The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bce/if_bce.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2006-2010 Broadcom Corporation
    3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  *
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written consent.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
   19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
   22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   28  * THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD: releng/7.4/sys/dev/bce/if_bce.c 215879 2010-11-26 19:48:27Z marius $");
   33 
   34 /*
   35  * The following controllers are supported by this driver:
   36  *   BCM5706C A2, A3
   37  *   BCM5706S A2, A3
   38  *   BCM5708C B1, B2
   39  *   BCM5708S B1, B2
   40  *   BCM5709C A1, C0
   41  *   BCM5709S A1, C0
   42  *   BCM5716C C0
   43  *   BCM5716S C0
   44  *
   45  * The following controllers are not supported by this driver:
   46  *   BCM5706C A0, A1 (pre-production)
   47  *   BCM5706S A0, A1 (pre-production)
   48  *   BCM5708C A0, B0 (pre-production)
   49  *   BCM5708S A0, B0 (pre-production)
   50  *   BCM5709C A0  B0, B1, B2 (pre-production)
   51  *   BCM5709S A0, B0, B1, B2 (pre-production)
   52  */
   53 
   54 #include "opt_bce.h"
   55 
   56 #include <dev/bce/if_bcereg.h>
   57 #include <dev/bce/if_bcefw.h>
   58 
   59 /****************************************************************************/
   60 /* BCE Debug Options                                                        */
   61 /****************************************************************************/
   62 #ifdef BCE_DEBUG
   63         u32 bce_debug = BCE_WARN;
   64 
   65         /*          0 = Never              */
   66         /*          1 = 1 in 2,147,483,648 */
   67         /*        256 = 1 in     8,388,608 */
   68         /*       2048 = 1 in     1,048,576 */
   69         /*      65536 = 1 in        32,768 */
   70         /*    1048576 = 1 in         2,048 */
   71         /*  268435456 = 1 in             8 */
   72         /*  536870912 = 1 in             4 */
   73         /* 1073741824 = 1 in             2 */
   74 
   75         /* Controls how often the l2_fhdr frame error check will fail. */
   76         int l2fhdr_error_sim_control = 0;
   77 
   78         /* Controls how often the unexpected attention check will fail. */
   79         int unexpected_attention_sim_control = 0;
   80 
   81         /* Controls how often to simulate an mbuf allocation failure. */
   82         int mbuf_alloc_failed_sim_control = 0;
   83 
   84         /* Controls how often to simulate a DMA mapping failure. */
   85         int dma_map_addr_failed_sim_control = 0;
   86 
   87         /* Controls how often to simulate a bootcode failure. */
   88         int bootcode_running_failure_sim_control = 0;
   89 #endif
   90 
   91 /****************************************************************************/
   92 /* BCE Build Time Options                                                   */
   93 /****************************************************************************/
   94 /* #define BCE_NVRAM_WRITE_SUPPORT 1 */
   95 
   96 
   97 /****************************************************************************/
   98 /* PCI Device ID Table                                                      */
   99 /*                                                                          */
  100 /* Used by bce_probe() to identify the devices supported by this driver.    */
  101 /****************************************************************************/
  102 #define BCE_DEVDESC_MAX         64
  103 
  104 static struct bce_type bce_devs[] = {
  105         /* BCM5706C Controllers and OEM boards. */
  106         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
  107                 "HP NC370T Multifunction Gigabit Server Adapter" },
  108         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
  109                 "HP NC370i Multifunction Gigabit Server Adapter" },
  110         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
  111                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
  112         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
  113                 "HP NC371i Multifunction Gigabit Server Adapter" },
  114         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
  115                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
  116 
  117         /* BCM5706S controllers and OEM boards. */
  118         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
  119                 "HP NC370F Multifunction Gigabit Server Adapter" },
  120         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
  121                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  122 
  123         /* BCM5708C controllers and OEM boards. */
  124         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
  125                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
  126         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
  127                 "HP NC373i Multifunction Gigabit Server Adapter" },
  128         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
  129                 "HP NC374m PCIe Multifunction Adapter" },
  130         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
  131                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
  132 
  133         /* BCM5708S controllers and OEM boards. */
  134         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
  135                 "HP NC373m Multifunction Gigabit Server Adapter" },
  136         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
  137                 "HP NC373i Multifunction Gigabit Server Adapter" },
  138         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
  139                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
  140         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
  141                 "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  142 
  143         /* BCM5709C controllers and OEM boards. */
  144         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
  145                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
  146         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
  147                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
  148         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
  149                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
  150 
  151         /* BCM5709S controllers and OEM boards. */
  152         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
  153                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
  154         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
  155                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
  156         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
  157                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  158 
  159         /* BCM5716 controllers and OEM boards. */
  160         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
  161                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
  162 
  163         { 0, 0, 0, 0, NULL }
  164 };
  165 
  166 
  167 /****************************************************************************/
  168 /* Supported Flash NVRAM device data.                                       */
  169 /****************************************************************************/
  170 static struct flash_spec flash_table[] =
  171 {
  172 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
  173 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
  174 
  175         /* Slow EEPROM */
  176         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  177          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  178          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  179          "EEPROM - slow"},
  180         /* Expansion entry 0001 */
  181         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  182          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  183          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  184          "Entry 0001"},
  185         /* Saifun SA25F010 (non-buffered flash) */
  186         /* strap, cfg1, & write1 need updates */
  187         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  188          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  190          "Non-buffered flash (128kB)"},
  191         /* Saifun SA25F020 (non-buffered flash) */
  192         /* strap, cfg1, & write1 need updates */
  193         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  194          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  196          "Non-buffered flash (256kB)"},
  197         /* Expansion entry 0100 */
  198         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  199          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  200          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  201          "Entry 0100"},
  202         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  203         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  204          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  205          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  206          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  207         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  208         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  209          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  210          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  211          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  212         /* Saifun SA25F005 (non-buffered flash) */
  213         /* strap, cfg1, & write1 need updates */
  214         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  215          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  216          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  217          "Non-buffered flash (64kB)"},
  218         /* Fast EEPROM */
  219         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  220          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  221          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  222          "EEPROM - fast"},
  223         /* Expansion entry 1001 */
  224         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  225          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  226          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  227          "Entry 1001"},
  228         /* Expansion entry 1010 */
  229         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  230          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  231          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  232          "Entry 1010"},
  233         /* ATMEL AT45DB011B (buffered flash) */
  234         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  235          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  236          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  237          "Buffered flash (128kB)"},
  238         /* Expansion entry 1100 */
  239         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  240          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  241          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  242          "Entry 1100"},
  243         /* Expansion entry 1101 */
  244         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  245          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  246          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  247          "Entry 1101"},
  248         /* Ateml Expansion entry 1110 */
  249         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  250          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  251          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  252          "Entry 1110 (Atmel)"},
  253         /* ATMEL AT45DB021B (buffered flash) */
  254         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  255          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  256          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  257          "Buffered flash (256kB)"},
  258 };
  259 
  260 /*
  261  * The BCM5709 controllers transparently handle the
  262  * differences between Atmel 264 byte pages and all
  263  * flash devices which use 256 byte pages, so no
  264  * logical-to-physical mapping is required in the
  265  * driver.
  266  */
  267 static struct flash_spec flash_5709 = {
  268         .flags          = BCE_NV_BUFFERED,
  269         .page_bits      = BCM5709_FLASH_PAGE_BITS,
  270         .page_size      = BCM5709_FLASH_PAGE_SIZE,
  271         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
  272         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
  273         .name           = "5709/5716 buffered flash (256kB)",
  274 };
  275 
  276 
  277 /****************************************************************************/
  278 /* FreeBSD device entry points.                                             */
  279 /****************************************************************************/
  280 static int  bce_probe                   (device_t);
  281 static int  bce_attach                  (device_t);
  282 static int  bce_detach                  (device_t);
  283 static int  bce_shutdown                (device_t);
  284 
  285 
  286 /****************************************************************************/
  287 /* BCE Debug Data Structure Dump Routines                                   */
  288 /****************************************************************************/
  289 #ifdef BCE_DEBUG
  290 static u32  bce_reg_rd                  (struct bce_softc *, u32);
  291 static void bce_reg_wr                  (struct bce_softc *, u32, u32);
  292 static void bce_reg_wr16                (struct bce_softc *, u32, u16);
  293 static u32  bce_ctx_rd                  (struct bce_softc *, u32, u32);
  294 static void bce_dump_enet               (struct bce_softc *, struct mbuf *);
  295 static void bce_dump_mbuf               (struct bce_softc *, struct mbuf *);
  296 static void bce_dump_tx_mbuf_chain      (struct bce_softc *, u16, int);
  297 static void bce_dump_rx_mbuf_chain      (struct bce_softc *, u16, int);
  298 #ifdef BCE_JUMBO_HDRSPLIT
  299 static void bce_dump_pg_mbuf_chain      (struct bce_softc *, u16, int);
  300 #endif
  301 static void bce_dump_txbd               (struct bce_softc *,
  302     int, struct tx_bd *);
  303 static void bce_dump_rxbd               (struct bce_softc *,
  304     int, struct rx_bd *);
  305 #ifdef BCE_JUMBO_HDRSPLIT
  306 static void bce_dump_pgbd               (struct bce_softc *,
  307     int, struct rx_bd *);
  308 #endif
  309 static void bce_dump_l2fhdr             (struct bce_softc *,
  310     int, struct l2_fhdr *);
  311 static void bce_dump_ctx                (struct bce_softc *, u16);
  312 static void bce_dump_ftqs               (struct bce_softc *);
  313 static void bce_dump_tx_chain           (struct bce_softc *, u16, int);
  314 static void bce_dump_rx_bd_chain        (struct bce_softc *, u16, int);
  315 #ifdef BCE_JUMBO_HDRSPLIT
  316 static void bce_dump_pg_chain           (struct bce_softc *, u16, int);
  317 #endif
  318 static void bce_dump_status_block       (struct bce_softc *);
  319 static void bce_dump_stats_block        (struct bce_softc *);
  320 static void bce_dump_driver_state       (struct bce_softc *);
  321 static void bce_dump_hw_state           (struct bce_softc *);
  322 static void bce_dump_mq_regs            (struct bce_softc *);
  323 static void bce_dump_bc_state           (struct bce_softc *);
  324 static void bce_dump_txp_state          (struct bce_softc *, int);
  325 static void bce_dump_rxp_state          (struct bce_softc *, int);
  326 static void bce_dump_tpat_state         (struct bce_softc *, int);
  327 static void bce_dump_cp_state           (struct bce_softc *, int);
  328 static void bce_dump_com_state          (struct bce_softc *, int);
  329 static void bce_dump_rv2p_state         (struct bce_softc *);
  330 static void bce_breakpoint              (struct bce_softc *);
  331 #endif
  332 
  333 
  334 /****************************************************************************/
  335 /* BCE Register/Memory Access Routines                                      */
  336 /****************************************************************************/
  337 static u32  bce_reg_rd_ind              (struct bce_softc *, u32);
  338 static void bce_reg_wr_ind              (struct bce_softc *, u32, u32);
  339 static void bce_shmem_wr                (struct bce_softc *, u32, u32);
  340 static u32  bce_shmem_rd                (struct bce_softc *, u32);
  341 static void bce_ctx_wr                  (struct bce_softc *, u32, u32, u32);
  342 static int  bce_miibus_read_reg         (device_t, int, int);
  343 static int  bce_miibus_write_reg        (device_t, int, int, int);
  344 static void bce_miibus_statchg          (device_t);
  345 
  346 
  347 /****************************************************************************/
  348 /* BCE NVRAM Access Routines                                                */
  349 /****************************************************************************/
  350 static int  bce_acquire_nvram_lock      (struct bce_softc *);
  351 static int  bce_release_nvram_lock      (struct bce_softc *);
  352 static void bce_enable_nvram_access     (struct bce_softc *);
  353 static void bce_disable_nvram_access    (struct bce_softc *);
  354 static int  bce_nvram_read_dword        (struct bce_softc *, u32, u8 *, u32);
  355 static int  bce_init_nvram              (struct bce_softc *);
  356 static int  bce_nvram_read              (struct bce_softc *, u32, u8 *, int);
  357 static int  bce_nvram_test              (struct bce_softc *);
  358 #ifdef BCE_NVRAM_WRITE_SUPPORT
  359 static int  bce_enable_nvram_write      (struct bce_softc *);
  360 static void bce_disable_nvram_write     (struct bce_softc *);
  361 static int  bce_nvram_erase_page        (struct bce_softc *, u32);
  362 static int  bce_nvram_write_dword       (struct bce_softc *, u32, u8 *, u32);
  363 static int  bce_nvram_write             (struct bce_softc *, u32, u8 *, int);
  364 #endif
  365 
  366 /****************************************************************************/
  367 /*                                                                          */
  368 /****************************************************************************/
  369 static void bce_get_media               (struct bce_softc *);
  370 static void bce_init_media              (struct bce_softc *);
  371 static void bce_dma_map_addr            (void *,
  372     bus_dma_segment_t *, int, int);
  373 static int  bce_dma_alloc               (device_t);
  374 static void bce_dma_free                (struct bce_softc *);
  375 static void bce_release_resources       (struct bce_softc *);
  376 
  377 /****************************************************************************/
  378 /* BCE Firmware Synchronization and Load                                    */
  379 /****************************************************************************/
  380 static int  bce_fw_sync                 (struct bce_softc *, u32);
  381 static void bce_load_rv2p_fw            (struct bce_softc *, u32 *, u32, u32);
  382 static void bce_load_cpu_fw             (struct bce_softc *,
  383     struct cpu_reg *, struct fw_info *);
  384 static void bce_start_cpu               (struct bce_softc *, struct cpu_reg *);
  385 static void bce_halt_cpu                (struct bce_softc *, struct cpu_reg *);
  386 static void bce_start_rxp_cpu           (struct bce_softc *);
  387 static void bce_init_rxp_cpu            (struct bce_softc *);
  388 static void bce_init_txp_cpu            (struct bce_softc *);
  389 static void bce_init_tpat_cpu           (struct bce_softc *);
  390 static void bce_init_cp_cpu             (struct bce_softc *);
  391 static void bce_init_com_cpu            (struct bce_softc *);
  392 static void bce_init_cpus               (struct bce_softc *);
  393 
  394 static void     bce_print_adapter_info  (struct bce_softc *);
  395 static void bce_probe_pci_caps          (device_t, struct bce_softc *);
  396 static void bce_stop                    (struct bce_softc *);
  397 static int  bce_reset                   (struct bce_softc *, u32);
  398 static int  bce_chipinit                (struct bce_softc *);
  399 static int  bce_blockinit               (struct bce_softc *);
  400 
  401 static int  bce_init_tx_chain           (struct bce_softc *);
  402 static void bce_free_tx_chain           (struct bce_softc *);
  403 
  404 static int  bce_get_rx_buf              (struct bce_softc *,
  405     struct mbuf *, u16 *, u16 *, u32 *);
  406 static int  bce_init_rx_chain           (struct bce_softc *);
  407 static void bce_fill_rx_chain           (struct bce_softc *);
  408 static void bce_free_rx_chain           (struct bce_softc *);
  409 
  410 #ifdef BCE_JUMBO_HDRSPLIT
  411 static int  bce_get_pg_buf              (struct bce_softc *,
  412     struct mbuf *, u16 *, u16 *);
  413 static int  bce_init_pg_chain           (struct bce_softc *);
  414 static void bce_fill_pg_chain           (struct bce_softc *);
  415 static void bce_free_pg_chain           (struct bce_softc *);
  416 #endif
  417 
  418 static struct mbuf *bce_tso_setup       (struct bce_softc *,
  419     struct mbuf **, u16 *);
  420 static int  bce_tx_encap                (struct bce_softc *, struct mbuf **);
  421 static void bce_start_locked            (struct ifnet *);
  422 static void bce_start                   (struct ifnet *);
  423 static int  bce_ioctl                   (struct ifnet *, u_long, caddr_t);
  424 static void bce_watchdog                (struct bce_softc *);
  425 static int  bce_ifmedia_upd             (struct ifnet *);
  426 static int  bce_ifmedia_upd_locked      (struct ifnet *);
  427 static void bce_ifmedia_sts             (struct ifnet *, struct ifmediareq *);
  428 static void bce_init_locked             (struct bce_softc *);
  429 static void bce_init                    (void *);
  430 static void bce_mgmt_init_locked        (struct bce_softc *sc);
  431 
  432 static int  bce_init_ctx                (struct bce_softc *);
  433 static void bce_get_mac_addr            (struct bce_softc *);
  434 static void bce_set_mac_addr            (struct bce_softc *);
  435 static void bce_phy_intr                (struct bce_softc *);
  436 static inline u16 bce_get_hw_rx_cons    (struct bce_softc *);
  437 static void bce_rx_intr                 (struct bce_softc *);
  438 static void bce_tx_intr                 (struct bce_softc *);
  439 static void bce_disable_intr            (struct bce_softc *);
  440 static void bce_enable_intr             (struct bce_softc *, int);
  441 
  442 static void bce_intr                    (void *);
  443 static void bce_set_rx_mode             (struct bce_softc *);
  444 static void bce_stats_update            (struct bce_softc *);
  445 static void bce_tick                    (void *);
  446 static void bce_pulse                   (void *);
  447 static void bce_add_sysctls             (struct bce_softc *);
  448 
  449 
  450 /****************************************************************************/
  451 /* FreeBSD device dispatch table.                                           */
  452 /****************************************************************************/
  453 static device_method_t bce_methods[] = {
  454         /* Device interface (device_if.h) */
  455         DEVMETHOD(device_probe,         bce_probe),
  456         DEVMETHOD(device_attach,        bce_attach),
  457         DEVMETHOD(device_detach,        bce_detach),
  458         DEVMETHOD(device_shutdown,      bce_shutdown),
  459 /* Supported by device interface but not used here. */
  460 /*      DEVMETHOD(device_identify,      bce_identify),      */
  461 /*      DEVMETHOD(device_suspend,       bce_suspend),       */
  462 /*      DEVMETHOD(device_resume,        bce_resume),        */
  463 /*      DEVMETHOD(device_quiesce,       bce_quiesce),       */
  464 
  465         /* Bus interface (bus_if.h) */
  466         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  467         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  468 
  469         /* MII interface (miibus_if.h) */
  470         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
  471         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
  472         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
  473 /* Supported by MII interface but not used here.       */
  474 /*      DEVMETHOD(miibus_linkchg,       bce_miibus_linkchg),   */
  475 /*      DEVMETHOD(miibus_mediainit,     bce_miibus_mediainit), */
  476 
  477         { 0, 0 }
  478 };
  479 
  480 static driver_t bce_driver = {
  481         "bce",
  482         bce_methods,
  483         sizeof(struct bce_softc)
  484 };
  485 
  486 static devclass_t bce_devclass;
  487 
  488 MODULE_DEPEND(bce, pci, 1, 1, 1);
  489 MODULE_DEPEND(bce, ether, 1, 1, 1);
  490 MODULE_DEPEND(bce, miibus, 1, 1, 1);
  491 
  492 DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
  493 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
  494 
  495 
  496 /****************************************************************************/
  497 /* Tunable device values                                                    */
  498 /****************************************************************************/
  499 SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD, 0, "bce driver parameters");
  500 
  501 /* Allowable values are TRUE or FALSE */
  502 static int bce_tso_enable = TRUE;
  503 TUNABLE_INT("hw.bce.tso_enable", &bce_tso_enable);
  504 SYSCTL_UINT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
  505 "TSO Enable/Disable");
  506 
  507 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
  508 /* ToDo: Add MSI-X support. */
  509 static int bce_msi_enable = 1;
  510 TUNABLE_INT("hw.bce.msi_enable", &bce_msi_enable);
  511 SYSCTL_UINT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
  512 "MSI-X|MSI|INTx selector");
  513 
  514 /* ToDo: Add tunable to enable/disable strict MTU handling. */
  515 /* Currently allows "loose" RX MTU checking (i.e. sets the  */
  516 /* H/W RX MTU to the size of the largest receive buffer, or */
  517 /* 2048 bytes). This will cause a UNH failure but is more   */
  518 /* desireable from a functional perspective.                */
  519 
  520 
  521 /****************************************************************************/
  522 /* Device probe function.                                                   */
  523 /*                                                                          */
  524 /* Compares the device to the driver's list of supported devices and        */
  525 /* reports back to the OS whether this is the right driver for the device.  */
  526 /*                                                                          */
  527 /* Returns:                                                                 */
  528 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
  529 /****************************************************************************/
  530 static int
  531 bce_probe(device_t dev)
  532 {
  533         struct bce_type *t;
  534         struct bce_softc *sc;
  535         char *descbuf;
  536         u16 vid = 0, did = 0, svid = 0, sdid = 0;
  537 
  538         t = bce_devs;
  539 
  540         sc = device_get_softc(dev);
  541         bzero(sc, sizeof(struct bce_softc));
  542         sc->bce_unit = device_get_unit(dev);
  543         sc->bce_dev = dev;
  544 
  545         /* Get the data for the device to be probed. */
  546         vid  = pci_get_vendor(dev);
  547         did  = pci_get_device(dev);
  548         svid = pci_get_subvendor(dev);
  549         sdid = pci_get_subdevice(dev);
  550 
  551         DBPRINT(sc, BCE_EXTREME_LOAD,
  552             "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
  553             "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
  554 
  555         /* Look through the list of known devices for a match. */
  556         while(t->bce_name != NULL) {
  557 
  558                 if ((vid == t->bce_vid) && (did == t->bce_did) &&
  559                     ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
  560                     ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
  561 
  562                         descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
  563 
  564                         if (descbuf == NULL)
  565                                 return(ENOMEM);
  566 
  567                         /* Print out the device identity. */
  568                         snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
  569                             t->bce_name, (((pci_read_config(dev,
  570                             PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
  571                             (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
  572 
  573                         device_set_desc_copy(dev, descbuf);
  574                         free(descbuf, M_TEMP);
  575                         return(BUS_PROBE_DEFAULT);
  576                 }
  577                 t++;
  578         }
  579 
  580         return(ENXIO);
  581 }
  582 
  583 
  584 /****************************************************************************/
  585 /* PCI Capabilities Probe Function.                                         */
  586 /*                                                                          */
  587 /* Walks the PCI capabiites list for the device to find what features are   */
  588 /* supported.                                                               */
  589 /*                                                                          */
  590 /* Returns:                                                                 */
  591 /*   None.                                                                  */
  592 /****************************************************************************/
  593 static void
  594 bce_print_adapter_info(struct bce_softc *sc)
  595 {
  596         int i = 0;
  597 
  598         DBENTER(BCE_VERBOSE_LOAD);
  599 
  600         if (bootverbose) {
  601                 BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
  602                 printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
  603                     12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
  604 
  605 
  606                 /* Bus info. */
  607                 if (sc->bce_flags & BCE_PCIE_FLAG) {
  608                         printf("Bus (PCIe x%d, ", sc->link_width);
  609                         switch (sc->link_speed) {
  610                         case 1: printf("2.5Gbps); "); break;
  611                         case 2: printf("5Gbps); "); break;
  612                         default: printf("Unknown link speed); ");
  613                         }
  614                 } else {
  615                         printf("Bus (PCI%s, %s, %dMHz); ",
  616                             ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
  617                             ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
  618                             "32-bit" : "64-bit"), sc->bus_speed_mhz);
  619                 }
  620 
  621                 /* Firmware version and device features. */
  622                 printf("B/C (%s); Flags (", sc->bce_bc_ver);
  623 
  624         #ifdef BCE_JUMBO_HDRSPLIT
  625                 printf("SPLT");
  626                 i++;
  627         #endif
  628 
  629                 if (sc->bce_flags & BCE_USING_MSI_FLAG) {
  630                         if (i > 0) printf("|");
  631                         printf("MSI"); i++;
  632                 }
  633 
  634                 if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
  635                         if (i > 0) printf("|");
  636                         printf("MSI-X"); i++;
  637                 }
  638 
  639                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
  640                         if (i > 0) printf("|");
  641                         printf("2.5G"); i++;
  642                 }
  643 
  644                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
  645                         if (i > 0) printf("|");
  646                         printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
  647                 } else {
  648                         printf(")\n");
  649                 }
  650         }
  651 
  652         DBEXIT(BCE_VERBOSE_LOAD);
  653 }
  654 
  655 
  656 /****************************************************************************/
  657 /* PCI Capabilities Probe Function.                                         */
  658 /*                                                                          */
  659 /* Walks the PCI capabiites list for the device to find what features are   */
  660 /* supported.                                                               */
  661 /*                                                                          */
  662 /* Returns:                                                                 */
  663 /*   None.                                                                  */
  664 /****************************************************************************/
  665 static void
  666 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
  667 {
  668         u32 reg;
  669 
  670         DBENTER(BCE_VERBOSE_LOAD);
  671 
  672         /* Check if PCI-X capability is enabled. */
  673         if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
  674                 if (reg != 0)
  675                         sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
  676         }
  677 
  678         /* Check if PCIe capability is enabled. */
  679         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
  680                 if (reg != 0) {
  681                         u16 link_status = pci_read_config(dev, reg + 0x12, 2);
  682                         DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
  683                             "0x%08X\n", link_status);
  684                         sc->link_speed = link_status & 0xf;
  685                         sc->link_width = (link_status >> 4) & 0x3f;
  686                         sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
  687                         sc->bce_flags |= BCE_PCIE_FLAG;
  688                 }
  689         }
  690 
  691         /* Check if MSI capability is enabled. */
  692         if (pci_find_extcap(dev, PCIY_MSI, &reg) == 0) {
  693                 if (reg != 0)
  694                         sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
  695         }
  696 
  697         /* Check if MSI-X capability is enabled. */
  698         if (pci_find_extcap(dev, PCIY_MSIX, &reg) == 0) {
  699                 if (reg != 0)
  700                         sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
  701         }
  702 
  703         DBEXIT(BCE_VERBOSE_LOAD);
  704 }
  705 
  706 
  707 /****************************************************************************/
  708 /* Device attach function.                                                  */
  709 /*                                                                          */
  710 /* Allocates device resources, performs secondary chip identification,      */
  711 /* resets and initializes the hardware, and initializes driver instance     */
  712 /* variables.                                                               */
  713 /*                                                                          */
  714 /* Returns:                                                                 */
  715 /*   0 on success, positive value on failure.                               */
  716 /****************************************************************************/
  717 static int
  718 bce_attach(device_t dev)
  719 {
  720         struct bce_softc *sc;
  721         struct ifnet *ifp;
  722         u32 val;
  723         int error, rid, rc = 0;
  724 
  725         sc = device_get_softc(dev);
  726         sc->bce_dev = dev;
  727 
  728         DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
  729 
  730         sc->bce_unit = device_get_unit(dev);
  731 
  732         /* Set initial device and PHY flags */
  733         sc->bce_flags = 0;
  734         sc->bce_phy_flags = 0;
  735 
  736         pci_enable_busmaster(dev);
  737 
  738         /* Allocate PCI memory resources. */
  739         rid = PCIR_BAR(0);
  740         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  741                 &rid, RF_ACTIVE | PCI_RF_DENSE);
  742 
  743         if (sc->bce_res_mem == NULL) {
  744                 BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
  745                     __FILE__, __LINE__);
  746                 rc = ENXIO;
  747                 goto bce_attach_fail;
  748         }
  749 
  750         /* Get various resource handles. */
  751         sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
  752         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
  753         sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
  754 
  755         bce_probe_pci_caps(dev, sc);
  756 
  757         rid = 1;
  758 #if 0
  759         /* Try allocating MSI-X interrupts. */
  760         if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
  761                 (bce_msi_enable >= 2) &&
  762                 ((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
  763                 &rid, RF_ACTIVE)) != NULL)) {
  764 
  765                 msi_needed = sc->bce_msi_count = 1;
  766 
  767                 if (((error = pci_alloc_msix(dev, &sc->bce_msi_count)) != 0) ||
  768                         (sc->bce_msi_count != msi_needed)) {
  769                         BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
  770                                 "Received = %d, error = %d\n", __FILE__, __LINE__,
  771                                 msi_needed, sc->bce_msi_count, error);
  772                         sc->bce_msi_count = 0;
  773                         pci_release_msi(dev);
  774                         bus_release_resource(dev, SYS_RES_MEMORY, rid,
  775                                 sc->bce_res_irq);
  776                         sc->bce_res_irq = NULL;
  777                 } else {
  778                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
  779                                 __FUNCTION__);
  780                         sc->bce_flags |= BCE_USING_MSIX_FLAG;
  781                         sc->bce_intr = bce_intr;
  782                 }
  783         }
  784 #endif
  785 
  786         /* Try allocating a MSI interrupt. */
  787         if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
  788                 (bce_msi_enable >= 1) && (sc->bce_msi_count == 0)) {
  789                 sc->bce_msi_count = 1;
  790                 if ((error = pci_alloc_msi(dev, &sc->bce_msi_count)) != 0) {
  791                         BCE_PRINTF("%s(%d): MSI allocation failed! "
  792                             "error = %d\n", __FILE__, __LINE__, error);
  793                         sc->bce_msi_count = 0;
  794                         pci_release_msi(dev);
  795                 } else {
  796                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
  797                             "interrupt.\n", __FUNCTION__);
  798                         sc->bce_flags |= BCE_USING_MSI_FLAG;
  799                         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
  800                                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
  801                                 sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
  802                         sc->bce_irq_rid = 1;
  803                         sc->bce_intr = bce_intr;
  804                 }
  805         }
  806 
  807         /* Try allocating a legacy interrupt. */
  808         if (sc->bce_msi_count == 0) {
  809                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
  810                         __FUNCTION__);
  811                 rid = 0;
  812                 sc->bce_intr = bce_intr;
  813         }
  814 
  815         sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
  816             &rid, RF_SHAREABLE | RF_ACTIVE);
  817 
  818         sc->bce_irq_rid = rid;
  819 
  820         /* Report any IRQ allocation errors. */
  821         if (sc->bce_res_irq == NULL) {
  822                 BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
  823                     __FILE__, __LINE__);
  824                 rc = ENXIO;
  825                 goto bce_attach_fail;
  826         }
  827 
  828         /* Initialize mutex for the current device instance. */
  829         BCE_LOCK_INIT(sc, device_get_nameunit(dev));
  830 
  831         /*
  832          * Configure byte swap and enable indirect register access.
