 
 2594         DBENTER(BCE_VERBOSE_NVRAM);
 2595 
 2596         if (buf_size == 0)
 2597                 goto bce_nvram_read_exit;
 2598 
 2599         /* Request access to the flash interface. */
 2600         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
 2601                 goto bce_nvram_read_exit;
 2602 
 2603         /* Enable access to flash interface */
 2604         bce_enable_nvram_access(sc);
 2605 
 2606         len32 = buf_size;
 2607         offset32 = offset;
 2608         extra = 0;
 2609 
 2610         cmd_flags = 0;
 2611 
 2612         if (offset32 & 3) {
 2613                 u8 buf[4];
 2614                 u32 pre_len;
 2615 
 2616                 offset32 &= ~3;
 2617                 pre_len = 4 - (offset & 3);
 2618 
 2619                 if (pre_len >= len32) {
 2620                         pre_len = len32;
 2621                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
 2622                 }
 2623                 else {
 2624                         cmd_flags = BCE_NVM_COMMAND_FIRST;
 2625                 }
 2626 
 2627                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
 2628 
 2629                 if (rc)
 2630                         return rc;
 2631 
 2632                 memcpy(ret_buf, buf + (offset & 3), pre_len);
 2633 
 2634                 offset32 += 4;
 2635                 ret_buf += pre_len;
 2636                 len32 -= pre_len;
 2637         }
 2638 
 2639         if (len32 & 3) {
 2640                 extra = 4 - (len32 & 3);
 2641                 len32 = (len32 + 4) & ~3;
 2642         }
 2643 
 2644         if (len32 == 4) {
 2645                 u8 buf[4];
 2646 
 2647                 if (cmd_flags)
 2648                         cmd_flags = BCE_NVM_COMMAND_LAST;
 2649                 else
 2650                         cmd_flags = BCE_NVM_COMMAND_FIRST |
 2651                                     BCE_NVM_COMMAND_LAST;
 2652 
 2653                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
 2654 
 2655                 memcpy(ret_buf, buf, 4 - extra);
 2656         }
 2657         else if (len32 > 0) {
 2658                 u8 buf[4];
 2659 
 2660                 /* Read the first word. */
 2661                 if (cmd_flags)
 2662                         cmd_flags = 0;
 2663                 else
 2664                         cmd_flags = BCE_NVM_COMMAND_FIRST;
 2665 
 2666                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
 2667 
 2668                 /* Advance to the next dword. */
 2669                 offset32 += 4;
 2670                 ret_buf += 4;
 2671                 len32 -= 4;
 2672 
 2673                 while (len32 > 4 && rc == 0) {
 2674                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
 2675 
 2676                         /* Advance to the next dword. */
 2677                         offset32 += 4;
 2678                         ret_buf += 4;
 2679                         len32 -= 4;
 2680                 }
 2681 
 2682                 if (rc)
 2683                         goto bce_nvram_read_locked_exit;
 2684 
 2685                 cmd_flags = BCE_NVM_COMMAND_LAST;
 2686                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
 2687 
 2688                 memcpy(ret_buf, buf, 4 - extra);
 2689         }
 2690 
 2691 bce_nvram_read_locked_exit:
 2692         /* Disable access to flash interface and release the lock. */
 2693         bce_disable_nvram_access(sc);
 2694         bce_release_nvram_lock(sc);
 2695 
 2696 bce_nvram_read_exit:
 2697         DBEXIT(BCE_VERBOSE_NVRAM);
 2698         return rc;
 2699 }
 2700 
 2701 #ifdef BCE_NVRAM_WRITE_SUPPORT
 2702 /****************************************************************************/
 2703 /* Write an arbitrary range of data from NVRAM.                             */
 2704 /*                                                                          */
 2705 /* Prepares the NVRAM interface for write access and writes the requested   */
 2706 /* data from the supplied buffer.  The caller is responsible for            */
 2707 /* calculating any appropriate CRCs.                                        */
 2708 /*                                                                          */
 2709 /* Returns:                                                                 */
 2710 /*   0 on success, positive value on failure.                               */
 2711 /****************************************************************************/
 2712 static int
 2713 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
 2714         int buf_size)
 2715 {
 2716         u32 written, offset32, len32;
 2717         u8 *buf, start[4], end[4];
 2718         int rc = 0;
 2719         int align_start, align_end;
 2720 
 2721         DBENTER(BCE_VERBOSE_NVRAM);
 2722 
 2723         buf = data_buf;
 2724         offset32 = offset;
 2725         len32 = buf_size;
 2726         align_start = align_end = 0;
 2727 
 2728         if ((align_start = (offset32 & 3))) {
 2729                 offset32 &= ~3;
 2730                 len32 += align_start;
 2731                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
 2732                         goto bce_nvram_write_exit;
 2733         }
 2734 
 2735         if (len32 & 3) {
 2736                 if ((len32 > 4) || !align_start) {
 2737                         align_end = 4 - (len32 & 3);
 2738                         len32 += align_end;
 2739                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
 2740                                 end, 4))) {
 2741                                 goto bce_nvram_write_exit;
 2742                         }
 2743                 }
 2744         }
 2745 
 2746         if (align_start || align_end) {
 2747                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
 2748                 if (buf == NULL) {
 2749                         rc = ENOMEM;
 2750                         goto bce_nvram_write_exit;
 2751                 }
 2752 
 2753                 if (align_start) {
 2754                         memcpy(buf, start, 4);
 2755                 }
 2756 
 2757                 if (align_end) {
 2758                         memcpy(buf + len32 - 4, end, 4);
 2759                 }
 2760                 memcpy(buf + align_start, data_buf, buf_size);
 2761         }
 2762 
 2763         written = 0;
 2764         while ((written < len32) && (rc == 0)) {
 2765                 u32 page_start, page_end, data_start, data_end;
 2766                 u32 addr, cmd_flags;
 2767                 int i;
 2768                 u8 flash_buffer[264];
 2769 
 2770             /* Find the page_start addr */
 2771                 page_start = offset32 + written;
 2772                 page_start -= (page_start % sc->bce_flash_info->page_size);
 2773                 /* Find the page_end addr */
 2774                 page_end = page_start + sc->bce_flash_info->page_size;
 2775                 /* Find the data_start addr */
 2776                 data_start = (written == 0) ? offset32 : page_start;
 2777                 /* Find the data_end addr */
 2778                 data_end = (page_end > offset32 + len32) ?
 2779                         (offset32 + len32) : page_end;
 2780 
 2781                 /* Request access to the flash interface. */
 2782                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
 2783                         goto bce_nvram_write_exit;
 2784 
 2785                 /* Enable access to flash interface */
 2786                 bce_enable_nvram_access(sc);
 2787 
 2788                 cmd_flags = BCE_NVM_COMMAND_FIRST;
 2789                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2790                         int j;
 2791 
 2792                         /* Read the whole page into the buffer
 2793                          * (non-buffer flash only) */
 2794                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
 2795                                 if (j == (sc->bce_flash_info->page_size - 4)) {
 2796                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
 2797                                 }
 2798                                 rc = bce_nvram_read_dword(sc,
 2799                                         page_start + j,
 2800                                         &flash_buffer[j],
 2801                                         cmd_flags);
 2802 
 2803                                 if (rc)
 2804                                         goto bce_nvram_write_locked_exit;
 2805 
 2806                                 cmd_flags = 0;
 2807                         }
 2808                 }
 2809 
 2810                 /* Enable writes to flash interface (unlock write-protect) */
 2811                 if ((rc = bce_enable_nvram_write(sc)) != 0)
 2812                         goto bce_nvram_write_locked_exit;
 2813 
 2814                 /* Erase the page */
 2815                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
 2816                         goto bce_nvram_write_locked_exit;
 2817 
 2818                 /* Re-enable the write again for the actual write */
 2819                 bce_enable_nvram_write(sc);
 2820 
 2821                 /* Loop to write back the buffer data from page_start to
 2822                  * data_start */
 2823                 i = 0;
 2824                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2825                         for (addr = page_start; addr < data_start;
 2826                                 addr += 4, i += 4) {
 2827                                 rc = bce_nvram_write_dword(sc, addr,
 2828                                         &flash_buffer[i], cmd_flags);
 2829 
 2830                                 if (rc != 0)
 2831                                         goto bce_nvram_write_locked_exit;
 2832 
 2833                                 cmd_flags = 0;
 2834                         }
 2835                 }
 2836 
 2837                 /* Loop to write the new data from data_start to data_end */
 2838                 for (addr = data_start; addr < data_end; addr += 4, i++) {
 2839                         if ((addr == page_end - 4) ||
 2840                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
 2841                                 (addr == data_end - 4))) {
 2842                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
 2843                         }
 2844                         rc = bce_nvram_write_dword(sc, addr, buf,
 2845                                 cmd_flags);
 2846 
 2847                         if (rc != 0)
 2848                                 goto bce_nvram_write_locked_exit;
 2849 
 2850                         cmd_flags = 0;
 2851                         buf += 4;
 2852                 }
 2853 
 2854                 /* Loop to write back the buffer data from data_end
 2855                  * to page_end */
 2856                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2857                         for (addr = data_end; addr < page_end;
 2858                                 addr += 4, i += 4) {
 2859                                 if (addr == page_end-4) {
 2860                                         cmd_flags = BCE_NVM_COMMAND_LAST;
 2861                                 }
 2862                                 rc = bce_nvram_write_dword(sc, addr,
 2863                                         &flash_buffer[i], cmd_flags);
 2864 
 2865                                 if (rc != 0)
 2866                                         goto bce_nvram_write_locked_exit;
 2867 
 2868                                 cmd_flags = 0;
 2869                         }
 2870                 }
 2871 
 2872                 /* Disable writes to flash interface (lock write-protect) */
 2873                 bce_disable_nvram_write(sc);
 2874 
 2875                 /* Disable access to flash interface */
 2876                 bce_disable_nvram_access(sc);
 2877                 bce_release_nvram_lock(sc);
 2878 
 2879                 /* Increment written */
 2880                 written += data_end - data_start;
 2881         }
 2882 
 2883         goto bce_nvram_write_exit;
 2884 
 2885 bce_nvram_write_locked_exit:
 2886         bce_disable_nvram_write(sc);
 2887         bce_disable_nvram_access(sc);
 2888         bce_release_nvram_lock(sc);
 2889 
 2890 bce_nvram_write_exit:
 2891         if (align_start || align_end)
 2892                 free(buf, M_DEVBUF);
 2893 
 2894         DBEXIT(BCE_VERBOSE_NVRAM);
 2895         return (rc);
 2896 }
 2897 #endif /* BCE_NVRAM_WRITE_SUPPORT */
 2898 
 2899 /****************************************************************************/
 2900 /* Verifies that NVRAM is accessible and contains valid data.               */
 2901 /*                                                                          */
 2902 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
 2903 /* correct.                                                                 */
 2904 /*                                                                          */
 2905 /* Returns:                                                                 */
 2906 /*   0 on success, positive value on failure.                               */
 2907 /****************************************************************************/
 2908 static int
 2909 bce_nvram_test(struct bce_softc *sc)
 2910 {
 2911         u32 buf[BCE_NVRAM_SIZE / 4];
 2912         u8 *data = (u8 *) buf;
 2913         int rc = 0;
 2914         u32 magic, csum;
 2915 
 2916         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 2917 
 2918         /*
 2919          * Check that the device NVRAM is valid by reading
 2920          * the magic value at offset 0.
 2921          */
 2922         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
 2923                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
 2924                     __FILE__, __LINE__);
 2925                 goto bce_nvram_test_exit;
 2926         }
 2927 
 2928         /*
 2929          * Verify that offset 0 of the NVRAM contains
 2930          * a valid magic number.
 2931          */
 2932         magic = bce_be32toh(buf[0]);
 2933         if (magic != BCE_NVRAM_MAGIC) {
 2934                 rc = ENODEV;
 2935                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
 2936                     "Expected: 0x%08X, Found: 0x%08X\n",
 2937                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
 2938                 goto bce_nvram_test_exit;
 2939         }
 2940 
 2941         /*
 2942          * Verify that the device NVRAM includes valid
 2943          * configuration data.
 2944          */
 2945         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
 2946                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
 2947                     "Information from  NVRAM!\n", __FILE__, __LINE__);
 2948                 goto bce_nvram_test_exit;
 2949         }
 2950 
 2951         csum = ether_crc32_le(data, 0x100);
 2952         if (csum != BCE_CRC32_RESIDUAL) {
 2953                 rc = ENODEV;
 2954                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
 2955                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
 2956                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
 2957                 goto bce_nvram_test_exit;
 2958         }
 2959 
 2960         csum = ether_crc32_le(data + 0x100, 0x100);
 2961         if (csum != BCE_CRC32_RESIDUAL) {
 2962                 rc = ENODEV;
 2963                 BCE_PRINTF("%s(%d): Invalid feature configuration "
 2964                     "information NVRAM CRC! Expected: 0x%08X, "
 2965                     "Found: 08%08X\n", __FILE__, __LINE__,
 2966                     BCE_CRC32_RESIDUAL, csum);
 2967         }
 2968 
 2969 bce_nvram_test_exit:
 2970         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 2971         return rc;
 2972 }
 2973 
 2974 /****************************************************************************/
 2975 /* Calculates the size of the buffers to allocate based on the MTU.         */
 2976 /*                                                                          */
 2977 /* Returns:                                                                 */
 2978 /*   Nothing.                                                               */
 2979 /****************************************************************************/
 2980 static void
 2981 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
 2982 {
 2983         DBENTER(BCE_VERBOSE_LOAD);
 2984 
 2985         /* Use a single allocation type when header splitting enabled. */
 2986         if (bce_hdr_split == TRUE) {
 2987                 sc->rx_bd_mbuf_alloc_size = MHLEN;
 2988                 /* Make sure offset is 16 byte aligned for hardware. */
 2989                 sc->rx_bd_mbuf_align_pad =
 2990                         roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
 2991                 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
 2992                         sc->rx_bd_mbuf_align_pad;
 2993         } else {
 2994                 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 2995                     ETHER_CRC_LEN) > MCLBYTES) {
 2996                         /* Setup for jumbo RX buffer allocations. */
 2997                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
 2998                         sc->rx_bd_mbuf_align_pad  =
 2999                                 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
 3000                         sc->rx_bd_mbuf_data_len =
 3001                             sc->rx_bd_mbuf_alloc_size -
 3002                             sc->rx_bd_mbuf_align_pad;
 3003                 } else {
 3004                         /* Setup for standard RX buffer allocations. */
 3005                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
 3006                         sc->rx_bd_mbuf_align_pad  =
 3007                             roundup2(MCLBYTES, 16) - MCLBYTES;
 3008                         sc->rx_bd_mbuf_data_len =
 3009                             sc->rx_bd_mbuf_alloc_size -
 3010                             sc->rx_bd_mbuf_align_pad;
 3011                 }
 3012         }
 3013 
 3014 //      DBPRINT(sc, BCE_INFO_LOAD,
 3015         DBPRINT(sc, BCE_WARN,
 3016            "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
 3017            "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
 3018            sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
 3019            sc->rx_bd_mbuf_align_pad);
 3020 
 3021         DBEXIT(BCE_VERBOSE_LOAD);
 3022 }
 3023 
 3024 /****************************************************************************/
 3025 /* Identifies the current media type of the controller and sets the PHY     */
 3026 /* address.                                                                 */
 3027 /*                                                                          */
 3028 /* Returns:                                                                 */
 3029 /*   Nothing.                                                               */
 3030 /****************************************************************************/
 3031 static void
 3032 bce_get_media(struct bce_softc *sc)
 3033 {
 3034         u32 val;
 3035 
 3036         DBENTER(BCE_VERBOSE_PHY);
 3037 
 3038         /* Assume PHY address for copper controllers. */
 3039         sc->bce_phy_addr = 1;
 3040 
 3041         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 3042                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
 3043                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
 3044                 u32 strap;
 3045 
 3046                 /*
 3047                  * The BCM5709S is software configurable
 3048                  * for Copper or SerDes operation.
 3049                  */
 3050                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
 3051                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
 3052                             "for copper.\n");
 3053                         goto bce_get_media_exit;
 3054                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
 3055                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
 3056                             "for dual media.\n");
 3057                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 3058                         goto bce_get_media_exit;
 3059                 }
 3060 
 3061                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
 3062                         strap = (val &
 3063                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
 3064                 else
 3065                         strap = (val &
 3066                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
 3067 
 3068                 if (pci_get_function(sc->bce_dev) == 0) {
 3069                         switch (strap) {
 3070                         case 0x4:
 3071                         case 0x5:
 3072                         case 0x6:
 3073                                 DBPRINT(sc, BCE_INFO_LOAD,
 3074                                     "BCM5709 s/w configured for SerDes.\n");
 3075                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 3076                                 break;
 3077                         default:
 3078                                 DBPRINT(sc, BCE_INFO_LOAD,
 3079                                     "BCM5709 s/w configured for Copper.\n");
 3080                                 break;
 3081                         }
 3082                 } else {
 3083                         switch (strap) {
 3084                         case 0x1:
 3085                         case 0x2:
 3086                         case 0x4:
 3087                                 DBPRINT(sc, BCE_INFO_LOAD,
 3088                                     "BCM5709 s/w configured for SerDes.\n");
 3089                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 3090                                 break;
 3091                         default:
 3092                                 DBPRINT(sc, BCE_INFO_LOAD,
 3093                                     "BCM5709 s/w configured for Copper.\n");
 3094                                 break;
 3095                         }
 3096                 }
 3097 
 3098         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
 3099                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 3100 
 3101         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
 3102                 sc->bce_flags |= BCE_NO_WOL_FLAG;
 3103 
 3104                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
 3105                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
 3106 
 3107                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
 3108                         /* 5708S/09S/16S use a separate PHY for SerDes. */
 3109                         sc->bce_phy_addr = 2;
 3110 
 3111                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
 3112                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
 3113                                 sc->bce_phy_flags |=
 3114                                     BCE_PHY_2_5G_CAPABLE_FLAG;
 3115                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
 3116                                     "capable adapter\n");
 3117                         }
 3118                 }
 3119         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
 3120             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
 3121                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
 3122 
 3123 bce_get_media_exit:
 3124         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
 3125                 "Using PHY address %d.\n", sc->bce_phy_addr);
 3126 
 3127         DBEXIT(BCE_VERBOSE_PHY);
 3128 }
 3129 
 3130 /****************************************************************************/
 3131 /* Performs PHY initialization required before MII drivers access the       */
 3132 /* device.                                                                  */
 3133 /*                                                                          */
 3134 /* Returns:                                                                 */
 3135 /*   Nothing.                                                               */
 3136 /****************************************************************************/
 3137 static void
 3138 bce_init_media(struct bce_softc *sc)
 3139 {
 3140         if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
 3141             BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
 3142                 /*
 3143                  * Configure 5709S/5716S PHYs to use traditional IEEE
 3144                  * Clause 22 method. Otherwise we have no way to attach
 3145                  * the PHY in mii(4) layer. PHY specific configuration
 3146                  * is done in mii layer.
 3147                  */
 3148 
 3149                 /* Select auto-negotiation MMD of the PHY. */
 3150                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
 3151                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
 3152                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
 3153                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
 3154 
 3155                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
 3156                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
 3157                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
 3158         }
 3159 }
 3160 
 3161 /****************************************************************************/
 3162 /* Free any DMA memory owned by the driver.                                 */
 3163 /*                                                                          */
 3164 /* Scans through each data structure that requires DMA memory and frees     */
 3165 /* the memory if allocated.                                                 */
 3166 /*                                                                          */
 3167 /* Returns:                                                                 */
 3168 /*   Nothing.                                                               */
 3169 /****************************************************************************/
 3170 static void
 3171 bce_dma_free(struct bce_softc *sc)
 3172 {
 3173         int i;
 3174 
 3175         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
 3176 
 3177         /* Free, unmap, and destroy the status block. */
 3178         if (sc->status_block_paddr != 0) {
 3179                 bus_dmamap_unload(
 3180                     sc->status_tag,
 3181                     sc->status_map);
 3182                 sc->status_block_paddr = 0;
 3183         }
 3184 
 3185         if (sc->status_block != NULL) {
 3186                 bus_dmamem_free(
 3187                    sc->status_tag,
 3188                     sc->status_block,
 3189                     sc->status_map);
 3190                 sc->status_block = NULL;
 3191         }
 3192 
 3193         if (sc->status_tag != NULL) {
 3194                 bus_dma_tag_destroy(sc->status_tag);
 3195                 sc->status_tag = NULL;
 3196         }
 3197 
 3198         /* Free, unmap, and destroy the statistics block. */
 3199         if (sc->stats_block_paddr != 0) {
 3200                 bus_dmamap_unload(
 3201                     sc->stats_tag,
 3202                     sc->stats_map);
 3203                 sc->stats_block_paddr = 0;
 3204         }
 3205 
 3206         if (sc->stats_block != NULL) {
 3207                 bus_dmamem_free(
 3208                     sc->stats_tag,
 3209                     sc->stats_block,
 3210                     sc->stats_map);
 3211                 sc->stats_block = NULL;
 3212         }
 3213 
 3214         if (sc->stats_tag != NULL) {
 3215                 bus_dma_tag_destroy(sc->stats_tag);
 3216                 sc->stats_tag = NULL;
 3217         }
 3218 
 3219         /* Free, unmap and destroy all context memory pages. */
 3220         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 3221                 for (i = 0; i < sc->ctx_pages; i++ ) {
 3222                         if (sc->ctx_paddr[i] != 0) {
 3223                                 bus_dmamap_unload(
 3224                                     sc->ctx_tag,
 3225                                     sc->ctx_map[i]);
 3226                                 sc->ctx_paddr[i] = 0;
 3227                         }
 3228 
 3229                         if (sc->ctx_block[i] != NULL) {
 3230                                 bus_dmamem_free(
 3231                                     sc->ctx_tag,
 3232                                     sc->ctx_block[i],
 3233                                     sc->ctx_map[i]);
 3234                                 sc->ctx_block[i] = NULL;
 3235                         }
 3236                 }
 3237 
 3238                 /* Destroy the context memory tag. */
 3239                 if (sc->ctx_tag != NULL) {
 3240                         bus_dma_tag_destroy(sc->ctx_tag);
 3241                         sc->ctx_tag = NULL;
 3242                 }
 3243         }
 3244 
 3245         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
 3246         for (i = 0; i < sc->tx_pages; i++ ) {
 3247                 if (sc->tx_bd_chain_paddr[i] != 0) {
 3248                         bus_dmamap_unload(
 3249                             sc->tx_bd_chain_tag,
 3250                             sc->tx_bd_chain_map[i]);
 3251                         sc->tx_bd_chain_paddr[i] = 0;
 3252                 }
 3253 
 3254                 if (sc->tx_bd_chain[i] != NULL) {
 3255                         bus_dmamem_free(
 3256                             sc->tx_bd_chain_tag,
 3257                             sc->tx_bd_chain[i],
 3258                             sc->tx_bd_chain_map[i]);
 3259                         sc->tx_bd_chain[i] = NULL;
 3260                 }
 3261         }
 3262 
 3263         /* Destroy the TX buffer descriptor tag. */
 3264         if (sc->tx_bd_chain_tag != NULL) {
 3265                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
 3266                 sc->tx_bd_chain_tag = NULL;
 3267         }
 3268 
 3269         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
 3270         for (i = 0; i < sc->rx_pages; i++ ) {
 3271                 if (sc->rx_bd_chain_paddr[i] != 0) {
 3272                         bus_dmamap_unload(
 3273                             sc->rx_bd_chain_tag,
 3274                             sc->rx_bd_chain_map[i]);
 3275                         sc->rx_bd_chain_paddr[i] = 0;
 3276                 }
 3277 
 3278                 if (sc->rx_bd_chain[i] != NULL) {
 3279                         bus_dmamem_free(
 3280                             sc->rx_bd_chain_tag,
 3281                             sc->rx_bd_chain[i],
 3282                             sc->rx_bd_chain_map[i]);
 3283                         sc->rx_bd_chain[i] = NULL;
 3284                 }
 3285         }
 3286 
 3287         /* Destroy the RX buffer descriptor tag. */
 3288         if (sc->rx_bd_chain_tag != NULL) {
 3289                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
 3290                 sc->rx_bd_chain_tag = NULL;
 3291         }
 3292 
 3293         /* Free, unmap and destroy all page buffer descriptor chain pages. */
 3294         if (bce_hdr_split == TRUE) {
 3295                 for (i = 0; i < sc->pg_pages; i++ ) {
 3296                         if (sc->pg_bd_chain_paddr[i] != 0) {
 3297                                 bus_dmamap_unload(
 3298                                     sc->pg_bd_chain_tag,
 3299                                     sc->pg_bd_chain_map[i]);
 3300                                 sc->pg_bd_chain_paddr[i] = 0;
 3301                         }
 3302 
 3303                         if (sc->pg_bd_chain[i] != NULL) {
 3304                                 bus_dmamem_free(
 3305                                     sc->pg_bd_chain_tag,
 3306                                     sc->pg_bd_chain[i],
 3307                                     sc->pg_bd_chain_map[i]);
 3308                                 sc->pg_bd_chain[i] = NULL;
 3309                         }
 3310                 }
 3311 
 3312                 /* Destroy the page buffer descriptor tag. */
 3313                 if (sc->pg_bd_chain_tag != NULL) {
 3314                         bus_dma_tag_destroy(sc->pg_bd_chain_tag);
 3315                         sc->pg_bd_chain_tag = NULL;
 3316                 }
 3317         }
 3318 
 3319         /* Unload and destroy the TX mbuf maps. */
 3320         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
 3321                 if (sc->tx_mbuf_map[i] != NULL) {
 3322                         bus_dmamap_unload(sc->tx_mbuf_tag,
 3323                             sc->tx_mbuf_map[i]);
 3324                         bus_dmamap_destroy(sc->tx_mbuf_tag,
 3325                             sc->tx_mbuf_map[i]);
 3326                         sc->tx_mbuf_map[i] = NULL;
 3327                 }
 3328         }
 3329 
 3330         /* Destroy the TX mbuf tag. */
 3331         if (sc->tx_mbuf_tag != NULL) {
 3332                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
 3333                 sc->tx_mbuf_tag = NULL;
 3334         }
 3335 
 3336         /* Unload and destroy the RX mbuf maps. */
 3337         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
 3338                 if (sc->rx_mbuf_map[i] != NULL) {
 3339                         bus_dmamap_unload(sc->rx_mbuf_tag,
 3340                             sc->rx_mbuf_map[i]);
 3341                         bus_dmamap_destroy(sc->rx_mbuf_tag,
 3342                             sc->rx_mbuf_map[i]);
 3343                         sc->rx_mbuf_map[i] = NULL;
 3344                 }
 3345         }
 3346 
 3347         /* Destroy the RX mbuf tag. */
 3348         if (sc->rx_mbuf_tag != NULL) {
 3349                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
 3350                 sc->rx_mbuf_tag = NULL;
 3351         }
 3352 
 3353         /* Unload and destroy the page mbuf maps. */
 3354         if (bce_hdr_split == TRUE) {
 3355                 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
 3356                         if (sc->pg_mbuf_map[i] != NULL) {
 3357                                 bus_dmamap_unload(sc->pg_mbuf_tag,
 3358                                     sc->pg_mbuf_map[i]);
 3359                                 bus_dmamap_destroy(sc->pg_mbuf_tag,
 3360                                     sc->pg_mbuf_map[i]);
 3361                                 sc->pg_mbuf_map[i] = NULL;
 3362                         }
 3363                 }
 3364 
 3365                 /* Destroy the page mbuf tag. */
 3366                 if (sc->pg_mbuf_tag != NULL) {
 3367                         bus_dma_tag_destroy(sc->pg_mbuf_tag);
 3368                         sc->pg_mbuf_tag = NULL;
 3369                 }
 3370         }
 3371 
 3372         /* Destroy the parent tag */
 3373         if (sc->parent_tag != NULL) {
 3374                 bus_dma_tag_destroy(sc->parent_tag);
 3375                 sc->parent_tag = NULL;
 3376         }
 3377 
 3378         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
 3379 }
 3380 
 3381 /****************************************************************************/
 3382 /* Get DMA memory from the OS.                                              */
 3383 /*                                                                          */
 3384 /* Validates that the OS has provided DMA buffers in response to a          */
 3385 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
 3386 /* When the callback is used the OS will return 0 for the mapping function  */
 3387 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
 3388 /* failures back to the caller.                                             */
 3389 /*                                                                          */
 3390 /* Returns:                                                                 */
 3391 /*   Nothing.                                                               */
 3392 /****************************************************************************/
 3393 static void
 3394 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 3395 {
 3396         bus_addr_t *busaddr = arg;
 3397 
 3398         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
 3399             __FUNCTION__, nseg));
 3400         /* Simulate a mapping failure. */
 3401         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
 3402             error = ENOMEM);
 3403 
 3404         /* ToDo: How to increment debug sim_count variable here? */
 3405 
 3406         /* Check for an error and signal the caller that an error occurred. */
 3407         if (error) {
 3408                 *busaddr = 0;
 3409         } else {
 3410                 *busaddr = segs->ds_addr;
 3411         }
 3412 }
 3413 
 3414 /****************************************************************************/
 3415 /* Allocate any DMA memory needed by the driver.                            */
 3416 /*                                                                          */
 3417 /* Allocates DMA memory needed for the various global structures needed by  */
 3418 /* hardware.                                                                */
 3419 /*                                                                          */
 3420 /* Memory alignment requirements:                                           */
 3421 /* +-----------------+----------+----------+----------+----------+          */
 3422 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
 3423 /* +-----------------+----------+----------+----------+----------+          */
 3424 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
 3425 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
 3426 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
 3427 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
 3428 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
 3429 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
 3430 /* |Context Memory   |          |          |          |          |          */
 3431 /* +-----------------+----------+----------+----------+----------+          */
 3432 /*                                                                          */
 3433 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
 3434 /*                                                                          */
 3435 /* Returns:                                                                 */
 3436 /*   0 for success, positive value for failure.                             */
 3437 /****************************************************************************/
 3438 static int
 3439 bce_dma_alloc(device_t dev)
 3440 {
 3441         struct bce_softc *sc;
 3442         int i, error, rc = 0;
 3443         bus_size_t max_size, max_seg_size;
 3444         int max_segments;
 3445 
 3446         sc = device_get_softc(dev);
 3447 
 3448         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 3449 
 3450         /*
 3451          * Allocate the parent bus DMA tag appropriate for PCI.
 3452          */
 3453         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
 3454             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3455             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
 3456             &sc->parent_tag)) {
 3457                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
 3458                     __FILE__, __LINE__);
 3459                 rc = ENOMEM;
 3460                 goto bce_dma_alloc_exit;
 3461         }
 3462 
 3463         /*
 3464          * Create a DMA tag for the status block, allocate and clear the
 3465          * memory, map the memory into DMA space, and fetch the physical
 3466          * address of the block.
 3467          */
 3468         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
 3469             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
 3470             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
 3471             0, NULL, NULL, &sc->status_tag)) {
 3472                 BCE_PRINTF("%s(%d): Could not allocate status block "
 3473                     "DMA tag!\n", __FILE__, __LINE__);
 3474                 rc = ENOMEM;
 3475                 goto bce_dma_alloc_exit;
 3476         }
 3477 
 3478         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
 3479             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3480             &sc->status_map)) {
 3481                 BCE_PRINTF("%s(%d): Could not allocate status block "
 3482                     "DMA memory!\n", __FILE__, __LINE__);
 3483                 rc = ENOMEM;
 3484                 goto bce_dma_alloc_exit;
 3485         }
 3486 
 3487         error = bus_dmamap_load(sc->status_tag, sc->status_map,
 3488             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
 3489             &sc->status_block_paddr, BUS_DMA_NOWAIT);
 3490 
 3491         if (error || sc->status_block_paddr == 0) {
 3492                 BCE_PRINTF("%s(%d): Could not map status block "
 3493                     "DMA memory!\n", __FILE__, __LINE__);
 3494                 rc = ENOMEM;
 3495                 goto bce_dma_alloc_exit;
 3496         }
 3497 
 3498         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
 3499             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
 3500 
 3501         /*
 3502          * Create a DMA tag for the statistics block, allocate and clear the
 3503          * memory, map the memory into DMA space, and fetch the physical
 3504          * address of the block.
 3505          */
 3506         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
 3507             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
 3508             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
 3509             0, NULL, NULL, &sc->stats_tag)) {
 3510                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
 3511                     "DMA tag!\n", __FILE__, __LINE__);
 3512                 rc = ENOMEM;
 3513                 goto bce_dma_alloc_exit;
 3514         }
 3515 
 3516         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
 3517             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
 3518                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
 3519                     "DMA memory!\n", __FILE__, __LINE__);
 3520                 rc = ENOMEM;
 3521                 goto bce_dma_alloc_exit;
 3522         }
 3523 
 3524         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
 3525             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
 3526             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
 3527 
 3528         if (error || sc->stats_block_paddr == 0) {
 3529                 BCE_PRINTF("%s(%d): Could not map statistics block "
 3530                     "DMA memory!\n", __FILE__, __LINE__);
 3531                 rc = ENOMEM;
 3532                 goto bce_dma_alloc_exit;
 3533         }
 3534 
 3535         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
 3536             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
 3537 
 3538         /* BCM5709 uses host memory as cache for context memory. */
 3539         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 3540                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
 3541                 if (sc->ctx_pages == 0)
 3542                         sc->ctx_pages = 1;
 3543 
 3544                 DBRUNIF((sc->ctx_pages > 512),
 3545                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
 3546                     __FILE__, __LINE__, sc->ctx_pages));
 3547 
 3548                 /*
 3549                  * Create a DMA tag for the context pages,
 3550                  * allocate and clear the memory, map the
 3551                  * memory into DMA space, and fetch the
 3552                  * physical address of the block.
 3553                  */
 3554                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
 3555                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
 3556                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
 3557                     0, NULL, NULL, &sc->ctx_tag)) {
 3558                         BCE_PRINTF("%s(%d): Could not allocate CTX "
 3559                             "DMA tag!\n", __FILE__, __LINE__);
 3560                         rc = ENOMEM;
 3561                         goto bce_dma_alloc_exit;
 3562                 }
 3563 
 3564                 for (i = 0; i < sc->ctx_pages; i++) {
 3565                         if(bus_dmamem_alloc(sc->ctx_tag,
 3566                             (void **)&sc->ctx_block[i],
 3567                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3568                             &sc->ctx_map[i])) {
 3569                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
 3570                                     "DMA memory!\n", __FILE__, __LINE__);
 3571                                 rc = ENOMEM;
 3572                                 goto bce_dma_alloc_exit;
 3573                         }
 3574 
 3575                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
 3576                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
 3577                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
 3578 
 3579                         if (error || sc->ctx_paddr[i] == 0) {
 3580                                 BCE_PRINTF("%s(%d): Could not map CTX "
 3581                                     "DMA memory!\n", __FILE__, __LINE__);
 3582                                 rc = ENOMEM;
 3583                                 goto bce_dma_alloc_exit;
 3584                         }
 3585 
 3586                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
 3587                             "= 0x%jX\n", __FUNCTION__, i,
 3588                             (uintmax_t) sc->ctx_paddr[i]);
 3589                 }
 3590         }
 3591 
 3592         /*
 3593          * Create a DMA tag for the TX buffer descriptor chain,
 3594          * allocate and clear the  memory, and fetch the
 3595          * physical address of the block.
