FreeBSD/Linux Kernel Cross Reference
sys/dev/bce/if_bce.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2006-2014 QLogic Corporation
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 /*
33 * The following controllers are supported by this driver:
34 * BCM5706C A2, A3
35 * BCM5706S A2, A3
36 * BCM5708C B1, B2
37 * BCM5708S B1, B2
38 * BCM5709C A1, C0
39 * BCM5709S A1, C0
40 * BCM5716C C0
41 * BCM5716S C0
42 *
43 * The following controllers are not supported by this driver:
44 * BCM5706C A0, A1 (pre-production)
45 * BCM5706S A0, A1 (pre-production)
46 * BCM5708C A0, B0 (pre-production)
47 * BCM5708S A0, B0 (pre-production)
48 * BCM5709C A0 B0, B1, B2 (pre-production)
49 * BCM5709S A0, B0, B1, B2 (pre-production)
50 */
51
52 #include "opt_bce.h"
53
54 #include <sys/param.h>
55 #include <sys/endian.h>
56 #include <sys/systm.h>
57 #include <sys/sockio.h>
58 #include <sys/lock.h>
59 #include <sys/mbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/kernel.h>
63 #include <sys/module.h>
64 #include <sys/socket.h>
65 #include <sys/sysctl.h>
66 #include <sys/queue.h>
67
68 #include <net/bpf.h>
69 #include <net/ethernet.h>
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_arp.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75
76 #include <net/if_types.h>
77 #include <net/if_vlan_var.h>
78
79 #include <netinet/in_systm.h>
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip6.h>
84 #include <netinet/tcp.h>
85 #include <netinet/udp.h>
86
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <sys/bus.h>
90 #include <sys/rman.h>
91
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include "miidevs.h"
95 #include <dev/mii/brgphyreg.h>
96
97 #include <dev/pci/pcireg.h>
98 #include <dev/pci/pcivar.h>
99
100 #include "miibus_if.h"
101
102 #include <dev/bce/if_bcereg.h>
103 #include <dev/bce/if_bcefw.h>
104
105 /****************************************************************************/
106 /* BCE Debug Options */
107 /****************************************************************************/
108 #ifdef BCE_DEBUG
109 u32 bce_debug = BCE_WARN;
110
111 /* 0 = Never */
112 /* 1 = 1 in 2,147,483,648 */
113 /* 256 = 1 in 8,388,608 */
114 /* 2048 = 1 in 1,048,576 */
115 /* 65536 = 1 in 32,768 */
116 /* 1048576 = 1 in 2,048 */
117 /* 268435456 = 1 in 8 */
118 /* 536870912 = 1 in 4 */
119 /* 1073741824 = 1 in 2 */
120
121 /* Controls how often the l2_fhdr frame error check will fail. */
122 int l2fhdr_error_sim_control = 0;
123
124 /* Controls how often the unexpected attention check will fail. */
125 int unexpected_attention_sim_control = 0;
126
127 /* Controls how often to simulate an mbuf allocation failure. */
128 int mbuf_alloc_failed_sim_control = 0;
129
130 /* Controls how often to simulate a DMA mapping failure. */
131 int dma_map_addr_failed_sim_control = 0;
132
133 /* Controls how often to simulate a bootcode failure. */
134 int bootcode_running_failure_sim_control = 0;
135 #endif
136
137 /****************************************************************************/
138 /* PCI Device ID Table */
139 /* */
140 /* Used by bce_probe() to identify the devices supported by this driver. */
141 /****************************************************************************/
142 #define BCE_DEVDESC_MAX 64
143
144 static const struct bce_type bce_devs[] = {
145 /* BCM5706C Controllers and OEM boards. */
146 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101,
147 "HP NC370T Multifunction Gigabit Server Adapter" },
148 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106,
149 "HP NC370i Multifunction Gigabit Server Adapter" },
150 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3070,
151 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
152 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x1709,
153 "HP NC371i Multifunction Gigabit Server Adapter" },
154 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID,
155 "QLogic NetXtreme II BCM5706 1000Base-T" },
156
157 /* BCM5706S controllers and OEM boards. */
158 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
159 "HP NC370F Multifunction Gigabit Server Adapter" },
160 { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID,
161 "QLogic NetXtreme II BCM5706 1000Base-SX" },
162
163 /* BCM5708C controllers and OEM boards. */
164 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7037,
165 "HP NC373T PCIe Multifunction Gig Server Adapter" },
166 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7038,
167 "HP NC373i Multifunction Gigabit Server Adapter" },
168 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, HP_VENDORID, 0x7045,
169 "HP NC374m PCIe Multifunction Adapter" },
170 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
171 "QLogic NetXtreme II BCM5708 1000Base-T" },
172
173 /* BCM5708S controllers and OEM boards. */
174 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x1706,
175 "HP NC373m Multifunction Gigabit Server Adapter" },
176 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703b,
177 "HP NC373i Multifunction Gigabit Server Adapter" },
178 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, HP_VENDORID, 0x703d,
179 "HP NC373F PCIe Multifunc Giga Server Adapter" },
180 { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S, PCI_ANY_ID, PCI_ANY_ID,
181 "QLogic NetXtreme II BCM5708 1000Base-SX" },
182
183 /* BCM5709C controllers and OEM boards. */
184 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7055,
185 "HP NC382i DP Multifunction Gigabit Server Adapter" },
186 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, HP_VENDORID, 0x7059,
187 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
188 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709, PCI_ANY_ID, PCI_ANY_ID,
189 "QLogic NetXtreme II BCM5709 1000Base-T" },
190
191 /* BCM5709S controllers and OEM boards. */
192 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x171d,
193 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
194 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, HP_VENDORID, 0x7056,
195 "HP NC382i DP Multifunction Gigabit Server Adapter" },
196 { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S, PCI_ANY_ID, PCI_ANY_ID,
197 "QLogic NetXtreme II BCM5709 1000Base-SX" },
198
199 /* BCM5716 controllers and OEM boards. */
200 { BRCM_VENDORID, BRCM_DEVICEID_BCM5716, PCI_ANY_ID, PCI_ANY_ID,
201 "QLogic NetXtreme II BCM5716 1000Base-T" },
202 { 0, 0, 0, 0, NULL }
203 };
204
205 /****************************************************************************/
206 /* Supported Flash NVRAM device data. */
207 /****************************************************************************/
208 static const struct flash_spec flash_table[] =
209 {
210 #define BUFFERED_FLAGS (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
211 #define NONBUFFERED_FLAGS (BCE_NV_WREN)
212
213 /* Slow EEPROM */
214 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
215 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
216 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
217 "EEPROM - slow"},
218 /* Expansion entry 0001 */
219 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
221 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
222 "Entry 0001"},
223 /* Saifun SA25F010 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
228 "Non-buffered flash (128kB)"},
229 /* Saifun SA25F020 (non-buffered flash) */
230 /* strap, cfg1, & write1 need updates */
231 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
232 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
233 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
234 "Non-buffered flash (256kB)"},
235 /* Expansion entry 0100 */
236 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 0100"},
240 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
241 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
243 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
244 "Entry 0101: ST M45PE10 (128kB non-buffered)"},
245 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
246 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
247 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
248 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
249 "Entry 0110: ST M45PE20 (256kB non-buffered)"},
250 /* Saifun SA25F005 (non-buffered flash) */
251 /* strap, cfg1, & write1 need updates */
252 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
255 "Non-buffered flash (64kB)"},
256 /* Fast EEPROM */
257 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
258 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
259 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
260 "EEPROM - fast"},
261 /* Expansion entry 1001 */
262 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
263 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
264 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1001"},
266 /* Expansion entry 1010 */
267 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
268 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
269 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
270 "Entry 1010"},
271 /* ATMEL AT45DB011B (buffered flash) */
272 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
273 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
274 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
275 "Buffered flash (128kB)"},
276 /* Expansion entry 1100 */
277 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
278 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
279 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
280 "Entry 1100"},
281 /* Expansion entry 1101 */
282 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
283 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
284 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
285 "Entry 1101"},
286 /* Ateml Expansion entry 1110 */
287 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
288 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
289 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
290 "Entry 1110 (Atmel)"},
291 /* ATMEL AT45DB021B (buffered flash) */
292 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
293 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
294 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
295 "Buffered flash (256kB)"},
296 };
297
298 /*
299 * The BCM5709 controllers transparently handle the
300 * differences between Atmel 264 byte pages and all
301 * flash devices which use 256 byte pages, so no
302 * logical-to-physical mapping is required in the
303 * driver.
304 */
305 static const struct flash_spec flash_5709 = {
306 .flags = BCE_NV_BUFFERED,
307 .page_bits = BCM5709_FLASH_PAGE_BITS,
308 .page_size = BCM5709_FLASH_PAGE_SIZE,
309 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
310 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
311 .name = "5709/5716 buffered flash (256kB)",
312 };
313
314 /****************************************************************************/
315 /* FreeBSD device entry points. */
316 /****************************************************************************/
317 static int bce_probe (device_t);
318 static int bce_attach (device_t);
319 static int bce_detach (device_t);
320 static int bce_shutdown (device_t);
321
322 /****************************************************************************/
323 /* BCE Debug Data Structure Dump Routines */
324 /****************************************************************************/
325 #ifdef BCE_DEBUG
326 static u32 bce_reg_rd (struct bce_softc *, u32);
327 static void bce_reg_wr (struct bce_softc *, u32, u32);
328 static void bce_reg_wr16 (struct bce_softc *, u32, u16);
329 static u32 bce_ctx_rd (struct bce_softc *, u32, u32);
330 static void bce_dump_enet (struct bce_softc *, struct mbuf *);
331 static void bce_dump_mbuf (struct bce_softc *, struct mbuf *);
332 static void bce_dump_tx_mbuf_chain (struct bce_softc *, u16, int);
333 static void bce_dump_rx_mbuf_chain (struct bce_softc *, u16, int);
334 static void bce_dump_pg_mbuf_chain (struct bce_softc *, u16, int);
335 static void bce_dump_txbd (struct bce_softc *,
336 int, struct tx_bd *);
337 static void bce_dump_rxbd (struct bce_softc *,
338 int, struct rx_bd *);
339 static void bce_dump_pgbd (struct bce_softc *,
340 int, struct rx_bd *);
341 static void bce_dump_l2fhdr (struct bce_softc *,
342 int, struct l2_fhdr *);
343 static void bce_dump_ctx (struct bce_softc *, u16);
344 static void bce_dump_ftqs (struct bce_softc *);
345 static void bce_dump_tx_chain (struct bce_softc *, u16, int);
346 static void bce_dump_rx_bd_chain (struct bce_softc *, u16, int);
347 static void bce_dump_pg_chain (struct bce_softc *, u16, int);
348 static void bce_dump_status_block (struct bce_softc *);
349 static void bce_dump_stats_block (struct bce_softc *);
350 static void bce_dump_driver_state (struct bce_softc *);
351 static void bce_dump_hw_state (struct bce_softc *);
352 static void bce_dump_shmem_state (struct bce_softc *);
353 static void bce_dump_mq_regs (struct bce_softc *);
354 static void bce_dump_bc_state (struct bce_softc *);
355 static void bce_dump_txp_state (struct bce_softc *, int);
356 static void bce_dump_rxp_state (struct bce_softc *, int);
357 static void bce_dump_tpat_state (struct bce_softc *, int);
358 static void bce_dump_cp_state (struct bce_softc *, int);
359 static void bce_dump_com_state (struct bce_softc *, int);
360 static void bce_dump_rv2p_state (struct bce_softc *);
361 static void bce_breakpoint (struct bce_softc *);
362 #endif /*BCE_DEBUG */
363
364 /****************************************************************************/
365 /* BCE Register/Memory Access Routines */
366 /****************************************************************************/
367 static u32 bce_reg_rd_ind (struct bce_softc *, u32);
368 static void bce_reg_wr_ind (struct bce_softc *, u32, u32);
369 static void bce_shmem_wr (struct bce_softc *, u32, u32);
370 static u32 bce_shmem_rd (struct bce_softc *, u32);
371 static void bce_ctx_wr (struct bce_softc *, u32, u32, u32);
372 static int bce_miibus_read_reg (device_t, int, int);
373 static int bce_miibus_write_reg (device_t, int, int, int);
374 static void bce_miibus_statchg (device_t);
375
376 #ifdef BCE_DEBUG
377 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
378 #ifdef BCE_NVRAM_WRITE_SUPPORT
379 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
380 #endif
381 #endif
382
383 /****************************************************************************/
384 /* BCE NVRAM Access Routines */
385 /****************************************************************************/
386 static int bce_acquire_nvram_lock (struct bce_softc *);
387 static int bce_release_nvram_lock (struct bce_softc *);
388 static void bce_enable_nvram_access(struct bce_softc *);
389 static void bce_disable_nvram_access(struct bce_softc *);
390 static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32);
391 static int bce_init_nvram (struct bce_softc *);
392 static int bce_nvram_read (struct bce_softc *, u32, u8 *, int);
393 static int bce_nvram_test (struct bce_softc *);
394 #ifdef BCE_NVRAM_WRITE_SUPPORT
395 static int bce_enable_nvram_write (struct bce_softc *);
396 static void bce_disable_nvram_write(struct bce_softc *);
397 static int bce_nvram_erase_page (struct bce_softc *, u32);
398 static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32);
399 static int bce_nvram_write (struct bce_softc *, u32, u8 *, int);
400 #endif
401
402 /****************************************************************************/
403 /* */
404 /****************************************************************************/
405 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
406 static void bce_get_media (struct bce_softc *);
407 static void bce_init_media (struct bce_softc *);
408 static u32 bce_get_rphy_link (struct bce_softc *);
409 static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int);
410 static int bce_dma_alloc (device_t);
411 static void bce_dma_free (struct bce_softc *);
412 static void bce_release_resources (struct bce_softc *);
413
414 /****************************************************************************/
415 /* BCE Firmware Synchronization and Load */
416 /****************************************************************************/
417 static void bce_fw_cap_init (struct bce_softc *);
418 static int bce_fw_sync (struct bce_softc *, u32);
419 static void bce_load_rv2p_fw (struct bce_softc *, const u32 *, u32,
420 u32);
421 static void bce_load_cpu_fw (struct bce_softc *,
422 struct cpu_reg *, struct fw_info *);
423 static void bce_start_cpu (struct bce_softc *, struct cpu_reg *);
424 static void bce_halt_cpu (struct bce_softc *, struct cpu_reg *);
425 static void bce_start_rxp_cpu (struct bce_softc *);
426 static void bce_init_rxp_cpu (struct bce_softc *);
427 static void bce_init_txp_cpu (struct bce_softc *);
428 static void bce_init_tpat_cpu (struct bce_softc *);
429 static void bce_init_cp_cpu (struct bce_softc *);
430 static void bce_init_com_cpu (struct bce_softc *);
431 static void bce_init_cpus (struct bce_softc *);
432
433 static void bce_print_adapter_info (struct bce_softc *);
434 static void bce_probe_pci_caps (device_t, struct bce_softc *);
435 static void bce_stop (struct bce_softc *);
436 static int bce_reset (struct bce_softc *, u32);
437 static int bce_chipinit (struct bce_softc *);
438 static int bce_blockinit (struct bce_softc *);
439
440 static int bce_init_tx_chain (struct bce_softc *);
441 static void bce_free_tx_chain (struct bce_softc *);
442
443 static int bce_get_rx_buf (struct bce_softc *, u16, u16, u32 *);
444 static int bce_init_rx_chain (struct bce_softc *);
445 static void bce_fill_rx_chain (struct bce_softc *);
446 static void bce_free_rx_chain (struct bce_softc *);
447
448 static int bce_get_pg_buf (struct bce_softc *, u16, u16);
449 static int bce_init_pg_chain (struct bce_softc *);
450 static void bce_fill_pg_chain (struct bce_softc *);
451 static void bce_free_pg_chain (struct bce_softc *);
452
453 static struct mbuf *bce_tso_setup (struct bce_softc *,
454 struct mbuf **, u16 *);
455 static int bce_tx_encap (struct bce_softc *, struct mbuf **);
456 static void bce_start_locked (struct ifnet *);
457 static void bce_start (struct ifnet *);
458 static int bce_ioctl (struct ifnet *, u_long, caddr_t);
459 static uint64_t bce_get_counter (struct ifnet *, ift_counter);
460 static void bce_watchdog (struct bce_softc *);
461 static int bce_ifmedia_upd (struct ifnet *);
462 static int bce_ifmedia_upd_locked (struct ifnet *);
463 static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *);
464 static void bce_ifmedia_sts_rphy (struct bce_softc *, struct ifmediareq *);
465 static void bce_init_locked (struct bce_softc *);
466 static void bce_init (void *);
467 static void bce_mgmt_init_locked (struct bce_softc *sc);
468
469 static int bce_init_ctx (struct bce_softc *);
470 static void bce_get_mac_addr (struct bce_softc *);
471 static void bce_set_mac_addr (struct bce_softc *);
472 static void bce_phy_intr (struct bce_softc *);
473 static inline u16 bce_get_hw_rx_cons (struct bce_softc *);
474 static void bce_rx_intr (struct bce_softc *);
475 static void bce_tx_intr (struct bce_softc *);
476 static void bce_disable_intr (struct bce_softc *);
477 static void bce_enable_intr (struct bce_softc *, int);
478
479 static void bce_intr (void *);
480 static void bce_set_rx_mode (struct bce_softc *);
481 static void bce_stats_update (struct bce_softc *);
482 static void bce_tick (void *);
483 static void bce_pulse (void *);
484 static void bce_add_sysctls (struct bce_softc *);
485
486 /****************************************************************************/
487 /* FreeBSD device dispatch table. */
488 /****************************************************************************/
489 static device_method_t bce_methods[] = {
490 /* Device interface (device_if.h) */
491 DEVMETHOD(device_probe, bce_probe),
492 DEVMETHOD(device_attach, bce_attach),
493 DEVMETHOD(device_detach, bce_detach),
494 DEVMETHOD(device_shutdown, bce_shutdown),
495 /* Supported by device interface but not used here. */
496 /* DEVMETHOD(device_identify, bce_identify), */
497 /* DEVMETHOD(device_suspend, bce_suspend), */
498 /* DEVMETHOD(device_resume, bce_resume), */
499 /* DEVMETHOD(device_quiesce, bce_quiesce), */
500
501 /* MII interface (miibus_if.h) */
502 DEVMETHOD(miibus_readreg, bce_miibus_read_reg),
503 DEVMETHOD(miibus_writereg, bce_miibus_write_reg),
504 DEVMETHOD(miibus_statchg, bce_miibus_statchg),
505 /* Supported by MII interface but not used here. */
506 /* DEVMETHOD(miibus_linkchg, bce_miibus_linkchg), */
507 /* DEVMETHOD(miibus_mediainit, bce_miibus_mediainit), */
508
509 DEVMETHOD_END
510 };
511
512 static driver_t bce_driver = {
513 "bce",
514 bce_methods,
515 sizeof(struct bce_softc)
516 };
517
518 MODULE_DEPEND(bce, pci, 1, 1, 1);
519 MODULE_DEPEND(bce, ether, 1, 1, 1);
520 MODULE_DEPEND(bce, miibus, 1, 1, 1);
521
522 DRIVER_MODULE(bce, pci, bce_driver, NULL, NULL);
523 DRIVER_MODULE(miibus, bce, miibus_driver, NULL, NULL);
524 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce,
525 bce_devs, nitems(bce_devs) - 1);
526
527 /****************************************************************************/
528 /* Tunable device values */
529 /****************************************************************************/
530 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
531 "bce driver parameters");
532
533 /* Allowable values are TRUE or FALSE */
534 static int bce_verbose = TRUE;
535 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
536 "Verbose output enable/disable");
537
538 /* Allowable values are TRUE or FALSE */
539 static int bce_tso_enable = TRUE;
540 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
541 "TSO Enable/Disable");
542
543 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
544 /* ToDo: Add MSI-X support. */
545 static int bce_msi_enable = 1;
546 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
547 "MSI-X|MSI|INTx selector");
548
549 /* Allowable values are 1, 2, 4, 8. */
550 static int bce_rx_pages = DEFAULT_RX_PAGES;
551 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
552 "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
553
554 /* Allowable values are 1, 2, 4, 8. */
555 static int bce_tx_pages = DEFAULT_TX_PAGES;
556 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
557 "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
558
559 /* Allowable values are TRUE or FALSE. */
560 static int bce_hdr_split = TRUE;
561 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
562 "Frame header/payload splitting Enable/Disable");
563
564 /* Allowable values are TRUE or FALSE. */
565 static int bce_strict_rx_mtu = FALSE;
566 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
567 &bce_strict_rx_mtu, 0,
568 "Enable/Disable strict RX frame size checking");
569
570 /* Allowable values are 0 ... 100 */
571 #ifdef BCE_DEBUG
572 /* Generate 1 interrupt for every transmit completion. */
573 static int bce_tx_quick_cons_trip_int = 1;
574 #else
575 /* Generate 1 interrupt for every 20 transmit completions. */
576 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
577 #endif
578 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
579 &bce_tx_quick_cons_trip_int, 0,
580 "Transmit BD trip point during interrupts");
581
582 /* Allowable values are 0 ... 100 */
583 /* Generate 1 interrupt for every transmit completion. */
584 #ifdef BCE_DEBUG
585 static int bce_tx_quick_cons_trip = 1;
586 #else
587 /* Generate 1 interrupt for every 20 transmit completions. */
588 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
589 #endif
590 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
591 &bce_tx_quick_cons_trip, 0,
592 "Transmit BD trip point");
593
594 /* Allowable values are 0 ... 100 */
595 #ifdef BCE_DEBUG
596 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
597 static int bce_tx_ticks_int = 0;
598 #else
599 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
600 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
601 #endif
602 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
603 &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
604
605 /* Allowable values are 0 ... 100 */
606 #ifdef BCE_DEBUG
607 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
608 static int bce_tx_ticks = 0;
609 #else
610 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
611 static int bce_tx_ticks = DEFAULT_TX_TICKS;
612 #endif
613 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
614 &bce_tx_ticks, 0, "Transmit ticks count");
615
616 /* Allowable values are 1 ... 100 */
617 #ifdef BCE_DEBUG
618 /* Generate 1 interrupt for every received frame. */
619 static int bce_rx_quick_cons_trip_int = 1;
620 #else
621 /* Generate 1 interrupt for every 6 received frames. */
622 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
623 #endif
624 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
625 &bce_rx_quick_cons_trip_int, 0,
626 "Receive BD trip point during interrupts");
627
628 /* Allowable values are 1 ... 100 */
629 #ifdef BCE_DEBUG
630 /* Generate 1 interrupt for every received frame. */
631 static int bce_rx_quick_cons_trip = 1;
632 #else
633 /* Generate 1 interrupt for every 6 received frames. */
634 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
635 #endif
636 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
637 &bce_rx_quick_cons_trip, 0,
638 "Receive BD trip point");
639
640 /* Allowable values are 0 ... 100 */
641 #ifdef BCE_DEBUG
642 /* Generate an int. if 0us have elapsed since the last received frame. */
643 static int bce_rx_ticks_int = 0;
644 #else
645 /* Generate an int. if 18us have elapsed since the last received frame. */
646 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
647 #endif
648 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
649 &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
650
651 /* Allowable values are 0 ... 100 */
652 #ifdef BCE_DEBUG
653 /* Generate an int. if 0us have elapsed since the last received frame. */
654 static int bce_rx_ticks = 0;
655 #else
656 /* Generate an int. if 18us have elapsed since the last received frame. */
657 static int bce_rx_ticks = DEFAULT_RX_TICKS;
658 #endif
659 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
660 &bce_rx_ticks, 0, "Receive ticks count");
661
662 /****************************************************************************/
663 /* Device probe function. */
664 /* */
665 /* Compares the device to the driver's list of supported devices and */
666 /* reports back to the OS whether this is the right driver for the device. */
667 /* */
668 /* Returns: */
669 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
670 /****************************************************************************/
671 static int
672 bce_probe(device_t dev)
673 {
674 const struct bce_type *t;
675 struct bce_softc *sc;
676 char *descbuf;
677 u16 vid = 0, did = 0, svid = 0, sdid = 0;
678
679 t = bce_devs;
680
681 sc = device_get_softc(dev);
682 sc->bce_unit = device_get_unit(dev);
683 sc->bce_dev = dev;
684
685 /* Get the data for the device to be probed. */
686 vid = pci_get_vendor(dev);
687 did = pci_get_device(dev);
688 svid = pci_get_subvendor(dev);
689 sdid = pci_get_subdevice(dev);
690
691 DBPRINT(sc, BCE_EXTREME_LOAD,
692 "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
693 "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
694
695 /* Look through the list of known devices for a match. */
696 while(t->bce_name != NULL) {
697 if ((vid == t->bce_vid) && (did == t->bce_did) &&
698 ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
699 ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
700 descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
701
702 if (descbuf == NULL)
703 return(ENOMEM);
704
705 /* Print out the device identity. */
706 snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
707 t->bce_name, (((pci_read_config(dev,
708 PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
709 (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
710
711 device_set_desc_copy(dev, descbuf);
712 free(descbuf, M_TEMP);
713 return(BUS_PROBE_DEFAULT);
714 }
715 t++;
716 }
717
718 return(ENXIO);
719 }
720
721 /****************************************************************************/
722 /* PCI Capabilities Probe Function. */
723 /* */
724 /* Walks the PCI capabiites list for the device to find what features are */
725 /* supported. */
726 /* */
727 /* Returns: */
728 /* None. */
729 /****************************************************************************/
730 static void
731 bce_print_adapter_info(struct bce_softc *sc)
732 {
733 int i = 0;
734
735 DBENTER(BCE_VERBOSE_LOAD);
736
737 if (bce_verbose || bootverbose) {
738 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
739 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
740 12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
741
742 /* Bus info. */
743 if (sc->bce_flags & BCE_PCIE_FLAG) {
744 printf("Bus (PCIe x%d, ", sc->link_width);
745 switch (sc->link_speed) {
746 case 1: printf("2.5Gbps); "); break;
747 case 2: printf("5Gbps); "); break;
748 default: printf("Unknown link speed); ");
749 }
750 } else {
751 printf("Bus (PCI%s, %s, %dMHz); ",
752 ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
753 ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
754 "32-bit" : "64-bit"), sc->bus_speed_mhz);
755 }
756
757 /* Firmware version and device features. */
758 printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
759 sc->bce_bc_ver, sc->rx_pages, sc->tx_pages,
760 (bce_hdr_split == TRUE ? sc->pg_pages: 0));
761
762 if (bce_hdr_split == TRUE) {
763 printf("SPLT");
764 i++;
765 }
766
767 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
768 if (i > 0) printf("|");
769 printf("MSI"); i++;
770 }
771
772 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
773 if (i > 0) printf("|");
774 printf("MSI-X"); i++;
775 }
776
777 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
778 if (i > 0) printf("|");
779 printf("2.5G"); i++;
780 }
781
782 if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
783 if (i > 0) printf("|");
784 printf("Remote PHY(%s)",
785 sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
786 "FIBER" : "TP"); i++;
787 }
788
789 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
790 if (i > 0) printf("|");
791 printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
792 } else {
793 printf(")\n");
794 }
795
796 printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
797 sc->bce_rx_quick_cons_trip_int,
798 sc->bce_rx_quick_cons_trip,
799 sc->bce_rx_ticks_int,
800 sc->bce_rx_ticks,
801 sc->bce_tx_quick_cons_trip_int,
802 sc->bce_tx_quick_cons_trip,
803 sc->bce_tx_ticks_int,
804 sc->bce_tx_ticks);
805 }
806
807 DBEXIT(BCE_VERBOSE_LOAD);
808 }
809
810 /****************************************************************************/
811 /* PCI Capabilities Probe Function. */
812 /* */
813 /* Walks the PCI capabiites list for the device to find what features are */
814 /* supported. */
815 /* */
816 /* Returns: */
817 /* None. */
818 /****************************************************************************/
819 static void
820 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
821 {
822 u32 reg;
823
824 DBENTER(BCE_VERBOSE_LOAD);
825
826 /* Check if PCI-X capability is enabled. */
827 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) {
828 if (reg != 0)
829 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
830 }
831
832 /* Check if PCIe capability is enabled. */
833 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) {
834 if (reg != 0) {
835 u16 link_status = pci_read_config(dev, reg + 0x12, 2);
836 DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
837 "0x%08X\n", link_status);
838 sc->link_speed = link_status & 0xf;
839 sc->link_width = (link_status >> 4) & 0x3f;
840 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
841 sc->bce_flags |= BCE_PCIE_FLAG;
842 }
843 }
844
845 /* Check if MSI capability is enabled. */
846 if (pci_find_cap(dev, PCIY_MSI, ®) == 0) {
847 if (reg != 0)
848 sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
849 }
850
851 /* Check if MSI-X capability is enabled. */
852 if (pci_find_cap(dev, PCIY_MSIX, ®) == 0) {
853 if (reg != 0)
854 sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
855 }
856
857 DBEXIT(BCE_VERBOSE_LOAD);
858 }
859
860 /****************************************************************************/
861 /* Load and validate user tunable settings. */
862 /* */
863 /* Returns: */
864 /* Nothing. */
865 /****************************************************************************/
866 static void
867 bce_set_tunables(struct bce_softc *sc)
868 {
869 /* Set sysctl values for RX page count. */
870 switch (bce_rx_pages) {
871 case 1:
872 /* fall-through */
873 case 2:
874 /* fall-through */
875 case 4:
876 /* fall-through */
877 case 8:
878 sc->rx_pages = bce_rx_pages;
879 break;
880 default:
881 sc->rx_pages = DEFAULT_RX_PAGES;
882 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
883 "hw.bce.rx_pages! Setting default of %d.\n",
884 __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
885 }
886
887 /* ToDo: Consider allowing user setting for pg_pages. */
888 sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
889
890 /* Set sysctl values for TX page count. */
891 switch (bce_tx_pages) {
892 case 1:
893 /* fall-through */
894 case 2:
895 /* fall-through */
896 case 4:
897 /* fall-through */
898 case 8:
899 sc->tx_pages = bce_tx_pages;
900 break;
901 default:
902 sc->tx_pages = DEFAULT_TX_PAGES;
903 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
904 "hw.bce.tx_pages! Setting default of %d.\n",
905 __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
906 }
907
908 /*
909 * Validate the TX trip point (i.e. the number of
910 * TX completions before a status block update is
911 * generated and an interrupt is asserted.
912 */
913 if (bce_tx_quick_cons_trip_int <= 100) {
914 sc->bce_tx_quick_cons_trip_int =
915 bce_tx_quick_cons_trip_int;
916 } else {
917 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
918 "hw.bce.tx_quick_cons_trip_int! Setting default of %d.\n",
919 __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
920 DEFAULT_TX_QUICK_CONS_TRIP_INT);
921 sc->bce_tx_quick_cons_trip_int =
922 DEFAULT_TX_QUICK_CONS_TRIP_INT;
923 }
924
925 if (bce_tx_quick_cons_trip <= 100) {
926 sc->bce_tx_quick_cons_trip =
927 bce_tx_quick_cons_trip;
928 } else {
929 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
930 "hw.bce.tx_quick_cons_trip! Setting default of %d.\n",
931 __FILE__, __LINE__, bce_tx_quick_cons_trip,
932 DEFAULT_TX_QUICK_CONS_TRIP);
933 sc->bce_tx_quick_cons_trip =
934 DEFAULT_TX_QUICK_CONS_TRIP;
935 }
936
937 /*
938 * Validate the TX ticks count (i.e. the maximum amount
939 * of time to wait after the last TX completion has
940 * occurred before a status block update is generated
941 * and an interrupt is asserted.
942 */
943 if (bce_tx_ticks_int <= 100) {
944 sc->bce_tx_ticks_int =
945 bce_tx_ticks_int;
946 } else {
947 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
948 "hw.bce.tx_ticks_int! Setting default of %d.\n",
949 __FILE__, __LINE__, bce_tx_ticks_int,
950 DEFAULT_TX_TICKS_INT);
951 sc->bce_tx_ticks_int =
952 DEFAULT_TX_TICKS_INT;
953 }
954
955 if (bce_tx_ticks <= 100) {
956 sc->bce_tx_ticks =
957 bce_tx_ticks;
958 } else {
959 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
960 "hw.bce.tx_ticks! Setting default of %d.\n",
961 __FILE__, __LINE__, bce_tx_ticks,
962 DEFAULT_TX_TICKS);
963 sc->bce_tx_ticks =
964 DEFAULT_TX_TICKS;
965 }
966
967 /*
968 * Validate the RX trip point (i.e. the number of
969 * RX frames received before a status block update is
970 * generated and an interrupt is asserted.
971 */
972 if (bce_rx_quick_cons_trip_int <= 100) {
973 sc->bce_rx_quick_cons_trip_int =
974 bce_rx_quick_cons_trip_int;
975 } else {
976 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
977 "hw.bce.rx_quick_cons_trip_int! Setting default of %d.\n",
978 __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
979 DEFAULT_RX_QUICK_CONS_TRIP_INT);
980 sc->bce_rx_quick_cons_trip_int =
981 DEFAULT_RX_QUICK_CONS_TRIP_INT;
982 }
983
984 if (bce_rx_quick_cons_trip <= 100) {
985 sc->bce_rx_quick_cons_trip =
986 bce_rx_quick_cons_trip;
987 } else {
988 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
989 "hw.bce.rx_quick_cons_trip! Setting default of %d.\n",
990 __FILE__, __LINE__, bce_rx_quick_cons_trip,
991 DEFAULT_RX_QUICK_CONS_TRIP);
992 sc->bce_rx_quick_cons_trip =
993 DEFAULT_RX_QUICK_CONS_TRIP;
994 }
995
996 /*
997 * Validate the RX ticks count (i.e. the maximum amount
998 * of time to wait after the last RX frame has been
999 * received before a status block update is generated
1000 * and an interrupt is asserted.
1001 */
1002 if (bce_rx_ticks_int <= 100) {
1003 sc->bce_rx_ticks_int = bce_rx_ticks_int;
1004 } else {
1005 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1006 "hw.bce.rx_ticks_int! Setting default of %d.\n",
1007 __FILE__, __LINE__, bce_rx_ticks_int,
1008 DEFAULT_RX_TICKS_INT);
1009 sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
1010 }
1011
1012 if (bce_rx_ticks <= 100) {
1013 sc->bce_rx_ticks = bce_rx_ticks;
1014 } else {
1015 BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1016 "hw.bce.rx_ticks! Setting default of %d.\n",
1017 __FILE__, __LINE__, bce_rx_ticks,
1018 DEFAULT_RX_TICKS);
1019 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1020 }
1021
1022 /* Disabling both RX ticks and RX trips will prevent interrupts. */
1023 if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1024 BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1025 "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1026 __FILE__, __LINE__);
1027 sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1028 sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1029 }
1030
1031 /* Disabling both TX ticks and TX trips will prevent interrupts. */
1032 if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1033 BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1034 "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1035 __FILE__, __LINE__);
1036 sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1037 sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1038 }
1039 }
1040
1041 /****************************************************************************/
1042 /* Device attach function. */
1043 /* */
1044 /* Allocates device resources, performs secondary chip identification, */
1045 /* resets and initializes the hardware, and initializes driver instance */
1046 /* variables. */
1047 /* */
1048 /* Returns: */
1049 /* 0 on success, positive value on failure. */
1050 /****************************************************************************/
1051 static int
1052 bce_attach(device_t dev)
1053 {
1054 struct bce_softc *sc;
1055 struct ifnet *ifp;
1056 u32 val;
1057 int count, error, rc = 0, rid;
1058
1059 sc = device_get_softc(dev);
1060 sc->bce_dev = dev;
1061
1062 DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1063
1064 sc->bce_unit = device_get_unit(dev);
1065
1066 /* Set initial device and PHY flags */
1067 sc->bce_flags = 0;
1068 sc->bce_phy_flags = 0;
1069
1070 bce_set_tunables(sc);
1071
1072 pci_enable_busmaster(dev);
1073
1074 /* Allocate PCI memory resources. */
1075 rid = PCIR_BAR(0);
1076 sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1077 &rid, RF_ACTIVE);
1078
1079 if (sc->bce_res_mem == NULL) {
1080 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1081 __FILE__, __LINE__);
1082 rc = ENXIO;
1083 goto bce_attach_fail;
1084 }
1085
1086 /* Get various resource handles. */
1087 sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
1088 sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1089 sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1090
1091 bce_probe_pci_caps(dev, sc);
1092
1093 rid = 1;
1094 count = 0;
1095 #if 0
1096 /* Try allocating MSI-X interrupts. */
1097 if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1098 (bce_msi_enable >= 2) &&
1099 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1100 &rid, RF_ACTIVE)) != NULL)) {
1101 msi_needed = count = 1;
1102
1103 if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1104 (count != msi_needed)) {
1105 BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1106 "Received = %d, error = %d\n", __FILE__, __LINE__,
1107 msi_needed, count, error);
1108 count = 0;
1109 pci_release_msi(dev);
1110 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1111 sc->bce_res_irq);
1112 sc->bce_res_irq = NULL;
1113 } else {
1114 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1115 __FUNCTION__);
1116 sc->bce_flags |= BCE_USING_MSIX_FLAG;
1117 }
1118 }
1119 #endif
1120
1121 /* Try allocating a MSI interrupt. */
1122 if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1123 (bce_msi_enable >= 1) && (count == 0)) {
1124 count = 1;
1125 if ((error = pci_alloc_msi(dev, &count)) != 0) {
1126 BCE_PRINTF("%s(%d): MSI allocation failed! "
1127 "error = %d\n", __FILE__, __LINE__, error);
1128 count = 0;
1129 pci_release_msi(dev);
1130 } else {
1131 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1132 "interrupt.\n", __FUNCTION__);
1133 sc->bce_flags |= BCE_USING_MSI_FLAG;
1134 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1135 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1136 rid = 1;
1137 }
1138 }
1139
1140 /* Try allocating a legacy interrupt. */
1141 if (count == 0) {
1142 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1143 __FUNCTION__);
1144 rid = 0;
1145 }
1146
1147 sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1148 &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1149
1150 /* Report any IRQ allocation errors. */
1151 if (sc->bce_res_irq == NULL) {
1152 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1153 __FILE__, __LINE__);
1154 rc = ENXIO;
1155 goto bce_attach_fail;
1156 }
1157
1158 /* Initialize mutex for the current device instance. */
1159 BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1160
1161 /*
1162 * Configure byte swap and enable indirect register access.
1163 * Rely on CPU to do target byte swapping on big endian systems.
1164 * Access to registers outside of PCI configurtion space are not
1165 * valid until this is done.
1166 */
1167 pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1168 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1169 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1170
1171 /* Save ASIC revsion info. */
1172 sc->bce_chipid = REG_RD(sc, BCE_MISC_ID);
1173
1174 /* Weed out any non-production controller revisions. */
1175 switch(BCE_CHIP_ID(sc)) {
1176 case BCE_CHIP_ID_5706_A0:
1177 case BCE_CHIP_ID_5706_A1:
1178 case BCE_CHIP_ID_5708_A0:
1179 case BCE_CHIP_ID_5708_B0:
1180 case BCE_CHIP_ID_5709_A0:
1181 case BCE_CHIP_ID_5709_B0:
1182 case BCE_CHIP_ID_5709_B1:
1183 case BCE_CHIP_ID_5709_B2:
1184 BCE_PRINTF("%s(%d): Unsupported controller "
1185 "revision (%c%d)!\n", __FILE__, __LINE__,
1186 (((pci_read_config(dev, PCIR_REVID, 4) &
1187 0xf0) >> 4) + 'A'), (pci_read_config(dev,
1188 PCIR_REVID, 4) & 0xf));
1189 rc = ENODEV;
1190 goto bce_attach_fail;
1191 }
1192
1193 /*
1194 * The embedded PCIe to PCI-X bridge (EPB)
1195 * in the 5708 cannot address memory above
1196 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1197 */
1198 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1199 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1200 else
1201 sc->max_bus_addr = BUS_SPACE_MAXADDR;
1202
1203 /*
1204 * Find the base address for shared memory access.
1205 * Newer versions of bootcode use a signature and offset
1206 * while older versions use a fixed address.