  833          * Rely on CPU to do target byte swapping on big endian systems.
  834          * Access to registers outside of PCI configurtion space are not
  835          * valid until this is done.
  836          */
  837         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
  838             BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  839             BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
  840 
  841         /* Save ASIC revsion info. */
  842         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
  843 
  844         /* Weed out any non-production controller revisions. */
  845         switch(BCE_CHIP_ID(sc)) {
  846         case BCE_CHIP_ID_5706_A0:
  847         case BCE_CHIP_ID_5706_A1:
  848         case BCE_CHIP_ID_5708_A0:
  849         case BCE_CHIP_ID_5708_B0:
  850         case BCE_CHIP_ID_5709_A0:
  851         case BCE_CHIP_ID_5709_B0:
  852         case BCE_CHIP_ID_5709_B1:
  853         case BCE_CHIP_ID_5709_B2:
  854                 BCE_PRINTF("%s(%d): Unsupported controller "
  855                     "revision (%c%d)!\n", __FILE__, __LINE__,
  856                     (((pci_read_config(dev, PCIR_REVID, 4) &
  857                     0xf0) >> 4) + 'A'), (pci_read_config(dev,
  858                     PCIR_REVID, 4) & 0xf));
  859                 rc = ENODEV;
  860                 goto bce_attach_fail;
  861         }
  862 
  863         /*
  864          * The embedded PCIe to PCI-X bridge (EPB)
  865          * in the 5708 cannot address memory above
  866          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
  867          */
  868         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
  869                 sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
  870         else
  871                 sc->max_bus_addr = BUS_SPACE_MAXADDR;
  872 
  873         /*
  874          * Find the base address for shared memory access.
  875          * Newer versions of bootcode use a signature and offset
  876          * while older versions use a fixed address.
  877          */
  878         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
  879         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
  880                 /* Multi-port devices use different offsets in shared memory. */
  881                 sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
  882                     (pci_get_function(sc->bce_dev) << 2));
  883         else
  884                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
  885 
  886         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
  887             __FUNCTION__, sc->bce_shmem_base);
  888 
  889         /* Fetch the bootcode revision. */
  890         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
  891         for (int i = 0, j = 0; i < 3; i++) {
  892                 u8 num;
  893 
  894                 num = (u8) (val >> (24 - (i * 8)));
  895                 for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  896                         if (num >= k || !skip0 || k == 1) {
  897                                 sc->bce_bc_ver[j++] = (num / k) + '';
  898                                 skip0 = 0;
  899                         }
  900                 }
  901 
  902                 if (i != 2)
  903                         sc->bce_bc_ver[j++] = '.';
  904         }
  905 
  906         /* Check if any management firwmare is enabled. */
  907         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
  908         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
  909                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
  910 
  911                 /* Allow time for firmware to enter the running state. */
  912                 for (int i = 0; i < 30; i++) {
  913                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
  914                         if (val & BCE_CONDITION_MFW_RUN_MASK)
  915                                 break;
  916                         DELAY(10000);
  917                 }
  918 
  919                 /* Check if management firmware is running. */
  920                 val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
  921                 val &= BCE_CONDITION_MFW_RUN_MASK;
  922                 if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
  923                     (val != BCE_CONDITION_MFW_RUN_NONE)) {
  924                         u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
  925                         int i = 0;
  926 
  927                         /* Read the management firmware version string. */
  928                         for (int j = 0; j < 3; j++) {
  929                                 val = bce_reg_rd_ind(sc, addr + j * 4);
  930                                 val = bswap32(val);
  931                                 memcpy(&sc->bce_mfw_ver[i], &val, 4);
  932                                 i += 4;
  933                         }
  934                 } else {
  935                         /* May cause firmware synchronization timeouts. */
  936                         BCE_PRINTF("%s(%d): Management firmware enabled "
  937                             "but not running!\n", __FILE__, __LINE__);
  938                         strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
  939 
  940                         /* ToDo: Any action the driver should take? */
  941                 }
  942         }
  943 
  944         /* Get PCI bus information (speed and type). */
  945         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
  946         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
  947                 u32 clkreg;
  948 
  949                 sc->bce_flags |= BCE_PCIX_FLAG;
  950 
  951                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
  952 
  953                 clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  954                 switch (clkreg) {
  955                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  956                         sc->bus_speed_mhz = 133;
  957                         break;
  958 
  959                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  960                         sc->bus_speed_mhz = 100;
  961                         break;
  962 
  963                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  964                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  965                         sc->bus_speed_mhz = 66;
  966                         break;
  967 
  968                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  969                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  970                         sc->bus_speed_mhz = 50;
  971                         break;
  972 
  973                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  974                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  975                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  976                         sc->bus_speed_mhz = 33;
  977                         break;
  978                 }
  979         } else {
  980                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
  981                         sc->bus_speed_mhz = 66;
  982                 else
  983                         sc->bus_speed_mhz = 33;
  984         }
  985 
  986         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
  987                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
  988 
  989         /* Reset controller and announce to bootcode that driver is present. */
  990         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
  991                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
  992                     __FILE__, __LINE__);
  993                 rc = ENXIO;
  994                 goto bce_attach_fail;
  995         }
  996 
  997         /* Initialize the controller. */
  998         if (bce_chipinit(sc)) {
  999                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
 1000                     __FILE__, __LINE__);
 1001                 rc = ENXIO;
 1002                 goto bce_attach_fail;
 1003         }
 1004 
 1005         /* Perform NVRAM test. */
 1006         if (bce_nvram_test(sc)) {
 1007                 BCE_PRINTF("%s(%d): NVRAM test failed!\n",
 1008                     __FILE__, __LINE__);
 1009                 rc = ENXIO;
 1010                 goto bce_attach_fail;
 1011         }
 1012 
 1013         /* Fetch the permanent Ethernet MAC address. */
 1014         bce_get_mac_addr(sc);
 1015 
 1016         /*
 1017          * Trip points control how many BDs
 1018          * should be ready before generating an
 1019          * interrupt while ticks control how long
 1020          * a BD can sit in the chain before
 1021          * generating an interrupt.  Set the default
 1022          * values for the RX and TX chains.
 1023          */
 1024 
 1025 #ifdef BCE_DEBUG
 1026         /* Force more frequent interrupts. */
 1027         sc->bce_tx_quick_cons_trip_int = 1;
 1028         sc->bce_tx_quick_cons_trip     = 1;
 1029         sc->bce_tx_ticks_int           = 0;
 1030         sc->bce_tx_ticks               = 0;
 1031 
 1032         sc->bce_rx_quick_cons_trip_int = 1;
 1033         sc->bce_rx_quick_cons_trip     = 1;
 1034         sc->bce_rx_ticks_int           = 0;
 1035         sc->bce_rx_ticks               = 0;
 1036 #else
 1037         /* Improve throughput at the expense of increased latency. */
 1038         sc->bce_tx_quick_cons_trip_int = 20;
 1039         sc->bce_tx_quick_cons_trip     = 20;
 1040         sc->bce_tx_ticks_int           = 80;
 1041         sc->bce_tx_ticks               = 80;
 1042 
 1043         sc->bce_rx_quick_cons_trip_int = 6;
 1044         sc->bce_rx_quick_cons_trip     = 6;
 1045         sc->bce_rx_ticks_int           = 18;
 1046         sc->bce_rx_ticks               = 18;
 1047 #endif
 1048 
 1049         /* Not used for L2. */
 1050         sc->bce_comp_prod_trip_int = 0;
 1051         sc->bce_comp_prod_trip = 0;
 1052         sc->bce_com_ticks_int = 0;
 1053         sc->bce_com_ticks = 0;
 1054         sc->bce_cmd_ticks_int = 0;
 1055         sc->bce_cmd_ticks = 0;
 1056 
 1057         /* Update statistics once every second. */
 1058         sc->bce_stats_ticks = 1000000 & 0xffff00;
 1059 
 1060         /* Find the media type for the adapter. */
 1061         bce_get_media(sc);
 1062 
 1063         /* Store data needed by PHY driver for backplane applications */
 1064         sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
 1065         sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
 1066 
 1067         /* Allocate DMA memory resources. */
 1068         if (bce_dma_alloc(dev)) {
 1069                 BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
 1070                     __FILE__, __LINE__);
 1071                 rc = ENXIO;
 1072                 goto bce_attach_fail;
 1073         }
 1074 
 1075         /* Allocate an ifnet structure. */
 1076         ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
 1077         if (ifp == NULL) {
 1078                 BCE_PRINTF("%s(%d): Interface allocation failed!\n",
 1079                     __FILE__, __LINE__);
 1080                 rc = ENXIO;
 1081                 goto bce_attach_fail;
 1082         }
 1083 
 1084         /* Initialize the ifnet interface. */
 1085         ifp->if_softc   = sc;
 1086         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 1087         ifp->if_flags   = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 1088         ifp->if_ioctl   = bce_ioctl;
 1089         ifp->if_start   = bce_start;
 1090         ifp->if_init    = bce_init;
 1091         ifp->if_mtu     = ETHERMTU;
 1092 
 1093         if (bce_tso_enable) {
 1094                 ifp->if_hwassist = BCE_IF_HWASSIST | CSUM_TSO;
 1095                 ifp->if_capabilities = BCE_IF_CAPABILITIES | IFCAP_TSO4 |
 1096                     IFCAP_VLAN_HWTSO;
 1097         } else {
 1098                 ifp->if_hwassist = BCE_IF_HWASSIST;
 1099                 ifp->if_capabilities = BCE_IF_CAPABILITIES;
 1100         }
 1101 
 1102         ifp->if_capenable = ifp->if_capabilities;
 1103 
 1104         /*
 1105          * Assume standard mbuf sizes for buffer allocation.
 1106          * This may change later if the MTU size is set to
 1107          * something other than 1500.
 1108          */
 1109 #ifdef BCE_JUMBO_HDRSPLIT
 1110         sc->rx_bd_mbuf_alloc_size = MHLEN;
 1111         /* Make sure offset is 16 byte aligned for hardware. */
 1112         sc->rx_bd_mbuf_align_pad =
 1113             roundup2((MSIZE - MHLEN), 16) - (MSIZE - MHLEN);
 1114         sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
 1115             sc->rx_bd_mbuf_align_pad;
 1116         sc->pg_bd_mbuf_alloc_size = MCLBYTES;
 1117 #else
 1118         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
 1119         sc->rx_bd_mbuf_align_pad =
 1120             roundup2(MCLBYTES, 16) - MCLBYTES;
 1121         sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
 1122             sc->rx_bd_mbuf_align_pad;
 1123 #endif
 1124 
 1125         ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
 1126         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 1127         IFQ_SET_READY(&ifp->if_snd);
 1128 
 1129         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
 1130                 ifp->if_baudrate = IF_Mbps(2500ULL);
 1131         else
 1132                 ifp->if_baudrate = IF_Mbps(1000);
 1133 
 1134         /* Handle any special PHY initialization for SerDes PHYs. */
 1135         bce_init_media(sc);
 1136 
 1137         /* MII child bus by attaching the PHY. */
 1138         rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
 1139             bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
 1140             MII_OFFSET_ANY, MIIF_DOPAUSE | MIIF_FORCEPAUSE);
 1141         if (rc != 0) {
 1142                 BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
 1143                     __LINE__);
 1144                 goto bce_attach_fail;
 1145         }
 1146 
 1147         /* Attach to the Ethernet interface list. */
 1148         ether_ifattach(ifp, sc->eaddr);
 1149 
 1150 #if __FreeBSD_version < 500000
 1151         callout_init(&sc->bce_tick_callout);
 1152         callout_init(&sc->bce_pulse_callout);
 1153 #else
 1154         callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
 1155         callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
 1156 #endif
 1157 
 1158         /* Hookup IRQ last. */
 1159         rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
 1160                 NULL, bce_intr, sc, &sc->bce_intrhand);
 1161 
 1162         if (rc) {
 1163                 BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
 1164                     __FILE__, __LINE__);
 1165                 bce_detach(dev);
 1166                 goto bce_attach_exit;
 1167         }
 1168 
 1169         /*
 1170          * At this point we've acquired all the resources
 1171          * we need to run so there's no turning back, we're
 1172          * cleared for launch.
 1173          */
 1174 
 1175         /* Print some important debugging info. */
 1176         DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
 1177 
 1178         /* Add the supported sysctls to the kernel. */
 1179         bce_add_sysctls(sc);
 1180 
 1181         BCE_LOCK(sc);
 1182 
 1183         /*
 1184          * The chip reset earlier notified the bootcode that
 1185          * a driver is present.  We now need to start our pulse
 1186          * routine so that the bootcode is reminded that we're
 1187          * still running.
 1188          */
 1189         bce_pulse(sc);
 1190 
 1191         bce_mgmt_init_locked(sc);
 1192         BCE_UNLOCK(sc);
 1193 
 1194         /* Finally, print some useful adapter info */
 1195         bce_print_adapter_info(sc);
 1196         DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
 1197                 __FUNCTION__, sc);
 1198 
 1199         goto bce_attach_exit;
 1200 
 1201 bce_attach_fail:
 1202         bce_release_resources(sc);
 1203 
 1204 bce_attach_exit:
 1205 
 1206         DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 1207 
 1208         return(rc);
 1209 }
 1210 
 1211 
 1212 /****************************************************************************/
 1213 /* Device detach function.                                                  */
 1214 /*                                                                          */
 1215 /* Stops the controller, resets the controller, and releases resources.     */
 1216 /*                                                                          */
 1217 /* Returns:                                                                 */
 1218 /*   0 on success, positive value on failure.                               */
 1219 /****************************************************************************/
 1220 static int
 1221 bce_detach(device_t dev)
 1222 {
 1223         struct bce_softc *sc = device_get_softc(dev);
 1224         struct ifnet *ifp;
 1225         u32 msg;
 1226 
 1227         DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
 1228 
 1229         ifp = sc->bce_ifp;
 1230 
 1231         /* Stop and reset the controller. */
 1232         BCE_LOCK(sc);
 1233 
 1234         /* Stop the pulse so the bootcode can go to driver absent state. */
 1235         callout_stop(&sc->bce_pulse_callout);
 1236 
 1237         bce_stop(sc);
 1238         if (sc->bce_flags & BCE_NO_WOL_FLAG)
 1239                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
 1240         else
 1241                 msg = BCE_DRV_MSG_CODE_UNLOAD;
 1242         bce_reset(sc, msg);
 1243 
 1244         BCE_UNLOCK(sc);
 1245 
 1246         ether_ifdetach(ifp);
 1247 
 1248         /* If we have a child device on the MII bus remove it too. */
 1249         bus_generic_detach(dev);
 1250         device_delete_child(dev, sc->bce_miibus);
 1251 
 1252         /* Release all remaining resources. */
 1253         bce_release_resources(sc);
 1254 
 1255         DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
 1256 
 1257         return(0);
 1258 }
 1259 
 1260 
 1261 /****************************************************************************/
 1262 /* Device shutdown function.                                                */
 1263 /*                                                                          */
 1264 /* Stops and resets the controller.                                         */
 1265 /*                                                                          */
 1266 /* Returns:                                                                 */
 1267 /*   0 on success, positive value on failure.                               */
 1268 /****************************************************************************/
 1269 static int
 1270 bce_shutdown(device_t dev)
 1271 {
 1272         struct bce_softc *sc = device_get_softc(dev);
 1273         u32 msg;
 1274 
 1275         DBENTER(BCE_VERBOSE);
 1276 
 1277         BCE_LOCK(sc);
 1278         bce_stop(sc);
 1279         if (sc->bce_flags & BCE_NO_WOL_FLAG)
 1280                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
 1281         else
 1282                 msg = BCE_DRV_MSG_CODE_UNLOAD;
 1283         bce_reset(sc, msg);
 1284         BCE_UNLOCK(sc);
 1285 
 1286         DBEXIT(BCE_VERBOSE);
 1287 
 1288         return (0);
 1289 }
 1290 
 1291 
 1292 #ifdef BCE_DEBUG
 1293 /****************************************************************************/
 1294 /* Register read.                                                           */
 1295 /*                                                                          */
 1296 /* Returns:                                                                 */
 1297 /*   The value of the register.                                             */
 1298 /****************************************************************************/
 1299 static u32
 1300 bce_reg_rd(struct bce_softc *sc, u32 offset)
 1301 {
 1302         u32 val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, offset);
 1303         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1304                 __FUNCTION__, offset, val);
 1305         return val;
 1306 }
 1307 
 1308 
 1309 /****************************************************************************/
 1310 /* Register write (16 bit).                                                 */
 1311 /*                                                                          */
 1312 /* Returns:                                                                 */
 1313 /*   Nothing.                                                               */
 1314 /****************************************************************************/
 1315 static void
 1316 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
 1317 {
 1318         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
 1319                 __FUNCTION__, offset, val);
 1320         bus_space_write_2(sc->bce_btag, sc->bce_bhandle, offset, val);
 1321 }
 1322 
 1323 
 1324 /****************************************************************************/
 1325 /* Register write.                                                          */
 1326 /*                                                                          */
 1327 /* Returns:                                                                 */
 1328 /*   Nothing.                                                               */
 1329 /****************************************************************************/
 1330 static void
 1331 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
 1332 {
 1333         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1334                 __FUNCTION__, offset, val);
 1335         bus_space_write_4(sc->bce_btag, sc->bce_bhandle, offset, val);
 1336 }
 1337 #endif
 1338 
 1339 /****************************************************************************/
 1340 /* Indirect register read.                                                  */
 1341 /*                                                                          */
 1342 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
 1343 /* configuration space.  Using this mechanism avoids issues with posted     */
 1344 /* reads but is much slower than memory-mapped I/O.                         */
 1345 /*                                                                          */
 1346 /* Returns:                                                                 */
 1347 /*   The value of the register.                                             */
 1348 /****************************************************************************/
 1349 static u32
 1350 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
 1351 {
 1352         device_t dev;
 1353         dev = sc->bce_dev;
 1354 
 1355         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
 1356 #ifdef BCE_DEBUG
 1357         {
 1358                 u32 val;
 1359                 val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
 1360                 DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1361                         __FUNCTION__, offset, val);
 1362                 return val;
 1363         }
 1364 #else
 1365         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
 1366 #endif
 1367 }
 1368 
 1369 
 1370 /****************************************************************************/
 1371 /* Indirect register write.                                                 */
 1372 /*                                                                          */
 1373 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
 1374 /* configuration space.  Using this mechanism avoids issues with posted     */
 1375 /* writes but is muchh slower than memory-mapped I/O.                       */
 1376 /*                                                                          */
 1377 /* Returns:                                                                 */
 1378 /*   Nothing.                                                               */
 1379 /****************************************************************************/
 1380 static void
 1381 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
 1382 {
 1383         device_t dev;
 1384         dev = sc->bce_dev;
 1385 
 1386         DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
 1387                 __FUNCTION__, offset, val);
 1388 
 1389         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
 1390         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
 1391 }
 1392 
 1393 
 1394 /****************************************************************************/
 1395 /* Shared memory write.                                                     */
 1396 /*                                                                          */
 1397 /* Writes NetXtreme II shared memory region.                                */
 1398 /*                                                                          */
 1399 /* Returns:                                                                 */
 1400 /*   Nothing.                                                               */
 1401 /****************************************************************************/
 1402 static void
 1403 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
 1404 {
 1405         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
 1406             "0x%08X\n", __FUNCTION__, val, offset);
 1407 
 1408         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
 1409 }
 1410 
 1411 
 1412 /****************************************************************************/
 1413 /* Shared memory read.                                                      */
 1414 /*                                                                          */
 1415 /* Reads NetXtreme II shared memory region.                                 */
 1416 /*                                                                          */
 1417 /* Returns:                                                                 */
 1418 /*   The 32 bit value read.                                                 */
 1419 /****************************************************************************/
 1420 static u32
 1421 bce_shmem_rd(struct bce_softc *sc, u32 offset)
 1422 {
 1423         u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
 1424 
 1425         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
 1426             "0x%08X\n", __FUNCTION__, val, offset);
 1427 
 1428         return val;
 1429 }
 1430 
 1431 
 1432 #ifdef BCE_DEBUG
 1433 /****************************************************************************/
 1434 /* Context memory read.                                                     */
 1435 /*                                                                          */
 1436 /* The NetXtreme II controller uses context memory to track connection      */
 1437 /* information for L2 and higher network protocols.                         */
 1438 /*                                                                          */
 1439 /* Returns:                                                                 */
 1440 /*   The requested 32 bit value of context memory.                          */
 1441 /****************************************************************************/
 1442 static u32
 1443 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
 1444 {
 1445         u32 idx, offset, retry_cnt = 5, val;
 1446 
 1447         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
 1448             cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
 1449             "address: 0x%08X.\n", __FUNCTION__, cid_addr));
 1450 
 1451         offset = ctx_offset + cid_addr;
 1452 
 1453         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 1454                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 1455 
 1456                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
 1457 
 1458                 for (idx = 0; idx < retry_cnt; idx++) {
 1459                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
 1460                         if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
 1461                                 break;
 1462                         DELAY(5);
 1463                 }
 1464 
 1465                 if (val & BCE_CTX_CTX_CTRL_READ_REQ)
 1466                         BCE_PRINTF("%s(%d); Unable to read CTX memory: "
 1467                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
 1468                             __FILE__, __LINE__, cid_addr, ctx_offset);
 1469 
 1470                 val = REG_RD(sc, BCE_CTX_CTX_DATA);
 1471         } else {
 1472                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
 1473                 val = REG_RD(sc, BCE_CTX_DATA);
 1474         }
 1475 
 1476         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
 1477                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
 1478 
 1479         return(val);
 1480 }
 1481 #endif
 1482 
 1483 
 1484 /****************************************************************************/
 1485 /* Context memory write.                                                    */
 1486 /*                                                                          */
 1487 /* The NetXtreme II controller uses context memory to track connection      */
 1488 /* information for L2 and higher network protocols.                         */
 1489 /*                                                                          */
 1490 /* Returns:                                                                 */
 1491 /*   Nothing.                                                               */
 1492 /****************************************************************************/
 1493 static void
 1494 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
 1495 {
 1496         u32 idx, offset = ctx_offset + cid_addr;
 1497         u32 val, retry_cnt = 5;
 1498 
 1499         DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
 1500                 "val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
 1501 
 1502         DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
 1503                 BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
 1504                     __FUNCTION__, cid_addr));
 1505 
 1506         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 1507                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 1508 
 1509                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
 1510                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
 1511 
 1512                 for (idx = 0; idx < retry_cnt; idx++) {
 1513                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
 1514                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
 1515                                 break;
 1516                         DELAY(5);
 1517                 }
 1518 
 1519                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
 1520                         BCE_PRINTF("%s(%d); Unable to write CTX memory: "
 1521                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
 1522                             __FILE__, __LINE__, cid_addr, ctx_offset);
 1523 
 1524         } else {
 1525                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
 1526                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
 1527         }
 1528 }
 1529 
 1530 
 1531 /****************************************************************************/
 1532 /* PHY register read.                                                       */
 1533 /*                                                                          */
 1534 /* Implements register reads on the MII bus.                                */
 1535 /*                                                                          */
 1536 /* Returns:                                                                 */
 1537 /*   The value of the register.                                             */
 1538 /****************************************************************************/
 1539 static int
 1540 bce_miibus_read_reg(device_t dev, int phy, int reg)
 1541 {
 1542         struct bce_softc *sc;
 1543         u32 val;
 1544         int i;
 1545 
 1546         sc = device_get_softc(dev);
 1547 
 1548         /* Make sure we are accessing the correct PHY address. */
 1549         if (phy != sc->bce_phy_addr) {
 1550                 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
 1551                     "for PHY read!\n", phy);
 1552                 return(0);
 1553         }
 1554 
 1555     /*
 1556      * The 5709S PHY is an IEEE Clause 45 PHY
 1557      * with special mappings to work with IEEE
 1558      * Clause 22 register accesses.