 3596          */
 3597         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
 3598             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3599             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
 3600             NULL, NULL, &sc->tx_bd_chain_tag)) {
 3601                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
 3602                     "chain DMA tag!\n", __FILE__, __LINE__);
 3603                 rc = ENOMEM;
 3604                 goto bce_dma_alloc_exit;
 3605         }
 3606 
 3607         for (i = 0; i < sc->tx_pages; i++) {
 3608                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
 3609                     (void **)&sc->tx_bd_chain[i],
 3610                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3611                     &sc->tx_bd_chain_map[i])) {
 3612                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
 3613                             "chain DMA memory!\n", __FILE__, __LINE__);
 3614                         rc = ENOMEM;
 3615                         goto bce_dma_alloc_exit;
 3616                 }
 3617 
 3618                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
 3619                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
 3620                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
 3621                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
 3622 
 3623                 if (error || sc->tx_bd_chain_paddr[i] == 0) {
 3624                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
 3625                             "chain DMA memory!\n", __FILE__, __LINE__);
 3626                         rc = ENOMEM;
 3627                         goto bce_dma_alloc_exit;
 3628                 }
 3629 
 3630                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
 3631                     "0x%jX\n", __FUNCTION__, i,
 3632                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
 3633         }
 3634 
 3635         /* Check the required size before mapping to conserve resources. */
 3636         if (bce_tso_enable) {
 3637                 max_size     = BCE_TSO_MAX_SIZE;
 3638                 max_segments = BCE_MAX_SEGMENTS;
 3639                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
 3640         } else {
 3641                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
 3642                 max_segments = BCE_MAX_SEGMENTS;
 3643                 max_seg_size = MCLBYTES;
 3644         }
 3645 
 3646         /* Create a DMA tag for TX mbufs. */
 3647         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
 3648             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
 3649             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
 3650                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
 3651                     __FILE__, __LINE__);
 3652                 rc = ENOMEM;
 3653                 goto bce_dma_alloc_exit;
 3654         }
 3655 
 3656         /* Create DMA maps for the TX mbufs clusters. */
 3657         for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
 3658                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
 3659                         &sc->tx_mbuf_map[i])) {
 3660                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
 3661                             "map!\n", __FILE__, __LINE__);
 3662                         rc = ENOMEM;
 3663                         goto bce_dma_alloc_exit;
 3664                 }
 3665         }
 3666 
 3667         /*
 3668          * Create a DMA tag for the RX buffer descriptor chain,
 3669          * allocate and clear the memory, and fetch the physical
 3670          * address of the blocks.
 3671          */
 3672         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
 3673                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
 3674                         sc->max_bus_addr, NULL, NULL,
 3675                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
 3676                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
 3677                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
 3678                     "DMA tag!\n", __FILE__, __LINE__);
 3679                 rc = ENOMEM;
 3680                 goto bce_dma_alloc_exit;
 3681         }
 3682 
 3683         for (i = 0; i < sc->rx_pages; i++) {
 3684                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
 3685                     (void **)&sc->rx_bd_chain[i],
 3686                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3687                     &sc->rx_bd_chain_map[i])) {
 3688                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
 3689                             "chain DMA memory!\n", __FILE__, __LINE__);
 3690                         rc = ENOMEM;
 3691                         goto bce_dma_alloc_exit;
 3692                 }
 3693 
 3694                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
 3695                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
 3696                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
 3697                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
 3698 
 3699                 if (error || sc->rx_bd_chain_paddr[i] == 0) {
 3700                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
 3701                             "chain DMA memory!\n", __FILE__, __LINE__);
 3702                         rc = ENOMEM;
 3703                         goto bce_dma_alloc_exit;
 3704                 }
 3705 
 3706                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
 3707                     "0x%jX\n", __FUNCTION__, i,
 3708                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
 3709         }
 3710 
 3711         /*
 3712          * Create a DMA tag for RX mbufs.
 3713          */
 3714         if (bce_hdr_split == TRUE)
 3715                 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
 3716                     MCLBYTES : sc->rx_bd_mbuf_alloc_size);
 3717         else
 3718                 max_size = MJUM9BYTES;
 3719 
 3720         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
 3721             "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
 3722 
 3723         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
 3724             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3725             max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
 3726                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
 3727                     __FILE__, __LINE__);
 3728                 rc = ENOMEM;
 3729                 goto bce_dma_alloc_exit;
 3730         }
 3731 
 3732         /* Create DMA maps for the RX mbuf clusters. */
 3733         for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
 3734                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
 3735                     &sc->rx_mbuf_map[i])) {
 3736                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
 3737                             "DMA map!\n", __FILE__, __LINE__);
 3738                         rc = ENOMEM;
 3739                         goto bce_dma_alloc_exit;
 3740                 }
 3741         }
 3742 
 3743         if (bce_hdr_split == TRUE) {
 3744                 /*
 3745                  * Create a DMA tag for the page buffer descriptor chain,
 3746                  * allocate and clear the memory, and fetch the physical
 3747                  * address of the blocks.
 3748                  */
 3749                 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
 3750                             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
 3751                             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
 3752                             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
 3753                         BCE_PRINTF("%s(%d): Could not allocate page descriptor "
 3754                             "chain DMA tag!\n", __FILE__, __LINE__);
 3755                         rc = ENOMEM;
 3756                         goto bce_dma_alloc_exit;
 3757                 }
 3758 
 3759                 for (i = 0; i < sc->pg_pages; i++) {
 3760                         if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
 3761                             (void **)&sc->pg_bd_chain[i],
 3762                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3763                             &sc->pg_bd_chain_map[i])) {
 3764                                 BCE_PRINTF("%s(%d): Could not allocate page "
 3765                                     "descriptor chain DMA memory!\n",
 3766                                     __FILE__, __LINE__);
 3767                                 rc = ENOMEM;
 3768                                 goto bce_dma_alloc_exit;
 3769                         }
 3770 
 3771                         error = bus_dmamap_load(sc->pg_bd_chain_tag,
 3772                             sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
 3773                             BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
 3774                             &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
 3775 
 3776                         if (error || sc->pg_bd_chain_paddr[i] == 0) {
 3777                                 BCE_PRINTF("%s(%d): Could not map page descriptor "
 3778                                         "chain DMA memory!\n", __FILE__, __LINE__);
 3779                                 rc = ENOMEM;
 3780                                 goto bce_dma_alloc_exit;
 3781                         }
 3782 
 3783                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
 3784                                 "0x%jX\n", __FUNCTION__, i,
 3785                                 (uintmax_t) sc->pg_bd_chain_paddr[i]);
 3786                 }
 3787 
 3788                 /*
 3789                  * Create a DMA tag for page mbufs.
 3790                  */
 3791                 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
 3792                     sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
 3793                     1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
 3794                         BCE_PRINTF("%s(%d): Could not allocate page mbuf "
 3795                                 "DMA tag!\n", __FILE__, __LINE__);
 3796                         rc = ENOMEM;
 3797                         goto bce_dma_alloc_exit;
 3798                 }
 3799 
 3800                 /* Create DMA maps for the page mbuf clusters. */
 3801                 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
 3802                         if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
 3803                                 &sc->pg_mbuf_map[i])) {
 3804                                 BCE_PRINTF("%s(%d): Unable to create page mbuf "
 3805                                         "DMA map!\n", __FILE__, __LINE__);
 3806                                 rc = ENOMEM;
 3807                                 goto bce_dma_alloc_exit;
 3808                         }
 3809                 }
 3810         }
 3811 
 3812 bce_dma_alloc_exit:
 3813         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 3814         return(rc);
 3815 }
 3816 
 3817 /****************************************************************************/
 3818 /* Release all resources used by the driver.                                */
 3819 /*                                                                          */
 3820 /* Releases all resources acquired by the driver including interrupts,      */
 3821 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
 3822 /*                                                                          */
 3823 /* Returns:                                                                 */
 3824 /*   Nothing.                                                               */
 3825 /****************************************************************************/
 3826 static void
 3827 bce_release_resources(struct bce_softc *sc)
 3828 {
 3829         device_t dev;
 3830 
 3831         DBENTER(BCE_VERBOSE_RESET);
 3832 
 3833         dev = sc->bce_dev;
 3834 
 3835         bce_dma_free(sc);
 3836 
 3837         if (sc->bce_intrhand != NULL) {
 3838                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
 3839                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
 3840         }
 3841 
 3842         if (sc->bce_res_irq != NULL) {
 3843                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
 3844                 bus_release_resource(dev, SYS_RES_IRQ,
 3845                     rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
 3846         }
 3847 
 3848         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
 3849                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
 3850                 pci_release_msi(dev);
 3851         }
 3852 
 3853         if (sc->bce_res_mem != NULL) {
 3854                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
 3855                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
 3856                     sc->bce_res_mem);
 3857         }
 3858 
 3859         if (sc->bce_ifp != NULL) {
 3860                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
 3861                 if_free(sc->bce_ifp);
 3862         }
 3863 
 3864         if (mtx_initialized(&sc->bce_mtx))
 3865                 BCE_LOCK_DESTROY(sc);
 3866 
 3867         DBEXIT(BCE_VERBOSE_RESET);
 3868 }
 3869 
 3870 /****************************************************************************/
 3871 /* Firmware synchronization.                                                */
 3872 /*                                                                          */
 3873 /* Before performing certain events such as a chip reset, synchronize with  */
 3874 /* the firmware first.                                                      */
 3875 /*                                                                          */
 3876 /* Returns:                                                                 */
 3877 /*   0 for success, positive value for failure.                             */
 3878 /****************************************************************************/
 3879 static int
 3880 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
 3881 {
 3882         int i, rc = 0;
 3883         u32 val;
 3884 
 3885         DBENTER(BCE_VERBOSE_RESET);
 3886 
 3887         /* Don't waste any time if we've timed out before. */
 3888         if (sc->bce_fw_timed_out == TRUE) {
 3889                 rc = EBUSY;
 3890                 goto bce_fw_sync_exit;
 3891         }
 3892 
 3893         /* Increment the message sequence number. */
 3894         sc->bce_fw_wr_seq++;
 3895         msg_data |= sc->bce_fw_wr_seq;
 3896 
 3897         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
 3898             "0x%08X\n", msg_data);
 3899 
 3900         /* Send the message to the bootcode driver mailbox. */
 3901         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
 3902 
 3903         /* Wait for the bootcode to acknowledge the message. */
 3904         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
 3905                 /* Check for a response in the bootcode firmware mailbox. */
 3906                 val = bce_shmem_rd(sc, BCE_FW_MB);
 3907                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
 3908                         break;
 3909                 DELAY(1000);
 3910         }
 3911 
 3912         /* If we've timed out, tell bootcode that we've stopped waiting. */
 3913         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
 3914             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
 3915                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
 3916                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
 3917 
 3918                 msg_data &= ~BCE_DRV_MSG_CODE;
 3919                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
 3920 
 3921                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
 3922 
 3923                 sc->bce_fw_timed_out = TRUE;
 3924                 rc = EBUSY;
 3925         }
 3926 
 3927 bce_fw_sync_exit:
 3928         DBEXIT(BCE_VERBOSE_RESET);
 3929         return (rc);
 3930 }
 3931 
 3932 /****************************************************************************/
 3933 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
 3934 /*                                                                          */
 3935 /* Returns:                                                                 */
 3936 /*   Nothing.                                                               */
 3937 /****************************************************************************/
 3938 static void
 3939 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
 3940         u32 rv2p_code_len, u32 rv2p_proc)
 3941 {
 3942         int i;
 3943         u32 val;
 3944 
 3945         DBENTER(BCE_VERBOSE_RESET);
 3946 
 3947         /* Set the page size used by RV2P. */
 3948         if (rv2p_proc == RV2P_PROC2) {
 3949                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
 3950         }
 3951 
 3952         for (i = 0; i < rv2p_code_len; i += 8) {
 3953                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
 3954                 rv2p_code++;
 3955                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
 3956                 rv2p_code++;
 3957 
 3958                 if (rv2p_proc == RV2P_PROC1) {
 3959                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
 3960                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
 3961                 }
 3962                 else {
 3963                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
 3964                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
 3965                 }
 3966         }
 3967 
 3968         /* Reset the processor, un-stall is done later. */
 3969         if (rv2p_proc == RV2P_PROC1) {
 3970                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
 3971         }
 3972         else {
 3973                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
 3974         }
 3975 
 3976         DBEXIT(BCE_VERBOSE_RESET);
 3977 }
 3978 
 3979 /****************************************************************************/
 3980 /* Load RISC processor firmware.                                            */
 3981 /*                                                                          */
 3982 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
 3983 /* associated with a particular processor.                                  */
 3984 /*                                                                          */
 3985 /* Returns:                                                                 */
 3986 /*   Nothing.                                                               */
 3987 /****************************************************************************/
 3988 static void
 3989 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
 3990         struct fw_info *fw)
 3991 {
 3992         u32 offset;
 3993 
 3994         DBENTER(BCE_VERBOSE_RESET);
 3995 
 3996     bce_halt_cpu(sc, cpu_reg);
 3997 
 3998         /* Load the Text area. */
 3999         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
 4000         if (fw->text) {
 4001                 int j;
 4002 
 4003                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
 4004                         REG_WR_IND(sc, offset, fw->text[j]);
 4005                 }
 4006         }
 4007 
 4008         /* Load the Data area. */
 4009         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
 4010         if (fw->data) {
 4011                 int j;
 4012 
 4013                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
 4014                         REG_WR_IND(sc, offset, fw->data[j]);
 4015                 }
 4016         }
 4017 
 4018         /* Load the SBSS area. */
 4019         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
 4020         if (fw->sbss) {
 4021                 int j;
 4022 
 4023                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
 4024                         REG_WR_IND(sc, offset, fw->sbss[j]);
 4025                 }
 4026         }
 4027 
 4028         /* Load the BSS area. */
 4029         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
 4030         if (fw->bss) {
 4031                 int j;
 4032 
 4033                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
 4034                         REG_WR_IND(sc, offset, fw->bss[j]);
 4035                 }
 4036         }
 4037 
 4038         /* Load the Read-Only area. */
 4039         offset = cpu_reg->spad_base +
 4040                 (fw->rodata_addr - cpu_reg->mips_view_base);
 4041         if (fw->rodata) {
 4042                 int j;
 4043 
 4044                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
 4045                         REG_WR_IND(sc, offset, fw->rodata[j]);
 4046                 }
 4047         }
 4048 
 4049         /* Clear the pre-fetch instruction and set the FW start address. */
 4050         REG_WR_IND(sc, cpu_reg->inst, 0);
 4051         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
 4052 
 4053         DBEXIT(BCE_VERBOSE_RESET);
 4054 }
 4055 
 4056 /****************************************************************************/
 4057 /* Starts the RISC processor.                                               */
 4058 /*                                                                          */
 4059 /* Assumes the CPU starting address has already been set.                   */
 4060 /*                                                                          */
 4061 /* Returns:                                                                 */
 4062 /*   Nothing.                                                               */
 4063 /****************************************************************************/
 4064 static void
 4065 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
 4066 {
 4067         u32 val;
 4068 
 4069         DBENTER(BCE_VERBOSE_RESET);
 4070 
 4071         /* Start the CPU. */
 4072         val = REG_RD_IND(sc, cpu_reg->mode);
 4073         val &= ~cpu_reg->mode_value_halt;
 4074         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
 4075         REG_WR_IND(sc, cpu_reg->mode, val);
 4076 
 4077         DBEXIT(BCE_VERBOSE_RESET);
 4078 }
 4079 
 4080 /****************************************************************************/
 4081 /* Halts the RISC processor.                                                */
 4082 /*                                                                          */
 4083 /* Returns:                                                                 */
 4084 /*   Nothing.                                                               */
 4085 /****************************************************************************/
 4086 static void
 4087 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
 4088 {
 4089         u32 val;
 4090 
 4091         DBENTER(BCE_VERBOSE_RESET);
 4092 
 4093         /* Halt the CPU. */
 4094         val = REG_RD_IND(sc, cpu_reg->mode);
 4095         val |= cpu_reg->mode_value_halt;
 4096         REG_WR_IND(sc, cpu_reg->mode, val);
 4097         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
 4098 
 4099         DBEXIT(BCE_VERBOSE_RESET);
 4100 }
 4101 
 4102 /****************************************************************************/
 4103 /* Initialize the RX CPU.                                                   */
 4104 /*                                                                          */
 4105 /* Returns:                                                                 */
 4106 /*   Nothing.                                                               */
 4107 /****************************************************************************/
 4108 static void
 4109 bce_start_rxp_cpu(struct bce_softc *sc)
 4110 {
 4111         struct cpu_reg cpu_reg;
 4112 
 4113         DBENTER(BCE_VERBOSE_RESET);
 4114 
 4115         cpu_reg.mode = BCE_RXP_CPU_MODE;
 4116         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
 4117         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
 4118         cpu_reg.state = BCE_RXP_CPU_STATE;
 4119         cpu_reg.state_value_clear = 0xffffff;
 4120         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
 4121         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
 4122         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
 4123         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
 4124         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
 4125         cpu_reg.spad_base = BCE_RXP_SCRATCH;
 4126         cpu_reg.mips_view_base = 0x8000000;
 4127 
 4128         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
 4129         bce_start_cpu(sc, &cpu_reg);
 4130 
 4131         DBEXIT(BCE_VERBOSE_RESET);
 4132 }
 4133 
 4134 /****************************************************************************/
 4135 /* Initialize the RX CPU.                                                   */
 4136 /*                                                                          */
 4137 /* Returns:                                                                 */
 4138 /*   Nothing.                                                               */
 4139 /****************************************************************************/
 4140 static void
 4141 bce_init_rxp_cpu(struct bce_softc *sc)
 4142 {
 4143         struct cpu_reg cpu_reg;
 4144         struct fw_info fw;
 4145 
 4146         DBENTER(BCE_VERBOSE_RESET);
 4147 
 4148         cpu_reg.mode = BCE_RXP_CPU_MODE;
 4149         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
 4150         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
 4151         cpu_reg.state = BCE_RXP_CPU_STATE;
 4152         cpu_reg.state_value_clear = 0xffffff;
 4153         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
 4154         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
 4155         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
 4156         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
 4157         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
 4158         cpu_reg.spad_base = BCE_RXP_SCRATCH;
 4159         cpu_reg.mips_view_base = 0x8000000;
 4160 
 4161         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4162                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
 4163                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
 4164                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
 4165                 fw.start_addr = bce_RXP_b09FwStartAddr;
 4166 
 4167                 fw.text_addr = bce_RXP_b09FwTextAddr;
 4168                 fw.text_len = bce_RXP_b09FwTextLen;
 4169                 fw.text_index = 0;
 4170                 fw.text = bce_RXP_b09FwText;
 4171 
 4172                 fw.data_addr = bce_RXP_b09FwDataAddr;
 4173                 fw.data_len = bce_RXP_b09FwDataLen;
 4174                 fw.data_index = 0;
 4175                 fw.data = bce_RXP_b09FwData;
 4176 
 4177                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
 4178                 fw.sbss_len = bce_RXP_b09FwSbssLen;
 4179                 fw.sbss_index = 0;
 4180                 fw.sbss = bce_RXP_b09FwSbss;
 4181 
 4182                 fw.bss_addr = bce_RXP_b09FwBssAddr;
 4183                 fw.bss_len = bce_RXP_b09FwBssLen;
 4184                 fw.bss_index = 0;
 4185                 fw.bss = bce_RXP_b09FwBss;
 4186 
 4187                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
 4188                 fw.rodata_len = bce_RXP_b09FwRodataLen;
 4189                 fw.rodata_index = 0;
 4190                 fw.rodata = bce_RXP_b09FwRodata;
 4191         } else {
 4192                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
 4193                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
 4194                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
 4195                 fw.start_addr = bce_RXP_b06FwStartAddr;
 4196 
 4197                 fw.text_addr = bce_RXP_b06FwTextAddr;
 4198                 fw.text_len = bce_RXP_b06FwTextLen;
 4199                 fw.text_index = 0;
 4200                 fw.text = bce_RXP_b06FwText;
 4201 
 4202                 fw.data_addr = bce_RXP_b06FwDataAddr;
 4203                 fw.data_len = bce_RXP_b06FwDataLen;
 4204                 fw.data_index = 0;
 4205                 fw.data = bce_RXP_b06FwData;
 4206 
 4207                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
 4208                 fw.sbss_len = bce_RXP_b06FwSbssLen;
 4209                 fw.sbss_index = 0;
 4210                 fw.sbss = bce_RXP_b06FwSbss;
 4211 
 4212                 fw.bss_addr = bce_RXP_b06FwBssAddr;
 4213                 fw.bss_len = bce_RXP_b06FwBssLen;
 4214                 fw.bss_index = 0;
 4215                 fw.bss = bce_RXP_b06FwBss;
 4216 
 4217                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
 4218                 fw.rodata_len = bce_RXP_b06FwRodataLen;
 4219                 fw.rodata_index = 0;
 4220                 fw.rodata = bce_RXP_b06FwRodata;
 4221         }
 4222 
 4223         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
 4224         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4225 
 4226     /* Delay RXP start until initialization is complete. */
 4227 
 4228         DBEXIT(BCE_VERBOSE_RESET);
 4229 }
 4230 
 4231 /****************************************************************************/
 4232 /* Initialize the TX CPU.                                                   */
 4233 /*                                                                          */
 4234 /* Returns:                                                                 */
 4235 /*   Nothing.                                                               */
 4236 /****************************************************************************/
 4237 static void
 4238 bce_init_txp_cpu(struct bce_softc *sc)
 4239 {
 4240         struct cpu_reg cpu_reg;
 4241         struct fw_info fw;
 4242 
 4243         DBENTER(BCE_VERBOSE_RESET);
 4244 
 4245         cpu_reg.mode = BCE_TXP_CPU_MODE;
 4246         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
 4247         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
 4248         cpu_reg.state = BCE_TXP_CPU_STATE;
 4249         cpu_reg.state_value_clear = 0xffffff;
 4250         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
 4251         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
 4252         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
 4253         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
 4254         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
 4255         cpu_reg.spad_base = BCE_TXP_SCRATCH;
 4256         cpu_reg.mips_view_base = 0x8000000;
 4257 
 4258         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4259                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
 4260                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
 4261                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
 4262                 fw.start_addr = bce_TXP_b09FwStartAddr;
 4263 
 4264                 fw.text_addr = bce_TXP_b09FwTextAddr;
 4265                 fw.text_len = bce_TXP_b09FwTextLen;
 4266                 fw.text_index = 0;
 4267                 fw.text = bce_TXP_b09FwText;
 4268 
 4269                 fw.data_addr = bce_TXP_b09FwDataAddr;
 4270                 fw.data_len = bce_TXP_b09FwDataLen;
 4271                 fw.data_index = 0;
 4272                 fw.data = bce_TXP_b09FwData;
 4273 
 4274                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
 4275                 fw.sbss_len = bce_TXP_b09FwSbssLen;
 4276                 fw.sbss_index = 0;
 4277                 fw.sbss = bce_TXP_b09FwSbss;
 4278 
 4279                 fw.bss_addr = bce_TXP_b09FwBssAddr;
 4280                 fw.bss_len = bce_TXP_b09FwBssLen;
 4281                 fw.bss_index = 0;
 4282                 fw.bss = bce_TXP_b09FwBss;
 4283 
 4284                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
 4285                 fw.rodata_len = bce_TXP_b09FwRodataLen;
 4286                 fw.rodata_index = 0;
 4287                 fw.rodata = bce_TXP_b09FwRodata;
 4288         } else {
 4289                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
 4290                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
 4291                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
 4292                 fw.start_addr = bce_TXP_b06FwStartAddr;
 4293 
 4294                 fw.text_addr = bce_TXP_b06FwTextAddr;
 4295                 fw.text_len = bce_TXP_b06FwTextLen;
 4296                 fw.text_index = 0;
 4297                 fw.text = bce_TXP_b06FwText;
 4298 
 4299                 fw.data_addr = bce_TXP_b06FwDataAddr;
 4300                 fw.data_len = bce_TXP_b06FwDataLen;
 4301                 fw.data_index = 0;
 4302                 fw.data = bce_TXP_b06FwData;
 4303 
 4304                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
 4305                 fw.sbss_len = bce_TXP_b06FwSbssLen;
 4306                 fw.sbss_index = 0;
 4307                 fw.sbss = bce_TXP_b06FwSbss;
 4308 
 4309                 fw.bss_addr = bce_TXP_b06FwBssAddr;
 4310                 fw.bss_len = bce_TXP_b06FwBssLen;
 4311                 fw.bss_index = 0;
 4312                 fw.bss = bce_TXP_b06FwBss;
 4313 
 4314                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
 4315                 fw.rodata_len = bce_TXP_b06FwRodataLen;
 4316                 fw.rodata_index = 0;
 4317                 fw.rodata = bce_TXP_b06FwRodata;
 4318         }
 4319 
 4320         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
 4321         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4322     bce_start_cpu(sc, &cpu_reg);
 4323 
 4324         DBEXIT(BCE_VERBOSE_RESET);
 4325 }
 4326 
 4327 /****************************************************************************/
 4328 /* Initialize the TPAT CPU.                                                 */
 4329 /*                                                                          */
 4330 /* Returns:                                                                 */
 4331 /*   Nothing.                                                               */
 4332 /****************************************************************************/
 4333 static void
 4334 bce_init_tpat_cpu(struct bce_softc *sc)
 4335 {
 4336         struct cpu_reg cpu_reg;
 4337         struct fw_info fw;
 4338 
 4339         DBENTER(BCE_VERBOSE_RESET);
 4340 
 4341         cpu_reg.mode = BCE_TPAT_CPU_MODE;
 4342         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
 4343         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
 4344         cpu_reg.state = BCE_TPAT_CPU_STATE;
 4345         cpu_reg.state_value_clear = 0xffffff;
 4346         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
 4347         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
 4348         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
 4349         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
 4350         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
 4351         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
 4352         cpu_reg.mips_view_base = 0x8000000;
 4353 
 4354         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4355                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
 4356                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
 4357                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
 4358                 fw.start_addr = bce_TPAT_b09FwStartAddr;
 4359 
 4360                 fw.text_addr = bce_TPAT_b09FwTextAddr;
 4361                 fw.text_len = bce_TPAT_b09FwTextLen;
 4362                 fw.text_index = 0;
 4363                 fw.text = bce_TPAT_b09FwText;
 4364 
 4365                 fw.data_addr = bce_TPAT_b09FwDataAddr;
 4366                 fw.data_len = bce_TPAT_b09FwDataLen;
 4367                 fw.data_index = 0;
 4368                 fw.data = bce_TPAT_b09FwData;
 4369 
 4370                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
 4371                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
 4372                 fw.sbss_index = 0;
 4373                 fw.sbss = bce_TPAT_b09FwSbss;
 4374 
 4375                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
 4376                 fw.bss_len = bce_TPAT_b09FwBssLen;
 4377                 fw.bss_index = 0;
 4378                 fw.bss = bce_TPAT_b09FwBss;
 4379 
 4380                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
 4381                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
 4382                 fw.rodata_index = 0;
 4383                 fw.rodata = bce_TPAT_b09FwRodata;
 4384         } else {
 4385                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
 4386                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
 4387                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
 4388                 fw.start_addr = bce_TPAT_b06FwStartAddr;
 4389 
 4390                 fw.text_addr = bce_TPAT_b06FwTextAddr;
 4391                 fw.text_len = bce_TPAT_b06FwTextLen;
 4392                 fw.text_index = 0;
 4393                 fw.text = bce_TPAT_b06FwText;
 4394 
 4395                 fw.data_addr = bce_TPAT_b06FwDataAddr;
 4396                 fw.data_len = bce_TPAT_b06FwDataLen;
 4397                 fw.data_index = 0;
 4398                 fw.data = bce_TPAT_b06FwData;
 4399 
 4400                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
 4401                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
 4402                 fw.sbss_index = 0;
 4403                 fw.sbss = bce_TPAT_b06FwSbss;
 4404 
 4405                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
 4406                 fw.bss_len = bce_TPAT_b06FwBssLen;
 4407                 fw.bss_index = 0;
 4408                 fw.bss = bce_TPAT_b06FwBss;
 4409 
 4410                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
 4411                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
 4412                 fw.rodata_index = 0;
 4413                 fw.rodata = bce_TPAT_b06FwRodata;
 4414         }
 4415 
 4416         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
 4417         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4418         bce_start_cpu(sc, &cpu_reg);
 4419 
 4420         DBEXIT(BCE_VERBOSE_RESET);
 4421 }
 4422 
 4423 /****************************************************************************/
 4424 /* Initialize the CP CPU.                                                   */
 4425 /*                                                                          */
 4426 /* Returns:                                                                 */
 4427 /*   Nothing.                                                               */
 4428 /****************************************************************************/
 4429 static void
 4430 bce_init_cp_cpu(struct bce_softc *sc)
 4431 {
 4432         struct cpu_reg cpu_reg;
 4433         struct fw_info fw;
 4434 
 4435         DBENTER(BCE_VERBOSE_RESET);
 4436 
 4437         cpu_reg.mode = BCE_CP_CPU_MODE;
 4438         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
 4439         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
 4440         cpu_reg.state = BCE_CP_CPU_STATE;
 4441         cpu_reg.state_value_clear = 0xffffff;
 4442         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
 4443         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
 4444         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
 4445         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
 4446         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
 4447         cpu_reg.spad_base = BCE_CP_SCRATCH;
 4448         cpu_reg.mips_view_base = 0x8000000;
 4449 
 4450         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4451                 fw.ver_major = bce_CP_b09FwReleaseMajor;
 4452                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
 4453                 fw.ver_fix = bce_CP_b09FwReleaseFix;
 4454                 fw.start_addr = bce_CP_b09FwStartAddr;
 4455 
 4456                 fw.text_addr = bce_CP_b09FwTextAddr;
 4457                 fw.text_len = bce_CP_b09FwTextLen;
 4458                 fw.text_index = 0;
 4459                 fw.text = bce_CP_b09FwText;
 4460 
 4461                 fw.data_addr = bce_CP_b09FwDataAddr;
 4462                 fw.data_len = bce_CP_b09FwDataLen;
 4463                 fw.data_index = 0;
 4464                 fw.data = bce_CP_b09FwData;
 4465 
 4466                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
 4467                 fw.sbss_len = bce_CP_b09FwSbssLen;
 4468                 fw.sbss_index = 0;
 4469                 fw.sbss = bce_CP_b09FwSbss;
 4470 
 4471                 fw.bss_addr = bce_CP_b09FwBssAddr;
 4472                 fw.bss_len = bce_CP_b09FwBssLen;
 4473                 fw.bss_index = 0;
 4474                 fw.bss = bce_CP_b09FwBss;
 4475 
 4476                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
 4477                 fw.rodata_len = bce_CP_b09FwRodataLen;
 4478                 fw.rodata_index = 0;
 4479                 fw.rodata = bce_CP_b09FwRodata;
 4480         } else {
 4481                 fw.ver_major = bce_CP_b06FwReleaseMajor;
 4482                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
 4483                 fw.ver_fix = bce_CP_b06FwReleaseFix;
 4484                 fw.start_addr = bce_CP_b06FwStartAddr;
 4485 
 4486                 fw.text_addr = bce_CP_b06FwTextAddr;
 4487                 fw.text_len = bce_CP_b06FwTextLen;
 4488                 fw.text_index = 0;
 4489                 fw.text = bce_CP_b06FwText;
 4490 
 4491                 fw.data_addr = bce_CP_b06FwDataAddr;
 4492                 fw.data_len = bce_CP_b06FwDataLen;
 4493                 fw.data_index = 0;
 4494                 fw.data = bce_CP_b06FwData;
 4495 
 4496                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
 4497                 fw.sbss_len = bce_CP_b06FwSbssLen;
 4498                 fw.sbss_index = 0;
 4499                 fw.sbss = bce_CP_b06FwSbss;
 4500 
 4501                 fw.bss_addr = bce_CP_b06FwBssAddr;
 4502                 fw.bss_len = bce_CP_b06FwBssLen;
 4503                 fw.bss_index = 0;
 4504                 fw.bss = bce_CP_b06FwBss;
 4505 
 4506                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
 4507                 fw.rodata_len = bce_CP_b06FwRodataLen;
 4508                 fw.rodata_index = 0;
 4509                 fw.rodata = bce_CP_b06FwRodata;
 4510         }
 4511 
 4512         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
 4513         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4514         bce_start_cpu(sc, &cpu_reg);
 4515 
 4516         DBEXIT(BCE_VERBOSE_RESET);
 4517 }
 4518 
 4519 /****************************************************************************/
 4520 /* Initialize the COM CPU.                                                 */
 4521 /*                                                                          */
 4522 /* Returns:                                                                 */
 4523 /*   Nothing.                                                               */
 4524 /****************************************************************************/
 4525 static void
 4526 bce_init_com_cpu(struct bce_softc *sc)
 4527 {
 4528         struct cpu_reg cpu_reg;
 4529         struct fw_info fw;
 4530 
 4531         DBENTER(BCE_VERBOSE_RESET);
 4532 
 4533         cpu_reg.mode = BCE_COM_CPU_MODE;
 4534         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
 4535         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
 4536         cpu_reg.state = BCE_COM_CPU_STATE;
 4537         cpu_reg.state_value_clear = 0xffffff;
 4538         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
 4539         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
 4540         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
 4541         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
 4542         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
 4543         cpu_reg.spad_base = BCE_COM_SCRATCH;
 4544         cpu_reg.mips_view_base = 0x8000000;
 4545 
 4546         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4547                 fw.ver_major = bce_COM_b09FwReleaseMajor;
 4548                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
 4549                 fw.ver_fix = bce_COM_b09FwReleaseFix;
 4550                 fw.start_addr = bce_COM_b09FwStartAddr;
 4551 
 4552                 fw.text_addr = bce_COM_b09FwTextAddr;
 4553                 fw.text_len = bce_COM_b09FwTextLen;
 4554                 fw.text_index = 0;
 4555                 fw.text = bce_COM_b09FwText;
 4556 
 4557                 fw.data_addr = bce_COM_b09FwDataAddr;
 4558                 fw.data_len = bce_COM_b09FwDataLen;
 4559                 fw.data_index = 0;
 4560                 fw.data = bce_COM_b09FwData;
 4561 
 4562                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
 4563                 fw.sbss_len = bce_COM_b09FwSbssLen;
 4564                 fw.sbss_index = 0;
 4565                 fw.sbss = bce_COM_b09FwSbss;
 4566 
 4567                 fw.bss_addr = bce_COM_b09FwBssAddr;
 4568                 fw.bss_len = bce_COM_b09FwBssLen;
 4569                 fw.bss_index = 0;
 4570                 fw.bss = bce_COM_b09FwBss;
 4571 
 4572                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
 4573                 fw.rodata_len = bce_COM_b09FwRodataLen;
 4574                 fw.rodata_index = 0;
 4575                 fw.rodata = bce_COM_b09FwRodata;
 4576         } else {
 4577                 fw.ver_major = bce_COM_b06FwReleaseMajor;
 4578                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
 4579                 fw.ver_fix = bce_COM_b06FwReleaseFix;
 4580                 fw.start_addr = bce_COM_b06FwStartAddr;
 4581 
 4582                 fw.text_addr = bce_COM_b06FwTextAddr;
 4583                 fw.text_len = bce_COM_b06FwTextLen;
 4584                 fw.text_index = 0;
 4585                 fw.text = bce_COM_b06FwText;
 4586 
 4587                 fw.data_addr = bce_COM_b06FwDataAddr;
 4588                 fw.data_len = bce_COM_b06FwDataLen;
 4589                 fw.data_index = 0;
 4590                 fw.data = bce_COM_b06FwData;
 4591 
 4592                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
 4593                 fw.sbss_len = bce_COM_b06FwSbssLen;
 4594                 fw.sbss_index = 0;
 4595                 fw.sbss = bce_COM_b06FwSbss;
 4596 
 4597                 fw.bss_addr = bce_COM_b06FwBssAddr;
 4598                 fw.bss_len = bce_COM_b06FwBssLen;
 4599                 fw.bss_index = 0;
 4600                 fw.bss = bce_COM_b06FwBss;
 4601 
 4602                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
 4603                 fw.rodata_len = bce_COM_b06FwRodataLen;
 4604                 fw.rodata_index = 0;
 4605                 fw.rodata = bce_COM_b06FwRodata;
 4606         }
 4607 
 4608         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
 4609         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4610         bce_start_cpu(sc, &cpu_reg);
 4611 
 4612         DBEXIT(BCE_VERBOSE_RESET);
 4613 }
 4614 
 4615 /****************************************************************************/
 4616 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
 4617 /*                                                                          */
 4618 /* Loads the firmware for each CPU and starts the CPU.                      */
 4619 /*                                                                          */
 4620 /* Returns:                                                                 */
 4621 /*   Nothing.                                                               */
 4622 /****************************************************************************/
 4623 static void
 4624 bce_init_cpus(struct bce_softc *sc)
 4625 {
 4626         DBENTER(BCE_VERBOSE_RESET);
 4627 
 4628         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4629                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
 4630                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
 4631                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
 4632                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
 4633                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
 4634                 } else {
 4635                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
 4636                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
 4637                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
 4638                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
 4639                 }
 4640 
 4641         } else {
 4642                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
 4643                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
 4644                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
 4645                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
 4646         }
 4647 
 4648         bce_init_rxp_cpu(sc);
 4649         bce_init_txp_cpu(sc);
 4650         bce_init_tpat_cpu(sc);
 4651         bce_init_com_cpu(sc);
 4652         bce_init_cp_cpu(sc);
 4653 
 4654         DBEXIT(BCE_VERBOSE_RESET);
 4655 }
 4656 
 4657 /****************************************************************************/
 4658 /* Initialize context memory.                                               */
 4659 /*                                                                          */
 4660 /* Clears the memory associated with each Context ID (CID).                 */
 4661 /*                                                                          */
 4662 /* Returns:                                                                 */
 4663 /*   Nothing.                                                               */
 4664 /****************************************************************************/
 4665 static int
 4666 bce_init_ctx(struct bce_softc *sc)
 4667 {
 4668         u32 offset, val, vcid_addr;
 4669         int i, j, rc, retry_cnt;
 4670 
 4671         rc = 0;
 4672         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 4673 
 4674         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4675                 retry_cnt = CTX_INIT_RETRY_COUNT;
 4676 
 4677                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
 4678 
 4679                 /*
 4680                  * BCM5709 context memory may be cached
 4681                  * in host memory so prepare the host memory
 4682                  * for access.