1207 */
1208 val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1209 if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1210 /* Multi-port devices use different offsets in shared memory. */
1211 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1212 (pci_get_function(sc->bce_dev) << 2));
1213 else
1214 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1215
1216 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1217 __FUNCTION__, sc->bce_shmem_base);
1218
1219 /* Fetch the bootcode revision. */
1220 val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1221 for (int i = 0, j = 0; i < 3; i++) {
1222 u8 num;
1223
1224 num = (u8) (val >> (24 - (i * 8)));
1225 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1226 if (num >= k || !skip0 || k == 1) {
1227 sc->bce_bc_ver[j++] = (num / k) + '';
1228 skip0 = 0;
1229 }
1230 }
1231
1232 if (i != 2)
1233 sc->bce_bc_ver[j++] = '.';
1234 }
1235
1236 /* Check if any management firwmare is enabled. */
1237 val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1238 if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1239 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1240
1241 /* Allow time for firmware to enter the running state. */
1242 for (int i = 0; i < 30; i++) {
1243 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1244 if (val & BCE_CONDITION_MFW_RUN_MASK)
1245 break;
1246 DELAY(10000);
1247 }
1248
1249 /* Check if management firmware is running. */
1250 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1251 val &= BCE_CONDITION_MFW_RUN_MASK;
1252 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1253 (val != BCE_CONDITION_MFW_RUN_NONE)) {
1254 u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1255 int i = 0;
1256
1257 /* Read the management firmware version string. */
1258 for (int j = 0; j < 3; j++) {
1259 val = bce_reg_rd_ind(sc, addr + j * 4);
1260 val = bswap32(val);
1261 memcpy(&sc->bce_mfw_ver[i], &val, 4);
1262 i += 4;
1263 }
1264 } else {
1265 /* May cause firmware synchronization timeouts. */
1266 BCE_PRINTF("%s(%d): Management firmware enabled "
1267 "but not running!\n", __FILE__, __LINE__);
1268 strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1269
1270 /* ToDo: Any action the driver should take? */
1271 }
1272 }
1273
1274 /* Get PCI bus information (speed and type). */
1275 val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1276 if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1277 u32 clkreg;
1278
1279 sc->bce_flags |= BCE_PCIX_FLAG;
1280
1281 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1282
1283 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1284 switch (clkreg) {
1285 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1286 sc->bus_speed_mhz = 133;
1287 break;
1288
1289 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1290 sc->bus_speed_mhz = 100;
1291 break;
1292
1293 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1294 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1295 sc->bus_speed_mhz = 66;
1296 break;
1297
1298 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1299 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1300 sc->bus_speed_mhz = 50;
1301 break;
1302
1303 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1304 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1305 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1306 sc->bus_speed_mhz = 33;
1307 break;
1308 }
1309 } else {
1310 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1311 sc->bus_speed_mhz = 66;
1312 else
1313 sc->bus_speed_mhz = 33;
1314 }
1315
1316 if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1317 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1318
1319 /* Find the media type for the adapter. */
1320 bce_get_media(sc);
1321
1322 /* Reset controller and announce to bootcode that driver is present. */
1323 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1324 BCE_PRINTF("%s(%d): Controller reset failed!\n",
1325 __FILE__, __LINE__);
1326 rc = ENXIO;
1327 goto bce_attach_fail;
1328 }
1329
1330 /* Initialize the controller. */
1331 if (bce_chipinit(sc)) {
1332 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1333 __FILE__, __LINE__);
1334 rc = ENXIO;
1335 goto bce_attach_fail;
1336 }
1337
1338 /* Perform NVRAM test. */
1339 if (bce_nvram_test(sc)) {
1340 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1341 __FILE__, __LINE__);
1342 rc = ENXIO;
1343 goto bce_attach_fail;
1344 }
1345
1346 /* Fetch the permanent Ethernet MAC address. */
1347 bce_get_mac_addr(sc);
1348
1349 /* Update statistics once every second. */
1350 sc->bce_stats_ticks = 1000000 & 0xffff00;
1351
1352 /* Store data needed by PHY driver for backplane applications */
1353 sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1354 sc->bce_port_hw_cfg = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1355
1356 /* Allocate DMA memory resources. */
1357 if (bce_dma_alloc(dev)) {
1358 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1359 __FILE__, __LINE__);
1360 rc = ENXIO;
1361 goto bce_attach_fail;
1362 }
1363
1364 /* Allocate an ifnet structure. */
1365 ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1366 if (ifp == NULL) {
1367 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
1368 __FILE__, __LINE__);
1369 rc = ENXIO;
1370 goto bce_attach_fail;
1371 }
1372
1373 /* Initialize the ifnet interface. */
1374 ifp->if_softc = sc;
1375 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1376 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1377 ifp->if_ioctl = bce_ioctl;
1378 ifp->if_start = bce_start;
1379 ifp->if_get_counter = bce_get_counter;
1380 ifp->if_init = bce_init;
1381 ifp->if_mtu = ETHERMTU;
1382
1383 if (bce_tso_enable) {
1384 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
1385 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1386 IFCAP_VLAN_HWTSO;
1387 } else {
1388 ifp->if_hwassist = BCE_IF_HWASSIST;
1389 ifp->if_capabilities = BCE_IF_CAPABILITIES;
1390 }
1391
1392 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1393 ifp->if_capabilities |= IFCAP_LINKSTATE;
1394
1395 ifp->if_capenable = ifp->if_capabilities;
1396
1397 /*
1398 * Assume standard mbuf sizes for buffer allocation.
1399 * This may change later if the MTU size is set to
1400 * something other than 1500.
1401 */
1402 bce_get_rx_buffer_sizes(sc,
1403 (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1404
1405 /* Recalculate our buffer allocation sizes. */
1406 ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD_ALLOC;
1407 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1408 IFQ_SET_READY(&ifp->if_snd);
1409
1410 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1411 ifp->if_baudrate = IF_Mbps(2500ULL);
1412 else
1413 ifp->if_baudrate = IF_Mbps(1000);
1414
1415 /* Handle any special PHY initialization for SerDes PHYs. */
1416 bce_init_media(sc);
1417
1418 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1419 ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1420 bce_ifmedia_sts);
1421 /*
1422 * We can't manually override remote PHY's link and assume
1423 * PHY port configuration(Fiber or TP) is not changed after
1424 * device attach. This may not be correct though.
1425 */
1426 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1427 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1428 ifmedia_add(&sc->bce_ifmedia,
1429 IFM_ETHER | IFM_2500_SX, 0, NULL);
1430 ifmedia_add(&sc->bce_ifmedia,
1431 IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1432 }
1433 ifmedia_add(&sc->bce_ifmedia,
1434 IFM_ETHER | IFM_1000_SX, 0, NULL);
1435 ifmedia_add(&sc->bce_ifmedia,
1436 IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1437 } else {
1438 ifmedia_add(&sc->bce_ifmedia,
1439 IFM_ETHER | IFM_10_T, 0, NULL);
1440 ifmedia_add(&sc->bce_ifmedia,
1441 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1442 ifmedia_add(&sc->bce_ifmedia,
1443 IFM_ETHER | IFM_100_TX, 0, NULL);
1444 ifmedia_add(&sc->bce_ifmedia,
1445 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1446 ifmedia_add(&sc->bce_ifmedia,
1447 IFM_ETHER | IFM_1000_T, 0, NULL);
1448 ifmedia_add(&sc->bce_ifmedia,
1449 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1450 }
1451 ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1452 ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1453 sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1454 } else {
1455 /* MII child bus by attaching the PHY. */
1456 rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1457 bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1458 MII_OFFSET_ANY, MIIF_DOPAUSE);
1459 if (rc != 0) {
1460 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1461 __LINE__);
1462 goto bce_attach_fail;
1463 }
1464 }
1465
1466 /* Attach to the Ethernet interface list. */
1467 ether_ifattach(ifp, sc->eaddr);
1468
1469 callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1470 callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1471
1472 /* Hookup IRQ last. */
1473 rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1474 NULL, bce_intr, sc, &sc->bce_intrhand);
1475
1476 if (rc) {
1477 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1478 __FILE__, __LINE__);
1479 bce_detach(dev);
1480 goto bce_attach_exit;
1481 }
1482
1483 /*
1484 * At this point we've acquired all the resources
1485 * we need to run so there's no turning back, we're
1486 * cleared for launch.
1487 */
1488
1489 /* Print some important debugging info. */
1490 DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1491
1492 /* Add the supported sysctls to the kernel. */
1493 bce_add_sysctls(sc);
1494
1495 BCE_LOCK(sc);
1496
1497 /*
1498 * The chip reset earlier notified the bootcode that
1499 * a driver is present. We now need to start our pulse
1500 * routine so that the bootcode is reminded that we're
1501 * still running.
1502 */
1503 bce_pulse(sc);
1504
1505 bce_mgmt_init_locked(sc);
1506 BCE_UNLOCK(sc);
1507
1508 /* Finally, print some useful adapter info */
1509 bce_print_adapter_info(sc);
1510 DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1511 __FUNCTION__, sc);
1512
1513 goto bce_attach_exit;
1514
1515 bce_attach_fail:
1516 bce_release_resources(sc);
1517
1518 bce_attach_exit:
1519
1520 DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1521
1522 return(rc);
1523 }
1524
1525 /****************************************************************************/
1526 /* Device detach function. */
1527 /* */
1528 /* Stops the controller, resets the controller, and releases resources. */
1529 /* */
1530 /* Returns: */
1531 /* 0 on success, positive value on failure. */
1532 /****************************************************************************/
1533 static int
1534 bce_detach(device_t dev)
1535 {
1536 struct bce_softc *sc = device_get_softc(dev);
1537 struct ifnet *ifp;
1538 u32 msg;
1539
1540 DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1541
1542 ifp = sc->bce_ifp;
1543
1544 /* Stop and reset the controller. */
1545 BCE_LOCK(sc);
1546
1547 /* Stop the pulse so the bootcode can go to driver absent state. */
1548 callout_stop(&sc->bce_pulse_callout);
1549
1550 bce_stop(sc);
1551 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1552 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1553 else
1554 msg = BCE_DRV_MSG_CODE_UNLOAD;
1555 bce_reset(sc, msg);
1556
1557 BCE_UNLOCK(sc);
1558
1559 ether_ifdetach(ifp);
1560
1561 /* If we have a child device on the MII bus remove it too. */
1562 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1563 ifmedia_removeall(&sc->bce_ifmedia);
1564 else {
1565 bus_generic_detach(dev);
1566 device_delete_child(dev, sc->bce_miibus);
1567 }
1568
1569 /* Release all remaining resources. */
1570 bce_release_resources(sc);
1571
1572 DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1573
1574 return(0);
1575 }
1576
1577 /****************************************************************************/
1578 /* Device shutdown function. */
1579 /* */
1580 /* Stops and resets the controller. */
1581 /* */
1582 /* Returns: */
1583 /* 0 on success, positive value on failure. */
1584 /****************************************************************************/
1585 static int
1586 bce_shutdown(device_t dev)
1587 {
1588 struct bce_softc *sc = device_get_softc(dev);
1589 u32 msg;
1590
1591 DBENTER(BCE_VERBOSE);
1592
1593 BCE_LOCK(sc);
1594 bce_stop(sc);
1595 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1596 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1597 else
1598 msg = BCE_DRV_MSG_CODE_UNLOAD;
1599 bce_reset(sc, msg);
1600 BCE_UNLOCK(sc);
1601
1602 DBEXIT(BCE_VERBOSE);
1603
1604 return (0);
1605 }
1606
1607 #ifdef BCE_DEBUG
1608 /****************************************************************************/
1609 /* Register read. */
1610 /* */
1611 /* Returns: */
1612 /* The value of the register. */
1613 /****************************************************************************/
1614 static u32
1615 bce_reg_rd(struct bce_softc *sc, u32 offset)
1616 {
1617 u32 val = REG_RD(sc, offset);
1618 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1619 __FUNCTION__, offset, val);
1620 return val;
1621 }
1622
1623 /****************************************************************************/
1624 /* Register write (16 bit). */
1625 /* */
1626 /* Returns: */
1627 /* Nothing. */
1628 /****************************************************************************/
1629 static void
1630 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1631 {
1632 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1633 __FUNCTION__, offset, val);
1634 REG_WR16(sc, offset, val);
1635 }
1636
1637 /****************************************************************************/
1638 /* Register write. */
1639 /* */
1640 /* Returns: */
1641 /* Nothing. */
1642 /****************************************************************************/
1643 static void
1644 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1645 {
1646 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1647 __FUNCTION__, offset, val);
1648 REG_WR(sc, offset, val);
1649 }
1650 #endif
1651
1652 /****************************************************************************/
1653 /* Indirect register read. */
1654 /* */
1655 /* Reads NetXtreme II registers using an index/data register pair in PCI */
1656 /* configuration space. Using this mechanism avoids issues with posted */
1657 /* reads but is much slower than memory-mapped I/O. */
1658 /* */
1659 /* Returns: */
1660 /* The value of the register. */
1661 /****************************************************************************/
1662 static u32
1663 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1664 {
1665 device_t dev;
1666 dev = sc->bce_dev;
1667
1668 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1669 #ifdef BCE_DEBUG
1670 {
1671 u32 val;
1672 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1673 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1674 __FUNCTION__, offset, val);
1675 return val;
1676 }
1677 #else
1678 return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1679 #endif
1680 }
1681
1682 /****************************************************************************/
1683 /* Indirect register write. */
1684 /* */
1685 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1686 /* configuration space. Using this mechanism avoids issues with posted */
1687 /* writes but is muchh slower than memory-mapped I/O. */
1688 /* */
1689 /* Returns: */
1690 /* Nothing. */
1691 /****************************************************************************/
1692 static void
1693 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1694 {
1695 device_t dev;
1696 dev = sc->bce_dev;
1697
1698 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1699 __FUNCTION__, offset, val);
1700
1701 pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1702 pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1703 }
1704
1705 /****************************************************************************/
1706 /* Shared memory write. */
1707 /* */
1708 /* Writes NetXtreme II shared memory region. */
1709 /* */
1710 /* Returns: */
1711 /* Nothing. */
1712 /****************************************************************************/
1713 static void
1714 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1715 {
1716 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X to "
1717 "0x%08X\n", __FUNCTION__, val, offset);
1718
1719 bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1720 }
1721
1722 /****************************************************************************/
1723 /* Shared memory read. */
1724 /* */
1725 /* Reads NetXtreme II shared memory region. */
1726 /* */
1727 /* Returns: */
1728 /* The 32 bit value read. */
1729 /****************************************************************************/
1730 static u32
1731 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1732 {
1733 u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1734
1735 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1736 "0x%08X\n", __FUNCTION__, val, offset);
1737
1738 return val;
1739 }
1740
1741 #ifdef BCE_DEBUG
1742 /****************************************************************************/
1743 /* Context memory read. */
1744 /* */
1745 /* The NetXtreme II controller uses context memory to track connection */
1746 /* information for L2 and higher network protocols. */
1747 /* */
1748 /* Returns: */
1749 /* The requested 32 bit value of context memory. */
1750 /****************************************************************************/
1751 static u32
1752 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1753 {
1754 u32 idx, offset, retry_cnt = 5, val;
1755
1756 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1757 cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1758 "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1759
1760 offset = ctx_offset + cid_addr;
1761
1762 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1763 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1764
1765 for (idx = 0; idx < retry_cnt; idx++) {
1766 val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1767 if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1768 break;
1769 DELAY(5);
1770 }
1771
1772 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1773 BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1774 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1775 __FILE__, __LINE__, cid_addr, ctx_offset);
1776
1777 val = REG_RD(sc, BCE_CTX_CTX_DATA);
1778 } else {
1779 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1780 val = REG_RD(sc, BCE_CTX_DATA);
1781 }
1782
1783 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1784 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1785
1786 return(val);
1787 }
1788 #endif
1789
1790 /****************************************************************************/
1791 /* Context memory write. */
1792 /* */
1793 /* The NetXtreme II controller uses context memory to track connection */
1794 /* information for L2 and higher network protocols. */
1795 /* */
1796 /* Returns: */
1797 /* Nothing. */
1798 /****************************************************************************/
1799 static void
1800 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1801 {
1802 u32 idx, offset = ctx_offset + cid_addr;
1803 u32 val, retry_cnt = 5;
1804
1805 DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1806 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1807
1808 DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1809 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1810 __FUNCTION__, cid_addr));
1811
1812 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1813 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1814 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1815
1816 for (idx = 0; idx < retry_cnt; idx++) {
1817 val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1818 if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1819 break;
1820 DELAY(5);
1821 }
1822
1823 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1824 BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1825 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1826 __FILE__, __LINE__, cid_addr, ctx_offset);
1827
1828 } else {
1829 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1830 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1831 }
1832 }
1833
1834 /****************************************************************************/
1835 /* PHY register read. */
1836 /* */
1837 /* Implements register reads on the MII bus. */
1838 /* */
1839 /* Returns: */
1840 /* The value of the register. */
1841 /****************************************************************************/
1842 static int
1843 bce_miibus_read_reg(device_t dev, int phy, int reg)
1844 {
1845 struct bce_softc *sc;
1846 u32 val;
1847 int i;
1848
1849 sc = device_get_softc(dev);
1850
1851 /*
1852 * The 5709S PHY is an IEEE Clause 45 PHY
1853 * with special mappings to work with IEEE
1854 * Clause 22 register accesses.
1855 */
1856 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1857 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1858 reg += 0x10;
1859 }
1860
1861 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1862 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1863 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1864
1865 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1866 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1867
1868 DELAY(40);
1869 }
1870
1871 val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1872 BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1873 BCE_EMAC_MDIO_COMM_START_BUSY;
1874 REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1875
1876 for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1877 DELAY(10);
1878
1879 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1880 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1881 DELAY(5);
1882
1883 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1884 val &= BCE_EMAC_MDIO_COMM_DATA;
1885
1886 break;
1887 }
1888 }
1889
1890 if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1891 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1892 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1893 val = 0x0;
1894 } else {
1895 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1896 }
1897
1898 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1899 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1900 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1901
1902 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1903 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1904
1905 DELAY(40);
1906 }
1907
1908 DB_PRINT_PHY_REG(reg, val);
1909 return (val & 0xffff);
1910 }
1911
1912 /****************************************************************************/
1913 /* PHY register write. */
1914 /* */
1915 /* Implements register writes on the MII bus. */
1916 /* */
1917 /* Returns: */
1918 /* The value of the register. */
1919 /****************************************************************************/
1920 static int
1921 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1922 {
1923 struct bce_softc *sc;
1924 u32 val1;
1925 int i;
1926
1927 sc = device_get_softc(dev);
1928
1929 DB_PRINT_PHY_REG(reg, val);
1930
1931 /*
1932 * The 5709S PHY is an IEEE Clause 45 PHY
1933 * with special mappings to work with IEEE
1934 * Clause 22 register accesses.
1935 */
1936 if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1937 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1938 reg += 0x10;
1939 }
1940
1941 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1942 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1943 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1944
1945 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1946 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1947
1948 DELAY(40);
1949 }
1950
1951 val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1952 BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1953 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1954 REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1955
1956 for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1957 DELAY(10);
1958
1959 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1960 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1961 DELAY(5);
1962 break;
1963 }
1964 }
1965
1966 if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1967 BCE_PRINTF("%s(%d): PHY write timeout!\n",
1968 __FILE__, __LINE__);
1969
1970 if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1971 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1972 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1973
1974 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1975 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1976
1977 DELAY(40);
1978 }
1979
1980 return 0;
1981 }
1982
1983 /****************************************************************************/
1984 /* MII bus status change. */
1985 /* */
1986 /* Called by the MII bus driver when the PHY establishes link to set the */
1987 /* MAC interface registers. */
1988 /* */
1989 /* Returns: */
1990 /* Nothing. */
1991 /****************************************************************************/
1992 static void
1993 bce_miibus_statchg(device_t dev)
1994 {
1995 struct bce_softc *sc;
1996 struct mii_data *mii;
1997 struct ifmediareq ifmr;
1998 int media_active, media_status, val;
1999
2000 sc = device_get_softc(dev);
2001
2002 DBENTER(BCE_VERBOSE_PHY);
2003
2004 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
2005 bzero(&ifmr, sizeof(ifmr));
2006 bce_ifmedia_sts_rphy(sc, &ifmr);
2007 media_active = ifmr.ifm_active;
2008 media_status = ifmr.ifm_status;
2009 } else {
2010 mii = device_get_softc(sc->bce_miibus);
2011 media_active = mii->mii_media_active;
2012 media_status = mii->mii_media_status;
2013 }
2014
2015 /* Ignore invalid media status. */
2016 if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
2017 (IFM_ACTIVE | IFM_AVALID))
2018 goto bce_miibus_statchg_exit;
2019
2020 val = REG_RD(sc, BCE_EMAC_MODE);
2021 val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2022 BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2023 BCE_EMAC_MODE_25G);
2024
2025 /* Set MII or GMII interface based on the PHY speed. */
2026 switch (IFM_SUBTYPE(media_active)) {
2027 case IFM_10_T:
2028 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2029 DBPRINT(sc, BCE_INFO_PHY,
2030 "Enabling 10Mb interface.\n");
2031 val |= BCE_EMAC_MODE_PORT_MII_10;
2032 break;
2033 }
2034 /* fall-through */
2035 case IFM_100_TX:
2036 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2037 val |= BCE_EMAC_MODE_PORT_MII;
2038 break;
2039 case IFM_2500_SX:
2040 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2041 val |= BCE_EMAC_MODE_25G;
2042 /* fall-through */
2043 case IFM_1000_T:
2044 case IFM_1000_SX:
2045 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2046 val |= BCE_EMAC_MODE_PORT_GMII;
2047 break;
2048 default:
2049 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2050 "default GMII interface.\n");
2051 val |= BCE_EMAC_MODE_PORT_GMII;
2052 }
2053
2054 /* Set half or full duplex based on PHY settings. */
2055 if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2056 DBPRINT(sc, BCE_INFO_PHY,
2057 "Setting Half-Duplex interface.\n");
2058 val |= BCE_EMAC_MODE_HALF_DUPLEX;
2059 } else
2060 DBPRINT(sc, BCE_INFO_PHY,
2061 "Setting Full-Duplex interface.\n");
2062
2063 REG_WR(sc, BCE_EMAC_MODE, val);
2064
2065 if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2066 DBPRINT(sc, BCE_INFO_PHY,
2067 "%s(): Enabling RX flow control.\n", __FUNCTION__);
2068 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2069 sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2070 } else {
2071 DBPRINT(sc, BCE_INFO_PHY,
2072 "%s(): Disabling RX flow control.\n", __FUNCTION__);
2073 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2074 sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2075 }
2076
2077 if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2078 DBPRINT(sc, BCE_INFO_PHY,
2079 "%s(): Enabling TX flow control.\n", __FUNCTION__);
2080 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2081 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2082 } else {
2083 DBPRINT(sc, BCE_INFO_PHY,
2084 "%s(): Disabling TX flow control.\n", __FUNCTION__);
2085 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2086 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2087 }
2088
2089 /* ToDo: Update watermarks in bce_init_rx_context(). */
2090
2091 bce_miibus_statchg_exit:
2092 DBEXIT(BCE_VERBOSE_PHY);
2093 }
2094
2095 /****************************************************************************/
2096 /* Acquire NVRAM lock. */
2097 /* */
2098 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
2099 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
2100 /* for use by the driver. */
2101 /* */
2102 /* Returns: */
2103 /* 0 on success, positive value on failure. */
2104 /****************************************************************************/
2105 static int
2106 bce_acquire_nvram_lock(struct bce_softc *sc)
2107 {
2108 u32 val;
2109 int j, rc = 0;
2110
2111 DBENTER(BCE_VERBOSE_NVRAM);
2112
2113 /* Request access to the flash interface. */
2114 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2115 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2116 val = REG_RD(sc, BCE_NVM_SW_ARB);
2117 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2118 break;
2119
2120 DELAY(5);
2121 }
2122
2123 if (j >= NVRAM_TIMEOUT_COUNT) {
2124 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2125 rc = EBUSY;
2126 }
2127
2128 DBEXIT(BCE_VERBOSE_NVRAM);
2129 return (rc);
2130 }
2131
2132 /****************************************************************************/
2133 /* Release NVRAM lock. */
2134 /* */
2135 /* When the caller is finished accessing NVRAM the lock must be released. */
2136 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
2137 /* for use by the driver. */
2138 /* */
2139 /* Returns: */
2140 /* 0 on success, positive value on failure. */
2141 /****************************************************************************/
2142 static int
2143 bce_release_nvram_lock(struct bce_softc *sc)
2144 {
2145 u32 val;
2146 int j, rc = 0;
2147
2148 DBENTER(BCE_VERBOSE_NVRAM);
2149
2150 /*
2151 * Relinquish nvram interface.
2152 */
2153 REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2154
2155 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2156 val = REG_RD(sc, BCE_NVM_SW_ARB);
2157 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2158 break;
2159
2160 DELAY(5);
2161 }
2162
2163 if (j >= NVRAM_TIMEOUT_COUNT) {
2164 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2165 rc = EBUSY;
2166 }
2167
2168 DBEXIT(BCE_VERBOSE_NVRAM);
2169 return (rc);
2170 }
2171
2172 #ifdef BCE_NVRAM_WRITE_SUPPORT
2173 /****************************************************************************/
2174 /* Enable NVRAM write access. */
2175 /* */
2176 /* Before writing to NVRAM the caller must enable NVRAM writes. */
2177 /* */
2178 /* Returns: */
2179 /* 0 on success, positive value on failure. */
2180 /****************************************************************************/
2181 static int
2182 bce_enable_nvram_write(struct bce_softc *sc)
2183 {
2184 u32 val;
2185 int rc = 0;
2186
2187 DBENTER(BCE_VERBOSE_NVRAM);
2188
2189 val = REG_RD(sc, BCE_MISC_CFG);
2190 REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2191
2192 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2193 int j;
2194
2195 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2196 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2197
2198 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2199 DELAY(5);
2200
2201 val = REG_RD(sc, BCE_NVM_COMMAND);
2202 if (val & BCE_NVM_COMMAND_DONE)
2203 break;
2204 }
2205
2206 if (j >= NVRAM_TIMEOUT_COUNT) {
2207 DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2208 rc = EBUSY;
2209 }
2210 }
2211
2212 DBENTER(BCE_VERBOSE_NVRAM);
2213 return (rc);
2214 }
2215
2216 /****************************************************************************/
2217 /* Disable NVRAM write access. */
2218 /* */
2219 /* When the caller is finished writing to NVRAM write access must be */
2220 /* disabled. */
2221 /* */
2222 /* Returns: */
2223 /* Nothing. */
2224 /****************************************************************************/
2225 static void
2226 bce_disable_nvram_write(struct bce_softc *sc)
2227 {
2228 u32 val;
2229
2230 DBENTER(BCE_VERBOSE_NVRAM);
2231
2232 val = REG_RD(sc, BCE_MISC_CFG);
2233 REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2234
2235 DBEXIT(BCE_VERBOSE_NVRAM);
2236
2237 }
2238 #endif
2239
2240 /****************************************************************************/
2241 /* Enable NVRAM access. */
2242 /* */
2243 /* Before accessing NVRAM for read or write operations the caller must */
2244 /* enabled NVRAM access. */
2245 /* */
2246 /* Returns: */
2247 /* Nothing. */
2248 /****************************************************************************/
2249 static void
2250 bce_enable_nvram_access(struct bce_softc *sc)
2251 {
2252 u32 val;
2253
2254 DBENTER(BCE_VERBOSE_NVRAM);
2255
2256 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2257 /* Enable both bits, even on read. */
2258 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2259 BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2260
2261 DBEXIT(BCE_VERBOSE_NVRAM);
2262 }
2263
2264 /****************************************************************************/
2265 /* Disable NVRAM access. */
2266 /* */
2267 /* When the caller is finished accessing NVRAM access must be disabled. */
2268 /* */
2269 /* Returns: */
2270 /* Nothing. */
2271 /****************************************************************************/
2272 static void
2273 bce_disable_nvram_access(struct bce_softc *sc)
2274 {
2275 u32 val;
2276
2277 DBENTER(BCE_VERBOSE_NVRAM);
2278
2279 val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2280
2281 /* Disable both bits, even after read. */
2282 REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2283 ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2284
2285 DBEXIT(BCE_VERBOSE_NVRAM);
2286 }
2287
2288 #ifdef BCE_NVRAM_WRITE_SUPPORT
2289 /****************************************************************************/
2290 /* Erase NVRAM page before writing. */
2291 /* */
2292 /* Non-buffered flash parts require that a page be erased before it is */
2293 /* written. */
2294 /* */
2295 /* Returns: */
2296 /* 0 on success, positive value on failure. */
2297 /****************************************************************************/
2298 static int
2299 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2300 {
2301 u32 cmd;
2302 int j, rc = 0;
2303
2304 DBENTER(BCE_VERBOSE_NVRAM);
2305
2306 /* Buffered flash doesn't require an erase. */
2307 if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2308 goto bce_nvram_erase_page_exit;
2309
2310 /* Build an erase command. */
2311 cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2312 BCE_NVM_COMMAND_DOIT;
2313
2314 /*
2315 * Clear the DONE bit separately, set the NVRAM address to erase,
2316 * and issue the erase command.
2317 */
2318 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2319 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2320 REG_WR(sc, BCE_NVM_COMMAND, cmd);
2321
2322 /* Wait for completion. */
2323 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2324 u32 val;
2325
2326 DELAY(5);
2327
2328 val = REG_RD(sc, BCE_NVM_COMMAND);
2329 if (val & BCE_NVM_COMMAND_DONE)
2330 break;
2331 }
2332
2333 if (j >= NVRAM_TIMEOUT_COUNT) {
2334 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2335 rc = EBUSY;
2336 }
2337
2338 bce_nvram_erase_page_exit:
2339 DBEXIT(BCE_VERBOSE_NVRAM);
2340 return (rc);
2341 }
2342 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2343
2344 /****************************************************************************/
2345 /* Read a dword (32 bits) from NVRAM. */
2346 /* */
2347 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
2348 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
2349 /* */
2350 /* Returns: */
2351 /* 0 on success and the 32 bit value read, positive value on failure. */
2352 /****************************************************************************/
2353 static int
2354 bce_nvram_read_dword(struct bce_softc *sc,
2355 u32 offset, u8 *ret_val, u32 cmd_flags)
2356 {
2357 u32 cmd;
2358 int i, rc = 0;
2359
2360 DBENTER(BCE_EXTREME_NVRAM);
2361
2362 /* Build the command word. */
2363 cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2364
2365 /* Calculate the offset for buffered flash if translation is used. */
2366 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2367 offset = ((offset / sc->bce_flash_info->page_size) <<
2368 sc->bce_flash_info->page_bits) +
2369 (offset % sc->bce_flash_info->page_size);
2370 }
2371
2372 /*
2373 * Clear the DONE bit separately, set the address to read,
2374 * and issue the read.
2375 */
2376 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2377 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2378 REG_WR(sc, BCE_NVM_COMMAND, cmd);
2379
2380 /* Wait for completion. */
2381 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2382 u32 val;
2383
2384 DELAY(5);
2385
2386 val = REG_RD(sc, BCE_NVM_COMMAND);
2387 if (val & BCE_NVM_COMMAND_DONE) {
2388 val = REG_RD(sc, BCE_NVM_READ);
2389
2390 val = bce_be32toh(val);
2391 memcpy(ret_val, &val, 4);
2392 break;
2393 }
2394 }
2395
2396 /* Check for errors. */
2397 if (i >= NVRAM_TIMEOUT_COUNT) {
2398 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2399 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
2400 rc = EBUSY;
2401 }
2402
2403 DBEXIT(BCE_EXTREME_NVRAM);
2404 return(rc);
2405 }
2406
2407 #ifdef BCE_NVRAM_WRITE_SUPPORT
2408 /****************************************************************************/
2409 /* Write a dword (32 bits) to NVRAM. */
2410 /* */
2411 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
2412 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
2413 /* enabled NVRAM write access. */
2414 /* */
2415 /* Returns: */
2416 /* 0 on success, positive value on failure. */
2417 /****************************************************************************/
2418 static int
2419 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2420 u32 cmd_flags)
2421 {
2422 u32 cmd, val32;
2423 int j, rc = 0;
2424
2425 DBENTER(BCE_VERBOSE_NVRAM);
2426
2427 /* Build the command word. */
2428 cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2429
2430 /* Calculate the offset for buffered flash if translation is used. */
2431 if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2432 offset = ((offset / sc->bce_flash_info->page_size) <<
2433 sc->bce_flash_info->page_bits) +
2434 (offset % sc->bce_flash_info->page_size);
2435 }
2436
2437 /*
2438 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2439 * set the NVRAM address to write, and issue the write command
2440 */
2441 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2442 memcpy(&val32, val, 4);
2443 val32 = htobe32(val32);
2444 REG_WR(sc, BCE_NVM_WRITE, val32);
2445 REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2446 REG_WR(sc, BCE_NVM_COMMAND, cmd);
2447
2448 /* Wait for completion. */
2449 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2450 DELAY(5);
2451
2452 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2453 break;
2454 }
2455 if (j >= NVRAM_TIMEOUT_COUNT) {
2456 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2457 "offset 0x%08X\n", __FILE__, __LINE__, offset);
2458 rc = EBUSY;
2459 }
2460
2461 DBEXIT(BCE_VERBOSE_NVRAM);
2462 return (rc);
2463 }
2464 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2465
2466 /****************************************************************************/
2467 /* Initialize NVRAM access. */
2468 /* */
2469 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
2470 /* access that device. */
2471 /* */
2472 /* Returns: */
2473 /* 0 on success, positive value on failure. */
2474 /****************************************************************************/
2475 static int
2476 bce_init_nvram(struct bce_softc *sc)
2477 {
2478 u32 val;
2479 int j, entry_count, rc = 0;
2480 const struct flash_spec *flash;
2481
2482 DBENTER(BCE_VERBOSE_NVRAM);
2483
2484 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2485 sc->bce_flash_info = &flash_5709;
2486 goto bce_init_nvram_get_flash_size;
2487 }
2488
2489 /* Determine the selected interface. */
2490 val = REG_RD(sc, BCE_NVM_CFG1);
2491
2492 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2493
2494 /*
2495 * Flash reconfiguration is required to support additional
2496 * NVRAM devices not directly supported in hardware.
2497 * Check if the flash interface was reconfigured
2498 * by the bootcode.
2499 */
2500
2501 if (val & 0x40000000) {
2502 /* Flash interface reconfigured by bootcode. */
2503
2504 DBPRINT(sc,BCE_INFO_LOAD,
2505 "bce_init_nvram(): Flash WAS reconfigured.\n");
2506
2507 for (j = 0, flash = &flash_table[0]; j < entry_count;
2508 j++, flash++) {
2509 if ((val & FLASH_BACKUP_STRAP_MASK) ==
2510 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2511 sc->bce_flash_info = flash;
2512 break;
2513 }
2514 }
2515 } else {
2516 /* Flash interface not yet reconfigured. */
2517 u32 mask;
2518
2519 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2520 __FUNCTION__);
2521
2522 if (val & (1 << 23))
2523 mask = FLASH_BACKUP_STRAP_MASK;
2524 else
2525 mask = FLASH_STRAP_MASK;
2526
2527 /* Look for the matching NVRAM device configuration data. */
2528 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2529 /* Check if the device matches any of the known devices. */
2530 if ((val & mask) == (flash->strapping & mask)) {
2531 /* Found a device match. */
2532 sc->bce_flash_info = flash;
2533
2534 /* Request access to the flash interface. */
2535 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2536 return rc;
2537
2538 /* Reconfigure the flash interface. */
2539 bce_enable_nvram_access(sc);
2540 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2541 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2542 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2543 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2544 bce_disable_nvram_access(sc);
2545 bce_release_nvram_lock(sc);
2546
2547 break;
2548 }
2549 }
2550 }
2551
2552 /* Check if a matching device was found. */
2553 if (j == entry_count) {
2554 sc->bce_flash_info = NULL;
2555 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2556 __FILE__, __LINE__);
2557 DBEXIT(BCE_VERBOSE_NVRAM);
2558 return (ENODEV);
2559 }
2560
2561 bce_init_nvram_get_flash_size:
2562 /* Write the flash config data to the shared memory interface. */
2563 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2564 val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2565 if (val)
2566 sc->bce_flash_size = val;
2567 else
2568 sc->bce_flash_size = sc->bce_flash_info->total_size;
2569
2570 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2571 __FUNCTION__, sc->bce_flash_info->name,
2572 sc->bce_flash_info->total_size);
2573
2574 DBEXIT(BCE_VERBOSE_NVRAM);
2575 return rc;
2576 }
2577
2578 /****************************************************************************/
2579 /* Read an arbitrary range of data from NVRAM. */
2580 /* */
2581 /* Prepares the NVRAM interface for access and reads the requested data */
2582 /* into the supplied buffer. */
2583 /* */
2584 /* Returns: */
2585 /* 0 on success and the data read, positive value on failure. */
2586 /****************************************************************************/
2587 static int
2588 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2589 int buf_size)
2590 {
2591 int rc = 0;
2592 u32 cmd_flags, offset32, len32, extra;
2593
2594 DBENTER(BCE_VERBOSE_NVRAM);
2595
2596 if (buf_size == 0)
2597 goto bce_nvram_read_exit;
2598
2599 /* Request access to the flash interface. */
2600 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2601 goto bce_nvram_read_exit;
2602
2603 /* Enable access to flash interface */
2604 bce_enable_nvram_access(sc);
2605
2606 len32 = buf_size;
2607 offset32 = offset;
2608 extra = 0;
2609
2610 cmd_flags = 0;
2611
2612 if (offset32 & 3) {
2613 u8 buf[4];
2614 u32 pre_len;
2615
2616 offset32 &= ~3;
2617 pre_len = 4 - (offset & 3);
2618
2619 if (pre_len >= len32) {
2620 pre_len = len32;
2621 cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2622 }
2623 else {
2624 cmd_flags = BCE_NVM_COMMAND_FIRST;
2625 }
2626
2627 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2628
2629 if (rc)
2630 return rc;
2631
2632 memcpy(ret_buf, buf + (offset & 3), pre_len);
2633
2634 offset32 += 4;
2635 ret_buf += pre_len;
2636 len32 -= pre_len;
2637 }
2638
2639 if (len32 & 3) {
2640 extra = 4 - (len32 & 3);
2641 len32 = (len32 + 4) & ~3;
2642 }
2643
2644 if (len32 == 4) {
2645 u8 buf[4];
2646
2647 if (cmd_flags)
2648 cmd_flags = BCE_NVM_COMMAND_LAST;
2649 else
2650 cmd_flags = BCE_NVM_COMMAND_FIRST |
2651 BCE_NVM_COMMAND_LAST;
2652
2653 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2654
2655 memcpy(ret_buf, buf, 4 - extra);
2656 }
2657 else if (len32 > 0) {
2658 u8 buf[4];
2659
2660 /* Read the first word. */
2661 if (cmd_flags)
2662 cmd_flags = 0;
2663 else
2664 cmd_flags = BCE_NVM_COMMAND_FIRST;
2665
2666 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2667
2668 /* Advance to the next dword. */
2669 offset32 += 4;
2670 ret_buf += 4;
2671 len32 -= 4;
2672
2673 while (len32 > 4 && rc == 0) {
2674 rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2675
2676 /* Advance to the next dword. */
2677 offset32 += 4;
2678 ret_buf += 4;
2679 len32 -= 4;
2680 }
2681
2682 if (rc)
2683 goto bce_nvram_read_locked_exit;
2684
2685 cmd_flags = BCE_NVM_COMMAND_LAST;
2686 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2687
2688 memcpy(ret_buf, buf, 4 - extra);
2689 }
2690
2691 bce_nvram_read_locked_exit:
2692 /* Disable access to flash interface and release the lock. */
2693 bce_disable_nvram_access(sc);
2694 bce_release_nvram_lock(sc);
2695
2696 bce_nvram_read_exit:
2697 DBEXIT(BCE_VERBOSE_NVRAM);
2698 return rc;
2699 }
2700
2701 #ifdef BCE_NVRAM_WRITE_SUPPORT
2702 /****************************************************************************/
2703 /* Write an arbitrary range of data from NVRAM. */
2704 /* */
2705 /* Prepares the NVRAM interface for write access and writes the requested */
2706 /* data from the supplied buffer. The caller is responsible for */
2707 /* calculating any appropriate CRCs. */
2708 /* */
2709 /* Returns: */
2710 /* 0 on success, positive value on failure. */
2711 /****************************************************************************/
2712 static int
2713 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2714 int buf_size)
2715 {
2716 u32 written, offset32, len32;
2717 u8 *buf, start[4], end[4];
2718 int rc = 0;
2719 int align_start, align_end;
2720
2721 DBENTER(BCE_VERBOSE_NVRAM);
2722
2723 buf = data_buf;
2724 offset32 = offset;
2725 len32 = buf_size;
2726 align_start = align_end = 0;
2727
2728 if ((align_start = (offset32 & 3))) {
2729 offset32 &= ~3;
2730 len32 += align_start;
2731 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2732 goto bce_nvram_write_exit;
2733 }
2734
2735 if (len32 & 3) {
2736 if ((len32 > 4) || !align_start) {
2737 align_end = 4 - (len32 & 3);
2738 len32 += align_end;
2739 if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2740 end, 4))) {
2741 goto bce_nvram_write_exit;
2742 }
2743 }
2744 }
2745
2746 if (align_start || align_end) {
2747 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2748 if (buf == NULL) {
2749 rc = ENOMEM;
2750 goto bce_nvram_write_exit;
2751 }
2752
2753 if (align_start) {
2754 memcpy(buf, start, 4);
2755 }
2756
2757 if (align_end) {
2758 memcpy(buf + len32 - 4, end, 4);
2759 }
2760 memcpy(buf + align_start, data_buf, buf_size);
2761 }
2762
2763 written = 0;
2764 while ((written < len32) && (rc == 0)) {
2765 u32 page_start, page_end, data_start, data_end;
2766 u32 addr, cmd_flags;
2767 int i;
2768 u8 flash_buffer[264];
2769
2770 /* Find the page_start addr */
2771 page_start = offset32 + written;
2772 page_start -= (page_start % sc->bce_flash_info->page_size);
2773 /* Find the page_end addr */
2774 page_end = page_start + sc->bce_flash_info->page_size;
2775 /* Find the data_start addr */
2776 data_start = (written == 0) ? offset32 : page_start;
2777 /* Find the data_end addr */
2778 data_end = (page_end > offset32 + len32) ?
2779 (offset32 + len32) : page_end;
2780
2781 /* Request access to the flash interface. */
2782 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2783 goto bce_nvram_write_exit;
2784
2785 /* Enable access to flash interface */
2786 bce_enable_nvram_access(sc);
2787
2788 cmd_flags = BCE_NVM_COMMAND_FIRST;
2789 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2790 int j;
2791
2792 /* Read the whole page into the buffer
2793 * (non-buffer flash only) */
2794 for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2795 if (j == (sc->bce_flash_info->page_size - 4)) {
2796 cmd_flags |= BCE_NVM_COMMAND_LAST;
2797 }
2798 rc = bce_nvram_read_dword(sc,
2799 page_start + j,
2800 &flash_buffer[j],
2801 cmd_flags);
2802
2803 if (rc)
2804 goto bce_nvram_write_locked_exit;
2805
2806 cmd_flags = 0;
2807 }
2808 }
2809
2810 /* Enable writes to flash interface (unlock write-protect) */
2811 if ((rc = bce_enable_nvram_write(sc)) != 0)
2812 goto bce_nvram_write_locked_exit;
2813
2814 /* Erase the page */
2815 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2816 goto bce_nvram_write_locked_exit;
2817
2818 /* Re-enable the write again for the actual write */
2819 bce_enable_nvram_write(sc);
2820
2821 /* Loop to write back the buffer data from page_start to
2822 * data_start */
2823 i = 0;
2824 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2825 for (addr = page_start; addr < data_start;
2826 addr += 4, i += 4) {
2827 rc = bce_nvram_write_dword(sc, addr,
2828 &flash_buffer[i], cmd_flags);
2829
2830 if (rc != 0)
2831 goto bce_nvram_write_locked_exit;
2832
2833 cmd_flags = 0;
2834 }
2835 }
2836
2837 /* Loop to write the new data from data_start to data_end */
2838 for (addr = data_start; addr < data_end; addr += 4, i++) {
2839 if ((addr == page_end - 4) ||
2840 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2841 (addr == data_end - 4))) {
2842 cmd_flags |= BCE_NVM_COMMAND_LAST;
2843 }
2844 rc = bce_nvram_write_dword(sc, addr, buf,
2845 cmd_flags);
2846
2847 if (rc != 0)
2848 goto bce_nvram_write_locked_exit;
2849
2850 cmd_flags = 0;
2851 buf += 4;
2852 }
2853
2854 /* Loop to write back the buffer data from data_end
2855 * to page_end */
2856 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2857 for (addr = data_end; addr < page_end;
2858 addr += 4, i += 4) {
2859 if (addr == page_end-4) {
2860 cmd_flags = BCE_NVM_COMMAND_LAST;
2861 }
2862 rc = bce_nvram_write_dword(sc, addr,
2863 &flash_buffer[i], cmd_flags);
2864
2865 if (rc != 0)
2866 goto bce_nvram_write_locked_exit;
2867
2868 cmd_flags = 0;
2869 }
2870 }
2871
2872 /* Disable writes to flash interface (lock write-protect) */
2873 bce_disable_nvram_write(sc);
2874
2875 /* Disable access to flash interface */
2876 bce_disable_nvram_access(sc);
2877 bce_release_nvram_lock(sc);
2878
2879 /* Increment written */
2880 written += data_end - data_start;
2881 }
2882
2883 goto bce_nvram_write_exit;
2884
2885 bce_nvram_write_locked_exit:
2886 bce_disable_nvram_write(sc);
2887 bce_disable_nvram_access(sc);
2888 bce_release_nvram_lock(sc);
2889
2890 bce_nvram_write_exit:
2891 if (align_start || align_end)
2892 free(buf, M_DEVBUF);
2893
2894 DBEXIT(BCE_VERBOSE_NVRAM);
2895 return (rc);
2896 }
2897 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2898
2899 /****************************************************************************/
2900 /* Verifies that NVRAM is accessible and contains valid data. */
2901 /* */
2902 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2903 /* correct. */
2904 /* */
2905 /* Returns: */
2906 /* 0 on success, positive value on failure. */
2907 /****************************************************************************/
2908 static int
2909 bce_nvram_test(struct bce_softc *sc)
2910 {
2911 u32 buf[BCE_NVRAM_SIZE / 4];
2912 u8 *data = (u8 *) buf;
2913 int rc = 0;
2914 u32 magic, csum;
2915
2916 DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2917
2918 /*
2919 * Check that the device NVRAM is valid by reading
2920 * the magic value at offset 0.