 1559      */
 1560         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
 1561                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
 1562                         reg += 0x10;
 1563         }
 1564 
 1565     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1566                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1567                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1568 
 1569                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
 1570                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1571 
 1572                 DELAY(40);
 1573         }
 1574 
 1575 
 1576         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
 1577             BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
 1578             BCE_EMAC_MDIO_COMM_START_BUSY;
 1579         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
 1580 
 1581         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
 1582                 DELAY(10);
 1583 
 1584                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1585                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
 1586                         DELAY(5);
 1587 
 1588                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1589                         val &= BCE_EMAC_MDIO_COMM_DATA;
 1590 
 1591                         break;
 1592                 }
 1593         }
 1594 
 1595         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
 1596                 BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
 1597                     "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
 1598                 val = 0x0;
 1599         } else {
 1600                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1601         }
 1602 
 1603 
 1604         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1605                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1606                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1607 
 1608                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
 1609                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1610 
 1611                 DELAY(40);
 1612         }
 1613 
 1614         DB_PRINT_PHY_REG(reg, val);
 1615         return (val & 0xffff);
 1616 
 1617 }
 1618 
 1619 
 1620 /****************************************************************************/
 1621 /* PHY register write.                                                      */
 1622 /*                                                                          */
 1623 /* Implements register writes on the MII bus.                               */
 1624 /*                                                                          */
 1625 /* Returns:                                                                 */
 1626 /*   The value of the register.                                             */
 1627 /****************************************************************************/
 1628 static int
 1629 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
 1630 {
 1631         struct bce_softc *sc;
 1632         u32 val1;
 1633         int i;
 1634 
 1635         sc = device_get_softc(dev);
 1636 
 1637         /* Make sure we are accessing the correct PHY address. */
 1638         if (phy != sc->bce_phy_addr) {
 1639                 DBPRINT(sc, BCE_INSANE_PHY, "Invalid PHY address %d "
 1640                     "for PHY write!\n", phy);
 1641                 return(0);
 1642         }
 1643 
 1644         DB_PRINT_PHY_REG(reg, val);
 1645 
 1646         /*
 1647          * The 5709S PHY is an IEEE Clause 45 PHY
 1648          * with special mappings to work with IEEE
 1649          * Clause 22 register accesses.
 1650          */
 1651         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
 1652                 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
 1653                         reg += 0x10;
 1654         }
 1655 
 1656         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1657                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1658                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1659 
 1660                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
 1661                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1662 
 1663                 DELAY(40);
 1664         }
 1665 
 1666         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
 1667             BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
 1668             BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
 1669         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
 1670 
 1671         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
 1672                 DELAY(10);
 1673 
 1674                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
 1675                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
 1676                         DELAY(5);
 1677                         break;
 1678                 }
 1679         }
 1680 
 1681         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
 1682                 BCE_PRINTF("%s(%d): PHY write timeout!\n",
 1683                     __FILE__, __LINE__);
 1684 
 1685         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
 1686                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1687                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
 1688 
 1689                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
 1690                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
 1691 
 1692                 DELAY(40);
 1693         }
 1694 
 1695         return 0;
 1696 }
 1697 
 1698 
 1699 /****************************************************************************/
 1700 /* MII bus status change.                                                   */
 1701 /*                                                                          */
 1702 /* Called by the MII bus driver when the PHY establishes link to set the    */
 1703 /* MAC interface registers.                                                 */
 1704 /*                                                                          */
 1705 /* Returns:                                                                 */
 1706 /*   Nothing.                                                               */
 1707 /****************************************************************************/
 1708 static void
 1709 bce_miibus_statchg(device_t dev)
 1710 {
 1711         struct bce_softc *sc;
 1712         struct mii_data *mii;
 1713         int val;
 1714 
 1715         sc = device_get_softc(dev);
 1716 
 1717         DBENTER(BCE_VERBOSE_PHY);
 1718 
 1719         mii = device_get_softc(sc->bce_miibus);
 1720 
 1721         val = REG_RD(sc, BCE_EMAC_MODE);
 1722         val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
 1723             BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
 1724             BCE_EMAC_MODE_25G);
 1725 
 1726         /* Set MII or GMII interface based on the PHY speed. */
 1727         switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1728         case IFM_10_T:
 1729                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
 1730                         DBPRINT(sc, BCE_INFO_PHY,
 1731                             "Enabling 10Mb interface.\n");
 1732                         val |= BCE_EMAC_MODE_PORT_MII_10;
 1733                         break;
 1734                 }
 1735                 /* fall-through */
 1736         case IFM_100_TX:
 1737                 DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
 1738                 val |= BCE_EMAC_MODE_PORT_MII;
 1739                 break;
 1740         case IFM_2500_SX:
 1741                 DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
 1742                 val |= BCE_EMAC_MODE_25G;
 1743                 /* fall-through */
 1744         case IFM_1000_T:
 1745         case IFM_1000_SX:
 1746                 DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
 1747                 val |= BCE_EMAC_MODE_PORT_GMII;
 1748                 break;
 1749         default:
 1750                 DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
 1751                     "default GMII interface.\n");
 1752                 val |= BCE_EMAC_MODE_PORT_GMII;
 1753         }
 1754 
 1755         /* Set half or full duplex based on PHY settings. */
 1756         if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
 1757                 DBPRINT(sc, BCE_INFO_PHY,
 1758                     "Setting Half-Duplex interface.\n");
 1759                 val |= BCE_EMAC_MODE_HALF_DUPLEX;
 1760         } else
 1761                 DBPRINT(sc, BCE_INFO_PHY,
 1762                     "Setting Full-Duplex interface.\n");
 1763 
 1764         REG_WR(sc, BCE_EMAC_MODE, val);
 1765 
 1766         if ((mii->mii_media_active & IFM_ETH_RXPAUSE) != 0) {
 1767                 DBPRINT(sc, BCE_INFO_PHY,
 1768                     "%s(): Enabling RX flow control.\n", __FUNCTION__);
 1769                 BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
 1770         } else {
 1771                 DBPRINT(sc, BCE_INFO_PHY,
 1772                     "%s(): Disabling RX flow control.\n", __FUNCTION__);
 1773                 BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
 1774         }
 1775 
 1776         if ((mii->mii_media_active & IFM_ETH_TXPAUSE) != 0) {
 1777                 DBPRINT(sc, BCE_INFO_PHY,
 1778                     "%s(): Enabling TX flow control.\n", __FUNCTION__);
 1779                 BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
 1780                 sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
 1781         } else {
 1782                 DBPRINT(sc, BCE_INFO_PHY,
 1783                     "%s(): Disabling TX flow control.\n", __FUNCTION__);
 1784                 BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
 1785                 sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
 1786         }
 1787 
 1788         /* ToDo: Update watermarks in bce_init_rx_context(). */
 1789 
 1790         DBEXIT(BCE_VERBOSE_PHY);
 1791 }
 1792 
 1793 
 1794 /****************************************************************************/
 1795 /* Acquire NVRAM lock.                                                      */
 1796 /*                                                                          */
 1797 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
 1798 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
 1799 /* for use by the driver.                                                   */
 1800 /*                                                                          */
 1801 /* Returns:                                                                 */
 1802 /*   0 on success, positive value on failure.                               */
 1803 /****************************************************************************/
 1804 static int
 1805 bce_acquire_nvram_lock(struct bce_softc *sc)
 1806 {
 1807         u32 val;
 1808         int j, rc = 0;
 1809 
 1810         DBENTER(BCE_VERBOSE_NVRAM);
 1811 
 1812         /* Request access to the flash interface. */
 1813         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
 1814         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 1815                 val = REG_RD(sc, BCE_NVM_SW_ARB);
 1816                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
 1817                         break;
 1818 
 1819                 DELAY(5);
 1820         }
 1821 
 1822         if (j >= NVRAM_TIMEOUT_COUNT) {
 1823                 DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
 1824                 rc = EBUSY;
 1825         }
 1826 
 1827         DBEXIT(BCE_VERBOSE_NVRAM);
 1828         return (rc);
 1829 }
 1830 
 1831 
 1832 /****************************************************************************/
 1833 /* Release NVRAM lock.                                                      */
 1834 /*                                                                          */
 1835 /* When the caller is finished accessing NVRAM the lock must be released.   */
 1836 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
 1837 /* for use by the driver.                                                   */
 1838 /*                                                                          */
 1839 /* Returns:                                                                 */
 1840 /*   0 on success, positive value on failure.                               */
 1841 /****************************************************************************/
 1842 static int
 1843 bce_release_nvram_lock(struct bce_softc *sc)
 1844 {
 1845         u32 val;
 1846         int j, rc = 0;
 1847 
 1848         DBENTER(BCE_VERBOSE_NVRAM);
 1849 
 1850         /*
 1851          * Relinquish nvram interface.
 1852          */
 1853         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
 1854 
 1855         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 1856                 val = REG_RD(sc, BCE_NVM_SW_ARB);
 1857                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
 1858                         break;
 1859 
 1860                 DELAY(5);
 1861         }
 1862 
 1863         if (j >= NVRAM_TIMEOUT_COUNT) {
 1864                 DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
 1865                 rc = EBUSY;
 1866         }
 1867 
 1868         DBEXIT(BCE_VERBOSE_NVRAM);
 1869         return (rc);
 1870 }
 1871 
 1872 
 1873 #ifdef BCE_NVRAM_WRITE_SUPPORT
 1874 /****************************************************************************/
 1875 /* Enable NVRAM write access.                                               */
 1876 /*                                                                          */
 1877 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
 1878 /*                                                                          */
 1879 /* Returns:                                                                 */
 1880 /*   0 on success, positive value on failure.                               */
 1881 /****************************************************************************/
 1882 static int
 1883 bce_enable_nvram_write(struct bce_softc *sc)
 1884 {
 1885         u32 val;
 1886         int rc = 0;
 1887 
 1888         DBENTER(BCE_VERBOSE_NVRAM);
 1889 
 1890         val = REG_RD(sc, BCE_MISC_CFG);
 1891         REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
 1892 
 1893         if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 1894                 int j;
 1895 
 1896                 REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 1897                 REG_WR(sc, BCE_NVM_COMMAND,     BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
 1898 
 1899                 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 1900                         DELAY(5);
 1901 
 1902                         val = REG_RD(sc, BCE_NVM_COMMAND);
 1903                         if (val & BCE_NVM_COMMAND_DONE)
 1904                                 break;
 1905                 }
 1906 
 1907                 if (j >= NVRAM_TIMEOUT_COUNT) {
 1908                         DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
 1909                         rc = EBUSY;
 1910                 }
 1911         }
 1912 
 1913         DBENTER(BCE_VERBOSE_NVRAM);
 1914         return (rc);
 1915 }
 1916 
 1917 
 1918 /****************************************************************************/
 1919 /* Disable NVRAM write access.                                              */
 1920 /*                                                                          */
 1921 /* When the caller is finished writing to NVRAM write access must be        */
 1922 /* disabled.                                                                */
 1923 /*                                                                          */
 1924 /* Returns:                                                                 */
 1925 /*   Nothing.                                                               */
 1926 /****************************************************************************/
 1927 static void
 1928 bce_disable_nvram_write(struct bce_softc *sc)
 1929 {
 1930         u32 val;
 1931 
 1932         DBENTER(BCE_VERBOSE_NVRAM);
 1933 
 1934         val = REG_RD(sc, BCE_MISC_CFG);
 1935         REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
 1936 
 1937         DBEXIT(BCE_VERBOSE_NVRAM);
 1938 
 1939 }
 1940 #endif
 1941 
 1942 
 1943 /****************************************************************************/
 1944 /* Enable NVRAM access.                                                     */
 1945 /*                                                                          */
 1946 /* Before accessing NVRAM for read or write operations the caller must      */
 1947 /* enabled NVRAM access.                                                    */
 1948 /*                                                                          */
 1949 /* Returns:                                                                 */
 1950 /*   Nothing.                                                               */
 1951 /****************************************************************************/
 1952 static void
 1953 bce_enable_nvram_access(struct bce_softc *sc)
 1954 {
 1955         u32 val;
 1956 
 1957         DBENTER(BCE_VERBOSE_NVRAM);
 1958 
 1959         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
 1960         /* Enable both bits, even on read. */
 1961         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
 1962             BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
 1963 
 1964         DBEXIT(BCE_VERBOSE_NVRAM);
 1965 }
 1966 
 1967 
 1968 /****************************************************************************/
 1969 /* Disable NVRAM access.                                                    */
 1970 /*                                                                          */
 1971 /* When the caller is finished accessing NVRAM access must be disabled.     */
 1972 /*                                                                          */
 1973 /* Returns:                                                                 */
 1974 /*   Nothing.                                                               */
 1975 /****************************************************************************/
 1976 static void
 1977 bce_disable_nvram_access(struct bce_softc *sc)
 1978 {
 1979         u32 val;
 1980 
 1981         DBENTER(BCE_VERBOSE_NVRAM);
 1982 
 1983         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
 1984 
 1985         /* Disable both bits, even after read. */
 1986         REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
 1987             ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
 1988 
 1989         DBEXIT(BCE_VERBOSE_NVRAM);
 1990 }
 1991 
 1992 
 1993 #ifdef BCE_NVRAM_WRITE_SUPPORT
 1994 /****************************************************************************/
 1995 /* Erase NVRAM page before writing.                                         */
 1996 /*                                                                          */
 1997 /* Non-buffered flash parts require that a page be erased before it is      */
 1998 /* written.                                                                 */
 1999 /*                                                                          */
 2000 /* Returns:                                                                 */
 2001 /*   0 on success, positive value on failure.                               */
 2002 /****************************************************************************/
 2003 static int
 2004 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
 2005 {
 2006         u32 cmd;
 2007         int j, rc = 0;
 2008 
 2009         DBENTER(BCE_VERBOSE_NVRAM);
 2010 
 2011         /* Buffered flash doesn't require an erase. */
 2012         if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
 2013                 goto bce_nvram_erase_page_exit;
 2014 
 2015         /* Build an erase command. */
 2016         cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
 2017             BCE_NVM_COMMAND_DOIT;
 2018 
 2019         /*
 2020          * Clear the DONE bit separately, set the NVRAM adress to erase,
 2021          * and issue the erase command.
 2022          */
 2023         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2024         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
 2025         REG_WR(sc, BCE_NVM_COMMAND, cmd);
 2026 
 2027         /* Wait for completion. */
 2028         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2029                 u32 val;
 2030 
 2031                 DELAY(5);
 2032 
 2033                 val = REG_RD(sc, BCE_NVM_COMMAND);
 2034                 if (val & BCE_NVM_COMMAND_DONE)
 2035                         break;
 2036         }
 2037 
 2038         if (j >= NVRAM_TIMEOUT_COUNT) {
 2039                 DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
 2040                 rc = EBUSY;
 2041         }
 2042 
 2043 bce_nvram_erase_page_exit:
 2044         DBEXIT(BCE_VERBOSE_NVRAM);
 2045         return (rc);
 2046 }
 2047 #endif /* BCE_NVRAM_WRITE_SUPPORT */
 2048 
 2049 
 2050 /****************************************************************************/
 2051 /* Read a dword (32 bits) from NVRAM.                                       */
 2052 /*                                                                          */
 2053 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
 2054 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
 2055 /*                                                                          */
 2056 /* Returns:                                                                 */
 2057 /*   0 on success and the 32 bit value read, positive value on failure.     */
 2058 /****************************************************************************/
 2059 static int
 2060 bce_nvram_read_dword(struct bce_softc *sc,
 2061     u32 offset, u8 *ret_val, u32 cmd_flags)
 2062 {
 2063         u32 cmd;
 2064         int i, rc = 0;
 2065 
 2066         DBENTER(BCE_EXTREME_NVRAM);
 2067 
 2068         /* Build the command word. */
 2069         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
 2070 
 2071         /* Calculate the offset for buffered flash if translation is used. */
 2072         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
 2073                 offset = ((offset / sc->bce_flash_info->page_size) <<
 2074                     sc->bce_flash_info->page_bits) +
 2075                     (offset % sc->bce_flash_info->page_size);
 2076         }
 2077 
 2078         /*
 2079          * Clear the DONE bit separately, set the address to read,
 2080          * and issue the read.
 2081          */
 2082         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2083         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
 2084         REG_WR(sc, BCE_NVM_COMMAND, cmd);
 2085 
 2086         /* Wait for completion. */
 2087         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
 2088                 u32 val;
 2089 
 2090                 DELAY(5);
 2091 
 2092                 val = REG_RD(sc, BCE_NVM_COMMAND);
 2093                 if (val & BCE_NVM_COMMAND_DONE) {
 2094                         val = REG_RD(sc, BCE_NVM_READ);
 2095 
 2096                         val = bce_be32toh(val);
 2097                         memcpy(ret_val, &val, 4);
 2098                         break;
 2099                 }
 2100         }
 2101 
 2102         /* Check for errors. */
 2103         if (i >= NVRAM_TIMEOUT_COUNT) {
 2104                 BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
 2105                     "offset 0x%08X!\n", __FILE__, __LINE__, offset);
 2106                 rc = EBUSY;
 2107         }
 2108 
 2109         DBEXIT(BCE_EXTREME_NVRAM);
 2110         return(rc);
 2111 }
 2112 
 2113 
 2114 #ifdef BCE_NVRAM_WRITE_SUPPORT
 2115 /****************************************************************************/
 2116 /* Write a dword (32 bits) to NVRAM.                                        */
 2117 /*                                                                          */
 2118 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
 2119 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
 2120 /* enabled NVRAM write access.                                              */
 2121 /*                                                                          */
 2122 /* Returns:                                                                 */
 2123 /*   0 on success, positive value on failure.                               */
 2124 /****************************************************************************/
 2125 static int
 2126 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
 2127         u32 cmd_flags)
 2128 {
 2129         u32 cmd, val32;
 2130         int j, rc = 0;
 2131 
 2132         DBENTER(BCE_VERBOSE_NVRAM);
 2133 
 2134         /* Build the command word. */
 2135         cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
 2136 
 2137         /* Calculate the offset for buffered flash if translation is used. */
 2138         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
 2139                 offset = ((offset / sc->bce_flash_info->page_size) <<
 2140                     sc->bce_flash_info->page_bits) +
 2141                     (offset % sc->bce_flash_info->page_size);
 2142         }
 2143 
 2144         /*
 2145          * Clear the DONE bit separately, convert NVRAM data to big-endian,
 2146          * set the NVRAM address to write, and issue the write command
 2147          */
 2148         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
 2149         memcpy(&val32, val, 4);
 2150         val32 = htobe32(val32);
 2151         REG_WR(sc, BCE_NVM_WRITE, val32);
 2152         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
 2153         REG_WR(sc, BCE_NVM_COMMAND, cmd);
 2154 
 2155         /* Wait for completion. */
 2156         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
 2157                 DELAY(5);
 2158 
 2159                 if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
 2160                         break;
 2161         }
 2162         if (j >= NVRAM_TIMEOUT_COUNT) {
 2163                 BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
 2164                     "offset 0x%08X\n", __FILE__, __LINE__, offset);
 2165                 rc = EBUSY;
 2166         }
 2167 
 2168         DBEXIT(BCE_VERBOSE_NVRAM);
 2169         return (rc);
 2170 }
 2171 #endif /* BCE_NVRAM_WRITE_SUPPORT */
 2172 
 2173 
 2174 /****************************************************************************/
 2175 /* Initialize NVRAM access.                                                 */
 2176 /*                                                                          */
 2177 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
 2178 /* access that device.                                                      */
 2179 /*                                                                          */
 2180 /* Returns:                                                                 */
 2181 /*   0 on success, positive value on failure.                               */
 2182 /****************************************************************************/
 2183 static int
 2184 bce_init_nvram(struct bce_softc *sc)
 2185 {
 2186         u32 val;
 2187         int j, entry_count, rc = 0;
 2188         struct flash_spec *flash;
 2189 
 2190         DBENTER(BCE_VERBOSE_NVRAM);
 2191 
 2192         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 2193                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 2194                 sc->bce_flash_info = &flash_5709;
 2195                 goto bce_init_nvram_get_flash_size;
 2196         }
 2197 
 2198         /* Determine the selected interface. */
 2199         val = REG_RD(sc, BCE_NVM_CFG1);
 2200 
 2201         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
 2202 
 2203         /*
 2204          * Flash reconfiguration is required to support additional
 2205          * NVRAM devices not directly supported in hardware.