 4683                  */
 4684                 val = BCE_CTX_COMMAND_ENABLED |
 4685                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
 4686                 val |= (BCM_PAGE_BITS - 8) << 16;
 4687                 REG_WR(sc, BCE_CTX_COMMAND, val);
 4688 
 4689                 /* Wait for mem init command to complete. */
 4690                 for (i = 0; i < retry_cnt; i++) {
 4691                         val = REG_RD(sc, BCE_CTX_COMMAND);
 4692                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
 4693                                 break;
 4694                         DELAY(2);
 4695                 }
 4696                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
 4697                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
 4698                             __FUNCTION__);
 4699                         rc = EBUSY;
 4700                         goto init_ctx_fail;
 4701                 }
 4702 
 4703                 for (i = 0; i < sc->ctx_pages; i++) {
 4704                         /* Set the physical address of the context memory. */
 4705                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
 4706                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
 4707                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
 4708                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
 4709                             BCE_ADDR_HI(sc->ctx_paddr[i]));
 4710                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
 4711                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
 4712 
 4713                         /* Verify the context memory write was successful. */
 4714                         for (j = 0; j < retry_cnt; j++) {
 4715                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
 4716                                 if ((val &
 4717                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
 4718                                         break;
 4719                                 DELAY(5);
 4720                         }
 4721                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
 4722                                 BCE_PRINTF("%s(): Failed to initialize "
 4723                                     "context page %d!\n", __FUNCTION__, i);
 4724                                 rc = EBUSY;
 4725                                 goto init_ctx_fail;
 4726                         }
 4727                 }
 4728         } else {
 4729                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
 4730 
 4731                 /*
 4732                  * For the 5706/5708, context memory is local to
 4733                  * the controller, so initialize the controller
 4734                  * context memory.
 4735                  */
 4736 
 4737                 vcid_addr = GET_CID_ADDR(96);
 4738                 while (vcid_addr) {
 4739                         vcid_addr -= PHY_CTX_SIZE;
 4740 
 4741                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
 4742                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
 4743 
 4744                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
 4745                                 CTX_WR(sc, 0x00, offset, 0);
 4746                         }
 4747 
 4748                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
 4749                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
 4750                 }
 4751         }
 4752 init_ctx_fail:
 4753         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 4754         return (rc);
 4755 }
 4756 
 4757 /****************************************************************************/
 4758 /* Fetch the permanent MAC address of the controller.                       */
 4759 /*                                                                          */
 4760 /* Returns:                                                                 */
 4761 /*   Nothing.                                                               */
 4762 /****************************************************************************/
 4763 static void
 4764 bce_get_mac_addr(struct bce_softc *sc)
 4765 {
 4766         u32 mac_lo = 0, mac_hi = 0;
 4767 
 4768         DBENTER(BCE_VERBOSE_RESET);
 4769 
 4770         /*
 4771          * The NetXtreme II bootcode populates various NIC
 4772          * power-on and runtime configuration items in a
 4773          * shared memory area.  The factory configured MAC
 4774          * address is available from both NVRAM and the
 4775          * shared memory area so we'll read the value from
 4776          * shared memory for speed.
 4777          */
 4778 
 4779         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
 4780         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
 4781 
 4782         if ((mac_lo == 0) && (mac_hi == 0)) {
 4783                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
 4784                     __FILE__, __LINE__);
 4785         } else {
 4786                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
 4787                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
 4788                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
 4789                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
 4790                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
 4791                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
 4792         }
 4793 
 4794         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
 4795             "address = %6D\n", sc->eaddr, ":");
 4796         DBEXIT(BCE_VERBOSE_RESET);
 4797 }
 4798 
 4799 /****************************************************************************/
 4800 /* Program the MAC address.                                                 */
 4801 /*                                                                          */
 4802 /* Returns:                                                                 */
 4803 /*   Nothing.                                                               */
 4804 /****************************************************************************/
 4805 static void
 4806 bce_set_mac_addr(struct bce_softc *sc)
 4807 {
 4808         u32 val;
 4809         u8 *mac_addr = sc->eaddr;
 4810 
 4811         /* ToDo: Add support for setting multiple MAC addresses. */
 4812 
 4813         DBENTER(BCE_VERBOSE_RESET);
 4814         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
 4815             "%6D\n", sc->eaddr, ":");
 4816 
 4817         val = (mac_addr[0] << 8) | mac_addr[1];
 4818 
 4819         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
 4820 
 4821         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
 4822             (mac_addr[4] << 8) | mac_addr[5];
 4823 
 4824         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
 4825 
 4826         DBEXIT(BCE_VERBOSE_RESET);
 4827 }
 4828 
 4829 /****************************************************************************/
 4830 /* Stop the controller.                                                     */
 4831 /*                                                                          */
 4832 /* Returns:                                                                 */
 4833 /*   Nothing.                                                               */
 4834 /****************************************************************************/
 4835 static void
 4836 bce_stop(struct bce_softc *sc)
 4837 {
 4838         struct ifnet *ifp;
 4839 
 4840         DBENTER(BCE_VERBOSE_RESET);
 4841 
 4842         BCE_LOCK_ASSERT(sc);
 4843 
 4844         ifp = sc->bce_ifp;
 4845 
 4846         callout_stop(&sc->bce_tick_callout);
 4847 
 4848         /* Disable the transmit/receive blocks. */
 4849         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
 4850         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
 4851         DELAY(20);
 4852 
 4853         bce_disable_intr(sc);
 4854 
 4855         /* Free RX buffers. */
 4856         if (bce_hdr_split == TRUE) {
 4857                 bce_free_pg_chain(sc);
 4858         }
 4859         bce_free_rx_chain(sc);
 4860 
 4861         /* Free TX buffers. */
 4862         bce_free_tx_chain(sc);
 4863 
 4864         sc->watchdog_timer = 0;
 4865 
 4866         sc->bce_link_up = FALSE;
 4867 
 4868         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 4869 
 4870         DBEXIT(BCE_VERBOSE_RESET);
 4871 }
 4872 
 4873 static int
 4874 bce_reset(struct bce_softc *sc, u32 reset_code)
 4875 {
 4876         u32 emac_mode_save, val;
 4877         int i, rc = 0;
 4878         static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
 4879             BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
 4880 
 4881         DBENTER(BCE_VERBOSE_RESET);
 4882 
 4883         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
 4884             __FUNCTION__, reset_code);
 4885 
 4886         /*
 4887          * If ASF/IPMI is operational, then the EMAC Mode register already
 4888          * contains appropriate values for the link settings that have
 4889          * been auto-negotiated.  Resetting the chip will clobber those
 4890          * values.  Save the important bits so we can restore them after
 4891          * the reset.
 4892          */
 4893         emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
 4894 
 4895         /* Wait for pending PCI transactions to complete. */
 4896         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
 4897             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
 4898             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
 4899             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
 4900             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
 4901         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
 4902         DELAY(5);
 4903 
 4904         /* Disable DMA */
 4905         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4906                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
 4907                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
 4908                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
 4909         }
 4910 
 4911         /* Assume bootcode is running. */
 4912         sc->bce_fw_timed_out = FALSE;
 4913         sc->bce_drv_cardiac_arrest = FALSE;
 4914 
 4915         /* Give the firmware a chance to prepare for the reset. */
 4916         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
 4917         if (rc)
 4918                 goto bce_reset_exit;
 4919 
 4920         /* Set a firmware reminder that this is a soft reset. */
 4921         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
 4922 
 4923         /* Dummy read to force the chip to complete all current transactions. */
 4924         val = REG_RD(sc, BCE_MISC_ID);
 4925 
 4926         /* Chip reset. */
 4927         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 4928                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
 4929                 REG_RD(sc, BCE_MISC_COMMAND);
 4930                 DELAY(5);
 4931 
 4932                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 4933                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
 4934 
 4935                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
 4936         } else {
 4937                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 4938                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 4939                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
 4940                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
 4941 
 4942                 /* Allow up to 30us for reset to complete. */
 4943                 for (i = 0; i < 10; i++) {
 4944                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
 4945                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 4946                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
 4947                                 break;
 4948                         }
 4949                         DELAY(10);
 4950                 }
 4951 
 4952                 /* Check that reset completed successfully. */
 4953                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 4954                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
 4955                         BCE_PRINTF("%s(%d): Reset failed!\n",
 4956                             __FILE__, __LINE__);
 4957                         rc = EBUSY;
 4958                         goto bce_reset_exit;
 4959                 }
 4960         }
 4961 
 4962         /* Make sure byte swapping is properly configured. */
 4963         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
 4964         if (val != 0x01020304) {
 4965                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
 4966                     __FILE__, __LINE__);
 4967                 rc = ENODEV;
 4968                 goto bce_reset_exit;
 4969         }
 4970 
 4971         /* Just completed a reset, assume that firmware is running again. */
 4972         sc->bce_fw_timed_out = FALSE;
 4973         sc->bce_drv_cardiac_arrest = FALSE;
 4974 
 4975         /* Wait for the firmware to finish its initialization. */
 4976         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
 4977         if (rc)
 4978                 BCE_PRINTF("%s(%d): Firmware did not complete "
 4979                     "initialization!\n", __FILE__, __LINE__);
 4980         /* Get firmware capabilities. */
 4981         bce_fw_cap_init(sc);
 4982 
 4983 bce_reset_exit:
 4984         /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
 4985         if (reset_code == BCE_DRV_MSG_CODE_RESET) {
 4986                 val = REG_RD(sc, BCE_EMAC_MODE);
 4987                 val = (val & ~emac_mode_mask) | emac_mode_save;
 4988                 REG_WR(sc, BCE_EMAC_MODE, val);
 4989         }
 4990 
 4991         DBEXIT(BCE_VERBOSE_RESET);
 4992         return (rc);
 4993 }
 4994 
 4995 static int
 4996 bce_chipinit(struct bce_softc *sc)
 4997 {
 4998         u32 val;
 4999         int rc = 0;
 5000 
 5001         DBENTER(BCE_VERBOSE_RESET);
 5002 
 5003         bce_disable_intr(sc);
 5004 
 5005         /*
 5006          * Initialize DMA byte/word swapping, configure the number of DMA
 5007          * channels and PCI clock compensation delay.
 5008          */
 5009         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
 5010             BCE_DMA_CONFIG_DATA_WORD_SWAP |
 5011 #if BYTE_ORDER == BIG_ENDIAN
 5012             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
 5013 #endif
 5014             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
 5015             DMA_READ_CHANS << 12 |
 5016             DMA_WRITE_CHANS << 16;
 5017 
 5018         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
 5019 
 5020         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
 5021                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
 5022 
 5023         /*
 5024          * This setting resolves a problem observed on certain Intel PCI
 5025          * chipsets that cannot handle multiple outstanding DMA operations.
 5026          * See errata E9_5706A1_65.
 5027          */
 5028         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
 5029             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
 5030             !(sc->bce_flags & BCE_PCIX_FLAG))
 5031                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
 5032 
 5033         REG_WR(sc, BCE_DMA_CONFIG, val);
 5034 
 5035         /* Enable the RX_V2P and Context state machines before access. */
 5036         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
 5037             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
 5038             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
 5039             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
 5040 
 5041         /* Initialize context mapping and zero out the quick contexts. */
 5042         if ((rc = bce_init_ctx(sc)) != 0)
 5043                 goto bce_chipinit_exit;
 5044 
 5045         /* Initialize the on-boards CPUs */
 5046         bce_init_cpus(sc);
 5047 
 5048         /* Enable management frames (NC-SI) to flow to the MCP. */
 5049         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
 5050                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
 5051                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
 5052         }
 5053 
 5054         /* Prepare NVRAM for access. */
 5055         if ((rc = bce_init_nvram(sc)) != 0)
 5056                 goto bce_chipinit_exit;
 5057 
 5058         /* Set the kernel bypass block size */
 5059         val = REG_RD(sc, BCE_MQ_CONFIG);
 5060         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
 5061         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
 5062 
 5063         /* Enable bins used on the 5709. */
 5064         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 5065                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
 5066                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
 5067                         val |= BCE_MQ_CONFIG_HALT_DIS;
 5068         }
 5069 
 5070         REG_WR(sc, BCE_MQ_CONFIG, val);
 5071 
 5072         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
 5073         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
 5074         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
 5075 
 5076         /* Set the page size and clear the RV2P processor stall bits. */
 5077         val = (BCM_PAGE_BITS - 8) << 24;
 5078         REG_WR(sc, BCE_RV2P_CONFIG, val);
 5079 
 5080         /* Configure page size. */
 5081         val = REG_RD(sc, BCE_TBDR_CONFIG);
 5082         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
 5083         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
 5084         REG_WR(sc, BCE_TBDR_CONFIG, val);
 5085 
 5086         /* Set the perfect match control register to default. */
 5087         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
 5088 
 5089 bce_chipinit_exit:
 5090         DBEXIT(BCE_VERBOSE_RESET);
 5091 
 5092         return(rc);
 5093 }
 5094 
 5095 /****************************************************************************/
 5096 /* Initialize the controller in preparation to send/receive traffic.        */
 5097 /*                                                                          */
 5098 /* Returns:                                                                 */
 5099 /*   0 for success, positive value for failure.                             */
 5100 /****************************************************************************/
 5101 static int
 5102 bce_blockinit(struct bce_softc *sc)
 5103 {
 5104         u32 reg, val;
 5105         int rc = 0;
 5106 
 5107         DBENTER(BCE_VERBOSE_RESET);
 5108 
 5109         /* Load the hardware default MAC address. */
 5110         bce_set_mac_addr(sc);
 5111 
 5112         /* Set the Ethernet backoff seed value */
 5113         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
 5114               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
 5115               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
 5116         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
 5117 
 5118         sc->last_status_idx = 0;
 5119         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
 5120 
 5121         /* Set up link change interrupt generation. */
 5122         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
 5123 
 5124         /* Program the physical address of the status block. */
 5125         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
 5126             BCE_ADDR_LO(sc->status_block_paddr));
 5127         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
 5128             BCE_ADDR_HI(sc->status_block_paddr));
 5129 
 5130         /* Program the physical address of the statistics block. */
 5131         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
 5132             BCE_ADDR_LO(sc->stats_block_paddr));
 5133         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
 5134             BCE_ADDR_HI(sc->stats_block_paddr));
 5135 
 5136         /*
 5137          * Program various host coalescing parameters.
 5138          * Trip points control how many BDs should be ready before generating
 5139          * an interrupt while ticks control how long a BD can sit in the chain
 5140          * before generating an interrupt.
 5141          */
 5142         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
 5143             (sc->bce_tx_quick_cons_trip_int << 16) |
 5144             sc->bce_tx_quick_cons_trip);
 5145         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
 5146             (sc->bce_rx_quick_cons_trip_int << 16) |
 5147             sc->bce_rx_quick_cons_trip);
 5148         REG_WR(sc, BCE_HC_TX_TICKS,
 5149             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
 5150         REG_WR(sc, BCE_HC_RX_TICKS,
 5151             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
 5152         REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
 5153         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
 5154         /* Not used for L2. */
 5155         REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
 5156         REG_WR(sc, BCE_HC_COM_TICKS, 0);
 5157         REG_WR(sc, BCE_HC_CMD_TICKS, 0);
 5158 
 5159         /* Configure the Host Coalescing block. */
 5160         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
 5161             BCE_HC_CONFIG_COLLECT_STATS;
 5162 
 5163 #if 0
 5164         /* ToDo: Add MSI-X support. */
 5165         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
 5166                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
 5167                     BCE_HC_SB_CONFIG_1;
 5168 
 5169                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
 5170 
 5171                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
 5172                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
 5173 
 5174                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
 5175                     (sc->tx_quick_cons_trip_int << 16) |
 5176                      sc->tx_quick_cons_trip);
 5177 
 5178                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
 5179                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
 5180 
 5181                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
 5182         }
 5183 
 5184         /*
 5185          * Tell the HC block to automatically set the
 5186          * INT_MASK bit after an MSI/MSI-X interrupt
 5187          * is generated so the driver doesn't have to.
 5188          */
 5189         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
 5190                 val |= BCE_HC_CONFIG_ONE_SHOT;
 5191 
 5192         /* Set the MSI-X status blocks to 128 byte boundaries. */
 5193         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
 5194                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
 5195 #endif
 5196 
 5197         REG_WR(sc, BCE_HC_CONFIG, val);
 5198 
 5199         /* Clear the internal statistics counters. */
 5200         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
 5201 
 5202         /* Verify that bootcode is running. */
 5203         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
 5204 
 5205         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
 5206             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
 5207             __FILE__, __LINE__);
 5208             reg = 0);
 5209 
 5210         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
 5211             BCE_DEV_INFO_SIGNATURE_MAGIC) {
 5212                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
 5213                     "Expected: 08%08X\n", __FILE__, __LINE__,
 5214                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
 5215                     BCE_DEV_INFO_SIGNATURE_MAGIC);
 5216                 rc = ENODEV;
 5217                 goto bce_blockinit_exit;
 5218         }
 5219 
 5220         /* Enable DMA */
 5221         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 5222                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
 5223                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
 5224                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
 5225         }
 5226 
 5227         /* Allow bootcode to apply additional fixes before enabling MAC. */
 5228         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
 5229             BCE_DRV_MSG_CODE_RESET);
 5230 
 5231         /* Enable link state change interrupt generation. */
 5232         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
 5233 
 5234         /* Enable the RXP. */
 5235         bce_start_rxp_cpu(sc);
 5236 
 5237         /* Disable management frames (NC-SI) from flowing to the MCP. */
 5238         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
 5239                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
 5240                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
 5241                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
 5242         }
 5243 
 5244         /* Enable all remaining blocks in the MAC. */
 5245         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
 5246                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
 5247                     BCE_MISC_ENABLE_DEFAULT_XI);
 5248         else
 5249                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
 5250                     BCE_MISC_ENABLE_DEFAULT);
 5251 
 5252         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
 5253         DELAY(20);
 5254 
 5255         /* Save the current host coalescing block settings. */
 5256         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
 5257 
 5258 bce_blockinit_exit:
 5259         DBEXIT(BCE_VERBOSE_RESET);
 5260 
 5261         return (rc);
 5262 }
 5263 
 5264 /****************************************************************************/
 5265 /* Encapsulate an mbuf into the rx_bd chain.                                */
 5266 /*                                                                          */
 5267 /* Returns:                                                                 */
 5268 /*   0 for success, positive value for failure.                             */
 5269 /****************************************************************************/
 5270 static int
 5271 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
 5272 {
 5273         bus_dma_segment_t segs[1];
 5274         struct mbuf *m_new = NULL;
 5275         struct rx_bd *rxbd;
 5276         int nsegs, error, rc = 0;
 5277 #ifdef BCE_DEBUG
 5278         u16 debug_chain_prod = chain_prod;
 5279 #endif
 5280 
 5281         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5282 
 5283         /* Make sure the inputs are valid. */
 5284         DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
 5285             BCE_PRINTF("%s(%d): RX producer out of range: "
 5286             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
 5287             chain_prod, (u16)MAX_RX_BD_ALLOC));
 5288 
 5289         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
 5290             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
 5291             prod, chain_prod, *prod_bseq);
 5292 
 5293         /* Update some debug statistic counters */
 5294         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
 5295             sc->rx_low_watermark = sc->free_rx_bd);
 5296         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
 5297             sc->rx_empty_count++);
 5298 
 5299         /* Simulate an mbuf allocation failure. */
 5300         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
 5301             sc->mbuf_alloc_failed_count++;
 5302             sc->mbuf_alloc_failed_sim_count++;
 5303             rc = ENOBUFS;
 5304             goto bce_get_rx_buf_exit);
 5305 
 5306         /* This is a new mbuf allocation. */
 5307         if (bce_hdr_split == TRUE)
 5308                 MGETHDR(m_new, M_NOWAIT, MT_DATA);
 5309         else
 5310                 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
 5311                     sc->rx_bd_mbuf_alloc_size);
 5312 
 5313         if (m_new == NULL) {
 5314                 sc->mbuf_alloc_failed_count++;
 5315                 rc = ENOBUFS;
 5316                 goto bce_get_rx_buf_exit;
 5317         }
 5318 
 5319         DBRUN(sc->debug_rx_mbuf_alloc++);
 5320 
 5321         /* Make sure we have a valid packet header. */
 5322         M_ASSERTPKTHDR(m_new);
 5323 
 5324         /* Initialize the mbuf size and pad if necessary for alignment. */
 5325         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
 5326         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
 5327 
 5328         /* ToDo: Consider calling m_fragment() to test error handling. */
 5329 
 5330         /* Map the mbuf cluster into device memory. */
 5331         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
 5332             sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
 5333 
 5334         /* Handle any mapping errors. */
 5335         if (error) {
 5336                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
 5337                     "chain (%d)!\n", __FILE__, __LINE__, error);
 5338 
 5339                 sc->dma_map_addr_rx_failed_count++;
 5340                 m_freem(m_new);
 5341 
 5342                 DBRUN(sc->debug_rx_mbuf_alloc--);
 5343 
 5344                 rc = ENOBUFS;
 5345                 goto bce_get_rx_buf_exit;
 5346         }
 5347 
 5348         /* All mbufs must map to a single segment. */
 5349         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
 5350             __FUNCTION__, nsegs));
 5351 
 5352         /* Setup the rx_bd for the segment. */
 5353         rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
 5354 
 5355         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
 5356         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
 5357         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
 5358         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
 5359         *prod_bseq += segs[0].ds_len;
 5360 
 5361         /* Save the mbuf and update our counter. */
 5362         sc->rx_mbuf_ptr[chain_prod] = m_new;
 5363         sc->free_rx_bd -= nsegs;
 5364 
 5365         DBRUNMSG(BCE_INSANE_RECV,
 5366             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
 5367 
 5368         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
 5369             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
 5370             chain_prod, *prod_bseq);
 5371 
 5372 bce_get_rx_buf_exit:
 5373         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5374 
 5375         return(rc);
 5376 }
 5377 
 5378 /****************************************************************************/
 5379 /* Encapsulate an mbuf cluster into the page chain.                         */
 5380 /*                                                                          */
 5381 /* Returns:                                                                 */
 5382 /*   0 for success, positive value for failure.                             */
 5383 /****************************************************************************/
 5384 static int
 5385 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
 5386 {
 5387         bus_dma_segment_t segs[1];
 5388         struct mbuf *m_new = NULL;
 5389         struct rx_bd *pgbd;
 5390         int error, nsegs, rc = 0;
 5391 #ifdef BCE_DEBUG
 5392         u16 debug_prod_idx = prod_idx;
 5393 #endif
 5394 
 5395         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5396 
 5397         /* Make sure the inputs are valid. */
 5398         DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
 5399             BCE_PRINTF("%s(%d): page producer out of range: "
 5400             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
 5401             prod_idx, (u16)MAX_PG_BD_ALLOC));
 5402 
 5403         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
 5404             "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
 5405 
 5406         /* Update counters if we've hit a new low or run out of pages. */
 5407         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
 5408             sc->pg_low_watermark = sc->free_pg_bd);
 5409         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
 5410 
 5411         /* Simulate an mbuf allocation failure. */
 5412         DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
 5413             sc->mbuf_alloc_failed_count++;
 5414             sc->mbuf_alloc_failed_sim_count++;
 5415             rc = ENOBUFS;
 5416             goto bce_get_pg_buf_exit);
 5417 
 5418         /* This is a new mbuf allocation. */
 5419         m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
 5420         if (m_new == NULL) {
 5421                 sc->mbuf_alloc_failed_count++;
 5422                 rc = ENOBUFS;
 5423                 goto bce_get_pg_buf_exit;
 5424         }
 5425 
 5426         DBRUN(sc->debug_pg_mbuf_alloc++);
 5427 
 5428         m_new->m_len = MCLBYTES;
 5429 
 5430         /* ToDo: Consider calling m_fragment() to test error handling. */
 5431 
 5432         /* Map the mbuf cluster into device memory. */
 5433         error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
 5434             sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
 5435 
 5436         /* Handle any mapping errors. */
 5437         if (error) {
 5438                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
 5439                     __FILE__, __LINE__);
 5440 
 5441                 m_freem(m_new);
 5442                 DBRUN(sc->debug_pg_mbuf_alloc--);
 5443 
 5444                 rc = ENOBUFS;
 5445                 goto bce_get_pg_buf_exit;
 5446         }
 5447 
 5448         /* All mbufs must map to a single segment. */
 5449         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
 5450             __FUNCTION__, nsegs));
 5451 
 5452         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
 5453 
 5454         /*
 5455          * The page chain uses the same rx_bd data structure
 5456          * as the receive chain but doesn't require a byte sequence (bseq).
 5457          */
 5458         pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
 5459 
 5460         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
 5461         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
 5462         pgbd->rx_bd_len       = htole32(MCLBYTES);
 5463         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
 5464 
 5465         /* Save the mbuf and update our counter. */
 5466         sc->pg_mbuf_ptr[prod_idx] = m_new;
 5467         sc->free_pg_bd--;
 5468 
 5469         DBRUNMSG(BCE_INSANE_RECV,
 5470             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
 5471 
 5472         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
 5473             "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
 5474 
 5475 bce_get_pg_buf_exit:
 5476         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5477 
 5478         return(rc);
 5479 }
 5480 
 5481 /****************************************************************************/
 5482 /* Initialize the TX context memory.                                        */
 5483 /*                                                                          */
 5484 /* Returns:                                                                 */
 5485 /*   Nothing                                                                */
 5486 /****************************************************************************/
 5487 static void
 5488 bce_init_tx_context(struct bce_softc *sc)
 5489 {
 5490         u32 val;
 5491 
 5492         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 5493 
 5494         /* Initialize the context ID for an L2 TX chain. */
 5495         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 5496                 /* Set the CID type to support an L2 connection. */
 5497                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
 5498                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
 5499                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
 5500                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
 5501                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5502                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
 5503 
 5504                 /* Point the hardware to the first page in the chain. */
 5505                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
 5506                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5507                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
 5508                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
 5509                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5510                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
 5511         } else {
 5512                 /* Set the CID type to support an L2 connection. */
 5513                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
 5514                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
 5515                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
 5516                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
 5517 
 5518                 /* Point the hardware to the first page in the chain. */
 5519                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
 5520                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5521                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
 5522                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
 5523                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5524                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
 5525         }
 5526 
 5527         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 5528 }
 5529 
 5530 /****************************************************************************/
 5531 /* Allocate memory and initialize the TX data structures.                   */
 5532 /*                                                                          */
 5533 /* Returns:                                                                 */
 5534 /*   0 for success, positive value for failure.                             */
 5535 /****************************************************************************/
 5536 static int
 5537 bce_init_tx_chain(struct bce_softc *sc)
 5538 {
 5539         struct tx_bd *txbd;
 5540         int i, rc = 0;
 5541 
 5542         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
 5543 
 5544         /* Set the initial TX producer/consumer indices. */
 5545         sc->tx_prod        = 0;
 5546         sc->tx_cons        = 0;
 5547         sc->tx_prod_bseq   = 0;
 5548         sc->used_tx_bd     = 0;
 5549         sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
 5550         DBRUN(sc->tx_hi_watermark = 0);
 5551         DBRUN(sc->tx_full_count = 0);
 5552 
 5553         /*
 5554          * The NetXtreme II supports a linked-list structure called
 5555          * a Buffer Descriptor Chain (or BD chain).  A BD chain
 5556          * consists of a series of 1 or more chain pages, each of which
 5557          * consists of a fixed number of BD entries.
 5558          * The last BD entry on each page is a pointer to the next page
 5559          * in the chain, and the last pointer in the BD chain
 5560          * points back to the beginning of the chain.
 5561          */
 5562 
 5563         /* Set the TX next pointer chain entries. */
 5564         for (i = 0; i < sc->tx_pages; i++) {
 5565                 int j;
 5566 
 5567                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
 5568 
 5569                 /* Check if we've reached the last page. */
 5570                 if (i == (sc->tx_pages - 1))
 5571                         j = 0;
 5572                 else
 5573                         j = i + 1;
 5574 
 5575                 txbd->tx_bd_haddr_hi =
 5576                     htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
 5577                 txbd->tx_bd_haddr_lo =
 5578                     htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
 5579         }
 5580 
 5581         bce_init_tx_context(sc);
 5582 
 5583         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
 5584         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
 5585 
 5586         return(rc);
 5587 }
 5588 
 5589 /****************************************************************************/
 5590 /* Free memory and clear the TX data structures.                            */
 5591 /*                                                                          */
 5592 /* Returns:                                                                 */
 5593 /*   Nothing.                                                               */
 5594 /****************************************************************************/
 5595 static void
 5596 bce_free_tx_chain(struct bce_softc *sc)
 5597 {
 5598         int i;
 5599 
 5600         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
 5601 
 5602         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
 5603         for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
 5604                 if (sc->tx_mbuf_ptr[i] != NULL) {
 5605                         if (sc->tx_mbuf_map[i] != NULL)
 5606                                 bus_dmamap_sync(sc->tx_mbuf_tag,
 5607                                     sc->tx_mbuf_map[i],
 5608                                     BUS_DMASYNC_POSTWRITE);
 5609                         m_freem(sc->tx_mbuf_ptr[i]);
 5610                         sc->tx_mbuf_ptr[i] = NULL;
 5611                         DBRUN(sc->debug_tx_mbuf_alloc--);
 5612                 }
 5613         }
 5614 
 5615         /* Clear each TX chain page. */
 5616         for (i = 0; i < sc->tx_pages; i++)
 5617                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
 5618 
 5619         sc->used_tx_bd = 0;
 5620 
 5621         /* Check if we lost any mbufs in the process. */
 5622         DBRUNIF((sc->debug_tx_mbuf_alloc),
 5623             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
 5624             "from tx chain!\n", __FILE__, __LINE__,
 5625             sc->debug_tx_mbuf_alloc));
 5626 
 5627         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
 5628 }
 5629 
 5630 /****************************************************************************/
 5631 /* Initialize the RX context memory.                                        */
 5632 /*                                                                          */
 5633 /* Returns:                                                                 */
 5634 /*   Nothing                                                                */
 5635 /****************************************************************************/
 5636 static void
 5637 bce_init_rx_context(struct bce_softc *sc)
 5638 {
 5639         u32 val;
 5640 
 5641         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
 5642 
 5643         /* Init the type, size, and BD cache levels for the RX context. */
 5644         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
 5645             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
 5646             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
 5647 
 5648         /*
 5649          * Set the level for generating pause frames
 5650          * when the number of available rx_bd's gets
 5651          * too low (the low watermark) and the level
 5652          * when pause frames can be stopped (the high
 5653          * watermark).