2921 */
2922 if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2923 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2924 __FILE__, __LINE__);
2925 goto bce_nvram_test_exit;
2926 }
2927
2928 /*
2929 * Verify that offset 0 of the NVRAM contains
2930 * a valid magic number.
2931 */
2932 magic = bce_be32toh(buf[0]);
2933 if (magic != BCE_NVRAM_MAGIC) {
2934 rc = ENODEV;
2935 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2936 "Expected: 0x%08X, Found: 0x%08X\n",
2937 __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2938 goto bce_nvram_test_exit;
2939 }
2940
2941 /*
2942 * Verify that the device NVRAM includes valid
2943 * configuration data.
2944 */
2945 if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2946 BCE_PRINTF("%s(%d): Unable to read manufacturing "
2947 "Information from NVRAM!\n", __FILE__, __LINE__);
2948 goto bce_nvram_test_exit;
2949 }
2950
2951 csum = ether_crc32_le(data, 0x100);
2952 if (csum != BCE_CRC32_RESIDUAL) {
2953 rc = ENODEV;
2954 BCE_PRINTF("%s(%d): Invalid manufacturing information "
2955 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2956 __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2957 goto bce_nvram_test_exit;
2958 }
2959
2960 csum = ether_crc32_le(data + 0x100, 0x100);
2961 if (csum != BCE_CRC32_RESIDUAL) {
2962 rc = ENODEV;
2963 BCE_PRINTF("%s(%d): Invalid feature configuration "
2964 "information NVRAM CRC! Expected: 0x%08X, "
2965 "Found: 08%08X\n", __FILE__, __LINE__,
2966 BCE_CRC32_RESIDUAL, csum);
2967 }
2968
2969 bce_nvram_test_exit:
2970 DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2971 return rc;
2972 }
2973
2974 /****************************************************************************/
2975 /* Calculates the size of the buffers to allocate based on the MTU. */
2976 /* */
2977 /* Returns: */
2978 /* Nothing. */
2979 /****************************************************************************/
2980 static void
2981 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2982 {
2983 DBENTER(BCE_VERBOSE_LOAD);
2984
2985 /* Use a single allocation type when header splitting enabled. */
2986 if (bce_hdr_split == TRUE) {
2987 sc->rx_bd_mbuf_alloc_size = MHLEN;
2988 /* Make sure offset is 16 byte aligned for hardware. */
2989 sc->rx_bd_mbuf_align_pad =
2990 roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
2991 sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2992 sc->rx_bd_mbuf_align_pad;
2993 } else {
2994 if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2995 ETHER_CRC_LEN) > MCLBYTES) {
2996 /* Setup for jumbo RX buffer allocations. */
2997 sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
2998 sc->rx_bd_mbuf_align_pad =
2999 roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
3000 sc->rx_bd_mbuf_data_len =
3001 sc->rx_bd_mbuf_alloc_size -
3002 sc->rx_bd_mbuf_align_pad;
3003 } else {
3004 /* Setup for standard RX buffer allocations. */
3005 sc->rx_bd_mbuf_alloc_size = MCLBYTES;
3006 sc->rx_bd_mbuf_align_pad =
3007 roundup2(MCLBYTES, 16) - MCLBYTES;
3008 sc->rx_bd_mbuf_data_len =
3009 sc->rx_bd_mbuf_alloc_size -
3010 sc->rx_bd_mbuf_align_pad;
3011 }
3012 }
3013
3014 // DBPRINT(sc, BCE_INFO_LOAD,
3015 DBPRINT(sc, BCE_WARN,
3016 "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
3017 "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
3018 sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3019 sc->rx_bd_mbuf_align_pad);
3020
3021 DBEXIT(BCE_VERBOSE_LOAD);
3022 }
3023
3024 /****************************************************************************/
3025 /* Identifies the current media type of the controller and sets the PHY */
3026 /* address. */
3027 /* */
3028 /* Returns: */
3029 /* Nothing. */
3030 /****************************************************************************/
3031 static void
3032 bce_get_media(struct bce_softc *sc)
3033 {
3034 u32 val;
3035
3036 DBENTER(BCE_VERBOSE_PHY);
3037
3038 /* Assume PHY address for copper controllers. */
3039 sc->bce_phy_addr = 1;
3040
3041 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3042 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3043 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3044 u32 strap;
3045
3046 /*
3047 * The BCM5709S is software configurable
3048 * for Copper or SerDes operation.
3049 */
3050 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3051 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3052 "for copper.\n");
3053 goto bce_get_media_exit;
3054 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3055 DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3056 "for dual media.\n");
3057 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3058 goto bce_get_media_exit;
3059 }
3060
3061 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3062 strap = (val &
3063 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3064 else
3065 strap = (val &
3066 BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3067
3068 if (pci_get_function(sc->bce_dev) == 0) {
3069 switch (strap) {
3070 case 0x4:
3071 case 0x5:
3072 case 0x6:
3073 DBPRINT(sc, BCE_INFO_LOAD,
3074 "BCM5709 s/w configured for SerDes.\n");
3075 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3076 break;
3077 default:
3078 DBPRINT(sc, BCE_INFO_LOAD,
3079 "BCM5709 s/w configured for Copper.\n");
3080 break;
3081 }
3082 } else {
3083 switch (strap) {
3084 case 0x1:
3085 case 0x2:
3086 case 0x4:
3087 DBPRINT(sc, BCE_INFO_LOAD,
3088 "BCM5709 s/w configured for SerDes.\n");
3089 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3090 break;
3091 default:
3092 DBPRINT(sc, BCE_INFO_LOAD,
3093 "BCM5709 s/w configured for Copper.\n");
3094 break;
3095 }
3096 }
3097
3098 } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3099 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3100
3101 if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3102 sc->bce_flags |= BCE_NO_WOL_FLAG;
3103
3104 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3105 sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3106
3107 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3108 /* 5708S/09S/16S use a separate PHY for SerDes. */
3109 sc->bce_phy_addr = 2;
3110
3111 val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3112 if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3113 sc->bce_phy_flags |=
3114 BCE_PHY_2_5G_CAPABLE_FLAG;
3115 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3116 "capable adapter\n");
3117 }
3118 }
3119 } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3120 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3121 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3122
3123 bce_get_media_exit:
3124 DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3125 "Using PHY address %d.\n", sc->bce_phy_addr);
3126
3127 DBEXIT(BCE_VERBOSE_PHY);
3128 }
3129
3130 /****************************************************************************/
3131 /* Performs PHY initialization required before MII drivers access the */
3132 /* device. */
3133 /* */
3134 /* Returns: */
3135 /* Nothing. */
3136 /****************************************************************************/
3137 static void
3138 bce_init_media(struct bce_softc *sc)
3139 {
3140 if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3141 BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3142 /*
3143 * Configure 5709S/5716S PHYs to use traditional IEEE
3144 * Clause 22 method. Otherwise we have no way to attach
3145 * the PHY in mii(4) layer. PHY specific configuration
3146 * is done in mii layer.
3147 */
3148
3149 /* Select auto-negotiation MMD of the PHY. */
3150 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3151 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3152 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3153 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3154
3155 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3156 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3157 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3158 }
3159 }
3160
3161 /****************************************************************************/
3162 /* Free any DMA memory owned by the driver. */
3163 /* */
3164 /* Scans through each data structure that requires DMA memory and frees */
3165 /* the memory if allocated. */
3166 /* */
3167 /* Returns: */
3168 /* Nothing. */
3169 /****************************************************************************/
3170 static void
3171 bce_dma_free(struct bce_softc *sc)
3172 {
3173 int i;
3174
3175 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3176
3177 /* Free, unmap, and destroy the status block. */
3178 if (sc->status_block_paddr != 0) {
3179 bus_dmamap_unload(
3180 sc->status_tag,
3181 sc->status_map);
3182 sc->status_block_paddr = 0;
3183 }
3184
3185 if (sc->status_block != NULL) {
3186 bus_dmamem_free(
3187 sc->status_tag,
3188 sc->status_block,
3189 sc->status_map);
3190 sc->status_block = NULL;
3191 }
3192
3193 if (sc->status_tag != NULL) {
3194 bus_dma_tag_destroy(sc->status_tag);
3195 sc->status_tag = NULL;
3196 }
3197
3198 /* Free, unmap, and destroy the statistics block. */
3199 if (sc->stats_block_paddr != 0) {
3200 bus_dmamap_unload(
3201 sc->stats_tag,
3202 sc->stats_map);
3203 sc->stats_block_paddr = 0;
3204 }
3205
3206 if (sc->stats_block != NULL) {
3207 bus_dmamem_free(
3208 sc->stats_tag,
3209 sc->stats_block,
3210 sc->stats_map);
3211 sc->stats_block = NULL;
3212 }
3213
3214 if (sc->stats_tag != NULL) {
3215 bus_dma_tag_destroy(sc->stats_tag);
3216 sc->stats_tag = NULL;
3217 }
3218
3219 /* Free, unmap and destroy all context memory pages. */
3220 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3221 for (i = 0; i < sc->ctx_pages; i++ ) {
3222 if (sc->ctx_paddr[i] != 0) {
3223 bus_dmamap_unload(
3224 sc->ctx_tag,
3225 sc->ctx_map[i]);
3226 sc->ctx_paddr[i] = 0;
3227 }
3228
3229 if (sc->ctx_block[i] != NULL) {
3230 bus_dmamem_free(
3231 sc->ctx_tag,
3232 sc->ctx_block[i],
3233 sc->ctx_map[i]);
3234 sc->ctx_block[i] = NULL;
3235 }
3236 }
3237
3238 /* Destroy the context memory tag. */
3239 if (sc->ctx_tag != NULL) {
3240 bus_dma_tag_destroy(sc->ctx_tag);
3241 sc->ctx_tag = NULL;
3242 }
3243 }
3244
3245 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
3246 for (i = 0; i < sc->tx_pages; i++ ) {
3247 if (sc->tx_bd_chain_paddr[i] != 0) {
3248 bus_dmamap_unload(
3249 sc->tx_bd_chain_tag,
3250 sc->tx_bd_chain_map[i]);
3251 sc->tx_bd_chain_paddr[i] = 0;
3252 }
3253
3254 if (sc->tx_bd_chain[i] != NULL) {
3255 bus_dmamem_free(
3256 sc->tx_bd_chain_tag,
3257 sc->tx_bd_chain[i],
3258 sc->tx_bd_chain_map[i]);
3259 sc->tx_bd_chain[i] = NULL;
3260 }
3261 }
3262
3263 /* Destroy the TX buffer descriptor tag. */
3264 if (sc->tx_bd_chain_tag != NULL) {
3265 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3266 sc->tx_bd_chain_tag = NULL;
3267 }
3268
3269 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
3270 for (i = 0; i < sc->rx_pages; i++ ) {
3271 if (sc->rx_bd_chain_paddr[i] != 0) {
3272 bus_dmamap_unload(
3273 sc->rx_bd_chain_tag,
3274 sc->rx_bd_chain_map[i]);
3275 sc->rx_bd_chain_paddr[i] = 0;
3276 }
3277
3278 if (sc->rx_bd_chain[i] != NULL) {
3279 bus_dmamem_free(
3280 sc->rx_bd_chain_tag,
3281 sc->rx_bd_chain[i],
3282 sc->rx_bd_chain_map[i]);
3283 sc->rx_bd_chain[i] = NULL;
3284 }
3285 }
3286
3287 /* Destroy the RX buffer descriptor tag. */
3288 if (sc->rx_bd_chain_tag != NULL) {
3289 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3290 sc->rx_bd_chain_tag = NULL;
3291 }
3292
3293 /* Free, unmap and destroy all page buffer descriptor chain pages. */
3294 if (bce_hdr_split == TRUE) {
3295 for (i = 0; i < sc->pg_pages; i++ ) {
3296 if (sc->pg_bd_chain_paddr[i] != 0) {
3297 bus_dmamap_unload(
3298 sc->pg_bd_chain_tag,
3299 sc->pg_bd_chain_map[i]);
3300 sc->pg_bd_chain_paddr[i] = 0;
3301 }
3302
3303 if (sc->pg_bd_chain[i] != NULL) {
3304 bus_dmamem_free(
3305 sc->pg_bd_chain_tag,
3306 sc->pg_bd_chain[i],
3307 sc->pg_bd_chain_map[i]);
3308 sc->pg_bd_chain[i] = NULL;
3309 }
3310 }
3311
3312 /* Destroy the page buffer descriptor tag. */
3313 if (sc->pg_bd_chain_tag != NULL) {
3314 bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3315 sc->pg_bd_chain_tag = NULL;
3316 }
3317 }
3318
3319 /* Unload and destroy the TX mbuf maps. */
3320 for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3321 if (sc->tx_mbuf_map[i] != NULL) {
3322 bus_dmamap_unload(sc->tx_mbuf_tag,
3323 sc->tx_mbuf_map[i]);
3324 bus_dmamap_destroy(sc->tx_mbuf_tag,
3325 sc->tx_mbuf_map[i]);
3326 sc->tx_mbuf_map[i] = NULL;
3327 }
3328 }
3329
3330 /* Destroy the TX mbuf tag. */
3331 if (sc->tx_mbuf_tag != NULL) {
3332 bus_dma_tag_destroy(sc->tx_mbuf_tag);
3333 sc->tx_mbuf_tag = NULL;
3334 }
3335
3336 /* Unload and destroy the RX mbuf maps. */
3337 for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3338 if (sc->rx_mbuf_map[i] != NULL) {
3339 bus_dmamap_unload(sc->rx_mbuf_tag,
3340 sc->rx_mbuf_map[i]);
3341 bus_dmamap_destroy(sc->rx_mbuf_tag,
3342 sc->rx_mbuf_map[i]);
3343 sc->rx_mbuf_map[i] = NULL;
3344 }
3345 }
3346
3347 /* Destroy the RX mbuf tag. */
3348 if (sc->rx_mbuf_tag != NULL) {
3349 bus_dma_tag_destroy(sc->rx_mbuf_tag);
3350 sc->rx_mbuf_tag = NULL;
3351 }
3352
3353 /* Unload and destroy the page mbuf maps. */
3354 if (bce_hdr_split == TRUE) {
3355 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3356 if (sc->pg_mbuf_map[i] != NULL) {
3357 bus_dmamap_unload(sc->pg_mbuf_tag,
3358 sc->pg_mbuf_map[i]);
3359 bus_dmamap_destroy(sc->pg_mbuf_tag,
3360 sc->pg_mbuf_map[i]);
3361 sc->pg_mbuf_map[i] = NULL;
3362 }
3363 }
3364
3365 /* Destroy the page mbuf tag. */
3366 if (sc->pg_mbuf_tag != NULL) {
3367 bus_dma_tag_destroy(sc->pg_mbuf_tag);
3368 sc->pg_mbuf_tag = NULL;
3369 }
3370 }
3371
3372 /* Destroy the parent tag */
3373 if (sc->parent_tag != NULL) {
3374 bus_dma_tag_destroy(sc->parent_tag);
3375 sc->parent_tag = NULL;
3376 }
3377
3378 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3379 }
3380
3381 /****************************************************************************/
3382 /* Get DMA memory from the OS. */
3383 /* */
3384 /* Validates that the OS has provided DMA buffers in response to a */
3385 /* bus_dmamap_load() call and saves the physical address of those buffers. */
3386 /* When the callback is used the OS will return 0 for the mapping function */
3387 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */
3388 /* failures back to the caller. */
3389 /* */
3390 /* Returns: */
3391 /* Nothing. */
3392 /****************************************************************************/
3393 static void
3394 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3395 {
3396 bus_addr_t *busaddr = arg;
3397
3398 KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3399 __FUNCTION__, nseg));
3400 /* Simulate a mapping failure. */
3401 DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3402 error = ENOMEM);
3403
3404 /* ToDo: How to increment debug sim_count variable here? */
3405
3406 /* Check for an error and signal the caller that an error occurred. */
3407 if (error) {
3408 *busaddr = 0;
3409 } else {
3410 *busaddr = segs->ds_addr;
3411 }
3412 }
3413
3414 /****************************************************************************/
3415 /* Allocate any DMA memory needed by the driver. */
3416 /* */
3417 /* Allocates DMA memory needed for the various global structures needed by */
3418 /* hardware. */
3419 /* */
3420 /* Memory alignment requirements: */
3421 /* +-----------------+----------+----------+----------+----------+ */
3422 /* | | 5706 | 5708 | 5709 | 5716 | */
3423 /* +-----------------+----------+----------+----------+----------+ */
3424 /* |Status Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */
3425 /* |Statistics Block | 8 bytes | 8 bytes | 16 bytes | 16 bytes | */
3426 /* |RX Buffers | 16 bytes | 16 bytes | 16 bytes | 16 bytes | */
3427 /* |PG Buffers | none | none | none | none | */
3428 /* |TX Buffers | none | none | none | none | */
3429 /* |Chain Pages(1) | 4KiB | 4KiB | 4KiB | 4KiB | */
3430 /* |Context Memory | | | | | */
3431 /* +-----------------+----------+----------+----------+----------+ */
3432 /* */
3433 /* (1) Must align with CPU page size (BCM_PAGE_SZIE). */
3434 /* */
3435 /* Returns: */
3436 /* 0 for success, positive value for failure. */
3437 /****************************************************************************/
3438 static int
3439 bce_dma_alloc(device_t dev)
3440 {
3441 struct bce_softc *sc;
3442 int i, error, rc = 0;
3443 bus_size_t max_size, max_seg_size;
3444 int max_segments;
3445
3446 sc = device_get_softc(dev);
3447
3448 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3449
3450 /*
3451 * Allocate the parent bus DMA tag appropriate for PCI.
3452 */
3453 if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3454 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3455 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3456 &sc->parent_tag)) {
3457 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3458 __FILE__, __LINE__);
3459 rc = ENOMEM;
3460 goto bce_dma_alloc_exit;
3461 }
3462
3463 /*
3464 * Create a DMA tag for the status block, allocate and clear the
3465 * memory, map the memory into DMA space, and fetch the physical
3466 * address of the block.
3467 */
3468 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3469 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3470 NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3471 0, NULL, NULL, &sc->status_tag)) {
3472 BCE_PRINTF("%s(%d): Could not allocate status block "
3473 "DMA tag!\n", __FILE__, __LINE__);
3474 rc = ENOMEM;
3475 goto bce_dma_alloc_exit;
3476 }
3477
3478 if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3479 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3480 &sc->status_map)) {
3481 BCE_PRINTF("%s(%d): Could not allocate status block "
3482 "DMA memory!\n", __FILE__, __LINE__);
3483 rc = ENOMEM;
3484 goto bce_dma_alloc_exit;
3485 }
3486
3487 error = bus_dmamap_load(sc->status_tag, sc->status_map,
3488 sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3489 &sc->status_block_paddr, BUS_DMA_NOWAIT);
3490
3491 if (error || sc->status_block_paddr == 0) {
3492 BCE_PRINTF("%s(%d): Could not map status block "
3493 "DMA memory!\n", __FILE__, __LINE__);
3494 rc = ENOMEM;
3495 goto bce_dma_alloc_exit;
3496 }
3497
3498 DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3499 __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3500
3501 /*
3502 * Create a DMA tag for the statistics block, allocate and clear the
3503 * memory, map the memory into DMA space, and fetch the physical
3504 * address of the block.
3505 */
3506 if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3507 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3508 NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3509 0, NULL, NULL, &sc->stats_tag)) {
3510 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3511 "DMA tag!\n", __FILE__, __LINE__);
3512 rc = ENOMEM;
3513 goto bce_dma_alloc_exit;
3514 }
3515
3516 if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3517 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3518 BCE_PRINTF("%s(%d): Could not allocate statistics block "
3519 "DMA memory!\n", __FILE__, __LINE__);
3520 rc = ENOMEM;
3521 goto bce_dma_alloc_exit;
3522 }
3523
3524 error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3525 sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3526 &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3527
3528 if (error || sc->stats_block_paddr == 0) {
3529 BCE_PRINTF("%s(%d): Could not map statistics block "
3530 "DMA memory!\n", __FILE__, __LINE__);
3531 rc = ENOMEM;
3532 goto bce_dma_alloc_exit;
3533 }
3534
3535 DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3536 __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3537
3538 /* BCM5709 uses host memory as cache for context memory. */
3539 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3540 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3541 if (sc->ctx_pages == 0)
3542 sc->ctx_pages = 1;
3543
3544 DBRUNIF((sc->ctx_pages > 512),
3545 BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3546 __FILE__, __LINE__, sc->ctx_pages));
3547
3548 /*
3549 * Create a DMA tag for the context pages,
3550 * allocate and clear the memory, map the
3551 * memory into DMA space, and fetch the
3552 * physical address of the block.
3553 */
3554 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3555 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
3556 NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3557 0, NULL, NULL, &sc->ctx_tag)) {
3558 BCE_PRINTF("%s(%d): Could not allocate CTX "
3559 "DMA tag!\n", __FILE__, __LINE__);
3560 rc = ENOMEM;
3561 goto bce_dma_alloc_exit;
3562 }
3563
3564 for (i = 0; i < sc->ctx_pages; i++) {
3565 if(bus_dmamem_alloc(sc->ctx_tag,
3566 (void **)&sc->ctx_block[i],
3567 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3568 &sc->ctx_map[i])) {
3569 BCE_PRINTF("%s(%d): Could not allocate CTX "
3570 "DMA memory!\n", __FILE__, __LINE__);
3571 rc = ENOMEM;
3572 goto bce_dma_alloc_exit;
3573 }
3574
3575 error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3576 sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3577 &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3578
3579 if (error || sc->ctx_paddr[i] == 0) {
3580 BCE_PRINTF("%s(%d): Could not map CTX "
3581 "DMA memory!\n", __FILE__, __LINE__);
3582 rc = ENOMEM;
3583 goto bce_dma_alloc_exit;
3584 }
3585
3586 DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3587 "= 0x%jX\n", __FUNCTION__, i,
3588 (uintmax_t) sc->ctx_paddr[i]);
3589 }
3590 }
3591
3592 /*
3593 * Create a DMA tag for the TX buffer descriptor chain,
3594 * allocate and clear the memory, and fetch the
3595 * physical address of the block.
3596 */
3597 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3598 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3599 BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3600 NULL, NULL, &sc->tx_bd_chain_tag)) {
3601 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3602 "chain DMA tag!\n", __FILE__, __LINE__);
3603 rc = ENOMEM;
3604 goto bce_dma_alloc_exit;
3605 }
3606
3607 for (i = 0; i < sc->tx_pages; i++) {
3608 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3609 (void **)&sc->tx_bd_chain[i],
3610 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3611 &sc->tx_bd_chain_map[i])) {
3612 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3613 "chain DMA memory!\n", __FILE__, __LINE__);
3614 rc = ENOMEM;
3615 goto bce_dma_alloc_exit;
3616 }
3617
3618 error = bus_dmamap_load(sc->tx_bd_chain_tag,
3619 sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3620 BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3621 &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3622
3623 if (error || sc->tx_bd_chain_paddr[i] == 0) {
3624 BCE_PRINTF("%s(%d): Could not map TX descriptor "
3625 "chain DMA memory!\n", __FILE__, __LINE__);
3626 rc = ENOMEM;
3627 goto bce_dma_alloc_exit;
3628 }
3629
3630 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3631 "0x%jX\n", __FUNCTION__, i,
3632 (uintmax_t) sc->tx_bd_chain_paddr[i]);
3633 }
3634
3635 /* Check the required size before mapping to conserve resources. */
3636 if (bce_tso_enable) {
3637 max_size = BCE_TSO_MAX_SIZE;
3638 max_segments = BCE_MAX_SEGMENTS;
3639 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3640 } else {
3641 max_size = MCLBYTES * BCE_MAX_SEGMENTS;
3642 max_segments = BCE_MAX_SEGMENTS;
3643 max_seg_size = MCLBYTES;
3644 }
3645
3646 /* Create a DMA tag for TX mbufs. */
3647 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3648 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3649 max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
3650 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3651 __FILE__, __LINE__);
3652 rc = ENOMEM;
3653 goto bce_dma_alloc_exit;
3654 }
3655
3656 /* Create DMA maps for the TX mbufs clusters. */
3657 for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3658 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3659 &sc->tx_mbuf_map[i])) {
3660 BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3661 "map!\n", __FILE__, __LINE__);
3662 rc = ENOMEM;
3663 goto bce_dma_alloc_exit;
3664 }
3665 }
3666
3667 /*
3668 * Create a DMA tag for the RX buffer descriptor chain,
3669 * allocate and clear the memory, and fetch the physical
3670 * address of the blocks.
3671 */
3672 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3673 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3674 sc->max_bus_addr, NULL, NULL,
3675 BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3676 0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3677 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3678 "DMA tag!\n", __FILE__, __LINE__);
3679 rc = ENOMEM;
3680 goto bce_dma_alloc_exit;
3681 }
3682
3683 for (i = 0; i < sc->rx_pages; i++) {
3684 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3685 (void **)&sc->rx_bd_chain[i],
3686 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3687 &sc->rx_bd_chain_map[i])) {
3688 BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3689 "chain DMA memory!\n", __FILE__, __LINE__);
3690 rc = ENOMEM;
3691 goto bce_dma_alloc_exit;
3692 }
3693
3694 error = bus_dmamap_load(sc->rx_bd_chain_tag,
3695 sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3696 BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3697 &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3698
3699 if (error || sc->rx_bd_chain_paddr[i] == 0) {
3700 BCE_PRINTF("%s(%d): Could not map RX descriptor "
3701 "chain DMA memory!\n", __FILE__, __LINE__);
3702 rc = ENOMEM;
3703 goto bce_dma_alloc_exit;
3704 }
3705
3706 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3707 "0x%jX\n", __FUNCTION__, i,
3708 (uintmax_t) sc->rx_bd_chain_paddr[i]);
3709 }
3710
3711 /*
3712 * Create a DMA tag for RX mbufs.
3713 */
3714 if (bce_hdr_split == TRUE)
3715 max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3716 MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3717 else
3718 max_size = MJUM9BYTES;
3719
3720 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3721 "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3722
3723 if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3724 BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3725 max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3726 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3727 __FILE__, __LINE__);
3728 rc = ENOMEM;
3729 goto bce_dma_alloc_exit;
3730 }
3731
3732 /* Create DMA maps for the RX mbuf clusters. */
3733 for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3734 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3735 &sc->rx_mbuf_map[i])) {
3736 BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3737 "DMA map!\n", __FILE__, __LINE__);
3738 rc = ENOMEM;
3739 goto bce_dma_alloc_exit;
3740 }
3741 }
3742
3743 if (bce_hdr_split == TRUE) {
3744 /*
3745 * Create a DMA tag for the page buffer descriptor chain,
3746 * allocate and clear the memory, and fetch the physical
3747 * address of the blocks.
3748 */
3749 if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3750 BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3751 NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3752 0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3753 BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3754 "chain DMA tag!\n", __FILE__, __LINE__);
3755 rc = ENOMEM;
3756 goto bce_dma_alloc_exit;
3757 }
3758
3759 for (i = 0; i < sc->pg_pages; i++) {
3760 if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3761 (void **)&sc->pg_bd_chain[i],
3762 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3763 &sc->pg_bd_chain_map[i])) {
3764 BCE_PRINTF("%s(%d): Could not allocate page "
3765 "descriptor chain DMA memory!\n",
3766 __FILE__, __LINE__);
3767 rc = ENOMEM;
3768 goto bce_dma_alloc_exit;
3769 }
3770
3771 error = bus_dmamap_load(sc->pg_bd_chain_tag,
3772 sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3773 BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3774 &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3775
3776 if (error || sc->pg_bd_chain_paddr[i] == 0) {
3777 BCE_PRINTF("%s(%d): Could not map page descriptor "
3778 "chain DMA memory!\n", __FILE__, __LINE__);
3779 rc = ENOMEM;
3780 goto bce_dma_alloc_exit;
3781 }
3782
3783 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3784 "0x%jX\n", __FUNCTION__, i,
3785 (uintmax_t) sc->pg_bd_chain_paddr[i]);
3786 }
3787
3788 /*
3789 * Create a DMA tag for page mbufs.