 2206          * Check if the flash interface was reconfigured
 2207          * by the bootcode.
 2208          */
 2209 
 2210         if (val & 0x40000000) {
 2211                 /* Flash interface reconfigured by bootcode. */
 2212 
 2213                 DBPRINT(sc,BCE_INFO_LOAD,
 2214                         "bce_init_nvram(): Flash WAS reconfigured.\n");
 2215 
 2216                 for (j = 0, flash = &flash_table[0]; j < entry_count;
 2217                      j++, flash++) {
 2218                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
 2219                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
 2220                                 sc->bce_flash_info = flash;
 2221                                 break;
 2222                         }
 2223                 }
 2224         } else {
 2225                 /* Flash interface not yet reconfigured. */
 2226                 u32 mask;
 2227 
 2228                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
 2229                         __FUNCTION__);
 2230 
 2231                 if (val & (1 << 23))
 2232                         mask = FLASH_BACKUP_STRAP_MASK;
 2233                 else
 2234                         mask = FLASH_STRAP_MASK;
 2235 
 2236                 /* Look for the matching NVRAM device configuration data. */
 2237                 for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
 2238 
 2239                         /* Check if the device matches any of the known devices. */
 2240                         if ((val & mask) == (flash->strapping & mask)) {
 2241                                 /* Found a device match. */
 2242                                 sc->bce_flash_info = flash;
 2243 
 2244                                 /* Request access to the flash interface. */
 2245                                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
 2246                                         return rc;
 2247 
 2248                                 /* Reconfigure the flash interface. */
 2249                                 bce_enable_nvram_access(sc);
 2250                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
 2251                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
 2252                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
 2253                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
 2254                                 bce_disable_nvram_access(sc);
 2255                                 bce_release_nvram_lock(sc);
 2256 
 2257                                 break;
 2258                         }
 2259                 }
 2260         }
 2261 
 2262         /* Check if a matching device was found. */
 2263         if (j == entry_count) {
 2264                 sc->bce_flash_info = NULL;
 2265                 BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
 2266                     __FILE__, __LINE__);
 2267                 DBEXIT(BCE_VERBOSE_NVRAM);
 2268                 return (ENODEV);
 2269         }
 2270 
 2271 bce_init_nvram_get_flash_size:
 2272         /* Write the flash config data to the shared memory interface. */
 2273         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
 2274         val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
 2275         if (val)
 2276                 sc->bce_flash_size = val;
 2277         else
 2278                 sc->bce_flash_size = sc->bce_flash_info->total_size;
 2279 
 2280         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
 2281             __FUNCTION__, sc->bce_flash_info->name,
 2282             sc->bce_flash_info->total_size);
 2283 
 2284         DBEXIT(BCE_VERBOSE_NVRAM);
 2285         return rc;
 2286 }
 2287 
 2288 
 2289 /****************************************************************************/
 2290 /* Read an arbitrary range of data from NVRAM.                              */
 2291 /*                                                                          */
 2292 /* Prepares the NVRAM interface for access and reads the requested data     */
 2293 /* into the supplied buffer.                                                */
 2294 /*                                                                          */
 2295 /* Returns:                                                                 */
 2296 /*   0 on success and the data read, positive value on failure.             */
 2297 /****************************************************************************/
 2298 static int
 2299 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
 2300         int buf_size)
 2301 {
 2302         int rc = 0;
 2303         u32 cmd_flags, offset32, len32, extra;
 2304 
 2305         DBENTER(BCE_VERBOSE_NVRAM);
 2306 
 2307         if (buf_size == 0)
 2308                 goto bce_nvram_read_exit;
 2309 
 2310         /* Request access to the flash interface. */
 2311         if ((rc = bce_acquire_nvram_lock(sc)) != 0)
 2312                 goto bce_nvram_read_exit;
 2313 
 2314         /* Enable access to flash interface */
 2315         bce_enable_nvram_access(sc);
 2316 
 2317         len32 = buf_size;
 2318         offset32 = offset;
 2319         extra = 0;
 2320 
 2321         cmd_flags = 0;
 2322 
 2323         if (offset32 & 3) {
 2324                 u8 buf[4];
 2325                 u32 pre_len;
 2326 
 2327                 offset32 &= ~3;
 2328                 pre_len = 4 - (offset & 3);
 2329 
 2330                 if (pre_len >= len32) {
 2331                         pre_len = len32;
 2332                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
 2333                 }
 2334                 else {
 2335                         cmd_flags = BCE_NVM_COMMAND_FIRST;
 2336                 }
 2337 
 2338                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
 2339 
 2340                 if (rc)
 2341                         return rc;
 2342 
 2343                 memcpy(ret_buf, buf + (offset & 3), pre_len);
 2344 
 2345                 offset32 += 4;
 2346                 ret_buf += pre_len;
 2347                 len32 -= pre_len;
 2348         }
 2349 
 2350         if (len32 & 3) {
 2351                 extra = 4 - (len32 & 3);
 2352                 len32 = (len32 + 4) & ~3;
 2353         }
 2354 
 2355         if (len32 == 4) {
 2356                 u8 buf[4];
 2357 
 2358                 if (cmd_flags)
 2359                         cmd_flags = BCE_NVM_COMMAND_LAST;
 2360                 else
 2361                         cmd_flags = BCE_NVM_COMMAND_FIRST |
 2362                                     BCE_NVM_COMMAND_LAST;
 2363 
 2364                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
 2365 
 2366                 memcpy(ret_buf, buf, 4 - extra);
 2367         }
 2368         else if (len32 > 0) {
 2369                 u8 buf[4];
 2370 
 2371                 /* Read the first word. */
 2372                 if (cmd_flags)
 2373                         cmd_flags = 0;
 2374                 else
 2375                         cmd_flags = BCE_NVM_COMMAND_FIRST;
 2376 
 2377                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
 2378 
 2379                 /* Advance to the next dword. */
 2380                 offset32 += 4;
 2381                 ret_buf += 4;
 2382                 len32 -= 4;
 2383 
 2384                 while (len32 > 4 && rc == 0) {
 2385                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
 2386 
 2387                         /* Advance to the next dword. */
 2388                         offset32 += 4;
 2389                         ret_buf += 4;
 2390                         len32 -= 4;
 2391                 }
 2392 
 2393                 if (rc)
 2394                         goto bce_nvram_read_locked_exit;
 2395 
 2396                 cmd_flags = BCE_NVM_COMMAND_LAST;
 2397                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
 2398 
 2399                 memcpy(ret_buf, buf, 4 - extra);
 2400         }
 2401 
 2402 bce_nvram_read_locked_exit:
 2403         /* Disable access to flash interface and release the lock. */
 2404         bce_disable_nvram_access(sc);
 2405         bce_release_nvram_lock(sc);
 2406 
 2407 bce_nvram_read_exit:
 2408         DBEXIT(BCE_VERBOSE_NVRAM);
 2409         return rc;
 2410 }
 2411 
 2412 
 2413 #ifdef BCE_NVRAM_WRITE_SUPPORT
 2414 /****************************************************************************/
 2415 /* Write an arbitrary range of data from NVRAM.                             */
 2416 /*                                                                          */
 2417 /* Prepares the NVRAM interface for write access and writes the requested   */
 2418 /* data from the supplied buffer.  The caller is responsible for            */
 2419 /* calculating any appropriate CRCs.                                        */
 2420 /*                                                                          */
 2421 /* Returns:                                                                 */
 2422 /*   0 on success, positive value on failure.                               */
 2423 /****************************************************************************/
 2424 static int
 2425 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
 2426         int buf_size)
 2427 {
 2428         u32 written, offset32, len32;
 2429         u8 *buf, start[4], end[4];
 2430         int rc = 0;
 2431         int align_start, align_end;
 2432 
 2433         DBENTER(BCE_VERBOSE_NVRAM);
 2434 
 2435         buf = data_buf;
 2436         offset32 = offset;
 2437         len32 = buf_size;
 2438         align_start = align_end = 0;
 2439 
 2440         if ((align_start = (offset32 & 3))) {
 2441                 offset32 &= ~3;
 2442                 len32 += align_start;
 2443                 if ((rc = bce_nvram_read(sc, offset32, start, 4)))
 2444                         goto bce_nvram_write_exit;
 2445         }
 2446 
 2447         if (len32 & 3) {
 2448                 if ((len32 > 4) || !align_start) {
 2449                         align_end = 4 - (len32 & 3);
 2450                         len32 += align_end;
 2451                         if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
 2452                                 end, 4))) {
 2453                                 goto bce_nvram_write_exit;
 2454                         }
 2455                 }
 2456         }
 2457 
 2458         if (align_start || align_end) {
 2459                 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
 2460                 if (buf == 0) {
 2461                         rc = ENOMEM;
 2462                         goto bce_nvram_write_exit;
 2463                 }
 2464 
 2465                 if (align_start) {
 2466                         memcpy(buf, start, 4);
 2467                 }
 2468 
 2469                 if (align_end) {
 2470                         memcpy(buf + len32 - 4, end, 4);
 2471                 }
 2472                 memcpy(buf + align_start, data_buf, buf_size);
 2473         }
 2474 
 2475         written = 0;
 2476         while ((written < len32) && (rc == 0)) {
 2477                 u32 page_start, page_end, data_start, data_end;
 2478                 u32 addr, cmd_flags;
 2479                 int i;
 2480                 u8 flash_buffer[264];
 2481 
 2482             /* Find the page_start addr */
 2483                 page_start = offset32 + written;
 2484                 page_start -= (page_start % sc->bce_flash_info->page_size);
 2485                 /* Find the page_end addr */
 2486                 page_end = page_start + sc->bce_flash_info->page_size;
 2487                 /* Find the data_start addr */
 2488                 data_start = (written == 0) ? offset32 : page_start;
 2489                 /* Find the data_end addr */
 2490                 data_end = (page_end > offset32 + len32) ?
 2491                         (offset32 + len32) : page_end;
 2492 
 2493                 /* Request access to the flash interface. */
 2494                 if ((rc = bce_acquire_nvram_lock(sc)) != 0)
 2495                         goto bce_nvram_write_exit;
 2496 
 2497                 /* Enable access to flash interface */
 2498                 bce_enable_nvram_access(sc);
 2499 
 2500                 cmd_flags = BCE_NVM_COMMAND_FIRST;
 2501                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2502                         int j;
 2503 
 2504                         /* Read the whole page into the buffer
 2505                          * (non-buffer flash only) */
 2506                         for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
 2507                                 if (j == (sc->bce_flash_info->page_size - 4)) {
 2508                                         cmd_flags |= BCE_NVM_COMMAND_LAST;
 2509                                 }
 2510                                 rc = bce_nvram_read_dword(sc,
 2511                                         page_start + j,
 2512                                         &flash_buffer[j],
 2513                                         cmd_flags);
 2514 
 2515                                 if (rc)
 2516                                         goto bce_nvram_write_locked_exit;
 2517 
 2518                                 cmd_flags = 0;
 2519                         }
 2520                 }
 2521 
 2522                 /* Enable writes to flash interface (unlock write-protect) */
 2523                 if ((rc = bce_enable_nvram_write(sc)) != 0)
 2524                         goto bce_nvram_write_locked_exit;
 2525 
 2526                 /* Erase the page */
 2527                 if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
 2528                         goto bce_nvram_write_locked_exit;
 2529 
 2530                 /* Re-enable the write again for the actual write */
 2531                 bce_enable_nvram_write(sc);
 2532 
 2533                 /* Loop to write back the buffer data from page_start to
 2534                  * data_start */
 2535                 i = 0;
 2536                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2537                         for (addr = page_start; addr < data_start;
 2538                                 addr += 4, i += 4) {
 2539 
 2540                                 rc = bce_nvram_write_dword(sc, addr,
 2541                                         &flash_buffer[i], cmd_flags);
 2542 
 2543                                 if (rc != 0)
 2544                                         goto bce_nvram_write_locked_exit;
 2545 
 2546                                 cmd_flags = 0;
 2547                         }
 2548                 }
 2549 
 2550                 /* Loop to write the new data from data_start to data_end */
 2551                 for (addr = data_start; addr < data_end; addr += 4, i++) {
 2552                         if ((addr == page_end - 4) ||
 2553                                 ((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
 2554                                 (addr == data_end - 4))) {
 2555 
 2556                                 cmd_flags |= BCE_NVM_COMMAND_LAST;
 2557                         }
 2558                         rc = bce_nvram_write_dword(sc, addr, buf,
 2559                                 cmd_flags);
 2560 
 2561                         if (rc != 0)
 2562                                 goto bce_nvram_write_locked_exit;
 2563 
 2564                         cmd_flags = 0;
 2565                         buf += 4;
 2566                 }
 2567 
 2568                 /* Loop to write back the buffer data from data_end
 2569                  * to page_end */
 2570                 if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
 2571                         for (addr = data_end; addr < page_end;
 2572                                 addr += 4, i += 4) {
 2573 
 2574                                 if (addr == page_end-4) {
 2575                                         cmd_flags = BCE_NVM_COMMAND_LAST;
 2576                                 }
 2577                                 rc = bce_nvram_write_dword(sc, addr,
 2578                                         &flash_buffer[i], cmd_flags);
 2579 
 2580                                 if (rc != 0)
 2581                                         goto bce_nvram_write_locked_exit;
 2582 
 2583                                 cmd_flags = 0;
 2584                         }
 2585                 }
 2586 
 2587                 /* Disable writes to flash interface (lock write-protect) */
 2588                 bce_disable_nvram_write(sc);
 2589 
 2590                 /* Disable access to flash interface */
 2591                 bce_disable_nvram_access(sc);
 2592                 bce_release_nvram_lock(sc);
 2593 
 2594                 /* Increment written */
 2595                 written += data_end - data_start;
 2596         }
 2597 
 2598         goto bce_nvram_write_exit;
 2599 
 2600 bce_nvram_write_locked_exit:
 2601                 bce_disable_nvram_write(sc);
 2602                 bce_disable_nvram_access(sc);
 2603                 bce_release_nvram_lock(sc);
 2604 
 2605 bce_nvram_write_exit:
 2606         if (align_start || align_end)
 2607                 free(buf, M_DEVBUF);
 2608 
 2609         DBEXIT(BCE_VERBOSE_NVRAM);
 2610         return (rc);
 2611 }
 2612 #endif /* BCE_NVRAM_WRITE_SUPPORT */
 2613 
 2614 
 2615 /****************************************************************************/
 2616 /* Verifies that NVRAM is accessible and contains valid data.               */
 2617 /*                                                                          */
 2618 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
 2619 /* correct.                                                                 */
 2620 /*                                                                          */
 2621 /* Returns:                                                                 */
 2622 /*   0 on success, positive value on failure.                               */
 2623 /****************************************************************************/
 2624 static int
 2625 bce_nvram_test(struct bce_softc *sc)
 2626 {
 2627         u32 buf[BCE_NVRAM_SIZE / 4];
 2628         u8 *data = (u8 *) buf;
 2629         int rc = 0;
 2630         u32 magic, csum;
 2631 
 2632         DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 2633 
 2634         /*
 2635          * Check that the device NVRAM is valid by reading
 2636          * the magic value at offset 0.
 2637          */
 2638         if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
 2639                 BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
 2640                     __FILE__, __LINE__);
 2641                 goto bce_nvram_test_exit;
 2642         }
 2643 
 2644         /*
 2645          * Verify that offset 0 of the NVRAM contains
 2646          * a valid magic number.
 2647          */
 2648     magic = bce_be32toh(buf[0]);
 2649         if (magic != BCE_NVRAM_MAGIC) {
 2650                 rc = ENODEV;
 2651                 BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
 2652                     "Expected: 0x%08X, Found: 0x%08X\n",
 2653                     __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
 2654                 goto bce_nvram_test_exit;
 2655         }
 2656 
 2657         /*
 2658          * Verify that the device NVRAM includes valid
 2659          * configuration data.
 2660          */
 2661         if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
 2662                 BCE_PRINTF("%s(%d): Unable to read manufacturing "
 2663                     "Information from  NVRAM!\n", __FILE__, __LINE__);
 2664                 goto bce_nvram_test_exit;
 2665         }
 2666 
 2667         csum = ether_crc32_le(data, 0x100);
 2668         if (csum != BCE_CRC32_RESIDUAL) {
 2669                 rc = ENODEV;
 2670                 BCE_PRINTF("%s(%d): Invalid manufacturing information "
 2671                     "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
 2672                     __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
 2673                 goto bce_nvram_test_exit;
 2674         }
 2675 
 2676         csum = ether_crc32_le(data + 0x100, 0x100);
 2677         if (csum != BCE_CRC32_RESIDUAL) {
 2678                 rc = ENODEV;
 2679                 BCE_PRINTF("%s(%d): Invalid feature configuration "
 2680                     "information NVRAM CRC! Expected: 0x%08X, "
 2681                     "Found: 08%08X\n", __FILE__, __LINE__,
 2682                     BCE_CRC32_RESIDUAL, csum);
 2683         }
 2684 
 2685 bce_nvram_test_exit:
 2686         DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
 2687         return rc;
 2688 }
 2689 
 2690 
 2691 /****************************************************************************/
 2692 /* Identifies the current media type of the controller and sets the PHY     */
 2693 /* address.                                                                 */
 2694 /*                                                                          */
 2695 /* Returns:                                                                 */
 2696 /*   Nothing.                                                               */
 2697 /****************************************************************************/
 2698 static void
 2699 bce_get_media(struct bce_softc *sc)
 2700 {
 2701         u32 val;
 2702 
 2703         DBENTER(BCE_VERBOSE_PHY);
 2704 
 2705         /* Assume PHY address for copper controllers. */
 2706         sc->bce_phy_addr = 1;
 2707 
 2708         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
 2709                 u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
 2710                 u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
 2711                 u32 strap;
 2712 
 2713                 /*
 2714                  * The BCM5709S is software configurable
 2715                  * for Copper or SerDes operation.
 2716                  */
 2717                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
 2718                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
 2719                             "for copper.\n");
 2720                         goto bce_get_media_exit;
 2721                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
 2722                         DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
 2723                             "for dual media.\n");
 2724                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 2725                         goto bce_get_media_exit;
 2726                 }
 2727 
 2728                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
 2729                         strap = (val &
 2730                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
 2731                 else
 2732                         strap = (val &
 2733                             BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
 2734 
 2735                 if (pci_get_function(sc->bce_dev) == 0) {
 2736                         switch (strap) {
 2737                         case 0x4:
 2738                         case 0x5:
 2739                         case 0x6:
 2740                                 DBPRINT(sc, BCE_INFO_LOAD,
 2741                                     "BCM5709 s/w configured for SerDes.\n");
 2742                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 2743                                 break;
 2744                         default:
 2745                                 DBPRINT(sc, BCE_INFO_LOAD,
 2746                                     "BCM5709 s/w configured for Copper.\n");
 2747                                 break;
 2748                         }
 2749                 } else {
 2750                         switch (strap) {
 2751                         case 0x1:
 2752                         case 0x2:
 2753                         case 0x4:
 2754                                 DBPRINT(sc, BCE_INFO_LOAD,
 2755                                     "BCM5709 s/w configured for SerDes.\n");
 2756                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 2757                                 break;
 2758                         default:
 2759                                 DBPRINT(sc, BCE_INFO_LOAD,
 2760                                     "BCM5709 s/w configured for Copper.\n");
 2761                                 break;
 2762                         }
 2763                 }
 2764 
 2765         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
 2766                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
 2767 
 2768         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
 2769 
 2770                 sc->bce_flags |= BCE_NO_WOL_FLAG;
 2771 
 2772                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
 2773                         sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
 2774 
 2775                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
 2776                         /* 5708S/09S/16S use a separate PHY for SerDes. */
 2777                         sc->bce_phy_addr = 2;
 2778 
 2779                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
 2780                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
 2781                                 sc->bce_phy_flags |=
 2782                                     BCE_PHY_2_5G_CAPABLE_FLAG;
 2783                                 DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
 2784                                     "capable adapter\n");
 2785                         }
 2786                 }
 2787         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
 2788             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
 2789                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
 2790 
 2791 bce_get_media_exit:
 2792         DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
 2793                 "Using PHY address %d.\n", sc->bce_phy_addr);
 2794 
 2795         DBEXIT(BCE_VERBOSE_PHY);
 2796 }
 2797 
 2798 
 2799 /****************************************************************************/
 2800 /* Performs PHY initialization required before MII drivers access the       */
 2801 /* device.                                                                  */
 2802 /*                                                                          */
 2803 /* Returns:                                                                 */
 2804 /*   Nothing.                                                               */
 2805 /****************************************************************************/
 2806 static void
 2807 bce_init_media(struct bce_softc *sc)
 2808 {
 2809         if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
 2810                 /*
 2811                  * Configure 5709S/5716S PHYs to use traditional IEEE
 2812                  * Clause 22 method. Otherwise we have no way to attach
 2813                  * the PHY in mii(4) layer. PHY specific configuration
 2814                  * is done in mii layer.