 5654          */
 5655         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 5656                 u32 lo_water, hi_water;
 5657 
 5658                 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
 5659                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
 5660                 } else {
 5661                         lo_water = 0;
 5662                 }
 5663 
 5664                 if (lo_water >= USABLE_RX_BD_ALLOC) {
 5665                         lo_water = 0;
 5666                 }
 5667 
 5668                 hi_water = USABLE_RX_BD_ALLOC / 4;
 5669 
 5670                 if (hi_water <= lo_water) {
 5671                         lo_water = 0;
 5672                 }
 5673 
 5674                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
 5675                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
 5676 
 5677                 if (hi_water > 0xf)
 5678                         hi_water = 0xf;
 5679                 else if (hi_water == 0)
 5680                         lo_water = 0;
 5681 
 5682                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
 5683                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
 5684         }
 5685 
 5686         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
 5687 
 5688         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
 5689         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 5690                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
 5691                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
 5692         }
 5693 
 5694         /* Point the hardware to the first page in the chain. */
 5695         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
 5696         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
 5697         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
 5698         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
 5699 
 5700         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
 5701 }
 5702 
 5703 /****************************************************************************/
 5704 /* Allocate memory and initialize the RX data structures.                   */
 5705 /*                                                                          */
 5706 /* Returns:                                                                 */
 5707 /*   0 for success, positive value for failure.                             */
 5708 /****************************************************************************/
 5709 static int
 5710 bce_init_rx_chain(struct bce_softc *sc)
 5711 {
 5712         struct rx_bd *rxbd;
 5713         int i, rc = 0;
 5714 
 5715         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5716             BCE_VERBOSE_CTX);
 5717 
 5718         /* Initialize the RX producer and consumer indices. */
 5719         sc->rx_prod        = 0;
 5720         sc->rx_cons        = 0;
 5721         sc->rx_prod_bseq   = 0;
 5722         sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
 5723         sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
 5724 
 5725         /* Initialize the RX next pointer chain entries. */
 5726         for (i = 0; i < sc->rx_pages; i++) {
 5727                 int j;
 5728 
 5729                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
 5730 
 5731                 /* Check if we've reached the last page. */
 5732                 if (i == (sc->rx_pages - 1))
 5733                         j = 0;
 5734                 else
 5735                         j = i + 1;
 5736 
 5737                 /* Setup the chain page pointers. */
 5738                 rxbd->rx_bd_haddr_hi =
 5739                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
 5740                 rxbd->rx_bd_haddr_lo =
 5741                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
 5742         }
 5743 
 5744         /* Fill up the RX chain. */
 5745         bce_fill_rx_chain(sc);
 5746 
 5747         DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
 5748         DBRUN(sc->rx_empty_count = 0);
 5749         for (i = 0; i < sc->rx_pages; i++) {
 5750                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
 5751                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 5752         }
 5753 
 5754         bce_init_rx_context(sc);
 5755 
 5756         DBRUNMSG(BCE_EXTREME_RECV,
 5757             bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
 5758         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5759             BCE_VERBOSE_CTX);
 5760 
 5761         /* ToDo: Are there possible failure modes here? */
 5762 
 5763         return(rc);
 5764 }
 5765 
 5766 /****************************************************************************/
 5767 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
 5768 /* occurs.                                                                  */
 5769 /*                                                                          */
 5770 /* Returns:                                                                 */
 5771 /*   Nothing                                                                */
 5772 /****************************************************************************/
 5773 static void
 5774 bce_fill_rx_chain(struct bce_softc *sc)
 5775 {
 5776         u16 prod, prod_idx;
 5777         u32 prod_bseq;
 5778 
 5779         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5780             BCE_VERBOSE_CTX);
 5781 
 5782         /* Get the RX chain producer indices. */
 5783         prod      = sc->rx_prod;
 5784         prod_bseq = sc->rx_prod_bseq;
 5785 
 5786         /* Keep filling the RX chain until it's full. */
 5787         while (sc->free_rx_bd > 0) {
 5788                 prod_idx = RX_CHAIN_IDX(prod);
 5789                 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
 5790                         /* Bail out if we can't add an mbuf to the chain. */
 5791                         break;
 5792                 }
 5793                 prod = NEXT_RX_BD(prod);
 5794         }
 5795 
 5796         /* Save the RX chain producer indices. */
 5797         sc->rx_prod      = prod;
 5798         sc->rx_prod_bseq = prod_bseq;
 5799 
 5800         /* We should never end up pointing to a next page pointer. */
 5801         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
 5802             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
 5803             __FUNCTION__, rx_prod));
 5804 
 5805         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
 5806         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
 5807         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
 5808 
 5809         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5810             BCE_VERBOSE_CTX);
 5811 }
 5812 
 5813 /****************************************************************************/
 5814 /* Free memory and clear the RX data structures.                            */
 5815 /*                                                                          */
 5816 /* Returns:                                                                 */
 5817 /*   Nothing.                                                               */
 5818 /****************************************************************************/
 5819 static void
 5820 bce_free_rx_chain(struct bce_softc *sc)
 5821 {
 5822         int i;
 5823 
 5824         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5825 
 5826         /* Free any mbufs still in the RX mbuf chain. */
 5827         for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
 5828                 if (sc->rx_mbuf_ptr[i] != NULL) {
 5829                         if (sc->rx_mbuf_map[i] != NULL)
 5830                                 bus_dmamap_sync(sc->rx_mbuf_tag,
 5831                                     sc->rx_mbuf_map[i],
 5832                                     BUS_DMASYNC_POSTREAD);
 5833                         m_freem(sc->rx_mbuf_ptr[i]);
 5834                         sc->rx_mbuf_ptr[i] = NULL;
 5835                         DBRUN(sc->debug_rx_mbuf_alloc--);
 5836                 }
 5837         }
 5838 
 5839         /* Clear each RX chain page. */
 5840         for (i = 0; i < sc->rx_pages; i++)
 5841                 if (sc->rx_bd_chain[i] != NULL)
 5842                         bzero((char *)sc->rx_bd_chain[i],
 5843                             BCE_RX_CHAIN_PAGE_SZ);
 5844 
 5845         sc->free_rx_bd = sc->max_rx_bd;
 5846 
 5847         /* Check if we lost any mbufs in the process. */
 5848         DBRUNIF((sc->debug_rx_mbuf_alloc),
 5849             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
 5850             __FUNCTION__, sc->debug_rx_mbuf_alloc));
 5851 
 5852         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5853 }
 5854 
 5855 /****************************************************************************/
 5856 /* Allocate memory and initialize the page data structures.                 */
 5857 /* Assumes that bce_init_rx_chain() has not already been called.            */
 5858 /*                                                                          */
 5859 /* Returns:                                                                 */
 5860 /*   0 for success, positive value for failure.                             */
 5861 /****************************************************************************/
 5862 static int
 5863 bce_init_pg_chain(struct bce_softc *sc)
 5864 {
 5865         struct rx_bd *pgbd;
 5866         int i, rc = 0;
 5867         u32 val;
 5868 
 5869         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5870                 BCE_VERBOSE_CTX);
 5871 
 5872         /* Initialize the page producer and consumer indices. */
 5873         sc->pg_prod        = 0;
 5874         sc->pg_cons        = 0;
 5875         sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
 5876         sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
 5877         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
 5878         DBRUN(sc->pg_empty_count = 0);
 5879 
 5880         /* Initialize the page next pointer chain entries. */
 5881         for (i = 0; i < sc->pg_pages; i++) {
 5882                 int j;
 5883 
 5884                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
 5885 
 5886                 /* Check if we've reached the last page. */
 5887                 if (i == (sc->pg_pages - 1))
 5888                         j = 0;
 5889                 else
 5890                         j = i + 1;
 5891 
 5892                 /* Setup the chain page pointers. */
 5893                 pgbd->rx_bd_haddr_hi =
 5894                     htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
 5895                 pgbd->rx_bd_haddr_lo =
 5896                     htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
 5897         }
 5898 
 5899         /* Setup the MQ BIN mapping for host_pg_bidx. */
 5900         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
 5901                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
 5902 
 5903         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
 5904 
 5905         /* Configure the rx_bd and page chain mbuf cluster size. */
 5906         val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
 5907         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
 5908 
 5909         /* Configure the context reserved for jumbo support. */
 5910         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
 5911                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
 5912 
 5913         /* Point the hardware to the first page in the page chain. */
 5914         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
 5915         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
 5916         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
 5917         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
 5918 
 5919         /* Fill up the page chain. */
 5920         bce_fill_pg_chain(sc);
 5921 
 5922         for (i = 0; i < sc->pg_pages; i++) {
 5923                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
 5924                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 5925         }
 5926 
 5927         DBRUNMSG(BCE_EXTREME_RECV,
 5928             bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
 5929         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5930                 BCE_VERBOSE_CTX);
 5931         return(rc);
 5932 }
 5933 
 5934 /****************************************************************************/
 5935 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
 5936 /* occurs.                                                                  */
 5937 /*                                                                          */
 5938 /* Returns:                                                                 */
 5939 /*   Nothing                                                                */
 5940 /****************************************************************************/
 5941 static void
 5942 bce_fill_pg_chain(struct bce_softc *sc)
 5943 {
 5944         u16 prod, prod_idx;
 5945 
 5946         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5947             BCE_VERBOSE_CTX);
 5948 
 5949         /* Get the page chain prodcuer index. */
 5950         prod = sc->pg_prod;
 5951 
 5952         /* Keep filling the page chain until it's full. */
 5953         while (sc->free_pg_bd > 0) {
 5954                 prod_idx = PG_CHAIN_IDX(prod);
 5955                 if (bce_get_pg_buf(sc, prod, prod_idx)) {
 5956                         /* Bail out if we can't add an mbuf to the chain. */
 5957                         break;
 5958                 }
 5959                 prod = NEXT_PG_BD(prod);
 5960         }
 5961 
 5962         /* Save the page chain producer index. */
 5963         sc->pg_prod = prod;
 5964 
 5965         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
 5966             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
 5967             __FUNCTION__, pg_prod));
 5968 
 5969         /*
 5970          * Write the mailbox and tell the chip about
 5971          * the new rx_bd's in the page chain.
 5972          */
 5973         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
 5974             prod);
 5975 
 5976         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5977             BCE_VERBOSE_CTX);
 5978 }
 5979 
 5980 /****************************************************************************/
 5981 /* Free memory and clear the RX data structures.                            */
 5982 /*                                                                          */
 5983 /* Returns:                                                                 */
 5984 /*   Nothing.                                                               */
 5985 /****************************************************************************/
 5986 static void
 5987 bce_free_pg_chain(struct bce_softc *sc)
 5988 {
 5989         int i;
 5990 
 5991         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5992 
 5993         /* Free any mbufs still in the mbuf page chain. */
 5994         for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
 5995                 if (sc->pg_mbuf_ptr[i] != NULL) {
 5996                         if (sc->pg_mbuf_map[i] != NULL)
 5997                                 bus_dmamap_sync(sc->pg_mbuf_tag,
 5998                                     sc->pg_mbuf_map[i],
 5999                                     BUS_DMASYNC_POSTREAD);
 6000                         m_freem(sc->pg_mbuf_ptr[i]);
 6001                         sc->pg_mbuf_ptr[i] = NULL;
 6002                         DBRUN(sc->debug_pg_mbuf_alloc--);
 6003                 }
 6004         }
 6005 
 6006         /* Clear each page chain pages. */
 6007         for (i = 0; i < sc->pg_pages; i++)
 6008                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
 6009 
 6010         sc->free_pg_bd = sc->max_pg_bd;
 6011 
 6012         /* Check if we lost any mbufs in the process. */
 6013         DBRUNIF((sc->debug_pg_mbuf_alloc),
 6014             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
 6015             __FUNCTION__, sc->debug_pg_mbuf_alloc));
 6016 
 6017         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 6018 }
 6019 
 6020 static u32
 6021 bce_get_rphy_link(struct bce_softc *sc)
 6022 {
 6023         u32 advertise, link;
 6024         int fdpx;
 6025 
 6026         advertise = 0;
 6027         fdpx = 0;
 6028         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
 6029                 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
 6030         else
 6031                 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
 6032         if (link & BCE_NETLINK_ANEG_ENB)
 6033                 advertise |= BCE_NETLINK_ANEG_ENB;
 6034         if (link & BCE_NETLINK_SPEED_10HALF)
 6035                 advertise |= BCE_NETLINK_SPEED_10HALF;
 6036         if (link & BCE_NETLINK_SPEED_10FULL) {
 6037                 advertise |= BCE_NETLINK_SPEED_10FULL;
 6038                 fdpx++;
 6039         }
 6040         if (link & BCE_NETLINK_SPEED_100HALF)
 6041                 advertise |= BCE_NETLINK_SPEED_100HALF;
 6042         if (link & BCE_NETLINK_SPEED_100FULL) {
 6043                 advertise |= BCE_NETLINK_SPEED_100FULL;
 6044                 fdpx++;
 6045         }
 6046         if (link & BCE_NETLINK_SPEED_1000HALF)
 6047                 advertise |= BCE_NETLINK_SPEED_1000HALF;
 6048         if (link & BCE_NETLINK_SPEED_1000FULL) {
 6049                 advertise |= BCE_NETLINK_SPEED_1000FULL;
 6050                 fdpx++;
 6051         }
 6052         if (link & BCE_NETLINK_SPEED_2500HALF)
 6053                 advertise |= BCE_NETLINK_SPEED_2500HALF;
 6054         if (link & BCE_NETLINK_SPEED_2500FULL) {
 6055                 advertise |= BCE_NETLINK_SPEED_2500FULL;
 6056                 fdpx++;
 6057         }
 6058         if (fdpx)
 6059                 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
 6060                     BCE_NETLINK_FC_PAUSE_ASYM;
 6061         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
 6062                 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
 6063                     BCE_NETLINK_ETH_AT_WIRESPEED;
 6064 
 6065         return (advertise);
 6066 }
 6067 
 6068 /****************************************************************************/
 6069 /* Set media options.                                                       */
 6070 /*                                                                          */
 6071 /* Returns:                                                                 */
 6072 /*   0 for success, positive value for failure.                             */
 6073 /****************************************************************************/
 6074 static int
 6075 bce_ifmedia_upd(struct ifnet *ifp)
 6076 {
 6077         struct bce_softc *sc = ifp->if_softc;
 6078         int error;
 6079 
 6080         DBENTER(BCE_VERBOSE);
 6081 
 6082         BCE_LOCK(sc);
 6083         error = bce_ifmedia_upd_locked(ifp);
 6084         BCE_UNLOCK(sc);
 6085 
 6086         DBEXIT(BCE_VERBOSE);
 6087         return (error);
 6088 }
 6089 
 6090 /****************************************************************************/
 6091 /* Set media options.                                                       */
 6092 /*                                                                          */
 6093 /* Returns:                                                                 */
 6094 /*   Nothing.                                                               */
 6095 /****************************************************************************/
 6096 static int
 6097 bce_ifmedia_upd_locked(struct ifnet *ifp)
 6098 {
 6099         struct bce_softc *sc = ifp->if_softc;
 6100         struct mii_data *mii;
 6101         struct mii_softc *miisc;
 6102         struct ifmedia *ifm;
 6103         u32 link;
 6104         int error, fdx;
 6105 
 6106         DBENTER(BCE_VERBOSE_PHY);
 6107 
 6108         error = 0;
 6109         BCE_LOCK_ASSERT(sc);
 6110 
 6111         sc->bce_link_up = FALSE;
 6112         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
 6113                 ifm = &sc->bce_ifmedia;
 6114                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 6115                         return (EINVAL);
 6116                 link = 0;
 6117                 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
 6118                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
 6119                 case IFM_AUTO:
 6120                         /*
 6121                          * Check advertised link of remote PHY by reading
 6122                          * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
 6123                          * Always use the same link type of remote PHY.
 6124                          */
 6125                         link = bce_get_rphy_link(sc);
 6126                         break;
 6127                 case IFM_2500_SX:
 6128                         if ((sc->bce_phy_flags &
 6129                             (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
 6130                             BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
 6131                                 return (EINVAL);
 6132                         /*
 6133                          * XXX
 6134                          * Have to enable forced 2.5Gbps configuration.
 6135                          */
 6136                         if (fdx != 0)
 6137                                 link |= BCE_NETLINK_SPEED_2500FULL;
 6138                         else
 6139                                 link |= BCE_NETLINK_SPEED_2500HALF;
 6140                         break;
 6141                 case IFM_1000_SX:
 6142                         if ((sc->bce_phy_flags &
 6143                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
 6144                                 return (EINVAL);
 6145                         /*
 6146                          * XXX
 6147                          * Have to disable 2.5Gbps configuration.
 6148                          */
 6149                         if (fdx != 0)
 6150                                 link = BCE_NETLINK_SPEED_1000FULL;
 6151                         else
 6152                                 link = BCE_NETLINK_SPEED_1000HALF;
 6153                         break;
 6154                 case IFM_1000_T:
 6155                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
 6156                                 return (EINVAL);
 6157                         if (fdx != 0)
 6158                                 link = BCE_NETLINK_SPEED_1000FULL;
 6159                         else
 6160                                 link = BCE_NETLINK_SPEED_1000HALF;
 6161                         break;
 6162                 case IFM_100_TX:
 6163                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
 6164                                 return (EINVAL);
 6165                         if (fdx != 0)
 6166                                 link = BCE_NETLINK_SPEED_100FULL;
 6167                         else
 6168                                 link = BCE_NETLINK_SPEED_100HALF;
 6169                         break;
 6170                 case IFM_10_T:
 6171                         if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
 6172                                 return (EINVAL);
 6173                         if (fdx != 0)
 6174                                 link = BCE_NETLINK_SPEED_10FULL;
 6175                         else
 6176                                 link = BCE_NETLINK_SPEED_10HALF;
 6177                         break;
 6178                 default:
 6179                         return (EINVAL);
 6180                 }
 6181                 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
 6182                         /*
 6183                          * XXX
 6184                          * Advertise pause capability for full-duplex media.
 6185                          */
 6186                         if (fdx != 0)
 6187                                 link |= BCE_NETLINK_FC_PAUSE_SYM |
 6188                                     BCE_NETLINK_FC_PAUSE_ASYM;
 6189                         if ((sc->bce_phy_flags &
 6190                             BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
 6191                                 link |= BCE_NETLINK_PHY_APP_REMOTE |
 6192                                     BCE_NETLINK_ETH_AT_WIRESPEED;
 6193                 }
 6194 
 6195                 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
 6196                 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
 6197         } else {
 6198                 mii = device_get_softc(sc->bce_miibus);
 6199 
 6200                 /* Make sure the MII bus has been enumerated. */
 6201                 if (mii) {
 6202                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 6203                                 PHY_RESET(miisc);
 6204                         error = mii_mediachg(mii);
 6205                 }
 6206         }
 6207 
 6208         DBEXIT(BCE_VERBOSE_PHY);
 6209         return (error);
 6210 }
 6211 
 6212 static void
 6213 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
 6214 {
 6215         struct ifnet *ifp;
 6216         u32 link;
 6217 
 6218         ifp = sc->bce_ifp;
 6219         BCE_LOCK_ASSERT(sc);
 6220 
 6221         ifmr->ifm_status = IFM_AVALID;
 6222         ifmr->ifm_active = IFM_ETHER;
 6223         link = bce_shmem_rd(sc, BCE_LINK_STATUS);
 6224         /* XXX Handle heart beat status? */
 6225         if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
 6226                 ifmr->ifm_status |= IFM_ACTIVE;
 6227         else {
 6228                 ifmr->ifm_active |= IFM_NONE;
 6229                 ifp->if_baudrate = 0;
 6230                 return;
 6231         }
 6232         switch (link & BCE_LINK_STATUS_SPEED_MASK) {
 6233         case BCE_LINK_STATUS_10HALF:
 6234                 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
 6235                 ifp->if_baudrate = IF_Mbps(10UL);
 6236                 break;
 6237         case BCE_LINK_STATUS_10FULL:
 6238                 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
 6239                 ifp->if_baudrate = IF_Mbps(10UL);
 6240                 break;
 6241         case BCE_LINK_STATUS_100HALF:
 6242                 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
 6243                 ifp->if_baudrate = IF_Mbps(100UL);
 6244                 break;
 6245         case BCE_LINK_STATUS_100FULL:
 6246                 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
 6247                 ifp->if_baudrate = IF_Mbps(100UL);
 6248                 break;
 6249         case BCE_LINK_STATUS_1000HALF:
 6250                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
 6251                         ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
 6252                 else
 6253                         ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
 6254                 ifp->if_baudrate = IF_Mbps(1000UL);
 6255                 break;
 6256         case BCE_LINK_STATUS_1000FULL:
 6257                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
 6258                         ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
 6259                 else
 6260                         ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
 6261                 ifp->if_baudrate = IF_Mbps(1000UL);
 6262                 break;
 6263         case BCE_LINK_STATUS_2500HALF:
 6264                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
 6265                         ifmr->ifm_active |= IFM_NONE;
 6266                         return;
 6267                 } else
 6268                         ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
 6269                 ifp->if_baudrate = IF_Mbps(2500UL);
 6270                 break;
 6271         case BCE_LINK_STATUS_2500FULL:
 6272                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
 6273                         ifmr->ifm_active |= IFM_NONE;
 6274                         return;
 6275                 } else
 6276                         ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
 6277                 ifp->if_baudrate = IF_Mbps(2500UL);
 6278                 break;
 6279         default:
 6280                 ifmr->ifm_active |= IFM_NONE;
 6281                 return;
 6282         }
 6283 
 6284         if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
 6285                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
 6286         if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
 6287                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
 6288 }
 6289 
 6290 /****************************************************************************/
 6291 /* Reports current media status.                                            */
 6292 /*                                                                          */
 6293 /* Returns:                                                                 */
 6294 /*   Nothing.                                                               */
 6295 /****************************************************************************/
 6296 static void
 6297 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 6298 {
 6299         struct bce_softc *sc = ifp->if_softc;
 6300         struct mii_data *mii;
 6301 
 6302         DBENTER(BCE_VERBOSE_PHY);
 6303 
 6304         BCE_LOCK(sc);
 6305 
 6306         if ((ifp->if_flags & IFF_UP) == 0) {
 6307                 BCE_UNLOCK(sc);
 6308                 return;
 6309         }
 6310 
 6311         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
 6312                 bce_ifmedia_sts_rphy(sc, ifmr);
 6313         else {
 6314                 mii = device_get_softc(sc->bce_miibus);
 6315                 mii_pollstat(mii);
 6316                 ifmr->ifm_active = mii->mii_media_active;
 6317                 ifmr->ifm_status = mii->mii_media_status;
 6318         }
 6319 
 6320         BCE_UNLOCK(sc);
 6321 
 6322         DBEXIT(BCE_VERBOSE_PHY);
 6323 }
 6324 
 6325 /****************************************************************************/
 6326 /* Handles PHY generated interrupt events.                                  */
 6327 /*                                                                          */
 6328 /* Returns:                                                                 */
 6329 /*   Nothing.                                                               */
 6330 /****************************************************************************/
 6331 static void
 6332 bce_phy_intr(struct bce_softc *sc)
 6333 {
 6334         u32 new_link_state, old_link_state;
 6335 
 6336         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
 6337 
 6338         DBRUN(sc->phy_interrupts++);
 6339 
 6340         new_link_state = sc->status_block->status_attn_bits &
 6341             STATUS_ATTN_BITS_LINK_STATE;
 6342         old_link_state = sc->status_block->status_attn_bits_ack &
 6343             STATUS_ATTN_BITS_LINK_STATE;
 6344 
 6345         /* Handle any changes if the link state has changed. */
 6346         if (new_link_state != old_link_state) {
 6347                 /* Update the status_attn_bits_ack field. */
 6348                 if (new_link_state) {
 6349                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
 6350                             STATUS_ATTN_BITS_LINK_STATE);
 6351                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
 6352                             __FUNCTION__);
 6353                 } else {
 6354                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
 6355                             STATUS_ATTN_BITS_LINK_STATE);
 6356                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
 6357                             __FUNCTION__);
 6358                 }
 6359 
 6360                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
 6361                         if (new_link_state) {
 6362                                 if (bootverbose)
 6363                                         if_printf(sc->bce_ifp, "link UP\n");
 6364                                 if_link_state_change(sc->bce_ifp,
 6365                                     LINK_STATE_UP);
 6366                         } else {
 6367                                 if (bootverbose)
 6368                                         if_printf(sc->bce_ifp, "link DOWN\n");
 6369                                 if_link_state_change(sc->bce_ifp,
 6370                                     LINK_STATE_DOWN);
 6371                         }
 6372                 }
 6373                 /*
 6374                  * Assume link is down and allow
 6375                  * tick routine to update the state
 6376                  * based on the actual media state.
 6377                  */
 6378                 sc->bce_link_up = FALSE;
 6379                 callout_stop(&sc->bce_tick_callout);
 6380                 bce_tick(sc);
 6381         }
 6382 
 6383         /* Acknowledge the link change interrupt. */
 6384         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
 6385 
 6386         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
 6387 }
 6388 
 6389 /****************************************************************************/
 6390 /* Reads the receive consumer value from the status block (skipping over    */
 6391 /* chain page pointer if necessary).                                        */
 6392 /*                                                                          */
 6393 /* Returns:                                                                 */
 6394 /*   hw_cons                                                                */
 6395 /****************************************************************************/
 6396 static inline u16
 6397 bce_get_hw_rx_cons(struct bce_softc *sc)
 6398 {
 6399         u16 hw_cons;
 6400 
 6401         rmb();
 6402         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
 6403         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
 6404                 hw_cons++;
 6405 
 6406         return hw_cons;
 6407 }
 6408 
 6409 /****************************************************************************/
 6410 /* Handles received frame interrupt events.                                 */
 6411 /*                                                                          */
 6412 /* Returns:                                                                 */
 6413 /*   Nothing.                                                               */
 6414 /****************************************************************************/
 6415 static void
 6416 bce_rx_intr(struct bce_softc *sc)
 6417 {
 6418         struct ifnet *ifp = sc->bce_ifp;
 6419         struct l2_fhdr *l2fhdr;
 6420         struct ether_vlan_header *vh;
 6421         unsigned int pkt_len;
 6422         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
 6423         u32 status;
 6424         unsigned int rem_len;
 6425         u16 sw_pg_cons, sw_pg_cons_idx;
 6426 
 6427         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 6428         DBRUN(sc->interrupts_rx++);
 6429         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
 6430             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
 6431             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
 6432 
 6433         /* Prepare the RX chain pages to be accessed by the host CPU. */
 6434         for (int i = 0; i < sc->rx_pages; i++)
 6435                 bus_dmamap_sync(sc->rx_bd_chain_tag,
 6436                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
 6437 
 6438         /* Prepare the page chain pages to be accessed by the host CPU. */
 6439         if (bce_hdr_split == TRUE) {
 6440                 for (int i = 0; i < sc->pg_pages; i++)
 6441                         bus_dmamap_sync(sc->pg_bd_chain_tag,
 6442                             sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
 6443         }
 6444 
 6445         /* Get the hardware's view of the RX consumer index. */
 6446         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
 6447 
 6448         /* Get working copies of the driver's view of the consumer indices. */
 6449         sw_rx_cons = sc->rx_cons;
 6450         sw_pg_cons = sc->pg_cons;
 6451 
 6452         /* Update some debug statistics counters */
 6453         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
 6454             sc->rx_low_watermark = sc->free_rx_bd);
 6455         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
 6456             sc->rx_empty_count++);
 6457 
 6458         /* Scan through the receive chain as long as there is work to do */
 6459         /* ToDo: Consider setting a limit on the number of packets processed. */
 6460         rmb();
 6461         while (sw_rx_cons != hw_rx_cons) {
 6462                 struct mbuf *m0;
 6463 
 6464                 /* Convert the producer/consumer indices to an actual rx_bd index. */
 6465                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
 6466 
 6467                 /* Unmap the mbuf from DMA space. */
 6468                 bus_dmamap_sync(sc->rx_mbuf_tag,
 6469                     sc->rx_mbuf_map[sw_rx_cons_idx],
 6470                     BUS_DMASYNC_POSTREAD);
 6471                 bus_dmamap_unload(sc->rx_mbuf_tag,
 6472                     sc->rx_mbuf_map[sw_rx_cons_idx]);
 6473 
 6474                 /* Remove the mbuf from the RX chain. */
 6475                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
 6476                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
 6477                 DBRUN(sc->debug_rx_mbuf_alloc--);
 6478                 sc->free_rx_bd++;
 6479 
 6480                 /*
 6481                  * Frames received on the NetXteme II are prepended
 6482                  * with an l2_fhdr structure which provides status
 6483                  * information about the received frame (including
 6484                  * VLAN tags and checksum info).  The frames are
 6485                  * also automatically adjusted to word align the IP
 6486                  * header (i.e. two null bytes are inserted before
 6487                  * the Ethernet header).  As a result the data
 6488                  * DMA'd by the controller into the mbuf looks
 6489                  * like this:
 6490                  *
 6491                  * +---------+-----+---------------------+-----+
 6492                  * | l2_fhdr | pad | packet data         | FCS |
 6493                  * +---------+-----+---------------------+-----+
 6494                  *
 6495                  * The l2_fhdr needs to be checked and skipped and
 6496                  * the FCS needs to be stripped before sending the
 6497                  * packet up the stack.
 6498                  */
 6499                 l2fhdr  = mtod(m0, struct l2_fhdr *);
 6500 
 6501                 /* Get the packet data + FCS length and the status. */
 6502                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
 6503                 status  = l2fhdr->l2_fhdr_status;
 6504 
 6505                 /*
 6506                  * Skip over the l2_fhdr and pad, resulting in the
 6507                  * following data in the mbuf:
 6508                  * +---------------------+-----+
 6509                  * | packet data         | FCS |
 6510                  * +---------------------+-----+
 6511                  */
 6512                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
 6513 
 6514                 /*
 6515                  * When split header mode is used, an ethernet frame
 6516                  * may be split across the receive chain and the
 6517                  * page chain. If that occurs an mbuf cluster must be
 6518                  * reassembled from the individual mbuf pieces.
 6519                  */
 6520                 if (bce_hdr_split == TRUE) {
 6521                         /*
 6522                          * Check whether the received frame fits in a single
 6523                          * mbuf or not (i.e. packet data + FCS <=
 6524                          * sc->rx_bd_mbuf_data_len bytes).
 6525                          */
 6526                         if (pkt_len > m0->m_len) {
 6527                                 /*
 6528                                  * The received frame is larger than a single mbuf.
 6529                                  * If the frame was a TCP frame then only the TCP
 6530                                  * header is placed in the mbuf, the remaining
 6531                                  * payload (including FCS) is placed in the page
 6532                                  * chain, the SPLIT flag is set, and the header
 6533                                  * length is placed in the IP checksum field.
 6534                                  * If the frame is not a TCP frame then the mbuf
 6535                                  * is filled and the remaining bytes are placed
 6536                                  * in the page chain.
 6537                                  */
 6538 
 6539                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
 6540                                         "packet.\n", __FUNCTION__);
 6541                                 DBRUN(sc->split_header_frames_rcvd++);
 6542 
 6543                                 /*
 6544                                  * When the page chain is enabled and the TCP
 6545                                  * header has been split from the TCP payload,
 6546                                  * the ip_xsum structure will reflect the length
 6547                                  * of the TCP header, not the IP checksum.  Set
 6548                                  * the packet length of the mbuf accordingly.
 6549                                  */
 6550                                 if (status & L2_FHDR_STATUS_SPLIT) {
 6551                                         m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
 6552                                         DBRUN(sc->split_header_tcp_frames_rcvd++);
 6553                                 }
 6554 
 6555                                 rem_len = pkt_len - m0->m_len;
 6556 
 6557                                 /* Pull mbufs off the page chain for any remaining data. */
 6558                                 while (rem_len > 0) {
 6559                                         struct mbuf *m_pg;
 6560 
 6561                                         sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
 6562 
 6563                                         /* Remove the mbuf from the page chain. */
 6564                                         m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
 6565                                         sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
 6566                                         DBRUN(sc->debug_pg_mbuf_alloc--);
 6567                                         sc->free_pg_bd++;
 6568 
 6569                                         /* Unmap the page chain mbuf from DMA space. */
 6570                                         bus_dmamap_sync(sc->pg_mbuf_tag,
 6571                                                 sc->pg_mbuf_map[sw_pg_cons_idx],
 6572                                                 BUS_DMASYNC_POSTREAD);
 6573                                         bus_dmamap_unload(sc->pg_mbuf_tag,
 6574                                                 sc->pg_mbuf_map[sw_pg_cons_idx]);
 6575 
 6576                                         /* Adjust the mbuf length. */
 6577                                         if (rem_len < m_pg->m_len) {
 6578                                                 /* The mbuf chain is complete. */
 6579                                                 m_pg->m_len = rem_len;
 6580                                                 rem_len = 0;
 6581                                         } else {
 6582                                                 /* More packet data is waiting. */
 6583                                                 rem_len -= m_pg->m_len;
 6584                                         }
 6585 
 6586                                         /* Concatenate the mbuf cluster to the mbuf. */
 6587                                         m_cat(m0, m_pg);
 6588 
 6589                                         sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
 6590                                 }
 6591 
 6592                                 /* Set the total packet length. */
 6593                                 m0->m_pkthdr.len = pkt_len;
 6594 
 6595                         } else {
 6596                                 /*
 6597                                  * The received packet is small and fits in a
 6598                                  * single mbuf (i.e. the l2_fhdr + pad + packet +
 6599                                  * FCS <= MHLEN).  In other words, the packet is
 6600                                  * 154 bytes or less in size.
 6601                                  */
 6602 
 6603                                 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
 6604                                         "packet.\n", __FUNCTION__);
 6605 
 6606                                 /* Set the total packet length. */
 6607                                 m0->m_pkthdr.len = m0->m_len = pkt_len;
 6608                         }
 6609                 } else
 6610                         /* Set the total packet length. */
 6611                         m0->m_pkthdr.len = m0->m_len = pkt_len;
 6612 
 6613                 /* Remove the trailing Ethernet FCS. */
 6614                 m_adj(m0, -ETHER_CRC_LEN);
 6615 
 6616                 /* Check that the resulting mbuf chain is valid. */
 6617                 DBRUN(m_sanity(m0, FALSE));
 6618                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
 6619                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
 6620                     BCE_PRINTF("Invalid Ethernet frame size!\n");
 6621                     m_print(m0, 128));
 6622 
 6623                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
 6624                     sc->l2fhdr_error_sim_count++;
 6625                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
 6626 
 6627                 /* Check the received frame for errors. */
 6628                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
 6629                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
 6630                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
 6631                         /* Log the error and release the mbuf. */
 6632                         sc->l2fhdr_error_count++;
 6633                         m_freem(m0);
 6634                         m0 = NULL;
 6635                         goto bce_rx_intr_next_rx;
 6636                 }
 6637 
 6638                 /* Send the packet to the appropriate interface. */
 6639                 m0->m_pkthdr.rcvif = ifp;
 6640 
 6641                 /* Assume no hardware checksum. */
 6642                 m0->m_pkthdr.csum_flags = 0;
 6643 
 6644                 /* Validate the checksum if offload enabled. */
 6645                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 6646                         /* Check for an IP datagram. */
 6647                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
 6648                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
 6649                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 6650                                 DBRUN(sc->csum_offload_ip++);
 6651                                 /* Check if the IP checksum is valid. */
 6652                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
 6653                                         m0->m_pkthdr.csum_flags |=
 6654                                             CSUM_IP_VALID;
 6655                         }
 6656 
 6657                         /* Check for a valid TCP/UDP frame. */
 6658                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
 6659                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
 6660                                 /* Check for a good TCP/UDP checksum. */
 6661                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
 6662                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
 6663                                         DBRUN(sc->csum_offload_tcp_udp++);
 6664                                         m0->m_pkthdr.csum_data =
 6665                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
 6666                                         m0->m_pkthdr.csum_flags |=
 6667                                             (CSUM_DATA_VALID
 6668                                             | CSUM_PSEUDO_HDR);
 6669                                 }
 6670                         }
 6671                 }
 6672 
 6673                 /* Attach the VLAN tag. */
 6674                 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
 6675                     !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
 6676                         DBRUN(sc->vlan_tagged_frames_rcvd++);
 6677                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
 6678                                 DBRUN(sc->vlan_tagged_frames_stripped++);
 6679                                 m0->m_pkthdr.ether_vtag =
 6680                                     l2fhdr->l2_fhdr_vlan_tag;
 6681                                 m0->m_flags |= M_VLANTAG;
 6682                         } else {
 6683                                 /*
 6684                                  * bce(4) controllers can't disable VLAN
 6685                                  * tag stripping if management firmware
 6686                                  * (ASF/IPMI/UMP) is running. So we always
 6687                                  * strip VLAN tag and manually reconstruct
 6688                                  * the VLAN frame by appending stripped
 6689                                  * VLAN tag in driver if VLAN tag stripping
 6690                                  * was disabled.
 6691                                  *
 6692                                  * TODO: LLC SNAP handling.