3790 */
3791 if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3792 sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3793 1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3794 BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3795 "DMA tag!\n", __FILE__, __LINE__);
3796 rc = ENOMEM;
3797 goto bce_dma_alloc_exit;
3798 }
3799
3800 /* Create DMA maps for the page mbuf clusters. */
3801 for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3802 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3803 &sc->pg_mbuf_map[i])) {
3804 BCE_PRINTF("%s(%d): Unable to create page mbuf "
3805 "DMA map!\n", __FILE__, __LINE__);
3806 rc = ENOMEM;
3807 goto bce_dma_alloc_exit;
3808 }
3809 }
3810 }
3811
3812 bce_dma_alloc_exit:
3813 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3814 return(rc);
3815 }
3816
3817 /****************************************************************************/
3818 /* Release all resources used by the driver. */
3819 /* */
3820 /* Releases all resources acquired by the driver including interrupts, */
3821 /* interrupt handler, interfaces, mutexes, and DMA memory. */
3822 /* */
3823 /* Returns: */
3824 /* Nothing. */
3825 /****************************************************************************/
3826 static void
3827 bce_release_resources(struct bce_softc *sc)
3828 {
3829 device_t dev;
3830
3831 DBENTER(BCE_VERBOSE_RESET);
3832
3833 dev = sc->bce_dev;
3834
3835 bce_dma_free(sc);
3836
3837 if (sc->bce_intrhand != NULL) {
3838 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3839 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3840 }
3841
3842 if (sc->bce_res_irq != NULL) {
3843 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3844 bus_release_resource(dev, SYS_RES_IRQ,
3845 rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3846 }
3847
3848 if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3849 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3850 pci_release_msi(dev);
3851 }
3852
3853 if (sc->bce_res_mem != NULL) {
3854 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3855 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3856 sc->bce_res_mem);
3857 }
3858
3859 if (sc->bce_ifp != NULL) {
3860 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3861 if_free(sc->bce_ifp);
3862 }
3863
3864 if (mtx_initialized(&sc->bce_mtx))
3865 BCE_LOCK_DESTROY(sc);
3866
3867 DBEXIT(BCE_VERBOSE_RESET);
3868 }
3869
3870 /****************************************************************************/
3871 /* Firmware synchronization. */
3872 /* */
3873 /* Before performing certain events such as a chip reset, synchronize with */
3874 /* the firmware first. */
3875 /* */
3876 /* Returns: */
3877 /* 0 for success, positive value for failure. */
3878 /****************************************************************************/
3879 static int
3880 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3881 {
3882 int i, rc = 0;
3883 u32 val;
3884
3885 DBENTER(BCE_VERBOSE_RESET);
3886
3887 /* Don't waste any time if we've timed out before. */
3888 if (sc->bce_fw_timed_out == TRUE) {
3889 rc = EBUSY;
3890 goto bce_fw_sync_exit;
3891 }
3892
3893 /* Increment the message sequence number. */
3894 sc->bce_fw_wr_seq++;
3895 msg_data |= sc->bce_fw_wr_seq;
3896
3897 DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3898 "0x%08X\n", msg_data);
3899
3900 /* Send the message to the bootcode driver mailbox. */
3901 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3902
3903 /* Wait for the bootcode to acknowledge the message. */
3904 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3905 /* Check for a response in the bootcode firmware mailbox. */
3906 val = bce_shmem_rd(sc, BCE_FW_MB);
3907 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3908 break;
3909 DELAY(1000);
3910 }
3911
3912 /* If we've timed out, tell bootcode that we've stopped waiting. */
3913 if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3914 ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3915 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3916 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3917
3918 msg_data &= ~BCE_DRV_MSG_CODE;
3919 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3920
3921 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3922
3923 sc->bce_fw_timed_out = TRUE;
3924 rc = EBUSY;
3925 }
3926
3927 bce_fw_sync_exit:
3928 DBEXIT(BCE_VERBOSE_RESET);
3929 return (rc);
3930 }
3931
3932 /****************************************************************************/
3933 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
3934 /* */
3935 /* Returns: */
3936 /* Nothing. */
3937 /****************************************************************************/
3938 static void
3939 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
3940 u32 rv2p_code_len, u32 rv2p_proc)
3941 {
3942 int i;
3943 u32 val;
3944
3945 DBENTER(BCE_VERBOSE_RESET);
3946
3947 /* Set the page size used by RV2P. */
3948 if (rv2p_proc == RV2P_PROC2) {
3949 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3950 }
3951
3952 for (i = 0; i < rv2p_code_len; i += 8) {
3953 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3954 rv2p_code++;
3955 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3956 rv2p_code++;
3957
3958 if (rv2p_proc == RV2P_PROC1) {
3959 val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3960 REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3961 }
3962 else {
3963 val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3964 REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3965 }
3966 }
3967
3968 /* Reset the processor, un-stall is done later. */
3969 if (rv2p_proc == RV2P_PROC1) {
3970 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3971 }
3972 else {
3973 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3974 }
3975
3976 DBEXIT(BCE_VERBOSE_RESET);
3977 }
3978
3979 /****************************************************************************/
3980 /* Load RISC processor firmware. */
3981 /* */
3982 /* Loads firmware from the file if_bcefw.h into the scratchpad memory */
3983 /* associated with a particular processor. */
3984 /* */
3985 /* Returns: */
3986 /* Nothing. */
3987 /****************************************************************************/
3988 static void
3989 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3990 struct fw_info *fw)
3991 {
3992 u32 offset;
3993
3994 DBENTER(BCE_VERBOSE_RESET);
3995
3996 bce_halt_cpu(sc, cpu_reg);
3997
3998 /* Load the Text area. */
3999 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
4000 if (fw->text) {
4001 int j;
4002
4003 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
4004 REG_WR_IND(sc, offset, fw->text[j]);
4005 }
4006 }
4007
4008 /* Load the Data area. */
4009 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
4010 if (fw->data) {
4011 int j;
4012
4013 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
4014 REG_WR_IND(sc, offset, fw->data[j]);
4015 }
4016 }
4017
4018 /* Load the SBSS area. */
4019 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4020 if (fw->sbss) {
4021 int j;
4022
4023 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4024 REG_WR_IND(sc, offset, fw->sbss[j]);
4025 }
4026 }
4027
4028 /* Load the BSS area. */
4029 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4030 if (fw->bss) {
4031 int j;
4032
4033 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4034 REG_WR_IND(sc, offset, fw->bss[j]);
4035 }
4036 }
4037
4038 /* Load the Read-Only area. */
4039 offset = cpu_reg->spad_base +
4040 (fw->rodata_addr - cpu_reg->mips_view_base);
4041 if (fw->rodata) {
4042 int j;
4043
4044 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4045 REG_WR_IND(sc, offset, fw->rodata[j]);
4046 }
4047 }
4048
4049 /* Clear the pre-fetch instruction and set the FW start address. */
4050 REG_WR_IND(sc, cpu_reg->inst, 0);
4051 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4052
4053 DBEXIT(BCE_VERBOSE_RESET);
4054 }
4055
4056 /****************************************************************************/
4057 /* Starts the RISC processor. */
4058 /* */
4059 /* Assumes the CPU starting address has already been set. */
4060 /* */
4061 /* Returns: */
4062 /* Nothing. */
4063 /****************************************************************************/
4064 static void
4065 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4066 {
4067 u32 val;
4068
4069 DBENTER(BCE_VERBOSE_RESET);
4070
4071 /* Start the CPU. */
4072 val = REG_RD_IND(sc, cpu_reg->mode);
4073 val &= ~cpu_reg->mode_value_halt;
4074 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4075 REG_WR_IND(sc, cpu_reg->mode, val);
4076
4077 DBEXIT(BCE_VERBOSE_RESET);
4078 }
4079
4080 /****************************************************************************/
4081 /* Halts the RISC processor. */
4082 /* */
4083 /* Returns: */
4084 /* Nothing. */
4085 /****************************************************************************/
4086 static void
4087 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4088 {
4089 u32 val;
4090
4091 DBENTER(BCE_VERBOSE_RESET);
4092
4093 /* Halt the CPU. */
4094 val = REG_RD_IND(sc, cpu_reg->mode);
4095 val |= cpu_reg->mode_value_halt;
4096 REG_WR_IND(sc, cpu_reg->mode, val);
4097 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4098
4099 DBEXIT(BCE_VERBOSE_RESET);
4100 }
4101
4102 /****************************************************************************/
4103 /* Initialize the RX CPU. */
4104 /* */
4105 /* Returns: */
4106 /* Nothing. */
4107 /****************************************************************************/
4108 static void
4109 bce_start_rxp_cpu(struct bce_softc *sc)
4110 {
4111 struct cpu_reg cpu_reg;
4112
4113 DBENTER(BCE_VERBOSE_RESET);
4114
4115 cpu_reg.mode = BCE_RXP_CPU_MODE;
4116 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4117 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4118 cpu_reg.state = BCE_RXP_CPU_STATE;
4119 cpu_reg.state_value_clear = 0xffffff;
4120 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4121 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4122 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4123 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4124 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4125 cpu_reg.spad_base = BCE_RXP_SCRATCH;
4126 cpu_reg.mips_view_base = 0x8000000;
4127
4128 DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4129 bce_start_cpu(sc, &cpu_reg);
4130
4131 DBEXIT(BCE_VERBOSE_RESET);
4132 }
4133
4134 /****************************************************************************/
4135 /* Initialize the RX CPU. */
4136 /* */
4137 /* Returns: */
4138 /* Nothing. */
4139 /****************************************************************************/
4140 static void
4141 bce_init_rxp_cpu(struct bce_softc *sc)
4142 {
4143 struct cpu_reg cpu_reg;
4144 struct fw_info fw;
4145
4146 DBENTER(BCE_VERBOSE_RESET);
4147
4148 cpu_reg.mode = BCE_RXP_CPU_MODE;
4149 cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4150 cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4151 cpu_reg.state = BCE_RXP_CPU_STATE;
4152 cpu_reg.state_value_clear = 0xffffff;
4153 cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4154 cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4155 cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4156 cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4157 cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4158 cpu_reg.spad_base = BCE_RXP_SCRATCH;
4159 cpu_reg.mips_view_base = 0x8000000;
4160
4161 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4162 fw.ver_major = bce_RXP_b09FwReleaseMajor;
4163 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4164 fw.ver_fix = bce_RXP_b09FwReleaseFix;
4165 fw.start_addr = bce_RXP_b09FwStartAddr;
4166
4167 fw.text_addr = bce_RXP_b09FwTextAddr;
4168 fw.text_len = bce_RXP_b09FwTextLen;
4169 fw.text_index = 0;
4170 fw.text = bce_RXP_b09FwText;
4171
4172 fw.data_addr = bce_RXP_b09FwDataAddr;
4173 fw.data_len = bce_RXP_b09FwDataLen;
4174 fw.data_index = 0;
4175 fw.data = bce_RXP_b09FwData;
4176
4177 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4178 fw.sbss_len = bce_RXP_b09FwSbssLen;
4179 fw.sbss_index = 0;
4180 fw.sbss = bce_RXP_b09FwSbss;
4181
4182 fw.bss_addr = bce_RXP_b09FwBssAddr;
4183 fw.bss_len = bce_RXP_b09FwBssLen;
4184 fw.bss_index = 0;
4185 fw.bss = bce_RXP_b09FwBss;
4186
4187 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4188 fw.rodata_len = bce_RXP_b09FwRodataLen;
4189 fw.rodata_index = 0;
4190 fw.rodata = bce_RXP_b09FwRodata;
4191 } else {
4192 fw.ver_major = bce_RXP_b06FwReleaseMajor;
4193 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4194 fw.ver_fix = bce_RXP_b06FwReleaseFix;
4195 fw.start_addr = bce_RXP_b06FwStartAddr;
4196
4197 fw.text_addr = bce_RXP_b06FwTextAddr;
4198 fw.text_len = bce_RXP_b06FwTextLen;
4199 fw.text_index = 0;
4200 fw.text = bce_RXP_b06FwText;
4201
4202 fw.data_addr = bce_RXP_b06FwDataAddr;
4203 fw.data_len = bce_RXP_b06FwDataLen;
4204 fw.data_index = 0;
4205 fw.data = bce_RXP_b06FwData;
4206
4207 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4208 fw.sbss_len = bce_RXP_b06FwSbssLen;
4209 fw.sbss_index = 0;
4210 fw.sbss = bce_RXP_b06FwSbss;
4211
4212 fw.bss_addr = bce_RXP_b06FwBssAddr;
4213 fw.bss_len = bce_RXP_b06FwBssLen;
4214 fw.bss_index = 0;
4215 fw.bss = bce_RXP_b06FwBss;
4216
4217 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4218 fw.rodata_len = bce_RXP_b06FwRodataLen;
4219 fw.rodata_index = 0;
4220 fw.rodata = bce_RXP_b06FwRodata;
4221 }
4222
4223 DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4224 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4225
4226 /* Delay RXP start until initialization is complete. */
4227
4228 DBEXIT(BCE_VERBOSE_RESET);
4229 }
4230
4231 /****************************************************************************/
4232 /* Initialize the TX CPU. */
4233 /* */
4234 /* Returns: */
4235 /* Nothing. */
4236 /****************************************************************************/
4237 static void
4238 bce_init_txp_cpu(struct bce_softc *sc)
4239 {
4240 struct cpu_reg cpu_reg;
4241 struct fw_info fw;
4242
4243 DBENTER(BCE_VERBOSE_RESET);
4244
4245 cpu_reg.mode = BCE_TXP_CPU_MODE;
4246 cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4247 cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4248 cpu_reg.state = BCE_TXP_CPU_STATE;
4249 cpu_reg.state_value_clear = 0xffffff;
4250 cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4251 cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4252 cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4253 cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4254 cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4255 cpu_reg.spad_base = BCE_TXP_SCRATCH;
4256 cpu_reg.mips_view_base = 0x8000000;
4257
4258 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4259 fw.ver_major = bce_TXP_b09FwReleaseMajor;
4260 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4261 fw.ver_fix = bce_TXP_b09FwReleaseFix;
4262 fw.start_addr = bce_TXP_b09FwStartAddr;
4263
4264 fw.text_addr = bce_TXP_b09FwTextAddr;
4265 fw.text_len = bce_TXP_b09FwTextLen;
4266 fw.text_index = 0;
4267 fw.text = bce_TXP_b09FwText;
4268
4269 fw.data_addr = bce_TXP_b09FwDataAddr;
4270 fw.data_len = bce_TXP_b09FwDataLen;
4271 fw.data_index = 0;
4272 fw.data = bce_TXP_b09FwData;
4273
4274 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4275 fw.sbss_len = bce_TXP_b09FwSbssLen;
4276 fw.sbss_index = 0;
4277 fw.sbss = bce_TXP_b09FwSbss;
4278
4279 fw.bss_addr = bce_TXP_b09FwBssAddr;
4280 fw.bss_len = bce_TXP_b09FwBssLen;
4281 fw.bss_index = 0;
4282 fw.bss = bce_TXP_b09FwBss;
4283
4284 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4285 fw.rodata_len = bce_TXP_b09FwRodataLen;
4286 fw.rodata_index = 0;
4287 fw.rodata = bce_TXP_b09FwRodata;
4288 } else {
4289 fw.ver_major = bce_TXP_b06FwReleaseMajor;
4290 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4291 fw.ver_fix = bce_TXP_b06FwReleaseFix;
4292 fw.start_addr = bce_TXP_b06FwStartAddr;
4293
4294 fw.text_addr = bce_TXP_b06FwTextAddr;
4295 fw.text_len = bce_TXP_b06FwTextLen;
4296 fw.text_index = 0;
4297 fw.text = bce_TXP_b06FwText;
4298
4299 fw.data_addr = bce_TXP_b06FwDataAddr;
4300 fw.data_len = bce_TXP_b06FwDataLen;
4301 fw.data_index = 0;
4302 fw.data = bce_TXP_b06FwData;
4303
4304 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4305 fw.sbss_len = bce_TXP_b06FwSbssLen;
4306 fw.sbss_index = 0;
4307 fw.sbss = bce_TXP_b06FwSbss;
4308
4309 fw.bss_addr = bce_TXP_b06FwBssAddr;
4310 fw.bss_len = bce_TXP_b06FwBssLen;
4311 fw.bss_index = 0;
4312 fw.bss = bce_TXP_b06FwBss;
4313
4314 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4315 fw.rodata_len = bce_TXP_b06FwRodataLen;
4316 fw.rodata_index = 0;
4317 fw.rodata = bce_TXP_b06FwRodata;
4318 }
4319
4320 DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4321 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4322 bce_start_cpu(sc, &cpu_reg);
4323
4324 DBEXIT(BCE_VERBOSE_RESET);
4325 }
4326
4327 /****************************************************************************/
4328 /* Initialize the TPAT CPU. */
4329 /* */
4330 /* Returns: */
4331 /* Nothing. */
4332 /****************************************************************************/
4333 static void
4334 bce_init_tpat_cpu(struct bce_softc *sc)
4335 {
4336 struct cpu_reg cpu_reg;
4337 struct fw_info fw;
4338
4339 DBENTER(BCE_VERBOSE_RESET);
4340
4341 cpu_reg.mode = BCE_TPAT_CPU_MODE;
4342 cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4343 cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4344 cpu_reg.state = BCE_TPAT_CPU_STATE;
4345 cpu_reg.state_value_clear = 0xffffff;
4346 cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4347 cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4348 cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4349 cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4350 cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4351 cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4352 cpu_reg.mips_view_base = 0x8000000;
4353
4354 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4355 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4356 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4357 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4358 fw.start_addr = bce_TPAT_b09FwStartAddr;
4359
4360 fw.text_addr = bce_TPAT_b09FwTextAddr;
4361 fw.text_len = bce_TPAT_b09FwTextLen;
4362 fw.text_index = 0;
4363 fw.text = bce_TPAT_b09FwText;
4364
4365 fw.data_addr = bce_TPAT_b09FwDataAddr;
4366 fw.data_len = bce_TPAT_b09FwDataLen;
4367 fw.data_index = 0;
4368 fw.data = bce_TPAT_b09FwData;
4369
4370 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4371 fw.sbss_len = bce_TPAT_b09FwSbssLen;
4372 fw.sbss_index = 0;
4373 fw.sbss = bce_TPAT_b09FwSbss;
4374
4375 fw.bss_addr = bce_TPAT_b09FwBssAddr;
4376 fw.bss_len = bce_TPAT_b09FwBssLen;
4377 fw.bss_index = 0;
4378 fw.bss = bce_TPAT_b09FwBss;
4379
4380 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4381 fw.rodata_len = bce_TPAT_b09FwRodataLen;
4382 fw.rodata_index = 0;
4383 fw.rodata = bce_TPAT_b09FwRodata;
4384 } else {
4385 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4386 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4387 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4388 fw.start_addr = bce_TPAT_b06FwStartAddr;
4389
4390 fw.text_addr = bce_TPAT_b06FwTextAddr;
4391 fw.text_len = bce_TPAT_b06FwTextLen;
4392 fw.text_index = 0;
4393 fw.text = bce_TPAT_b06FwText;
4394
4395 fw.data_addr = bce_TPAT_b06FwDataAddr;
4396 fw.data_len = bce_TPAT_b06FwDataLen;
4397 fw.data_index = 0;
4398 fw.data = bce_TPAT_b06FwData;
4399
4400 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4401 fw.sbss_len = bce_TPAT_b06FwSbssLen;
4402 fw.sbss_index = 0;
4403 fw.sbss = bce_TPAT_b06FwSbss;
4404
4405 fw.bss_addr = bce_TPAT_b06FwBssAddr;
4406 fw.bss_len = bce_TPAT_b06FwBssLen;
4407 fw.bss_index = 0;
4408 fw.bss = bce_TPAT_b06FwBss;
4409
4410 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4411 fw.rodata_len = bce_TPAT_b06FwRodataLen;
4412 fw.rodata_index = 0;
4413 fw.rodata = bce_TPAT_b06FwRodata;
4414 }
4415
4416 DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4417 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4418 bce_start_cpu(sc, &cpu_reg);
4419
4420 DBEXIT(BCE_VERBOSE_RESET);
4421 }
4422
4423 /****************************************************************************/
4424 /* Initialize the CP CPU. */
4425 /* */
4426 /* Returns: */
4427 /* Nothing. */
4428 /****************************************************************************/
4429 static void
4430 bce_init_cp_cpu(struct bce_softc *sc)
4431 {
4432 struct cpu_reg cpu_reg;
4433 struct fw_info fw;
4434
4435 DBENTER(BCE_VERBOSE_RESET);
4436
4437 cpu_reg.mode = BCE_CP_CPU_MODE;
4438 cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4439 cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4440 cpu_reg.state = BCE_CP_CPU_STATE;
4441 cpu_reg.state_value_clear = 0xffffff;
4442 cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4443 cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4444 cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4445 cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4446 cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4447 cpu_reg.spad_base = BCE_CP_SCRATCH;
4448 cpu_reg.mips_view_base = 0x8000000;
4449
4450 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4451 fw.ver_major = bce_CP_b09FwReleaseMajor;
4452 fw.ver_minor = bce_CP_b09FwReleaseMinor;
4453 fw.ver_fix = bce_CP_b09FwReleaseFix;
4454 fw.start_addr = bce_CP_b09FwStartAddr;
4455
4456 fw.text_addr = bce_CP_b09FwTextAddr;
4457 fw.text_len = bce_CP_b09FwTextLen;
4458 fw.text_index = 0;
4459 fw.text = bce_CP_b09FwText;
4460
4461 fw.data_addr = bce_CP_b09FwDataAddr;
4462 fw.data_len = bce_CP_b09FwDataLen;
4463 fw.data_index = 0;
4464 fw.data = bce_CP_b09FwData;
4465
4466 fw.sbss_addr = bce_CP_b09FwSbssAddr;
4467 fw.sbss_len = bce_CP_b09FwSbssLen;
4468 fw.sbss_index = 0;
4469 fw.sbss = bce_CP_b09FwSbss;
4470
4471 fw.bss_addr = bce_CP_b09FwBssAddr;
4472 fw.bss_len = bce_CP_b09FwBssLen;
4473 fw.bss_index = 0;
4474 fw.bss = bce_CP_b09FwBss;
4475
4476 fw.rodata_addr = bce_CP_b09FwRodataAddr;
4477 fw.rodata_len = bce_CP_b09FwRodataLen;
4478 fw.rodata_index = 0;
4479 fw.rodata = bce_CP_b09FwRodata;
4480 } else {
4481 fw.ver_major = bce_CP_b06FwReleaseMajor;
4482 fw.ver_minor = bce_CP_b06FwReleaseMinor;
4483 fw.ver_fix = bce_CP_b06FwReleaseFix;
4484 fw.start_addr = bce_CP_b06FwStartAddr;
4485
4486 fw.text_addr = bce_CP_b06FwTextAddr;
4487 fw.text_len = bce_CP_b06FwTextLen;
4488 fw.text_index = 0;
4489 fw.text = bce_CP_b06FwText;
4490
4491 fw.data_addr = bce_CP_b06FwDataAddr;
4492 fw.data_len = bce_CP_b06FwDataLen;
4493 fw.data_index = 0;
4494 fw.data = bce_CP_b06FwData;
4495
4496 fw.sbss_addr = bce_CP_b06FwSbssAddr;
4497 fw.sbss_len = bce_CP_b06FwSbssLen;
4498 fw.sbss_index = 0;
4499 fw.sbss = bce_CP_b06FwSbss;
4500
4501 fw.bss_addr = bce_CP_b06FwBssAddr;
4502 fw.bss_len = bce_CP_b06FwBssLen;
4503 fw.bss_index = 0;
4504 fw.bss = bce_CP_b06FwBss;
4505
4506 fw.rodata_addr = bce_CP_b06FwRodataAddr;
4507 fw.rodata_len = bce_CP_b06FwRodataLen;
4508 fw.rodata_index = 0;
4509 fw.rodata = bce_CP_b06FwRodata;
4510 }
4511
4512 DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4513 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4514 bce_start_cpu(sc, &cpu_reg);
4515
4516 DBEXIT(BCE_VERBOSE_RESET);
4517 }
4518
4519 /****************************************************************************/
4520 /* Initialize the COM CPU. */
4521 /* */
4522 /* Returns: */
4523 /* Nothing. */
4524 /****************************************************************************/
4525 static void
4526 bce_init_com_cpu(struct bce_softc *sc)
4527 {
4528 struct cpu_reg cpu_reg;
4529 struct fw_info fw;
4530
4531 DBENTER(BCE_VERBOSE_RESET);
4532
4533 cpu_reg.mode = BCE_COM_CPU_MODE;
4534 cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4535 cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4536 cpu_reg.state = BCE_COM_CPU_STATE;
4537 cpu_reg.state_value_clear = 0xffffff;
4538 cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4539 cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4540 cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4541 cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4542 cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4543 cpu_reg.spad_base = BCE_COM_SCRATCH;
4544 cpu_reg.mips_view_base = 0x8000000;
4545
4546 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4547 fw.ver_major = bce_COM_b09FwReleaseMajor;
4548 fw.ver_minor = bce_COM_b09FwReleaseMinor;
4549 fw.ver_fix = bce_COM_b09FwReleaseFix;
4550 fw.start_addr = bce_COM_b09FwStartAddr;
4551
4552 fw.text_addr = bce_COM_b09FwTextAddr;
4553 fw.text_len = bce_COM_b09FwTextLen;
4554 fw.text_index = 0;
4555 fw.text = bce_COM_b09FwText;
4556
4557 fw.data_addr = bce_COM_b09FwDataAddr;
4558 fw.data_len = bce_COM_b09FwDataLen;
4559 fw.data_index = 0;
4560 fw.data = bce_COM_b09FwData;
4561
4562 fw.sbss_addr = bce_COM_b09FwSbssAddr;
4563 fw.sbss_len = bce_COM_b09FwSbssLen;
4564 fw.sbss_index = 0;
4565 fw.sbss = bce_COM_b09FwSbss;
4566
4567 fw.bss_addr = bce_COM_b09FwBssAddr;
4568 fw.bss_len = bce_COM_b09FwBssLen;
4569 fw.bss_index = 0;
4570 fw.bss = bce_COM_b09FwBss;
4571
4572 fw.rodata_addr = bce_COM_b09FwRodataAddr;
4573 fw.rodata_len = bce_COM_b09FwRodataLen;
4574 fw.rodata_index = 0;
4575 fw.rodata = bce_COM_b09FwRodata;
4576 } else {
4577 fw.ver_major = bce_COM_b06FwReleaseMajor;
4578 fw.ver_minor = bce_COM_b06FwReleaseMinor;
4579 fw.ver_fix = bce_COM_b06FwReleaseFix;
4580 fw.start_addr = bce_COM_b06FwStartAddr;
4581
4582 fw.text_addr = bce_COM_b06FwTextAddr;
4583 fw.text_len = bce_COM_b06FwTextLen;
4584 fw.text_index = 0;
4585 fw.text = bce_COM_b06FwText;
4586
4587 fw.data_addr = bce_COM_b06FwDataAddr;
4588 fw.data_len = bce_COM_b06FwDataLen;
4589 fw.data_index = 0;
4590 fw.data = bce_COM_b06FwData;
4591
4592 fw.sbss_addr = bce_COM_b06FwSbssAddr;
4593 fw.sbss_len = bce_COM_b06FwSbssLen;
4594 fw.sbss_index = 0;
4595 fw.sbss = bce_COM_b06FwSbss;
4596
4597 fw.bss_addr = bce_COM_b06FwBssAddr;
4598 fw.bss_len = bce_COM_b06FwBssLen;
4599 fw.bss_index = 0;
4600 fw.bss = bce_COM_b06FwBss;
4601
4602 fw.rodata_addr = bce_COM_b06FwRodataAddr;
4603 fw.rodata_len = bce_COM_b06FwRodataLen;
4604 fw.rodata_index = 0;
4605 fw.rodata = bce_COM_b06FwRodata;
4606 }
4607
4608 DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4609 bce_load_cpu_fw(sc, &cpu_reg, &fw);
4610 bce_start_cpu(sc, &cpu_reg);
4611
4612 DBEXIT(BCE_VERBOSE_RESET);
4613 }
4614
4615 /****************************************************************************/
4616 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs. */
4617 /* */
4618 /* Loads the firmware for each CPU and starts the CPU. */
4619 /* */
4620 /* Returns: */
4621 /* Nothing. */
4622 /****************************************************************************/
4623 static void
4624 bce_init_cpus(struct bce_softc *sc)
4625 {
4626 DBENTER(BCE_VERBOSE_RESET);
4627
4628 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4629 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4630 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4631 sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4632 bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4633 sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4634 } else {
4635 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4636 sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4637 bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4638 sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4639 }
4640
4641 } else {
4642 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4643 sizeof(bce_rv2p_proc1), RV2P_PROC1);
4644 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4645 sizeof(bce_rv2p_proc2), RV2P_PROC2);
4646 }
4647
4648 bce_init_rxp_cpu(sc);
4649 bce_init_txp_cpu(sc);
4650 bce_init_tpat_cpu(sc);
4651 bce_init_com_cpu(sc);
4652 bce_init_cp_cpu(sc);
4653
4654 DBEXIT(BCE_VERBOSE_RESET);
4655 }
4656
4657 /****************************************************************************/
4658 /* Initialize context memory. */
4659 /* */
4660 /* Clears the memory associated with each Context ID (CID). */
4661 /* */
4662 /* Returns: */
4663 /* Nothing. */
4664 /****************************************************************************/
4665 static int
4666 bce_init_ctx(struct bce_softc *sc)
4667 {
4668 u32 offset, val, vcid_addr;
4669 int i, j, rc, retry_cnt;
4670
4671 rc = 0;
4672 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4673
4674 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4675 retry_cnt = CTX_INIT_RETRY_COUNT;
4676
4677 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4678
4679 /*
4680 * BCM5709 context memory may be cached
4681 * in host memory so prepare the host memory
4682 * for access.
4683 */
4684 val = BCE_CTX_COMMAND_ENABLED |
4685 BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4686 val |= (BCM_PAGE_BITS - 8) << 16;
4687 REG_WR(sc, BCE_CTX_COMMAND, val);
4688
4689 /* Wait for mem init command to complete. */
4690 for (i = 0; i < retry_cnt; i++) {
4691 val = REG_RD(sc, BCE_CTX_COMMAND);
4692 if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4693 break;
4694 DELAY(2);
4695 }
4696 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4697 BCE_PRINTF("%s(): Context memory initialization failed!\n",
4698 __FUNCTION__);
4699 rc = EBUSY;
4700 goto init_ctx_fail;
4701 }
4702
4703 for (i = 0; i < sc->ctx_pages; i++) {
4704 /* Set the physical address of the context memory. */
4705 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4706 BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4707 BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4708 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4709 BCE_ADDR_HI(sc->ctx_paddr[i]));
4710 REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4711 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4712
4713 /* Verify the context memory write was successful. */
4714 for (j = 0; j < retry_cnt; j++) {
4715 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4716 if ((val &
4717 BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4718 break;
4719 DELAY(5);
4720 }
4721 if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4722 BCE_PRINTF("%s(): Failed to initialize "
4723 "context page %d!\n", __FUNCTION__, i);
4724 rc = EBUSY;
4725 goto init_ctx_fail;
4726 }
4727 }
4728 } else {
4729 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4730
4731 /*
4732 * For the 5706/5708, context memory is local to
4733 * the controller, so initialize the controller
4734 * context memory.
4735 */
4736
4737 vcid_addr = GET_CID_ADDR(96);
4738 while (vcid_addr) {
4739 vcid_addr -= PHY_CTX_SIZE;
4740
4741 REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4742 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4743
4744 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4745 CTX_WR(sc, 0x00, offset, 0);
4746 }
4747
4748 REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4749 REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4750 }
4751 }
4752 init_ctx_fail:
4753 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4754 return (rc);
4755 }
4756
4757 /****************************************************************************/
4758 /* Fetch the permanent MAC address of the controller. */
4759 /* */
4760 /* Returns: */
4761 /* Nothing. */
4762 /****************************************************************************/
4763 static void
4764 bce_get_mac_addr(struct bce_softc *sc)
4765 {
4766 u32 mac_lo = 0, mac_hi = 0;
4767
4768 DBENTER(BCE_VERBOSE_RESET);
4769
4770 /*
4771 * The NetXtreme II bootcode populates various NIC
4772 * power-on and runtime configuration items in a
4773 * shared memory area. The factory configured MAC
4774 * address is available from both NVRAM and the
4775 * shared memory area so we'll read the value from
4776 * shared memory for speed.
4777 */
4778
4779 mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4780 mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4781
4782 if ((mac_lo == 0) && (mac_hi == 0)) {
4783 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4784 __FILE__, __LINE__);
4785 } else {
4786 sc->eaddr[0] = (u_char)(mac_hi >> 8);
4787 sc->eaddr[1] = (u_char)(mac_hi >> 0);
4788 sc->eaddr[2] = (u_char)(mac_lo >> 24);
4789 sc->eaddr[3] = (u_char)(mac_lo >> 16);
4790 sc->eaddr[4] = (u_char)(mac_lo >> 8);
4791 sc->eaddr[5] = (u_char)(mac_lo >> 0);
4792 }
4793
4794 DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4795 "address = %6D\n", sc->eaddr, ":");
4796 DBEXIT(BCE_VERBOSE_RESET);
4797 }
4798
4799 /****************************************************************************/
4800 /* Program the MAC address. */
4801 /* */
4802 /* Returns: */
4803 /* Nothing. */
4804 /****************************************************************************/
4805 static void
4806 bce_set_mac_addr(struct bce_softc *sc)
4807 {
4808 u32 val;
4809 u8 *mac_addr = sc->eaddr;
4810
4811 /* ToDo: Add support for setting multiple MAC addresses. */
4812
4813 DBENTER(BCE_VERBOSE_RESET);
4814 DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4815 "%6D\n", sc->eaddr, ":");
4816
4817 val = (mac_addr[0] << 8) | mac_addr[1];
4818
4819 REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4820
4821 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4822 (mac_addr[4] << 8) | mac_addr[5];
4823
4824 REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4825
4826 DBEXIT(BCE_VERBOSE_RESET);
4827 }
4828
4829 /****************************************************************************/
4830 /* Stop the controller. */
4831 /* */
4832 /* Returns: */
4833 /* Nothing. */
4834 /****************************************************************************/
4835 static void
4836 bce_stop(struct bce_softc *sc)
4837 {
4838 struct ifnet *ifp;
4839
4840 DBENTER(BCE_VERBOSE_RESET);
4841
4842 BCE_LOCK_ASSERT(sc);
4843
4844 ifp = sc->bce_ifp;
4845
4846 callout_stop(&sc->bce_tick_callout);
4847
4848 /* Disable the transmit/receive blocks. */
4849 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4850 REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4851 DELAY(20);
4852
4853 bce_disable_intr(sc);
4854
4855 /* Free RX buffers. */
4856 if (bce_hdr_split == TRUE) {
4857 bce_free_pg_chain(sc);
4858 }
4859 bce_free_rx_chain(sc);
4860
4861 /* Free TX buffers. */
4862 bce_free_tx_chain(sc);
4863
4864 sc->watchdog_timer = 0;
4865
4866 sc->bce_link_up = FALSE;
4867
4868 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4869
4870 DBEXIT(BCE_VERBOSE_RESET);
4871 }
4872
4873 static int
4874 bce_reset(struct bce_softc *sc, u32 reset_code)
4875 {
4876 u32 emac_mode_save, val;
4877 int i, rc = 0;
4878 static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4879 BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4880
4881 DBENTER(BCE_VERBOSE_RESET);
4882
4883 DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4884 __FUNCTION__, reset_code);
4885
4886 /*
4887 * If ASF/IPMI is operational, then the EMAC Mode register already
4888 * contains appropriate values for the link settings that have
4889 * been auto-negotiated. Resetting the chip will clobber those
4890 * values. Save the important bits so we can restore them after
4891 * the reset.
4892 */
4893 emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4894
4895 /* Wait for pending PCI transactions to complete. */
4896 REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4897 BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4898 BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4899 BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4900 BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4901 val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4902 DELAY(5);
4903
4904 /* Disable DMA */
4905 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4906 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4907 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4908 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4909 }
4910
4911 /* Assume bootcode is running. */
4912 sc->bce_fw_timed_out = FALSE;
4913 sc->bce_drv_cardiac_arrest = FALSE;
4914
4915 /* Give the firmware a chance to prepare for the reset. */
4916 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4917 if (rc)
4918 goto bce_reset_exit;
4919
4920 /* Set a firmware reminder that this is a soft reset. */
4921 bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4922
4923 /* Dummy read to force the chip to complete all current transactions. */
4924 val = REG_RD(sc, BCE_MISC_ID);
4925
4926 /* Chip reset. */
4927 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4928 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4929 REG_RD(sc, BCE_MISC_COMMAND);
4930 DELAY(5);
4931
4932 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4933 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4934
4935 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4936 } else {
4937 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4938 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4939 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4940 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4941
4942 /* Allow up to 30us for reset to complete. */
4943 for (i = 0; i < 10; i++) {
4944 val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4945 if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4946 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4947 break;
4948 }
4949 DELAY(10);
4950 }
4951
4952 /* Check that reset completed successfully. */
4953 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4954 BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4955 BCE_PRINTF("%s(%d): Reset failed!\n",
4956 __FILE__, __LINE__);
4957 rc = EBUSY;
4958 goto bce_reset_exit;
4959 }
4960 }
4961
4962 /* Make sure byte swapping is properly configured. */
4963 val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4964 if (val != 0x01020304) {
4965 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4966 __FILE__, __LINE__);
4967 rc = ENODEV;
4968 goto bce_reset_exit;
4969 }
4970
4971 /* Just completed a reset, assume that firmware is running again. */
4972 sc->bce_fw_timed_out = FALSE;
4973 sc->bce_drv_cardiac_arrest = FALSE;
4974
4975 /* Wait for the firmware to finish its initialization. */
4976 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4977 if (rc)
4978 BCE_PRINTF("%s(%d): Firmware did not complete "
4979 "initialization!\n", __FILE__, __LINE__);
4980 /* Get firmware capabilities. */
4981 bce_fw_cap_init(sc);
4982
4983 bce_reset_exit:
4984 /* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
4985 if (reset_code == BCE_DRV_MSG_CODE_RESET) {
4986 val = REG_RD(sc, BCE_EMAC_MODE);
4987 val = (val & ~emac_mode_mask) | emac_mode_save;
4988 REG_WR(sc, BCE_EMAC_MODE, val);
4989 }
4990
4991 DBEXIT(BCE_VERBOSE_RESET);
4992 return (rc);
4993 }
4994
4995 static int
4996 bce_chipinit(struct bce_softc *sc)
4997 {
4998 u32 val;
4999 int rc = 0;
5000
5001 DBENTER(BCE_VERBOSE_RESET);
5002
5003 bce_disable_intr(sc);
5004
5005 /*
5006 * Initialize DMA byte/word swapping, configure the number of DMA
5007 * channels and PCI clock compensation delay.
5008 */
5009 val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
5010 BCE_DMA_CONFIG_DATA_WORD_SWAP |
5011 #if BYTE_ORDER == BIG_ENDIAN
5012 BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
5013 #endif
5014 BCE_DMA_CONFIG_CNTL_WORD_SWAP |
5015 DMA_READ_CHANS << 12 |
5016 DMA_WRITE_CHANS << 16;
5017
5018 val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5019
5020 if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5021 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5022
5023 /*
5024 * This setting resolves a problem observed on certain Intel PCI
5025 * chipsets that cannot handle multiple outstanding DMA operations.
5026 * See errata E9_5706A1_65.
5027 */
5028 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5029 (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5030 !(sc->bce_flags & BCE_PCIX_FLAG))
5031 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5032
5033 REG_WR(sc, BCE_DMA_CONFIG, val);
5034
5035 /* Enable the RX_V2P and Context state machines before access. */
5036 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5037 BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5038 BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5039 BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5040
5041 /* Initialize context mapping and zero out the quick contexts. */
5042 if ((rc = bce_init_ctx(sc)) != 0)
5043 goto bce_chipinit_exit;
5044
5045 /* Initialize the on-boards CPUs */
5046 bce_init_cpus(sc);
5047
5048 /* Enable management frames (NC-SI) to flow to the MCP. */
5049 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5050 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5051 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5052 }
5053
5054 /* Prepare NVRAM for access. */
5055 if ((rc = bce_init_nvram(sc)) != 0)
5056 goto bce_chipinit_exit;
5057
5058 /* Set the kernel bypass block size */
5059 val = REG_RD(sc, BCE_MQ_CONFIG);
5060 val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5061 val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5062
5063 /* Enable bins used on the 5709. */
5064 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5065 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5066 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5067 val |= BCE_MQ_CONFIG_HALT_DIS;
5068 }
5069
5070 REG_WR(sc, BCE_MQ_CONFIG, val);
5071
5072 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5073 REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5074 REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5075
5076 /* Set the page size and clear the RV2P processor stall bits. */
5077 val = (BCM_PAGE_BITS - 8) << 24;
5078 REG_WR(sc, BCE_RV2P_CONFIG, val);
5079
5080 /* Configure page size. */
5081 val = REG_RD(sc, BCE_TBDR_CONFIG);
5082 val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5083 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5084 REG_WR(sc, BCE_TBDR_CONFIG, val);
5085
5086 /* Set the perfect match control register to default. */
5087 REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5088
5089 bce_chipinit_exit:
5090 DBEXIT(BCE_VERBOSE_RESET);
5091
5092 return(rc);
5093 }
5094
5095 /****************************************************************************/
5096 /* Initialize the controller in preparation to send/receive traffic. */
5097 /* */
5098 /* Returns: */
5099 /* 0 for success, positive value for failure. */
5100 /****************************************************************************/
5101 static int
5102 bce_blockinit(struct bce_softc *sc)
5103 {
5104 u32 reg, val;
5105 int rc = 0;
5106
5107 DBENTER(BCE_VERBOSE_RESET);
5108
5109 /* Load the hardware default MAC address. */
5110 bce_set_mac_addr(sc);
5111
5112 /* Set the Ethernet backoff seed value */
5113 val = sc->eaddr[0] + (sc->eaddr[1] << 8) +
5114 (sc->eaddr[2] << 16) + (sc->eaddr[3] ) +
5115 (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
5116 REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5117
5118 sc->last_status_idx = 0;
5119 sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5120
5121 /* Set up link change interrupt generation. */
5122 REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5123
5124 /* Program the physical address of the status block. */
5125 REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5126 BCE_ADDR_LO(sc->status_block_paddr));
5127 REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5128 BCE_ADDR_HI(sc->status_block_paddr));
5129
5130 /* Program the physical address of the statistics block. */
5131 REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5132 BCE_ADDR_LO(sc->stats_block_paddr));
5133 REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5134 BCE_ADDR_HI(sc->stats_block_paddr));
5135
5136 /*
5137 * Program various host coalescing parameters.
5138 * Trip points control how many BDs should be ready before generating
5139 * an interrupt while ticks control how long a BD can sit in the chain
5140 * before generating an interrupt.
5141 */
5142 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5143 (sc->bce_tx_quick_cons_trip_int << 16) |
5144 sc->bce_tx_quick_cons_trip);
5145 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5146 (sc->bce_rx_quick_cons_trip_int << 16) |
5147 sc->bce_rx_quick_cons_trip);
5148 REG_WR(sc, BCE_HC_TX_TICKS,
5149 (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5150 REG_WR(sc, BCE_HC_RX_TICKS,
5151 (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5152 REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5153 REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
5154 /* Not used for L2. */
5155 REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5156 REG_WR(sc, BCE_HC_COM_TICKS, 0);
5157 REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5158
5159 /* Configure the Host Coalescing block. */
5160 val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5161 BCE_HC_CONFIG_COLLECT_STATS;
5162
5163 #if 0
5164 /* ToDo: Add MSI-X support. */
5165 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5166 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5167 BCE_HC_SB_CONFIG_1;
5168
5169 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5170
5171 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5172 BCE_HC_SB_CONFIG_1_ONE_SHOT);
5173
5174 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5175 (sc->tx_quick_cons_trip_int << 16) |
5176 sc->tx_quick_cons_trip);
5177
5178 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5179 (sc->tx_ticks_int << 16) | sc->tx_ticks);
5180
5181 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5182 }
5183
5184 /*
5185 * Tell the HC block to automatically set the
5186 * INT_MASK bit after an MSI/MSI-X interrupt
5187 * is generated so the driver doesn't have to.
5188 */
5189 if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5190 val |= BCE_HC_CONFIG_ONE_SHOT;
5191
5192 /* Set the MSI-X status blocks to 128 byte boundaries. */
5193 if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5194 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5195 #endif
5196
5197 REG_WR(sc, BCE_HC_CONFIG, val);
5198
5199 /* Clear the internal statistics counters. */
5200 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5201
5202 /* Verify that bootcode is running. */
5203 reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5204
5205 DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5206 BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5207 __FILE__, __LINE__);
5208 reg = 0);
5209
5210 if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5211 BCE_DEV_INFO_SIGNATURE_MAGIC) {
5212 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5213 "Expected: 08%08X\n", __FILE__, __LINE__,
5214 (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5215 BCE_DEV_INFO_SIGNATURE_MAGIC);
5216 rc = ENODEV;
5217 goto bce_blockinit_exit;
5218 }
5219
5220 /* Enable DMA */
5221 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5222 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5223 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5224 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5225 }
5226
5227 /* Allow bootcode to apply additional fixes before enabling MAC. */
5228 rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5229 BCE_DRV_MSG_CODE_RESET);
5230
5231 /* Enable link state change interrupt generation. */
5232 REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5233
5234 /* Enable the RXP. */
5235 bce_start_rxp_cpu(sc);
5236
5237 /* Disable management frames (NC-SI) from flowing to the MCP. */
5238 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5239 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5240 ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5241 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5242 }
5243
5244 /* Enable all remaining blocks in the MAC. */
5245 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5246 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5247 BCE_MISC_ENABLE_DEFAULT_XI);
5248 else
5249 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5250 BCE_MISC_ENABLE_DEFAULT);
5251
5252 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5253 DELAY(20);
5254
5255 /* Save the current host coalescing block settings. */
5256 sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5257
5258 bce_blockinit_exit:
5259 DBEXIT(BCE_VERBOSE_RESET);
5260
5261 return (rc);
5262 }
5263
5264 /****************************************************************************/
5265 /* Encapsulate an mbuf into the rx_bd chain. */
5266 /* */
5267 /* Returns: */
5268 /* 0 for success, positive value for failure. */
5269 /****************************************************************************/
5270 static int
5271 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5272 {
5273 bus_dma_segment_t segs[1];
5274 struct mbuf *m_new = NULL;
5275 struct rx_bd *rxbd;
5276 int nsegs, error, rc = 0;
5277 #ifdef BCE_DEBUG
5278 u16 debug_chain_prod = chain_prod;
5279 #endif
5280
5281 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5282
5283 /* Make sure the inputs are valid. */
5284 DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5285 BCE_PRINTF("%s(%d): RX producer out of range: "
5286 "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5287 chain_prod, (u16)MAX_RX_BD_ALLOC));
5288
5289 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5290 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5291 prod, chain_prod, *prod_bseq);
5292
5293 /* Update some debug statistic counters */
5294 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5295 sc->rx_low_watermark = sc->free_rx_bd);
5296 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5297 sc->rx_empty_count++);
5298
5299 /* Simulate an mbuf allocation failure. */
5300 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5301 sc->mbuf_alloc_failed_count++;
5302 sc->mbuf_alloc_failed_sim_count++;
5303 rc = ENOBUFS;
5304 goto bce_get_rx_buf_exit);
5305
5306 /* This is a new mbuf allocation. */
5307 if (bce_hdr_split == TRUE)
5308 MGETHDR(m_new, M_NOWAIT, MT_DATA);
5309 else
5310 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5311 sc->rx_bd_mbuf_alloc_size);
5312
5313 if (m_new == NULL) {
5314 sc->mbuf_alloc_failed_count++;
5315 rc = ENOBUFS;
5316 goto bce_get_rx_buf_exit;
5317 }
5318
5319 DBRUN(sc->debug_rx_mbuf_alloc++);
5320
5321 /* Make sure we have a valid packet header. */
5322 M_ASSERTPKTHDR(m_new);
5323
5324 /* Initialize the mbuf size and pad if necessary for alignment. */
5325 m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5326 m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5327
5328 /* ToDo: Consider calling m_fragment() to test error handling. */
5329
5330 /* Map the mbuf cluster into device memory. */
5331 error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5332 sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5333
5334 /* Handle any mapping errors. */
5335 if (error) {
5336 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5337 "chain (%d)!\n", __FILE__, __LINE__, error);
5338
5339 sc->dma_map_addr_rx_failed_count++;
5340 m_freem(m_new);
5341
5342 DBRUN(sc->debug_rx_mbuf_alloc--);
5343
5344 rc = ENOBUFS;
5345 goto bce_get_rx_buf_exit;
5346 }
5347
5348 /* All mbufs must map to a single segment. */
5349 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5350 __FUNCTION__, nsegs));
5351
5352 /* Setup the rx_bd for the segment. */
5353 rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5354
5355 rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5356 rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5357 rxbd->rx_bd_len = htole32(segs[0].ds_len);
5358 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5359 *prod_bseq += segs[0].ds_len;
5360
5361 /* Save the mbuf and update our counter. */
5362 sc->rx_mbuf_ptr[chain_prod] = m_new;
5363 sc->free_rx_bd -= nsegs;
5364
5365 DBRUNMSG(BCE_INSANE_RECV,
5366 bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5367
5368 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5369 "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5370 chain_prod, *prod_bseq);
5371
5372 bce_get_rx_buf_exit:
5373 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5374
5375 return(rc);
5376 }
5377
5378 /****************************************************************************/
5379 /* Encapsulate an mbuf cluster into the page chain. */
5380 /* */
5381 /* Returns: */
5382 /* 0 for success, positive value for failure. */
5383 /****************************************************************************/
5384 static int
5385 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5386 {
5387 bus_dma_segment_t segs[1];
5388 struct mbuf *m_new = NULL;
5389 struct rx_bd *pgbd;
5390 int error, nsegs, rc = 0;
5391 #ifdef BCE_DEBUG
5392 u16 debug_prod_idx = prod_idx;
5393 #endif
5394
5395 DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5396
5397 /* Make sure the inputs are valid. */
5398 DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5399 BCE_PRINTF("%s(%d): page producer out of range: "
5400 "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5401 prod_idx, (u16)MAX_PG_BD_ALLOC));
5402
5403 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5404 "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5405
5406 /* Update counters if we've hit a new low or run out of pages. */
5407 DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5408 sc->pg_low_watermark = sc->free_pg_bd);
5409 DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5410
5411 /* Simulate an mbuf allocation failure. */
5412 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5413 sc->mbuf_alloc_failed_count++;
5414 sc->mbuf_alloc_failed_sim_count++;
5415 rc = ENOBUFS;
5416 goto bce_get_pg_buf_exit);
5417
5418 /* This is a new mbuf allocation. */
5419 m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5420 if (m_new == NULL) {
5421 sc->mbuf_alloc_failed_count++;
5422 rc = ENOBUFS;
5423 goto bce_get_pg_buf_exit;
5424 }
5425
5426 DBRUN(sc->debug_pg_mbuf_alloc++);
5427
5428 m_new->m_len = MCLBYTES;
5429
5430 /* ToDo: Consider calling m_fragment() to test error handling. */
5431
5432 /* Map the mbuf cluster into device memory. */
5433 error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5434 sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5435
5436 /* Handle any mapping errors. */
5437 if (error) {
5438 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5439 __FILE__, __LINE__);
5440
5441 m_freem(m_new);
5442 DBRUN(sc->debug_pg_mbuf_alloc--);
5443
5444 rc = ENOBUFS;
5445 goto bce_get_pg_buf_exit;
5446 }
5447
5448 /* All mbufs must map to a single segment. */
5449 KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5450 __FUNCTION__, nsegs));
5451
5452 /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5453
5454 /*
5455 * The page chain uses the same rx_bd data structure
5456 * as the receive chain but doesn't require a byte sequence (bseq).
5457 */
5458 pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5459
5460 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5461 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5462 pgbd->rx_bd_len = htole32(MCLBYTES);
5463 pgbd->rx_bd_flags = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5464
5465 /* Save the mbuf and update our counter. */
5466 sc->pg_mbuf_ptr[prod_idx] = m_new;
5467 sc->free_pg_bd--;
5468
5469 DBRUNMSG(BCE_INSANE_RECV,
5470 bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5471
5472 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5473 "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5474
5475 bce_get_pg_buf_exit:
5476 DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5477
5478 return(rc);
5479 }
5480
5481 /****************************************************************************/
5482 /* Initialize the TX context memory. */
5483 /* */
5484 /* Returns: */
5485 /* Nothing */
5486 /****************************************************************************/
5487 static void
5488 bce_init_tx_context(struct bce_softc *sc)
5489 {
5490 u32 val;
5491
5492 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5493
5494 /* Initialize the context ID for an L2 TX chain. */
5495 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5496 /* Set the CID type to support an L2 connection. */
5497 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5498 BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5499 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5500 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5501 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5502 BCE_L2CTX_TX_CMD_TYPE_XI, val);
5503
5504 /* Point the hardware to the first page in the chain. */
5505 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5506 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5507 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5508 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5509 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5510 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5511 } else {
5512 /* Set the CID type to support an L2 connection. */
5513 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5514 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5515 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5516 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5517
5518 /* Point the hardware to the first page in the chain. */
5519 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5520 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5521 BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5522 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5523 CTX_WR(sc, GET_CID_ADDR(TX_CID),
5524 BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5525 }
5526
5527 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5528 }
5529
5530 /****************************************************************************/
5531 /* Allocate memory and initialize the TX data structures. */
5532 /* */
5533 /* Returns: */
5534 /* 0 for success, positive value for failure. */
5535 /****************************************************************************/
5536 static int
5537 bce_init_tx_chain(struct bce_softc *sc)
5538 {
5539 struct tx_bd *txbd;
5540 int i, rc = 0;
5541
5542 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5543
5544 /* Set the initial TX producer/consumer indices. */
5545 sc->tx_prod = 0;
5546 sc->tx_cons = 0;
5547 sc->tx_prod_bseq = 0;
5548 sc->used_tx_bd = 0;
5549 sc->max_tx_bd = USABLE_TX_BD_ALLOC;
5550 DBRUN(sc->tx_hi_watermark = 0);
5551 DBRUN(sc->tx_full_count = 0);
5552
5553 /*
5554 * The NetXtreme II supports a linked-list structure called
5555 * a Buffer Descriptor Chain (or BD chain). A BD chain
5556 * consists of a series of 1 or more chain pages, each of which
5557 * consists of a fixed number of BD entries.