 2815                  */
 2816 
 2817                 /* Select auto-negotiation MMD of the PHY. */
 2818                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
 2819                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
 2820                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
 2821                     BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
 2822 
 2823                 /* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
 2824                 bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
 2825                     BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
 2826         }
 2827 }
 2828 
 2829 
 2830 /****************************************************************************/
 2831 /* Free any DMA memory owned by the driver.                                 */
 2832 /*                                                                          */
 2833 /* Scans through each data structre that requires DMA memory and frees      */
 2834 /* the memory if allocated.                                                 */
 2835 /*                                                                          */
 2836 /* Returns:                                                                 */
 2837 /*   Nothing.                                                               */
 2838 /****************************************************************************/
 2839 static void
 2840 bce_dma_free(struct bce_softc *sc)
 2841 {
 2842         int i;
 2843 
 2844         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
 2845 
 2846         /* Free, unmap, and destroy the status block. */
 2847         if (sc->status_block != NULL) {
 2848                 bus_dmamem_free(
 2849                    sc->status_tag,
 2850                     sc->status_block,
 2851                     sc->status_map);
 2852                 sc->status_block = NULL;
 2853         }
 2854 
 2855         if (sc->status_map != NULL) {
 2856                 bus_dmamap_unload(
 2857                     sc->status_tag,
 2858                     sc->status_map);
 2859                 bus_dmamap_destroy(sc->status_tag,
 2860                     sc->status_map);
 2861                 sc->status_map = NULL;
 2862         }
 2863 
 2864         if (sc->status_tag != NULL) {
 2865                 bus_dma_tag_destroy(sc->status_tag);
 2866                 sc->status_tag = NULL;
 2867         }
 2868 
 2869 
 2870         /* Free, unmap, and destroy the statistics block. */
 2871         if (sc->stats_block != NULL) {
 2872                 bus_dmamem_free(
 2873                     sc->stats_tag,
 2874                     sc->stats_block,
 2875                     sc->stats_map);
 2876                 sc->stats_block = NULL;
 2877         }
 2878 
 2879         if (sc->stats_map != NULL) {
 2880                 bus_dmamap_unload(
 2881                     sc->stats_tag,
 2882                     sc->stats_map);
 2883                 bus_dmamap_destroy(sc->stats_tag,
 2884                     sc->stats_map);
 2885                 sc->stats_map = NULL;
 2886         }
 2887 
 2888         if (sc->stats_tag != NULL) {
 2889                 bus_dma_tag_destroy(sc->stats_tag);
 2890                 sc->stats_tag = NULL;
 2891         }
 2892 
 2893 
 2894         /* Free, unmap and destroy all context memory pages. */
 2895         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 2896                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 2897                 for (i = 0; i < sc->ctx_pages; i++ ) {
 2898                         if (sc->ctx_block[i] != NULL) {
 2899                                 bus_dmamem_free(
 2900                                     sc->ctx_tag,
 2901                                     sc->ctx_block[i],
 2902                                     sc->ctx_map[i]);
 2903                                 sc->ctx_block[i] = NULL;
 2904                         }
 2905 
 2906                         if (sc->ctx_map[i] != NULL) {
 2907                                 bus_dmamap_unload(
 2908                                     sc->ctx_tag,
 2909                                     sc->ctx_map[i]);
 2910                                 bus_dmamap_destroy(
 2911                                     sc->ctx_tag,
 2912                                     sc->ctx_map[i]);
 2913                                 sc->ctx_map[i] = NULL;
 2914                         }
 2915                 }
 2916 
 2917                 /* Destroy the context memory tag. */
 2918                 if (sc->ctx_tag != NULL) {
 2919                         bus_dma_tag_destroy(sc->ctx_tag);
 2920                         sc->ctx_tag = NULL;
 2921                 }
 2922         }
 2923 
 2924 
 2925         /* Free, unmap and destroy all TX buffer descriptor chain pages. */
 2926         for (i = 0; i < TX_PAGES; i++ ) {
 2927                 if (sc->tx_bd_chain[i] != NULL) {
 2928                         bus_dmamem_free(
 2929                             sc->tx_bd_chain_tag,
 2930                             sc->tx_bd_chain[i],
 2931                             sc->tx_bd_chain_map[i]);
 2932                         sc->tx_bd_chain[i] = NULL;
 2933                 }
 2934 
 2935                 if (sc->tx_bd_chain_map[i] != NULL) {
 2936                         bus_dmamap_unload(
 2937                             sc->tx_bd_chain_tag,
 2938                             sc->tx_bd_chain_map[i]);
 2939                         bus_dmamap_destroy(
 2940                             sc->tx_bd_chain_tag,
 2941                             sc->tx_bd_chain_map[i]);
 2942                         sc->tx_bd_chain_map[i] = NULL;
 2943                 }
 2944         }
 2945 
 2946         /* Destroy the TX buffer descriptor tag. */
 2947         if (sc->tx_bd_chain_tag != NULL) {
 2948                 bus_dma_tag_destroy(sc->tx_bd_chain_tag);
 2949                 sc->tx_bd_chain_tag = NULL;
 2950         }
 2951 
 2952 
 2953         /* Free, unmap and destroy all RX buffer descriptor chain pages. */
 2954         for (i = 0; i < RX_PAGES; i++ ) {
 2955                 if (sc->rx_bd_chain[i] != NULL) {
 2956                         bus_dmamem_free(
 2957                             sc->rx_bd_chain_tag,
 2958                             sc->rx_bd_chain[i],
 2959                             sc->rx_bd_chain_map[i]);
 2960                         sc->rx_bd_chain[i] = NULL;
 2961                 }
 2962 
 2963                 if (sc->rx_bd_chain_map[i] != NULL) {
 2964                         bus_dmamap_unload(
 2965                             sc->rx_bd_chain_tag,
 2966                             sc->rx_bd_chain_map[i]);
 2967                         bus_dmamap_destroy(
 2968                             sc->rx_bd_chain_tag,
 2969                             sc->rx_bd_chain_map[i]);
 2970                         sc->rx_bd_chain_map[i] = NULL;
 2971                 }
 2972         }
 2973 
 2974         /* Destroy the RX buffer descriptor tag. */
 2975         if (sc->rx_bd_chain_tag != NULL) {
 2976                 bus_dma_tag_destroy(sc->rx_bd_chain_tag);
 2977                 sc->rx_bd_chain_tag = NULL;
 2978         }
 2979 
 2980 
 2981 #ifdef BCE_JUMBO_HDRSPLIT
 2982         /* Free, unmap and destroy all page buffer descriptor chain pages. */
 2983         for (i = 0; i < PG_PAGES; i++ ) {
 2984                 if (sc->pg_bd_chain[i] != NULL) {
 2985                         bus_dmamem_free(
 2986                             sc->pg_bd_chain_tag,
 2987                             sc->pg_bd_chain[i],
 2988                             sc->pg_bd_chain_map[i]);
 2989                         sc->pg_bd_chain[i] = NULL;
 2990                 }
 2991 
 2992                 if (sc->pg_bd_chain_map[i] != NULL) {
 2993                         bus_dmamap_unload(
 2994                             sc->pg_bd_chain_tag,
 2995                             sc->pg_bd_chain_map[i]);
 2996                         bus_dmamap_destroy(
 2997                             sc->pg_bd_chain_tag,
 2998                             sc->pg_bd_chain_map[i]);
 2999                         sc->pg_bd_chain_map[i] = NULL;
 3000                 }
 3001         }
 3002 
 3003         /* Destroy the page buffer descriptor tag. */
 3004         if (sc->pg_bd_chain_tag != NULL) {
 3005                 bus_dma_tag_destroy(sc->pg_bd_chain_tag);
 3006                 sc->pg_bd_chain_tag = NULL;
 3007         }
 3008 #endif
 3009 
 3010 
 3011         /* Unload and destroy the TX mbuf maps. */
 3012         for (i = 0; i < TOTAL_TX_BD; i++) {
 3013                 if (sc->tx_mbuf_map[i] != NULL) {
 3014                         bus_dmamap_unload(sc->tx_mbuf_tag,
 3015                             sc->tx_mbuf_map[i]);
 3016                         bus_dmamap_destroy(sc->tx_mbuf_tag,
 3017                             sc->tx_mbuf_map[i]);
 3018                         sc->tx_mbuf_map[i] = NULL;
 3019                 }
 3020         }
 3021 
 3022         /* Destroy the TX mbuf tag. */
 3023         if (sc->tx_mbuf_tag != NULL) {
 3024                 bus_dma_tag_destroy(sc->tx_mbuf_tag);
 3025                 sc->tx_mbuf_tag = NULL;
 3026         }
 3027 
 3028         /* Unload and destroy the RX mbuf maps. */
 3029         for (i = 0; i < TOTAL_RX_BD; i++) {
 3030                 if (sc->rx_mbuf_map[i] != NULL) {
 3031                         bus_dmamap_unload(sc->rx_mbuf_tag,
 3032                             sc->rx_mbuf_map[i]);
 3033                         bus_dmamap_destroy(sc->rx_mbuf_tag,
 3034                             sc->rx_mbuf_map[i]);
 3035                         sc->rx_mbuf_map[i] = NULL;
 3036                 }
 3037         }
 3038 
 3039         /* Destroy the RX mbuf tag. */
 3040         if (sc->rx_mbuf_tag != NULL) {
 3041                 bus_dma_tag_destroy(sc->rx_mbuf_tag);
 3042                 sc->rx_mbuf_tag = NULL;
 3043         }
 3044 
 3045 #ifdef BCE_JUMBO_HDRSPLIT
 3046         /* Unload and destroy the page mbuf maps. */
 3047         for (i = 0; i < TOTAL_PG_BD; i++) {
 3048                 if (sc->pg_mbuf_map[i] != NULL) {
 3049                         bus_dmamap_unload(sc->pg_mbuf_tag,
 3050                             sc->pg_mbuf_map[i]);
 3051                         bus_dmamap_destroy(sc->pg_mbuf_tag,
 3052                             sc->pg_mbuf_map[i]);
 3053                         sc->pg_mbuf_map[i] = NULL;
 3054                 }
 3055         }
 3056 
 3057         /* Destroy the page mbuf tag. */
 3058         if (sc->pg_mbuf_tag != NULL) {
 3059                 bus_dma_tag_destroy(sc->pg_mbuf_tag);
 3060                 sc->pg_mbuf_tag = NULL;
 3061         }
 3062 #endif
 3063 
 3064         /* Destroy the parent tag */
 3065         if (sc->parent_tag != NULL) {
 3066                 bus_dma_tag_destroy(sc->parent_tag);
 3067                 sc->parent_tag = NULL;
 3068         }
 3069 
 3070         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
 3071 }
 3072 
 3073 
 3074 /****************************************************************************/
 3075 /* Get DMA memory from the OS.                                              */
 3076 /*                                                                          */
 3077 /* Validates that the OS has provided DMA buffers in response to a          */
 3078 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
 3079 /* When the callback is used the OS will return 0 for the mapping function  */
 3080 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
 3081 /* failures back to the caller.                                             */
 3082 /*                                                                          */
 3083 /* Returns:                                                                 */
 3084 /*   Nothing.                                                               */
 3085 /****************************************************************************/
 3086 static void
 3087 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 3088 {
 3089         bus_addr_t *busaddr = arg;
 3090 
 3091         KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
 3092             __FUNCTION__, nseg));
 3093         /* Simulate a mapping failure. */
 3094         DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
 3095             error = ENOMEM);
 3096 
 3097         /* ToDo: How to increment debug sim_count variable here? */
 3098 
 3099         /* Check for an error and signal the caller that an error occurred. */
 3100         if (error) {
 3101                 *busaddr = 0;
 3102         } else {
 3103                 *busaddr = segs->ds_addr;
 3104         }
 3105 
 3106         return;
 3107 }
 3108 
 3109 
 3110 /****************************************************************************/
 3111 /* Allocate any DMA memory needed by the driver.                            */
 3112 /*                                                                          */
 3113 /* Allocates DMA memory needed for the various global structures needed by  */
 3114 /* hardware.                                                                */
 3115 /*                                                                          */
 3116 /* Memory alignment requirements:                                           */
 3117 /* +-----------------+----------+----------+----------+----------+          */
 3118 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
 3119 /* +-----------------+----------+----------+----------+----------+          */
 3120 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
 3121 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
 3122 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
 3123 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
 3124 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
 3125 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
 3126 /* |Context Memory   |          |          |          |          |          */
 3127 /* +-----------------+----------+----------+----------+----------+          */
 3128 /*                                                                          */
 3129 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
 3130 /*                                                                          */
 3131 /* Returns:                                                                 */
 3132 /*   0 for success, positive value for failure.                             */
 3133 /****************************************************************************/
 3134 static int
 3135 bce_dma_alloc(device_t dev)
 3136 {
 3137         struct bce_softc *sc;
 3138         int i, error, rc = 0;
 3139         bus_size_t max_size, max_seg_size;
 3140         int max_segments;
 3141 
 3142         sc = device_get_softc(dev);
 3143 
 3144         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 3145 
 3146         /*
 3147          * Allocate the parent bus DMA tag appropriate for PCI.
 3148          */
 3149         if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
 3150             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3151             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
 3152             &sc->parent_tag)) {
 3153                 BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
 3154                     __FILE__, __LINE__);
 3155                 rc = ENOMEM;
 3156                 goto bce_dma_alloc_exit;
 3157         }
 3158 
 3159         /*
 3160          * Create a DMA tag for the status block, allocate and clear the
 3161          * memory, map the memory into DMA space, and fetch the physical
 3162          * address of the block.
 3163          */
 3164         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
 3165             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
 3166             NULL, NULL, BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
 3167             0, NULL, NULL, &sc->status_tag)) {
 3168                 BCE_PRINTF("%s(%d): Could not allocate status block "
 3169                     "DMA tag!\n", __FILE__, __LINE__);
 3170                 rc = ENOMEM;
 3171                 goto bce_dma_alloc_exit;
 3172         }
 3173 
 3174         if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
 3175             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3176             &sc->status_map)) {
 3177                 BCE_PRINTF("%s(%d): Could not allocate status block "
 3178                     "DMA memory!\n", __FILE__, __LINE__);
 3179                 rc = ENOMEM;
 3180                 goto bce_dma_alloc_exit;
 3181         }
 3182 
 3183         error = bus_dmamap_load(sc->status_tag, sc->status_map,
 3184             sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
 3185             &sc->status_block_paddr, BUS_DMA_NOWAIT);
 3186 
 3187         if (error) {
 3188                 BCE_PRINTF("%s(%d): Could not map status block "
 3189                     "DMA memory!\n", __FILE__, __LINE__);
 3190                 rc = ENOMEM;
 3191                 goto bce_dma_alloc_exit;
 3192         }
 3193 
 3194         DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
 3195             __FUNCTION__, (uintmax_t) sc->status_block_paddr);
 3196 
 3197         /*
 3198          * Create a DMA tag for the statistics block, allocate and clear the
 3199          * memory, map the memory into DMA space, and fetch the physical
 3200          * address of the block.
 3201          */
 3202         if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
 3203             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
 3204             NULL, NULL, BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
 3205             0, NULL, NULL, &sc->stats_tag)) {
 3206                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
 3207                     "DMA tag!\n", __FILE__, __LINE__);
 3208                 rc = ENOMEM;
 3209                 goto bce_dma_alloc_exit;
 3210         }
 3211 
 3212         if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
 3213             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
 3214                 BCE_PRINTF("%s(%d): Could not allocate statistics block "
 3215                     "DMA memory!\n", __FILE__, __LINE__);
 3216                 rc = ENOMEM;
 3217                 goto bce_dma_alloc_exit;
 3218         }
 3219 
 3220         error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
 3221             sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
 3222             &sc->stats_block_paddr, BUS_DMA_NOWAIT);
 3223 
 3224         if(error) {
 3225                 BCE_PRINTF("%s(%d): Could not map statistics block "
 3226                     "DMA memory!\n", __FILE__, __LINE__);
 3227                 rc = ENOMEM;
 3228                 goto bce_dma_alloc_exit;
 3229         }
 3230 
 3231         DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
 3232             __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
 3233 
 3234         /* BCM5709 uses host memory as cache for context memory. */
 3235         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 3236             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 3237                 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
 3238                 if (sc->ctx_pages == 0)
 3239                         sc->ctx_pages = 1;
 3240 
 3241                 DBRUNIF((sc->ctx_pages > 512),
 3242                     BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
 3243                     __FILE__, __LINE__, sc->ctx_pages));
 3244 
 3245                 /*
 3246                  * Create a DMA tag for the context pages,
 3247                  * allocate and clear the memory, map the
 3248                  * memory into DMA space, and fetch the
 3249                  * physical address of the block.
 3250                  */
 3251                 if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
 3252                     BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR,
 3253                     NULL, NULL, BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
 3254                     0, NULL, NULL, &sc->ctx_tag)) {
 3255                         BCE_PRINTF("%s(%d): Could not allocate CTX "
 3256                             "DMA tag!\n", __FILE__, __LINE__);
 3257                         rc = ENOMEM;
 3258                         goto bce_dma_alloc_exit;
 3259                 }
 3260 
 3261                 for (i = 0; i < sc->ctx_pages; i++) {
 3262 
 3263                         if(bus_dmamem_alloc(sc->ctx_tag,
 3264                             (void **)&sc->ctx_block[i],
 3265                             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3266                             &sc->ctx_map[i])) {
 3267                                 BCE_PRINTF("%s(%d): Could not allocate CTX "
 3268                                     "DMA memory!\n", __FILE__, __LINE__);
 3269                                 rc = ENOMEM;
 3270                                 goto bce_dma_alloc_exit;
 3271                         }
 3272 
 3273                         error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
 3274                             sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
 3275                             &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
 3276 
 3277                         if (error) {
 3278                                 BCE_PRINTF("%s(%d): Could not map CTX "
 3279                                     "DMA memory!\n", __FILE__, __LINE__);
 3280                                 rc = ENOMEM;
 3281                                 goto bce_dma_alloc_exit;
 3282                         }
 3283 
 3284                         DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
 3285                             "= 0x%jX\n", __FUNCTION__, i,
 3286                             (uintmax_t) sc->ctx_paddr[i]);
 3287                 }
 3288         }
 3289 
 3290         /*
 3291          * Create a DMA tag for the TX buffer descriptor chain,
 3292          * allocate and clear the  memory, and fetch the
 3293          * physical address of the block.
 3294          */
 3295         if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
 3296             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3297             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
 3298             NULL, NULL, &sc->tx_bd_chain_tag)) {
 3299                 BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
 3300                     "chain DMA tag!\n", __FILE__, __LINE__);
 3301                 rc = ENOMEM;
 3302                 goto bce_dma_alloc_exit;
 3303         }
 3304 
 3305         for (i = 0; i < TX_PAGES; i++) {
 3306 
 3307                 if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
 3308                     (void **)&sc->tx_bd_chain[i],
 3309                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3310                     &sc->tx_bd_chain_map[i])) {
 3311                         BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
 3312                             "chain DMA memory!\n", __FILE__, __LINE__);
 3313                         rc = ENOMEM;
 3314                         goto bce_dma_alloc_exit;
 3315                 }
 3316 
 3317                 error = bus_dmamap_load(sc->tx_bd_chain_tag,
 3318                     sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
 3319                     BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
 3320                     &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
 3321 
 3322                 if (error) {
 3323                         BCE_PRINTF("%s(%d): Could not map TX descriptor "
 3324                             "chain DMA memory!\n", __FILE__, __LINE__);
 3325                         rc = ENOMEM;
 3326                         goto bce_dma_alloc_exit;
 3327                 }
 3328 
 3329                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
 3330                     "0x%jX\n", __FUNCTION__, i,
 3331                     (uintmax_t) sc->tx_bd_chain_paddr[i]);
 3332         }
 3333 
 3334         /* Check the required size before mapping to conserve resources. */
 3335         if (bce_tso_enable) {
 3336                 max_size     = BCE_TSO_MAX_SIZE;
 3337                 max_segments = BCE_MAX_SEGMENTS;
 3338                 max_seg_size = BCE_TSO_MAX_SEG_SIZE;
 3339         } else {
 3340                 max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
 3341                 max_segments = BCE_MAX_SEGMENTS;
 3342                 max_seg_size = MCLBYTES;
 3343         }
 3344 
 3345         /* Create a DMA tag for TX mbufs. */
 3346         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
 3347             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
 3348             max_segments, max_seg_size, 0, NULL, NULL, &sc->tx_mbuf_tag)) {
 3349                 BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
 3350                     __FILE__, __LINE__);
 3351                 rc = ENOMEM;
 3352                 goto bce_dma_alloc_exit;
 3353         }
 3354 
 3355         /* Create DMA maps for the TX mbufs clusters. */
 3356         for (i = 0; i < TOTAL_TX_BD; i++) {
 3357                 if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
 3358                         &sc->tx_mbuf_map[i])) {
 3359                         BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
 3360                             "map!\n", __FILE__, __LINE__);
 3361                         rc = ENOMEM;
 3362                         goto bce_dma_alloc_exit;
 3363                 }
 3364         }
 3365 
 3366         /*
 3367          * Create a DMA tag for the RX buffer descriptor chain,
 3368          * allocate and clear the memory, and fetch the physical
 3369          * address of the blocks.
 3370          */
 3371         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
 3372                         BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
 3373                         sc->max_bus_addr, NULL, NULL,
 3374                         BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
 3375                         0, NULL, NULL, &sc->rx_bd_chain_tag)) {
 3376                 BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
 3377                     "DMA tag!\n", __FILE__, __LINE__);
 3378                 rc = ENOMEM;
 3379                 goto bce_dma_alloc_exit;
 3380         }
 3381 
 3382         for (i = 0; i < RX_PAGES; i++) {
 3383 
 3384                 if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
 3385                     (void **)&sc->rx_bd_chain[i],
 3386                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3387                     &sc->rx_bd_chain_map[i])) {
 3388                         BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
 3389                             "chain DMA memory!\n", __FILE__, __LINE__);
 3390                         rc = ENOMEM;
 3391                         goto bce_dma_alloc_exit;
 3392                 }
 3393 
 3394                 error = bus_dmamap_load(sc->rx_bd_chain_tag,
 3395                     sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
 3396                     BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
 3397                     &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
 3398 
 3399                 if (error) {
 3400                         BCE_PRINTF("%s(%d): Could not map RX descriptor "
 3401                             "chain DMA memory!\n", __FILE__, __LINE__);
 3402                         rc = ENOMEM;
 3403                         goto bce_dma_alloc_exit;
 3404                 }
 3405 
 3406                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
 3407                     "0x%jX\n", __FUNCTION__, i,
 3408                     (uintmax_t) sc->rx_bd_chain_paddr[i]);
 3409         }
 3410 
 3411         /*
 3412          * Create a DMA tag for RX mbufs.
 3413          */
 3414 #ifdef BCE_JUMBO_HDRSPLIT
 3415         max_size = max_seg_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
 3416                 MCLBYTES : sc->rx_bd_mbuf_alloc_size);
 3417 #else
 3418         max_size = max_seg_size = MJUM9BYTES;
 3419 #endif
 3420         max_segments = 1;
 3421 
 3422         DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
 3423             "(max size = 0x%jX max segments = %d, max segment "
 3424             "size = 0x%jX)\n", __FUNCTION__, (uintmax_t) max_size,
 3425              max_segments, (uintmax_t) max_seg_size);
 3426 
 3427         if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
 3428             BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3429             max_size, max_segments, max_seg_size, 0, NULL, NULL,
 3430             &sc->rx_mbuf_tag)) {
 3431                 BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
 3432                     __FILE__, __LINE__);
 3433                 rc = ENOMEM;
 3434                 goto bce_dma_alloc_exit;
 3435         }
 3436 
 3437         /* Create DMA maps for the RX mbuf clusters. */
 3438         for (i = 0; i < TOTAL_RX_BD; i++) {
 3439                 if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
 3440                     &sc->rx_mbuf_map[i])) {
 3441                         BCE_PRINTF("%s(%d): Unable to create RX mbuf "
 3442                             "DMA map!\n", __FILE__, __LINE__);
 3443                         rc = ENOMEM;
 3444                         goto bce_dma_alloc_exit;
 3445                 }
 3446         }
 3447 
 3448 #ifdef BCE_JUMBO_HDRSPLIT
 3449         /*
 3450          * Create a DMA tag for the page buffer descriptor chain,
 3451          * allocate and clear the memory, and fetch the physical
 3452          * address of the blocks.
 3453          */
 3454         if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
 3455             BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
 3456             NULL, NULL, BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
 3457             0, NULL, NULL, &sc->pg_bd_chain_tag)) {
 3458                 BCE_PRINTF("%s(%d): Could not allocate page descriptor "
 3459                     "chain DMA tag!\n", __FILE__, __LINE__);
 3460                 rc = ENOMEM;
 3461                 goto bce_dma_alloc_exit;
 3462         }
 3463 
 3464         for (i = 0; i < PG_PAGES; i++) {
 3465 
 3466                 if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
 3467                     (void **)&sc->pg_bd_chain[i],
 3468                     BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
 3469                     &sc->pg_bd_chain_map[i])) {
 3470                         BCE_PRINTF("%s(%d): Could not allocate page "
 3471                             "descriptor chain DMA memory!\n",
 3472                             __FILE__, __LINE__);
 3473                         rc = ENOMEM;
 3474                         goto bce_dma_alloc_exit;
 3475                 }
 3476 
 3477                 error = bus_dmamap_load(sc->pg_bd_chain_tag,
 3478                     sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
 3479                     BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
 3480                     &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
 3481 
 3482                 if (error) {
 3483                         BCE_PRINTF("%s(%d): Could not map page descriptor "
 3484                             "chain DMA memory!\n", __FILE__, __LINE__);
 3485                         rc = ENOMEM;
 3486                         goto bce_dma_alloc_exit;
 3487                 }
 3488 
 3489                 DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
 3490                     "0x%jX\n", __FUNCTION__, i,
 3491                     (uintmax_t) sc->pg_bd_chain_paddr[i]);
 3492         }
 3493 
 3494         /*
 3495          * Create a DMA tag for page mbufs.
 3496          */
 3497         max_size = max_seg_size = ((sc->pg_bd_mbuf_alloc_size < MCLBYTES) ?