 6693                                  */
 6694                                 bcopy(mtod(m0, uint8_t *),
 6695                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
 6696                                     ETHER_ADDR_LEN * 2);
 6697                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
 6698                                 vh = mtod(m0, struct ether_vlan_header *);
 6699                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
 6700                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
 6701                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
 6702                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
 6703                         }
 6704                 }
 6705 
 6706                 /* Increment received packet statistics. */
 6707                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 6708 
 6709 bce_rx_intr_next_rx:
 6710                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
 6711 
 6712                 /* If we have a packet, pass it up the stack */
 6713                 if (m0) {
 6714                         /* Make sure we don't lose our place when we release the lock. */
 6715                         sc->rx_cons = sw_rx_cons;
 6716                         sc->pg_cons = sw_pg_cons;
 6717 
 6718                         BCE_UNLOCK(sc);
 6719                         (*ifp->if_input)(ifp, m0);
 6720                         BCE_LOCK(sc);
 6721 
 6722                         /* Recover our place. */
 6723                         sw_rx_cons = sc->rx_cons;
 6724                         sw_pg_cons = sc->pg_cons;
 6725                 }
 6726 
 6727                 /* Refresh hw_cons to see if there's new work */
 6728                 if (sw_rx_cons == hw_rx_cons)
 6729                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
 6730         }
 6731 
 6732         /* No new packets.  Refill the page chain. */
 6733         if (bce_hdr_split == TRUE) {
 6734                 sc->pg_cons = sw_pg_cons;
 6735                 bce_fill_pg_chain(sc);
 6736         }
 6737 
 6738         /* No new packets.  Refill the RX chain. */
 6739         sc->rx_cons = sw_rx_cons;
 6740         bce_fill_rx_chain(sc);
 6741 
 6742         /* Prepare the page chain pages to be accessed by the NIC. */
 6743         for (int i = 0; i < sc->rx_pages; i++)
 6744                 bus_dmamap_sync(sc->rx_bd_chain_tag,
 6745                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
 6746 
 6747         if (bce_hdr_split == TRUE) {
 6748                 for (int i = 0; i < sc->pg_pages; i++)
 6749                         bus_dmamap_sync(sc->pg_bd_chain_tag,
 6750                             sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
 6751         }
 6752 
 6753         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
 6754             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
 6755             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
 6756         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 6757 }
 6758 
 6759 /****************************************************************************/
 6760 /* Reads the transmit consumer value from the status block (skipping over   */
 6761 /* chain page pointer if necessary).                                        */
 6762 /*                                                                          */
 6763 /* Returns:                                                                 */
 6764 /*   hw_cons                                                                */
 6765 /****************************************************************************/
 6766 static inline u16
 6767 bce_get_hw_tx_cons(struct bce_softc *sc)
 6768 {
 6769         u16 hw_cons;
 6770 
 6771         mb();
 6772         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
 6773         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
 6774                 hw_cons++;
 6775 
 6776         return hw_cons;
 6777 }
 6778 
 6779 /****************************************************************************/
 6780 /* Handles transmit completion interrupt events.                            */
 6781 /*                                                                          */
 6782 /* Returns:                                                                 */
 6783 /*   Nothing.                                                               */
 6784 /****************************************************************************/
 6785 static void
 6786 bce_tx_intr(struct bce_softc *sc)
 6787 {
 6788         struct ifnet *ifp = sc->bce_ifp;
 6789         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
 6790 
 6791         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
 6792         DBRUN(sc->interrupts_tx++);
 6793         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
 6794             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
 6795             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
 6796 
 6797         BCE_LOCK_ASSERT(sc);
 6798 
 6799         /* Get the hardware's view of the TX consumer index. */
 6800         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
 6801         sw_tx_cons = sc->tx_cons;
 6802 
 6803         /* Prevent speculative reads of the status block. */
 6804         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
 6805             BUS_SPACE_BARRIER_READ);
 6806 
 6807         /* Cycle through any completed TX chain page entries. */
 6808         while (sw_tx_cons != hw_tx_cons) {
 6809 #ifdef BCE_DEBUG
 6810                 struct tx_bd *txbd = NULL;
 6811 #endif
 6812                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
 6813 
 6814                 DBPRINT(sc, BCE_INFO_SEND,
 6815                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
 6816                     "sw_tx_chain_cons = 0x%04X\n",
 6817                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
 6818 
 6819                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
 6820                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
 6821                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
 6822                     (int) MAX_TX_BD_ALLOC);
 6823                     bce_breakpoint(sc));
 6824 
 6825                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
 6826                     [TX_IDX(sw_tx_chain_cons)]);
 6827 
 6828                 DBRUNIF((txbd == NULL),
 6829                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
 6830                     __FILE__, __LINE__, sw_tx_chain_cons);
 6831                     bce_breakpoint(sc));
 6832 
 6833                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
 6834                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
 6835 
 6836                 /*
 6837                  * Free the associated mbuf. Remember
 6838                  * that only the last tx_bd of a packet
 6839                  * has an mbuf pointer and DMA map.
 6840                  */
 6841                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
 6842                         /* Validate that this is the last tx_bd. */
 6843                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
 6844                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
 6845                             "txmbuf == NULL!\n", __FILE__, __LINE__);
 6846                             bce_breakpoint(sc));
 6847 
 6848                         DBRUNMSG(BCE_INFO_SEND,
 6849                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
 6850                             "from tx_bd[0x%04X]\n", __FUNCTION__,
 6851                             sw_tx_chain_cons));
 6852 
 6853                         /* Unmap the mbuf. */
 6854                         bus_dmamap_unload(sc->tx_mbuf_tag,
 6855                             sc->tx_mbuf_map[sw_tx_chain_cons]);
 6856 
 6857                         /* Free the mbuf. */
 6858                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
 6859                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
 6860                         DBRUN(sc->debug_tx_mbuf_alloc--);
 6861 
 6862                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 6863                 }
 6864 
 6865                 sc->used_tx_bd--;
 6866                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
 6867 
 6868                 /* Refresh hw_cons to see if there's new work. */
 6869                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
 6870 
 6871                 /* Prevent speculative reads of the status block. */
 6872                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
 6873                     BUS_SPACE_BARRIER_READ);
 6874         }
 6875 
 6876         /* Clear the TX timeout timer. */
 6877         sc->watchdog_timer = 0;
 6878 
 6879         /* Clear the tx hardware queue full flag. */
 6880         if (sc->used_tx_bd < sc->max_tx_bd) {
 6881                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
 6882                     DBPRINT(sc, BCE_INFO_SEND,
 6883                     "%s(): Open TX chain! %d/%d (used/total)\n",
 6884                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
 6885                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 6886         }
 6887 
 6888         sc->tx_cons = sw_tx_cons;
 6889 
 6890         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
 6891             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
 6892             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
 6893         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
 6894 }
 6895 
 6896 /****************************************************************************/
 6897 /* Disables interrupt generation.                                           */
 6898 /*                                                                          */
 6899 /* Returns:                                                                 */
 6900 /*   Nothing.                                                               */
 6901 /****************************************************************************/
 6902 static void
 6903 bce_disable_intr(struct bce_softc *sc)
 6904 {
 6905         DBENTER(BCE_VERBOSE_INTR);
 6906 
 6907         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
 6908         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
 6909 
 6910         DBEXIT(BCE_VERBOSE_INTR);
 6911 }
 6912 
 6913 /****************************************************************************/
 6914 /* Enables interrupt generation.                                            */
 6915 /*                                                                          */
 6916 /* Returns:                                                                 */
 6917 /*   Nothing.                                                               */
 6918 /****************************************************************************/
 6919 static void
 6920 bce_enable_intr(struct bce_softc *sc, int coal_now)
 6921 {
 6922         DBENTER(BCE_VERBOSE_INTR);
 6923 
 6924         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
 6925             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
 6926             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
 6927 
 6928         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
 6929             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
 6930 
 6931         /* Force an immediate interrupt (whether there is new data or not). */
 6932         if (coal_now)
 6933                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
 6934 
 6935         DBEXIT(BCE_VERBOSE_INTR);
 6936 }
 6937 
 6938 /****************************************************************************/
 6939 /* Handles controller initialization.                                       */
 6940 /*                                                                          */
 6941 /* Returns:                                                                 */
 6942 /*   Nothing.                                                               */
 6943 /****************************************************************************/
 6944 static void
 6945 bce_init_locked(struct bce_softc *sc)
 6946 {
 6947         struct ifnet *ifp;
 6948         u32 ether_mtu = 0;
 6949 
 6950         DBENTER(BCE_VERBOSE_RESET);
 6951 
 6952         BCE_LOCK_ASSERT(sc);
 6953 
 6954         ifp = sc->bce_ifp;
 6955 
 6956         /* Check if the driver is still running and bail out if it is. */
 6957         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 6958                 goto bce_init_locked_exit;
 6959 
 6960         bce_stop(sc);
 6961 
 6962         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
 6963                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
 6964                     __FILE__, __LINE__);
 6965                 goto bce_init_locked_exit;
 6966         }
 6967 
 6968         if (bce_chipinit(sc)) {
 6969                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
 6970                     __FILE__, __LINE__);
 6971                 goto bce_init_locked_exit;
 6972         }
 6973 
 6974         if (bce_blockinit(sc)) {
 6975                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
 6976                     __FILE__, __LINE__);
 6977                 goto bce_init_locked_exit;
 6978         }
 6979 
 6980         /* Load our MAC address. */
 6981         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
 6982         bce_set_mac_addr(sc);
 6983 
 6984         if (bce_hdr_split == FALSE)
 6985                 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
 6986         /*
 6987          * Calculate and program the hardware Ethernet MTU
 6988          * size. Be generous on the receive if we have room
 6989          * and allowed by the user.
 6990          */
 6991         if (bce_strict_rx_mtu == TRUE)
 6992                 ether_mtu = ifp->if_mtu;
 6993         else {
 6994                 if (bce_hdr_split == TRUE) {
 6995                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
 6996                                 ether_mtu = sc->rx_bd_mbuf_data_len +
 6997                                     MCLBYTES;
 6998                         else
 6999                                 ether_mtu = ifp->if_mtu;
 7000                 } else {
 7001                         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
 7002                                 ether_mtu = sc->rx_bd_mbuf_data_len;
 7003                         else
 7004                                 ether_mtu = ifp->if_mtu;
 7005                 }
 7006         }
 7007 
 7008         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
 7009 
 7010         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
 7011             __FUNCTION__, ether_mtu);
 7012 
 7013         /* Program the mtu, enabling jumbo frame support if necessary. */
 7014         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
 7015                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
 7016                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
 7017                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
 7018         else
 7019                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
 7020 
 7021         /* Program appropriate promiscuous/multicast filtering. */
 7022         bce_set_rx_mode(sc);
 7023 
 7024         if (bce_hdr_split == TRUE) {
 7025                 /* Init page buffer descriptor chain. */
 7026                 bce_init_pg_chain(sc);
 7027         }
 7028 
 7029         /* Init RX buffer descriptor chain. */
 7030         bce_init_rx_chain(sc);
 7031 
 7032         /* Init TX buffer descriptor chain. */
 7033         bce_init_tx_chain(sc);
 7034 
 7035         /* Enable host interrupts. */
 7036         bce_enable_intr(sc, 1);
 7037 
 7038         bce_ifmedia_upd_locked(ifp);
 7039 
 7040         /* Let the OS know the driver is up and running. */
 7041         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 7042         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 7043 
 7044         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
 7045 
 7046 bce_init_locked_exit:
 7047         DBEXIT(BCE_VERBOSE_RESET);
 7048 }
 7049 
 7050 /****************************************************************************/
 7051 /* Initialize the controller just enough so that any management firmware    */
 7052 /* running on the device will continue to operate correctly.                */
 7053 /*                                                                          */
 7054 /* Returns:                                                                 */
 7055 /*   Nothing.                                                               */
 7056 /****************************************************************************/
 7057 static void
 7058 bce_mgmt_init_locked(struct bce_softc *sc)
 7059 {
 7060         struct ifnet *ifp;
 7061 
 7062         DBENTER(BCE_VERBOSE_RESET);
 7063 
 7064         BCE_LOCK_ASSERT(sc);
 7065 
 7066         /* Bail out if management firmware is not running. */
 7067         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
 7068                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
 7069                     "No management firmware running...\n");
 7070                 goto bce_mgmt_init_locked_exit;
 7071         }
 7072 
 7073         ifp = sc->bce_ifp;
 7074 
 7075         /* Enable all critical blocks in the MAC. */
 7076         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
 7077         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
 7078         DELAY(20);
 7079 
 7080         bce_ifmedia_upd_locked(ifp);
 7081 
 7082 bce_mgmt_init_locked_exit:
 7083         DBEXIT(BCE_VERBOSE_RESET);
 7084 }
 7085 
 7086 /****************************************************************************/
 7087 /* Handles controller initialization when called from an unlocked routine.  */
 7088 /*                                                                          */
 7089 /* Returns:                                                                 */
 7090 /*   Nothing.                                                               */
 7091 /****************************************************************************/
 7092 static void
 7093 bce_init(void *xsc)
 7094 {
 7095         struct bce_softc *sc = xsc;
 7096 
 7097         DBENTER(BCE_VERBOSE_RESET);
 7098 
 7099         BCE_LOCK(sc);
 7100         bce_init_locked(sc);
 7101         BCE_UNLOCK(sc);
 7102 
 7103         DBEXIT(BCE_VERBOSE_RESET);
 7104 }
 7105 
 7106 /****************************************************************************/
 7107 /* Modifies an mbuf for TSO on the hardware.                                */
 7108 /*                                                                          */
 7109 /* Returns:                                                                 */
 7110 /*   Pointer to a modified mbuf.                                            */
 7111 /****************************************************************************/
 7112 static struct mbuf *
 7113 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
 7114 {
 7115         struct mbuf *m;
 7116         struct ether_header *eh;
 7117         struct ip *ip;
 7118         struct tcphdr *th;
 7119         u16 etype;
 7120         int hdr_len __unused, ip_len __unused, ip_hlen = 0, tcp_hlen = 0;
 7121 
 7122         DBRUN(sc->tso_frames_requested++);
 7123 
 7124         ip_len = 0;
 7125         /* Controller may modify mbuf chains. */
 7126         if (M_WRITABLE(*m_head) == 0) {
 7127                 m = m_dup(*m_head, M_NOWAIT);
 7128                 m_freem(*m_head);
 7129                 if (m == NULL) {
 7130                         sc->mbuf_alloc_failed_count++;
 7131                         *m_head = NULL;
 7132                         return (NULL);
 7133                 }
 7134                 *m_head = m;
 7135         }
 7136 
 7137         /*
 7138          * For TSO the controller needs two pieces of info,
 7139          * the MSS and the IP+TCP options length.
 7140          */
 7141         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
 7142         if (m == NULL) {
 7143                 *m_head = NULL;
 7144                 return (NULL);
 7145         }
 7146         eh = mtod(m, struct ether_header *);
 7147         etype = ntohs(eh->ether_type);
 7148 
 7149         /* Check for supported TSO Ethernet types (only IPv4 for now) */
 7150         switch (etype) {
 7151         case ETHERTYPE_IP:
 7152                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
 7153                 /* TSO only supported for TCP protocol. */
 7154                 if (ip->ip_p != IPPROTO_TCP) {
 7155                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
 7156                             __FILE__, __LINE__);
 7157                         m_freem(*m_head);
 7158                         *m_head = NULL;
 7159                         return (NULL);
 7160                 }
 7161 
 7162                 /* Get IP header length in bytes (min 20) */
 7163                 ip_hlen = ip->ip_hl << 2;
 7164                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
 7165                     sizeof(struct tcphdr));
 7166                 if (m == NULL) {
 7167                         *m_head = NULL;
 7168                         return (NULL);
 7169                 }
 7170 
 7171                 /* Get the TCP header length in bytes (min 20) */
 7172                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
 7173                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
 7174                 tcp_hlen = (th->th_off << 2);
 7175 
 7176                 /* Make sure all IP/TCP options live in the same buffer. */
 7177                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
 7178                     tcp_hlen);
 7179                 if (m == NULL) {
 7180                         *m_head = NULL;
 7181                         return (NULL);
 7182                 }
 7183 
 7184                 /* Clear IP header length and checksum, will be calc'd by h/w. */
 7185                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
 7186                 ip_len = ip->ip_len;
 7187                 ip->ip_len = 0;
 7188                 ip->ip_sum = 0;
 7189                 break;
 7190         case ETHERTYPE_IPV6:
 7191                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
 7192                     __FILE__, __LINE__);
 7193                 m_freem(*m_head);
 7194                 *m_head = NULL;
 7195                 return (NULL);
 7196                 /* NOT REACHED */
 7197         default:
 7198                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
 7199                     __FILE__, __LINE__);
 7200                 m_freem(*m_head);
 7201                 *m_head = NULL;
 7202                 return (NULL);
 7203         }
 7204 
 7205         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
 7206 
 7207         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
 7208             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
 7209             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
 7210             tcp_hlen, ip_len);
 7211 
 7212         /* Set the LSO flag in the TX BD */
 7213         *flags |= TX_BD_FLAGS_SW_LSO;
 7214 
 7215         /* Set the length of IP + TCP options (in 32 bit words) */
 7216         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
 7217             sizeof(struct tcphdr)) >> 2) << 8);
 7218 
 7219         DBRUN(sc->tso_frames_completed++);
 7220         return (*m_head);
 7221 }
 7222 
 7223 /****************************************************************************/
 7224 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
 7225 /* memory visible to the controller.                                        */
 7226 /*                                                                          */
 7227 /* Returns:                                                                 */
 7228 /*   0 for success, positive value for failure.                             */
 7229 /* Modified:                                                                */
 7230 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
 7231 /****************************************************************************/
 7232 static int
 7233 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
 7234 {
 7235         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
 7236         bus_dmamap_t map;
 7237         struct tx_bd *txbd = NULL;
 7238         struct mbuf *m0;
 7239         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
 7240         u32 prod_bseq;
 7241 
 7242 #ifdef BCE_DEBUG
 7243         u16 debug_prod;
 7244 #endif
 7245 
 7246         int i, error, nsegs, rc = 0;
 7247 
 7248         DBENTER(BCE_VERBOSE_SEND);
 7249 
 7250         /* Make sure we have room in the TX chain. */
 7251         if (sc->used_tx_bd >= sc->max_tx_bd)
 7252                 goto bce_tx_encap_exit;
 7253 
 7254         /* Transfer any checksum offload flags to the bd. */
 7255         m0 = *m_head;
 7256         if (m0->m_pkthdr.csum_flags) {
 7257                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
 7258                         m0 = bce_tso_setup(sc, m_head, &flags);
 7259                         if (m0 == NULL) {
 7260                                 DBRUN(sc->tso_frames_failed++);
 7261                                 goto bce_tx_encap_exit;
 7262                         }
 7263                         mss = htole16(m0->m_pkthdr.tso_segsz);
 7264                 } else {
 7265                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
 7266                                 flags |= TX_BD_FLAGS_IP_CKSUM;
 7267                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
 7268                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
 7269                 }
 7270         }
 7271 
 7272         /* Transfer any VLAN tags to the bd. */
 7273         if (m0->m_flags & M_VLANTAG) {
 7274                 flags |= TX_BD_FLAGS_VLAN_TAG;
 7275                 vlan_tag = m0->m_pkthdr.ether_vtag;
 7276         }
 7277 
 7278         /* Map the mbuf into DMAable memory. */
 7279         prod = sc->tx_prod;
 7280         chain_prod = TX_CHAIN_IDX(prod);
 7281         map = sc->tx_mbuf_map[chain_prod];
 7282 
 7283         /* Map the mbuf into our DMA address space. */
 7284         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
 7285             segs, &nsegs, BUS_DMA_NOWAIT);
 7286 
 7287         /* Check if the DMA mapping was successful */
 7288         if (error == EFBIG) {
 7289                 sc->mbuf_frag_count++;
 7290 
 7291                 /* Try to defrag the mbuf. */
 7292                 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
 7293                 if (m0 == NULL) {
 7294                         /* Defrag was unsuccessful */
 7295                         m_freem(*m_head);
 7296                         *m_head = NULL;
 7297                         sc->mbuf_alloc_failed_count++;
 7298                         rc = ENOBUFS;
 7299                         goto bce_tx_encap_exit;
 7300                 }
 7301 
 7302                 /* Defrag was successful, try mapping again */
 7303                 *m_head = m0;
 7304                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
 7305                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
 7306 
 7307                 /* Still getting an error after a defrag. */
 7308                 if (error == ENOMEM) {
 7309                         /* Insufficient DMA buffers available. */
 7310                         sc->dma_map_addr_tx_failed_count++;
 7311                         rc = error;
 7312                         goto bce_tx_encap_exit;
 7313                 } else if (error != 0) {
 7314                         /* Release it and return an error. */
 7315                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
 7316                             "TX chain!\n", __FILE__, __LINE__);
 7317                         m_freem(m0);
 7318                         *m_head = NULL;
 7319                         sc->dma_map_addr_tx_failed_count++;
 7320                         rc = ENOBUFS;
 7321                         goto bce_tx_encap_exit;
 7322                 }
 7323         } else if (error == ENOMEM) {
 7324                 /* Insufficient DMA buffers available. */
 7325                 sc->dma_map_addr_tx_failed_count++;
 7326                 rc = error;
 7327                 goto bce_tx_encap_exit;
 7328         } else if (error != 0) {
 7329                 m_freem(m0);
 7330                 *m_head = NULL;
 7331                 sc->dma_map_addr_tx_failed_count++;
 7332                 rc = error;
 7333                 goto bce_tx_encap_exit;
 7334         }
 7335 
 7336         /* Make sure there's room in the chain */
 7337         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
 7338                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
 7339                 rc = ENOBUFS;
 7340                 goto bce_tx_encap_exit;
 7341         }
 7342 
 7343         /* prod points to an empty tx_bd at this point. */
 7344         prod_bseq  = sc->tx_prod_bseq;
 7345 
 7346 #ifdef BCE_DEBUG
 7347         debug_prod = chain_prod;
 7348 #endif
 7349 
 7350         DBPRINT(sc, BCE_INFO_SEND,
 7351             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
 7352             "prod_bseq = 0x%08X\n",
 7353             __FUNCTION__, prod, chain_prod, prod_bseq);
 7354 
 7355         /*
 7356          * Cycle through each mbuf segment that makes up
 7357          * the outgoing frame, gathering the mapping info
 7358          * for that segment and creating a tx_bd for
 7359          * the mbuf.
 7360          */
 7361         for (i = 0; i < nsegs ; i++) {
 7362                 chain_prod = TX_CHAIN_IDX(prod);
 7363                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
 7364                     [TX_IDX(chain_prod)];
 7365 
 7366                 txbd->tx_bd_haddr_lo =
 7367                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
 7368                 txbd->tx_bd_haddr_hi =
 7369                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
 7370                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
 7371                     htole16(segs[i].ds_len);
 7372                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
 7373                 txbd->tx_bd_flags = htole16(flags);
 7374                 prod_bseq += segs[i].ds_len;
 7375                 if (i == 0)
 7376                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
 7377                 prod = NEXT_TX_BD(prod);
 7378         }
 7379 
 7380         /* Set the END flag on the last TX buffer descriptor. */
 7381         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
 7382 
 7383         DBRUNMSG(BCE_EXTREME_SEND,
 7384             bce_dump_tx_chain(sc, debug_prod, nsegs));
 7385 
 7386         /*
 7387          * Ensure that the mbuf pointer for this transmission
 7388          * is placed at the array index of the last
 7389          * descriptor in this chain.  This is done
 7390          * because a single map is used for all
 7391          * segments of the mbuf and we don't want to
 7392          * unload the map before all of the segments
 7393          * have been freed.
 7394          */
 7395         sc->tx_mbuf_ptr[chain_prod] = m0;
 7396         sc->used_tx_bd += nsegs;
 7397 
 7398         /* Update some debug statistic counters */
 7399         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
 7400             sc->tx_hi_watermark = sc->used_tx_bd);
 7401         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
 7402         DBRUNIF(sc->debug_tx_mbuf_alloc++);
 7403 
 7404         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
 7405 
 7406         /* prod points to the next free tx_bd at this point. */
 7407         sc->tx_prod = prod;
 7408         sc->tx_prod_bseq = prod_bseq;
 7409 
 7410         /* Tell the chip about the waiting TX frames. */
 7411         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
 7412             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
 7413         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
 7414             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
 7415 
 7416 bce_tx_encap_exit:
 7417         DBEXIT(BCE_VERBOSE_SEND);
 7418         return(rc);
 7419 }
 7420 
 7421 /****************************************************************************/
 7422 /* Main transmit routine when called from another routine with a lock.      */
 7423 /*                                                                          */
 7424 /* Returns:                                                                 */
 7425 /*   Nothing.                                                               */
 7426 /****************************************************************************/
 7427 static void
 7428 bce_start_locked(struct ifnet *ifp)
 7429 {
 7430         struct bce_softc *sc = ifp->if_softc;
 7431         struct mbuf *m_head = NULL;
 7432         int count = 0;
 7433         u16 tx_prod, tx_chain_prod __unused;
 7434 
 7435         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 7436 
 7437         BCE_LOCK_ASSERT(sc);
 7438 
 7439         /* prod points to the next free tx_bd. */
 7440         tx_prod = sc->tx_prod;
 7441         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
 7442 
 7443         DBPRINT(sc, BCE_INFO_SEND,
 7444             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
 7445             "tx_prod_bseq = 0x%08X\n",
 7446             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
 7447 
 7448         /* If there's no link or the transmit queue is empty then just exit. */
 7449         if (sc->bce_link_up == FALSE) {
 7450                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
 7451                     __FUNCTION__);
 7452                 goto bce_start_locked_exit;
 7453         }
 7454 
 7455         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
 7456                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
 7457                     __FUNCTION__);
 7458                 goto bce_start_locked_exit;
 7459         }
 7460 
 7461         /*
 7462          * Keep adding entries while there is space in the ring.
 7463          */
 7464         while (sc->used_tx_bd < sc->max_tx_bd) {
 7465                 /* Check for any frames to send. */
 7466                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 7467 
 7468                 /* Stop when the transmit queue is empty. */
 7469                 if (m_head == NULL)
 7470                         break;
 7471 
 7472                 /*
 7473                  * Pack the data into the transmit ring. If we
 7474                  * don't have room, place the mbuf back at the
 7475                  * head of the queue and set the OACTIVE flag
 7476                  * to wait for the NIC to drain the chain.
 7477                  */
 7478                 if (bce_tx_encap(sc, &m_head)) {
 7479                         if (m_head != NULL)
 7480                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 7481                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 7482                         DBPRINT(sc, BCE_INFO_SEND,
 7483                             "TX chain is closed for business! Total "
 7484                             "tx_bd used = %d\n", sc->used_tx_bd);
 7485                         break;
 7486                 }
 7487 
 7488                 count++;
 7489 
 7490                 /* Send a copy of the frame to any BPF listeners. */
 7491                 ETHER_BPF_MTAP(ifp, m_head);
 7492         }
 7493 
 7494         /* Exit if no packets were dequeued. */
 7495         if (count == 0) {
 7496                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
 7497                     "dequeued\n", __FUNCTION__);
 7498                 goto bce_start_locked_exit;
 7499         }
 7500 
 7501         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
 7502             "send queue.\n", __FUNCTION__, count);
 7503 
 7504         /* Set the tx timeout. */
 7505         sc->watchdog_timer = BCE_TX_TIMEOUT;
 7506 
 7507         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
 7508         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
 7509 
 7510 bce_start_locked_exit:
 7511         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 7512 }
 7513 
 7514 /****************************************************************************/
 7515 /* Main transmit routine when called from another routine without a lock.   */
 7516 /*                                                                          */
 7517 /* Returns:                                                                 */
 7518 /*   Nothing.                                                               */
 7519 /****************************************************************************/
 7520 static void
 7521 bce_start(struct ifnet *ifp)
 7522 {
 7523         struct bce_softc *sc = ifp->if_softc;
 7524 
 7525         DBENTER(BCE_VERBOSE_SEND);
 7526 
 7527         BCE_LOCK(sc);
 7528         bce_start_locked(ifp);
 7529         BCE_UNLOCK(sc);
 7530 
 7531         DBEXIT(BCE_VERBOSE_SEND);
 7532 }
 7533 
 7534 /****************************************************************************/
 7535 /* Handles any IOCTL calls from the operating system.                       */
 7536 /*                                                                          */
 7537 /* Returns:                                                                 */
 7538 /*   0 for success, positive value for failure.                             */
 7539 /****************************************************************************/
 7540 static int
 7541 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 7542 {
 7543         struct bce_softc *sc = ifp->if_softc;
 7544         struct ifreq *ifr = (struct ifreq *) data;
 7545         struct mii_data *mii;
 7546         int mask, error = 0;
 7547 
 7548         DBENTER(BCE_VERBOSE_MISC);
 7549 
 7550         switch(command) {
 7551         /* Set the interface MTU. */
 7552         case SIOCSIFMTU:
 7553                 /* Check that the MTU setting is supported. */
 7554                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
 7555                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
 7556                         error = EINVAL;
 7557                         break;
 7558                 }
 7559 
 7560                 DBPRINT(sc, BCE_INFO_MISC,
 7561                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
 7562                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
 7563 
 7564                 BCE_LOCK(sc);
 7565                 ifp->if_mtu = ifr->ifr_mtu;
 7566                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 7567                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 7568                         bce_init_locked(sc);
 7569                 }
 7570                 BCE_UNLOCK(sc);
 7571                 break;
 7572 
 7573         /* Set interface flags. */
 7574         case SIOCSIFFLAGS:
 7575                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
 7576 
 7577                 BCE_LOCK(sc);
 7578 
 7579                 /* Check if the interface is up. */
 7580                 if (ifp->if_flags & IFF_UP) {
 7581                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 7582                                 /* Change promiscuous/multicast flags as necessary. */
 7583                                 bce_set_rx_mode(sc);
 7584                         } else {
 7585                                 /* Start the HW */
 7586                                 bce_init_locked(sc);
 7587                         }
 7588                 } else {
 7589                         /* The interface is down, check if driver is running. */
 7590                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 7591                                 bce_stop(sc);
 7592 
 7593                                 /* If MFW is running, restart the controller a bit. */
 7594                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
 7595                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
 7596                                         bce_chipinit(sc);
 7597                                         bce_mgmt_init_locked(sc);
 7598                                 }
 7599                         }
 7600                 }
 7601 
 7602                 BCE_UNLOCK(sc);
 7603                 break;
 7604 
 7605         /* Add/Delete multicast address */
 7606         case SIOCADDMULTI:
 7607         case SIOCDELMULTI:
 7608                 DBPRINT(sc, BCE_VERBOSE_MISC,
 7609                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
 7610 
 7611                 BCE_LOCK(sc);
 7612                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 7613                         bce_set_rx_mode(sc);
 7614                 BCE_UNLOCK(sc);
 7615 
 7616                 break;
 7617 
 7618         /* Set/Get Interface media */
 7619         case SIOCSIFMEDIA:
 7620         case SIOCGIFMEDIA:
 7621                 DBPRINT(sc, BCE_VERBOSE_MISC,
 7622                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
 7623                 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
 7624                         error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
 7625                             command);
 7626                 else {
 7627                         mii = device_get_softc(sc->bce_miibus);
 7628                         error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
 7629                             command);
 7630                 }
 7631                 break;
 7632 
 7633         /* Set interface capability */
 7634         case SIOCSIFCAP:
 7635                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 7636                 DBPRINT(sc, BCE_INFO_MISC,
 7637                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
 7638 
 7639                 /* Toggle the TX checksum capabilities enable flag. */
 7640                 if (mask & IFCAP_TXCSUM &&
 7641                     ifp->if_capabilities & IFCAP_TXCSUM) {
 7642                         ifp->if_capenable ^= IFCAP_TXCSUM;
 7643                         if (IFCAP_TXCSUM & ifp->if_capenable)
 7644                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
 7645                         else
 7646                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
 7647                 }
 7648 
 7649                 /* Toggle the RX checksum capabilities enable flag. */
 7650                 if (mask & IFCAP_RXCSUM &&
 7651                     ifp->if_capabilities & IFCAP_RXCSUM)
 7652                         ifp->if_capenable ^= IFCAP_RXCSUM;
 7653 
 7654                 /* Toggle the TSO capabilities enable flag. */
 7655                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
 7656                     ifp->if_capabilities & IFCAP_TSO4) {
 7657                         ifp->if_capenable ^= IFCAP_TSO4;
 7658                         if (IFCAP_TSO4 & ifp->if_capenable)
 7659                                 ifp->if_hwassist |= CSUM_TSO;
 7660                         else
 7661                                 ifp->if_hwassist &= ~CSUM_TSO;
 7662                 }
 7663 
 7664                 if (mask & IFCAP_VLAN_HWCSUM &&
 7665                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
 7666                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 7667 
 7668                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 7669                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 7670                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 7671                 /*
 7672                  * Don't actually disable VLAN tag stripping as
 7673                  * management firmware (ASF/IPMI/UMP) requires the
 7674                  * feature. If VLAN tag stripping is disabled driver
 7675                  * will manually reconstruct the VLAN frame by
 7676                  * appending stripped VLAN tag.
 7677                  */
 7678                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 7679                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
 7680                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 7681                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 7682                             == 0)
 7683                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 7684                 }
 7685                 VLAN_CAPABILITIES(ifp);
 7686                 break;
 7687         default:
 7688                 /* We don't know how to handle the IOCTL, pass it on. */
 7689                 error = ether_ioctl(ifp, command, data);
 7690                 break;
 7691         }
 7692 
 7693         DBEXIT(BCE_VERBOSE_MISC);
 7694         return(error);
 7695 }
 7696 
 7697 /****************************************************************************/
 7698 /* Transmit timeout handler.                                                */
 7699 /*                                                                          */
 7700 /* Returns:                                                                 */
 7701 /*   Nothing.                                                               */
 7702 /****************************************************************************/
 7703 static void
 7704 bce_watchdog(struct bce_softc *sc)
 7705 {
 7706         uint32_t status;
 7707 
 7708         DBENTER(BCE_EXTREME_SEND);
 7709 
 7710         BCE_LOCK_ASSERT(sc);
 7711 
 7712         status = 0;
 7713         /* If the watchdog timer hasn't expired then just exit. */
 7714         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
 7715                 goto bce_watchdog_exit;
 7716 
 7717         status = REG_RD(sc, BCE_EMAC_RX_STATUS);
 7718         /* If pause frames are active then don't reset the hardware. */
 7719         if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
 7720                 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
 7721                         /*
 7722                          * If link partner has us in XOFF state then wait for
 7723                          * the condition to clear.
 7724                          */
 7725                         sc->watchdog_timer = BCE_TX_TIMEOUT;
 7726                         goto bce_watchdog_exit;
 7727                 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
 7728                         (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
 7729                         /*
 7730                          * If we're not currently XOFF'ed but have recently
 7731                          * been XOFF'd/XON'd then assume that's delaying TX
 7732                          * this time around.
 7733                          */
 7734                         sc->watchdog_timer = BCE_TX_TIMEOUT;
 7735                         goto bce_watchdog_exit;
 7736                 }
 7737                 /*
 7738                  * Any other condition is unexpected and the controller
 7739                  * should be reset.
 7740                  */
 7741         }
 7742 
 7743         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
 7744             __FILE__, __LINE__);
 7745 
 7746         DBRUNMSG(BCE_INFO,
 7747             bce_dump_driver_state(sc);
 7748             bce_dump_status_block(sc);
 7749             bce_dump_stats_block(sc);
 7750             bce_dump_ftqs(sc);
 7751             bce_dump_txp_state(sc, 0);
 7752             bce_dump_rxp_state(sc, 0);
 7753             bce_dump_tpat_state(sc, 0);
 7754             bce_dump_cp_state(sc, 0);
 7755             bce_dump_com_state(sc, 0));
 7756 
 7757         DBRUN(bce_breakpoint(sc));
 7758 
 7759         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 7760 
 7761         bce_init_locked(sc);
 7762         sc->watchdog_timeouts++;
 7763 
 7764 bce_watchdog_exit:
 7765         REG_WR(sc, BCE_EMAC_RX_STATUS, status);
 7766         DBEXIT(BCE_EXTREME_SEND);
 7767 }
 7768 
 7769 /*
 7770  * Interrupt handler.