5558 * The last BD entry on each page is a pointer to the next page
5559 * in the chain, and the last pointer in the BD chain
5560 * points back to the beginning of the chain.
5561 */
5562
5563 /* Set the TX next pointer chain entries. */
5564 for (i = 0; i < sc->tx_pages; i++) {
5565 int j;
5566
5567 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5568
5569 /* Check if we've reached the last page. */
5570 if (i == (sc->tx_pages - 1))
5571 j = 0;
5572 else
5573 j = i + 1;
5574
5575 txbd->tx_bd_haddr_hi =
5576 htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5577 txbd->tx_bd_haddr_lo =
5578 htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5579 }
5580
5581 bce_init_tx_context(sc);
5582
5583 DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5584 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5585
5586 return(rc);
5587 }
5588
5589 /****************************************************************************/
5590 /* Free memory and clear the TX data structures. */
5591 /* */
5592 /* Returns: */
5593 /* Nothing. */
5594 /****************************************************************************/
5595 static void
5596 bce_free_tx_chain(struct bce_softc *sc)
5597 {
5598 int i;
5599
5600 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5601
5602 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5603 for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5604 if (sc->tx_mbuf_ptr[i] != NULL) {
5605 if (sc->tx_mbuf_map[i] != NULL)
5606 bus_dmamap_sync(sc->tx_mbuf_tag,
5607 sc->tx_mbuf_map[i],
5608 BUS_DMASYNC_POSTWRITE);
5609 m_freem(sc->tx_mbuf_ptr[i]);
5610 sc->tx_mbuf_ptr[i] = NULL;
5611 DBRUN(sc->debug_tx_mbuf_alloc--);
5612 }
5613 }
5614
5615 /* Clear each TX chain page. */
5616 for (i = 0; i < sc->tx_pages; i++)
5617 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5618
5619 sc->used_tx_bd = 0;
5620
5621 /* Check if we lost any mbufs in the process. */
5622 DBRUNIF((sc->debug_tx_mbuf_alloc),
5623 BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5624 "from tx chain!\n", __FILE__, __LINE__,
5625 sc->debug_tx_mbuf_alloc));
5626
5627 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5628 }
5629
5630 /****************************************************************************/
5631 /* Initialize the RX context memory. */
5632 /* */
5633 /* Returns: */
5634 /* Nothing */
5635 /****************************************************************************/
5636 static void
5637 bce_init_rx_context(struct bce_softc *sc)
5638 {
5639 u32 val;
5640
5641 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5642
5643 /* Init the type, size, and BD cache levels for the RX context. */
5644 val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5645 BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5646 (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5647
5648 /*
5649 * Set the level for generating pause frames
5650 * when the number of available rx_bd's gets
5651 * too low (the low watermark) and the level
5652 * when pause frames can be stopped (the high
5653 * watermark).
5654 */
5655 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5656 u32 lo_water, hi_water;
5657
5658 if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5659 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5660 } else {
5661 lo_water = 0;
5662 }
5663
5664 if (lo_water >= USABLE_RX_BD_ALLOC) {
5665 lo_water = 0;
5666 }
5667
5668 hi_water = USABLE_RX_BD_ALLOC / 4;
5669
5670 if (hi_water <= lo_water) {
5671 lo_water = 0;
5672 }
5673
5674 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5675 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5676
5677 if (hi_water > 0xf)
5678 hi_water = 0xf;
5679 else if (hi_water == 0)
5680 lo_water = 0;
5681
5682 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5683 (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5684 }
5685
5686 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5687
5688 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5689 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5690 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5691 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5692 }
5693
5694 /* Point the hardware to the first page in the chain. */
5695 val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5696 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5697 val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5698 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5699
5700 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5701 }
5702
5703 /****************************************************************************/
5704 /* Allocate memory and initialize the RX data structures. */
5705 /* */
5706 /* Returns: */
5707 /* 0 for success, positive value for failure. */
5708 /****************************************************************************/
5709 static int
5710 bce_init_rx_chain(struct bce_softc *sc)
5711 {
5712 struct rx_bd *rxbd;
5713 int i, rc = 0;
5714
5715 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5716 BCE_VERBOSE_CTX);
5717
5718 /* Initialize the RX producer and consumer indices. */
5719 sc->rx_prod = 0;
5720 sc->rx_cons = 0;
5721 sc->rx_prod_bseq = 0;
5722 sc->free_rx_bd = USABLE_RX_BD_ALLOC;
5723 sc->max_rx_bd = USABLE_RX_BD_ALLOC;
5724
5725 /* Initialize the RX next pointer chain entries. */
5726 for (i = 0; i < sc->rx_pages; i++) {
5727 int j;
5728
5729 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5730
5731 /* Check if we've reached the last page. */
5732 if (i == (sc->rx_pages - 1))
5733 j = 0;
5734 else
5735 j = i + 1;
5736
5737 /* Setup the chain page pointers. */
5738 rxbd->rx_bd_haddr_hi =
5739 htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5740 rxbd->rx_bd_haddr_lo =
5741 htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5742 }
5743
5744 /* Fill up the RX chain. */
5745 bce_fill_rx_chain(sc);
5746
5747 DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5748 DBRUN(sc->rx_empty_count = 0);
5749 for (i = 0; i < sc->rx_pages; i++) {
5750 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5751 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5752 }
5753
5754 bce_init_rx_context(sc);
5755
5756 DBRUNMSG(BCE_EXTREME_RECV,
5757 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5758 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5759 BCE_VERBOSE_CTX);
5760
5761 /* ToDo: Are there possible failure modes here? */
5762
5763 return(rc);
5764 }
5765
5766 /****************************************************************************/
5767 /* Add mbufs to the RX chain until its full or an mbuf allocation error */
5768 /* occurs. */
5769 /* */
5770 /* Returns: */
5771 /* Nothing */
5772 /****************************************************************************/
5773 static void
5774 bce_fill_rx_chain(struct bce_softc *sc)
5775 {
5776 u16 prod, prod_idx;
5777 u32 prod_bseq;
5778
5779 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5780 BCE_VERBOSE_CTX);
5781
5782 /* Get the RX chain producer indices. */
5783 prod = sc->rx_prod;
5784 prod_bseq = sc->rx_prod_bseq;
5785
5786 /* Keep filling the RX chain until it's full. */
5787 while (sc->free_rx_bd > 0) {
5788 prod_idx = RX_CHAIN_IDX(prod);
5789 if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5790 /* Bail out if we can't add an mbuf to the chain. */
5791 break;
5792 }
5793 prod = NEXT_RX_BD(prod);
5794 }
5795
5796 /* Save the RX chain producer indices. */
5797 sc->rx_prod = prod;
5798 sc->rx_prod_bseq = prod_bseq;
5799
5800 /* We should never end up pointing to a next page pointer. */
5801 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5802 BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5803 __FUNCTION__, rx_prod));
5804
5805 /* Write the mailbox and tell the chip about the waiting rx_bd's. */
5806 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5807 REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5808
5809 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5810 BCE_VERBOSE_CTX);
5811 }
5812
5813 /****************************************************************************/
5814 /* Free memory and clear the RX data structures. */
5815 /* */
5816 /* Returns: */
5817 /* Nothing. */
5818 /****************************************************************************/
5819 static void
5820 bce_free_rx_chain(struct bce_softc *sc)
5821 {
5822 int i;
5823
5824 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5825
5826 /* Free any mbufs still in the RX mbuf chain. */
5827 for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5828 if (sc->rx_mbuf_ptr[i] != NULL) {
5829 if (sc->rx_mbuf_map[i] != NULL)
5830 bus_dmamap_sync(sc->rx_mbuf_tag,
5831 sc->rx_mbuf_map[i],
5832 BUS_DMASYNC_POSTREAD);
5833 m_freem(sc->rx_mbuf_ptr[i]);
5834 sc->rx_mbuf_ptr[i] = NULL;
5835 DBRUN(sc->debug_rx_mbuf_alloc--);
5836 }
5837 }
5838
5839 /* Clear each RX chain page. */
5840 for (i = 0; i < sc->rx_pages; i++)
5841 if (sc->rx_bd_chain[i] != NULL)
5842 bzero((char *)sc->rx_bd_chain[i],
5843 BCE_RX_CHAIN_PAGE_SZ);
5844
5845 sc->free_rx_bd = sc->max_rx_bd;
5846
5847 /* Check if we lost any mbufs in the process. */
5848 DBRUNIF((sc->debug_rx_mbuf_alloc),
5849 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5850 __FUNCTION__, sc->debug_rx_mbuf_alloc));
5851
5852 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5853 }
5854
5855 /****************************************************************************/
5856 /* Allocate memory and initialize the page data structures. */
5857 /* Assumes that bce_init_rx_chain() has not already been called. */
5858 /* */
5859 /* Returns: */
5860 /* 0 for success, positive value for failure. */
5861 /****************************************************************************/
5862 static int
5863 bce_init_pg_chain(struct bce_softc *sc)
5864 {
5865 struct rx_bd *pgbd;
5866 int i, rc = 0;
5867 u32 val;
5868
5869 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5870 BCE_VERBOSE_CTX);
5871
5872 /* Initialize the page producer and consumer indices. */
5873 sc->pg_prod = 0;
5874 sc->pg_cons = 0;
5875 sc->free_pg_bd = USABLE_PG_BD_ALLOC;
5876 sc->max_pg_bd = USABLE_PG_BD_ALLOC;
5877 DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5878 DBRUN(sc->pg_empty_count = 0);
5879
5880 /* Initialize the page next pointer chain entries. */
5881 for (i = 0; i < sc->pg_pages; i++) {
5882 int j;
5883
5884 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5885
5886 /* Check if we've reached the last page. */
5887 if (i == (sc->pg_pages - 1))
5888 j = 0;
5889 else
5890 j = i + 1;
5891
5892 /* Setup the chain page pointers. */
5893 pgbd->rx_bd_haddr_hi =
5894 htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5895 pgbd->rx_bd_haddr_lo =
5896 htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5897 }
5898
5899 /* Setup the MQ BIN mapping for host_pg_bidx. */
5900 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5901 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5902
5903 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5904
5905 /* Configure the rx_bd and page chain mbuf cluster size. */
5906 val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5907 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5908
5909 /* Configure the context reserved for jumbo support. */
5910 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5911 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5912
5913 /* Point the hardware to the first page in the page chain. */
5914 val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5915 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5916 val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5917 CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5918
5919 /* Fill up the page chain. */
5920 bce_fill_pg_chain(sc);
5921
5922 for (i = 0; i < sc->pg_pages; i++) {
5923 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5924 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5925 }
5926
5927 DBRUNMSG(BCE_EXTREME_RECV,
5928 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
5929 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5930 BCE_VERBOSE_CTX);
5931 return(rc);
5932 }
5933
5934 /****************************************************************************/
5935 /* Add mbufs to the page chain until its full or an mbuf allocation error */
5936 /* occurs. */
5937 /* */
5938 /* Returns: */
5939 /* Nothing */
5940 /****************************************************************************/
5941 static void
5942 bce_fill_pg_chain(struct bce_softc *sc)
5943 {
5944 u16 prod, prod_idx;
5945
5946 DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5947 BCE_VERBOSE_CTX);
5948
5949 /* Get the page chain prodcuer index. */
5950 prod = sc->pg_prod;
5951
5952 /* Keep filling the page chain until it's full. */
5953 while (sc->free_pg_bd > 0) {
5954 prod_idx = PG_CHAIN_IDX(prod);
5955 if (bce_get_pg_buf(sc, prod, prod_idx)) {
5956 /* Bail out if we can't add an mbuf to the chain. */
5957 break;
5958 }
5959 prod = NEXT_PG_BD(prod);
5960 }
5961
5962 /* Save the page chain producer index. */
5963 sc->pg_prod = prod;
5964
5965 DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5966 BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5967 __FUNCTION__, pg_prod));
5968
5969 /*
5970 * Write the mailbox and tell the chip about
5971 * the new rx_bd's in the page chain.
5972 */
5973 REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5974 prod);
5975
5976 DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5977 BCE_VERBOSE_CTX);
5978 }
5979
5980 /****************************************************************************/
5981 /* Free memory and clear the RX data structures. */
5982 /* */
5983 /* Returns: */
5984 /* Nothing. */
5985 /****************************************************************************/
5986 static void
5987 bce_free_pg_chain(struct bce_softc *sc)
5988 {
5989 int i;
5990
5991 DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5992
5993 /* Free any mbufs still in the mbuf page chain. */
5994 for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
5995 if (sc->pg_mbuf_ptr[i] != NULL) {
5996 if (sc->pg_mbuf_map[i] != NULL)
5997 bus_dmamap_sync(sc->pg_mbuf_tag,
5998 sc->pg_mbuf_map[i],
5999 BUS_DMASYNC_POSTREAD);
6000 m_freem(sc->pg_mbuf_ptr[i]);
6001 sc->pg_mbuf_ptr[i] = NULL;
6002 DBRUN(sc->debug_pg_mbuf_alloc--);
6003 }
6004 }
6005
6006 /* Clear each page chain pages. */
6007 for (i = 0; i < sc->pg_pages; i++)
6008 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
6009
6010 sc->free_pg_bd = sc->max_pg_bd;
6011
6012 /* Check if we lost any mbufs in the process. */
6013 DBRUNIF((sc->debug_pg_mbuf_alloc),
6014 BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
6015 __FUNCTION__, sc->debug_pg_mbuf_alloc));
6016
6017 DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
6018 }
6019
6020 static u32
6021 bce_get_rphy_link(struct bce_softc *sc)
6022 {
6023 u32 advertise, link;
6024 int fdpx;
6025
6026 advertise = 0;
6027 fdpx = 0;
6028 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6029 link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6030 else
6031 link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6032 if (link & BCE_NETLINK_ANEG_ENB)
6033 advertise |= BCE_NETLINK_ANEG_ENB;
6034 if (link & BCE_NETLINK_SPEED_10HALF)
6035 advertise |= BCE_NETLINK_SPEED_10HALF;
6036 if (link & BCE_NETLINK_SPEED_10FULL) {
6037 advertise |= BCE_NETLINK_SPEED_10FULL;
6038 fdpx++;
6039 }
6040 if (link & BCE_NETLINK_SPEED_100HALF)
6041 advertise |= BCE_NETLINK_SPEED_100HALF;
6042 if (link & BCE_NETLINK_SPEED_100FULL) {
6043 advertise |= BCE_NETLINK_SPEED_100FULL;
6044 fdpx++;
6045 }
6046 if (link & BCE_NETLINK_SPEED_1000HALF)
6047 advertise |= BCE_NETLINK_SPEED_1000HALF;
6048 if (link & BCE_NETLINK_SPEED_1000FULL) {
6049 advertise |= BCE_NETLINK_SPEED_1000FULL;
6050 fdpx++;
6051 }
6052 if (link & BCE_NETLINK_SPEED_2500HALF)
6053 advertise |= BCE_NETLINK_SPEED_2500HALF;
6054 if (link & BCE_NETLINK_SPEED_2500FULL) {
6055 advertise |= BCE_NETLINK_SPEED_2500FULL;
6056 fdpx++;
6057 }
6058 if (fdpx)
6059 advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6060 BCE_NETLINK_FC_PAUSE_ASYM;
6061 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6062 advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6063 BCE_NETLINK_ETH_AT_WIRESPEED;
6064
6065 return (advertise);
6066 }
6067
6068 /****************************************************************************/
6069 /* Set media options. */
6070 /* */
6071 /* Returns: */
6072 /* 0 for success, positive value for failure. */
6073 /****************************************************************************/
6074 static int
6075 bce_ifmedia_upd(struct ifnet *ifp)
6076 {
6077 struct bce_softc *sc = ifp->if_softc;
6078 int error;
6079
6080 DBENTER(BCE_VERBOSE);
6081
6082 BCE_LOCK(sc);
6083 error = bce_ifmedia_upd_locked(ifp);
6084 BCE_UNLOCK(sc);
6085
6086 DBEXIT(BCE_VERBOSE);
6087 return (error);
6088 }
6089
6090 /****************************************************************************/
6091 /* Set media options. */
6092 /* */
6093 /* Returns: */
6094 /* Nothing. */
6095 /****************************************************************************/
6096 static int
6097 bce_ifmedia_upd_locked(struct ifnet *ifp)
6098 {
6099 struct bce_softc *sc = ifp->if_softc;
6100 struct mii_data *mii;
6101 struct mii_softc *miisc;
6102 struct ifmedia *ifm;
6103 u32 link;
6104 int error, fdx;
6105
6106 DBENTER(BCE_VERBOSE_PHY);
6107
6108 error = 0;
6109 BCE_LOCK_ASSERT(sc);
6110
6111 sc->bce_link_up = FALSE;
6112 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6113 ifm = &sc->bce_ifmedia;
6114 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6115 return (EINVAL);
6116 link = 0;
6117 fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6118 switch(IFM_SUBTYPE(ifm->ifm_media)) {
6119 case IFM_AUTO:
6120 /*
6121 * Check advertised link of remote PHY by reading
6122 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6123 * Always use the same link type of remote PHY.
6124 */
6125 link = bce_get_rphy_link(sc);
6126 break;
6127 case IFM_2500_SX:
6128 if ((sc->bce_phy_flags &
6129 (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6130 BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6131 return (EINVAL);
6132 /*
6133 * XXX
6134 * Have to enable forced 2.5Gbps configuration.
6135 */
6136 if (fdx != 0)
6137 link |= BCE_NETLINK_SPEED_2500FULL;
6138 else
6139 link |= BCE_NETLINK_SPEED_2500HALF;
6140 break;
6141 case IFM_1000_SX:
6142 if ((sc->bce_phy_flags &
6143 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6144 return (EINVAL);
6145 /*
6146 * XXX
6147 * Have to disable 2.5Gbps configuration.
6148 */
6149 if (fdx != 0)
6150 link = BCE_NETLINK_SPEED_1000FULL;
6151 else
6152 link = BCE_NETLINK_SPEED_1000HALF;
6153 break;
6154 case IFM_1000_T:
6155 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6156 return (EINVAL);
6157 if (fdx != 0)
6158 link = BCE_NETLINK_SPEED_1000FULL;
6159 else
6160 link = BCE_NETLINK_SPEED_1000HALF;
6161 break;
6162 case IFM_100_TX:
6163 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6164 return (EINVAL);
6165 if (fdx != 0)
6166 link = BCE_NETLINK_SPEED_100FULL;
6167 else
6168 link = BCE_NETLINK_SPEED_100HALF;
6169 break;
6170 case IFM_10_T:
6171 if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6172 return (EINVAL);
6173 if (fdx != 0)
6174 link = BCE_NETLINK_SPEED_10FULL;
6175 else
6176 link = BCE_NETLINK_SPEED_10HALF;
6177 break;
6178 default:
6179 return (EINVAL);
6180 }
6181 if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6182 /*
6183 * XXX
6184 * Advertise pause capability for full-duplex media.
6185 */
6186 if (fdx != 0)
6187 link |= BCE_NETLINK_FC_PAUSE_SYM |
6188 BCE_NETLINK_FC_PAUSE_ASYM;
6189 if ((sc->bce_phy_flags &
6190 BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6191 link |= BCE_NETLINK_PHY_APP_REMOTE |
6192 BCE_NETLINK_ETH_AT_WIRESPEED;
6193 }
6194
6195 bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6196 error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6197 } else {
6198 mii = device_get_softc(sc->bce_miibus);
6199
6200 /* Make sure the MII bus has been enumerated. */
6201 if (mii) {
6202 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6203 PHY_RESET(miisc);
6204 error = mii_mediachg(mii);
6205 }
6206 }
6207
6208 DBEXIT(BCE_VERBOSE_PHY);
6209 return (error);
6210 }
6211
6212 static void
6213 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6214 {
6215 struct ifnet *ifp;
6216 u32 link;
6217
6218 ifp = sc->bce_ifp;
6219 BCE_LOCK_ASSERT(sc);
6220
6221 ifmr->ifm_status = IFM_AVALID;
6222 ifmr->ifm_active = IFM_ETHER;
6223 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6224 /* XXX Handle heart beat status? */
6225 if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6226 ifmr->ifm_status |= IFM_ACTIVE;
6227 else {
6228 ifmr->ifm_active |= IFM_NONE;
6229 ifp->if_baudrate = 0;
6230 return;
6231 }
6232 switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6233 case BCE_LINK_STATUS_10HALF:
6234 ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6235 ifp->if_baudrate = IF_Mbps(10UL);
6236 break;
6237 case BCE_LINK_STATUS_10FULL:
6238 ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6239 ifp->if_baudrate = IF_Mbps(10UL);
6240 break;
6241 case BCE_LINK_STATUS_100HALF:
6242 ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6243 ifp->if_baudrate = IF_Mbps(100UL);
6244 break;
6245 case BCE_LINK_STATUS_100FULL:
6246 ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6247 ifp->if_baudrate = IF_Mbps(100UL);
6248 break;
6249 case BCE_LINK_STATUS_1000HALF:
6250 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6251 ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6252 else
6253 ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6254 ifp->if_baudrate = IF_Mbps(1000UL);
6255 break;
6256 case BCE_LINK_STATUS_1000FULL:
6257 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6258 ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6259 else
6260 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6261 ifp->if_baudrate = IF_Mbps(1000UL);
6262 break;
6263 case BCE_LINK_STATUS_2500HALF:
6264 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6265 ifmr->ifm_active |= IFM_NONE;
6266 return;
6267 } else
6268 ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6269 ifp->if_baudrate = IF_Mbps(2500UL);
6270 break;
6271 case BCE_LINK_STATUS_2500FULL:
6272 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6273 ifmr->ifm_active |= IFM_NONE;
6274 return;
6275 } else
6276 ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6277 ifp->if_baudrate = IF_Mbps(2500UL);
6278 break;
6279 default:
6280 ifmr->ifm_active |= IFM_NONE;
6281 return;
6282 }
6283
6284 if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6285 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6286 if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6287 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6288 }
6289
6290 /****************************************************************************/
6291 /* Reports current media status. */
6292 /* */
6293 /* Returns: */
6294 /* Nothing. */
6295 /****************************************************************************/
6296 static void
6297 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
6298 {
6299 struct bce_softc *sc = ifp->if_softc;
6300 struct mii_data *mii;
6301
6302 DBENTER(BCE_VERBOSE_PHY);
6303
6304 BCE_LOCK(sc);
6305
6306 if ((ifp->if_flags & IFF_UP) == 0) {
6307 BCE_UNLOCK(sc);
6308 return;
6309 }
6310
6311 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6312 bce_ifmedia_sts_rphy(sc, ifmr);
6313 else {
6314 mii = device_get_softc(sc->bce_miibus);
6315 mii_pollstat(mii);
6316 ifmr->ifm_active = mii->mii_media_active;
6317 ifmr->ifm_status = mii->mii_media_status;
6318 }
6319
6320 BCE_UNLOCK(sc);
6321
6322 DBEXIT(BCE_VERBOSE_PHY);
6323 }
6324
6325 /****************************************************************************/
6326 /* Handles PHY generated interrupt events. */
6327 /* */
6328 /* Returns: */
6329 /* Nothing. */
6330 /****************************************************************************/
6331 static void
6332 bce_phy_intr(struct bce_softc *sc)
6333 {
6334 u32 new_link_state, old_link_state;
6335
6336 DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6337
6338 DBRUN(sc->phy_interrupts++);
6339
6340 new_link_state = sc->status_block->status_attn_bits &
6341 STATUS_ATTN_BITS_LINK_STATE;
6342 old_link_state = sc->status_block->status_attn_bits_ack &
6343 STATUS_ATTN_BITS_LINK_STATE;
6344
6345 /* Handle any changes if the link state has changed. */
6346 if (new_link_state != old_link_state) {
6347 /* Update the status_attn_bits_ack field. */
6348 if (new_link_state) {
6349 REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6350 STATUS_ATTN_BITS_LINK_STATE);
6351 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6352 __FUNCTION__);
6353 } else {
6354 REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6355 STATUS_ATTN_BITS_LINK_STATE);
6356 DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6357 __FUNCTION__);
6358 }
6359
6360 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6361 if (new_link_state) {
6362 if (bootverbose)
6363 if_printf(sc->bce_ifp, "link UP\n");
6364 if_link_state_change(sc->bce_ifp,
6365 LINK_STATE_UP);
6366 } else {
6367 if (bootverbose)
6368 if_printf(sc->bce_ifp, "link DOWN\n");
6369 if_link_state_change(sc->bce_ifp,
6370 LINK_STATE_DOWN);
6371 }
6372 }
6373 /*
6374 * Assume link is down and allow
6375 * tick routine to update the state
6376 * based on the actual media state.
6377 */
6378 sc->bce_link_up = FALSE;
6379 callout_stop(&sc->bce_tick_callout);
6380 bce_tick(sc);
6381 }
6382
6383 /* Acknowledge the link change interrupt. */
6384 REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6385
6386 DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6387 }
6388
6389 /****************************************************************************/
6390 /* Reads the receive consumer value from the status block (skipping over */
6391 /* chain page pointer if necessary). */
6392 /* */
6393 /* Returns: */
6394 /* hw_cons */
6395 /****************************************************************************/
6396 static inline u16
6397 bce_get_hw_rx_cons(struct bce_softc *sc)
6398 {
6399 u16 hw_cons;
6400
6401 rmb();
6402 hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6403 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6404 hw_cons++;
6405
6406 return hw_cons;
6407 }
6408
6409 /****************************************************************************/
6410 /* Handles received frame interrupt events. */
6411 /* */
6412 /* Returns: */
6413 /* Nothing. */
6414 /****************************************************************************/
6415 static void
6416 bce_rx_intr(struct bce_softc *sc)
6417 {
6418 struct ifnet *ifp = sc->bce_ifp;
6419 struct l2_fhdr *l2fhdr;
6420 struct ether_vlan_header *vh;
6421 unsigned int pkt_len;
6422 u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6423 u32 status;
6424 unsigned int rem_len;
6425 u16 sw_pg_cons, sw_pg_cons_idx;
6426
6427 DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6428 DBRUN(sc->interrupts_rx++);
6429 DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6430 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6431 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6432
6433 /* Prepare the RX chain pages to be accessed by the host CPU. */
6434 for (int i = 0; i < sc->rx_pages; i++)
6435 bus_dmamap_sync(sc->rx_bd_chain_tag,
6436 sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6437
6438 /* Prepare the page chain pages to be accessed by the host CPU. */
6439 if (bce_hdr_split == TRUE) {
6440 for (int i = 0; i < sc->pg_pages; i++)
6441 bus_dmamap_sync(sc->pg_bd_chain_tag,
6442 sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6443 }
6444
6445 /* Get the hardware's view of the RX consumer index. */
6446 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6447
6448 /* Get working copies of the driver's view of the consumer indices. */
6449 sw_rx_cons = sc->rx_cons;
6450 sw_pg_cons = sc->pg_cons;
6451
6452 /* Update some debug statistics counters */
6453 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6454 sc->rx_low_watermark = sc->free_rx_bd);
6455 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6456 sc->rx_empty_count++);
6457
6458 /* Scan through the receive chain as long as there is work to do */
6459 /* ToDo: Consider setting a limit on the number of packets processed. */
6460 rmb();
6461 while (sw_rx_cons != hw_rx_cons) {
6462 struct mbuf *m0;
6463
6464 /* Convert the producer/consumer indices to an actual rx_bd index. */
6465 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6466
6467 /* Unmap the mbuf from DMA space. */
6468 bus_dmamap_sync(sc->rx_mbuf_tag,
6469 sc->rx_mbuf_map[sw_rx_cons_idx],
6470 BUS_DMASYNC_POSTREAD);
6471 bus_dmamap_unload(sc->rx_mbuf_tag,
6472 sc->rx_mbuf_map[sw_rx_cons_idx]);
6473
6474 /* Remove the mbuf from the RX chain. */
6475 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6476 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6477 DBRUN(sc->debug_rx_mbuf_alloc--);
6478 sc->free_rx_bd++;
6479
6480 /*
6481 * Frames received on the NetXteme II are prepended
6482 * with an l2_fhdr structure which provides status
6483 * information about the received frame (including
6484 * VLAN tags and checksum info). The frames are
6485 * also automatically adjusted to word align the IP
6486 * header (i.e. two null bytes are inserted before
6487 * the Ethernet header). As a result the data
6488 * DMA'd by the controller into the mbuf looks
6489 * like this:
6490 *
6491 * +---------+-----+---------------------+-----+
6492 * | l2_fhdr | pad | packet data | FCS |
6493 * +---------+-----+---------------------+-----+
6494 *
6495 * The l2_fhdr needs to be checked and skipped and
6496 * the FCS needs to be stripped before sending the
6497 * packet up the stack.
6498 */
6499 l2fhdr = mtod(m0, struct l2_fhdr *);
6500
6501 /* Get the packet data + FCS length and the status. */
6502 pkt_len = l2fhdr->l2_fhdr_pkt_len;
6503 status = l2fhdr->l2_fhdr_status;
6504
6505 /*
6506 * Skip over the l2_fhdr and pad, resulting in the
6507 * following data in the mbuf:
6508 * +---------------------+-----+
6509 * | packet data | FCS |
6510 * +---------------------+-----+
6511 */
6512 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6513
6514 /*
6515 * When split header mode is used, an ethernet frame
6516 * may be split across the receive chain and the
6517 * page chain. If that occurs an mbuf cluster must be
6518 * reassembled from the individual mbuf pieces.
6519 */
6520 if (bce_hdr_split == TRUE) {
6521 /*
6522 * Check whether the received frame fits in a single
6523 * mbuf or not (i.e. packet data + FCS <=
6524 * sc->rx_bd_mbuf_data_len bytes).
6525 */
6526 if (pkt_len > m0->m_len) {
6527 /*
6528 * The received frame is larger than a single mbuf.
6529 * If the frame was a TCP frame then only the TCP
6530 * header is placed in the mbuf, the remaining
6531 * payload (including FCS) is placed in the page
6532 * chain, the SPLIT flag is set, and the header
6533 * length is placed in the IP checksum field.
6534 * If the frame is not a TCP frame then the mbuf
6535 * is filled and the remaining bytes are placed
6536 * in the page chain.
6537 */
6538
6539 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6540 "packet.\n", __FUNCTION__);
6541 DBRUN(sc->split_header_frames_rcvd++);
6542
6543 /*
6544 * When the page chain is enabled and the TCP
6545 * header has been split from the TCP payload,
6546 * the ip_xsum structure will reflect the length
6547 * of the TCP header, not the IP checksum. Set
6548 * the packet length of the mbuf accordingly.
6549 */
6550 if (status & L2_FHDR_STATUS_SPLIT) {
6551 m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6552 DBRUN(sc->split_header_tcp_frames_rcvd++);
6553 }
6554
6555 rem_len = pkt_len - m0->m_len;
6556
6557 /* Pull mbufs off the page chain for any remaining data. */
6558 while (rem_len > 0) {
6559 struct mbuf *m_pg;
6560
6561 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6562
6563 /* Remove the mbuf from the page chain. */
6564 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6565 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6566 DBRUN(sc->debug_pg_mbuf_alloc--);
6567 sc->free_pg_bd++;
6568
6569 /* Unmap the page chain mbuf from DMA space. */
6570 bus_dmamap_sync(sc->pg_mbuf_tag,
6571 sc->pg_mbuf_map[sw_pg_cons_idx],
6572 BUS_DMASYNC_POSTREAD);
6573 bus_dmamap_unload(sc->pg_mbuf_tag,
6574 sc->pg_mbuf_map[sw_pg_cons_idx]);
6575
6576 /* Adjust the mbuf length. */
6577 if (rem_len < m_pg->m_len) {
6578 /* The mbuf chain is complete. */
6579 m_pg->m_len = rem_len;
6580 rem_len = 0;
6581 } else {
6582 /* More packet data is waiting. */
6583 rem_len -= m_pg->m_len;
6584 }
6585
6586 /* Concatenate the mbuf cluster to the mbuf. */
6587 m_cat(m0, m_pg);
6588
6589 sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6590 }
6591
6592 /* Set the total packet length. */
6593 m0->m_pkthdr.len = pkt_len;
6594
6595 } else {
6596 /*
6597 * The received packet is small and fits in a
6598 * single mbuf (i.e. the l2_fhdr + pad + packet +
6599 * FCS <= MHLEN). In other words, the packet is
6600 * 154 bytes or less in size.
6601 */
6602
6603 DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6604 "packet.\n", __FUNCTION__);
6605
6606 /* Set the total packet length. */
6607 m0->m_pkthdr.len = m0->m_len = pkt_len;
6608 }
6609 } else
6610 /* Set the total packet length. */
6611 m0->m_pkthdr.len = m0->m_len = pkt_len;
6612
6613 /* Remove the trailing Ethernet FCS. */
6614 m_adj(m0, -ETHER_CRC_LEN);
6615
6616 /* Check that the resulting mbuf chain is valid. */
6617 DBRUN(m_sanity(m0, FALSE));
6618 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6619 (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6620 BCE_PRINTF("Invalid Ethernet frame size!\n");
6621 m_print(m0, 128));
6622
6623 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6624 sc->l2fhdr_error_sim_count++;
6625 status = status | L2_FHDR_ERRORS_PHY_DECODE);
6626
6627 /* Check the received frame for errors. */
6628 if (status & (L2_FHDR_ERRORS_BAD_CRC |
6629 L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6630 L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) {
6631 /* Log the error and release the mbuf. */
6632 sc->l2fhdr_error_count++;
6633 m_freem(m0);
6634 m0 = NULL;
6635 goto bce_rx_intr_next_rx;
6636 }
6637
6638 /* Send the packet to the appropriate interface. */
6639 m0->m_pkthdr.rcvif = ifp;
6640
6641 /* Assume no hardware checksum. */
6642 m0->m_pkthdr.csum_flags = 0;
6643
6644 /* Validate the checksum if offload enabled. */
6645 if (ifp->if_capenable & IFCAP_RXCSUM) {
6646 /* Check for an IP datagram. */
6647 if (!(status & L2_FHDR_STATUS_SPLIT) &&
6648 (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6649 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6650 DBRUN(sc->csum_offload_ip++);
6651 /* Check if the IP checksum is valid. */
6652 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6653 m0->m_pkthdr.csum_flags |=
6654 CSUM_IP_VALID;
6655 }
6656
6657 /* Check for a valid TCP/UDP frame. */
6658 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6659 L2_FHDR_STATUS_UDP_DATAGRAM)) {
6660 /* Check for a good TCP/UDP checksum. */
6661 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6662 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6663 DBRUN(sc->csum_offload_tcp_udp++);
6664 m0->m_pkthdr.csum_data =
6665 l2fhdr->l2_fhdr_tcp_udp_xsum;
6666 m0->m_pkthdr.csum_flags |=
6667 (CSUM_DATA_VALID
6668 | CSUM_PSEUDO_HDR);
6669 }
6670 }
6671 }
6672
6673 /* Attach the VLAN tag. */
6674 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6675 !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6676 DBRUN(sc->vlan_tagged_frames_rcvd++);
6677 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
6678 DBRUN(sc->vlan_tagged_frames_stripped++);
6679 m0->m_pkthdr.ether_vtag =
6680 l2fhdr->l2_fhdr_vlan_tag;
6681 m0->m_flags |= M_VLANTAG;
6682 } else {
6683 /*
6684 * bce(4) controllers can't disable VLAN
6685 * tag stripping if management firmware
6686 * (ASF/IPMI/UMP) is running. So we always
6687 * strip VLAN tag and manually reconstruct
6688 * the VLAN frame by appending stripped
6689 * VLAN tag in driver if VLAN tag stripping
6690 * was disabled.
6691 *
6692 * TODO: LLC SNAP handling.
6693 */
6694 bcopy(mtod(m0, uint8_t *),
6695 mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6696 ETHER_ADDR_LEN * 2);
6697 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6698 vh = mtod(m0, struct ether_vlan_header *);
6699 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6700 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6701 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6702 m0->m_len += ETHER_VLAN_ENCAP_LEN;
6703 }
6704 }
6705
6706 /* Increment received packet statistics. */
6707 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6708
6709 bce_rx_intr_next_rx:
6710 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6711
6712 /* If we have a packet, pass it up the stack */
6713 if (m0) {
6714 /* Make sure we don't lose our place when we release the lock. */
6715 sc->rx_cons = sw_rx_cons;
6716 sc->pg_cons = sw_pg_cons;
6717
6718 BCE_UNLOCK(sc);
6719 (*ifp->if_input)(ifp, m0);
6720 BCE_LOCK(sc);
6721
6722 /* Recover our place. */
6723 sw_rx_cons = sc->rx_cons;
6724 sw_pg_cons = sc->pg_cons;
6725 }
6726
6727 /* Refresh hw_cons to see if there's new work */
6728 if (sw_rx_cons == hw_rx_cons)
6729 hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6730 }
6731
6732 /* No new packets. Refill the page chain. */
6733 if (bce_hdr_split == TRUE) {
6734 sc->pg_cons = sw_pg_cons;
6735 bce_fill_pg_chain(sc);
6736 }
6737
6738 /* No new packets. Refill the RX chain. */
6739 sc->rx_cons = sw_rx_cons;
6740 bce_fill_rx_chain(sc);
6741
6742 /* Prepare the page chain pages to be accessed by the NIC. */
6743 for (int i = 0; i < sc->rx_pages; i++)
6744 bus_dmamap_sync(sc->rx_bd_chain_tag,
6745 sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6746
6747 if (bce_hdr_split == TRUE) {
6748 for (int i = 0; i < sc->pg_pages; i++)
6749 bus_dmamap_sync(sc->pg_bd_chain_tag,
6750 sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6751 }
6752
6753 DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6754 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6755 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6756 DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6757 }
6758
6759 /****************************************************************************/
6760 /* Reads the transmit consumer value from the status block (skipping over */
6761 /* chain page pointer if necessary). */
6762 /* */
6763 /* Returns: */
6764 /* hw_cons */
6765 /****************************************************************************/
6766 static inline u16
6767 bce_get_hw_tx_cons(struct bce_softc *sc)
6768 {
6769 u16 hw_cons;
6770
6771 mb();
6772 hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6773 if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6774 hw_cons++;
6775
6776 return hw_cons;
6777 }
6778
6779 /****************************************************************************/
6780 /* Handles transmit completion interrupt events. */
6781 /* */
6782 /* Returns: */
6783 /* Nothing. */
6784 /****************************************************************************/
6785 static void
6786 bce_tx_intr(struct bce_softc *sc)
6787 {
6788 struct ifnet *ifp = sc->bce_ifp;
6789 u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6790
6791 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6792 DBRUN(sc->interrupts_tx++);
6793 DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6794 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6795 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6796
6797 BCE_LOCK_ASSERT(sc);
6798
6799 /* Get the hardware's view of the TX consumer index. */
6800 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6801 sw_tx_cons = sc->tx_cons;
6802
6803 /* Prevent speculative reads of the status block. */
6804 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6805 BUS_SPACE_BARRIER_READ);
6806
6807 /* Cycle through any completed TX chain page entries. */
6808 while (sw_tx_cons != hw_tx_cons) {
6809 #ifdef BCE_DEBUG
6810 struct tx_bd *txbd = NULL;
6811 #endif
6812 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6813
6814 DBPRINT(sc, BCE_INFO_SEND,
6815 "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6816 "sw_tx_chain_cons = 0x%04X\n",
6817 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6818
6819 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6820 BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6821 " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6822 (int) MAX_TX_BD_ALLOC);
6823 bce_breakpoint(sc));
6824
6825 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6826 [TX_IDX(sw_tx_chain_cons)]);
6827
6828 DBRUNIF((txbd == NULL),
6829 BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6830 __FILE__, __LINE__, sw_tx_chain_cons);
6831 bce_breakpoint(sc));
6832
6833 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6834 bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6835
6836 /*
6837 * Free the associated mbuf. Remember
6838 * that only the last tx_bd of a packet
6839 * has an mbuf pointer and DMA map.
6840 */
6841 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6842 /* Validate that this is the last tx_bd. */
6843 DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6844 BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6845 "txmbuf == NULL!\n", __FILE__, __LINE__);
6846 bce_breakpoint(sc));
6847
6848 DBRUNMSG(BCE_INFO_SEND,
6849 BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6850 "from tx_bd[0x%04X]\n", __FUNCTION__,
6851 sw_tx_chain_cons));
6852
6853 /* Unmap the mbuf. */
6854 bus_dmamap_unload(sc->tx_mbuf_tag,
6855 sc->tx_mbuf_map[sw_tx_chain_cons]);
6856
6857 /* Free the mbuf. */
6858 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6859 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6860 DBRUN(sc->debug_tx_mbuf_alloc--);
6861
6862 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6863 }
6864
6865 sc->used_tx_bd--;
6866 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6867
6868 /* Refresh hw_cons to see if there's new work. */
6869 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6870
6871 /* Prevent speculative reads of the status block. */
6872 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6873 BUS_SPACE_BARRIER_READ);
6874 }
6875
6876 /* Clear the TX timeout timer. */
6877 sc->watchdog_timer = 0;
6878
6879 /* Clear the tx hardware queue full flag. */
6880 if (sc->used_tx_bd < sc->max_tx_bd) {
6881 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
6882 DBPRINT(sc, BCE_INFO_SEND,
6883 "%s(): Open TX chain! %d/%d (used/total)\n",
6884 __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6885 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6886 }
6887
6888 sc->tx_cons = sw_tx_cons;
6889
6890 DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6891 "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6892 __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6893 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6894 }
6895
6896 /****************************************************************************/
6897 /* Disables interrupt generation. */
6898 /* */
6899 /* Returns: */
6900 /* Nothing. */
6901 /****************************************************************************/
6902 static void
6903 bce_disable_intr(struct bce_softc *sc)
6904 {
6905 DBENTER(BCE_VERBOSE_INTR);
6906
6907 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6908 REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6909
6910 DBEXIT(BCE_VERBOSE_INTR);
6911 }
6912
6913 /****************************************************************************/
6914 /* Enables interrupt generation. */
6915 /* */
6916 /* Returns: */
6917 /* Nothing. */
6918 /****************************************************************************/
6919 static void
6920 bce_enable_intr(struct bce_softc *sc, int coal_now)
6921 {
6922 DBENTER(BCE_VERBOSE_INTR);
6923
6924 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6925 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6926 BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6927
6928 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6929 BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6930
6931 /* Force an immediate interrupt (whether there is new data or not). */
6932 if (coal_now)
6933 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6934
6935 DBEXIT(BCE_VERBOSE_INTR);
6936 }
6937
6938 /****************************************************************************/
6939 /* Handles controller initialization. */
6940 /* */
6941 /* Returns: */
6942 /* Nothing. */
6943 /****************************************************************************/
6944 static void
6945 bce_init_locked(struct bce_softc *sc)
6946 {
6947 struct ifnet *ifp;
6948 u32 ether_mtu = 0;
6949
6950 DBENTER(BCE_VERBOSE_RESET);
6951
6952 BCE_LOCK_ASSERT(sc);
6953
6954 ifp = sc->bce_ifp;
6955
6956 /* Check if the driver is still running and bail out if it is. */
6957 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6958 goto bce_init_locked_exit;
6959
6960 bce_stop(sc);
6961
6962 if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6963 BCE_PRINTF("%s(%d): Controller reset failed!\n",
6964 __FILE__, __LINE__);
6965 goto bce_init_locked_exit;
6966 }
6967
6968 if (bce_chipinit(sc)) {
6969 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6970 __FILE__, __LINE__);
6971 goto bce_init_locked_exit;
6972 }
6973
6974 if (bce_blockinit(sc)) {
6975 BCE_PRINTF("%s(%d): Block initialization failed!\n",
6976 __FILE__, __LINE__);
6977 goto bce_init_locked_exit;
6978 }
6979
6980 /* Load our MAC address. */
6981 bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6982 bce_set_mac_addr(sc);
6983
6984 if (bce_hdr_split == FALSE)
6985 bce_get_rx_buffer_sizes(sc, ifp->if_mtu);
6986 /*
6987 * Calculate and program the hardware Ethernet MTU
6988 * size. Be generous on the receive if we have room
6989 * and allowed by the user.