 3498             MCLBYTES : sc->pg_bd_mbuf_alloc_size);
 3499 
 3500         if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
 3501             sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
 3502             max_size, 1, max_seg_size, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
 3503                 BCE_PRINTF("%s(%d): Could not allocate page mbuf "
 3504                     "DMA tag!\n", __FILE__, __LINE__);
 3505                 rc = ENOMEM;
 3506                 goto bce_dma_alloc_exit;
 3507         }
 3508 
 3509         /* Create DMA maps for the page mbuf clusters. */
 3510         for (i = 0; i < TOTAL_PG_BD; i++) {
 3511                 if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
 3512                     &sc->pg_mbuf_map[i])) {
 3513                         BCE_PRINTF("%s(%d): Unable to create page mbuf "
 3514                             "DMA map!\n", __FILE__, __LINE__);
 3515                         rc = ENOMEM;
 3516                         goto bce_dma_alloc_exit;
 3517                 }
 3518         }
 3519 #endif
 3520 
 3521 bce_dma_alloc_exit:
 3522         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 3523         return(rc);
 3524 }
 3525 
 3526 
 3527 /****************************************************************************/
 3528 /* Release all resources used by the driver.                                */
 3529 /*                                                                          */
 3530 /* Releases all resources acquired by the driver including interrupts,      */
 3531 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
 3532 /*                                                                          */
 3533 /* Returns:                                                                 */
 3534 /*   Nothing.                                                               */
 3535 /****************************************************************************/
 3536 static void
 3537 bce_release_resources(struct bce_softc *sc)
 3538 {
 3539         device_t dev;
 3540 
 3541         DBENTER(BCE_VERBOSE_RESET);
 3542 
 3543         dev = sc->bce_dev;
 3544 
 3545         bce_dma_free(sc);
 3546 
 3547         if (sc->bce_intrhand != NULL) {
 3548                 DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
 3549                 bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
 3550         }
 3551 
 3552         if (sc->bce_res_irq != NULL) {
 3553                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
 3554                 bus_release_resource(dev, SYS_RES_IRQ, sc->bce_irq_rid,
 3555                     sc->bce_res_irq);
 3556         }
 3557 
 3558         if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
 3559                 DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
 3560                 pci_release_msi(dev);
 3561         }
 3562 
 3563         if (sc->bce_res_mem != NULL) {
 3564                 DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
 3565                     bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
 3566                     sc->bce_res_mem);
 3567         }
 3568 
 3569         if (sc->bce_ifp != NULL) {
 3570                 DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
 3571                 if_free(sc->bce_ifp);
 3572         }
 3573 
 3574         if (mtx_initialized(&sc->bce_mtx))
 3575                 BCE_LOCK_DESTROY(sc);
 3576 
 3577         DBEXIT(BCE_VERBOSE_RESET);
 3578 }
 3579 
 3580 
 3581 /****************************************************************************/
 3582 /* Firmware synchronization.                                                */
 3583 /*                                                                          */
 3584 /* Before performing certain events such as a chip reset, synchronize with  */
 3585 /* the firmware first.                                                      */
 3586 /*                                                                          */
 3587 /* Returns:                                                                 */
 3588 /*   0 for success, positive value for failure.                             */
 3589 /****************************************************************************/
 3590 static int
 3591 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
 3592 {
 3593         int i, rc = 0;
 3594         u32 val;
 3595 
 3596         DBENTER(BCE_VERBOSE_RESET);
 3597 
 3598         /* Don't waste any time if we've timed out before. */
 3599         if (sc->bce_fw_timed_out == TRUE) {
 3600                 rc = EBUSY;
 3601                 goto bce_fw_sync_exit;
 3602         }
 3603 
 3604         /* Increment the message sequence number. */
 3605         sc->bce_fw_wr_seq++;
 3606         msg_data |= sc->bce_fw_wr_seq;
 3607 
 3608         DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
 3609             "0x%08X\n", msg_data);
 3610 
 3611         /* Send the message to the bootcode driver mailbox. */
 3612         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
 3613 
 3614         /* Wait for the bootcode to acknowledge the message. */
 3615         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
 3616                 /* Check for a response in the bootcode firmware mailbox. */
 3617                 val = bce_shmem_rd(sc, BCE_FW_MB);
 3618                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
 3619                         break;
 3620                 DELAY(1000);
 3621         }
 3622 
 3623         /* If we've timed out, tell bootcode that we've stopped waiting. */
 3624         if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
 3625             ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
 3626 
 3627                 BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
 3628                     "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
 3629 
 3630                 msg_data &= ~BCE_DRV_MSG_CODE;
 3631                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
 3632 
 3633                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
 3634 
 3635                 sc->bce_fw_timed_out = TRUE;
 3636                 rc = EBUSY;
 3637         }
 3638 
 3639 bce_fw_sync_exit:
 3640         DBEXIT(BCE_VERBOSE_RESET);
 3641         return (rc);
 3642 }
 3643 
 3644 
 3645 /****************************************************************************/
 3646 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
 3647 /*                                                                          */
 3648 /* Returns:                                                                 */
 3649 /*   Nothing.                                                               */
 3650 /****************************************************************************/
 3651 static void
 3652 bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
 3653         u32 rv2p_code_len, u32 rv2p_proc)
 3654 {
 3655         int i;
 3656         u32 val;
 3657 
 3658         DBENTER(BCE_VERBOSE_RESET);
 3659 
 3660         /* Set the page size used by RV2P. */
 3661         if (rv2p_proc == RV2P_PROC2) {
 3662                 BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
 3663         }
 3664 
 3665         for (i = 0; i < rv2p_code_len; i += 8) {
 3666                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
 3667                 rv2p_code++;
 3668                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
 3669                 rv2p_code++;
 3670 
 3671                 if (rv2p_proc == RV2P_PROC1) {
 3672                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
 3673                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
 3674                 }
 3675                 else {
 3676                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
 3677                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
 3678                 }
 3679         }
 3680 
 3681         /* Reset the processor, un-stall is done later. */
 3682         if (rv2p_proc == RV2P_PROC1) {
 3683                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
 3684         }
 3685         else {
 3686                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
 3687         }
 3688 
 3689         DBEXIT(BCE_VERBOSE_RESET);
 3690 }
 3691 
 3692 
 3693 /****************************************************************************/
 3694 /* Load RISC processor firmware.                                            */
 3695 /*                                                                          */
 3696 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
 3697 /* associated with a particular processor.                                  */
 3698 /*                                                                          */
 3699 /* Returns:                                                                 */
 3700 /*   Nothing.                                                               */
 3701 /****************************************************************************/
 3702 static void
 3703 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
 3704         struct fw_info *fw)
 3705 {
 3706         u32 offset;
 3707 
 3708         DBENTER(BCE_VERBOSE_RESET);
 3709 
 3710     bce_halt_cpu(sc, cpu_reg);
 3711 
 3712         /* Load the Text area. */
 3713         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
 3714         if (fw->text) {
 3715                 int j;
 3716 
 3717                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
 3718                         REG_WR_IND(sc, offset, fw->text[j]);
 3719                 }
 3720         }
 3721 
 3722         /* Load the Data area. */
 3723         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
 3724         if (fw->data) {
 3725                 int j;
 3726 
 3727                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
 3728                         REG_WR_IND(sc, offset, fw->data[j]);
 3729                 }
 3730         }
 3731 
 3732         /* Load the SBSS area. */
 3733         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
 3734         if (fw->sbss) {
 3735                 int j;
 3736 
 3737                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
 3738                         REG_WR_IND(sc, offset, fw->sbss[j]);
 3739                 }
 3740         }
 3741 
 3742         /* Load the BSS area. */
 3743         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
 3744         if (fw->bss) {
 3745                 int j;
 3746 
 3747                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
 3748                         REG_WR_IND(sc, offset, fw->bss[j]);
 3749                 }
 3750         }
 3751 
 3752         /* Load the Read-Only area. */
 3753         offset = cpu_reg->spad_base +
 3754                 (fw->rodata_addr - cpu_reg->mips_view_base);
 3755         if (fw->rodata) {
 3756                 int j;
 3757 
 3758                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
 3759                         REG_WR_IND(sc, offset, fw->rodata[j]);
 3760                 }
 3761         }
 3762 
 3763         /* Clear the pre-fetch instruction and set the FW start address. */
 3764         REG_WR_IND(sc, cpu_reg->inst, 0);
 3765         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
 3766 
 3767         DBEXIT(BCE_VERBOSE_RESET);
 3768 }
 3769 
 3770 
 3771 /****************************************************************************/
 3772 /* Starts the RISC processor.                                               */
 3773 /*                                                                          */
 3774 /* Assumes the CPU starting address has already been set.                   */
 3775 /*                                                                          */
 3776 /* Returns:                                                                 */
 3777 /*   Nothing.                                                               */
 3778 /****************************************************************************/
 3779 static void
 3780 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
 3781 {
 3782         u32 val;
 3783 
 3784         DBENTER(BCE_VERBOSE_RESET);
 3785 
 3786         /* Start the CPU. */
 3787         val = REG_RD_IND(sc, cpu_reg->mode);
 3788         val &= ~cpu_reg->mode_value_halt;
 3789         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
 3790         REG_WR_IND(sc, cpu_reg->mode, val);
 3791 
 3792         DBEXIT(BCE_VERBOSE_RESET);
 3793 }
 3794 
 3795 
 3796 /****************************************************************************/
 3797 /* Halts the RISC processor.                                                */
 3798 /*                                                                          */
 3799 /* Returns:                                                                 */
 3800 /*   Nothing.                                                               */
 3801 /****************************************************************************/
 3802 static void
 3803 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
 3804 {
 3805         u32 val;
 3806 
 3807         DBENTER(BCE_VERBOSE_RESET);
 3808 
 3809         /* Halt the CPU. */
 3810         val = REG_RD_IND(sc, cpu_reg->mode);
 3811         val |= cpu_reg->mode_value_halt;
 3812         REG_WR_IND(sc, cpu_reg->mode, val);
 3813         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
 3814 
 3815         DBEXIT(BCE_VERBOSE_RESET);
 3816 }
 3817 
 3818 
 3819 /****************************************************************************/
 3820 /* Initialize the RX CPU.                                                   */
 3821 /*                                                                          */
 3822 /* Returns:                                                                 */
 3823 /*   Nothing.                                                               */
 3824 /****************************************************************************/
 3825 static void
 3826 bce_start_rxp_cpu(struct bce_softc *sc)
 3827 {
 3828         struct cpu_reg cpu_reg;
 3829 
 3830         DBENTER(BCE_VERBOSE_RESET);
 3831 
 3832         cpu_reg.mode = BCE_RXP_CPU_MODE;
 3833         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
 3834         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
 3835         cpu_reg.state = BCE_RXP_CPU_STATE;
 3836         cpu_reg.state_value_clear = 0xffffff;
 3837         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
 3838         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
 3839         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
 3840         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
 3841         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
 3842         cpu_reg.spad_base = BCE_RXP_SCRATCH;
 3843         cpu_reg.mips_view_base = 0x8000000;
 3844 
 3845         DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
 3846         bce_start_cpu(sc, &cpu_reg);
 3847 
 3848         DBEXIT(BCE_VERBOSE_RESET);
 3849 }
 3850 
 3851 
 3852 /****************************************************************************/
 3853 /* Initialize the RX CPU.                                                   */
 3854 /*                                                                          */
 3855 /* Returns:                                                                 */
 3856 /*   Nothing.                                                               */
 3857 /****************************************************************************/
 3858 static void
 3859 bce_init_rxp_cpu(struct bce_softc *sc)
 3860 {
 3861         struct cpu_reg cpu_reg;
 3862         struct fw_info fw;
 3863 
 3864         DBENTER(BCE_VERBOSE_RESET);
 3865 
 3866         cpu_reg.mode = BCE_RXP_CPU_MODE;
 3867         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
 3868         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
 3869         cpu_reg.state = BCE_RXP_CPU_STATE;
 3870         cpu_reg.state_value_clear = 0xffffff;
 3871         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
 3872         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
 3873         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
 3874         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
 3875         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
 3876         cpu_reg.spad_base = BCE_RXP_SCRATCH;
 3877         cpu_reg.mips_view_base = 0x8000000;
 3878 
 3879         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 3880                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 3881                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
 3882                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
 3883                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
 3884                 fw.start_addr = bce_RXP_b09FwStartAddr;
 3885 
 3886                 fw.text_addr = bce_RXP_b09FwTextAddr;
 3887                 fw.text_len = bce_RXP_b09FwTextLen;
 3888                 fw.text_index = 0;
 3889                 fw.text = bce_RXP_b09FwText;
 3890 
 3891                 fw.data_addr = bce_RXP_b09FwDataAddr;
 3892                 fw.data_len = bce_RXP_b09FwDataLen;
 3893                 fw.data_index = 0;
 3894                 fw.data = bce_RXP_b09FwData;
 3895 
 3896                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
 3897                 fw.sbss_len = bce_RXP_b09FwSbssLen;
 3898                 fw.sbss_index = 0;
 3899                 fw.sbss = bce_RXP_b09FwSbss;
 3900 
 3901                 fw.bss_addr = bce_RXP_b09FwBssAddr;
 3902                 fw.bss_len = bce_RXP_b09FwBssLen;
 3903                 fw.bss_index = 0;
 3904                 fw.bss = bce_RXP_b09FwBss;
 3905 
 3906                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
 3907                 fw.rodata_len = bce_RXP_b09FwRodataLen;
 3908                 fw.rodata_index = 0;
 3909                 fw.rodata = bce_RXP_b09FwRodata;
 3910         } else {
 3911                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
 3912                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
 3913                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
 3914                 fw.start_addr = bce_RXP_b06FwStartAddr;
 3915 
 3916                 fw.text_addr = bce_RXP_b06FwTextAddr;
 3917                 fw.text_len = bce_RXP_b06FwTextLen;
 3918                 fw.text_index = 0;
 3919                 fw.text = bce_RXP_b06FwText;
 3920 
 3921                 fw.data_addr = bce_RXP_b06FwDataAddr;
 3922                 fw.data_len = bce_RXP_b06FwDataLen;
 3923                 fw.data_index = 0;
 3924                 fw.data = bce_RXP_b06FwData;
 3925 
 3926                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
 3927                 fw.sbss_len = bce_RXP_b06FwSbssLen;
 3928                 fw.sbss_index = 0;
 3929                 fw.sbss = bce_RXP_b06FwSbss;
 3930 
 3931                 fw.bss_addr = bce_RXP_b06FwBssAddr;
 3932                 fw.bss_len = bce_RXP_b06FwBssLen;
 3933                 fw.bss_index = 0;
 3934                 fw.bss = bce_RXP_b06FwBss;
 3935 
 3936                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
 3937                 fw.rodata_len = bce_RXP_b06FwRodataLen;
 3938                 fw.rodata_index = 0;
 3939                 fw.rodata = bce_RXP_b06FwRodata;
 3940         }
 3941 
 3942         DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
 3943         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 3944 
 3945     /* Delay RXP start until initialization is complete. */
 3946 
 3947         DBEXIT(BCE_VERBOSE_RESET);
 3948 }
 3949 
 3950 
 3951 /****************************************************************************/
 3952 /* Initialize the TX CPU.                                                   */
 3953 /*                                                                          */
 3954 /* Returns:                                                                 */
 3955 /*   Nothing.                                                               */
 3956 /****************************************************************************/
 3957 static void
 3958 bce_init_txp_cpu(struct bce_softc *sc)
 3959 {
 3960         struct cpu_reg cpu_reg;
 3961         struct fw_info fw;
 3962 
 3963         DBENTER(BCE_VERBOSE_RESET);
 3964 
 3965         cpu_reg.mode = BCE_TXP_CPU_MODE;
 3966         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
 3967         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
 3968         cpu_reg.state = BCE_TXP_CPU_STATE;
 3969         cpu_reg.state_value_clear = 0xffffff;
 3970         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
 3971         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
 3972         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
 3973         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
 3974         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
 3975         cpu_reg.spad_base = BCE_TXP_SCRATCH;
 3976         cpu_reg.mips_view_base = 0x8000000;
 3977 
 3978         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 3979                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 3980                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
 3981                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
 3982                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
 3983                 fw.start_addr = bce_TXP_b09FwStartAddr;
 3984 
 3985                 fw.text_addr = bce_TXP_b09FwTextAddr;
 3986                 fw.text_len = bce_TXP_b09FwTextLen;
 3987                 fw.text_index = 0;
 3988                 fw.text = bce_TXP_b09FwText;
 3989 
 3990                 fw.data_addr = bce_TXP_b09FwDataAddr;
 3991                 fw.data_len = bce_TXP_b09FwDataLen;
 3992                 fw.data_index = 0;
 3993                 fw.data = bce_TXP_b09FwData;
 3994 
 3995                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
 3996                 fw.sbss_len = bce_TXP_b09FwSbssLen;
 3997                 fw.sbss_index = 0;
 3998                 fw.sbss = bce_TXP_b09FwSbss;
 3999 
 4000                 fw.bss_addr = bce_TXP_b09FwBssAddr;
 4001                 fw.bss_len = bce_TXP_b09FwBssLen;
 4002                 fw.bss_index = 0;
 4003                 fw.bss = bce_TXP_b09FwBss;
 4004 
 4005                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
 4006                 fw.rodata_len = bce_TXP_b09FwRodataLen;
 4007                 fw.rodata_index = 0;
 4008                 fw.rodata = bce_TXP_b09FwRodata;
 4009         } else {
 4010                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
 4011                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
 4012                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
 4013                 fw.start_addr = bce_TXP_b06FwStartAddr;
 4014 
 4015                 fw.text_addr = bce_TXP_b06FwTextAddr;
 4016                 fw.text_len = bce_TXP_b06FwTextLen;
 4017                 fw.text_index = 0;
 4018                 fw.text = bce_TXP_b06FwText;
 4019 
 4020                 fw.data_addr = bce_TXP_b06FwDataAddr;
 4021                 fw.data_len = bce_TXP_b06FwDataLen;
 4022                 fw.data_index = 0;
 4023                 fw.data = bce_TXP_b06FwData;
 4024 
 4025                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
 4026                 fw.sbss_len = bce_TXP_b06FwSbssLen;
 4027                 fw.sbss_index = 0;
 4028                 fw.sbss = bce_TXP_b06FwSbss;
 4029 
 4030                 fw.bss_addr = bce_TXP_b06FwBssAddr;
 4031                 fw.bss_len = bce_TXP_b06FwBssLen;
 4032                 fw.bss_index = 0;
 4033                 fw.bss = bce_TXP_b06FwBss;
 4034 
 4035                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
 4036                 fw.rodata_len = bce_TXP_b06FwRodataLen;
 4037                 fw.rodata_index = 0;
 4038                 fw.rodata = bce_TXP_b06FwRodata;
 4039         }
 4040 
 4041         DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
 4042         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4043     bce_start_cpu(sc, &cpu_reg);
 4044 
 4045         DBEXIT(BCE_VERBOSE_RESET);
 4046 }
 4047 
 4048 
 4049 /****************************************************************************/
 4050 /* Initialize the TPAT CPU.                                                 */
 4051 /*                                                                          */
 4052 /* Returns:                                                                 */
 4053 /*   Nothing.                                                               */
 4054 /****************************************************************************/
 4055 static void
 4056 bce_init_tpat_cpu(struct bce_softc *sc)
 4057 {
 4058         struct cpu_reg cpu_reg;
 4059         struct fw_info fw;
 4060 
 4061         DBENTER(BCE_VERBOSE_RESET);
 4062 
 4063         cpu_reg.mode = BCE_TPAT_CPU_MODE;
 4064         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
 4065         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
 4066         cpu_reg.state = BCE_TPAT_CPU_STATE;
 4067         cpu_reg.state_value_clear = 0xffffff;
 4068         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
 4069         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
 4070         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
 4071         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
 4072         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
 4073         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
 4074         cpu_reg.mips_view_base = 0x8000000;
 4075 
 4076         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4077                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4078                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
 4079                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
 4080                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
 4081                 fw.start_addr = bce_TPAT_b09FwStartAddr;
 4082 
 4083                 fw.text_addr = bce_TPAT_b09FwTextAddr;
 4084                 fw.text_len = bce_TPAT_b09FwTextLen;
 4085                 fw.text_index = 0;
 4086                 fw.text = bce_TPAT_b09FwText;
 4087 
 4088                 fw.data_addr = bce_TPAT_b09FwDataAddr;
 4089                 fw.data_len = bce_TPAT_b09FwDataLen;
 4090                 fw.data_index = 0;
 4091                 fw.data = bce_TPAT_b09FwData;
 4092 
 4093                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
 4094                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
 4095                 fw.sbss_index = 0;
 4096                 fw.sbss = bce_TPAT_b09FwSbss;
 4097 
 4098                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
 4099                 fw.bss_len = bce_TPAT_b09FwBssLen;
 4100                 fw.bss_index = 0;
 4101                 fw.bss = bce_TPAT_b09FwBss;
 4102 
 4103                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
 4104                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
 4105                 fw.rodata_index = 0;
 4106                 fw.rodata = bce_TPAT_b09FwRodata;
 4107         } else {
 4108                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
 4109                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
 4110                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
 4111                 fw.start_addr = bce_TPAT_b06FwStartAddr;
 4112 
 4113                 fw.text_addr = bce_TPAT_b06FwTextAddr;
 4114                 fw.text_len = bce_TPAT_b06FwTextLen;
 4115                 fw.text_index = 0;
 4116                 fw.text = bce_TPAT_b06FwText;
 4117 
 4118                 fw.data_addr = bce_TPAT_b06FwDataAddr;
 4119                 fw.data_len = bce_TPAT_b06FwDataLen;
 4120                 fw.data_index = 0;
 4121                 fw.data = bce_TPAT_b06FwData;
 4122 
 4123                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
 4124                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
 4125                 fw.sbss_index = 0;
 4126                 fw.sbss = bce_TPAT_b06FwSbss;
 4127 
 4128                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
 4129                 fw.bss_len = bce_TPAT_b06FwBssLen;
 4130                 fw.bss_index = 0;
 4131                 fw.bss = bce_TPAT_b06FwBss;
 4132 
 4133                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
 4134                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
 4135                 fw.rodata_index = 0;
 4136                 fw.rodata = bce_TPAT_b06FwRodata;
 4137         }
 4138 
 4139         DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
 4140         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4141         bce_start_cpu(sc, &cpu_reg);
 4142 
 4143         DBEXIT(BCE_VERBOSE_RESET);
 4144 }
 4145 
 4146 
 4147 /****************************************************************************/
 4148 /* Initialize the CP CPU.                                                   */
 4149 /*                                                                          */
 4150 /* Returns:                                                                 */
 4151 /*   Nothing.                                                               */
 4152 /****************************************************************************/
 4153 static void
 4154 bce_init_cp_cpu(struct bce_softc *sc)
 4155 {
 4156         struct cpu_reg cpu_reg;
 4157         struct fw_info fw;
 4158 
 4159         DBENTER(BCE_VERBOSE_RESET);
 4160 
 4161         cpu_reg.mode = BCE_CP_CPU_MODE;
 4162         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
 4163         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
 4164         cpu_reg.state = BCE_CP_CPU_STATE;
 4165         cpu_reg.state_value_clear = 0xffffff;
 4166         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
 4167         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
 4168         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
 4169         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
 4170         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
 4171         cpu_reg.spad_base = BCE_CP_SCRATCH;
 4172         cpu_reg.mips_view_base = 0x8000000;
 4173 
 4174         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4175                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4176                 fw.ver_major = bce_CP_b09FwReleaseMajor;
 4177                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
 4178                 fw.ver_fix = bce_CP_b09FwReleaseFix;
 4179                 fw.start_addr = bce_CP_b09FwStartAddr;
 4180 
 4181                 fw.text_addr = bce_CP_b09FwTextAddr;
 4182                 fw.text_len = bce_CP_b09FwTextLen;
 4183                 fw.text_index = 0;
 4184                 fw.text = bce_CP_b09FwText;
 4185 
 4186                 fw.data_addr = bce_CP_b09FwDataAddr;
 4187                 fw.data_len = bce_CP_b09FwDataLen;
 4188                 fw.data_index = 0;
 4189                 fw.data = bce_CP_b09FwData;
 4190 
 4191                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
 4192                 fw.sbss_len = bce_CP_b09FwSbssLen;
 4193                 fw.sbss_index = 0;
 4194                 fw.sbss = bce_CP_b09FwSbss;
 4195 
 4196                 fw.bss_addr = bce_CP_b09FwBssAddr;
 4197                 fw.bss_len = bce_CP_b09FwBssLen;
 4198                 fw.bss_index = 0;
 4199                 fw.bss = bce_CP_b09FwBss;
 4200 
 4201                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