 7771  */
 7772 /****************************************************************************/
 7773 /* Main interrupt entry point.  Verifies that the controller generated the  */
 7774 /* interrupt and then calls a separate routine for handle the various       */
 7775 /* interrupt causes (PHY, TX, RX).                                          */
 7776 /*                                                                          */
 7777 /* Returns:                                                                 */
 7778 /*   Nothing.                                                               */
 7779 /****************************************************************************/
 7780 static void
 7781 bce_intr(void *xsc)
 7782 {
 7783         struct bce_softc *sc;
 7784         struct ifnet *ifp;
 7785         u32 status_attn_bits;
 7786         u16 hw_rx_cons, hw_tx_cons;
 7787 
 7788         sc = xsc;
 7789         ifp = sc->bce_ifp;
 7790 
 7791         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 7792         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
 7793         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
 7794 
 7795         BCE_LOCK(sc);
 7796 
 7797         DBRUN(sc->interrupts_generated++);
 7798 
 7799         /* Synchnorize before we read from interface's status block */
 7800         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
 7801 
 7802         /*
 7803          * If the hardware status block index matches the last value read
 7804          * by the driver and we haven't asserted our interrupt then there's
 7805          * nothing to do.  This may only happen in case of INTx due to the
 7806          * interrupt arriving at the CPU before the status block is updated.
 7807          */
 7808         if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
 7809             sc->status_block->status_idx == sc->last_status_idx &&
 7810             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
 7811              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
 7812                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
 7813                     __FUNCTION__);
 7814                 goto bce_intr_exit;
 7815         }
 7816 
 7817         /* Ack the interrupt and stop others from occurring. */
 7818         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
 7819             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
 7820             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
 7821 
 7822         /* Check if the hardware has finished any work. */
 7823         hw_rx_cons = bce_get_hw_rx_cons(sc);
 7824         hw_tx_cons = bce_get_hw_tx_cons(sc);
 7825 
 7826         /* Keep processing data as long as there is work to do. */
 7827         for (;;) {
 7828                 status_attn_bits = sc->status_block->status_attn_bits;
 7829 
 7830                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
 7831                     BCE_PRINTF("Simulating unexpected status attention "
 7832                     "bit set.");
 7833                     sc->unexpected_attention_sim_count++;
 7834                     status_attn_bits = status_attn_bits |
 7835                     STATUS_ATTN_BITS_PARITY_ERROR);
 7836 
 7837                 /* Was it a link change interrupt? */
 7838                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
 7839                     (sc->status_block->status_attn_bits_ack &
 7840                      STATUS_ATTN_BITS_LINK_STATE)) {
 7841                         bce_phy_intr(sc);
 7842 
 7843                         /* Clear transient updates during link state change. */
 7844                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
 7845                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
 7846                         REG_RD(sc, BCE_HC_COMMAND);
 7847                 }
 7848 
 7849                 /* If any other attention is asserted, the chip is toast. */
 7850                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
 7851                     (sc->status_block->status_attn_bits_ack &
 7852                     ~STATUS_ATTN_BITS_LINK_STATE))) {
 7853                         sc->unexpected_attention_count++;
 7854 
 7855                         BCE_PRINTF("%s(%d): Fatal attention detected: "
 7856                             "0x%08X\n", __FILE__, __LINE__,
 7857                             sc->status_block->status_attn_bits);
 7858 
 7859                         DBRUNMSG(BCE_FATAL,
 7860                             if (unexpected_attention_sim_control == 0)
 7861                                 bce_breakpoint(sc));
 7862 
 7863                         bce_init_locked(sc);
 7864                         goto bce_intr_exit;
 7865                 }
 7866 
 7867                 /* Check for any completed RX frames. */
 7868                 if (hw_rx_cons != sc->hw_rx_cons)
 7869                         bce_rx_intr(sc);
 7870 
 7871                 /* Check for any completed TX frames. */
 7872                 if (hw_tx_cons != sc->hw_tx_cons)
 7873                         bce_tx_intr(sc);
 7874 
 7875                 /* Save status block index value for the next interrupt. */
 7876                 sc->last_status_idx = sc->status_block->status_idx;
 7877 
 7878                 /*
 7879                  * Prevent speculative reads from getting
 7880                  * ahead of the status block.
 7881                  */
 7882                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
 7883                     BUS_SPACE_BARRIER_READ);
 7884 
 7885                 /*
 7886                  * If there's no work left then exit the
 7887                  * interrupt service routine.
 7888                  */
 7889                 hw_rx_cons = bce_get_hw_rx_cons(sc);
 7890                 hw_tx_cons = bce_get_hw_tx_cons(sc);
 7891 
 7892                 if ((hw_rx_cons == sc->hw_rx_cons) &&
 7893                     (hw_tx_cons == sc->hw_tx_cons))
 7894                         break;
 7895         }
 7896 
 7897         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
 7898 
 7899         /* Re-enable interrupts. */
 7900         bce_enable_intr(sc, 0);
 7901 
 7902         /* Handle any frames that arrived while handling the interrupt. */
 7903         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 7904             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 7905                 bce_start_locked(ifp);
 7906 
 7907 bce_intr_exit:
 7908         BCE_UNLOCK(sc);
 7909 
 7910         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 7911 }
 7912 
 7913 /****************************************************************************/
 7914 /* Programs the various packet receive modes (broadcast and multicast).     */
 7915 /*                                                                          */
 7916 /* Returns:                                                                 */
 7917 /*   Nothing.                                                               */
 7918 /****************************************************************************/
 7919 static u_int
 7920 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 7921 {
 7922         u32 *hashes = arg;
 7923         int h;
 7924 
 7925         h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF;
 7926         hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
 7927 
 7928         return (1);
 7929 }
 7930 
 7931 static void
 7932 bce_set_rx_mode(struct bce_softc *sc)
 7933 {
 7934         struct ifnet *ifp;
 7935         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 7936         u32 rx_mode, sort_mode;
 7937         int i;
 7938 
 7939         DBENTER(BCE_VERBOSE_MISC);
 7940 
 7941         BCE_LOCK_ASSERT(sc);
 7942 
 7943         ifp = sc->bce_ifp;
 7944 
 7945         /* Initialize receive mode default settings. */
 7946         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
 7947             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
 7948         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
 7949 
 7950         /*
 7951          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
 7952          * be enbled.
 7953          */
 7954         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
 7955             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
 7956                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
 7957 
 7958         /*
 7959          * Check for promiscuous, all multicast, or selected
 7960          * multicast address filtering.
 7961          */
 7962         if (ifp->if_flags & IFF_PROMISC) {
 7963                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
 7964 
 7965                 /* Enable promiscuous mode. */
 7966                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
 7967                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
 7968         } else if (ifp->if_flags & IFF_ALLMULTI) {
 7969                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
 7970 
 7971                 /* Enable all multicast addresses. */
 7972                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
 7973                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
 7974                             0xffffffff);
 7975                 }
 7976                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
 7977         } else {
 7978                 /* Accept one or more multicast(s). */
 7979                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
 7980                 if_foreach_llmaddr(ifp, bce_hash_maddr, hashes);
 7981 
 7982                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
 7983                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
 7984 
 7985                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
 7986         }
 7987 
 7988         /* Only make changes if the recive mode has actually changed. */
 7989         if (rx_mode != sc->rx_mode) {
 7990                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
 7991                     "0x%08X\n", rx_mode);
 7992 
 7993                 sc->rx_mode = rx_mode;
 7994                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
 7995         }
 7996 
 7997         /* Disable and clear the existing sort before enabling a new sort. */
 7998         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
 7999         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
 8000         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
 8001 
 8002         DBEXIT(BCE_VERBOSE_MISC);
 8003 }
 8004 
 8005 /****************************************************************************/
 8006 /* Called periodically to updates statistics from the controllers           */
 8007 /* statistics block.                                                        */
 8008 /*                                                                          */
 8009 /* Returns:                                                                 */
 8010 /*   Nothing.                                                               */
 8011 /****************************************************************************/
 8012 static void
 8013 bce_stats_update(struct bce_softc *sc)
 8014 {
 8015         struct statistics_block *stats;
 8016 
 8017         DBENTER(BCE_EXTREME_MISC);
 8018 
 8019         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
 8020 
 8021         stats = (struct statistics_block *) sc->stats_block;
 8022 
 8023         /*
 8024          * Update the sysctl statistics from the
 8025          * hardware statistics.
 8026          */
 8027         sc->stat_IfHCInOctets =
 8028             ((u64) stats->stat_IfHCInOctets_hi << 32) +
 8029              (u64) stats->stat_IfHCInOctets_lo;
 8030 
 8031         sc->stat_IfHCInBadOctets =
 8032             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
 8033              (u64) stats->stat_IfHCInBadOctets_lo;
 8034 
 8035         sc->stat_IfHCOutOctets =
 8036             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
 8037              (u64) stats->stat_IfHCOutOctets_lo;
 8038 
 8039         sc->stat_IfHCOutBadOctets =
 8040             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
 8041              (u64) stats->stat_IfHCOutBadOctets_lo;
 8042 
 8043         sc->stat_IfHCInUcastPkts =
 8044             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
 8045              (u64) stats->stat_IfHCInUcastPkts_lo;
 8046 
 8047         sc->stat_IfHCInMulticastPkts =
 8048             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
 8049              (u64) stats->stat_IfHCInMulticastPkts_lo;
 8050 
 8051         sc->stat_IfHCInBroadcastPkts =
 8052             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
 8053              (u64) stats->stat_IfHCInBroadcastPkts_lo;
 8054 
 8055         sc->stat_IfHCOutUcastPkts =
 8056             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
 8057              (u64) stats->stat_IfHCOutUcastPkts_lo;
 8058 
 8059         sc->stat_IfHCOutMulticastPkts =
 8060             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
 8061              (u64) stats->stat_IfHCOutMulticastPkts_lo;
 8062 
 8063         sc->stat_IfHCOutBroadcastPkts =
 8064             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
 8065              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
 8066 
 8067         /* ToDo: Preserve counters beyond 32 bits? */
 8068         /* ToDo: Read the statistics from auto-clear regs? */
 8069 
 8070         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
 8071             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
 8072 
 8073         sc->stat_Dot3StatsCarrierSenseErrors =
 8074             stats->stat_Dot3StatsCarrierSenseErrors;
 8075 
 8076         sc->stat_Dot3StatsFCSErrors =
 8077             stats->stat_Dot3StatsFCSErrors;
 8078 
 8079         sc->stat_Dot3StatsAlignmentErrors =
 8080             stats->stat_Dot3StatsAlignmentErrors;
 8081 
 8082         sc->stat_Dot3StatsSingleCollisionFrames =
 8083             stats->stat_Dot3StatsSingleCollisionFrames;
 8084 
 8085         sc->stat_Dot3StatsMultipleCollisionFrames =
 8086             stats->stat_Dot3StatsMultipleCollisionFrames;
 8087 
 8088         sc->stat_Dot3StatsDeferredTransmissions =
 8089             stats->stat_Dot3StatsDeferredTransmissions;
 8090 
 8091         sc->stat_Dot3StatsExcessiveCollisions =
 8092             stats->stat_Dot3StatsExcessiveCollisions;
 8093 
 8094         sc->stat_Dot3StatsLateCollisions =
 8095             stats->stat_Dot3StatsLateCollisions;
 8096 
 8097         sc->stat_EtherStatsCollisions =
 8098             stats->stat_EtherStatsCollisions;
 8099 
 8100         sc->stat_EtherStatsFragments =
 8101             stats->stat_EtherStatsFragments;
 8102 
 8103         sc->stat_EtherStatsJabbers =
 8104             stats->stat_EtherStatsJabbers;
 8105 
 8106         sc->stat_EtherStatsUndersizePkts =
 8107             stats->stat_EtherStatsUndersizePkts;
 8108 
 8109         sc->stat_EtherStatsOversizePkts =
 8110              stats->stat_EtherStatsOversizePkts;
 8111 
 8112         sc->stat_EtherStatsPktsRx64Octets =
 8113             stats->stat_EtherStatsPktsRx64Octets;
 8114 
 8115         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
 8116             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
 8117 
 8118         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
 8119             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
 8120 
 8121         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
 8122             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
 8123 
 8124         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
 8125             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
 8126 
 8127         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
 8128             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
 8129 
 8130         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
 8131             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
 8132 
 8133         sc->stat_EtherStatsPktsTx64Octets =
 8134             stats->stat_EtherStatsPktsTx64Octets;
 8135 
 8136         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
 8137             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
 8138 
 8139         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
 8140             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
 8141 
 8142         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
 8143             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
 8144 
 8145         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
 8146             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
 8147 
 8148         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
 8149             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
 8150 
 8151         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
 8152             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
 8153 
 8154         sc->stat_XonPauseFramesReceived =
 8155             stats->stat_XonPauseFramesReceived;
 8156 
 8157         sc->stat_XoffPauseFramesReceived =
 8158             stats->stat_XoffPauseFramesReceived;
 8159 
 8160         sc->stat_OutXonSent =
 8161             stats->stat_OutXonSent;
 8162 
 8163         sc->stat_OutXoffSent =
 8164             stats->stat_OutXoffSent;
 8165 
 8166         sc->stat_FlowControlDone =
 8167             stats->stat_FlowControlDone;
 8168 
 8169         sc->stat_MacControlFramesReceived =
 8170             stats->stat_MacControlFramesReceived;
 8171 
 8172         sc->stat_XoffStateEntered =
 8173             stats->stat_XoffStateEntered;
 8174 
 8175         sc->stat_IfInFramesL2FilterDiscards =
 8176             stats->stat_IfInFramesL2FilterDiscards;
 8177 
 8178         sc->stat_IfInRuleCheckerDiscards =
 8179             stats->stat_IfInRuleCheckerDiscards;
 8180 
 8181         sc->stat_IfInFTQDiscards =
 8182             stats->stat_IfInFTQDiscards;
 8183 
 8184         sc->stat_IfInMBUFDiscards =
 8185             stats->stat_IfInMBUFDiscards;
 8186 
 8187         sc->stat_IfInRuleCheckerP4Hit =
 8188             stats->stat_IfInRuleCheckerP4Hit;
 8189 
 8190         sc->stat_CatchupInRuleCheckerDiscards =
 8191             stats->stat_CatchupInRuleCheckerDiscards;
 8192 
 8193         sc->stat_CatchupInFTQDiscards =
 8194             stats->stat_CatchupInFTQDiscards;
 8195 
 8196         sc->stat_CatchupInMBUFDiscards =
 8197             stats->stat_CatchupInMBUFDiscards;
 8198 
 8199         sc->stat_CatchupInRuleCheckerP4Hit =
 8200             stats->stat_CatchupInRuleCheckerP4Hit;
 8201 
 8202         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
 8203 
 8204         /* ToDo: Add additional statistics? */
 8205 
 8206         DBEXIT(BCE_EXTREME_MISC);
 8207 }
 8208 
 8209 static uint64_t
 8210 bce_get_counter(struct ifnet *ifp, ift_counter cnt)
 8211 {
 8212         struct bce_softc *sc;
 8213         uint64_t rv;
 8214 
 8215         sc = if_getsoftc(ifp);
 8216 
 8217         switch (cnt) {
 8218         case IFCOUNTER_COLLISIONS:
 8219                 return (sc->stat_EtherStatsCollisions);
 8220         case IFCOUNTER_IERRORS:
 8221                 return (sc->stat_EtherStatsUndersizePkts +
 8222                     sc->stat_EtherStatsOversizePkts +
 8223                     sc->stat_IfInMBUFDiscards +
 8224                     sc->stat_Dot3StatsAlignmentErrors +
 8225                     sc->stat_Dot3StatsFCSErrors +
 8226                     sc->stat_IfInRuleCheckerDiscards +
 8227                     sc->stat_IfInFTQDiscards +
 8228                     sc->l2fhdr_error_count +
 8229                     sc->com_no_buffers);
 8230         case IFCOUNTER_OERRORS:
 8231                 rv = sc->stat_Dot3StatsExcessiveCollisions +
 8232                     sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
 8233                     sc->stat_Dot3StatsLateCollisions +
 8234                     sc->watchdog_timeouts;
 8235                 /*
 8236                  * Certain controllers don't report
 8237                  * carrier sense errors correctly.
 8238                  * See errata E11_5708CA0_1165.
 8239                  */
 8240                 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
 8241                     !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
 8242                         rv += sc->stat_Dot3StatsCarrierSenseErrors;
 8243                 return (rv);
 8244         default:
 8245                 return (if_get_counter_default(ifp, cnt));
 8246         }
 8247 }
 8248 
 8249 /****************************************************************************/
 8250 /* Periodic function to notify the bootcode that the driver is still        */
 8251 /* present.                                                                 */
 8252 /*                                                                          */
 8253 /* Returns:                                                                 */
 8254 /*   Nothing.                                                               */
 8255 /****************************************************************************/
 8256 static void
 8257 bce_pulse(void *xsc)
 8258 {
 8259         struct bce_softc *sc = xsc;
 8260         u32 msg;
 8261 
 8262         DBENTER(BCE_EXTREME_MISC);
 8263 
 8264         BCE_LOCK_ASSERT(sc);
 8265 
 8266         /* Tell the firmware that the driver is still running. */
 8267         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
 8268         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
 8269 
 8270         /* Update the bootcode condition. */
 8271         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
 8272 
 8273         /* Report whether the bootcode still knows the driver is running. */
 8274         if (bce_verbose || bootverbose) {
 8275                 if (sc->bce_drv_cardiac_arrest == FALSE) {
 8276                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
 8277                                 sc->bce_drv_cardiac_arrest = TRUE;
 8278                                 BCE_PRINTF("%s(): Warning: bootcode "
 8279                                     "thinks driver is absent! "
 8280                                     "(bc_state = 0x%08X)\n",
 8281                                     __FUNCTION__, sc->bc_state);
 8282                         }
 8283                 } else {
 8284                         /*
 8285                          * Not supported by all bootcode versions.
 8286                          * (v5.0.11+ and v5.2.1+)  Older bootcode
 8287                          * will require the driver to reset the
 8288                          * controller to clear this condition.
 8289                          */
 8290                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
 8291                                 sc->bce_drv_cardiac_arrest = FALSE;
 8292                                 BCE_PRINTF("%s(): Bootcode found the "
 8293                                     "driver pulse! (bc_state = 0x%08X)\n",
 8294                                     __FUNCTION__, sc->bc_state);
 8295                         }
 8296                 }
 8297         }
 8298 
 8299         /* Schedule the next pulse. */
 8300         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
 8301 
 8302         DBEXIT(BCE_EXTREME_MISC);
 8303 }
 8304 
 8305 /****************************************************************************/
 8306 /* Periodic function to perform maintenance tasks.                          */
 8307 /*                                                                          */
 8308 /* Returns:                                                                 */
 8309 /*   Nothing.                                                               */
 8310 /****************************************************************************/
 8311 static void
 8312 bce_tick(void *xsc)
 8313 {
 8314         struct bce_softc *sc = xsc;
 8315         struct mii_data *mii;
 8316         struct ifnet *ifp;
 8317         struct ifmediareq ifmr;
 8318 
 8319         ifp = sc->bce_ifp;
 8320 
 8321         DBENTER(BCE_EXTREME_MISC);
 8322 
 8323         BCE_LOCK_ASSERT(sc);
 8324 
 8325         /* Schedule the next tick. */
 8326         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
 8327 
 8328         /* Update the statistics from the hardware statistics block. */
 8329         bce_stats_update(sc);
 8330 
 8331         /* Ensure page and RX chains get refilled in low-memory situations. */
 8332         if (bce_hdr_split == TRUE)
 8333                 bce_fill_pg_chain(sc);
 8334         bce_fill_rx_chain(sc);
 8335 
 8336         /* Check that chip hasn't hung. */
 8337         bce_watchdog(sc);
 8338 
 8339         /* If link is up already up then we're done. */
 8340         if (sc->bce_link_up == TRUE)
 8341                 goto bce_tick_exit;
 8342 
 8343         /* Link is down.  Check what the PHY's doing. */
 8344         if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
 8345                 bzero(&ifmr, sizeof(ifmr));
 8346                 bce_ifmedia_sts_rphy(sc, &ifmr);
 8347                 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
 8348                     (IFM_ACTIVE | IFM_AVALID)) {
 8349                         sc->bce_link_up = TRUE;
 8350                         bce_miibus_statchg(sc->bce_dev);
 8351                 }
 8352         } else {
 8353                 mii = device_get_softc(sc->bce_miibus);
 8354                 mii_tick(mii);
 8355                 /* Check if the link has come up. */
 8356                 if ((mii->mii_media_status & IFM_ACTIVE) &&
 8357                     (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
 8358                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
 8359                             __FUNCTION__);
 8360                         sc->bce_link_up = TRUE;
 8361                         if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
 8362                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
 8363                             IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
 8364                             (bce_verbose || bootverbose))
 8365                                 BCE_PRINTF("Gigabit link up!\n");
 8366                 }
 8367         }
 8368         if (sc->bce_link_up == TRUE) {
 8369                 /* Now that link is up, handle any outstanding TX traffic. */
 8370                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
 8371                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
 8372                             "pending TX traffic.\n", __FUNCTION__);
 8373                         bce_start_locked(ifp);
 8374                 }
 8375         }
 8376 
 8377 bce_tick_exit:
 8378         DBEXIT(BCE_EXTREME_MISC);
 8379 }
 8380 
 8381 static void
 8382 bce_fw_cap_init(struct bce_softc *sc)
 8383 {
 8384         u32 ack, cap, link;
 8385 
 8386         ack = 0;
 8387         cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
 8388         if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
 8389             BCE_FW_CAP_SIGNATURE_MAGIC)
 8390                 return;
 8391         if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
 8392             (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
 8393                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
 8394                     BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
 8395         if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
 8396             (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
 8397                 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
 8398                 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
 8399                 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
 8400                 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
 8401                         sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
 8402                 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
 8403                     BCE_FW_CAP_REMOTE_PHY_CAP;
 8404         }
 8405 
 8406         if (ack != 0)
 8407                 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
 8408 }
 8409 
 8410 #ifdef BCE_DEBUG
 8411 /****************************************************************************/
 8412 /* Allows the driver state to be dumped through the sysctl interface.       */
 8413 /*                                                                          */
 8414 /* Returns:                                                                 */
 8415 /*   0 for success, positive value for failure.                             */
 8416 /****************************************************************************/
 8417 static int
 8418 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
 8419 {
 8420         int error;
 8421         int result;
 8422         struct bce_softc *sc;
 8423 
 8424         result = -1;
 8425         error = sysctl_handle_int(oidp, &result, 0, req);
 8426 
 8427         if (error || !req->newptr)
 8428                 return (error);
 8429 
 8430         if (result == 1) {
 8431                 sc = (struct bce_softc *)arg1;
 8432                 bce_dump_driver_state(sc);
 8433         }
 8434 
 8435         return error;
 8436 }
 8437 
 8438 /****************************************************************************/
 8439 /* Allows the hardware state to be dumped through the sysctl interface.     */
 8440 /*                                                                          */
 8441 /* Returns:                                                                 */
 8442 /*   0 for success, positive value for failure.                             */
 8443 /****************************************************************************/
 8444 static int
 8445 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
 8446 {
 8447         int error;
 8448         int result;
 8449         struct bce_softc *sc;
 8450 
 8451         result = -1;
 8452         error = sysctl_handle_int(oidp, &result, 0, req);
 8453 
 8454         if (error || !req->newptr)
 8455                 return (error);
 8456 
 8457         if (result == 1) {
 8458                 sc = (struct bce_softc *)arg1;
 8459                 bce_dump_hw_state(sc);
 8460         }
 8461 
 8462         return error;
 8463 }
 8464 
 8465 /****************************************************************************/
 8466 /* Allows the status block to be dumped through the sysctl interface.       */
 8467 /*                                                                          */
 8468 /* Returns:                                                                 */
 8469 /*   0 for success, positive value for failure.                             */
 8470 /****************************************************************************/
 8471 static int
 8472 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
 8473 {
 8474         int error;
 8475         int result;
 8476         struct bce_softc *sc;
 8477 
 8478         result = -1;
 8479         error = sysctl_handle_int(oidp, &result, 0, req);
 8480 
 8481         if (error || !req->newptr)
 8482                 return (error);
 8483 
 8484         if (result == 1) {
 8485                 sc = (struct bce_softc *)arg1;
 8486                 bce_dump_status_block(sc);
 8487         }
 8488 
 8489         return error;
 8490 }
 8491 
 8492 /****************************************************************************/
 8493 /* Allows the stats block to be dumped through the sysctl interface.        */
 8494 /*                                                                          */
 8495 /* Returns:                                                                 */
 8496 /*   0 for success, positive value for failure.                             */
 8497 /****************************************************************************/
 8498 static int
 8499 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
 8500 {
 8501         int error;
 8502         int result;
 8503         struct bce_softc *sc;
 8504 
 8505         result = -1;
 8506         error = sysctl_handle_int(oidp, &result, 0, req);
 8507 
 8508         if (error || !req->newptr)
 8509                 return (error);
 8510 
 8511         if (result == 1) {
 8512                 sc = (struct bce_softc *)arg1;
 8513                 bce_dump_stats_block(sc);
 8514         }
 8515 
 8516         return error;
 8517 }
 8518 
 8519 /****************************************************************************/
 8520 /* Allows the stat counters to be cleared without unloading/reloading the   */
 8521 /* driver.                                                                  */
 8522 /*                                                                          */
 8523 /* Returns:                                                                 */
 8524 /*   0 for success, positive value for failure.                             */
 8525 /****************************************************************************/
 8526 static int
 8527 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
 8528 {
 8529         int error;
 8530         int result;
 8531         struct bce_softc *sc;
 8532 
 8533         result = -1;
 8534         error = sysctl_handle_int(oidp, &result, 0, req);
 8535 
 8536         if (error || !req->newptr)
 8537                 return (error);
 8538 
 8539         if (result == 1) {
 8540                 sc = (struct bce_softc *)arg1;
 8541                 struct statistics_block *stats;
 8542 
 8543                 stats = (struct statistics_block *) sc->stats_block;
 8544                 bzero(stats, sizeof(struct statistics_block));
 8545                 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
 8546                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 8547 
 8548                 /* Clear the internal H/W statistics counters. */
 8549                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
 8550 
 8551                 /* Reset the driver maintained statistics. */
 8552                 sc->interrupts_rx =
 8553                     sc->interrupts_tx = 0;
 8554                 sc->tso_frames_requested =
 8555                     sc->tso_frames_completed =
 8556                     sc->tso_frames_failed = 0;
 8557                 sc->rx_empty_count =
 8558                     sc->tx_full_count = 0;
 8559                 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
 8560                 sc->tx_hi_watermark = 0;
 8561                 sc->l2fhdr_error_count =
 8562                     sc->l2fhdr_error_sim_count = 0;
 8563                 sc->mbuf_alloc_failed_count =
 8564                     sc->mbuf_alloc_failed_sim_count = 0;
 8565                 sc->dma_map_addr_rx_failed_count =
 8566                     sc->dma_map_addr_tx_failed_count = 0;
 8567                 sc->mbuf_frag_count = 0;
 8568                 sc->csum_offload_tcp_udp =
 8569                     sc->csum_offload_ip = 0;
 8570                 sc->vlan_tagged_frames_rcvd =
 8571                     sc->vlan_tagged_frames_stripped = 0;
 8572                 sc->split_header_frames_rcvd =
 8573                     sc->split_header_tcp_frames_rcvd = 0;
 8574 
 8575                 /* Clear firmware maintained statistics. */
 8576                 REG_WR_IND(sc, 0x120084, 0);
 8577         }
 8578 
 8579         return error;
 8580 }
 8581 
 8582 /****************************************************************************/
 8583 /* Allows the shared memory contents to be dumped through the sysctl  .     */
 8584 /* interface.                                                               */
 8585 /*                                                                          */
 8586 /* Returns:                                                                 */
 8587 /*   0 for success, positive value for failure.                             */
 8588 /****************************************************************************/
 8589 static int
 8590 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
 8591 {
 8592         int error;
 8593         int result;
 8594         struct bce_softc *sc;
 8595 
 8596         result = -1;
 8597         error = sysctl_handle_int(oidp, &result, 0, req);
 8598 
 8599         if (error || !req->newptr)
 8600                 return (error);
 8601 
 8602         if (result == 1) {
 8603                 sc = (struct bce_softc *)arg1;
 8604                 bce_dump_shmem_state(sc);
 8605         }
 8606 
 8607         return error;
 8608 }
 8609 
 8610 /****************************************************************************/
 8611 /* Allows the bootcode state to be dumped through the sysctl interface.     */
 8612 /*                                                                          */
 8613 /* Returns:                                                                 */
 8614 /*   0 for success, positive value for failure.                             */
 8615 /****************************************************************************/
 8616 static int
 8617 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
 8618 {
 8619         int error;
 8620         int result;
 8621         struct bce_softc *sc;
 8622 
 8623         result = -1;
 8624         error = sysctl_handle_int(oidp, &result, 0, req);
 8625 
 8626         if (error || !req->newptr)
 8627                 return (error);
 8628 
 8629         if (result == 1) {
 8630                 sc = (struct bce_softc *)arg1;
 8631                 bce_dump_bc_state(sc);
 8632         }
 8633 
 8634         return error;
 8635 }
 8636 
 8637 /****************************************************************************/
 8638 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
 8639 /*                                                                          */
 8640 /* Returns:                                                                 */
 8641 /*   0 for success, positive value for failure.                             */
 8642 /****************************************************************************/
 8643 static int
 8644 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
 8645 {
 8646         int error;
 8647         int result;
 8648         struct bce_softc *sc;
 8649 
 8650         result = -1;
 8651         error = sysctl_handle_int(oidp, &result, 0, req);
 8652 
 8653         if (error || !req->newptr)
 8654                 return (error);
 8655 
 8656         if (result == 1) {
 8657                 sc = (struct bce_softc *)arg1;
 8658                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
 8659         }
 8660 
 8661         return error;
 8662 }
 8663 
 8664 /****************************************************************************/
 8665 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
 8666 /*                                                                          */
 8667 /* Returns:                                                                 */
 8668 /*   0 for success, positive value for failure.                             */
 8669 /****************************************************************************/
 8670 static int
 8671 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
 8672 {
 8673         int error;
 8674         int result;
 8675         struct bce_softc *sc;
 8676 
 8677         result = -1;
 8678         error = sysctl_handle_int(oidp, &result, 0, req);
 8679 
 8680         if (error || !req->newptr)
 8681                 return (error);
 8682 
 8683         if (result == 1) {
 8684                 sc = (struct bce_softc *)arg1;
 8685                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
 8686         }
 8687 
 8688         return error;
 8689 }
 8690 
 8691 /****************************************************************************/
 8692 /* Provides a sysctl interface to allow dumping the TX chain.               */
 8693 /*                                                                          */
 8694 /* Returns:                                                                 */
 8695 /*   0 for success, positive value for failure.                             */
 8696 /****************************************************************************/
 8697 static int
 8698 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
 8699 {
 8700         int error;
 8701         int result;
 8702         struct bce_softc *sc;
 8703 
 8704         result = -1;
 8705         error = sysctl_handle_int(oidp, &result, 0, req);
 8706 
 8707         if (error || !req->newptr)
 8708                 return (error);
 8709 
 8710         if (result == 1) {
 8711                 sc = (struct bce_softc *)arg1;
 8712                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
 8713         }
 8714 
 8715         return error;
 8716 }
 8717 
 8718 /****************************************************************************/
 8719 /* Provides a sysctl interface to allow dumping the page chain.             */
 8720 /*                                                                          */
 8721 /* Returns:                                                                 */
 8722 /*   0 for success, positive value for failure.                             */
 8723 /****************************************************************************/
 8724 static int
 8725 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
 8726 {
 8727         int error;
 8728         int result;
 8729         struct bce_softc *sc;
 8730 
 8731         result = -1;
 8732         error = sysctl_handle_int(oidp, &result, 0, req);
 8733 
 8734         if (error || !req->newptr)
 8735                 return (error);
 8736 
 8737         if (result == 1) {
 8738                 sc = (struct bce_softc *)arg1;
 8739                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
 8740         }
 8741 
 8742         return error;
 8743 }
 8744 
 8745 /****************************************************************************/
 8746 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
 8747 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
 8748 /*                                                                          */
 8749 /* Returns:                                                                 */
 8750 /*   0 for success, positive value for failure.                             */
 8751 /****************************************************************************/
 8752 static int
 8753 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
 8754 {
 8755         struct bce_softc *sc = (struct bce_softc *)arg1;
 8756         int error;
 8757         u32 result;
 8758         u32 val[1];
 8759         u8 *data = (u8 *) val;
 8760 
 8761         result = -1;
 8762         error = sysctl_handle_int(oidp, &result, 0, req);
 8763         if (error || (req->newptr == NULL))
 8764                 return (error);
 8765 
 8766         error = bce_nvram_read(sc, result, data, 4);
 8767 
 8768         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
 8769 
 8770         return (error);
 8771 }
 8772 
 8773 /****************************************************************************/
 8774 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
 8775 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
 8776 /*                                                                          */
 8777 /* Returns:                                                                 */
 8778 /*   0 for success, positive value for failure.                             */
 8779 /****************************************************************************/
 8780 static int
 8781 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 8782 {
 8783         struct bce_softc *sc = (struct bce_softc *)arg1;
 8784         int error;
 8785         u32 val, result;
 8786 
 8787         result = -1;
 8788         error = sysctl_handle_int(oidp, &result, 0, req);
 8789         if (error || (req->newptr == NULL))
 8790                 return (error);
 8791 
 8792         /* Make sure the register is accessible. */
 8793         if (result < 0x8000) {
 8794                 val = REG_RD(sc, result);
 8795                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
 8796         } else if (result < 0x0280000) {
 8797                 val = REG_RD_IND(sc, result);
 8798                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
 8799         }
 8800 
 8801         return (error);
 8802 }
 8803 
 8804 /****************************************************************************/
 8805 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
 8806 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
 8807 /*                                                                          */
 8808 /* Returns:                                                                 */
 8809 /*   0 for success, positive value for failure.                             */
 8810 /****************************************************************************/
 8811 static int
 8812 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
 8813 {
 8814         struct bce_softc *sc;
 8815         device_t dev;
 8816         int error, result;
 8817         u16 val;
 8818 
 8819         result = -1;
 8820         error = sysctl_handle_int(oidp, &result, 0, req);
 8821         if (error || (req->newptr == NULL))
 8822                 return (error);
 8823 
 8824         /* Make sure the register is accessible. */
 8825         if (result < 0x20) {
 8826                 sc = (struct bce_softc *)arg1;
 8827                 dev = sc->bce_dev;
 8828                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
 8829                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
 8830         }
 8831         return (error);
 8832 }
 8833 
 8834 /****************************************************************************/
 8835 /* Provides a sysctl interface for dumping the nvram contents.              */
 8836 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
 8837 /*                                                                          */
 8838 /* Returns:                                                                 */
 8839 /*   0 for success, positive errno for failure.                             */
 8840 /****************************************************************************/
 8841 static int
 8842 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
 8843 {
 8844         struct bce_softc *sc = (struct bce_softc *)arg1;
 8845         int error, i;
 8846 
 8847         if (sc->nvram_buf == NULL)
 8848                 sc->nvram_buf = malloc(sc->bce_flash_size,
 8849                                     M_TEMP, M_ZERO | M_WAITOK);
 8850 
 8851         error = 0;
 8852         if (req->oldlen == sc->bce_flash_size) {
 8853                 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
 8854                         error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
 8855         }
 8856 
 8857         if (error == 0)
 8858                 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
 8859 
 8860         return error;
 8861 }
 8862 
 8863 #ifdef BCE_NVRAM_WRITE_SUPPORT
 8864 /****************************************************************************/
 8865 /* Provides a sysctl interface for writing to nvram.                        */
 8866 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!                                     */
 8867 /*                                                                          */
 8868 /* Returns:                                                                 */
 8869 /*   0 for success, positive errno for failure.                             */
 8870 /****************************************************************************/
 8871 static int
 8872 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
 8873 {
 8874         struct bce_softc *sc = (struct bce_softc *)arg1;
 8875         int error;
 8876 
 8877         if (sc->nvram_buf == NULL)
 8878                 sc->nvram_buf = malloc(sc->bce_flash_size,
 8879                                     M_TEMP, M_ZERO | M_WAITOK);
 8880         else
 8881                 bzero(sc->nvram_buf, sc->bce_flash_size);
 8882 
 8883         error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
 8884         if (error == 0)
 8885                 return (error);
 8886 
 8887         if (req->newlen == sc->bce_flash_size)
 8888                 error = bce_nvram_write(sc, 0, sc->nvram_buf,
 8889                             sc->bce_flash_size);
 8890 
 8891         return error;
 8892 }
 8893 #endif
 8894 
 8895 /****************************************************************************/
 8896 /* Provides a sysctl interface to allow reading a CID.                      */
 8897 /*                                                                          */
 8898 /* Returns:                                                                 */
 8899 /*   0 for success, positive value for failure.                             */
 8900 /****************************************************************************/
 8901 static int
 8902 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
 8903 {
 8904         struct bce_softc *sc;
 8905         int error, result;
 8906 
 8907         result = -1;
 8908         error = sysctl_handle_int(oidp, &result, 0, req);
 8909         if (error || (req->newptr == NULL))
 8910                 return (error);
 8911 
 8912         /* Make sure the register is accessible. */
 8913         if (result <= TX_CID) {
 8914                 sc = (struct bce_softc *)arg1;
 8915                 bce_dump_ctx(sc, result);
 8916         }
 8917 
 8918         return (error);
 8919 }
 8920 
 8921 /****************************************************************************/
 8922 /* Provides a sysctl interface to forcing the driver to dump state and      */
 8923 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
 8924 /*                                                                          */
 8925 /* Returns:                                                                 */
 8926 /*   0 for success, positive value for failure.                             */
 8927 /****************************************************************************/
 8928 static int
 8929 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
 8930 {
 8931         int error;
 8932         int result;
 8933         struct bce_softc *sc;
 8934 
 8935         result = -1;
 8936         error = sysctl_handle_int(oidp, &result, 0, req);
 8937 
 8938         if (error || !req->newptr)
 8939                 return (error);
 8940 
 8941         if (result == 1) {
 8942                 sc = (struct bce_softc *)arg1;
 8943                 bce_breakpoint(sc);
 8944         }
 8945 
 8946         return error;
 8947 }
 8948 #endif
 8949 
 8950 /****************************************************************************/
 8951 /* Adds any sysctl parameters for tuning or debugging purposes.             */
 8952 /*                                                                          */
 8953 /* Returns:                                                                 */
 8954 /*   0 for success, positive value for failure.                             */
 8955 /****************************************************************************/
 8956 static void
 8957 bce_add_sysctls(struct bce_softc *sc)
 8958 {
 8959         struct sysctl_ctx_list *ctx;
 8960         struct sysctl_oid_list *children;
 8961 
 8962         DBENTER(BCE_VERBOSE_MISC);
 8963 
 8964         ctx = device_get_sysctl_ctx(sc->bce_dev);
 8965         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
 8966 
 8967 #ifdef BCE_DEBUG
 8968         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8969             "l2fhdr_error_sim_control",
 8970             CTLFLAG_RW, &l2fhdr_error_sim_control,
 8971             0, "Debug control to force l2fhdr errors");
 8972 
 8973         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8974             "l2fhdr_error_sim_count",
 8975             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
 8976             0, "Number of simulated l2_fhdr errors");
 8977 #endif
 8978 
 8979         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8980             "l2fhdr_error_count",
 8981             CTLFLAG_RD, &sc->l2fhdr_error_count,
 8982             0, "Number of l2_fhdr errors");
 8983 
 8984 #ifdef BCE_DEBUG
 8985         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8986             "mbuf_alloc_failed_sim_control",
 8987             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
 8988             0, "Debug control to force mbuf allocation failures");
 8989 
 8990         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8991             "mbuf_alloc_failed_sim_count",
 8992             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
 8993             0, "Number of simulated mbuf cluster allocation failures");
 8994 #endif
 8995 
 8996         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8997             "mbuf_alloc_failed_count",
 8998             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
 8999             0, "Number of mbuf allocation failures");
 9000 
 9001         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9002             "mbuf_frag_count",
 9003             CTLFLAG_RD, &sc->mbuf_frag_count,
 9004             0, "Number of fragmented mbufs");
 9005 
 9006 #ifdef BCE_DEBUG
 9007         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 9008             "dma_map_addr_failed_sim_control",
 9009             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
 9010             0, "Debug control to force DMA mapping failures");
 9011 
 9012         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
 9013         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9014             "dma_map_addr_failed_sim_count",
 9015             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
 9016             0, "Number of simulated DMA mapping failures");
 9017 
 9018 #endif
 9019 
 9020         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9021             "dma_map_addr_rx_failed_count",
 9022             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
 9023             0, "Number of RX DMA mapping failures");
 9024 
 9025         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9026             "dma_map_addr_tx_failed_count",
 9027             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
 9028             0, "Number of TX DMA mapping failures");
 9029 
 9030 #ifdef BCE_DEBUG
 9031         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 9032             "unexpected_attention_sim_control",
 9033             CTLFLAG_RW, &unexpected_attention_sim_control,
 9034             0, "Debug control to simulate unexpected attentions");
 9035 
 9036         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9037             "unexpected_attention_sim_count",
 9038             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
 9039             0, "Number of simulated unexpected attentions");
 9040 #endif
 9041 
 9042         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9043             "unexpected_attention_count",
 9044             CTLFLAG_RW, &sc->unexpected_attention_count,
 9045             0, "Number of unexpected attentions");
 9046 
 9047 #ifdef BCE_DEBUG
 9048         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 9049             "debug_bootcode_running_failure",
 9050             CTLFLAG_RW, &bootcode_running_failure_sim_control,
 9051             0, "Debug control to force bootcode running failures");
 9052 
 9053         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 9054             "rx_low_watermark",
 9055             CTLFLAG_RD, &sc->rx_low_watermark,
 9056             0, "Lowest level of free rx_bd's");
 9057 
 9058         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9059             "rx_empty_count",
 9060             CTLFLAG_RD, &sc->rx_empty_count,
 9061             "Number of times the RX chain was empty");
 9062 
 9063         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 9064             "tx_hi_watermark",
 9065             CTLFLAG_RD, &sc->tx_hi_watermark,
 9066             0, "Highest level of used tx_bd's");
 9067 
 9068         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9069             "tx_full_count",
 9070             CTLFLAG_RD, &sc->tx_full_count,
 9071             "Number of times the TX chain was full");
 9072 
 9073         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9074             "tso_frames_requested",
 9075             CTLFLAG_RD, &sc->tso_frames_requested,
 9076             "Number of TSO frames requested");
 9077 
 9078         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9079             "tso_frames_completed",
 9080             CTLFLAG_RD, &sc->tso_frames_completed,
 9081             "Number of TSO frames completed");
 9082 
 9083         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9084             "tso_frames_failed",