6990 */
6991 if (bce_strict_rx_mtu == TRUE)
6992 ether_mtu = ifp->if_mtu;
6993 else {
6994 if (bce_hdr_split == TRUE) {
6995 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len + MCLBYTES)
6996 ether_mtu = sc->rx_bd_mbuf_data_len +
6997 MCLBYTES;
6998 else
6999 ether_mtu = ifp->if_mtu;
7000 } else {
7001 if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
7002 ether_mtu = sc->rx_bd_mbuf_data_len;
7003 else
7004 ether_mtu = ifp->if_mtu;
7005 }
7006 }
7007
7008 ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
7009
7010 DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
7011 __FUNCTION__, ether_mtu);
7012
7013 /* Program the mtu, enabling jumbo frame support if necessary. */
7014 if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
7015 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
7016 min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
7017 BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
7018 else
7019 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7020
7021 /* Program appropriate promiscuous/multicast filtering. */
7022 bce_set_rx_mode(sc);
7023
7024 if (bce_hdr_split == TRUE) {
7025 /* Init page buffer descriptor chain. */
7026 bce_init_pg_chain(sc);
7027 }
7028
7029 /* Init RX buffer descriptor chain. */
7030 bce_init_rx_chain(sc);
7031
7032 /* Init TX buffer descriptor chain. */
7033 bce_init_tx_chain(sc);
7034
7035 /* Enable host interrupts. */
7036 bce_enable_intr(sc, 1);
7037
7038 bce_ifmedia_upd_locked(ifp);
7039
7040 /* Let the OS know the driver is up and running. */
7041 ifp->if_drv_flags |= IFF_DRV_RUNNING;
7042 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7043
7044 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7045
7046 bce_init_locked_exit:
7047 DBEXIT(BCE_VERBOSE_RESET);
7048 }
7049
7050 /****************************************************************************/
7051 /* Initialize the controller just enough so that any management firmware */
7052 /* running on the device will continue to operate correctly. */
7053 /* */
7054 /* Returns: */
7055 /* Nothing. */
7056 /****************************************************************************/
7057 static void
7058 bce_mgmt_init_locked(struct bce_softc *sc)
7059 {
7060 struct ifnet *ifp;
7061
7062 DBENTER(BCE_VERBOSE_RESET);
7063
7064 BCE_LOCK_ASSERT(sc);
7065
7066 /* Bail out if management firmware is not running. */
7067 if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7068 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7069 "No management firmware running...\n");
7070 goto bce_mgmt_init_locked_exit;
7071 }
7072
7073 ifp = sc->bce_ifp;
7074
7075 /* Enable all critical blocks in the MAC. */
7076 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7077 REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7078 DELAY(20);
7079
7080 bce_ifmedia_upd_locked(ifp);
7081
7082 bce_mgmt_init_locked_exit:
7083 DBEXIT(BCE_VERBOSE_RESET);
7084 }
7085
7086 /****************************************************************************/
7087 /* Handles controller initialization when called from an unlocked routine. */
7088 /* */
7089 /* Returns: */
7090 /* Nothing. */
7091 /****************************************************************************/
7092 static void
7093 bce_init(void *xsc)
7094 {
7095 struct bce_softc *sc = xsc;
7096
7097 DBENTER(BCE_VERBOSE_RESET);
7098
7099 BCE_LOCK(sc);
7100 bce_init_locked(sc);
7101 BCE_UNLOCK(sc);
7102
7103 DBEXIT(BCE_VERBOSE_RESET);
7104 }
7105
7106 /****************************************************************************/
7107 /* Modifies an mbuf for TSO on the hardware. */
7108 /* */
7109 /* Returns: */
7110 /* Pointer to a modified mbuf. */
7111 /****************************************************************************/
7112 static struct mbuf *
7113 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7114 {
7115 struct mbuf *m;
7116 struct ether_header *eh;
7117 struct ip *ip;
7118 struct tcphdr *th;
7119 u16 etype;
7120 int hdr_len __unused, ip_len __unused, ip_hlen = 0, tcp_hlen = 0;
7121
7122 DBRUN(sc->tso_frames_requested++);
7123
7124 ip_len = 0;
7125 /* Controller may modify mbuf chains. */
7126 if (M_WRITABLE(*m_head) == 0) {
7127 m = m_dup(*m_head, M_NOWAIT);
7128 m_freem(*m_head);
7129 if (m == NULL) {
7130 sc->mbuf_alloc_failed_count++;
7131 *m_head = NULL;
7132 return (NULL);
7133 }
7134 *m_head = m;
7135 }
7136
7137 /*
7138 * For TSO the controller needs two pieces of info,
7139 * the MSS and the IP+TCP options length.
7140 */
7141 m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7142 if (m == NULL) {
7143 *m_head = NULL;
7144 return (NULL);
7145 }
7146 eh = mtod(m, struct ether_header *);
7147 etype = ntohs(eh->ether_type);
7148
7149 /* Check for supported TSO Ethernet types (only IPv4 for now) */
7150 switch (etype) {
7151 case ETHERTYPE_IP:
7152 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7153 /* TSO only supported for TCP protocol. */
7154 if (ip->ip_p != IPPROTO_TCP) {
7155 BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7156 __FILE__, __LINE__);
7157 m_freem(*m_head);
7158 *m_head = NULL;
7159 return (NULL);
7160 }
7161
7162 /* Get IP header length in bytes (min 20) */
7163 ip_hlen = ip->ip_hl << 2;
7164 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7165 sizeof(struct tcphdr));
7166 if (m == NULL) {
7167 *m_head = NULL;
7168 return (NULL);
7169 }
7170
7171 /* Get the TCP header length in bytes (min 20) */
7172 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7173 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7174 tcp_hlen = (th->th_off << 2);
7175
7176 /* Make sure all IP/TCP options live in the same buffer. */
7177 m = m_pullup(*m_head, sizeof(struct ether_header)+ ip_hlen +
7178 tcp_hlen);
7179 if (m == NULL) {
7180 *m_head = NULL;
7181 return (NULL);
7182 }
7183
7184 /* Clear IP header length and checksum, will be calc'd by h/w. */
7185 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7186 ip_len = ip->ip_len;
7187 ip->ip_len = 0;
7188 ip->ip_sum = 0;
7189 break;
7190 case ETHERTYPE_IPV6:
7191 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7192 __FILE__, __LINE__);
7193 m_freem(*m_head);
7194 *m_head = NULL;
7195 return (NULL);
7196 /* NOT REACHED */
7197 default:
7198 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7199 __FILE__, __LINE__);
7200 m_freem(*m_head);
7201 *m_head = NULL;
7202 return (NULL);
7203 }
7204
7205 hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7206
7207 DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7208 "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7209 __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7210 tcp_hlen, ip_len);
7211
7212 /* Set the LSO flag in the TX BD */
7213 *flags |= TX_BD_FLAGS_SW_LSO;
7214
7215 /* Set the length of IP + TCP options (in 32 bit words) */
7216 *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7217 sizeof(struct tcphdr)) >> 2) << 8);
7218
7219 DBRUN(sc->tso_frames_completed++);
7220 return (*m_head);
7221 }
7222
7223 /****************************************************************************/
7224 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7225 /* memory visible to the controller. */
7226 /* */
7227 /* Returns: */
7228 /* 0 for success, positive value for failure. */
7229 /* Modified: */
7230 /* m_head: May be set to NULL if MBUF is excessively fragmented. */
7231 /****************************************************************************/
7232 static int
7233 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7234 {
7235 bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7236 bus_dmamap_t map;
7237 struct tx_bd *txbd = NULL;
7238 struct mbuf *m0;
7239 u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7240 u32 prod_bseq;
7241
7242 #ifdef BCE_DEBUG
7243 u16 debug_prod;
7244 #endif
7245
7246 int i, error, nsegs, rc = 0;
7247
7248 DBENTER(BCE_VERBOSE_SEND);
7249
7250 /* Make sure we have room in the TX chain. */
7251 if (sc->used_tx_bd >= sc->max_tx_bd)
7252 goto bce_tx_encap_exit;
7253
7254 /* Transfer any checksum offload flags to the bd. */
7255 m0 = *m_head;
7256 if (m0->m_pkthdr.csum_flags) {
7257 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7258 m0 = bce_tso_setup(sc, m_head, &flags);
7259 if (m0 == NULL) {
7260 DBRUN(sc->tso_frames_failed++);
7261 goto bce_tx_encap_exit;
7262 }
7263 mss = htole16(m0->m_pkthdr.tso_segsz);
7264 } else {
7265 if (m0->m_pkthdr.csum_flags & CSUM_IP)
7266 flags |= TX_BD_FLAGS_IP_CKSUM;
7267 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7268 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7269 }
7270 }
7271
7272 /* Transfer any VLAN tags to the bd. */
7273 if (m0->m_flags & M_VLANTAG) {
7274 flags |= TX_BD_FLAGS_VLAN_TAG;
7275 vlan_tag = m0->m_pkthdr.ether_vtag;
7276 }
7277
7278 /* Map the mbuf into DMAable memory. */
7279 prod = sc->tx_prod;
7280 chain_prod = TX_CHAIN_IDX(prod);
7281 map = sc->tx_mbuf_map[chain_prod];
7282
7283 /* Map the mbuf into our DMA address space. */
7284 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7285 segs, &nsegs, BUS_DMA_NOWAIT);
7286
7287 /* Check if the DMA mapping was successful */
7288 if (error == EFBIG) {
7289 sc->mbuf_frag_count++;
7290
7291 /* Try to defrag the mbuf. */
7292 m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7293 if (m0 == NULL) {
7294 /* Defrag was unsuccessful */
7295 m_freem(*m_head);
7296 *m_head = NULL;
7297 sc->mbuf_alloc_failed_count++;
7298 rc = ENOBUFS;
7299 goto bce_tx_encap_exit;
7300 }
7301
7302 /* Defrag was successful, try mapping again */
7303 *m_head = m0;
7304 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7305 map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7306
7307 /* Still getting an error after a defrag. */
7308 if (error == ENOMEM) {
7309 /* Insufficient DMA buffers available. */
7310 sc->dma_map_addr_tx_failed_count++;
7311 rc = error;
7312 goto bce_tx_encap_exit;
7313 } else if (error != 0) {
7314 /* Release it and return an error. */
7315 BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7316 "TX chain!\n", __FILE__, __LINE__);
7317 m_freem(m0);
7318 *m_head = NULL;
7319 sc->dma_map_addr_tx_failed_count++;
7320 rc = ENOBUFS;
7321 goto bce_tx_encap_exit;
7322 }
7323 } else if (error == ENOMEM) {
7324 /* Insufficient DMA buffers available. */
7325 sc->dma_map_addr_tx_failed_count++;
7326 rc = error;
7327 goto bce_tx_encap_exit;
7328 } else if (error != 0) {
7329 m_freem(m0);
7330 *m_head = NULL;
7331 sc->dma_map_addr_tx_failed_count++;
7332 rc = error;
7333 goto bce_tx_encap_exit;
7334 }
7335
7336 /* Make sure there's room in the chain */
7337 if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7338 bus_dmamap_unload(sc->tx_mbuf_tag, map);
7339 rc = ENOBUFS;
7340 goto bce_tx_encap_exit;
7341 }
7342
7343 /* prod points to an empty tx_bd at this point. */
7344 prod_bseq = sc->tx_prod_bseq;
7345
7346 #ifdef BCE_DEBUG
7347 debug_prod = chain_prod;
7348 #endif
7349
7350 DBPRINT(sc, BCE_INFO_SEND,
7351 "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7352 "prod_bseq = 0x%08X\n",
7353 __FUNCTION__, prod, chain_prod, prod_bseq);
7354
7355 /*
7356 * Cycle through each mbuf segment that makes up
7357 * the outgoing frame, gathering the mapping info
7358 * for that segment and creating a tx_bd for
7359 * the mbuf.
7360 */
7361 for (i = 0; i < nsegs ; i++) {
7362 chain_prod = TX_CHAIN_IDX(prod);
7363 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7364 [TX_IDX(chain_prod)];
7365
7366 txbd->tx_bd_haddr_lo =
7367 htole32(BCE_ADDR_LO(segs[i].ds_addr));
7368 txbd->tx_bd_haddr_hi =
7369 htole32(BCE_ADDR_HI(segs[i].ds_addr));
7370 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7371 htole16(segs[i].ds_len);
7372 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7373 txbd->tx_bd_flags = htole16(flags);
7374 prod_bseq += segs[i].ds_len;
7375 if (i == 0)
7376 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7377 prod = NEXT_TX_BD(prod);
7378 }
7379
7380 /* Set the END flag on the last TX buffer descriptor. */
7381 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7382
7383 DBRUNMSG(BCE_EXTREME_SEND,
7384 bce_dump_tx_chain(sc, debug_prod, nsegs));
7385
7386 /*
7387 * Ensure that the mbuf pointer for this transmission
7388 * is placed at the array index of the last
7389 * descriptor in this chain. This is done
7390 * because a single map is used for all
7391 * segments of the mbuf and we don't want to
7392 * unload the map before all of the segments
7393 * have been freed.
7394 */
7395 sc->tx_mbuf_ptr[chain_prod] = m0;
7396 sc->used_tx_bd += nsegs;
7397
7398 /* Update some debug statistic counters */
7399 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7400 sc->tx_hi_watermark = sc->used_tx_bd);
7401 DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7402 DBRUNIF(sc->debug_tx_mbuf_alloc++);
7403
7404 DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7405
7406 /* prod points to the next free tx_bd at this point. */
7407 sc->tx_prod = prod;
7408 sc->tx_prod_bseq = prod_bseq;
7409
7410 /* Tell the chip about the waiting TX frames. */
7411 REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7412 BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7413 REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7414 BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7415
7416 bce_tx_encap_exit:
7417 DBEXIT(BCE_VERBOSE_SEND);
7418 return(rc);
7419 }
7420
7421 /****************************************************************************/
7422 /* Main transmit routine when called from another routine with a lock. */
7423 /* */
7424 /* Returns: */
7425 /* Nothing. */
7426 /****************************************************************************/
7427 static void
7428 bce_start_locked(struct ifnet *ifp)
7429 {
7430 struct bce_softc *sc = ifp->if_softc;
7431 struct mbuf *m_head = NULL;
7432 int count = 0;
7433 u16 tx_prod, tx_chain_prod __unused;
7434
7435 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7436
7437 BCE_LOCK_ASSERT(sc);
7438
7439 /* prod points to the next free tx_bd. */
7440 tx_prod = sc->tx_prod;
7441 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7442
7443 DBPRINT(sc, BCE_INFO_SEND,
7444 "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7445 "tx_prod_bseq = 0x%08X\n",
7446 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7447
7448 /* If there's no link or the transmit queue is empty then just exit. */
7449 if (sc->bce_link_up == FALSE) {
7450 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7451 __FUNCTION__);
7452 goto bce_start_locked_exit;
7453 }
7454
7455 if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
7456 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7457 __FUNCTION__);
7458 goto bce_start_locked_exit;
7459 }
7460
7461 /*
7462 * Keep adding entries while there is space in the ring.
7463 */
7464 while (sc->used_tx_bd < sc->max_tx_bd) {
7465 /* Check for any frames to send. */
7466 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
7467
7468 /* Stop when the transmit queue is empty. */
7469 if (m_head == NULL)
7470 break;
7471
7472 /*
7473 * Pack the data into the transmit ring. If we
7474 * don't have room, place the mbuf back at the
7475 * head of the queue and set the OACTIVE flag
7476 * to wait for the NIC to drain the chain.
7477 */
7478 if (bce_tx_encap(sc, &m_head)) {
7479 if (m_head != NULL)
7480 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
7481 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7482 DBPRINT(sc, BCE_INFO_SEND,
7483 "TX chain is closed for business! Total "
7484 "tx_bd used = %d\n", sc->used_tx_bd);
7485 break;
7486 }
7487
7488 count++;
7489
7490 /* Send a copy of the frame to any BPF listeners. */
7491 ETHER_BPF_MTAP(ifp, m_head);
7492 }
7493
7494 /* Exit if no packets were dequeued. */
7495 if (count == 0) {
7496 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7497 "dequeued\n", __FUNCTION__);
7498 goto bce_start_locked_exit;
7499 }
7500
7501 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7502 "send queue.\n", __FUNCTION__, count);
7503
7504 /* Set the tx timeout. */
7505 sc->watchdog_timer = BCE_TX_TIMEOUT;
7506
7507 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7508 DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7509
7510 bce_start_locked_exit:
7511 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7512 }
7513
7514 /****************************************************************************/
7515 /* Main transmit routine when called from another routine without a lock. */
7516 /* */
7517 /* Returns: */
7518 /* Nothing. */
7519 /****************************************************************************/
7520 static void
7521 bce_start(struct ifnet *ifp)
7522 {
7523 struct bce_softc *sc = ifp->if_softc;
7524
7525 DBENTER(BCE_VERBOSE_SEND);
7526
7527 BCE_LOCK(sc);
7528 bce_start_locked(ifp);
7529 BCE_UNLOCK(sc);
7530
7531 DBEXIT(BCE_VERBOSE_SEND);
7532 }
7533
7534 /****************************************************************************/
7535 /* Handles any IOCTL calls from the operating system. */
7536 /* */
7537 /* Returns: */
7538 /* 0 for success, positive value for failure. */
7539 /****************************************************************************/
7540 static int
7541 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
7542 {
7543 struct bce_softc *sc = ifp->if_softc;
7544 struct ifreq *ifr = (struct ifreq *) data;
7545 struct mii_data *mii;
7546 int mask, error = 0;
7547
7548 DBENTER(BCE_VERBOSE_MISC);
7549
7550 switch(command) {
7551 /* Set the interface MTU. */
7552 case SIOCSIFMTU:
7553 /* Check that the MTU setting is supported. */
7554 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7555 (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7556 error = EINVAL;
7557 break;
7558 }
7559
7560 DBPRINT(sc, BCE_INFO_MISC,
7561 "SIOCSIFMTU: Changing MTU from %d to %d\n",
7562 (int) ifp->if_mtu, (int) ifr->ifr_mtu);
7563
7564 BCE_LOCK(sc);
7565 ifp->if_mtu = ifr->ifr_mtu;
7566 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7567 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7568 bce_init_locked(sc);
7569 }
7570 BCE_UNLOCK(sc);
7571 break;
7572
7573 /* Set interface flags. */
7574 case SIOCSIFFLAGS:
7575 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7576
7577 BCE_LOCK(sc);
7578
7579 /* Check if the interface is up. */
7580 if (ifp->if_flags & IFF_UP) {
7581 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7582 /* Change promiscuous/multicast flags as necessary. */
7583 bce_set_rx_mode(sc);
7584 } else {
7585 /* Start the HW */
7586 bce_init_locked(sc);
7587 }
7588 } else {
7589 /* The interface is down, check if driver is running. */
7590 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
7591 bce_stop(sc);
7592
7593 /* If MFW is running, restart the controller a bit. */
7594 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7595 bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7596 bce_chipinit(sc);
7597 bce_mgmt_init_locked(sc);
7598 }
7599 }
7600 }
7601
7602 BCE_UNLOCK(sc);
7603 break;
7604
7605 /* Add/Delete multicast address */
7606 case SIOCADDMULTI:
7607 case SIOCDELMULTI:
7608 DBPRINT(sc, BCE_VERBOSE_MISC,
7609 "Received SIOCADDMULTI/SIOCDELMULTI\n");
7610
7611 BCE_LOCK(sc);
7612 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7613 bce_set_rx_mode(sc);
7614 BCE_UNLOCK(sc);
7615
7616 break;
7617
7618 /* Set/Get Interface media */
7619 case SIOCSIFMEDIA:
7620 case SIOCGIFMEDIA:
7621 DBPRINT(sc, BCE_VERBOSE_MISC,
7622 "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7623 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7624 error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7625 command);
7626 else {
7627 mii = device_get_softc(sc->bce_miibus);
7628 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7629 command);
7630 }
7631 break;
7632
7633 /* Set interface capability */
7634 case SIOCSIFCAP:
7635 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
7636 DBPRINT(sc, BCE_INFO_MISC,
7637 "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7638
7639 /* Toggle the TX checksum capabilities enable flag. */
7640 if (mask & IFCAP_TXCSUM &&
7641 ifp->if_capabilities & IFCAP_TXCSUM) {
7642 ifp->if_capenable ^= IFCAP_TXCSUM;
7643 if (IFCAP_TXCSUM & ifp->if_capenable)
7644 ifp->if_hwassist |= BCE_IF_HWASSIST;
7645 else
7646 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
7647 }
7648
7649 /* Toggle the RX checksum capabilities enable flag. */
7650 if (mask & IFCAP_RXCSUM &&
7651 ifp->if_capabilities & IFCAP_RXCSUM)
7652 ifp->if_capenable ^= IFCAP_RXCSUM;
7653
7654 /* Toggle the TSO capabilities enable flag. */
7655 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7656 ifp->if_capabilities & IFCAP_TSO4) {
7657 ifp->if_capenable ^= IFCAP_TSO4;
7658 if (IFCAP_TSO4 & ifp->if_capenable)
7659 ifp->if_hwassist |= CSUM_TSO;
7660 else
7661 ifp->if_hwassist &= ~CSUM_TSO;
7662 }
7663
7664 if (mask & IFCAP_VLAN_HWCSUM &&
7665 ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
7666 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
7667
7668 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7669 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
7670 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
7671 /*
7672 * Don't actually disable VLAN tag stripping as
7673 * management firmware (ASF/IPMI/UMP) requires the
7674 * feature. If VLAN tag stripping is disabled driver
7675 * will manually reconstruct the VLAN frame by
7676 * appending stripped VLAN tag.
7677 */
7678 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7679 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
7680 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
7681 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
7682 == 0)
7683 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
7684 }
7685 VLAN_CAPABILITIES(ifp);
7686 break;
7687 default:
7688 /* We don't know how to handle the IOCTL, pass it on. */
7689 error = ether_ioctl(ifp, command, data);
7690 break;
7691 }
7692
7693 DBEXIT(BCE_VERBOSE_MISC);
7694 return(error);
7695 }
7696
7697 /****************************************************************************/
7698 /* Transmit timeout handler. */
7699 /* */
7700 /* Returns: */
7701 /* Nothing. */
7702 /****************************************************************************/
7703 static void
7704 bce_watchdog(struct bce_softc *sc)
7705 {
7706 uint32_t status;
7707
7708 DBENTER(BCE_EXTREME_SEND);
7709
7710 BCE_LOCK_ASSERT(sc);
7711
7712 status = 0;
7713 /* If the watchdog timer hasn't expired then just exit. */
7714 if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7715 goto bce_watchdog_exit;
7716
7717 status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7718 /* If pause frames are active then don't reset the hardware. */
7719 if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7720 if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7721 /*
7722 * If link partner has us in XOFF state then wait for
7723 * the condition to clear.
7724 */
7725 sc->watchdog_timer = BCE_TX_TIMEOUT;
7726 goto bce_watchdog_exit;
7727 } else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7728 (status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7729 /*
7730 * If we're not currently XOFF'ed but have recently
7731 * been XOFF'd/XON'd then assume that's delaying TX
7732 * this time around.
7733 */
7734 sc->watchdog_timer = BCE_TX_TIMEOUT;
7735 goto bce_watchdog_exit;
7736 }
7737 /*
7738 * Any other condition is unexpected and the controller
7739 * should be reset.
7740 */
7741 }
7742
7743 BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7744 __FILE__, __LINE__);
7745
7746 DBRUNMSG(BCE_INFO,
7747 bce_dump_driver_state(sc);
7748 bce_dump_status_block(sc);
7749 bce_dump_stats_block(sc);
7750 bce_dump_ftqs(sc);
7751 bce_dump_txp_state(sc, 0);
7752 bce_dump_rxp_state(sc, 0);
7753 bce_dump_tpat_state(sc, 0);
7754 bce_dump_cp_state(sc, 0);
7755 bce_dump_com_state(sc, 0));
7756
7757 DBRUN(bce_breakpoint(sc));
7758
7759 sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
7760
7761 bce_init_locked(sc);
7762 sc->watchdog_timeouts++;
7763
7764 bce_watchdog_exit:
7765 REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7766 DBEXIT(BCE_EXTREME_SEND);
7767 }
7768
7769 /*
7770 * Interrupt handler.
7771 */
7772 /****************************************************************************/
7773 /* Main interrupt entry point. Verifies that the controller generated the */
7774 /* interrupt and then calls a separate routine for handle the various */
7775 /* interrupt causes (PHY, TX, RX). */
7776 /* */
7777 /* Returns: */
7778 /* Nothing. */
7779 /****************************************************************************/
7780 static void
7781 bce_intr(void *xsc)
7782 {
7783 struct bce_softc *sc;
7784 struct ifnet *ifp;
7785 u32 status_attn_bits;
7786 u16 hw_rx_cons, hw_tx_cons;
7787
7788 sc = xsc;
7789 ifp = sc->bce_ifp;
7790
7791 DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7792 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7793 DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7794
7795 BCE_LOCK(sc);
7796
7797 DBRUN(sc->interrupts_generated++);
7798
7799 /* Synchnorize before we read from interface's status block */
7800 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7801
7802 /*
7803 * If the hardware status block index matches the last value read
7804 * by the driver and we haven't asserted our interrupt then there's
7805 * nothing to do. This may only happen in case of INTx due to the
7806 * interrupt arriving at the CPU before the status block is updated.
7807 */
7808 if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7809 sc->status_block->status_idx == sc->last_status_idx &&
7810 (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7811 BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7812 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7813 __FUNCTION__);
7814 goto bce_intr_exit;
7815 }
7816
7817 /* Ack the interrupt and stop others from occurring. */
7818 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7819 BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7820 BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7821
7822 /* Check if the hardware has finished any work. */
7823 hw_rx_cons = bce_get_hw_rx_cons(sc);
7824 hw_tx_cons = bce_get_hw_tx_cons(sc);
7825
7826 /* Keep processing data as long as there is work to do. */
7827 for (;;) {
7828 status_attn_bits = sc->status_block->status_attn_bits;
7829
7830 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7831 BCE_PRINTF("Simulating unexpected status attention "
7832 "bit set.");
7833 sc->unexpected_attention_sim_count++;
7834 status_attn_bits = status_attn_bits |
7835 STATUS_ATTN_BITS_PARITY_ERROR);
7836
7837 /* Was it a link change interrupt? */
7838 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7839 (sc->status_block->status_attn_bits_ack &
7840 STATUS_ATTN_BITS_LINK_STATE)) {
7841 bce_phy_intr(sc);
7842
7843 /* Clear transient updates during link state change. */
7844 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7845 BCE_HC_COMMAND_COAL_NOW_WO_INT);
7846 REG_RD(sc, BCE_HC_COMMAND);
7847 }
7848
7849 /* If any other attention is asserted, the chip is toast. */
7850 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7851 (sc->status_block->status_attn_bits_ack &
7852 ~STATUS_ATTN_BITS_LINK_STATE))) {
7853 sc->unexpected_attention_count++;
7854
7855 BCE_PRINTF("%s(%d): Fatal attention detected: "
7856 "0x%08X\n", __FILE__, __LINE__,
7857 sc->status_block->status_attn_bits);
7858
7859 DBRUNMSG(BCE_FATAL,
7860 if (unexpected_attention_sim_control == 0)
7861 bce_breakpoint(sc));
7862
7863 bce_init_locked(sc);
7864 goto bce_intr_exit;
7865 }
7866
7867 /* Check for any completed RX frames. */
7868 if (hw_rx_cons != sc->hw_rx_cons)
7869 bce_rx_intr(sc);
7870
7871 /* Check for any completed TX frames. */
7872 if (hw_tx_cons != sc->hw_tx_cons)
7873 bce_tx_intr(sc);
7874
7875 /* Save status block index value for the next interrupt. */
7876 sc->last_status_idx = sc->status_block->status_idx;
7877
7878 /*
7879 * Prevent speculative reads from getting
7880 * ahead of the status block.
7881 */
7882 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7883 BUS_SPACE_BARRIER_READ);
7884
7885 /*
7886 * If there's no work left then exit the
7887 * interrupt service routine.
7888 */
7889 hw_rx_cons = bce_get_hw_rx_cons(sc);
7890 hw_tx_cons = bce_get_hw_tx_cons(sc);
7891
7892 if ((hw_rx_cons == sc->hw_rx_cons) &&
7893 (hw_tx_cons == sc->hw_tx_cons))
7894 break;
7895 }
7896
7897 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_PREREAD);
7898
7899 /* Re-enable interrupts. */
7900 bce_enable_intr(sc, 0);
7901
7902 /* Handle any frames that arrived while handling the interrupt. */
7903 if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
7904 !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
7905 bce_start_locked(ifp);
7906
7907 bce_intr_exit:
7908 BCE_UNLOCK(sc);
7909
7910 DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7911 }
7912
7913 /****************************************************************************/
7914 /* Programs the various packet receive modes (broadcast and multicast). */
7915 /* */
7916 /* Returns: */
7917 /* Nothing. */
7918 /****************************************************************************/
7919 static u_int
7920 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
7921 {
7922 u32 *hashes = arg;
7923 int h;
7924
7925 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF;
7926 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7927
7928 return (1);
7929 }
7930
7931 static void
7932 bce_set_rx_mode(struct bce_softc *sc)
7933 {
7934 struct ifnet *ifp;
7935 u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7936 u32 rx_mode, sort_mode;
7937 int i;
7938
7939 DBENTER(BCE_VERBOSE_MISC);
7940
7941 BCE_LOCK_ASSERT(sc);
7942
7943 ifp = sc->bce_ifp;
7944
7945 /* Initialize receive mode default settings. */
7946 rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7947 BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7948 sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7949
7950 /*
7951 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7952 * be enbled.
7953 */
7954 if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7955 (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7956 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7957
7958 /*
7959 * Check for promiscuous, all multicast, or selected
7960 * multicast address filtering.
7961 */
7962 if (ifp->if_flags & IFF_PROMISC) {
7963 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7964
7965 /* Enable promiscuous mode. */
7966 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7967 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7968 } else if (ifp->if_flags & IFF_ALLMULTI) {
7969 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7970
7971 /* Enable all multicast addresses. */
7972 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7973 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
7974 0xffffffff);
7975 }
7976 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7977 } else {
7978 /* Accept one or more multicast(s). */
7979 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7980 if_foreach_llmaddr(ifp, bce_hash_maddr, hashes);
7981
7982 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7983 REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7984
7985 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7986 }
7987
7988 /* Only make changes if the recive mode has actually changed. */
7989 if (rx_mode != sc->rx_mode) {
7990 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7991 "0x%08X\n", rx_mode);
7992
7993 sc->rx_mode = rx_mode;
7994 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7995 }
7996
7997 /* Disable and clear the existing sort before enabling a new sort. */
7998 REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7999 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
8000 REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
8001
8002 DBEXIT(BCE_VERBOSE_MISC);
8003 }
8004
8005 /****************************************************************************/
8006 /* Called periodically to updates statistics from the controllers */
8007 /* statistics block. */
8008 /* */
8009 /* Returns: */
8010 /* Nothing. */
8011 /****************************************************************************/
8012 static void
8013 bce_stats_update(struct bce_softc *sc)
8014 {
8015 struct statistics_block *stats;
8016
8017 DBENTER(BCE_EXTREME_MISC);
8018
8019 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8020
8021 stats = (struct statistics_block *) sc->stats_block;
8022
8023 /*
8024 * Update the sysctl statistics from the
8025 * hardware statistics.
8026 */
8027 sc->stat_IfHCInOctets =
8028 ((u64) stats->stat_IfHCInOctets_hi << 32) +
8029 (u64) stats->stat_IfHCInOctets_lo;
8030
8031 sc->stat_IfHCInBadOctets =
8032 ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8033 (u64) stats->stat_IfHCInBadOctets_lo;
8034
8035 sc->stat_IfHCOutOctets =
8036 ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8037 (u64) stats->stat_IfHCOutOctets_lo;
8038
8039 sc->stat_IfHCOutBadOctets =
8040 ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8041 (u64) stats->stat_IfHCOutBadOctets_lo;
8042
8043 sc->stat_IfHCInUcastPkts =
8044 ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8045 (u64) stats->stat_IfHCInUcastPkts_lo;
8046
8047 sc->stat_IfHCInMulticastPkts =
8048 ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8049 (u64) stats->stat_IfHCInMulticastPkts_lo;
8050
8051 sc->stat_IfHCInBroadcastPkts =
8052 ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8053 (u64) stats->stat_IfHCInBroadcastPkts_lo;
8054
8055 sc->stat_IfHCOutUcastPkts =
8056 ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8057 (u64) stats->stat_IfHCOutUcastPkts_lo;
8058
8059 sc->stat_IfHCOutMulticastPkts =
8060 ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8061 (u64) stats->stat_IfHCOutMulticastPkts_lo;
8062
8063 sc->stat_IfHCOutBroadcastPkts =
8064 ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8065 (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8066
8067 /* ToDo: Preserve counters beyond 32 bits? */
8068 /* ToDo: Read the statistics from auto-clear regs? */
8069
8070 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8071 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8072
8073 sc->stat_Dot3StatsCarrierSenseErrors =
8074 stats->stat_Dot3StatsCarrierSenseErrors;
8075
8076 sc->stat_Dot3StatsFCSErrors =
8077 stats->stat_Dot3StatsFCSErrors;
8078
8079 sc->stat_Dot3StatsAlignmentErrors =
8080 stats->stat_Dot3StatsAlignmentErrors;
8081
8082 sc->stat_Dot3StatsSingleCollisionFrames =
8083 stats->stat_Dot3StatsSingleCollisionFrames;
8084
8085 sc->stat_Dot3StatsMultipleCollisionFrames =
8086 stats->stat_Dot3StatsMultipleCollisionFrames;
8087
8088 sc->stat_Dot3StatsDeferredTransmissions =
8089 stats->stat_Dot3StatsDeferredTransmissions;
8090
8091 sc->stat_Dot3StatsExcessiveCollisions =
8092 stats->stat_Dot3StatsExcessiveCollisions;
8093
8094 sc->stat_Dot3StatsLateCollisions =
8095 stats->stat_Dot3StatsLateCollisions;
8096
8097 sc->stat_EtherStatsCollisions =
8098 stats->stat_EtherStatsCollisions;
8099
8100 sc->stat_EtherStatsFragments =
8101 stats->stat_EtherStatsFragments;
8102
8103 sc->stat_EtherStatsJabbers =
8104 stats->stat_EtherStatsJabbers;
8105
8106 sc->stat_EtherStatsUndersizePkts =
8107 stats->stat_EtherStatsUndersizePkts;
8108
8109 sc->stat_EtherStatsOversizePkts =
8110 stats->stat_EtherStatsOversizePkts;
8111
8112 sc->stat_EtherStatsPktsRx64Octets =
8113 stats->stat_EtherStatsPktsRx64Octets;
8114
8115 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8116 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8117
8118 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8119 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8120
8121 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8122 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8123
8124 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8125 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8126
8127 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8128 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8129
8130 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8131 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8132
8133 sc->stat_EtherStatsPktsTx64Octets =
8134 stats->stat_EtherStatsPktsTx64Octets;
8135
8136 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8137 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8138
8139 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8140 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8141
8142 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8143 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8144
8145 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8146 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8147
8148 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8149 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8150
8151 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8152 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8153
8154 sc->stat_XonPauseFramesReceived =
8155 stats->stat_XonPauseFramesReceived;
8156
8157 sc->stat_XoffPauseFramesReceived =
8158 stats->stat_XoffPauseFramesReceived;
8159
8160 sc->stat_OutXonSent =
8161 stats->stat_OutXonSent;
8162
8163 sc->stat_OutXoffSent =
8164 stats->stat_OutXoffSent;
8165
8166 sc->stat_FlowControlDone =
8167 stats->stat_FlowControlDone;
8168
8169 sc->stat_MacControlFramesReceived =
8170 stats->stat_MacControlFramesReceived;
8171
8172 sc->stat_XoffStateEntered =
8173 stats->stat_XoffStateEntered;
8174
8175 sc->stat_IfInFramesL2FilterDiscards =
8176 stats->stat_IfInFramesL2FilterDiscards;
8177
8178 sc->stat_IfInRuleCheckerDiscards =
8179 stats->stat_IfInRuleCheckerDiscards;
8180
8181 sc->stat_IfInFTQDiscards =
8182 stats->stat_IfInFTQDiscards;
8183
8184 sc->stat_IfInMBUFDiscards =
8185 stats->stat_IfInMBUFDiscards;
8186
8187 sc->stat_IfInRuleCheckerP4Hit =
8188 stats->stat_IfInRuleCheckerP4Hit;
8189
8190 sc->stat_CatchupInRuleCheckerDiscards =
8191 stats->stat_CatchupInRuleCheckerDiscards;
8192
8193 sc->stat_CatchupInFTQDiscards =
8194 stats->stat_CatchupInFTQDiscards;
8195
8196 sc->stat_CatchupInMBUFDiscards =
8197 stats->stat_CatchupInMBUFDiscards;
8198
8199 sc->stat_CatchupInRuleCheckerP4Hit =
8200 stats->stat_CatchupInRuleCheckerP4Hit;
8201
8202 sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8203
8204 /* ToDo: Add additional statistics? */
8205
8206 DBEXIT(BCE_EXTREME_MISC);
8207 }
8208
8209 static uint64_t
8210 bce_get_counter(struct ifnet *ifp, ift_counter cnt)
8211 {
8212 struct bce_softc *sc;
8213 uint64_t rv;
8214
8215 sc = if_getsoftc(ifp);
8216
8217 switch (cnt) {
8218 case IFCOUNTER_COLLISIONS:
8219 return (sc->stat_EtherStatsCollisions);
8220 case IFCOUNTER_IERRORS:
8221 return (sc->stat_EtherStatsUndersizePkts +
8222 sc->stat_EtherStatsOversizePkts +
8223 sc->stat_IfInMBUFDiscards +
8224 sc->stat_Dot3StatsAlignmentErrors +
8225 sc->stat_Dot3StatsFCSErrors +
8226 sc->stat_IfInRuleCheckerDiscards +
8227 sc->stat_IfInFTQDiscards +
8228 sc->l2fhdr_error_count +
8229 sc->com_no_buffers);
8230 case IFCOUNTER_OERRORS:
8231 rv = sc->stat_Dot3StatsExcessiveCollisions +
8232 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8233 sc->stat_Dot3StatsLateCollisions +
8234 sc->watchdog_timeouts;
8235 /*
8236 * Certain controllers don't report
8237 * carrier sense errors correctly.
8238 * See errata E11_5708CA0_1165.
8239 */
8240 if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8241 !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8242 rv += sc->stat_Dot3StatsCarrierSenseErrors;
8243 return (rv);
8244 default:
8245 return (if_get_counter_default(ifp, cnt));
8246 }
8247 }
8248
8249 /****************************************************************************/
8250 /* Periodic function to notify the bootcode that the driver is still */
8251 /* present. */
8252 /* */
8253 /* Returns: */
8254 /* Nothing. */
8255 /****************************************************************************/
8256 static void
8257 bce_pulse(void *xsc)
8258 {
8259 struct bce_softc *sc = xsc;
8260 u32 msg;
8261
8262 DBENTER(BCE_EXTREME_MISC);
8263
8264 BCE_LOCK_ASSERT(sc);
8265
8266 /* Tell the firmware that the driver is still running. */
8267 msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8268 bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8269
8270 /* Update the bootcode condition. */
8271 sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8272
8273 /* Report whether the bootcode still knows the driver is running. */
8274 if (bce_verbose || bootverbose) {
8275 if (sc->bce_drv_cardiac_arrest == FALSE) {
8276 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8277 sc->bce_drv_cardiac_arrest = TRUE;
8278 BCE_PRINTF("%s(): Warning: bootcode "
8279 "thinks driver is absent! "
8280 "(bc_state = 0x%08X)\n",
8281 __FUNCTION__, sc->bc_state);
8282 }
8283 } else {
8284 /*
8285 * Not supported by all bootcode versions.
8286 * (v5.0.11+ and v5.2.1+) Older bootcode
8287 * will require the driver to reset the
8288 * controller to clear this condition.