 4202                 fw.rodata_len = bce_CP_b09FwRodataLen;
 4203                 fw.rodata_index = 0;
 4204                 fw.rodata = bce_CP_b09FwRodata;
 4205         } else {
 4206                 fw.ver_major = bce_CP_b06FwReleaseMajor;
 4207                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
 4208                 fw.ver_fix = bce_CP_b06FwReleaseFix;
 4209                 fw.start_addr = bce_CP_b06FwStartAddr;
 4210 
 4211                 fw.text_addr = bce_CP_b06FwTextAddr;
 4212                 fw.text_len = bce_CP_b06FwTextLen;
 4213                 fw.text_index = 0;
 4214                 fw.text = bce_CP_b06FwText;
 4215 
 4216                 fw.data_addr = bce_CP_b06FwDataAddr;
 4217                 fw.data_len = bce_CP_b06FwDataLen;
 4218                 fw.data_index = 0;
 4219                 fw.data = bce_CP_b06FwData;
 4220 
 4221                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
 4222                 fw.sbss_len = bce_CP_b06FwSbssLen;
 4223                 fw.sbss_index = 0;
 4224                 fw.sbss = bce_CP_b06FwSbss;
 4225 
 4226                 fw.bss_addr = bce_CP_b06FwBssAddr;
 4227                 fw.bss_len = bce_CP_b06FwBssLen;
 4228                 fw.bss_index = 0;
 4229                 fw.bss = bce_CP_b06FwBss;
 4230 
 4231                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
 4232                 fw.rodata_len = bce_CP_b06FwRodataLen;
 4233                 fw.rodata_index = 0;
 4234                 fw.rodata = bce_CP_b06FwRodata;
 4235         }
 4236 
 4237         DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
 4238         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4239         bce_start_cpu(sc, &cpu_reg);
 4240 
 4241         DBEXIT(BCE_VERBOSE_RESET);
 4242 }
 4243 
 4244 
 4245 /****************************************************************************/
 4246 /* Initialize the COM CPU.                                                 */
 4247 /*                                                                          */
 4248 /* Returns:                                                                 */
 4249 /*   Nothing.                                                               */
 4250 /****************************************************************************/
 4251 static void
 4252 bce_init_com_cpu(struct bce_softc *sc)
 4253 {
 4254         struct cpu_reg cpu_reg;
 4255         struct fw_info fw;
 4256 
 4257         DBENTER(BCE_VERBOSE_RESET);
 4258 
 4259         cpu_reg.mode = BCE_COM_CPU_MODE;
 4260         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
 4261         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
 4262         cpu_reg.state = BCE_COM_CPU_STATE;
 4263         cpu_reg.state_value_clear = 0xffffff;
 4264         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
 4265         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
 4266         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
 4267         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
 4268         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
 4269         cpu_reg.spad_base = BCE_COM_SCRATCH;
 4270         cpu_reg.mips_view_base = 0x8000000;
 4271 
 4272         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4273                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4274                 fw.ver_major = bce_COM_b09FwReleaseMajor;
 4275                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
 4276                 fw.ver_fix = bce_COM_b09FwReleaseFix;
 4277                 fw.start_addr = bce_COM_b09FwStartAddr;
 4278 
 4279                 fw.text_addr = bce_COM_b09FwTextAddr;
 4280                 fw.text_len = bce_COM_b09FwTextLen;
 4281                 fw.text_index = 0;
 4282                 fw.text = bce_COM_b09FwText;
 4283 
 4284                 fw.data_addr = bce_COM_b09FwDataAddr;
 4285                 fw.data_len = bce_COM_b09FwDataLen;
 4286                 fw.data_index = 0;
 4287                 fw.data = bce_COM_b09FwData;
 4288 
 4289                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
 4290                 fw.sbss_len = bce_COM_b09FwSbssLen;
 4291                 fw.sbss_index = 0;
 4292                 fw.sbss = bce_COM_b09FwSbss;
 4293 
 4294                 fw.bss_addr = bce_COM_b09FwBssAddr;
 4295                 fw.bss_len = bce_COM_b09FwBssLen;
 4296                 fw.bss_index = 0;
 4297                 fw.bss = bce_COM_b09FwBss;
 4298 
 4299                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
 4300                 fw.rodata_len = bce_COM_b09FwRodataLen;
 4301                 fw.rodata_index = 0;
 4302                 fw.rodata = bce_COM_b09FwRodata;
 4303         } else {
 4304                 fw.ver_major = bce_COM_b06FwReleaseMajor;
 4305                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
 4306                 fw.ver_fix = bce_COM_b06FwReleaseFix;
 4307                 fw.start_addr = bce_COM_b06FwStartAddr;
 4308 
 4309                 fw.text_addr = bce_COM_b06FwTextAddr;
 4310                 fw.text_len = bce_COM_b06FwTextLen;
 4311                 fw.text_index = 0;
 4312                 fw.text = bce_COM_b06FwText;
 4313 
 4314                 fw.data_addr = bce_COM_b06FwDataAddr;
 4315                 fw.data_len = bce_COM_b06FwDataLen;
 4316                 fw.data_index = 0;
 4317                 fw.data = bce_COM_b06FwData;
 4318 
 4319                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
 4320                 fw.sbss_len = bce_COM_b06FwSbssLen;
 4321                 fw.sbss_index = 0;
 4322                 fw.sbss = bce_COM_b06FwSbss;
 4323 
 4324                 fw.bss_addr = bce_COM_b06FwBssAddr;
 4325                 fw.bss_len = bce_COM_b06FwBssLen;
 4326                 fw.bss_index = 0;
 4327                 fw.bss = bce_COM_b06FwBss;
 4328 
 4329                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
 4330                 fw.rodata_len = bce_COM_b06FwRodataLen;
 4331                 fw.rodata_index = 0;
 4332                 fw.rodata = bce_COM_b06FwRodata;
 4333         }
 4334 
 4335         DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
 4336         bce_load_cpu_fw(sc, &cpu_reg, &fw);
 4337         bce_start_cpu(sc, &cpu_reg);
 4338 
 4339         DBEXIT(BCE_VERBOSE_RESET);
 4340 }
 4341 
 4342 
 4343 /****************************************************************************/
 4344 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
 4345 /*                                                                          */
 4346 /* Loads the firmware for each CPU and starts the CPU.                      */
 4347 /*                                                                          */
 4348 /* Returns:                                                                 */
 4349 /*   Nothing.                                                               */
 4350 /****************************************************************************/
 4351 static void
 4352 bce_init_cpus(struct bce_softc *sc)
 4353 {
 4354         DBENTER(BCE_VERBOSE_RESET);
 4355 
 4356         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4357                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4358 
 4359                 if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
 4360                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
 4361                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
 4362                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
 4363                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
 4364                 } else {
 4365                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
 4366                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
 4367                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
 4368                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
 4369                 }
 4370 
 4371         } else {
 4372                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
 4373                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
 4374                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
 4375                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
 4376         }
 4377 
 4378         bce_init_rxp_cpu(sc);
 4379         bce_init_txp_cpu(sc);
 4380         bce_init_tpat_cpu(sc);
 4381         bce_init_com_cpu(sc);
 4382         bce_init_cp_cpu(sc);
 4383 
 4384         DBEXIT(BCE_VERBOSE_RESET);
 4385 }
 4386 
 4387 
 4388 /****************************************************************************/
 4389 /* Initialize context memory.                                               */
 4390 /*                                                                          */
 4391 /* Clears the memory associated with each Context ID (CID).                 */
 4392 /*                                                                          */
 4393 /* Returns:                                                                 */
 4394 /*   Nothing.                                                               */
 4395 /****************************************************************************/
 4396 static int
 4397 bce_init_ctx(struct bce_softc *sc)
 4398 {
 4399         u32 offset, val, vcid_addr;
 4400         int i, j, rc, retry_cnt;
 4401 
 4402         rc = 0;
 4403         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 4404 
 4405         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4406             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4407                 retry_cnt = CTX_INIT_RETRY_COUNT;
 4408 
 4409                 DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
 4410 
 4411                 /*
 4412                  * BCM5709 context memory may be cached
 4413                  * in host memory so prepare the host memory
 4414                  * for access.
 4415                  */
 4416                 val = BCE_CTX_COMMAND_ENABLED |
 4417                     BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
 4418                 val |= (BCM_PAGE_BITS - 8) << 16;
 4419                 REG_WR(sc, BCE_CTX_COMMAND, val);
 4420 
 4421                 /* Wait for mem init command to complete. */
 4422                 for (i = 0; i < retry_cnt; i++) {
 4423                         val = REG_RD(sc, BCE_CTX_COMMAND);
 4424                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
 4425                                 break;
 4426                         DELAY(2);
 4427                 }
 4428                 if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
 4429                         BCE_PRINTF("%s(): Context memory initialization failed!\n",
 4430                             __FUNCTION__);
 4431                         rc = EBUSY;
 4432                         goto init_ctx_fail;
 4433                 }
 4434 
 4435                 for (i = 0; i < sc->ctx_pages; i++) {
 4436                         /* Set the physical address of the context memory. */
 4437                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
 4438                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
 4439                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
 4440                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
 4441                             BCE_ADDR_HI(sc->ctx_paddr[i]));
 4442                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
 4443                             BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
 4444 
 4445                         /* Verify the context memory write was successful. */
 4446                         for (j = 0; j < retry_cnt; j++) {
 4447                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
 4448                                 if ((val &
 4449                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
 4450                                         break;
 4451                                 DELAY(5);
 4452                         }
 4453                         if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
 4454                                 BCE_PRINTF("%s(): Failed to initialize "
 4455                                     "context page %d!\n", __FUNCTION__, i);
 4456                                 rc = EBUSY;
 4457                                 goto init_ctx_fail;
 4458                         }
 4459                 }
 4460         } else {
 4461 
 4462                 DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
 4463 
 4464                 /*
 4465                  * For the 5706/5708, context memory is local to
 4466                  * the controller, so initialize the controller
 4467                  * context memory.
 4468                  */
 4469 
 4470                 vcid_addr = GET_CID_ADDR(96);
 4471                 while (vcid_addr) {
 4472 
 4473                         vcid_addr -= PHY_CTX_SIZE;
 4474 
 4475                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
 4476                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
 4477 
 4478                         for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
 4479                                 CTX_WR(sc, 0x00, offset, 0);
 4480                         }
 4481 
 4482                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
 4483                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
 4484                 }
 4485 
 4486         }
 4487 init_ctx_fail:
 4488         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
 4489         return (rc);
 4490 }
 4491 
 4492 
 4493 /****************************************************************************/
 4494 /* Fetch the permanent MAC address of the controller.                       */
 4495 /*                                                                          */
 4496 /* Returns:                                                                 */
 4497 /*   Nothing.                                                               */
 4498 /****************************************************************************/
 4499 static void
 4500 bce_get_mac_addr(struct bce_softc *sc)
 4501 {
 4502         u32 mac_lo = 0, mac_hi = 0;
 4503 
 4504         DBENTER(BCE_VERBOSE_RESET);
 4505 
 4506         /*
 4507          * The NetXtreme II bootcode populates various NIC
 4508          * power-on and runtime configuration items in a
 4509          * shared memory area.  The factory configured MAC
 4510          * address is available from both NVRAM and the
 4511          * shared memory area so we'll read the value from
 4512          * shared memory for speed.
 4513          */
 4514 
 4515         mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
 4516         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
 4517 
 4518         if ((mac_lo == 0) && (mac_hi == 0)) {
 4519                 BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
 4520                     __FILE__, __LINE__);
 4521         } else {
 4522                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
 4523                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
 4524                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
 4525                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
 4526                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
 4527                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
 4528         }
 4529 
 4530         DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
 4531             "address = %6D\n", sc->eaddr, ":");
 4532         DBEXIT(BCE_VERBOSE_RESET);
 4533 }
 4534 
 4535 
 4536 /****************************************************************************/
 4537 /* Program the MAC address.                                                 */
 4538 /*                                                                          */
 4539 /* Returns:                                                                 */
 4540 /*   Nothing.                                                               */
 4541 /****************************************************************************/
 4542 static void
 4543 bce_set_mac_addr(struct bce_softc *sc)
 4544 {
 4545         u32 val;
 4546         u8 *mac_addr = sc->eaddr;
 4547 
 4548         /* ToDo: Add support for setting multiple MAC addresses. */
 4549 
 4550         DBENTER(BCE_VERBOSE_RESET);
 4551         DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
 4552             "%6D\n", sc->eaddr, ":");
 4553 
 4554         val = (mac_addr[0] << 8) | mac_addr[1];
 4555 
 4556         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
 4557 
 4558         val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
 4559             (mac_addr[4] << 8) | mac_addr[5];
 4560 
 4561         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
 4562 
 4563         DBEXIT(BCE_VERBOSE_RESET);
 4564 }
 4565 
 4566 
 4567 /****************************************************************************/
 4568 /* Stop the controller.                                                     */
 4569 /*                                                                          */
 4570 /* Returns:                                                                 */
 4571 /*   Nothing.                                                               */
 4572 /****************************************************************************/
 4573 static void
 4574 bce_stop(struct bce_softc *sc)
 4575 {
 4576         struct ifnet *ifp;
 4577 
 4578         DBENTER(BCE_VERBOSE_RESET);
 4579 
 4580         BCE_LOCK_ASSERT(sc);
 4581 
 4582         ifp = sc->bce_ifp;
 4583 
 4584         callout_stop(&sc->bce_tick_callout);
 4585 
 4586         /* Disable the transmit/receive blocks. */
 4587         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
 4588         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
 4589         DELAY(20);
 4590 
 4591         bce_disable_intr(sc);
 4592 
 4593         /* Free RX buffers. */
 4594 #ifdef BCE_JUMBO_HDRSPLIT
 4595         bce_free_pg_chain(sc);
 4596 #endif
 4597         bce_free_rx_chain(sc);
 4598 
 4599         /* Free TX buffers. */
 4600         bce_free_tx_chain(sc);
 4601 
 4602         sc->watchdog_timer = 0;
 4603 
 4604         sc->bce_link_up = FALSE;
 4605 
 4606         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 4607 
 4608         DBEXIT(BCE_VERBOSE_RESET);
 4609 }
 4610 
 4611 
 4612 static int
 4613 bce_reset(struct bce_softc *sc, u32 reset_code)
 4614 {
 4615         u32 val;
 4616         int i, rc = 0;
 4617 
 4618         DBENTER(BCE_VERBOSE_RESET);
 4619 
 4620         DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
 4621             __FUNCTION__, reset_code);
 4622 
 4623         /* Wait for pending PCI transactions to complete. */
 4624         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
 4625             BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
 4626             BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
 4627             BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
 4628             BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
 4629         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
 4630         DELAY(5);
 4631 
 4632         /* Disable DMA */
 4633         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4634             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4635                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
 4636                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
 4637                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
 4638         }
 4639 
 4640         /* Assume bootcode is running. */
 4641         sc->bce_fw_timed_out = FALSE;
 4642         sc->bce_drv_cardiac_arrest = FALSE;
 4643 
 4644         /* Give the firmware a chance to prepare for the reset. */
 4645         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
 4646         if (rc)
 4647                 goto bce_reset_exit;
 4648 
 4649         /* Set a firmware reminder that this is a soft reset. */
 4650         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
 4651 
 4652         /* Dummy read to force the chip to complete all current transactions. */
 4653         val = REG_RD(sc, BCE_MISC_ID);
 4654 
 4655         /* Chip reset. */
 4656         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4657             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4658                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
 4659                 REG_RD(sc, BCE_MISC_COMMAND);
 4660                 DELAY(5);
 4661 
 4662                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 4663                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
 4664 
 4665                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
 4666         } else {
 4667                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 4668                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
 4669                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
 4670                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
 4671 
 4672                 /* Allow up to 30us for reset to complete. */
 4673                 for (i = 0; i < 10; i++) {
 4674                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
 4675                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 4676                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
 4677                                 break;
 4678                         }
 4679                         DELAY(10);
 4680                 }
 4681 
 4682                 /* Check that reset completed successfully. */
 4683                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
 4684                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
 4685                         BCE_PRINTF("%s(%d): Reset failed!\n",
 4686                             __FILE__, __LINE__);
 4687                         rc = EBUSY;
 4688                         goto bce_reset_exit;
 4689                 }
 4690         }
 4691 
 4692         /* Make sure byte swapping is properly configured. */
 4693         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
 4694         if (val != 0x01020304) {
 4695                 BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
 4696                     __FILE__, __LINE__);
 4697                 rc = ENODEV;
 4698                 goto bce_reset_exit;
 4699         }
 4700 
 4701         /* Just completed a reset, assume that firmware is running again. */
 4702         sc->bce_fw_timed_out = FALSE;
 4703         sc->bce_drv_cardiac_arrest = FALSE;
 4704 
 4705         /* Wait for the firmware to finish its initialization. */
 4706         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
 4707         if (rc)
 4708                 BCE_PRINTF("%s(%d): Firmware did not complete "
 4709                     "initialization!\n", __FILE__, __LINE__);
 4710 
 4711 bce_reset_exit:
 4712         DBEXIT(BCE_VERBOSE_RESET);
 4713         return (rc);
 4714 }
 4715 
 4716 
 4717 static int
 4718 bce_chipinit(struct bce_softc *sc)
 4719 {
 4720         u32 val;
 4721         int rc = 0;
 4722 
 4723         DBENTER(BCE_VERBOSE_RESET);
 4724 
 4725         bce_disable_intr(sc);
 4726 
 4727         /*
 4728          * Initialize DMA byte/word swapping, configure the number of DMA
 4729          * channels and PCI clock compensation delay.
 4730          */
 4731         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
 4732             BCE_DMA_CONFIG_DATA_WORD_SWAP |
 4733 #if BYTE_ORDER == BIG_ENDIAN
 4734             BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
 4735 #endif
 4736             BCE_DMA_CONFIG_CNTL_WORD_SWAP |
 4737             DMA_READ_CHANS << 12 |
 4738             DMA_WRITE_CHANS << 16;
 4739 
 4740         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
 4741 
 4742         if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
 4743                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
 4744 
 4745         /*
 4746          * This setting resolves a problem observed on certain Intel PCI
 4747          * chipsets that cannot handle multiple outstanding DMA operations.
 4748          * See errata E9_5706A1_65.
 4749          */
 4750         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
 4751             (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
 4752             !(sc->bce_flags & BCE_PCIX_FLAG))
 4753                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
 4754 
 4755         REG_WR(sc, BCE_DMA_CONFIG, val);
 4756 
 4757         /* Enable the RX_V2P and Context state machines before access. */
 4758         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
 4759             BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
 4760             BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
 4761             BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
 4762 
 4763         /* Initialize context mapping and zero out the quick contexts. */
 4764         if ((rc = bce_init_ctx(sc)) != 0)
 4765                 goto bce_chipinit_exit;
 4766 
 4767         /* Initialize the on-boards CPUs */
 4768         bce_init_cpus(sc);
 4769 
 4770         /* Enable management frames (NC-SI) to flow to the MCP. */
 4771         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
 4772                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
 4773                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
 4774         }
 4775 
 4776         /* Prepare NVRAM for access. */
 4777         if ((rc = bce_init_nvram(sc)) != 0)
 4778                 goto bce_chipinit_exit;
 4779 
 4780         /* Set the kernel bypass block size */
 4781         val = REG_RD(sc, BCE_MQ_CONFIG);
 4782         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
 4783         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
 4784 
 4785         /* Enable bins used on the 5709. */
 4786         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4787             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4788                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
 4789                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
 4790                         val |= BCE_MQ_CONFIG_HALT_DIS;
 4791         }
 4792 
 4793         REG_WR(sc, BCE_MQ_CONFIG, val);
 4794 
 4795         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
 4796         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
 4797         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
 4798 
 4799         /* Set the page size and clear the RV2P processor stall bits. */
 4800         val = (BCM_PAGE_BITS - 8) << 24;
 4801         REG_WR(sc, BCE_RV2P_CONFIG, val);
 4802 
 4803         /* Configure page size. */
 4804         val = REG_RD(sc, BCE_TBDR_CONFIG);
 4805         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
 4806         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
 4807         REG_WR(sc, BCE_TBDR_CONFIG, val);
 4808 
 4809         /* Set the perfect match control register to default. */
 4810         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
 4811 
 4812 bce_chipinit_exit:
 4813         DBEXIT(BCE_VERBOSE_RESET);
 4814 
 4815         return(rc);
 4816 }
 4817 
 4818 
 4819 /****************************************************************************/
 4820 /* Initialize the controller in preparation to send/receive traffic.        */
 4821 /*                                                                          */
 4822 /* Returns:                                                                 */
 4823 /*   0 for success, positive value for failure.                             */
 4824 /****************************************************************************/
 4825 static int
 4826 bce_blockinit(struct bce_softc *sc)
 4827 {
 4828         u32 reg, val;
 4829         int rc = 0;
 4830 
 4831         DBENTER(BCE_VERBOSE_RESET);
 4832 
 4833         /* Load the hardware default MAC address. */
 4834         bce_set_mac_addr(sc);
 4835 
 4836         /* Set the Ethernet backoff seed value */
 4837         val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
 4838               (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
 4839               (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
 4840         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
 4841 
 4842         sc->last_status_idx = 0;
 4843         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
 4844 
 4845         /* Set up link change interrupt generation. */
 4846         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
 4847 
 4848         /* Program the physical address of the status block. */
 4849         REG_WR(sc, BCE_HC_STATUS_ADDR_L,
 4850             BCE_ADDR_LO(sc->status_block_paddr));
 4851         REG_WR(sc, BCE_HC_STATUS_ADDR_H,
 4852             BCE_ADDR_HI(sc->status_block_paddr));
 4853 
 4854         /* Program the physical address of the statistics block. */
 4855         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
 4856             BCE_ADDR_LO(sc->stats_block_paddr));
 4857         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
 4858             BCE_ADDR_HI(sc->stats_block_paddr));
 4859 
 4860         /* Program various host coalescing parameters. */
 4861         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
 4862             (sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
 4863         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
 4864             (sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
 4865         REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
 4866             (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
 4867         REG_WR(sc, BCE_HC_TX_TICKS,
 4868             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
 4869         REG_WR(sc, BCE_HC_RX_TICKS,
 4870             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
 4871         REG_WR(sc, BCE_HC_COM_TICKS,
 4872             (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
 4873         REG_WR(sc, BCE_HC_CMD_TICKS,
 4874             (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
 4875         REG_WR(sc, BCE_HC_STATS_TICKS,
 4876             (sc->bce_stats_ticks & 0xffff00));
 4877         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
 4878 
 4879         /* Configure the Host Coalescing block. */
 4880         val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
 4881             BCE_HC_CONFIG_COLLECT_STATS;
 4882 
 4883 #if 0
 4884         /* ToDo: Add MSI-X support. */
 4885         if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
 4886                 u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
 4887                     BCE_HC_SB_CONFIG_1;
 4888 
 4889                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
 4890 
 4891                 REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
 4892                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
 4893 
 4894                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
 4895                     (sc->tx_quick_cons_trip_int << 16) |
 4896                      sc->tx_quick_cons_trip);
 4897 
 4898                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
 4899                     (sc->tx_ticks_int << 16) | sc->tx_ticks);
 4900 
 4901                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
 4902         }
 4903 
 4904         /*
 4905          * Tell the HC block to automatically set the
 4906          * INT_MASK bit after an MSI/MSI-X interrupt
 4907          * is generated so the driver doesn't have to.