 9085             CTLFLAG_RD, &sc->tso_frames_failed,
 9086             "Number of TSO frames failed");
 9087 
 9088         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9089             "csum_offload_ip",
 9090             CTLFLAG_RD, &sc->csum_offload_ip,
 9091             "Number of IP checksum offload frames");
 9092 
 9093         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9094             "csum_offload_tcp_udp",
 9095             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
 9096             "Number of TCP/UDP checksum offload frames");
 9097 
 9098         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9099             "vlan_tagged_frames_rcvd",
 9100             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
 9101             "Number of VLAN tagged frames received");
 9102 
 9103         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9104             "vlan_tagged_frames_stripped",
 9105             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
 9106             "Number of VLAN tagged frames stripped");
 9107 
 9108         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9109             "interrupts_rx",
 9110             CTLFLAG_RD, &sc->interrupts_rx,
 9111             "Number of RX interrupts");
 9112 
 9113         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9114             "interrupts_tx",
 9115             CTLFLAG_RD, &sc->interrupts_tx,
 9116             "Number of TX interrupts");
 9117 
 9118         if (bce_hdr_split == TRUE) {
 9119                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9120                     "split_header_frames_rcvd",
 9121                     CTLFLAG_RD, &sc->split_header_frames_rcvd,
 9122                     "Number of split header frames received");
 9123 
 9124                 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9125                     "split_header_tcp_frames_rcvd",
 9126                     CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
 9127                     "Number of split header TCP frames received");
 9128         }
 9129 
 9130         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9131             "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 9132             (void *)sc, 0,
 9133             bce_sysctl_nvram_dump, "S", "");
 9134 
 9135 #ifdef BCE_NVRAM_WRITE_SUPPORT
 9136         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9137             "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT,
 9138             (void *)sc, 0,
 9139             bce_sysctl_nvram_write, "S", "");
 9140 #endif
 9141 #endif /* BCE_DEBUG */
 9142 
 9143         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9144             "stat_IfHcInOctets",
 9145             CTLFLAG_RD, &sc->stat_IfHCInOctets,
 9146             "Bytes received");
 9147 
 9148         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9149             "stat_IfHCInBadOctets",
 9150             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
 9151             "Bad bytes received");
 9152 
 9153         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9154             "stat_IfHCOutOctets",
 9155             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
 9156             "Bytes sent");
 9157 
 9158         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9159             "stat_IfHCOutBadOctets",
 9160             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
 9161             "Bad bytes sent");
 9162 
 9163         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9164             "stat_IfHCInUcastPkts",
 9165             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
 9166             "Unicast packets received");
 9167 
 9168         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9169             "stat_IfHCInMulticastPkts",
 9170             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
 9171             "Multicast packets received");
 9172 
 9173         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9174             "stat_IfHCInBroadcastPkts",
 9175             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
 9176             "Broadcast packets received");
 9177 
 9178         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9179             "stat_IfHCOutUcastPkts",
 9180             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
 9181             "Unicast packets sent");
 9182 
 9183         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9184             "stat_IfHCOutMulticastPkts",
 9185             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
 9186             "Multicast packets sent");
 9187 
 9188         SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
 9189             "stat_IfHCOutBroadcastPkts",
 9190             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
 9191             "Broadcast packets sent");
 9192 
 9193         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9194             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
 9195             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
 9196             0, "Internal MAC transmit errors");
 9197 
 9198         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9199             "stat_Dot3StatsCarrierSenseErrors",
 9200             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
 9201             0, "Carrier sense errors");
 9202 
 9203         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9204             "stat_Dot3StatsFCSErrors",
 9205             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
 9206             0, "Frame check sequence errors");
 9207 
 9208         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9209             "stat_Dot3StatsAlignmentErrors",
 9210             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
 9211             0, "Alignment errors");
 9212 
 9213         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9214             "stat_Dot3StatsSingleCollisionFrames",
 9215             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
 9216             0, "Single Collision Frames");
 9217 
 9218         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9219             "stat_Dot3StatsMultipleCollisionFrames",
 9220             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
 9221             0, "Multiple Collision Frames");
 9222 
 9223         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9224             "stat_Dot3StatsDeferredTransmissions",
 9225             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
 9226             0, "Deferred Transmissions");
 9227 
 9228         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9229             "stat_Dot3StatsExcessiveCollisions",
 9230             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
 9231             0, "Excessive Collisions");
 9232 
 9233         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9234             "stat_Dot3StatsLateCollisions",
 9235             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
 9236             0, "Late Collisions");
 9237 
 9238         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9239             "stat_EtherStatsCollisions",
 9240             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
 9241             0, "Collisions");
 9242 
 9243         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9244             "stat_EtherStatsFragments",
 9245             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
 9246             0, "Fragments");
 9247 
 9248         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9249             "stat_EtherStatsJabbers",
 9250             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
 9251             0, "Jabbers");
 9252 
 9253         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9254             "stat_EtherStatsUndersizePkts",
 9255             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
 9256             0, "Undersize packets");
 9257 
 9258         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9259             "stat_EtherStatsOversizePkts",
 9260             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
 9261             0, "stat_EtherStatsOversizePkts");
 9262 
 9263         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9264             "stat_EtherStatsPktsRx64Octets",
 9265             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
 9266             0, "Bytes received in 64 byte packets");
 9267 
 9268         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9269             "stat_EtherStatsPktsRx65Octetsto127Octets",
 9270             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
 9271             0, "Bytes received in 65 to 127 byte packets");
 9272 
 9273         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9274             "stat_EtherStatsPktsRx128Octetsto255Octets",
 9275             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
 9276             0, "Bytes received in 128 to 255 byte packets");
 9277 
 9278         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9279             "stat_EtherStatsPktsRx256Octetsto511Octets",
 9280             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
 9281             0, "Bytes received in 256 to 511 byte packets");
 9282 
 9283         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9284             "stat_EtherStatsPktsRx512Octetsto1023Octets",
 9285             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
 9286             0, "Bytes received in 512 to 1023 byte packets");
 9287 
 9288         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9289             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
 9290             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
 9291             0, "Bytes received in 1024 t0 1522 byte packets");
 9292 
 9293         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9294             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
 9295             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
 9296             0, "Bytes received in 1523 to 9022 byte packets");
 9297 
 9298         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9299             "stat_EtherStatsPktsTx64Octets",
 9300             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
 9301             0, "Bytes sent in 64 byte packets");
 9302 
 9303         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9304             "stat_EtherStatsPktsTx65Octetsto127Octets",
 9305             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
 9306             0, "Bytes sent in 65 to 127 byte packets");
 9307 
 9308         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9309             "stat_EtherStatsPktsTx128Octetsto255Octets",
 9310             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
 9311             0, "Bytes sent in 128 to 255 byte packets");
 9312 
 9313         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9314             "stat_EtherStatsPktsTx256Octetsto511Octets",
 9315             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
 9316             0, "Bytes sent in 256 to 511 byte packets");
 9317 
 9318         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9319             "stat_EtherStatsPktsTx512Octetsto1023Octets",
 9320             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
 9321             0, "Bytes sent in 512 to 1023 byte packets");
 9322 
 9323         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9324             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
 9325             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
 9326             0, "Bytes sent in 1024 to 1522 byte packets");
 9327 
 9328         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9329             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
 9330             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
 9331             0, "Bytes sent in 1523 to 9022 byte packets");
 9332 
 9333         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9334             "stat_XonPauseFramesReceived",
 9335             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
 9336             0, "XON pause frames receved");
 9337 
 9338         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9339             "stat_XoffPauseFramesReceived",
 9340             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
 9341             0, "XOFF pause frames received");
 9342 
 9343         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9344             "stat_OutXonSent",
 9345             CTLFLAG_RD, &sc->stat_OutXonSent,
 9346             0, "XON pause frames sent");
 9347 
 9348         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9349             "stat_OutXoffSent",
 9350             CTLFLAG_RD, &sc->stat_OutXoffSent,
 9351             0, "XOFF pause frames sent");
 9352 
 9353         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9354             "stat_FlowControlDone",
 9355             CTLFLAG_RD, &sc->stat_FlowControlDone,
 9356             0, "Flow control done");
 9357 
 9358         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9359             "stat_MacControlFramesReceived",
 9360             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
 9361             0, "MAC control frames received");
 9362 
 9363         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9364             "stat_XoffStateEntered",
 9365             CTLFLAG_RD, &sc->stat_XoffStateEntered,
 9366             0, "XOFF state entered");
 9367 
 9368         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9369             "stat_IfInFramesL2FilterDiscards",
 9370             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
 9371             0, "Received L2 packets discarded");
 9372 
 9373         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9374             "stat_IfInRuleCheckerDiscards",
 9375             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
 9376             0, "Received packets discarded by rule");
 9377 
 9378         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9379             "stat_IfInFTQDiscards",
 9380             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
 9381             0, "Received packet FTQ discards");
 9382 
 9383         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9384             "stat_IfInMBUFDiscards",
 9385             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
 9386             0, "Received packets discarded due to lack "
 9387             "of controller buffer memory");
 9388 
 9389         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9390             "stat_IfInRuleCheckerP4Hit",
 9391             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
 9392             0, "Received packets rule checker hits");
 9393 
 9394         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9395             "stat_CatchupInRuleCheckerDiscards",
 9396             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
 9397             0, "Received packets discarded in Catchup path");
 9398 
 9399         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9400             "stat_CatchupInFTQDiscards",
 9401             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
 9402             0, "Received packets discarded in FTQ in Catchup path");
 9403 
 9404         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9405             "stat_CatchupInMBUFDiscards",
 9406             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
 9407             0, "Received packets discarded in controller "
 9408             "buffer memory in Catchup path");
 9409 
 9410         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9411             "stat_CatchupInRuleCheckerP4Hit",
 9412             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
 9413             0, "Received packets rule checker hits in Catchup path");
 9414 
 9415         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 9416             "com_no_buffers",
 9417             CTLFLAG_RD, &sc->com_no_buffers,
 9418             0, "Valid packets received but no RX buffers available");
 9419 
 9420 #ifdef BCE_DEBUG
 9421         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9422             "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9423             (void *)sc, 0,
 9424             bce_sysctl_driver_state, "I", "Drive state information");
 9425 
 9426         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9427             "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9428             (void *)sc, 0,
 9429             bce_sysctl_hw_state, "I", "Hardware state information");
 9430 
 9431         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9432             "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9433             (void *)sc, 0,
 9434             bce_sysctl_status_block, "I", "Dump status block");
 9435 
 9436         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9437             "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9438             (void *)sc, 0,
 9439             bce_sysctl_stats_block, "I", "Dump statistics block");
 9440 
 9441         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9442             "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9443             (void *)sc, 0,
 9444             bce_sysctl_stats_clear, "I", "Clear statistics block");
 9445 
 9446         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9447             "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9448             (void *)sc, 0,
 9449             bce_sysctl_shmem_state, "I", "Shared memory state information");
 9450 
 9451         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9452             "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9453             (void *)sc, 0,
 9454             bce_sysctl_bc_state, "I", "Bootcode state information");
 9455 
 9456         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9457             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9458             (void *)sc, 0,
 9459             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
 9460 
 9461         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9462             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9463             (void *)sc, 0,
 9464             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
 9465 
 9466         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9467             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9468             (void *)sc, 0,
 9469             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
 9470 
 9471         if (bce_hdr_split == TRUE) {
 9472                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9473                     "dump_pg_chain",
 9474                     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9475                     (void *)sc, 0,
 9476                     bce_sysctl_dump_pg_chain, "I", "Dump page chain");
 9477         }
 9478 
 9479         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9480             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9481             (void *)sc, 0,
 9482             bce_sysctl_dump_ctx, "I", "Dump context memory");
 9483 
 9484         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9485             "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9486             (void *)sc, 0,
 9487             bce_sysctl_breakpoint, "I", "Driver breakpoint");
 9488 
 9489         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9490             "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT,
 9491             (void *)sc, 0,
 9492             bce_sysctl_reg_read, "I", "Register read");
 9493 
 9494         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9495             "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9496             (void *)sc, 0,
 9497             bce_sysctl_nvram_read, "I", "NVRAM read");
 9498 
 9499         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 9500             "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
 9501             (void *)sc, 0,
 9502             bce_sysctl_phy_read, "I", "PHY register read");
 9503 
 9504 #endif
 9505 
 9506         DBEXIT(BCE_VERBOSE_MISC);
 9507 }
 9508 
 9509 /****************************************************************************/
 9510 /* BCE Debug Routines                                                       */
 9511 /****************************************************************************/
 9512 #ifdef BCE_DEBUG
 9513 
 9514 /****************************************************************************/
 9515 /* Freezes the controller to allow for a cohesive state dump.               */
 9516 /*                                                                          */
 9517 /* Returns:                                                                 */
 9518 /*   Nothing.                                                               */
 9519 /****************************************************************************/
 9520 static __attribute__ ((noinline)) void
 9521 bce_freeze_controller(struct bce_softc *sc)
 9522 {
 9523         u32 val;
 9524         val = REG_RD(sc, BCE_MISC_COMMAND);
 9525         val |= BCE_MISC_COMMAND_DISABLE_ALL;
 9526         REG_WR(sc, BCE_MISC_COMMAND, val);
 9527 }
 9528 
 9529 /****************************************************************************/
 9530 /* Unfreezes the controller after a freeze operation.  This may not always  */
 9531 /* work and the controller will require a reset!                            */
 9532 /*                                                                          */
 9533 /* Returns:                                                                 */
 9534 /*   Nothing.                                                               */
 9535 /****************************************************************************/
 9536 static __attribute__ ((noinline)) void
 9537 bce_unfreeze_controller(struct bce_softc *sc)
 9538 {
 9539         u32 val;
 9540         val = REG_RD(sc, BCE_MISC_COMMAND);
 9541         val |= BCE_MISC_COMMAND_ENABLE_ALL;
 9542         REG_WR(sc, BCE_MISC_COMMAND, val);
 9543 }
 9544 
 9545 /****************************************************************************/
 9546 /* Prints out Ethernet frame information from an mbuf.                      */
 9547 /*                                                                          */
 9548 /* Partially decode an Ethernet frame to look at some important headers.    */
 9549 /*                                                                          */
 9550 /* Returns:                                                                 */
 9551 /*   Nothing.                                                               */
 9552 /****************************************************************************/
 9553 static __attribute__ ((noinline)) void
 9554 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
 9555 {
 9556         struct ether_vlan_header *eh;
 9557         u16 etype;
 9558         int ehlen;
 9559         struct ip *ip;
 9560         struct tcphdr *th;
 9561         struct udphdr *uh;
 9562         struct arphdr *ah;
 9563 
 9564         BCE_PRINTF(
 9565             "-----------------------------"
 9566             " Frame Decode "
 9567             "-----------------------------\n");
 9568 
 9569         eh = mtod(m, struct ether_vlan_header *);
 9570 
 9571         /* Handle VLAN encapsulation if present. */
 9572         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
 9573                 etype = ntohs(eh->evl_proto);
 9574                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
 9575         } else {
 9576                 etype = ntohs(eh->evl_encap_proto);
 9577                 ehlen = ETHER_HDR_LEN;
 9578         }
 9579 
 9580         /* ToDo: Add VLAN output. */
 9581         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
 9582             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
 9583 
 9584         switch (etype) {
 9585         case ETHERTYPE_IP:
 9586                 ip = (struct ip *)(m->m_data + ehlen);
 9587                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
 9588                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
 9589                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
 9590                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
 9591 
 9592                 switch (ip->ip_p) {
 9593                 case IPPROTO_TCP:
 9594                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
 9595                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
 9596                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
 9597                             ntohs(th->th_dport), ntohs(th->th_sport),
 9598                             (th->th_off << 2), th->th_flags,
 9599                             "\2\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
 9600                             "\02SYN\01FIN", ntohs(th->th_sum));
 9601                         break;
 9602                 case IPPROTO_UDP:
 9603                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
 9604                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
 9605                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
 9606                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
 9607                             ntohs(uh->uh_sum));
 9608                         break;
 9609                 case IPPROTO_ICMP:
 9610                         BCE_PRINTF("icmp:\n");
 9611                         break;
 9612                 default:
 9613                         BCE_PRINTF("----: Other IP protocol.\n");
 9614                         }
 9615                 break;
 9616         case ETHERTYPE_IPV6:
 9617                 BCE_PRINTF("ipv6: No decode supported.\n");
 9618                 break;
 9619         case ETHERTYPE_ARP:
 9620                 BCE_PRINTF("-arp: ");
 9621                 ah = (struct arphdr *) (m->m_data + ehlen);
 9622                 switch (ntohs(ah->ar_op)) {
 9623                 case ARPOP_REVREQUEST:
 9624                         printf("reverse ARP request\n");
 9625                         break;
 9626                 case ARPOP_REVREPLY:
 9627                         printf("reverse ARP reply\n");
 9628                         break;
 9629                 case ARPOP_REQUEST:
 9630                         printf("ARP request\n");
 9631                         break;
 9632                 case ARPOP_REPLY:
 9633                         printf("ARP reply\n");
 9634                         break;
 9635                 default:
 9636                         printf("other ARP operation\n");
 9637                 }
 9638                 break;
 9639         default:
 9640                 BCE_PRINTF("----: Other protocol.\n");
 9641         }
 9642 
 9643         BCE_PRINTF(
 9644                 "-----------------------------"
 9645                 "--------------"
 9646                 "-----------------------------\n");
 9647 }
 9648 
 9649 /****************************************************************************/
 9650 /* Prints out information about an mbuf.                                    */
 9651 /*                                                                          */
 9652 /* Returns:                                                                 */
 9653 /*   Nothing.                                                               */
 9654 /****************************************************************************/
 9655 static __attribute__ ((noinline)) void
 9656 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
 9657 {
 9658         struct mbuf *mp = m;
 9659 
 9660         if (m == NULL) {
 9661                 BCE_PRINTF("mbuf: null pointer\n");
 9662                 return;
 9663         }
 9664 
 9665         while (mp) {
 9666                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
 9667                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
 9668                     "\2\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
 9669 
 9670                 if (mp->m_flags & M_PKTHDR) {
 9671                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
 9672                             "csum_flags = %b\n", mp->m_pkthdr.len,
 9673                             mp->m_flags, M_FLAG_PRINTF,
 9674                             mp->m_pkthdr.csum_flags, CSUM_BITS);
 9675                 }
 9676 
 9677                 if (mp->m_flags & M_EXT) {
 9678                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
 9679                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
 9680                         switch (mp->m_ext.ext_type) {
 9681                         case EXT_CLUSTER:
 9682                                 printf("EXT_CLUSTER\n"); break;
 9683                         case EXT_SFBUF:
 9684                                 printf("EXT_SFBUF\n"); break;
 9685                         case EXT_JUMBO9:
 9686                                 printf("EXT_JUMBO9\n"); break;
 9687                         case EXT_JUMBO16:
 9688                                 printf("EXT_JUMBO16\n"); break;
 9689                         case EXT_PACKET:
 9690                                 printf("EXT_PACKET\n"); break;
 9691                         case EXT_MBUF:
 9692                                 printf("EXT_MBUF\n"); break;
 9693                         case EXT_NET_DRV:
 9694                                 printf("EXT_NET_DRV\n"); break;
 9695                         case EXT_MOD_TYPE:
 9696                                 printf("EXT_MDD_TYPE\n"); break;
 9697                         case EXT_DISPOSABLE:
 9698                                 printf("EXT_DISPOSABLE\n"); break;
 9699                         case EXT_EXTREF:
 9700                                 printf("EXT_EXTREF\n"); break;
 9701                         default:
 9702                                 printf("UNKNOWN\n");
 9703                         }
 9704                 }
 9705 
 9706                 mp = mp->m_next;
 9707         }
 9708 }
 9709 
 9710 /****************************************************************************/
 9711 /* Prints out the mbufs in the TX mbuf chain.                               */
 9712 /*                                                                          */
 9713 /* Returns:                                                                 */
 9714 /*   Nothing.                                                               */
 9715 /****************************************************************************/
 9716 static __attribute__ ((noinline)) void
 9717 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
 9718 {
 9719         struct mbuf *m;
 9720 
 9721         BCE_PRINTF(
 9722                 "----------------------------"
 9723                 "  tx mbuf data  "
 9724                 "----------------------------\n");
 9725 
 9726         for (int i = 0; i < count; i++) {
 9727                 m = sc->tx_mbuf_ptr[chain_prod];
 9728                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
 9729                 bce_dump_mbuf(sc, m);
 9730                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
 9731         }
 9732 
 9733         BCE_PRINTF(
 9734                 "----------------------------"
 9735                 "----------------"
 9736                 "----------------------------\n");
 9737 }
 9738 
 9739 /****************************************************************************/
 9740 /* Prints out the mbufs in the RX mbuf chain.                               */
 9741 /*                                                                          */
 9742 /* Returns:                                                                 */
 9743 /*   Nothing.                                                               */
 9744 /****************************************************************************/
 9745 static __attribute__ ((noinline)) void
 9746 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
 9747 {
 9748         struct mbuf *m;
 9749 
 9750         BCE_PRINTF(
 9751                 "----------------------------"
 9752                 "  rx mbuf data  "
 9753                 "----------------------------\n");
 9754 
 9755         for (int i = 0; i < count; i++) {
 9756                 m = sc->rx_mbuf_ptr[chain_prod];
 9757                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
 9758                 bce_dump_mbuf(sc, m);
 9759                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
 9760         }
 9761 
 9762         BCE_PRINTF(
 9763                 "----------------------------"
 9764                 "----------------"
 9765                 "----------------------------\n");
 9766 }
 9767 
 9768 /****************************************************************************/
 9769 /* Prints out the mbufs in the mbuf page chain.                             */
 9770 /*                                                                          */
 9771 /* Returns:                                                                 */
 9772 /*   Nothing.                                                               */
 9773 /****************************************************************************/
 9774 static __attribute__ ((noinline)) void
 9775 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
 9776 {
 9777         struct mbuf *m;
 9778 
 9779         BCE_PRINTF(
 9780                 "----------------------------"
 9781                 "  pg mbuf data  "
 9782                 "----------------------------\n");
 9783 
 9784         for (int i = 0; i < count; i++) {
 9785                 m = sc->pg_mbuf_ptr[chain_prod];
 9786                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
 9787                 bce_dump_mbuf(sc, m);
 9788                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
 9789         }
 9790 
 9791         BCE_PRINTF(
 9792                 "----------------------------"
 9793                 "----------------"
 9794                 "----------------------------\n");
 9795 }
 9796 
 9797 /****************************************************************************/
 9798 /* Prints out a tx_bd structure.                                            */
 9799 /*                                                                          */
 9800 /* Returns:                                                                 */
 9801 /*   Nothing.                                                               */
 9802 /****************************************************************************/
 9803 static __attribute__ ((noinline)) void
 9804 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
 9805 {
 9806         int i = 0;
 9807 
 9808         if (idx > MAX_TX_BD_ALLOC)
 9809                 /* Index out of range. */
 9810                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
 9811         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
 9812                 /* TX Chain page pointer. */
 9813                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
 9814                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
 9815                     txbd->tx_bd_haddr_lo);
 9816         else {
 9817                 /* Normal tx_bd entry. */
 9818                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
 9819                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
 9820                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
 9821                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
 9822                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
 9823 
 9824                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
 9825                         if (i>0)
 9826                                 printf("|");
 9827                         printf("CONN_FAULT");
 9828                         i++;
 9829                 }
 9830 
 9831                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
 9832                         if (i>0)
 9833                                 printf("|");
 9834                         printf("TCP_UDP_CKSUM");
 9835                         i++;
 9836                 }
 9837 
 9838                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
 9839                         if (i>0)
 9840                                 printf("|");
 9841                         printf("IP_CKSUM");
 9842                         i++;
 9843                 }
 9844 
 9845                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
 9846                         if (i>0)
 9847                                 printf("|");
 9848                         printf("VLAN");
 9849                         i++;
 9850                 }
 9851 
 9852                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
 9853                         if (i>0)
 9854                                 printf("|");
 9855                         printf("COAL_NOW");
 9856                         i++;
 9857                 }
 9858 
 9859                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
 9860                         if (i>0)
 9861                                 printf("|");
 9862                         printf("DONT_GEN_CRC");
 9863                         i++;
 9864                 }
 9865 
 9866                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
 9867                         if (i>0)
 9868                                 printf("|");
 9869                         printf("START");
 9870                         i++;
 9871                 }
 9872 
 9873                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
 9874                         if (i>0)
 9875                                 printf("|");
 9876                         printf("END");
 9877                         i++;
 9878                 }
 9879 
 9880                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
 9881                         if (i>0)
 9882                                 printf("|");
 9883                         printf("LSO");
 9884                         i++;
 9885                 }
 9886 
 9887                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
 9888                         if (i>0)
 9889                                 printf("|");
 9890                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
 9891                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
 9892                 }
 9893 
 9894                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
 9895                         if (i>0)
 9896                                 printf("|");
 9897                         printf("SW_FLAGS");
 9898                         i++;
 9899                 }
 9900 
 9901                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
 9902                         if (i>0)
 9903                                 printf("|");
 9904                         printf("SNAP)");
 9905                 } else {
 9906                         printf(")\n");
 9907                 }
 9908         }
 9909 }
 9910 
 9911 /****************************************************************************/
 9912 /* Prints out a rx_bd structure.                                            */
 9913 /*                                                                          */
 9914 /* Returns:                                                                 */
 9915 /*   Nothing.                                                               */
 9916 /****************************************************************************/
 9917 static __attribute__ ((noinline)) void
 9918 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
 9919 {
 9920         if (idx > MAX_RX_BD_ALLOC)
 9921                 /* Index out of range. */
 9922                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
 9923         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
 9924                 /* RX Chain page pointer. */
 9925                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
 9926                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
 9927                     rxbd->rx_bd_haddr_lo);
 9928         else
 9929                 /* Normal rx_bd entry. */
 9930                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
 9931                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
 9932                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
 9933                     rxbd->rx_bd_flags);
 9934 }
 9935 
 9936 /****************************************************************************/
 9937 /* Prints out a rx_bd structure in the page chain.                          */
 9938 /*                                                                          */
 9939 /* Returns:                                                                 */
 9940 /*   Nothing.                                                               */
 9941 /****************************************************************************/
 9942 static __attribute__ ((noinline)) void
 9943 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
 9944 {
 9945         if (idx > MAX_PG_BD_ALLOC)
 9946                 /* Index out of range. */
 9947                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
 9948         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
 9949                 /* Page Chain page pointer. */
 9950                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
 9951                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
 9952         else
 9953                 /* Normal rx_bd entry. */
 9954                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
 9955                         "flags = 0x%08X\n", idx,
 9956                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
 9957                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
 9958 }
 9959 
 9960 /****************************************************************************/
 9961 /* Prints out a l2_fhdr structure.                                          */
 9962 /*                                                                          */
 9963 /* Returns:                                                                 */
 9964 /*   Nothing.                                                               */
 9965 /****************************************************************************/
 9966 static __attribute__ ((noinline)) void
 9967 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
 9968 {
 9969         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
 9970                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
 9971                 "tcp_udp_xsum = 0x%04X\n", idx,
 9972                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
 9973                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
 9974                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
 9975 }
 9976 
 9977 /****************************************************************************/
 9978 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
 9979 /*                                                                          */
 9980 /* Returns:                                                                 */
 9981 /*   Nothing.                                                               */
 9982 /****************************************************************************/
 9983 static __attribute__ ((noinline)) void
 9984 bce_dump_ctx(struct bce_softc *sc, u16 cid)
 9985 {
 9986         if (cid > TX_CID) {
 9987                 BCE_PRINTF(" Unknown CID\n");
 9988                 return;
 9989         }
 9990 
 9991         BCE_PRINTF(
 9992             "----------------------------"
 9993             "    CTX Data    "
 9994             "----------------------------\n");
 9995 
 9996         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
 9997 
 9998         if (cid == RX_CID) {
 9999                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10000                    "producer index\n",
10001                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10002                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10003                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10004                     BCE_L2CTX_RX_HOST_BSEQ));
10005                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10006                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10007                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10008                     "descriptor address\n",
10009                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10010                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10011                     "descriptor address\n",
10012                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10013                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10014                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10015                     BCE_L2CTX_RX_NX_BDIDX));
10016                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10017                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10018                     BCE_L2CTX_RX_HOST_PG_BDIDX));
10019                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10020                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10021                     BCE_L2CTX_RX_PG_BUF_SIZE));
10022                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10023                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10024                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10025                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10026                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10027                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10028                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10029                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10030                     BCE_L2CTX_RX_NX_PG_BDIDX));
10031         } else if (cid == TX_CID) {
10032                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10033                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10034                             CTX_RD(sc, GET_CID_ADDR(cid),
10035                             BCE_L2CTX_TX_TYPE_XI));
10036                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10037                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10038                             BCE_L2CTX_TX_CMD_TYPE_XI));
10039                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10040                             "h/w buffer descriptor address\n",
10041                             CTX_RD(sc, GET_CID_ADDR(cid),
10042                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10043                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10044                             "h/w buffer descriptor address\n",
10045                             CTX_RD(sc, GET_CID_ADDR(cid),
10046                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10047                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10048                             "host producer index\n",
10049                             CTX_RD(sc, GET_CID_ADDR(cid),
10050                             BCE_L2CTX_TX_HOST_BIDX_XI));
10051                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10052                             "host byte sequence\n",
10053                             CTX_RD(sc, GET_CID_ADDR(cid),
10054                             BCE_L2CTX_TX_HOST_BSEQ_XI));
10055                 } else {
10056                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10057                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10058                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10059                             CTX_RD(sc, GET_CID_ADDR(cid),
10060                             BCE_L2CTX_TX_CMD_TYPE));
10061                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10062                             "h/w buffer descriptor address\n",
10063                             CTX_RD(sc, GET_CID_ADDR(cid),
10064                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
10065                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10066                             "h/w buffer descriptor address\n",
10067                             CTX_RD(sc, GET_CID_ADDR(cid),
10068                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
10069                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10070                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10071                             BCE_L2CTX_TX_HOST_BIDX));
10072                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10073                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10074                             BCE_L2CTX_TX_HOST_BSEQ));
10075                 }
10076         }
10077 
10078         BCE_PRINTF(
10079            "----------------------------"
10080            "    Raw CTX     "
10081            "----------------------------\n");
10082 
10083         for (int i = 0x0; i < 0x300; i += 0x10) {
10084                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10085                    CTX_RD(sc, GET_CID_ADDR(cid), i),
10086                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10087                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10088                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10089         }
10090 
10091         BCE_PRINTF(
10092            "----------------------------"
10093            "----------------"
10094            "----------------------------\n");
10095 }
10096 
10097 /****************************************************************************/
10098 /* Prints out the FTQ data.                                                 */
10099 /*                                                                          */
10100 /* Returns:                                                                */
10101 /*   Nothing.                                                               */
10102 /****************************************************************************/
10103 static __attribute__ ((noinline)) void
10104 bce_dump_ftqs(struct bce_softc *sc)
10105 {
10106         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10107 
10108         BCE_PRINTF(
10109             "----------------------------"
10110             "    FTQ Data    "
10111             "----------------------------\n");
10112 
10113         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10114             "Max_Depth  Valid_Cnt \n");
10115         BCE_PRINTF(" ------- ---------- ---------- ---------- "
10116             "---------- ----------\n");
10117 
10118         /* Setup the generic statistic counters for the FTQ valid count. */
10119         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10120             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10121             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10122             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10123         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10124 
10125         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10126             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10127             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10128             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10129         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10130 
10131         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10132             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10133             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10134             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10135         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10136 
10137         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10138             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10139             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10140             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10141         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10142 
10143         /* Input queue to the Receive Lookup state machine */
10144         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10145         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10146         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10147         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10148         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10149         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10150             cmd, ctl, cur_depth, max_depth, valid_cnt);
10151 
10152         /* Input queue to the Receive Processor */
10153         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10154         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10155         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10156         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10157         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10158         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10159             cmd, ctl, cur_depth, max_depth, valid_cnt);
10160 
10161         /* Input queue to the Recevie Processor */
10162         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10163         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10164         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10165         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10166         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10167         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10168             cmd, ctl, cur_depth, max_depth, valid_cnt);
10169 
10170         /* Input queue to the Receive Virtual to Physical state machine */
10171         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10172         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10173         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10174         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10175         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10176         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10177             cmd, ctl, cur_depth, max_depth, valid_cnt);
10178 
10179         /* Input queue to the Recevie Virtual to Physical state machine */
10180         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10181         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10182         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10183         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10184         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10185         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10186             cmd, ctl, cur_depth, max_depth, valid_cnt);
10187 
10188         /* Input queue to the Receive Virtual to Physical state machine */
10189         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10190         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10191         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10192         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10193         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10194         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10195             cmd, ctl, cur_depth, max_depth, valid_cnt);
10196 
10197         /* Input queue to the Receive DMA state machine */
10198         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10199         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10200         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10201         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10202         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10203         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10204             cmd, ctl, cur_depth, max_depth, valid_cnt);
10205 
10206         /* Input queue to the Transmit Scheduler state machine */
10207         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10208         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10209         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10210         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10211         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10212         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10213             cmd, ctl, cur_depth, max_depth, valid_cnt);
10214 
10215         /* Input queue to the Transmit Buffer Descriptor state machine */