8289 */
8290 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8291 sc->bce_drv_cardiac_arrest = FALSE;
8292 BCE_PRINTF("%s(): Bootcode found the "
8293 "driver pulse! (bc_state = 0x%08X)\n",
8294 __FUNCTION__, sc->bc_state);
8295 }
8296 }
8297 }
8298
8299 /* Schedule the next pulse. */
8300 callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8301
8302 DBEXIT(BCE_EXTREME_MISC);
8303 }
8304
8305 /****************************************************************************/
8306 /* Periodic function to perform maintenance tasks. */
8307 /* */
8308 /* Returns: */
8309 /* Nothing. */
8310 /****************************************************************************/
8311 static void
8312 bce_tick(void *xsc)
8313 {
8314 struct bce_softc *sc = xsc;
8315 struct mii_data *mii;
8316 struct ifnet *ifp;
8317 struct ifmediareq ifmr;
8318
8319 ifp = sc->bce_ifp;
8320
8321 DBENTER(BCE_EXTREME_MISC);
8322
8323 BCE_LOCK_ASSERT(sc);
8324
8325 /* Schedule the next tick. */
8326 callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8327
8328 /* Update the statistics from the hardware statistics block. */
8329 bce_stats_update(sc);
8330
8331 /* Ensure page and RX chains get refilled in low-memory situations. */
8332 if (bce_hdr_split == TRUE)
8333 bce_fill_pg_chain(sc);
8334 bce_fill_rx_chain(sc);
8335
8336 /* Check that chip hasn't hung. */
8337 bce_watchdog(sc);
8338
8339 /* If link is up already up then we're done. */
8340 if (sc->bce_link_up == TRUE)
8341 goto bce_tick_exit;
8342
8343 /* Link is down. Check what the PHY's doing. */
8344 if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8345 bzero(&ifmr, sizeof(ifmr));
8346 bce_ifmedia_sts_rphy(sc, &ifmr);
8347 if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8348 (IFM_ACTIVE | IFM_AVALID)) {
8349 sc->bce_link_up = TRUE;
8350 bce_miibus_statchg(sc->bce_dev);
8351 }
8352 } else {
8353 mii = device_get_softc(sc->bce_miibus);
8354 mii_tick(mii);
8355 /* Check if the link has come up. */
8356 if ((mii->mii_media_status & IFM_ACTIVE) &&
8357 (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8358 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8359 __FUNCTION__);
8360 sc->bce_link_up = TRUE;
8361 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8362 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8363 IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8364 (bce_verbose || bootverbose))
8365 BCE_PRINTF("Gigabit link up!\n");
8366 }
8367 }
8368 if (sc->bce_link_up == TRUE) {
8369 /* Now that link is up, handle any outstanding TX traffic. */
8370 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
8371 DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8372 "pending TX traffic.\n", __FUNCTION__);
8373 bce_start_locked(ifp);
8374 }
8375 }
8376
8377 bce_tick_exit:
8378 DBEXIT(BCE_EXTREME_MISC);
8379 }
8380
8381 static void
8382 bce_fw_cap_init(struct bce_softc *sc)
8383 {
8384 u32 ack, cap, link;
8385
8386 ack = 0;
8387 cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8388 if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8389 BCE_FW_CAP_SIGNATURE_MAGIC)
8390 return;
8391 if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8392 (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8393 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8394 BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8395 if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8396 (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8397 sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8398 sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8399 link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8400 if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8401 sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8402 ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8403 BCE_FW_CAP_REMOTE_PHY_CAP;
8404 }
8405
8406 if (ack != 0)
8407 bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8408 }
8409
8410 #ifdef BCE_DEBUG
8411 /****************************************************************************/
8412 /* Allows the driver state to be dumped through the sysctl interface. */
8413 /* */
8414 /* Returns: */
8415 /* 0 for success, positive value for failure. */
8416 /****************************************************************************/
8417 static int
8418 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8419 {
8420 int error;
8421 int result;
8422 struct bce_softc *sc;
8423
8424 result = -1;
8425 error = sysctl_handle_int(oidp, &result, 0, req);
8426
8427 if (error || !req->newptr)
8428 return (error);
8429
8430 if (result == 1) {
8431 sc = (struct bce_softc *)arg1;
8432 bce_dump_driver_state(sc);
8433 }
8434
8435 return error;
8436 }
8437
8438 /****************************************************************************/
8439 /* Allows the hardware state to be dumped through the sysctl interface. */
8440 /* */
8441 /* Returns: */
8442 /* 0 for success, positive value for failure. */
8443 /****************************************************************************/
8444 static int
8445 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8446 {
8447 int error;
8448 int result;
8449 struct bce_softc *sc;
8450
8451 result = -1;
8452 error = sysctl_handle_int(oidp, &result, 0, req);
8453
8454 if (error || !req->newptr)
8455 return (error);
8456
8457 if (result == 1) {
8458 sc = (struct bce_softc *)arg1;
8459 bce_dump_hw_state(sc);
8460 }
8461
8462 return error;
8463 }
8464
8465 /****************************************************************************/
8466 /* Allows the status block to be dumped through the sysctl interface. */
8467 /* */
8468 /* Returns: */
8469 /* 0 for success, positive value for failure. */
8470 /****************************************************************************/
8471 static int
8472 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8473 {
8474 int error;
8475 int result;
8476 struct bce_softc *sc;
8477
8478 result = -1;
8479 error = sysctl_handle_int(oidp, &result, 0, req);
8480
8481 if (error || !req->newptr)
8482 return (error);
8483
8484 if (result == 1) {
8485 sc = (struct bce_softc *)arg1;
8486 bce_dump_status_block(sc);
8487 }
8488
8489 return error;
8490 }
8491
8492 /****************************************************************************/
8493 /* Allows the stats block to be dumped through the sysctl interface. */
8494 /* */
8495 /* Returns: */
8496 /* 0 for success, positive value for failure. */
8497 /****************************************************************************/
8498 static int
8499 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8500 {
8501 int error;
8502 int result;
8503 struct bce_softc *sc;
8504
8505 result = -1;
8506 error = sysctl_handle_int(oidp, &result, 0, req);
8507
8508 if (error || !req->newptr)
8509 return (error);
8510
8511 if (result == 1) {
8512 sc = (struct bce_softc *)arg1;
8513 bce_dump_stats_block(sc);
8514 }
8515
8516 return error;
8517 }
8518
8519 /****************************************************************************/
8520 /* Allows the stat counters to be cleared without unloading/reloading the */
8521 /* driver. */
8522 /* */
8523 /* Returns: */
8524 /* 0 for success, positive value for failure. */
8525 /****************************************************************************/
8526 static int
8527 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8528 {
8529 int error;
8530 int result;
8531 struct bce_softc *sc;
8532
8533 result = -1;
8534 error = sysctl_handle_int(oidp, &result, 0, req);
8535
8536 if (error || !req->newptr)
8537 return (error);
8538
8539 if (result == 1) {
8540 sc = (struct bce_softc *)arg1;
8541 struct statistics_block *stats;
8542
8543 stats = (struct statistics_block *) sc->stats_block;
8544 bzero(stats, sizeof(struct statistics_block));
8545 bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8546 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8547
8548 /* Clear the internal H/W statistics counters. */
8549 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8550
8551 /* Reset the driver maintained statistics. */
8552 sc->interrupts_rx =
8553 sc->interrupts_tx = 0;
8554 sc->tso_frames_requested =
8555 sc->tso_frames_completed =
8556 sc->tso_frames_failed = 0;
8557 sc->rx_empty_count =
8558 sc->tx_full_count = 0;
8559 sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8560 sc->tx_hi_watermark = 0;
8561 sc->l2fhdr_error_count =
8562 sc->l2fhdr_error_sim_count = 0;
8563 sc->mbuf_alloc_failed_count =
8564 sc->mbuf_alloc_failed_sim_count = 0;
8565 sc->dma_map_addr_rx_failed_count =
8566 sc->dma_map_addr_tx_failed_count = 0;
8567 sc->mbuf_frag_count = 0;
8568 sc->csum_offload_tcp_udp =
8569 sc->csum_offload_ip = 0;
8570 sc->vlan_tagged_frames_rcvd =
8571 sc->vlan_tagged_frames_stripped = 0;
8572 sc->split_header_frames_rcvd =
8573 sc->split_header_tcp_frames_rcvd = 0;
8574
8575 /* Clear firmware maintained statistics. */
8576 REG_WR_IND(sc, 0x120084, 0);
8577 }
8578
8579 return error;
8580 }
8581
8582 /****************************************************************************/
8583 /* Allows the shared memory contents to be dumped through the sysctl . */
8584 /* interface. */
8585 /* */
8586 /* Returns: */
8587 /* 0 for success, positive value for failure. */
8588 /****************************************************************************/
8589 static int
8590 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8591 {
8592 int error;
8593 int result;
8594 struct bce_softc *sc;
8595
8596 result = -1;
8597 error = sysctl_handle_int(oidp, &result, 0, req);
8598
8599 if (error || !req->newptr)
8600 return (error);
8601
8602 if (result == 1) {
8603 sc = (struct bce_softc *)arg1;
8604 bce_dump_shmem_state(sc);
8605 }
8606
8607 return error;
8608 }
8609
8610 /****************************************************************************/
8611 /* Allows the bootcode state to be dumped through the sysctl interface. */
8612 /* */
8613 /* Returns: */
8614 /* 0 for success, positive value for failure. */
8615 /****************************************************************************/
8616 static int
8617 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8618 {
8619 int error;
8620 int result;
8621 struct bce_softc *sc;
8622
8623 result = -1;
8624 error = sysctl_handle_int(oidp, &result, 0, req);
8625
8626 if (error || !req->newptr)
8627 return (error);
8628
8629 if (result == 1) {
8630 sc = (struct bce_softc *)arg1;
8631 bce_dump_bc_state(sc);
8632 }
8633
8634 return error;
8635 }
8636
8637 /****************************************************************************/
8638 /* Provides a sysctl interface to allow dumping the RX BD chain. */
8639 /* */
8640 /* Returns: */
8641 /* 0 for success, positive value for failure. */
8642 /****************************************************************************/
8643 static int
8644 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8645 {
8646 int error;
8647 int result;
8648 struct bce_softc *sc;
8649
8650 result = -1;
8651 error = sysctl_handle_int(oidp, &result, 0, req);
8652
8653 if (error || !req->newptr)
8654 return (error);
8655
8656 if (result == 1) {
8657 sc = (struct bce_softc *)arg1;
8658 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8659 }
8660
8661 return error;
8662 }
8663
8664 /****************************************************************************/
8665 /* Provides a sysctl interface to allow dumping the RX MBUF chain. */
8666 /* */
8667 /* Returns: */
8668 /* 0 for success, positive value for failure. */
8669 /****************************************************************************/
8670 static int
8671 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8672 {
8673 int error;
8674 int result;
8675 struct bce_softc *sc;
8676
8677 result = -1;
8678 error = sysctl_handle_int(oidp, &result, 0, req);
8679
8680 if (error || !req->newptr)
8681 return (error);
8682
8683 if (result == 1) {
8684 sc = (struct bce_softc *)arg1;
8685 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8686 }
8687
8688 return error;
8689 }
8690
8691 /****************************************************************************/
8692 /* Provides a sysctl interface to allow dumping the TX chain. */
8693 /* */
8694 /* Returns: */
8695 /* 0 for success, positive value for failure. */
8696 /****************************************************************************/
8697 static int
8698 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8699 {
8700 int error;
8701 int result;
8702 struct bce_softc *sc;
8703
8704 result = -1;
8705 error = sysctl_handle_int(oidp, &result, 0, req);
8706
8707 if (error || !req->newptr)
8708 return (error);
8709
8710 if (result == 1) {
8711 sc = (struct bce_softc *)arg1;
8712 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8713 }
8714
8715 return error;
8716 }
8717
8718 /****************************************************************************/
8719 /* Provides a sysctl interface to allow dumping the page chain. */
8720 /* */
8721 /* Returns: */
8722 /* 0 for success, positive value for failure. */
8723 /****************************************************************************/
8724 static int
8725 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8726 {
8727 int error;
8728 int result;
8729 struct bce_softc *sc;
8730
8731 result = -1;
8732 error = sysctl_handle_int(oidp, &result, 0, req);
8733
8734 if (error || !req->newptr)
8735 return (error);
8736
8737 if (result == 1) {
8738 sc = (struct bce_softc *)arg1;
8739 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8740 }
8741
8742 return error;
8743 }
8744
8745 /****************************************************************************/
8746 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in */
8747 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
8748 /* */
8749 /* Returns: */
8750 /* 0 for success, positive value for failure. */
8751 /****************************************************************************/
8752 static int
8753 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8754 {
8755 struct bce_softc *sc = (struct bce_softc *)arg1;
8756 int error;
8757 u32 result;
8758 u32 val[1];
8759 u8 *data = (u8 *) val;
8760
8761 result = -1;
8762 error = sysctl_handle_int(oidp, &result, 0, req);
8763 if (error || (req->newptr == NULL))
8764 return (error);
8765
8766 error = bce_nvram_read(sc, result, data, 4);
8767
8768 BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8769
8770 return (error);
8771 }
8772
8773 /****************************************************************************/
8774 /* Provides a sysctl interface to allow reading arbitrary registers in the */
8775 /* device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
8776 /* */
8777 /* Returns: */
8778 /* 0 for success, positive value for failure. */
8779 /****************************************************************************/
8780 static int
8781 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8782 {
8783 struct bce_softc *sc = (struct bce_softc *)arg1;
8784 int error;
8785 u32 val, result;
8786
8787 result = -1;
8788 error = sysctl_handle_int(oidp, &result, 0, req);
8789 if (error || (req->newptr == NULL))
8790 return (error);
8791
8792 /* Make sure the register is accessible. */
8793 if (result < 0x8000) {
8794 val = REG_RD(sc, result);
8795 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8796 } else if (result < 0x0280000) {
8797 val = REG_RD_IND(sc, result);
8798 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8799 }
8800
8801 return (error);
8802 }
8803
8804 /****************************************************************************/
8805 /* Provides a sysctl interface to allow reading arbitrary PHY registers in */
8806 /* the device. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
8807 /* */
8808 /* Returns: */
8809 /* 0 for success, positive value for failure. */
8810 /****************************************************************************/
8811 static int
8812 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8813 {
8814 struct bce_softc *sc;
8815 device_t dev;
8816 int error, result;
8817 u16 val;
8818
8819 result = -1;
8820 error = sysctl_handle_int(oidp, &result, 0, req);
8821 if (error || (req->newptr == NULL))
8822 return (error);
8823
8824 /* Make sure the register is accessible. */
8825 if (result < 0x20) {
8826 sc = (struct bce_softc *)arg1;
8827 dev = sc->bce_dev;
8828 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8829 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8830 }
8831 return (error);
8832 }
8833
8834 /****************************************************************************/
8835 /* Provides a sysctl interface for dumping the nvram contents. */
8836 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */
8837 /* */
8838 /* Returns: */
8839 /* 0 for success, positive errno for failure. */
8840 /****************************************************************************/
8841 static int
8842 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8843 {
8844 struct bce_softc *sc = (struct bce_softc *)arg1;
8845 int error, i;
8846
8847 if (sc->nvram_buf == NULL)
8848 sc->nvram_buf = malloc(sc->bce_flash_size,
8849 M_TEMP, M_ZERO | M_WAITOK);
8850
8851 error = 0;
8852 if (req->oldlen == sc->bce_flash_size) {
8853 for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8854 error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8855 }
8856
8857 if (error == 0)
8858 error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8859
8860 return error;
8861 }
8862
8863 #ifdef BCE_NVRAM_WRITE_SUPPORT
8864 /****************************************************************************/
8865 /* Provides a sysctl interface for writing to nvram. */
8866 /* DO NOT ENABLE ON PRODUCTION SYSTEMS! */
8867 /* */
8868 /* Returns: */
8869 /* 0 for success, positive errno for failure. */
8870 /****************************************************************************/
8871 static int
8872 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8873 {
8874 struct bce_softc *sc = (struct bce_softc *)arg1;
8875 int error;
8876
8877 if (sc->nvram_buf == NULL)
8878 sc->nvram_buf = malloc(sc->bce_flash_size,
8879 M_TEMP, M_ZERO | M_WAITOK);
8880 else
8881 bzero(sc->nvram_buf, sc->bce_flash_size);
8882
8883 error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8884 if (error == 0)
8885 return (error);
8886
8887 if (req->newlen == sc->bce_flash_size)
8888 error = bce_nvram_write(sc, 0, sc->nvram_buf,
8889 sc->bce_flash_size);
8890
8891 return error;
8892 }
8893 #endif
8894
8895 /****************************************************************************/
8896 /* Provides a sysctl interface to allow reading a CID. */
8897 /* */
8898 /* Returns: */
8899 /* 0 for success, positive value for failure. */
8900 /****************************************************************************/
8901 static int
8902 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8903 {
8904 struct bce_softc *sc;
8905 int error, result;
8906
8907 result = -1;
8908 error = sysctl_handle_int(oidp, &result, 0, req);
8909 if (error || (req->newptr == NULL))
8910 return (error);
8911
8912 /* Make sure the register is accessible. */
8913 if (result <= TX_CID) {
8914 sc = (struct bce_softc *)arg1;
8915 bce_dump_ctx(sc, result);
8916 }
8917
8918 return (error);
8919 }
8920
8921 /****************************************************************************/
8922 /* Provides a sysctl interface to forcing the driver to dump state and */
8923 /* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS! */
8924 /* */
8925 /* Returns: */
8926 /* 0 for success, positive value for failure. */
8927 /****************************************************************************/
8928 static int
8929 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8930 {
8931 int error;
8932 int result;
8933 struct bce_softc *sc;
8934
8935 result = -1;
8936 error = sysctl_handle_int(oidp, &result, 0, req);
8937
8938 if (error || !req->newptr)
8939 return (error);
8940
8941 if (result == 1) {
8942 sc = (struct bce_softc *)arg1;
8943 bce_breakpoint(sc);
8944 }
8945
8946 return error;
8947 }
8948 #endif
8949
8950 /****************************************************************************/
8951 /* Adds any sysctl parameters for tuning or debugging purposes. */
8952 /* */
8953 /* Returns: */
8954 /* 0 for success, positive value for failure. */
8955 /****************************************************************************/
8956 static void
8957 bce_add_sysctls(struct bce_softc *sc)
8958 {
8959 struct sysctl_ctx_list *ctx;
8960 struct sysctl_oid_list *children;
8961
8962 DBENTER(BCE_VERBOSE_MISC);
8963
8964 ctx = device_get_sysctl_ctx(sc->bce_dev);
8965 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8966
8967 #ifdef BCE_DEBUG
8968 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8969 "l2fhdr_error_sim_control",
8970 CTLFLAG_RW, &l2fhdr_error_sim_control,
8971 0, "Debug control to force l2fhdr errors");
8972
8973 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8974 "l2fhdr_error_sim_count",
8975 CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8976 0, "Number of simulated l2_fhdr errors");
8977 #endif
8978
8979 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8980 "l2fhdr_error_count",
8981 CTLFLAG_RD, &sc->l2fhdr_error_count,
8982 0, "Number of l2_fhdr errors");
8983
8984 #ifdef BCE_DEBUG
8985 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8986 "mbuf_alloc_failed_sim_control",
8987 CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8988 0, "Debug control to force mbuf allocation failures");
8989
8990 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8991 "mbuf_alloc_failed_sim_count",
8992 CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8993 0, "Number of simulated mbuf cluster allocation failures");
8994 #endif
8995
8996 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8997 "mbuf_alloc_failed_count",
8998 CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8999 0, "Number of mbuf allocation failures");
9000
9001 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9002 "mbuf_frag_count",
9003 CTLFLAG_RD, &sc->mbuf_frag_count,
9004 0, "Number of fragmented mbufs");
9005
9006 #ifdef BCE_DEBUG
9007 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9008 "dma_map_addr_failed_sim_control",
9009 CTLFLAG_RW, &dma_map_addr_failed_sim_control,
9010 0, "Debug control to force DMA mapping failures");
9011
9012 /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
9013 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9014 "dma_map_addr_failed_sim_count",
9015 CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
9016 0, "Number of simulated DMA mapping failures");
9017
9018 #endif
9019
9020 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9021 "dma_map_addr_rx_failed_count",
9022 CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9023 0, "Number of RX DMA mapping failures");
9024
9025 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9026 "dma_map_addr_tx_failed_count",
9027 CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9028 0, "Number of TX DMA mapping failures");
9029
9030 #ifdef BCE_DEBUG
9031 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9032 "unexpected_attention_sim_control",
9033 CTLFLAG_RW, &unexpected_attention_sim_control,
9034 0, "Debug control to simulate unexpected attentions");
9035
9036 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9037 "unexpected_attention_sim_count",
9038 CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9039 0, "Number of simulated unexpected attentions");
9040 #endif
9041
9042 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9043 "unexpected_attention_count",
9044 CTLFLAG_RW, &sc->unexpected_attention_count,
9045 0, "Number of unexpected attentions");
9046
9047 #ifdef BCE_DEBUG
9048 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9049 "debug_bootcode_running_failure",
9050 CTLFLAG_RW, &bootcode_running_failure_sim_control,
9051 0, "Debug control to force bootcode running failures");
9052
9053 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9054 "rx_low_watermark",
9055 CTLFLAG_RD, &sc->rx_low_watermark,
9056 0, "Lowest level of free rx_bd's");
9057
9058 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9059 "rx_empty_count",
9060 CTLFLAG_RD, &sc->rx_empty_count,
9061 "Number of times the RX chain was empty");
9062
9063 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9064 "tx_hi_watermark",
9065 CTLFLAG_RD, &sc->tx_hi_watermark,
9066 0, "Highest level of used tx_bd's");
9067
9068 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9069 "tx_full_count",
9070 CTLFLAG_RD, &sc->tx_full_count,
9071 "Number of times the TX chain was full");
9072
9073 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9074 "tso_frames_requested",
9075 CTLFLAG_RD, &sc->tso_frames_requested,
9076 "Number of TSO frames requested");
9077
9078 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9079 "tso_frames_completed",
9080 CTLFLAG_RD, &sc->tso_frames_completed,
9081 "Number of TSO frames completed");
9082
9083 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9084 "tso_frames_failed",
9085 CTLFLAG_RD, &sc->tso_frames_failed,
9086 "Number of TSO frames failed");
9087
9088 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9089 "csum_offload_ip",
9090 CTLFLAG_RD, &sc->csum_offload_ip,
9091 "Number of IP checksum offload frames");
9092
9093 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9094 "csum_offload_tcp_udp",
9095 CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9096 "Number of TCP/UDP checksum offload frames");
9097
9098 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9099 "vlan_tagged_frames_rcvd",
9100 CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9101 "Number of VLAN tagged frames received");
9102
9103 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9104 "vlan_tagged_frames_stripped",
9105 CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9106 "Number of VLAN tagged frames stripped");
9107
9108 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9109 "interrupts_rx",
9110 CTLFLAG_RD, &sc->interrupts_rx,
9111 "Number of RX interrupts");
9112
9113 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9114 "interrupts_tx",
9115 CTLFLAG_RD, &sc->interrupts_tx,
9116 "Number of TX interrupts");
9117
9118 if (bce_hdr_split == TRUE) {
9119 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9120 "split_header_frames_rcvd",
9121 CTLFLAG_RD, &sc->split_header_frames_rcvd,
9122 "Number of split header frames received");
9123
9124 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9125 "split_header_tcp_frames_rcvd",
9126 CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9127 "Number of split header TCP frames received");
9128 }
9129
9130 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9131 "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
9132 (void *)sc, 0,
9133 bce_sysctl_nvram_dump, "S", "");
9134
9135 #ifdef BCE_NVRAM_WRITE_SUPPORT
9136 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9137 "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT,
9138 (void *)sc, 0,
9139 bce_sysctl_nvram_write, "S", "");
9140 #endif
9141 #endif /* BCE_DEBUG */
9142
9143 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9144 "stat_IfHcInOctets",
9145 CTLFLAG_RD, &sc->stat_IfHCInOctets,
9146 "Bytes received");
9147
9148 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9149 "stat_IfHCInBadOctets",
9150 CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9151 "Bad bytes received");
9152
9153 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9154 "stat_IfHCOutOctets",
9155 CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9156 "Bytes sent");
9157
9158 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9159 "stat_IfHCOutBadOctets",
9160 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9161 "Bad bytes sent");
9162
9163 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9164 "stat_IfHCInUcastPkts",
9165 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9166 "Unicast packets received");
9167
9168 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9169 "stat_IfHCInMulticastPkts",
9170 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9171 "Multicast packets received");
9172
9173 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9174 "stat_IfHCInBroadcastPkts",
9175 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9176 "Broadcast packets received");
9177
9178 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9179 "stat_IfHCOutUcastPkts",
9180 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9181 "Unicast packets sent");
9182
9183 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9184 "stat_IfHCOutMulticastPkts",
9185 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9186 "Multicast packets sent");
9187
9188 SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9189 "stat_IfHCOutBroadcastPkts",
9190 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9191 "Broadcast packets sent");
9192
9193 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9194 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9195 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9196 0, "Internal MAC transmit errors");
9197
9198 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9199 "stat_Dot3StatsCarrierSenseErrors",
9200 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9201 0, "Carrier sense errors");
9202
9203 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9204 "stat_Dot3StatsFCSErrors",
9205 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9206 0, "Frame check sequence errors");
9207
9208 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9209 "stat_Dot3StatsAlignmentErrors",
9210 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9211 0, "Alignment errors");
9212
9213 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9214 "stat_Dot3StatsSingleCollisionFrames",
9215 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9216 0, "Single Collision Frames");
9217
9218 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9219 "stat_Dot3StatsMultipleCollisionFrames",
9220 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9221 0, "Multiple Collision Frames");
9222
9223 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9224 "stat_Dot3StatsDeferredTransmissions",
9225 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9226 0, "Deferred Transmissions");
9227
9228 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9229 "stat_Dot3StatsExcessiveCollisions",
9230 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9231 0, "Excessive Collisions");
9232
9233 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9234 "stat_Dot3StatsLateCollisions",
9235 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9236 0, "Late Collisions");
9237
9238 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9239 "stat_EtherStatsCollisions",
9240 CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9241 0, "Collisions");
9242
9243 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9244 "stat_EtherStatsFragments",
9245 CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9246 0, "Fragments");
9247
9248 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9249 "stat_EtherStatsJabbers",
9250 CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9251 0, "Jabbers");
9252
9253 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9254 "stat_EtherStatsUndersizePkts",
9255 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9256 0, "Undersize packets");
9257
9258 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9259 "stat_EtherStatsOversizePkts",
9260 CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9261 0, "stat_EtherStatsOversizePkts");
9262
9263 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9264 "stat_EtherStatsPktsRx64Octets",
9265 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9266 0, "Bytes received in 64 byte packets");
9267
9268 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9269 "stat_EtherStatsPktsRx65Octetsto127Octets",
9270 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9271 0, "Bytes received in 65 to 127 byte packets");
9272
9273 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9274 "stat_EtherStatsPktsRx128Octetsto255Octets",
9275 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9276 0, "Bytes received in 128 to 255 byte packets");
9277
9278 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9279 "stat_EtherStatsPktsRx256Octetsto511Octets",
9280 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9281 0, "Bytes received in 256 to 511 byte packets");
9282
9283 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9284 "stat_EtherStatsPktsRx512Octetsto1023Octets",
9285 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9286 0, "Bytes received in 512 to 1023 byte packets");
9287
9288 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9289 "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9290 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9291 0, "Bytes received in 1024 t0 1522 byte packets");
9292
9293 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9294 "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9295 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9296 0, "Bytes received in 1523 to 9022 byte packets");
9297
9298 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9299 "stat_EtherStatsPktsTx64Octets",
9300 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9301 0, "Bytes sent in 64 byte packets");
9302
9303 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9304 "stat_EtherStatsPktsTx65Octetsto127Octets",
9305 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9306 0, "Bytes sent in 65 to 127 byte packets");
9307
9308 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9309 "stat_EtherStatsPktsTx128Octetsto255Octets",
9310 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9311 0, "Bytes sent in 128 to 255 byte packets");
9312
9313 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9314 "stat_EtherStatsPktsTx256Octetsto511Octets",
9315 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9316 0, "Bytes sent in 256 to 511 byte packets");
9317
9318 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9319 "stat_EtherStatsPktsTx512Octetsto1023Octets",
9320 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9321 0, "Bytes sent in 512 to 1023 byte packets");
9322
9323 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9324 "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9325 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9326 0, "Bytes sent in 1024 to 1522 byte packets");
9327
9328 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9329 "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9330 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9331 0, "Bytes sent in 1523 to 9022 byte packets");
9332
9333 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9334 "stat_XonPauseFramesReceived",
9335 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9336 0, "XON pause frames receved");
9337
9338 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9339 "stat_XoffPauseFramesReceived",
9340 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9341 0, "XOFF pause frames received");
9342
9343 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9344 "stat_OutXonSent",
9345 CTLFLAG_RD, &sc->stat_OutXonSent,
9346 0, "XON pause frames sent");
9347
9348 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9349 "stat_OutXoffSent",
9350 CTLFLAG_RD, &sc->stat_OutXoffSent,
9351 0, "XOFF pause frames sent");
9352
9353 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9354 "stat_FlowControlDone",
9355 CTLFLAG_RD, &sc->stat_FlowControlDone,
9356 0, "Flow control done");
9357
9358 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9359 "stat_MacControlFramesReceived",
9360 CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9361 0, "MAC control frames received");
9362
9363 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9364 "stat_XoffStateEntered",
9365 CTLFLAG_RD, &sc->stat_XoffStateEntered,
9366 0, "XOFF state entered");
9367
9368 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9369 "stat_IfInFramesL2FilterDiscards",
9370 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9371 0, "Received L2 packets discarded");
9372
9373 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9374 "stat_IfInRuleCheckerDiscards",
9375 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9376 0, "Received packets discarded by rule");
9377
9378 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9379 "stat_IfInFTQDiscards",
9380 CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9381 0, "Received packet FTQ discards");
9382
9383 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9384 "stat_IfInMBUFDiscards",
9385 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9386 0, "Received packets discarded due to lack "
9387 "of controller buffer memory");
9388
9389 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9390 "stat_IfInRuleCheckerP4Hit",
9391 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9392 0, "Received packets rule checker hits");
9393
9394 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9395 "stat_CatchupInRuleCheckerDiscards",
9396 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9397 0, "Received packets discarded in Catchup path");
9398
9399 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9400 "stat_CatchupInFTQDiscards",
9401 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9402 0, "Received packets discarded in FTQ in Catchup path");
9403
9404 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9405 "stat_CatchupInMBUFDiscards",
9406 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9407 0, "Received packets discarded in controller "
9408 "buffer memory in Catchup path");
9409
9410 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9411 "stat_CatchupInRuleCheckerP4Hit",
9412 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9413 0, "Received packets rule checker hits in Catchup path");
9414
9415 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9416 "com_no_buffers",
9417 CTLFLAG_RD, &sc->com_no_buffers,
9418 0, "Valid packets received but no RX buffers available");
9419
9420 #ifdef BCE_DEBUG
9421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9422 "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9423 (void *)sc, 0,
9424 bce_sysctl_driver_state, "I", "Drive state information");
9425
9426 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9427 "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9428 (void *)sc, 0,
9429 bce_sysctl_hw_state, "I", "Hardware state information");
9430
9431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9432 "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9433 (void *)sc, 0,
9434 bce_sysctl_status_block, "I", "Dump status block");
9435
9436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9437 "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9438 (void *)sc, 0,
9439 bce_sysctl_stats_block, "I", "Dump statistics block");
9440
9441 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9442 "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9443 (void *)sc, 0,
9444 bce_sysctl_stats_clear, "I", "Clear statistics block");
9445
9446 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9447 "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9448 (void *)sc, 0,
9449 bce_sysctl_shmem_state, "I", "Shared memory state information");
9450
9451 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9452 "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9453 (void *)sc, 0,
9454 bce_sysctl_bc_state, "I", "Bootcode state information");
9455
9456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9457 "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9458 (void *)sc, 0,
9459 bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9460
9461 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9462 "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9463 (void *)sc, 0,
9464 bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9465
9466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9467 "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9468 (void *)sc, 0,
9469 bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9470
9471 if (bce_hdr_split == TRUE) {
9472 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9473 "dump_pg_chain",
9474 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9475 (void *)sc, 0,
9476 bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9477 }
9478
9479 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9480 "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9481 (void *)sc, 0,
9482 bce_sysctl_dump_ctx, "I", "Dump context memory");
9483
9484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9485 "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9486 (void *)sc, 0,
9487 bce_sysctl_breakpoint, "I", "Driver breakpoint");
9488
9489 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9490 "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT,
9491 (void *)sc, 0,
9492 bce_sysctl_reg_read, "I", "Register read");
9493
9494 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9495 "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9496 (void *)sc, 0,
9497 bce_sysctl_nvram_read, "I", "NVRAM read");
9498
9499 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9500 "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9501 (void *)sc, 0,
9502 bce_sysctl_phy_read, "I", "PHY register read");
9503
9504 #endif
9505
9506 DBEXIT(BCE_VERBOSE_MISC);
9507 }
9508
9509 /****************************************************************************/
9510 /* BCE Debug Routines */
9511 /****************************************************************************/
9512 #ifdef BCE_DEBUG
9513
9514 /****************************************************************************/
9515 /* Freezes the controller to allow for a cohesive state dump. */
9516 /* */
9517 /* Returns: */
9518 /* Nothing. */
9519 /****************************************************************************/
9520 static __attribute__ ((noinline)) void
9521 bce_freeze_controller(struct bce_softc *sc)
9522 {
9523 u32 val;
9524 val = REG_RD(sc, BCE_MISC_COMMAND);
9525 val |= BCE_MISC_COMMAND_DISABLE_ALL;
9526 REG_WR(sc, BCE_MISC_COMMAND, val);
9527 }
9528
9529 /****************************************************************************/
9530 /* Unfreezes the controller after a freeze operation. This may not always */
9531 /* work and the controller will require a reset! */
9532 /* */
9533 /* Returns: */
9534 /* Nothing. */
9535 /****************************************************************************/
9536 static __attribute__ ((noinline)) void
9537 bce_unfreeze_controller(struct bce_softc *sc)
9538 {
9539 u32 val;
9540 val = REG_RD(sc, BCE_MISC_COMMAND);
9541 val |= BCE_MISC_COMMAND_ENABLE_ALL;
9542 REG_WR(sc, BCE_MISC_COMMAND, val);
9543 }
9544
9545 /****************************************************************************/
9546 /* Prints out Ethernet frame information from an mbuf. */
9547 /* */
9548 /* Partially decode an Ethernet frame to look at some important headers. */
9549 /* */
9550 /* Returns: */
9551 /* Nothing. */
9552 /****************************************************************************/
9553 static __attribute__ ((noinline)) void
9554 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9555 {
9556 struct ether_vlan_header *eh;
9557 u16 etype;
9558 int ehlen;
9559 struct ip *ip;
9560 struct tcphdr *th;
9561 struct udphdr *uh;
9562 struct arphdr *ah;
9563
9564 BCE_PRINTF(
9565 "-----------------------------"
9566 " Frame Decode "
9567 "-----------------------------\n");
9568
9569 eh = mtod(m, struct ether_vlan_header *);
9570
9571 /* Handle VLAN encapsulation if present. */
9572 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9573 etype = ntohs(eh->evl_proto);
9574 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9575 } else {
9576 etype = ntohs(eh->evl_encap_proto);
9577 ehlen = ETHER_HDR_LEN;
9578 }
9579
9580 /* ToDo: Add VLAN output. */
9581 BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9582 eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9583
9584 switch (etype) {
9585 case ETHERTYPE_IP:
9586 ip = (struct ip *)(m->m_data + ehlen);
9587 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9588 "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9589 ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9590 ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9591
9592 switch (ip->ip_p) {
9593 case IPPROTO_TCP:
9594 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9595 BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9596 "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9597 ntohs(th->th_dport), ntohs(th->th_sport),
9598 (th->th_off << 2), th->th_flags,
9599 "\2\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9600 "\02SYN\01FIN", ntohs(th->th_sum));
9601 break;
9602 case IPPROTO_UDP:
9603 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9604 BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9605 "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9606 ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9607 ntohs(uh->uh_sum));
9608 break;
9609 case IPPROTO_ICMP:
9610 BCE_PRINTF("icmp:\n");
9611 break;
9612 default:
9613 BCE_PRINTF("----: Other IP protocol.\n");
9614 }
9615 break;
9616 case ETHERTYPE_IPV6:
9617 BCE_PRINTF("ipv6: No decode supported.\n");
9618 break;
9619 case ETHERTYPE_ARP:
9620 BCE_PRINTF("-arp: ");
9621 ah = (struct arphdr *) (m->m_data + ehlen);
9622 switch (ntohs(ah->ar_op)) {
9623 case ARPOP_REVREQUEST:
9624 printf("reverse ARP request\n");
9625 break;
9626 case ARPOP_REVREPLY:
9627 printf("reverse ARP reply\n");
9628 break;
9629 case ARPOP_REQUEST:
9630 printf("ARP request\n");
9631 break;
9632 case ARPOP_REPLY:
9633 printf("ARP reply\n");
9634 break;
9635 default:
9636 printf("other ARP operation\n");
9637 }
9638 break;
9639 default:
9640 BCE_PRINTF("----: Other protocol.\n");
9641 }
9642
9643 BCE_PRINTF(
9644 "-----------------------------"
9645 "--------------"
9646 "-----------------------------\n");
9647 }
9648
9649 /****************************************************************************/
9650 /* Prints out information about an mbuf. */
9651 /* */
9652 /* Returns: */
9653 /* Nothing. */
9654 /****************************************************************************/
9655 static __attribute__ ((noinline)) void
9656 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9657 {
9658 struct mbuf *mp = m;
9659
9660 if (m == NULL) {
9661 BCE_PRINTF("mbuf: null pointer\n");
9662 return;
9663 }
9664
9665 while (mp) {
9666 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9667 "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9668 "\2\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9669
9670 if (mp->m_flags & M_PKTHDR) {
9671 BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9672 "csum_flags = %b\n", mp->m_pkthdr.len,
9673 mp->m_flags, M_FLAG_PRINTF,
9674 mp->m_pkthdr.csum_flags, CSUM_BITS);
9675 }
9676
9677 if (mp->m_flags & M_EXT) {
9678 BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9679 mp->m_ext.ext_buf, mp->m_ext.ext_size);
9680 switch (mp->m_ext.ext_type) {
9681 case EXT_CLUSTER:
9682 printf("EXT_CLUSTER\n"); break;
9683 case EXT_SFBUF:
9684 printf("EXT_SFBUF\n"); break;
9685 case EXT_JUMBO9:
9686 printf("EXT_JUMBO9\n"); break;
9687 case EXT_JUMBO16:
9688 printf("EXT_JUMBO16\n"); break;
9689 case EXT_PACKET:
9690 printf("EXT_PACKET\n"); break;
9691 case EXT_MBUF:
9692 printf("EXT_MBUF\n"); break;
9693 case EXT_NET_DRV:
9694 printf("EXT_NET_DRV\n"); break;
9695 case EXT_MOD_TYPE:
9696 printf("EXT_MDD_TYPE\n"); break;
9697 case EXT_DISPOSABLE:
9698 printf("EXT_DISPOSABLE\n"); break;
9699 case EXT_EXTREF:
9700 printf("EXT_EXTREF\n"); break;
9701 default:
9702 printf("UNKNOWN\n");
9703 }
9704 }
9705
9706 mp = mp->m_next;
9707 }
9708 }
9709
9710 /****************************************************************************/
9711 /* Prints out the mbufs in the TX mbuf chain. */
9712 /* */
9713 /* Returns: */
9714 /* Nothing. */
9715 /****************************************************************************/
9716 static __attribute__ ((noinline)) void
9717 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9718 {
9719 struct mbuf *m;
9720
9721 BCE_PRINTF(
9722 "----------------------------"
9723 " tx mbuf data "
9724 "----------------------------\n");
9725
9726 for (int i = 0; i < count; i++) {
9727 m = sc->tx_mbuf_ptr[chain_prod];
9728 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9729 bce_dump_mbuf(sc, m);
9730 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9731 }
9732
9733 BCE_PRINTF(
9734 "----------------------------"
9735 "----------------"
9736 "----------------------------\n");
9737 }
9738
9739 /****************************************************************************/
9740 /* Prints out the mbufs in the RX mbuf chain. */
9741 /* */
9742 /* Returns: */
9743 /* Nothing. */
9744 /****************************************************************************/
9745 static __attribute__ ((noinline)) void
9746 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9747 {
9748 struct mbuf *m;
9749
9750 BCE_PRINTF(
9751 "----------------------------"
9752 " rx mbuf data "
9753 "----------------------------\n");
9754
9755 for (int i = 0; i < count; i++) {
9756 m = sc->rx_mbuf_ptr[chain_prod];
9757 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9758 bce_dump_mbuf(sc, m);
9759 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9760 }
9761
9762 BCE_PRINTF(
9763 "----------------------------"
9764 "----------------"
9765 "----------------------------\n");
9766 }
9767
9768 /****************************************************************************/
9769 /* Prints out the mbufs in the mbuf page chain. */
9770 /* */
9771 /* Returns: */
9772 /* Nothing. */
9773 /****************************************************************************/
9774 static __attribute__ ((noinline)) void
9775 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9776 {
9777 struct mbuf *m;
9778
9779 BCE_PRINTF(
9780 "----------------------------"
9781 " pg mbuf data "
9782 "----------------------------\n");
9783
9784 for (int i = 0; i < count; i++) {
9785 m = sc->pg_mbuf_ptr[chain_prod];
9786 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9787 bce_dump_mbuf(sc, m);
9788 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9789 }
9790
9791 BCE_PRINTF(
9792 "----------------------------"
9793 "----------------"
9794 "----------------------------\n");
9795 }
9796
9797 /****************************************************************************/
9798 /* Prints out a tx_bd structure. */
9799 /* */
9800 /* Returns: */
9801 /* Nothing. */
9802 /****************************************************************************/
9803 static __attribute__ ((noinline)) void
9804 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9805 {
9806 int i = 0;
9807
9808 if (idx > MAX_TX_BD_ALLOC)
9809 /* Index out of range. */
9810 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9811 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9812 /* TX Chain page pointer. */
9813 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9814 "pointer\n", idx, txbd->tx_bd_haddr_hi,
9815 txbd->tx_bd_haddr_lo);
9816 else {
9817 /* Normal tx_bd entry. */
9818 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9819 "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9820 "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9821 txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9822 txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9823
9824 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9825 if (i>0)
9826 printf("|");
9827 printf("CONN_FAULT");
9828 i++;
9829 }
9830
9831 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9832 if (i>0)
9833 printf("|");
9834 printf("TCP_UDP_CKSUM");
9835 i++;
9836 }
9837
9838 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9839 if (i>0)
9840 printf("|");
9841 printf("IP_CKSUM");
9842 i++;
9843 }
9844
9845 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9846 if (i>0)
9847 printf("|");
9848 printf("VLAN");
9849 i++;
9850 }
9851
9852 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9853 if (i>0)
9854 printf("|");
9855 printf("COAL_NOW");
9856 i++;
9857 }
9858
9859 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9860 if (i>0)
9861 printf("|");
9862 printf("DONT_GEN_CRC");
9863 i++;
9864 }
9865
9866 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9867 if (i>0)
9868 printf("|");
9869 printf("START");
9870 i++;
9871 }
9872
9873 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9874 if (i>0)
9875 printf("|");
9876 printf("END");
9877 i++;
9878 }
9879
9880 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9881 if (i>0)
9882 printf("|");
9883 printf("LSO");
9884 i++;
9885 }
9886
9887 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9888 if (i>0)
9889 printf("|");
9890 printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9891 TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9892 }
9893
9894 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9895 if (i>0)
9896 printf("|");
9897 printf("SW_FLAGS");
9898 i++;
9899 }
9900
9901 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9902 if (i>0)
9903 printf("|");
9904 printf("SNAP)");
9905 } else {
9906 printf(")\n");
9907 }
9908 }
9909 }
9910
9911 /****************************************************************************/
9912 /* Prints out a rx_bd structure. */
9913 /* */
9914 /* Returns: */
9915 /* Nothing. */
9916 /****************************************************************************/
9917 static __attribute__ ((noinline)) void
9918 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9919 {
9920 if (idx > MAX_RX_BD_ALLOC)
9921 /* Index out of range. */
9922 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9923 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9924 /* RX Chain page pointer. */
9925 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9926 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9927 rxbd->rx_bd_haddr_lo);
9928 else
9929 /* Normal rx_bd entry. */
9930 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9931 "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9932 rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9933 rxbd->rx_bd_flags);
9934 }
9935
9936 /****************************************************************************/
9937 /* Prints out a rx_bd structure in the page chain. */
9938 /* */
9939 /* Returns: */
9940 /* Nothing. */
9941 /****************************************************************************/
9942 static __attribute__ ((noinline)) void
9943 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9944 {
9945 if (idx > MAX_PG_BD_ALLOC)
9946 /* Index out of range. */
9947 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9948 else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9949 /* Page Chain page pointer. */
9950 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9951 idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9952 else
9953 /* Normal rx_bd entry. */
9954 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9955 "flags = 0x%08X\n", idx,
9956 pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9957 pgbd->rx_bd_len, pgbd->rx_bd_flags);
9958 }
9959
9960 /****************************************************************************/
9961 /* Prints out a l2_fhdr structure. */
9962 /* */
9963 /* Returns: */
9964 /* Nothing. */
9965 /****************************************************************************/
9966 static __attribute__ ((noinline)) void
9967 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9968 {
9969 BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9970 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9971 "tcp_udp_xsum = 0x%04X\n", idx,
9972 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9973 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9974 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9975 }
9976
9977 /****************************************************************************/
9978 /* Prints out context memory info. (Only useful for CID 0 to 16.) */
9979 /* */
9980 /* Returns: */
9981 /* Nothing. */
9982 /****************************************************************************/
9983 static __attribute__ ((noinline)) void
9984 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9985 {
9986 if (cid > TX_CID) {
9987 BCE_PRINTF(" Unknown CID\n");
9988 return;
9989 }
9990
9991 BCE_PRINTF(
9992 "----------------------------"
9993 " CTX Data "
9994 "----------------------------\n");
9995
9996 BCE_PRINTF(" 0x%04X - (CID) Context ID\n", cid);
9997
9998 if (cid == RX_CID) {
9999 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
10000 "producer index\n",
10001 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
10002 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
10003 "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10004 BCE_L2CTX_RX_HOST_BSEQ));
10005 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
10006 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
10007 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
10008 "descriptor address\n",
10009 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
10010 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
10011 "descriptor address\n",
10012 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
10013 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
10014 "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10015 BCE_L2CTX_RX_NX_BDIDX));
10016 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
10017 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10018 BCE_L2CTX_RX_HOST_PG_BDIDX));
10019 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10020 "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10021 BCE_L2CTX_RX_PG_BUF_SIZE));
10022 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10023 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10024 BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10025 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10026 "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10027 BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10028 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10029 "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10030 BCE_L2CTX_RX_NX_PG_BDIDX));
10031 } else if (cid == TX_CID) {
10032 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10033 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10034 CTX_RD(sc, GET_CID_ADDR(cid),
10035 BCE_L2CTX_TX_TYPE_XI));
10036 BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10037 "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10038 BCE_L2CTX_TX_CMD_TYPE_XI));
10039 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10040 "h/w buffer descriptor address\n",
10041 CTX_RD(sc, GET_CID_ADDR(cid),
10042 BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10043 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10044 "h/w buffer descriptor address\n",
10045 CTX_RD(sc, GET_CID_ADDR(cid),
10046 BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10047 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10048 "host producer index\n",
10049 CTX_RD(sc, GET_CID_ADDR(cid),
10050 BCE_L2CTX_TX_HOST_BIDX_XI));
10051 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10052 "host byte sequence\n",
10053 CTX_RD(sc, GET_CID_ADDR(cid),
10054 BCE_L2CTX_TX_HOST_BSEQ_XI));
10055 } else {
10056 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10057 CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10058 BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10059 CTX_RD(sc, GET_CID_ADDR(cid),
10060 BCE_L2CTX_TX_CMD_TYPE));
10061 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10062 "h/w buffer descriptor address\n",
10063 CTX_RD(sc, GET_CID_ADDR(cid),
10064 BCE_L2CTX_TX_TBDR_BHADDR_HI));
10065 BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10066 "h/w buffer descriptor address\n",
10067 CTX_RD(sc, GET_CID_ADDR(cid),
10068 BCE_L2CTX_TX_TBDR_BHADDR_LO));
10069 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10070 "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10071 BCE_L2CTX_TX_HOST_BIDX));
10072 BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10073 "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10074 BCE_L2CTX_TX_HOST_BSEQ));
10075 }
10076 }
10077
10078 BCE_PRINTF(
10079 "----------------------------"
10080 " Raw CTX "
10081 "----------------------------\n");
10082
10083 for (int i = 0x0; i < 0x300; i += 0x10) {
10084 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10085 CTX_RD(sc, GET_CID_ADDR(cid), i),
10086 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10087 CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10088 CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10089 }
10090
10091 BCE_PRINTF(
10092 "----------------------------"
10093 "----------------"
10094 "----------------------------\n");
10095 }
10096
10097 /****************************************************************************/
10098 /* Prints out the FTQ data. */
10099 /* */
10100 /* Returns: */
10101 /* Nothing. */
10102 /****************************************************************************/
10103 static __attribute__ ((noinline)) void
10104 bce_dump_ftqs(struct bce_softc *sc)
10105 {
10106 u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10107
10108 BCE_PRINTF(
10109 "----------------------------"
10110 " FTQ Data "
10111 "----------------------------\n");
10112
10113 BCE_PRINTF(" FTQ Command Control Depth_Now "
10114 "Max_Depth Valid_Cnt \n");
10115 BCE_PRINTF(" ------- ---------- ---------- ---------- "
10116 "---------- ----------\n");
10117
10118 /* Setup the generic statistic counters for the FTQ valid count. */
10119 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10120 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT << 16) |
10121 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT << 8) |
10122 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10123 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10124
10125 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT << 24) |
10126 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT << 16) |
10127 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT << 8) |
10128 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10129 REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10130
10131 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT << 24) |
10132 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT << 16) |
10133 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT << 8) |
10134 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10135 REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10136
10137 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT << 24) |
10138 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT << 16) |
10139 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT << 8) |
10140 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10141 REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10142
10143 /* Input queue to the Receive Lookup state machine */
10144 cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10145 ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10146 cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10147 max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10148 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10149 BCE_PRINTF(" RLUP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10150 cmd, ctl, cur_depth, max_depth, valid_cnt);
10151
10152 /* Input queue to the Receive Processor */
10153 cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10154 ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10155 cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10156 max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10157 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10158 BCE_PRINTF(" RXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10159 cmd, ctl, cur_depth, max_depth, valid_cnt);
10160
10161 /* Input queue to the Recevie Processor */
10162 cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10163 ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10164 cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10165 max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10166 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10167 BCE_PRINTF(" RXPC 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10168 cmd, ctl, cur_depth, max_depth, valid_cnt);
10169
10170 /* Input queue to the Receive Virtual to Physical state machine */
10171 cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10172 ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10173 cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10174 max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10175 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10176 BCE_PRINTF(" RV2PP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10177 cmd, ctl, cur_depth, max_depth, valid_cnt);
10178
10179 /* Input queue to the Recevie Virtual to Physical state machine */
10180 cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10181 ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10182 cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10183 max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10184 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10185 BCE_PRINTF(" RV2PM 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10186 cmd, ctl, cur_depth, max_depth, valid_cnt);
10187
10188 /* Input queue to the Receive Virtual to Physical state machine */
10189 cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10190 ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10191 cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10192 max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10193 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10194 BCE_PRINTF(" RV2PT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10195 cmd, ctl, cur_depth, max_depth, valid_cnt);
10196
10197 /* Input queue to the Receive DMA state machine */
10198 cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10199 ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10200 cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10201 max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10202 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10203 BCE_PRINTF(" RDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10204 cmd, ctl, cur_depth, max_depth, valid_cnt);
10205
10206 /* Input queue to the Transmit Scheduler state machine */
10207 cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10208 ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10209 cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10210 max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10211 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10212 BCE_PRINTF(" TSCH 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10213 cmd, ctl, cur_depth, max_depth, valid_cnt);
10214
10215 /* Input queue to the Transmit Buffer Descriptor state machine */
10216 cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10217 ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10218 cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10219 max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10220 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10221 BCE_PRINTF(" TBDR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10222 cmd, ctl, cur_depth, max_depth, valid_cnt);
10223
10224 /* Input queue to the Transmit Processor */
10225 cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10226 ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10227 cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10228 max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10229 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10230 BCE_PRINTF(" TXP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10231 cmd, ctl, cur_depth, max_depth, valid_cnt);
10232
10233 /* Input queue to the Transmit DMA state machine */
10234 cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10235 ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10236 cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10237 max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10238 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10239 BCE_PRINTF(" TDMA 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10240 cmd, ctl, cur_depth, max_depth, valid_cnt);
10241
10242 /* Input queue to the Transmit Patch-Up Processor */
10243 cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10244 ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10245 cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10246 max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10247 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10248 BCE_PRINTF(" TPAT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10249 cmd, ctl, cur_depth, max_depth, valid_cnt);
10250
10251 /* Input queue to the Transmit Assembler state machine */
10252 cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10253 ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10254 cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10255 max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10256 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10257 BCE_PRINTF(" TAS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10258 cmd, ctl, cur_depth, max_depth, valid_cnt);
10259
10260 /* Input queue to the Completion Processor */
10261 cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10262 ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10263 cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10264 max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10265 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10266 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10267 cmd, ctl, cur_depth, max_depth, valid_cnt);
10268
10269 /* Input queue to the Completion Processor */
10270 cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10271 ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10272 cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10273 max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10274 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10275 BCE_PRINTF(" COMT 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10276 cmd, ctl, cur_depth, max_depth, valid_cnt);
10277
10278 /* Input queue to the Completion Processor */
10279 cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10280 ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10281 cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10282 max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10283 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10284 BCE_PRINTF(" COMX 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10285 cmd, ctl, cur_depth, max_depth, valid_cnt);
10286
10287 /* Setup the generic statistic counters for the FTQ valid count. */
10288 val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT << 16) |
10289 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT << 8) |
10290 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10291
10292 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10293 val = val |
10294 (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10295 24);
10296 REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10297
10298 /* Input queue to the Management Control Processor */
10299 cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10300 ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10301 cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10302 max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10303 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10304 BCE_PRINTF(" MCP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10305 cmd, ctl, cur_depth, max_depth, valid_cnt);
10306
10307 /* Input queue to the Command Processor */
10308 cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10309 ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10310 cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10311 max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10312 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10313 BCE_PRINTF(" CP 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10314 cmd, ctl, cur_depth, max_depth, valid_cnt);
10315
10316 /* Input queue to the Completion Scheduler state machine */
10317 cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10318 ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10319 cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10320 max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10321 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10322 BCE_PRINTF(" CS 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10323 cmd, ctl, cur_depth, max_depth, valid_cnt);
10324
10325 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10326 /* Input queue to the RV2P Command Scheduler */
10327 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10328 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10329 cur_depth = (ctl & 0xFFC00000) >> 22;
10330 max_depth = (ctl & 0x003FF000) >> 12;
10331 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10332 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10333 cmd, ctl, cur_depth, max_depth, valid_cnt);
10334 }
10335
10336 BCE_PRINTF(
10337 "----------------------------"
10338 "----------------"
10339 "----------------------------\n");
10340 }
10341
10342 /****************************************************************************/
10343 /* Prints out the TX chain. */
10344 /* */
10345 /* Returns: */
10346 /* Nothing. */
10347 /****************************************************************************/
10348 static __attribute__ ((noinline)) void
10349 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10350 {
10351 struct tx_bd *txbd;
10352
10353 /* First some info about the tx_bd chain structure. */
10354 BCE_PRINTF(
10355 "----------------------------"
10356 " tx_bd chain "
10357 "----------------------------\n");
10358
10359 BCE_PRINTF("page size = 0x%08X, tx chain pages = 0x%08X\n",
10360 (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10361 BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10362 (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10363 BCE_PRINTF("total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10364
10365 BCE_PRINTF(
10366 "----------------------------"
10367 " tx_bd data "
10368 "----------------------------\n");
10369
10370 /* Now print out a decoded list of TX buffer descriptors. */
10371 for (int i = 0; i < count; i++) {
10372 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10373 bce_dump_txbd(sc, tx_prod, txbd);
10374 tx_prod++;
10375 }
10376
10377 BCE_PRINTF(
10378 "----------------------------"
10379 "----------------"
10380 "----------------------------\n");
10381 }
10382
10383 /****************************************************************************/
10384 /* Prints out the RX chain. */
10385 /* */
10386 /* Returns: */
10387 /* Nothing. */
10388 /****************************************************************************/
10389 static __attribute__ ((noinline)) void
10390 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10391 {
10392 struct rx_bd *rxbd;
10393
10394 /* First some info about the rx_bd chain structure. */
10395 BCE_PRINTF(
10396 "----------------------------"
10397 " rx_bd chain "
10398 "----------------------------\n");
10399
10400 BCE_PRINTF("page size = 0x%08X, rx chain pages = 0x%08X\n",
10401 (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10402
10403 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10404 (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10405
10406 BCE_PRINTF("total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10407
10408 BCE_PRINTF(
10409 "----------------------------"
10410 " rx_bd data "
10411 "----------------------------\n");
10412
10413 /* Now print out the rx_bd's themselves. */
10414 for (int i = 0; i < count; i++) {
10415 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10416 bce_dump_rxbd(sc, rx_prod, rxbd);
10417 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10418 }
10419
10420 BCE_PRINTF(
10421 "----------------------------"
10422 "----------------"
10423 "----------------------------\n");
10424 }
10425
10426 /****************************************************************************/
10427 /* Prints out the page chain. */
10428 /* */
10429 /* Returns: */
10430 /* Nothing. */
10431 /****************************************************************************/
10432 static __attribute__ ((noinline)) void
10433 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10434 {
10435 struct rx_bd *pgbd;
10436
10437 /* First some info about the page chain structure. */
10438 BCE_PRINTF(
10439 "----------------------------"
10440 " page chain "
10441 "----------------------------\n");
10442
10443 BCE_PRINTF("page size = 0x%08X, pg chain pages = 0x%08X\n",
10444 (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10445
10446 BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10447 (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10448
10449 BCE_PRINTF("total pg_bd = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10450
10451 BCE_PRINTF(
10452 "----------------------------"
10453 " page data "
10454 "----------------------------\n");
10455
10456 /* Now print out the rx_bd's themselves. */
10457 for (int i = 0; i < count; i++) {
10458 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10459 bce_dump_pgbd(sc, pg_prod, pgbd);
10460 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10461 }
10462
10463 BCE_PRINTF(
10464 "----------------------------"
10465 "----------------"
10466 "----------------------------\n");
10467 }
10468
10469 #define BCE_PRINT_RX_CONS(arg) \
10470 if (sblk->status_rx_quick_consumer_index##arg) \
10471 BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n", \
10472 sblk->status_rx_quick_consumer_index##arg, (u16) \
10473 RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg), \
10474 arg);
10475
10476 #define BCE_PRINT_TX_CONS(arg) \
10477 if (sblk->status_tx_quick_consumer_index##arg) \
10478 BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n", \
10479 sblk->status_tx_quick_consumer_index##arg, (u16) \
10480 TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg), \
10481 arg);
10482
10483 /****************************************************************************/
10484 /* Prints out the status block from host memory. */
10485 /* */
10486 /* Returns: */
10487 /* Nothing. */
10488 /****************************************************************************/
10489 static __attribute__ ((noinline)) void
10490 bce_dump_status_block(struct bce_softc *sc)
10491 {
10492 struct status_block *sblk;
10493
10494 bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10495
10496 sblk = sc->status_block;
10497
10498 BCE_PRINTF(
10499 "----------------------------"
10500 " Status Block "
10501 "----------------------------\n");
10502
10503 /* Theses indices are used for normal L2 drivers. */
10504 BCE_PRINTF(" 0x%08X - attn_bits\n",
10505 sblk->status_attn_bits);
10506
10507 BCE_PRINTF(" 0x%08X - attn_bits_ack\n",
10508 sblk->status_attn_bits_ack);
10509
10510 BCE_PRINT_RX_CONS(0);
10511 BCE_PRINT_TX_CONS(0)
10512
10513 BCE_PRINTF(" 0x%04X - status_idx\n", sblk->status_idx);
10514
10515 /* Theses indices are not used for normal L2 drivers. */
10516 BCE_PRINT_RX_CONS(1); BCE_PRINT_RX_CONS(2); BCE_PRINT_RX_CONS(3);
10517 BCE_PRINT_RX_CONS(4); BCE_PRINT_RX_CONS(5); BCE_PRINT_RX_CONS(6);
10518 BCE_PRINT_RX_CONS(7); BCE_PRINT_RX_CONS(8); BCE_PRINT_RX_CONS(9);
10519 BCE_PRINT_RX_CONS(10); BCE_PRINT_RX_CONS(11); BCE_PRINT_RX_CONS(12);
10520 BCE_PRINT_RX_CONS(13); BCE_PRINT_RX_CONS(14); BCE_PRINT_RX_CONS(15);
10521
10522 BCE_PRINT_TX_CONS(1); BCE_PRINT_TX_CONS(2); BCE_PRINT_TX_CONS(3);
10523
10524 if (sblk->status_completion_producer_index ||
10525 sblk->status_cmd_consumer_index)
10526 BCE_PRINTF("com_prod = 0x%08X, cmd_cons = 0x%08X\n",
10527 sblk->status_completion_producer_index,
10528 sblk->status_cmd_consumer_index);
10529
10530 BCE_PRINTF(
10531 "----------------------------"
10532 "----------------"
10533 "----------------------------\n");
10534 }
10535
10536 #define BCE_PRINT_64BIT_STAT(arg) \
10537 if (sblk->arg##_lo || sblk->arg##_hi) \
10538 BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi, \
10539 sblk->arg##_lo, #arg);
10540
10541 #define BCE_PRINT_32BIT_STAT(arg) \
10542 if (sblk->arg) \
10543 BCE_PRINTF(" 0x%08X : %s\n", \
10544 sblk->arg, #arg);
10545
10546 /****************************************************************************/
10547 /* Prints out the statistics block from host memory. */
10548 /* */
10549 /* Returns: */
10550 /* Nothing. */
10551 /****************************************************************************/
10552 static __attribute__ ((noinline)) void
10553 bce_dump_stats_block(struct bce_softc *sc)
10554 {
10555 struct statistics_block *sblk;
10556
10557 bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10558
10559 sblk = sc->stats_block;
10560
10561 BCE_PRINTF(
10562 "---------------"
10563 " Stats Block (All Stats Not Shown Are 0) "
10564 "---------------\n");
10565
10566 BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10567 BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10568 BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10569 BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10570 BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10571 BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10572 BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10573 BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10574 BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10575 BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10576 BCE_PRINT_32BIT_STAT(
10577 stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10578 BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10579 BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10580 BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10581 BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10582 BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10583 BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10584 BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10585 BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10586 BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10587 BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10588 BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10589 BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10590 BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10591 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10592 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10593 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10594 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10595 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10596 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10597 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10598 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10599 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10600 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10601 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10602 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10603 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10604 BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10605 BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10606 BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10607 BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10608 BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10609 BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10610 BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10611 BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10612 BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10613 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10614 BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10615 BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10616 BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10617 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10618 BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10619 BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10620 BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10621
10622 BCE_PRINTF(
10623 "----------------------------"
10624 "----------------"
10625 "----------------------------\n");
10626 }
10627
10628 /****************************************************************************/
10629 /* Prints out a summary of the driver state. */
10630 /* */
10631 /* Returns: */
10632 /* Nothing. */
10633 /****************************************************************************/
10634 static __attribute__ ((noinline)) void
10635 bce_dump_driver_state(struct bce_softc *sc)
10636 {
10637 u32 val_hi, val_lo;
10638
10639 BCE_PRINTF(
10640 "-----------------------------"
10641 " Driver State "
10642 "-----------------------------\n");
10643
10644 val_hi = BCE_ADDR_HI(sc);
10645 val_lo = BCE_ADDR_LO(sc);
10646 BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10647 "address\n", val_hi, val_lo);
10648
10649 val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10650 val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10651 BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10652 "address\n", val_hi, val_lo);
10653
10654 val_hi = BCE_ADDR_HI(sc->status_block);
10655 val_lo = BCE_ADDR_LO(sc->status_block);
10656 BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10657 "virtual address\n", val_hi, val_lo);
10658
10659 val_hi = BCE_ADDR_HI(sc->stats_block);
10660 val_lo = BCE_ADDR_LO(sc->stats_block);
10661 BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10662 "virtual address\n", val_hi, val_lo);
10663
10664 val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10665 val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10666 BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10667 "virtual adddress\n", val_hi, val_lo);
10668
10669 val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10670 val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10671 BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10672 "virtual address\n", val_hi, val_lo);
10673
10674 if (bce_hdr_split == TRUE) {
10675 val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10676 val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10677 BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10678 "virtual address\n", val_hi, val_lo);
10679 }
10680
10681 val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10682 val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10683 BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10684 "virtual address\n", val_hi, val_lo);
10685
10686 val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10687 val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10688 BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10689 "virtual address\n", val_hi, val_lo);
10690
10691 if (bce_hdr_split == TRUE) {
10692 val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10693 val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10694 BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10695 "virtual address\n", val_hi, val_lo);
10696 }
10697
10698 BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10699 "h/w intrs\n",
10700 (long long unsigned int) sc->interrupts_generated);
10701
10702 BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10703 "rx interrupts handled\n",
10704 (long long unsigned int) sc->interrupts_rx);
10705
10706 BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10707 "tx interrupts handled\n",
10708 (long long unsigned int) sc->interrupts_tx);
10709
10710 BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10711 "phy interrupts handled\n",
10712 (long long unsigned int) sc->phy_interrupts);
10713
10714 BCE_PRINTF(" 0x%08X - (sc->last_status_idx) "
10715 "status block index\n", sc->last_status_idx);
10716
10717 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10718 "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10719
10720 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10721 "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10722
10723 BCE_PRINTF(" 0x%08X - (sc->tx_prod_bseq) tx producer "
10724 "byte seq index\n", sc->tx_prod_bseq);
10725
10726 BCE_PRINTF(" 0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10727 "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10728
10729 BCE_PRINTF(" 0x%08X - (sc->used_tx_bd) used "
10730 "tx_bd's\n", sc->used_tx_bd);
10731
10732 BCE_PRINTF(" 0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10733 "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10734
10735 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10736 "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10737
10738 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10739 "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10740
10741 BCE_PRINTF(" 0x%08X - (sc->rx_prod_bseq) rx producer "
10742 "byte seq index\n", sc->rx_prod_bseq);
10743
10744 BCE_PRINTF(" 0x%04X/0x%04X - (sc->rx_low_watermark)/"
10745 "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10746
10747 BCE_PRINTF(" 0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10748 "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10749
10750 BCE_PRINTF(" 0x%08X - (sc->free_rx_bd) free "
10751 "rx_bd's\n", sc->free_rx_bd);
10752
10753 if (bce_hdr_split == TRUE) {
10754 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_prod) page producer "
10755 "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10756
10757 BCE_PRINTF(" 0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10758 "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10759
10760 BCE_PRINTF(" 0x%08X - (sc->debug_pg_mbuf_alloc) page "
10761 "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10762 }
10763
10764 BCE_PRINTF(" 0x%08X - (sc->free_pg_bd) free page "
10765 "rx_bd's\n", sc->free_pg_bd);
10766
10767 BCE_PRINTF(" 0x%04X/0x%04X - (sc->pg_low_watermark)/"
10768 "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10769
10770 BCE_PRINTF(" 0x%08X - (sc->mbuf_alloc_failed_count) "
10771 "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10772
10773 BCE_PRINTF(" 0x%08X - (sc->bce_flags) "
10774 "bce mac flags\n", sc->bce_flags);
10775
10776 BCE_PRINTF(" 0x%08X - (sc->bce_phy_flags) "
10777 "bce phy flags\n", sc->bce_phy_flags);
10778
10779 BCE_PRINTF(
10780 "----------------------------"
10781 "----------------"
10782 "----------------------------\n");
10783 }
10784
10785 /****************************************************************************/
10786 /* Prints out the hardware state through a summary of important register, */
10787 /* followed by a complete register dump. */
10788 /* */
10789 /* Returns: */
10790 /* Nothing. */
10791 /****************************************************************************/
10792 static __attribute__ ((noinline)) void
10793 bce_dump_hw_state(struct bce_softc *sc)
10794 {
10795 u32 val;
10796
10797 BCE_PRINTF(
10798 "----------------------------"
10799 " Hardware State "
10800 "----------------------------\n");
10801
10802 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10803
10804 val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10805 BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10806 val, BCE_MISC_ENABLE_STATUS_BITS);
10807
10808 val = REG_RD(sc, BCE_DMA_STATUS);
10809 BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10810 val, BCE_DMA_STATUS);
10811
10812 val = REG_RD(sc, BCE_CTX_STATUS);
10813 BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10814 val, BCE_CTX_STATUS);
10815
10816 val = REG_RD(sc, BCE_EMAC_STATUS);
10817 BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10818 val, BCE_EMAC_STATUS);
10819
10820 val = REG_RD(sc, BCE_RPM_STATUS);
10821 BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10822 val, BCE_RPM_STATUS);
10823
10824 /* ToDo: Create a #define for this constant. */
10825 val = REG_RD(sc, 0x2004);
10826 BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10827 val, 0x2004);
10828
10829 val = REG_RD(sc, BCE_RV2P_STATUS);
10830 BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10831 val, BCE_RV2P_STATUS);
10832
10833 /* ToDo: Create a #define for this constant. */
10834 val = REG_RD(sc, 0x2c04);
10835 BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10836 val, 0x2c04);
10837
10838 val = REG_RD(sc, BCE_TBDR_STATUS);
10839 BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10840 val, BCE_TBDR_STATUS);
10841
10842 val = REG_RD(sc, BCE_TDMA_STATUS);
10843 BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10844 val, BCE_TDMA_STATUS);
10845
10846 val = REG_RD(sc, BCE_HC_STATUS);
10847 BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10848 val, BCE_HC_STATUS);
10849
10850 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10851 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10852 val, BCE_TXP_CPU_STATE);
10853
10854 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10855 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10856 val, BCE_TPAT_CPU_STATE);
10857
10858 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10859 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10860 val, BCE_RXP_CPU_STATE);
10861
10862 val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10863 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10864 val, BCE_COM_CPU_STATE);
10865
10866 val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10867 BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10868 val, BCE_MCP_CPU_STATE);
10869
10870 val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10871 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10872 val, BCE_CP_CPU_STATE);
10873
10874 BCE_PRINTF(
10875 "----------------------------"
10876 "----------------"
10877 "----------------------------\n");
10878
10879 BCE_PRINTF(
10880 "----------------------------"
10881 " Register Dump "
10882 "----------------------------\n");
10883
10884 for (int i = 0x400; i < 0x8000; i += 0x10) {
10885 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10886 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10887 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10888 }
10889
10890 BCE_PRINTF(
10891 "----------------------------"
10892 "----------------"
10893 "----------------------------\n");
10894 }
10895
10896 /****************************************************************************/
10897 /* Prints out the contentst of shared memory which is used for host driver */
10898 /* to bootcode firmware communication. */
10899 /* */
10900 /* Returns: */
10901 /* Nothing. */
10902 /****************************************************************************/
10903 static __attribute__ ((noinline)) void
10904 bce_dump_shmem_state(struct bce_softc *sc)
10905 {
10906 BCE_PRINTF(
10907 "----------------------------"
10908 " Hardware State "
10909 "----------------------------\n");
10910
10911 BCE_PRINTF("0x%08X - Shared memory base address\n",
10912 sc->bce_shmem_base);
10913 BCE_PRINTF("%s - bootcode version\n",
10914 sc->bce_bc_ver);
10915
10916 BCE_PRINTF(
10917 "----------------------------"
10918 " Shared Mem "
10919 "----------------------------\n");
10920
10921 for (int i = 0x0; i < 0x200; i += 0x10) {
10922 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10923 i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10924 bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10925 }
10926
10927 BCE_PRINTF(
10928 "----------------------------"
10929 "----------------"
10930 "----------------------------\n");
10931 }
10932
10933 /****************************************************************************/
10934 /* Prints out the mailbox queue registers. */
10935 /* */
10936 /* Returns: */
10937 /* Nothing. */
10938 /****************************************************************************/
10939 static __attribute__ ((noinline)) void
10940 bce_dump_mq_regs(struct bce_softc *sc)
10941 {
10942 BCE_PRINTF(
10943 "----------------------------"
10944 " MQ Regs "
10945 "----------------------------\n");
10946
10947 BCE_PRINTF(
10948 "----------------------------"
10949 "----------------"
10950 "----------------------------\n");
10951
10952 for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10953 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10954 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10955 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10956 }
10957
10958 BCE_PRINTF(
10959 "----------------------------"
10960 "----------------"
10961 "----------------------------\n");
10962 }
10963
10964 /****************************************************************************/
10965 /* Prints out the bootcode state. */
10966 /* */
10967 /* Returns: */
10968 /* Nothing. */
10969 /****************************************************************************/
10970 static __attribute__ ((noinline)) void
10971 bce_dump_bc_state(struct bce_softc *sc)
10972 {
10973 u32 val;
10974
10975 BCE_PRINTF(
10976 "----------------------------"
10977 " Bootcode State "
10978 "----------------------------\n");
10979
10980 BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10981
10982 val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10983 BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10984 val, BCE_BC_RESET_TYPE);
10985
10986 val = bce_shmem_rd(sc, BCE_BC_STATE);
10987 BCE_PRINTF("0x%08X - (0x%06X) state\n",
10988 val, BCE_BC_STATE);
10989
10990 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10991 BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10992 val, BCE_BC_STATE_CONDITION);
10993
10994 val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10995 BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10996 val, BCE_BC_STATE_DEBUG_CMD);
10997
10998 BCE_PRINTF(
10999 "----------------------------"
11000 "----------------"
11001 "----------------------------\n");
11002 }
11003
11004 /****************************************************************************/
11005 /* Prints out the TXP processor state. */
11006 /* */
11007 /* Returns: */
11008 /* Nothing. */
11009 /****************************************************************************/
11010 static __attribute__ ((noinline)) void
11011 bce_dump_txp_state(struct bce_softc *sc, int regs)
11012 {
11013 u32 val;
11014 u32 fw_version[3];
11015
11016 BCE_PRINTF(
11017 "----------------------------"
11018 " TXP State "
11019 "----------------------------\n");
11020
11021 for (int i = 0; i < 3; i++)
11022 fw_version[i] = htonl(REG_RD_IND(sc,
11023 (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11024 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11025
11026 val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11027 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11028 val, BCE_TXP_CPU_MODE);
11029
11030 val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11031 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11032 val, BCE_TXP_CPU_STATE);
11033
11034 val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11035 BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11036 val, BCE_TXP_CPU_EVENT_MASK);
11037
11038 if (regs) {
11039 BCE_PRINTF(
11040 "----------------------------"
11041 " Register Dump "
11042 "----------------------------\n");
11043
11044 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11045 /* Skip the big blank spaces */
11046 if (i < 0x454000 && i > 0x5ffff)
11047 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11048 "0x%08X 0x%08X\n", i,
11049 REG_RD_IND(sc, i),
11050 REG_RD_IND(sc, i + 0x4),
11051 REG_RD_IND(sc, i + 0x8),
11052 REG_RD_IND(sc, i + 0xC));
11053 }
11054 }
11055
11056 BCE_PRINTF(
11057 "----------------------------"
11058 "----------------"
11059 "----------------------------\n");
11060 }
11061
11062 /****************************************************************************/
11063 /* Prints out the RXP processor state. */
11064 /* */
11065 /* Returns: */
11066 /* Nothing. */
11067 /****************************************************************************/
11068 static __attribute__ ((noinline)) void
11069 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11070 {
11071 u32 val;
11072 u32 fw_version[3];
11073
11074 BCE_PRINTF(
11075 "----------------------------"
11076 " RXP State "
11077 "----------------------------\n");
11078
11079 for (int i = 0; i < 3; i++)
11080 fw_version[i] = htonl(REG_RD_IND(sc,
11081 (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11082
11083 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11084
11085 val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11086 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11087 val, BCE_RXP_CPU_MODE);
11088
11089 val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11090 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11091 val, BCE_RXP_CPU_STATE);
11092
11093 val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11094 BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11095 val, BCE_RXP_CPU_EVENT_MASK);
11096
11097 if (regs) {
11098 BCE_PRINTF(
11099 "----------------------------"
11100 " Register Dump "
11101 "----------------------------\n");
11102
11103 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11104 /* Skip the big blank sapces */
11105 if (i < 0xc5400 && i > 0xdffff)
11106 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11107 "0x%08X 0x%08X\n", i,
11108 REG_RD_IND(sc, i),
11109 REG_RD_IND(sc, i + 0x4),
11110 REG_RD_IND(sc, i + 0x8),
11111 REG_RD_IND(sc, i + 0xC));
11112 }
11113 }
11114
11115 BCE_PRINTF(
11116 "----------------------------"
11117 "----------------"
11118 "----------------------------\n");
11119 }
11120
11121 /****************************************************************************/
11122 /* Prints out the TPAT processor state. */
11123 /* */
11124 /* Returns: */
11125 /* Nothing. */
11126 /****************************************************************************/
11127 static __attribute__ ((noinline)) void
11128 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11129 {
11130 u32 val;
11131 u32 fw_version[3];
11132
11133 BCE_PRINTF(
11134 "----------------------------"
11135 " TPAT State "
11136 "----------------------------\n");
11137
11138 for (int i = 0; i < 3; i++)
11139 fw_version[i] = htonl(REG_RD_IND(sc,
11140 (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11141
11142 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11143
11144 val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11145 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11146 val, BCE_TPAT_CPU_MODE);
11147
11148 val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11149 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11150 val, BCE_TPAT_CPU_STATE);
11151
11152 val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11153 BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11154 val, BCE_TPAT_CPU_EVENT_MASK);
11155
11156 if (regs) {
11157 BCE_PRINTF(
11158 "----------------------------"
11159 " Register Dump "
11160 "----------------------------\n");
11161
11162 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11163 /* Skip the big blank spaces */
11164 if (i < 0x854000 && i > 0x9ffff)
11165 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11166 "0x%08X 0x%08X\n", i,
11167 REG_RD_IND(sc, i),
11168 REG_RD_IND(sc, i + 0x4),
11169 REG_RD_IND(sc, i + 0x8),
11170 REG_RD_IND(sc, i + 0xC));
11171 }
11172 }
11173
11174 BCE_PRINTF(
11175 "----------------------------"
11176 "----------------"
11177 "----------------------------\n");
11178 }
11179
11180 /****************************************************************************/
11181 /* Prints out the Command Procesor (CP) state. */
11182 /* */
11183 /* Returns: */
11184 /* Nothing. */
11185 /****************************************************************************/
11186 static __attribute__ ((noinline)) void
11187 bce_dump_cp_state(struct bce_softc *sc, int regs)
11188 {
11189 u32 val;
11190 u32 fw_version[3];
11191
11192 BCE_PRINTF(
11193 "----------------------------"
11194 " CP State "
11195 "----------------------------\n");
11196
11197 for (int i = 0; i < 3; i++)
11198 fw_version[i] = htonl(REG_RD_IND(sc,
11199 (BCE_CP_SCRATCH + 0x10 + i * 4)));
11200
11201 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11202
11203 val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11204 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11205 val, BCE_CP_CPU_MODE);
11206
11207 val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11208 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11209 val, BCE_CP_CPU_STATE);
11210
11211 val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11212 BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11213 BCE_CP_CPU_EVENT_MASK);
11214
11215 if (regs) {
11216 BCE_PRINTF(
11217 "----------------------------"
11218 " Register Dump "
11219 "----------------------------\n");
11220
11221 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11222 /* Skip the big blank spaces */
11223 if (i < 0x185400 && i > 0x19ffff)
11224 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11225 "0x%08X 0x%08X\n", i,
11226 REG_RD_IND(sc, i),
11227 REG_RD_IND(sc, i + 0x4),
11228 REG_RD_IND(sc, i + 0x8),
11229 REG_RD_IND(sc, i + 0xC));
11230 }
11231 }
11232
11233 BCE_PRINTF(
11234 "----------------------------"
11235 "----------------"
11236 "----------------------------\n");
11237 }
11238
11239 /****************************************************************************/
11240 /* Prints out the Completion Procesor (COM) state. */
11241 /* */
11242 /* Returns: */
11243 /* Nothing. */
11244 /****************************************************************************/
11245 static __attribute__ ((noinline)) void
11246 bce_dump_com_state(struct bce_softc *sc, int regs)
11247 {
11248 u32 val;
11249 u32 fw_version[4];
11250
11251 BCE_PRINTF(
11252 "----------------------------"
11253 " COM State "
11254 "----------------------------\n");
11255
11256 for (int i = 0; i < 3; i++)
11257 fw_version[i] = htonl(REG_RD_IND(sc,
11258 (BCE_COM_SCRATCH + 0x10 + i * 4)));
11259
11260 BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11261
11262 val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11263 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11264 val, BCE_COM_CPU_MODE);
11265
11266 val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11267 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11268 val, BCE_COM_CPU_STATE);
11269
11270 val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11271 BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11272 BCE_COM_CPU_EVENT_MASK);
11273
11274 if (regs) {
11275 BCE_PRINTF(
11276 "----------------------------"
11277 " Register Dump "
11278 "----------------------------\n");
11279
11280 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11281 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11282 "0x%08X 0x%08X\n", i,
11283 REG_RD_IND(sc, i),
11284 REG_RD_IND(sc, i + 0x4),
11285 REG_RD_IND(sc, i + 0x8),
11286 REG_RD_IND(sc, i + 0xC));
11287 }
11288 }
11289
11290 BCE_PRINTF(
11291 "----------------------------"
11292 "----------------"
11293 "----------------------------\n");
11294 }
11295
11296 /****************************************************************************/
11297 /* Prints out the Receive Virtual 2 Physical (RV2P) state. */
11298 /* */
11299 /* Returns: */
11300 /* Nothing. */
11301 /****************************************************************************/
11302 static __attribute__ ((noinline)) void
11303 bce_dump_rv2p_state(struct bce_softc *sc)
11304 {
11305 u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11306
11307 BCE_PRINTF(
11308 "----------------------------"
11309 " RV2P State "
11310 "----------------------------\n");
11311
11312 /* Stall the RV2P processors. */
11313 val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11314 val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11315 REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11316
11317 /* Read the firmware version. */
11318 val = 0x00000001;
11319 REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11320 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11321 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11322 BCE_RV2P_INSTR_HIGH_HIGH;
11323 BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11324 fw_ver_high, fw_ver_low);
11325
11326 val = 0x00000001;
11327 REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11328 fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11329 fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11330 BCE_RV2P_INSTR_HIGH_HIGH;
11331 BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11332 fw_ver_high, fw_ver_low);
11333
11334 /* Resume the RV2P processors. */
11335 val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11336 val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11337 REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11338
11339 /* Fetch the program counter value. */
11340 val = 0x68007800;
11341 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11342 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11343 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11344 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11345 BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11346 BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11347
11348 /* Fetch the program counter value again to see if it is advancing. */
11349 val = 0x68007800;
11350 REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11351 val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11352 pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11353 pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11354 BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11355 BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11356
11357 BCE_PRINTF(
11358 "----------------------------"
11359 "----------------"
11360 "----------------------------\n");
11361 }
11362
11363 /****************************************************************************/
11364 /* Prints out the driver state and then enters the debugger. */
11365 /* */
11366 /* Returns: */
11367 /* Nothing. */
11368 /****************************************************************************/
11369 static __attribute__ ((noinline)) void
11370 bce_breakpoint(struct bce_softc *sc)
11371 {
11372
11373 /*
11374 * Unreachable code to silence compiler warnings
11375 * about unused functions.
11376 */
11377 if (0) {
11378 bce_freeze_controller(sc);
11379 bce_unfreeze_controller(sc);
11380 bce_dump_enet(sc, NULL);
11381 bce_dump_txbd(sc, 0, NULL);
11382 bce_dump_rxbd(sc, 0, NULL);
11383 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11384 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11385 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11386 bce_dump_l2fhdr(sc, 0, NULL);
11387 bce_dump_ctx(sc, RX_CID);
11388 bce_dump_ftqs(sc);
11389 bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11390 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11391 bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11392 bce_dump_status_block(sc);
11393 bce_dump_stats_block(sc);
11394 bce_dump_driver_state(sc);
11395 bce_dump_hw_state(sc);
11396 bce_dump_bc_state(sc);
11397 bce_dump_txp_state(sc, 0);
11398 bce_dump_rxp_state(sc, 0);
11399 bce_dump_tpat_state(sc, 0);
11400 bce_dump_cp_state(sc, 0);
11401 bce_dump_com_state(sc, 0);
11402 bce_dump_rv2p_state(sc);
11403 bce_dump_pgbd(sc, 0, NULL);
11404 }
11405
11406 bce_dump_status_block(sc);
11407 bce_dump_driver_state(sc);
11408
11409 /* Call the debugger. */
11410 breakpoint();
11411 }
11412 #endif
Cache object: e0088769e9d9c23f5df00cd76f42b4be
|