10216         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10217         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10218         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10219         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10220         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10221         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10222             cmd, ctl, cur_depth, max_depth, valid_cnt);
10223 
10224         /* Input queue to the Transmit Processor */
10225         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10226         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10227         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10228         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10229         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10230         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10231             cmd, ctl, cur_depth, max_depth, valid_cnt);
10232 
10233         /* Input queue to the Transmit DMA state machine */
10234         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10235         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10236         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10237         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10238         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10239         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10240             cmd, ctl, cur_depth, max_depth, valid_cnt);
10241 
10242         /* Input queue to the Transmit Patch-Up Processor */
10243         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10244         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10245         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10246         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10247         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10248         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10249             cmd, ctl, cur_depth, max_depth, valid_cnt);
10250 
10251         /* Input queue to the Transmit Assembler state machine */
10252         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10253         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10254         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10255         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10256         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10257         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10258             cmd, ctl, cur_depth, max_depth, valid_cnt);
10259 
10260         /* Input queue to the Completion Processor */
10261         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10262         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10263         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10264         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10265         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10266         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10267             cmd, ctl, cur_depth, max_depth, valid_cnt);
10268 
10269         /* Input queue to the Completion Processor */
10270         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10271         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10272         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10273         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10274         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10275         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10276             cmd, ctl, cur_depth, max_depth, valid_cnt);
10277 
10278         /* Input queue to the Completion Processor */
10279         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10280         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10281         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10282         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10283         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10284         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10285             cmd, ctl, cur_depth, max_depth, valid_cnt);
10286 
10287         /* Setup the generic statistic counters for the FTQ valid count. */
10288         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10289             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10290             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10291 
10292         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10293                 val = val |
10294                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10295                      24);
10296         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10297 
10298         /* Input queue to the Management Control Processor */
10299         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10300         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10301         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10302         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10303         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10304         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10305             cmd, ctl, cur_depth, max_depth, valid_cnt);
10306 
10307         /* Input queue to the Command Processor */
10308         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10309         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10310         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10311         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10312         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10313         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10314             cmd, ctl, cur_depth, max_depth, valid_cnt);
10315 
10316         /* Input queue to the Completion Scheduler state machine */
10317         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10318         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10319         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10320         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10321         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10322         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10323             cmd, ctl, cur_depth, max_depth, valid_cnt);
10324 
10325         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10326                 /* Input queue to the RV2P Command Scheduler */
10327                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10328                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10329                 cur_depth = (ctl & 0xFFC00000) >> 22;
10330                 max_depth = (ctl & 0x003FF000) >> 12;
10331                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10332                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10333                     cmd, ctl, cur_depth, max_depth, valid_cnt);
10334         }
10335 
10336         BCE_PRINTF(
10337             "----------------------------"
10338             "----------------"
10339             "----------------------------\n");
10340 }
10341 
10342 /****************************************************************************/
10343 /* Prints out the TX chain.                                                 */
10344 /*                                                                          */
10345 /* Returns:                                                                 */
10346 /*   Nothing.                                                               */
10347 /****************************************************************************/
10348 static __attribute__ ((noinline)) void
10349 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10350 {
10351         struct tx_bd *txbd;
10352 
10353         /* First some info about the tx_bd chain structure. */
10354         BCE_PRINTF(
10355             "----------------------------"
10356             "  tx_bd  chain  "
10357             "----------------------------\n");
10358 
10359         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10360             (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10361         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10362             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10363         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10364 
10365         BCE_PRINTF(
10366             "----------------------------"
10367             "   tx_bd data   "
10368             "----------------------------\n");
10369 
10370         /* Now print out a decoded list of TX buffer descriptors. */
10371         for (int i = 0; i < count; i++) {
10372                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10373                 bce_dump_txbd(sc, tx_prod, txbd);
10374                 tx_prod++;
10375         }
10376 
10377         BCE_PRINTF(
10378             "----------------------------"
10379             "----------------"
10380             "----------------------------\n");
10381 }
10382 
10383 /****************************************************************************/
10384 /* Prints out the RX chain.                                                 */
10385 /*                                                                          */
10386 /* Returns:                                                                 */
10387 /*   Nothing.                                                               */
10388 /****************************************************************************/
10389 static __attribute__ ((noinline)) void
10390 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10391 {
10392         struct rx_bd *rxbd;
10393 
10394         /* First some info about the rx_bd chain structure. */
10395         BCE_PRINTF(
10396             "----------------------------"
10397             "  rx_bd  chain  "
10398             "----------------------------\n");
10399 
10400         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10401             (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10402 
10403         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10404             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10405 
10406         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10407 
10408         BCE_PRINTF(
10409             "----------------------------"
10410             "   rx_bd data   "
10411             "----------------------------\n");
10412 
10413         /* Now print out the rx_bd's themselves. */
10414         for (int i = 0; i < count; i++) {
10415                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10416                 bce_dump_rxbd(sc, rx_prod, rxbd);
10417                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10418         }
10419 
10420         BCE_PRINTF(
10421             "----------------------------"
10422             "----------------"
10423             "----------------------------\n");
10424 }
10425 
10426 /****************************************************************************/
10427 /* Prints out the page chain.                                               */
10428 /*                                                                          */
10429 /* Returns:                                                                 */
10430 /*   Nothing.                                                               */
10431 /****************************************************************************/
10432 static __attribute__ ((noinline)) void
10433 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10434 {
10435         struct rx_bd *pgbd;
10436 
10437         /* First some info about the page chain structure. */
10438         BCE_PRINTF(
10439             "----------------------------"
10440             "   page chain   "
10441             "----------------------------\n");
10442 
10443         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10444             (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10445 
10446         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10447             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10448 
10449         BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10450 
10451         BCE_PRINTF(
10452             "----------------------------"
10453             "   page data    "
10454             "----------------------------\n");
10455 
10456         /* Now print out the rx_bd's themselves. */
10457         for (int i = 0; i < count; i++) {
10458                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10459                 bce_dump_pgbd(sc, pg_prod, pgbd);
10460                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10461         }
10462 
10463         BCE_PRINTF(
10464             "----------------------------"
10465             "----------------"
10466             "----------------------------\n");
10467 }
10468 
10469 #define BCE_PRINT_RX_CONS(arg)                                          \
10470 if (sblk->status_rx_quick_consumer_index##arg)                          \
10471         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
10472             sblk->status_rx_quick_consumer_index##arg, (u16)            \
10473             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
10474             arg);
10475 
10476 #define BCE_PRINT_TX_CONS(arg)                                          \
10477 if (sblk->status_tx_quick_consumer_index##arg)                          \
10478         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
10479             sblk->status_tx_quick_consumer_index##arg, (u16)            \
10480             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
10481             arg);
10482 
10483 /****************************************************************************/
10484 /* Prints out the status block from host memory.                            */
10485 /*                                                                          */
10486 /* Returns:                                                                 */
10487 /*   Nothing.                                                               */
10488 /****************************************************************************/
10489 static __attribute__ ((noinline)) void
10490 bce_dump_status_block(struct bce_softc *sc)
10491 {
10492         struct status_block *sblk;
10493 
10494         bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10495 
10496         sblk = sc->status_block;
10497 
10498         BCE_PRINTF(
10499             "----------------------------"
10500             "  Status Block  "
10501             "----------------------------\n");
10502 
10503         /* Theses indices are used for normal L2 drivers. */
10504         BCE_PRINTF("    0x%08X - attn_bits\n",
10505             sblk->status_attn_bits);
10506 
10507         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10508             sblk->status_attn_bits_ack);
10509 
10510         BCE_PRINT_RX_CONS(0);
10511         BCE_PRINT_TX_CONS(0)
10512 
10513         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10514 
10515         /* Theses indices are not used for normal L2 drivers. */
10516         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10517         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10518         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10519         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10520         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10521 
10522         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10523 
10524         if (sblk->status_completion_producer_index ||
10525             sblk->status_cmd_consumer_index)
10526                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10527                     sblk->status_completion_producer_index,
10528                     sblk->status_cmd_consumer_index);
10529 
10530         BCE_PRINTF(
10531             "----------------------------"
10532             "----------------"
10533             "----------------------------\n");
10534 }
10535 
10536 #define BCE_PRINT_64BIT_STAT(arg)                               \
10537 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10538         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10539             sblk->arg##_lo, #arg);
10540 
10541 #define BCE_PRINT_32BIT_STAT(arg)                               \
10542 if (sblk->arg)                                                  \
10543         BCE_PRINTF("         0x%08X : %s\n",                    \
10544             sblk->arg, #arg);
10545 
10546 /****************************************************************************/
10547 /* Prints out the statistics block from host memory.                        */
10548 /*                                                                          */
10549 /* Returns:                                                                 */
10550 /*   Nothing.                                                               */
10551 /****************************************************************************/
10552 static __attribute__ ((noinline)) void
10553 bce_dump_stats_block(struct bce_softc *sc)
10554 {
10555         struct statistics_block *sblk;
10556 
10557         bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10558 
10559         sblk = sc->stats_block;
10560 
10561         BCE_PRINTF(
10562             "---------------"
10563             " Stats Block  (All Stats Not Shown Are 0) "
10564             "---------------\n");
10565 
10566         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10567         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10568         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10569         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10570         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10571         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10572         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10573         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10574         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10575         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10576         BCE_PRINT_32BIT_STAT(
10577             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10578         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10579         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10580         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10581         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10582         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10583         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10584         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10585         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10586         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10587         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10588         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10589         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10590         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10591         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10592         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10593         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10594         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10595         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10596         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10597         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10598         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10599         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10600         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10601         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10602         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10603         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10604         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10605         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10606         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10607         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10608         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10609         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10610         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10611         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10612         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10613         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10614         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10615         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10616         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10617         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10618         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10619         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10620         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10621 
10622         BCE_PRINTF(
10623             "----------------------------"
10624             "----------------"
10625             "----------------------------\n");
10626 }
10627 
10628 /****************************************************************************/
10629 /* Prints out a summary of the driver state.                                */
10630 /*                                                                          */
10631 /* Returns:                                                                 */
10632 /*   Nothing.                                                               */
10633 /****************************************************************************/
10634 static __attribute__ ((noinline)) void
10635 bce_dump_driver_state(struct bce_softc *sc)
10636 {
10637         u32 val_hi, val_lo;
10638 
10639         BCE_PRINTF(
10640             "-----------------------------"
10641             " Driver State "
10642             "-----------------------------\n");
10643 
10644         val_hi = BCE_ADDR_HI(sc);
10645         val_lo = BCE_ADDR_LO(sc);
10646         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10647             "address\n", val_hi, val_lo);
10648 
10649         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10650         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10651         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10652             "address\n", val_hi, val_lo);
10653 
10654         val_hi = BCE_ADDR_HI(sc->status_block);
10655         val_lo = BCE_ADDR_LO(sc->status_block);
10656         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10657             "virtual address\n",        val_hi, val_lo);
10658 
10659         val_hi = BCE_ADDR_HI(sc->stats_block);
10660         val_lo = BCE_ADDR_LO(sc->stats_block);
10661         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10662             "virtual address\n", val_hi, val_lo);
10663 
10664         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10665         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10666         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10667             "virtual adddress\n", val_hi, val_lo);
10668 
10669         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10670         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10671         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10672             "virtual address\n", val_hi, val_lo);
10673 
10674         if (bce_hdr_split == TRUE) {
10675                 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10676                 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10677                 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10678                     "virtual address\n", val_hi, val_lo);
10679         }
10680 
10681         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10682         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10683         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10684             "virtual address\n",        val_hi, val_lo);
10685 
10686         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10687         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10688         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10689             "virtual address\n", val_hi, val_lo);
10690 
10691         if (bce_hdr_split == TRUE) {
10692                 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10693                 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10694                 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10695                     "virtual address\n", val_hi, val_lo);
10696         }
10697 
10698         BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10699             "h/w intrs\n",
10700             (long long unsigned int) sc->interrupts_generated);
10701 
10702         BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10703             "rx interrupts handled\n",
10704             (long long unsigned int) sc->interrupts_rx);
10705 
10706         BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10707             "tx interrupts handled\n",
10708             (long long unsigned int) sc->interrupts_tx);
10709 
10710         BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10711             "phy interrupts handled\n",
10712             (long long unsigned int) sc->phy_interrupts);
10713 
10714         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10715             "status block index\n", sc->last_status_idx);
10716 
10717         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10718             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10719 
10720         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10721             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10722 
10723         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10724             "byte seq index\n", sc->tx_prod_bseq);
10725 
10726         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10727             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10728 
10729         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10730             "tx_bd's\n", sc->used_tx_bd);
10731 
10732         BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10733             "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10734 
10735         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10736             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10737 
10738         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10739             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10740 
10741         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10742             "byte seq index\n", sc->rx_prod_bseq);
10743 
10744         BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10745                    "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10746 
10747         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10748             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10749 
10750         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10751             "rx_bd's\n", sc->free_rx_bd);
10752 
10753         if (bce_hdr_split == TRUE) {
10754                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10755                     "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10756 
10757                 BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10758                     "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10759 
10760                 BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10761                     "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10762         }
10763 
10764         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10765             "rx_bd's\n", sc->free_pg_bd);
10766 
10767         BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10768             "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10769 
10770         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10771             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10772 
10773         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10774             "bce mac flags\n", sc->bce_flags);
10775 
10776         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10777             "bce phy flags\n", sc->bce_phy_flags);
10778 
10779         BCE_PRINTF(
10780             "----------------------------"
10781             "----------------"
10782             "----------------------------\n");
10783 }
10784 
10785 /****************************************************************************/
10786 /* Prints out the hardware state through a summary of important register,   */
10787 /* followed by a complete register dump.                                    */
10788 /*                                                                          */
10789 /* Returns:                                                                 */
10790 /*   Nothing.                                                               */
10791 /****************************************************************************/
10792 static __attribute__ ((noinline)) void
10793 bce_dump_hw_state(struct bce_softc *sc)
10794 {
10795         u32 val;
10796 
10797         BCE_PRINTF(
10798             "----------------------------"
10799             " Hardware State "
10800             "----------------------------\n");
10801 
10802         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10803 
10804         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10805         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10806             val, BCE_MISC_ENABLE_STATUS_BITS);
10807 
10808         val = REG_RD(sc, BCE_DMA_STATUS);
10809         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10810             val, BCE_DMA_STATUS);
10811 
10812         val = REG_RD(sc, BCE_CTX_STATUS);
10813         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10814             val, BCE_CTX_STATUS);
10815 
10816         val = REG_RD(sc, BCE_EMAC_STATUS);
10817         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10818             val, BCE_EMAC_STATUS);
10819 
10820         val = REG_RD(sc, BCE_RPM_STATUS);
10821         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10822             val, BCE_RPM_STATUS);
10823 
10824         /* ToDo: Create a #define for this constant. */
10825         val = REG_RD(sc, 0x2004);
10826         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10827             val, 0x2004);
10828 
10829         val = REG_RD(sc, BCE_RV2P_STATUS);
10830         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10831             val, BCE_RV2P_STATUS);
10832 
10833         /* ToDo: Create a #define for this constant. */
10834         val = REG_RD(sc, 0x2c04);
10835         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10836             val, 0x2c04);
10837 
10838         val = REG_RD(sc, BCE_TBDR_STATUS);
10839         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10840             val, BCE_TBDR_STATUS);
10841 
10842         val = REG_RD(sc, BCE_TDMA_STATUS);
10843         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10844             val, BCE_TDMA_STATUS);
10845 
10846         val = REG_RD(sc, BCE_HC_STATUS);
10847         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10848             val, BCE_HC_STATUS);
10849 
10850         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10851         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10852             val, BCE_TXP_CPU_STATE);
10853 
10854         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10855         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10856             val, BCE_TPAT_CPU_STATE);
10857 
10858         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10859         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10860             val, BCE_RXP_CPU_STATE);
10861 
10862         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10863         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10864             val, BCE_COM_CPU_STATE);
10865 
10866         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10867         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10868             val, BCE_MCP_CPU_STATE);
10869 
10870         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10871         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10872             val, BCE_CP_CPU_STATE);
10873 
10874         BCE_PRINTF(
10875             "----------------------------"
10876             "----------------"
10877             "----------------------------\n");
10878 
10879         BCE_PRINTF(
10880             "----------------------------"
10881             " Register  Dump "
10882             "----------------------------\n");
10883 
10884         for (int i = 0x400; i < 0x8000; i += 0x10) {
10885                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10886                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10887                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10888         }
10889 
10890         BCE_PRINTF(
10891             "----------------------------"
10892             "----------------"
10893             "----------------------------\n");
10894 }
10895 
10896 /****************************************************************************/
10897 /* Prints out the contentst of shared memory which is used for host driver  */
10898 /* to bootcode firmware communication.                                      */
10899 /*                                                                          */
10900 /* Returns:                                                                 */
10901 /*   Nothing.                                                               */
10902 /****************************************************************************/
10903 static __attribute__ ((noinline)) void
10904 bce_dump_shmem_state(struct bce_softc *sc)
10905 {
10906         BCE_PRINTF(
10907             "----------------------------"
10908             " Hardware State "
10909             "----------------------------\n");
10910 
10911         BCE_PRINTF("0x%08X - Shared memory base address\n",
10912             sc->bce_shmem_base);
10913         BCE_PRINTF("%s - bootcode version\n",
10914             sc->bce_bc_ver);
10915 
10916         BCE_PRINTF(
10917             "----------------------------"
10918             "   Shared Mem   "
10919             "----------------------------\n");
10920 
10921         for (int i = 0x0; i < 0x200; i += 0x10) {
10922                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10923                     i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10924                     bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10925         }
10926 
10927         BCE_PRINTF(
10928             "----------------------------"
10929             "----------------"
10930             "----------------------------\n");
10931 }
10932 
10933 /****************************************************************************/
10934 /* Prints out the mailbox queue registers.                                  */
10935 /*                                                                          */
10936 /* Returns:                                                                 */
10937 /*   Nothing.                                                               */
10938 /****************************************************************************/
10939 static __attribute__ ((noinline)) void
10940 bce_dump_mq_regs(struct bce_softc *sc)
10941 {
10942         BCE_PRINTF(
10943             "----------------------------"
10944             "    MQ Regs     "
10945             "----------------------------\n");
10946 
10947         BCE_PRINTF(
10948             "----------------------------"
10949             "----------------"
10950             "----------------------------\n");
10951 
10952         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10953                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10954                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10955                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10956         }
10957 
10958         BCE_PRINTF(
10959             "----------------------------"
10960             "----------------"
10961             "----------------------------\n");
10962 }
10963 
10964 /****************************************************************************/
10965 /* Prints out the bootcode state.                                           */
10966 /*                                                                          */
10967 /* Returns:                                                                 */
10968 /*   Nothing.                                                               */
10969 /****************************************************************************/
10970 static __attribute__ ((noinline)) void
10971 bce_dump_bc_state(struct bce_softc *sc)
10972 {
10973         u32 val;
10974 
10975         BCE_PRINTF(
10976             "----------------------------"
10977             " Bootcode State "
10978             "----------------------------\n");
10979 
10980         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10981 
10982         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10983         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10984             val, BCE_BC_RESET_TYPE);
10985 
10986         val = bce_shmem_rd(sc, BCE_BC_STATE);
10987         BCE_PRINTF("0x%08X - (0x%06X) state\n",
10988             val, BCE_BC_STATE);
10989 
10990         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10991         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10992             val, BCE_BC_STATE_CONDITION);
10993 
10994         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10995         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10996             val, BCE_BC_STATE_DEBUG_CMD);
10997 
10998         BCE_PRINTF(
10999             "----------------------------"
11000             "----------------"
11001             "----------------------------\n");
11002 }
11003 
11004 /****************************************************************************/
11005 /* Prints out the TXP processor state.                                      */
11006 /*                                                                          */
11007 /* Returns:                                                                 */
11008 /*   Nothing.                                                               */
11009 /****************************************************************************/
11010 static __attribute__ ((noinline)) void
11011 bce_dump_txp_state(struct bce_softc *sc, int regs)
11012 {
11013         u32 val;
11014         u32 fw_version[3];
11015 
11016         BCE_PRINTF(
11017             "----------------------------"
11018             "   TXP  State   "
11019             "----------------------------\n");
11020 
11021         for (int i = 0; i < 3; i++)
11022                 fw_version[i] = htonl(REG_RD_IND(sc,
11023                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11024         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11025 
11026         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11027         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11028             val, BCE_TXP_CPU_MODE);
11029 
11030         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11031         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11032             val, BCE_TXP_CPU_STATE);
11033 
11034         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11035         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11036             val, BCE_TXP_CPU_EVENT_MASK);
11037 
11038         if (regs) {
11039                 BCE_PRINTF(
11040                     "----------------------------"
11041                     " Register  Dump "
11042                     "----------------------------\n");
11043 
11044                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11045                         /* Skip the big blank spaces */
11046                         if (i < 0x454000 && i > 0x5ffff)
11047                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11048                                     "0x%08X 0x%08X\n", i,
11049                                     REG_RD_IND(sc, i),
11050                                     REG_RD_IND(sc, i + 0x4),
11051                                     REG_RD_IND(sc, i + 0x8),
11052                                     REG_RD_IND(sc, i + 0xC));
11053                 }
11054         }
11055 
11056         BCE_PRINTF(
11057             "----------------------------"
11058             "----------------"
11059             "----------------------------\n");
11060 }
11061 
11062 /****************************************************************************/
11063 /* Prints out the RXP processor state.                                      */
11064 /*                                                                          */
11065 /* Returns:                                                                 */
11066 /*   Nothing.                                                               */
11067 /****************************************************************************/
11068 static __attribute__ ((noinline)) void
11069 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11070 {
11071         u32 val;
11072         u32 fw_version[3];
11073 
11074         BCE_PRINTF(
11075             "----------------------------"
11076             "   RXP  State   "
11077             "----------------------------\n");
11078 
11079         for (int i = 0; i < 3; i++)
11080                 fw_version[i] = htonl(REG_RD_IND(sc,
11081                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11082 
11083         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11084 
11085         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11086         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11087             val, BCE_RXP_CPU_MODE);
11088 
11089         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11090         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11091             val, BCE_RXP_CPU_STATE);
11092 
11093         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11094         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11095             val, BCE_RXP_CPU_EVENT_MASK);
11096 
11097         if (regs) {
11098                 BCE_PRINTF(
11099                     "----------------------------"
11100                     " Register  Dump "
11101                     "----------------------------\n");
11102 
11103                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11104                         /* Skip the big blank sapces */
11105                         if (i < 0xc5400 && i > 0xdffff)
11106                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11107                                     "0x%08X 0x%08X\n", i,
11108                                     REG_RD_IND(sc, i),
11109                                     REG_RD_IND(sc, i + 0x4),
11110                                     REG_RD_IND(sc, i + 0x8),
11111                                     REG_RD_IND(sc, i + 0xC));
11112                 }
11113         }
11114 
11115         BCE_PRINTF(
11116             "----------------------------"
11117             "----------------"
11118             "----------------------------\n");
11119 }
11120 
11121 /****************************************************************************/
11122 /* Prints out the TPAT processor state.                                     */
11123 /*                                                                          */
11124 /* Returns:                                                                 */
11125 /*   Nothing.                                                               */
11126 /****************************************************************************/
11127 static __attribute__ ((noinline)) void
11128 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11129 {
11130         u32 val;
11131         u32 fw_version[3];
11132 
11133         BCE_PRINTF(
11134             "----------------------------"
11135             "   TPAT State   "
11136             "----------------------------\n");
11137 
11138         for (int i = 0; i < 3; i++)
11139                 fw_version[i] = htonl(REG_RD_IND(sc,
11140                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11141 
11142         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11143 
11144         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11145         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11146             val, BCE_TPAT_CPU_MODE);
11147 
11148         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11149         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11150             val, BCE_TPAT_CPU_STATE);
11151 
11152         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11153         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11154             val, BCE_TPAT_CPU_EVENT_MASK);
11155 
11156         if (regs) {
11157                 BCE_PRINTF(
11158                     "----------------------------"
11159                     " Register  Dump "
11160                     "----------------------------\n");
11161 
11162                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11163                         /* Skip the big blank spaces */
11164                         if (i < 0x854000 && i > 0x9ffff)
11165                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11166                                     "0x%08X 0x%08X\n", i,
11167                                     REG_RD_IND(sc, i),
11168                                     REG_RD_IND(sc, i + 0x4),
11169                                     REG_RD_IND(sc, i + 0x8),
11170                                     REG_RD_IND(sc, i + 0xC));
11171                 }
11172         }
11173 
11174         BCE_PRINTF(
11175                 "----------------------------"
11176                 "----------------"
11177                 "----------------------------\n");
11178 }
11179 
11180 /****************************************************************************/
11181 /* Prints out the Command Procesor (CP) state.                              */
11182 /*                                                                          */
11183 /* Returns:                                                                 */
11184 /*   Nothing.                                                               */
11185 /****************************************************************************/
11186 static __attribute__ ((noinline)) void
11187 bce_dump_cp_state(struct bce_softc *sc, int regs)
11188 {
11189         u32 val;
11190         u32 fw_version[3];
11191 
11192         BCE_PRINTF(
11193             "----------------------------"
11194             "    CP State    "
11195             "----------------------------\n");
11196 
11197         for (int i = 0; i < 3; i++)
11198                 fw_version[i] = htonl(REG_RD_IND(sc,
11199                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
11200 
11201         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11202 
11203         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11204         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11205             val, BCE_CP_CPU_MODE);
11206 
11207         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11208         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11209             val, BCE_CP_CPU_STATE);
11210 
11211         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11212         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11213             BCE_CP_CPU_EVENT_MASK);
11214 
11215         if (regs) {
11216                 BCE_PRINTF(
11217                     "----------------------------"
11218                     " Register  Dump "
11219                     "----------------------------\n");
11220 
11221                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11222                         /* Skip the big blank spaces */
11223                         if (i < 0x185400 && i > 0x19ffff)
11224                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11225                                     "0x%08X 0x%08X\n", i,
11226                                     REG_RD_IND(sc, i),
11227                                     REG_RD_IND(sc, i + 0x4),
11228                                     REG_RD_IND(sc, i + 0x8),
11229                                     REG_RD_IND(sc, i + 0xC));
11230                 }
11231         }
11232 
11233         BCE_PRINTF(
11234             "----------------------------"
11235             "----------------"
11236             "----------------------------\n");
11237 }
11238 
11239 /****************************************************************************/
11240 /* Prints out the Completion Procesor (COM) state.                          */
11241 /*                                                                          */
11242 /* Returns:                                                                 */
11243 /*   Nothing.                                                               */
11244 /****************************************************************************/
11245 static __attribute__ ((noinline)) void
11246 bce_dump_com_state(struct bce_softc *sc, int regs)
11247 {
11248         u32 val;
11249         u32 fw_version[4];
11250 
11251         BCE_PRINTF(
11252             "----------------------------"
11253             "   COM State    "
11254             "----------------------------\n");
11255 
11256         for (int i = 0; i < 3; i++)
11257                 fw_version[i] = htonl(REG_RD_IND(sc,
11258                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
11259 
11260         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11261 
11262         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11263         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11264             val, BCE_COM_CPU_MODE);
11265 
11266         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11267         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11268             val, BCE_COM_CPU_STATE);
11269 
11270         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11271         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11272             BCE_COM_CPU_EVENT_MASK);
11273 
11274         if (regs) {
11275                 BCE_PRINTF(
11276                     "----------------------------"
11277                     " Register  Dump "
11278                     "----------------------------\n");
11279 
11280                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11281                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11282                             "0x%08X 0x%08X\n", i,
11283                             REG_RD_IND(sc, i),
11284                             REG_RD_IND(sc, i + 0x4),
11285                             REG_RD_IND(sc, i + 0x8),
11286                             REG_RD_IND(sc, i + 0xC));
11287                 }
11288         }
11289 
11290         BCE_PRINTF(
11291                 "----------------------------"
11292                 "----------------"
11293                 "----------------------------\n");
11294 }
11295 
11296 /****************************************************************************/
11297 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11298 /*                                                                          */
11299 /* Returns:                                                                 */
11300 /*   Nothing.                                                               */
11301 /****************************************************************************/
11302 static __attribute__ ((noinline)) void
11303 bce_dump_rv2p_state(struct bce_softc *sc)
11304 {
11305         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11306 
11307         BCE_PRINTF(
11308             "----------------------------"
11309             "   RV2P State   "
11310             "----------------------------\n");
11311 
11312         /* Stall the RV2P processors. */
11313         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11314         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11315         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11316 
11317         /* Read the firmware version. */
11318         val = 0x00000001;
11319         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11320         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11321         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11322             BCE_RV2P_INSTR_HIGH_HIGH;
11323         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11324             fw_ver_high, fw_ver_low);
11325 
11326         val = 0x00000001;
11327         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11328         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11329         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11330             BCE_RV2P_INSTR_HIGH_HIGH;
11331         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11332             fw_ver_high, fw_ver_low);
11333 
11334         /* Resume the RV2P processors. */
11335         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11336         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11337         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11338 
11339         /* Fetch the program counter value. */
11340         val = 0x68007800;
11341         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11342         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11343         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11344         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11345         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11346         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11347 
11348         /* Fetch the program counter value again to see if it is advancing. */
11349         val = 0x68007800;
11350         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11351         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11352         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11353         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11354         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11355         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11356 
11357         BCE_PRINTF(
11358             "----------------------------"
11359             "----------------"
11360             "----------------------------\n");
11361 }
11362 
11363 /****************************************************************************/
11364 /* Prints out the driver state and then enters the debugger.                */
11365 /*                                                                          */
11366 /* Returns:                                                                 */
11367 /*   Nothing.                                                               */
11368 /****************************************************************************/
11369 static __attribute__ ((noinline)) void
11370 bce_breakpoint(struct bce_softc *sc)
11371 {
11372 
11373         /*
11374          * Unreachable code to silence compiler warnings
11375          * about unused functions.
11376          */
11377         if (0) {
11378                 bce_freeze_controller(sc);
11379                 bce_unfreeze_controller(sc);
11380                 bce_dump_enet(sc, NULL);
11381                 bce_dump_txbd(sc, 0, NULL);
11382                 bce_dump_rxbd(sc, 0, NULL);
11383                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11384                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11385                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11386                 bce_dump_l2fhdr(sc, 0, NULL);
11387                 bce_dump_ctx(sc, RX_CID);
11388                 bce_dump_ftqs(sc);
11389                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11390                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11391                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11392                 bce_dump_status_block(sc);
11393                 bce_dump_stats_block(sc);
11394                 bce_dump_driver_state(sc);
11395                 bce_dump_hw_state(sc);
11396                 bce_dump_bc_state(sc);
11397                 bce_dump_txp_state(sc, 0);
11398                 bce_dump_rxp_state(sc, 0);
11399                 bce_dump_tpat_state(sc, 0);
11400                 bce_dump_cp_state(sc, 0);
11401                 bce_dump_com_state(sc, 0);
11402                 bce_dump_rv2p_state(sc);
11403                 bce_dump_pgbd(sc, 0, NULL);
11404         }
11405 
11406         bce_dump_status_block(sc);
11407         bce_dump_driver_state(sc);
11408 
11409         /* Call the debugger. */
11410         breakpoint();
11411 }
11412 #endif

Cache object: e0088769e9d9c23f5df00cd76f42b4be


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.