 4908          */
 4909         if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
 4910                 val |= BCE_HC_CONFIG_ONE_SHOT;
 4911 
 4912         /* Set the MSI-X status blocks to 128 byte boundaries. */
 4913         if (sc->bce_flags & BCE_USING_MSIX_FLAG)
 4914                 val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
 4915 #endif
 4916 
 4917         REG_WR(sc, BCE_HC_CONFIG, val);
 4918 
 4919         /* Clear the internal statistics counters. */
 4920         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
 4921 
 4922         /* Verify that bootcode is running. */
 4923         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
 4924 
 4925         DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
 4926             BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
 4927             __FILE__, __LINE__);
 4928             reg = 0);
 4929 
 4930         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
 4931             BCE_DEV_INFO_SIGNATURE_MAGIC) {
 4932                 BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
 4933                     "Expected: 08%08X\n", __FILE__, __LINE__,
 4934                     (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
 4935                     BCE_DEV_INFO_SIGNATURE_MAGIC);
 4936                 rc = ENODEV;
 4937                 goto bce_blockinit_exit;
 4938         }
 4939 
 4940         /* Enable DMA */
 4941         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4942             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 4943                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
 4944                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
 4945                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
 4946         }
 4947 
 4948         /* Allow bootcode to apply additional fixes before enabling MAC. */
 4949         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
 4950             BCE_DRV_MSG_CODE_RESET);
 4951 
 4952         /* Enable link state change interrupt generation. */
 4953         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
 4954 
 4955         /* Enable the RXP. */
 4956         bce_start_rxp_cpu(sc);
 4957 
 4958         /* Disable management frames (NC-SI) from flowing to the MCP. */
 4959         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
 4960                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
 4961                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
 4962                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
 4963         }
 4964 
 4965         /* Enable all remaining blocks in the MAC. */
 4966         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 4967             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
 4968                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
 4969                     BCE_MISC_ENABLE_DEFAULT_XI);
 4970         else
 4971                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
 4972                     BCE_MISC_ENABLE_DEFAULT);
 4973 
 4974         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
 4975         DELAY(20);
 4976 
 4977         /* Save the current host coalescing block settings. */
 4978         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
 4979 
 4980 bce_blockinit_exit:
 4981         DBEXIT(BCE_VERBOSE_RESET);
 4982 
 4983         return (rc);
 4984 }
 4985 
 4986 
 4987 /****************************************************************************/
 4988 /* Encapsulate an mbuf into the rx_bd chain.                                */
 4989 /*                                                                          */
 4990 /* Returns:                                                                 */
 4991 /*   0 for success, positive value for failure.                             */
 4992 /****************************************************************************/
 4993 static int
 4994 bce_get_rx_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
 4995     u16 *chain_prod, u32 *prod_bseq)
 4996 {
 4997         bus_dmamap_t map;
 4998         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
 4999         struct mbuf *m_new = NULL;
 5000         struct rx_bd *rxbd;
 5001         int nsegs, error, rc = 0;
 5002 #ifdef BCE_DEBUG
 5003         u16 debug_chain_prod = *chain_prod;
 5004 #endif
 5005 
 5006         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5007 
 5008         /* Make sure the inputs are valid. */
 5009         DBRUNIF((*chain_prod > MAX_RX_BD),
 5010             BCE_PRINTF("%s(%d): RX producer out of range: "
 5011             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
 5012             *chain_prod, (u16) MAX_RX_BD));
 5013 
 5014         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
 5015             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
 5016             *prod, *chain_prod, *prod_bseq);
 5017 
 5018         /* Update some debug statistic counters */
 5019         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
 5020             sc->rx_low_watermark = sc->free_rx_bd);
 5021         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
 5022             sc->rx_empty_count++);
 5023 
 5024         /* Check whether this is a new mbuf allocation. */
 5025         if (m == NULL) {
 5026 
 5027                 /* Simulate an mbuf allocation failure. */
 5028                 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
 5029                     sc->mbuf_alloc_failed_count++;
 5030                     sc->mbuf_alloc_failed_sim_count++;
 5031                     rc = ENOBUFS;
 5032                     goto bce_get_rx_buf_exit);
 5033 
 5034                 /* This is a new mbuf allocation. */
 5035 #ifdef BCE_JUMBO_HDRSPLIT
 5036                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
 5037 #else
 5038                 if (sc->rx_bd_mbuf_alloc_size <= MCLBYTES)
 5039                         m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
 5040                 else
 5041                         m_new = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
 5042                             sc->rx_bd_mbuf_alloc_size);
 5043 #endif
 5044 
 5045                 if (m_new == NULL) {
 5046                         sc->mbuf_alloc_failed_count++;
 5047                         rc = ENOBUFS;
 5048                         goto bce_get_rx_buf_exit;
 5049                 }
 5050 
 5051                 DBRUN(sc->debug_rx_mbuf_alloc++);
 5052         } else {
 5053                 /* Reuse an existing mbuf. */
 5054                 m_new = m;
 5055         }
 5056 
 5057         /* Make sure we have a valid packet header. */
 5058         M_ASSERTPKTHDR(m_new);
 5059 
 5060         /* Initialize the mbuf size and pad if necessary for alignment. */
 5061         m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
 5062         m_adj(m_new, sc->rx_bd_mbuf_align_pad);
 5063 
 5064         /* ToDo: Consider calling m_fragment() to test error handling. */
 5065 
 5066         /* Map the mbuf cluster into device memory. */
 5067         map = sc->rx_mbuf_map[*chain_prod];
 5068         error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
 5069             segs, &nsegs, BUS_DMA_NOWAIT);
 5070 
 5071         /* Handle any mapping errors. */
 5072         if (error) {
 5073                 BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
 5074                     "chain (%d)!\n", __FILE__, __LINE__, error);
 5075 
 5076                 sc->dma_map_addr_rx_failed_count++;
 5077                 m_freem(m_new);
 5078 
 5079                 DBRUN(sc->debug_rx_mbuf_alloc--);
 5080 
 5081                 rc = ENOBUFS;
 5082                 goto bce_get_rx_buf_exit;
 5083         }
 5084 
 5085         /* All mbufs must map to a single segment. */
 5086         KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
 5087             __FUNCTION__, nsegs));
 5088 
 5089         /* Setup the rx_bd for the segment. */
 5090         rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
 5091 
 5092         rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
 5093         rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
 5094         rxbd->rx_bd_len       = htole32(segs[0].ds_len);
 5095         rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
 5096         *prod_bseq += segs[0].ds_len;
 5097 
 5098         /* Save the mbuf and update our counter. */
 5099         sc->rx_mbuf_ptr[*chain_prod] = m_new;
 5100         sc->free_rx_bd -= nsegs;
 5101 
 5102         DBRUNMSG(BCE_INSANE_RECV,
 5103             bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
 5104 
 5105         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
 5106             "chain_prod = 0x%04X, prod_bseq = 0x%08X\n",
 5107             __FUNCTION__, *prod, *chain_prod, *prod_bseq);
 5108 
 5109 bce_get_rx_buf_exit:
 5110         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5111 
 5112         return(rc);
 5113 }
 5114 
 5115 
 5116 #ifdef BCE_JUMBO_HDRSPLIT
 5117 /****************************************************************************/
 5118 /* Encapsulate an mbuf cluster into the page chain.                         */
 5119 /*                                                                          */
 5120 /* Returns:                                                                 */
 5121 /*   0 for success, positive value for failure.                             */
 5122 /****************************************************************************/
 5123 static int
 5124 bce_get_pg_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod,
 5125         u16 *prod_idx)
 5126 {
 5127         bus_dmamap_t map;
 5128         bus_addr_t busaddr;
 5129         struct mbuf *m_new = NULL;
 5130         struct rx_bd *pgbd;
 5131         int error, rc = 0;
 5132 #ifdef BCE_DEBUG
 5133         u16 debug_prod_idx = *prod_idx;
 5134 #endif
 5135 
 5136         DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5137 
 5138         /* Make sure the inputs are valid. */
 5139         DBRUNIF((*prod_idx > MAX_PG_BD),
 5140             BCE_PRINTF("%s(%d): page producer out of range: "
 5141             "0x%04X > 0x%04X\n", __FILE__, __LINE__,
 5142             *prod_idx, (u16) MAX_PG_BD));
 5143 
 5144         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
 5145             "chain_prod = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
 5146 
 5147         /* Update counters if we've hit a new low or run out of pages. */
 5148         DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
 5149             sc->pg_low_watermark = sc->free_pg_bd);
 5150         DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
 5151 
 5152         /* Check whether this is a new mbuf allocation. */
 5153         if (m == NULL) {
 5154 
 5155                 /* Simulate an mbuf allocation failure. */
 5156                 DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
 5157                     sc->mbuf_alloc_failed_count++;
 5158                     sc->mbuf_alloc_failed_sim_count++;
 5159                     rc = ENOBUFS;
 5160                     goto bce_get_pg_buf_exit);
 5161 
 5162                 /* This is a new mbuf allocation. */
 5163                 m_new = m_getcl(M_DONTWAIT, MT_DATA, 0);
 5164                 if (m_new == NULL) {
 5165                         sc->mbuf_alloc_failed_count++;
 5166                         rc = ENOBUFS;
 5167                         goto bce_get_pg_buf_exit;
 5168                 }
 5169 
 5170                 DBRUN(sc->debug_pg_mbuf_alloc++);
 5171         } else {
 5172                 /* Reuse an existing mbuf. */
 5173                 m_new = m;
 5174                 m_new->m_data = m_new->m_ext.ext_buf;
 5175         }
 5176 
 5177         m_new->m_len = sc->pg_bd_mbuf_alloc_size;
 5178 
 5179         /* ToDo: Consider calling m_fragment() to test error handling. */
 5180 
 5181         /* Map the mbuf cluster into device memory. */
 5182         map = sc->pg_mbuf_map[*prod_idx];
 5183         error = bus_dmamap_load(sc->pg_mbuf_tag, map, mtod(m_new, void *),
 5184             sc->pg_bd_mbuf_alloc_size, bce_dma_map_addr,
 5185             &busaddr, BUS_DMA_NOWAIT);
 5186 
 5187         /* Handle any mapping errors. */
 5188         if (error) {
 5189                 BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
 5190                     __FILE__, __LINE__);
 5191 
 5192                 m_freem(m_new);
 5193                 DBRUN(sc->debug_pg_mbuf_alloc--);
 5194 
 5195                 rc = ENOBUFS;
 5196                 goto bce_get_pg_buf_exit;
 5197         }
 5198 
 5199         /* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
 5200 
 5201         /*
 5202          * The page chain uses the same rx_bd data structure
 5203          * as the receive chain but doesn't require a byte sequence (bseq).
 5204          */
 5205         pgbd = &sc->pg_bd_chain[PG_PAGE(*prod_idx)][PG_IDX(*prod_idx)];
 5206 
 5207         pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(busaddr));
 5208         pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(busaddr));
 5209         pgbd->rx_bd_len       = htole32(sc->pg_bd_mbuf_alloc_size);
 5210         pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
 5211 
 5212         /* Save the mbuf and update our counter. */
 5213         sc->pg_mbuf_ptr[*prod_idx] = m_new;
 5214         sc->free_pg_bd--;
 5215 
 5216         DBRUNMSG(BCE_INSANE_RECV,
 5217             bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
 5218 
 5219         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
 5220             "prod_idx = 0x%04X\n", __FUNCTION__, *prod, *prod_idx);
 5221 
 5222 bce_get_pg_buf_exit:
 5223         DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
 5224 
 5225         return(rc);
 5226 }
 5227 #endif /* BCE_JUMBO_HDRSPLIT */
 5228 
 5229 
 5230 /****************************************************************************/
 5231 /* Initialize the TX context memory.                                        */
 5232 /*                                                                          */
 5233 /* Returns:                                                                 */
 5234 /*   Nothing                                                                */
 5235 /****************************************************************************/
 5236 static void
 5237 bce_init_tx_context(struct bce_softc *sc)
 5238 {
 5239         u32 val;
 5240 
 5241         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 5242 
 5243         /* Initialize the context ID for an L2 TX chain. */
 5244         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 5245                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 5246                 /* Set the CID type to support an L2 connection. */
 5247                 val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
 5248                     BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
 5249                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
 5250                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
 5251                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5252                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
 5253 
 5254                 /* Point the hardware to the first page in the chain. */
 5255                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
 5256                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5257                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
 5258                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
 5259                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5260                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
 5261         } else {
 5262                 /* Set the CID type to support an L2 connection. */
 5263                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
 5264                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
 5265                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
 5266                 CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
 5267 
 5268                 /* Point the hardware to the first page in the chain. */
 5269                 val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
 5270                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5271                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
 5272                 val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
 5273                 CTX_WR(sc, GET_CID_ADDR(TX_CID),
 5274                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
 5275         }
 5276 
 5277         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 5278 }
 5279 
 5280 
 5281 /****************************************************************************/
 5282 /* Allocate memory and initialize the TX data structures.                   */
 5283 /*                                                                          */
 5284 /* Returns:                                                                 */
 5285 /*   0 for success, positive value for failure.                             */
 5286 /****************************************************************************/
 5287 static int
 5288 bce_init_tx_chain(struct bce_softc *sc)
 5289 {
 5290         struct tx_bd *txbd;
 5291         int i, rc = 0;
 5292 
 5293         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
 5294 
 5295         /* Set the initial TX producer/consumer indices. */
 5296         sc->tx_prod        = 0;
 5297         sc->tx_cons        = 0;
 5298         sc->tx_prod_bseq   = 0;
 5299         sc->used_tx_bd     = 0;
 5300         sc->max_tx_bd      = USABLE_TX_BD;
 5301         DBRUN(sc->tx_hi_watermark = 0);
 5302         DBRUN(sc->tx_full_count = 0);
 5303 
 5304         /*
 5305          * The NetXtreme II supports a linked-list structre called
 5306          * a Buffer Descriptor Chain (or BD chain).  A BD chain
 5307          * consists of a series of 1 or more chain pages, each of which
 5308          * consists of a fixed number of BD entries.
 5309          * The last BD entry on each page is a pointer to the next page
 5310          * in the chain, and the last pointer in the BD chain
 5311          * points back to the beginning of the chain.
 5312          */
 5313 
 5314         /* Set the TX next pointer chain entries. */
 5315         for (i = 0; i < TX_PAGES; i++) {
 5316                 int j;
 5317 
 5318                 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
 5319 
 5320                 /* Check if we've reached the last page. */
 5321                 if (i == (TX_PAGES - 1))
 5322                         j = 0;
 5323                 else
 5324                         j = i + 1;
 5325 
 5326                 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
 5327                 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
 5328         }
 5329 
 5330         bce_init_tx_context(sc);
 5331 
 5332         DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
 5333         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
 5334 
 5335         return(rc);
 5336 }
 5337 
 5338 
 5339 /****************************************************************************/
 5340 /* Free memory and clear the TX data structures.                            */
 5341 /*                                                                          */
 5342 /* Returns:                                                                 */
 5343 /*   Nothing.                                                               */
 5344 /****************************************************************************/
 5345 static void
 5346 bce_free_tx_chain(struct bce_softc *sc)
 5347 {
 5348         int i;
 5349 
 5350         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
 5351 
 5352         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
 5353         for (i = 0; i < TOTAL_TX_BD; i++) {
 5354                 if (sc->tx_mbuf_ptr[i] != NULL) {
 5355                         if (sc->tx_mbuf_map[i] != NULL)
 5356                                 bus_dmamap_sync(sc->tx_mbuf_tag,
 5357                                     sc->tx_mbuf_map[i],
 5358                                     BUS_DMASYNC_POSTWRITE);
 5359                         m_freem(sc->tx_mbuf_ptr[i]);
 5360                         sc->tx_mbuf_ptr[i] = NULL;
 5361                         DBRUN(sc->debug_tx_mbuf_alloc--);
 5362                 }
 5363         }
 5364 
 5365         /* Clear each TX chain page. */
 5366         for (i = 0; i < TX_PAGES; i++)
 5367                 bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
 5368 
 5369         sc->used_tx_bd = 0;
 5370 
 5371         /* Check if we lost any mbufs in the process. */
 5372         DBRUNIF((sc->debug_tx_mbuf_alloc),
 5373             BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
 5374             "from tx chain!\n", __FILE__, __LINE__,
 5375             sc->debug_tx_mbuf_alloc));
 5376 
 5377         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
 5378 }
 5379 
 5380 
 5381 /****************************************************************************/
 5382 /* Initialize the RX context memory.                                        */
 5383 /*                                                                          */
 5384 /* Returns:                                                                 */
 5385 /*   Nothing                                                                */
 5386 /****************************************************************************/
 5387 static void
 5388 bce_init_rx_context(struct bce_softc *sc)
 5389 {
 5390         u32 val;
 5391 
 5392         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
 5393 
 5394         /* Init the type, size, and BD cache levels for the RX context. */
 5395         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
 5396             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
 5397             (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
 5398 
 5399         /*
 5400          * Set the level for generating pause frames
 5401          * when the number of available rx_bd's gets
 5402          * too low (the low watermark) and the level
 5403          * when pause frames can be stopped (the high
 5404          * watermark).
 5405          */
 5406         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 5407             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 5408                 u32 lo_water, hi_water;
 5409 
 5410                 if (sc->bce_flags && BCE_USING_TX_FLOW_CONTROL) {
 5411                         lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
 5412                 } else {
 5413                         lo_water = 0;
 5414                 }
 5415 
 5416                 if (lo_water >= USABLE_RX_BD) {
 5417                         lo_water = 0;
 5418                 }
 5419 
 5420                 hi_water = USABLE_RX_BD / 4;
 5421 
 5422                 if (hi_water <= lo_water) {
 5423                         lo_water = 0;
 5424                 }
 5425 
 5426                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
 5427                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
 5428 
 5429                 if (hi_water > 0xf)
 5430                         hi_water = 0xf;
 5431                 else if (hi_water == 0)
 5432                         lo_water = 0;
 5433 
 5434                 val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
 5435                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
 5436         }
 5437 
 5438         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
 5439 
 5440         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
 5441         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 5442             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 5443                 val = REG_RD(sc, BCE_MQ_MAP_L2_5);
 5444                 REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
 5445         }
 5446 
 5447         /* Point the hardware to the first page in the chain. */
 5448         val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
 5449         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
 5450         val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
 5451         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
 5452 
 5453         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
 5454 }
 5455 
 5456 
 5457 /****************************************************************************/
 5458 /* Allocate memory and initialize the RX data structures.                   */
 5459 /*                                                                          */
 5460 /* Returns:                                                                 */
 5461 /*   0 for success, positive value for failure.                             */
 5462 /****************************************************************************/
 5463 static int
 5464 bce_init_rx_chain(struct bce_softc *sc)
 5465 {
 5466         struct rx_bd *rxbd;
 5467         int i, rc = 0;
 5468 
 5469         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5470             BCE_VERBOSE_CTX);
 5471 
 5472         /* Initialize the RX producer and consumer indices. */
 5473         sc->rx_prod        = 0;
 5474         sc->rx_cons        = 0;
 5475         sc->rx_prod_bseq   = 0;
 5476         sc->free_rx_bd     = USABLE_RX_BD;
 5477         sc->max_rx_bd      = USABLE_RX_BD;
 5478 
 5479         /* Initialize the RX next pointer chain entries. */
 5480         for (i = 0; i < RX_PAGES; i++) {
 5481                 int j;
 5482 
 5483                 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
 5484 
 5485                 /* Check if we've reached the last page. */
 5486                 if (i == (RX_PAGES - 1))
 5487                         j = 0;
 5488                 else
 5489                         j = i + 1;
 5490 
 5491                 /* Setup the chain page pointers. */
 5492                 rxbd->rx_bd_haddr_hi =
 5493                     htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
 5494                 rxbd->rx_bd_haddr_lo =
 5495                     htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
 5496         }
 5497 
 5498         /* Fill up the RX chain. */
 5499         bce_fill_rx_chain(sc);
 5500 
 5501         DBRUN(sc->rx_low_watermark = USABLE_RX_BD);
 5502         DBRUN(sc->rx_empty_count = 0);
 5503         for (i = 0; i < RX_PAGES; i++) {
 5504                 bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
 5505                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 5506         }
 5507 
 5508         bce_init_rx_context(sc);
 5509 
 5510         DBRUNMSG(BCE_EXTREME_RECV, bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD));
 5511         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5512             BCE_VERBOSE_CTX);
 5513 
 5514         /* ToDo: Are there possible failure modes here? */
 5515 
 5516         return(rc);
 5517 }
 5518 
 5519 
 5520 /****************************************************************************/
 5521 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
 5522 /* occurs.                                                                  */
 5523 /*                                                                          */
 5524 /* Returns:                                                                 */
 5525 /*   Nothing                                                                */
 5526 /****************************************************************************/
 5527 static void
 5528 bce_fill_rx_chain(struct bce_softc *sc)
 5529 {
 5530         u16 prod, prod_idx;
 5531         u32 prod_bseq;
 5532 
 5533         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5534             BCE_VERBOSE_CTX);
 5535 
 5536         /* Get the RX chain producer indices. */
 5537         prod      = sc->rx_prod;
 5538         prod_bseq = sc->rx_prod_bseq;
 5539 
 5540         /* Keep filling the RX chain until it's full. */
 5541         while (sc->free_rx_bd > 0) {
 5542                 prod_idx = RX_CHAIN_IDX(prod);
 5543                 if (bce_get_rx_buf(sc, NULL, &prod, &prod_idx, &prod_bseq)) {
 5544                         /* Bail out if we can't add an mbuf to the chain. */
 5545                         break;
 5546                 }
 5547                 prod = NEXT_RX_BD(prod);
 5548         }
 5549 
 5550         /* Save the RX chain producer indices. */
 5551         sc->rx_prod      = prod;
 5552         sc->rx_prod_bseq = prod_bseq;
 5553 
 5554         /* We should never end up pointing to a next page pointer. */
 5555         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
 5556             BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
 5557             __FUNCTION__, sc->rx_prod));
 5558 
 5559         /* Write the mailbox and tell the chip about the waiting rx_bd's. */
 5560         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
 5561             BCE_L2MQ_RX_HOST_BDIDX, sc->rx_prod);
 5562         REG_WR(sc, MB_GET_CID_ADDR(RX_CID) +
 5563             BCE_L2MQ_RX_HOST_BSEQ, sc->rx_prod_bseq);
 5564 
 5565         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5566             BCE_VERBOSE_CTX);
 5567 }
 5568 
 5569 
 5570 /****************************************************************************/
 5571 /* Free memory and clear the RX data structures.                            */
 5572 /*                                                                          */
 5573 /* Returns:                                                                 */
 5574 /*   Nothing.                                                               */
 5575 /****************************************************************************/
 5576 static void
 5577 bce_free_rx_chain(struct bce_softc *sc)
 5578 {
 5579         int i;
 5580 
 5581         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5582 
 5583         /* Free any mbufs still in the RX mbuf chain. */
 5584         for (i = 0; i < TOTAL_RX_BD; i++) {
 5585                 if (sc->rx_mbuf_ptr[i] != NULL) {
 5586                         if (sc->rx_mbuf_map[i] != NULL)
 5587                                 bus_dmamap_sync(sc->rx_mbuf_tag,
 5588                                     sc->rx_mbuf_map[i],
 5589                                     BUS_DMASYNC_POSTREAD);
 5590                         m_freem(sc->rx_mbuf_ptr[i]);
 5591                         sc->rx_mbuf_ptr[i] = NULL;
 5592                         DBRUN(sc->debug_rx_mbuf_alloc--);
 5593                 }
 5594         }
 5595 
 5596         /* Clear each RX chain page. */
 5597         for (i = 0; i < RX_PAGES; i++)
 5598                 if (sc->rx_bd_chain[i] != NULL) {
 5599                         bzero((char *)sc->rx_bd_chain[i],
 5600                             BCE_RX_CHAIN_PAGE_SZ);
 5601                 }
 5602 
 5603         sc->free_rx_bd = sc->max_rx_bd;
 5604 
 5605         /* Check if we lost any mbufs in the process. */
 5606         DBRUNIF((sc->debug_rx_mbuf_alloc),
 5607             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
 5608             __FUNCTION__, sc->debug_rx_mbuf_alloc));
 5609 
 5610         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5611 }
 5612 
 5613 
 5614 #ifdef BCE_JUMBO_HDRSPLIT
 5615 /****************************************************************************/
 5616 /* Allocate memory and initialize the page data structures.                 */
 5617 /* Assumes that bce_init_rx_chain() has not already been called.            */
 5618 /*                                                                          */
 5619 /* Returns:                                                                 */
 5620 /*   0 for success, positive value for failure.                             */
 5621 /****************************************************************************/
 5622 static int
 5623 bce_init_pg_chain(struct bce_softc *sc)
 5624 {
 5625         struct rx_bd *pgbd;
 5626         int i, rc = 0;
 5627         u32 val;
 5628 
 5629         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5630                 BCE_VERBOSE_CTX);
 5631 
 5632         /* Initialize the page producer and consumer indices. */
 5633         sc->pg_prod        = 0;
 5634         sc->pg_cons        = 0;
 5635         sc->free_pg_bd     = USABLE_PG_BD;
 5636         sc->max_pg_bd      = USABLE_PG_BD;
 5637         DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
 5638         DBRUN(sc->pg_empty_count = 0);
 5639 
 5640         /* Initialize the page next pointer chain entries. */
 5641         for (i = 0; i < PG_PAGES; i++) {
 5642                 int j;
 5643 
 5644                 pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
 5645 
 5646                 /* Check if we've reached the last page. */
 5647                 if (i == (PG_PAGES - 1))
 5648                         j = 0;
 5649                 else
 5650                         j = i + 1;
 5651 
 5652                 /* Setup the chain page pointers. */
 5653                 pgbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
 5654                 pgbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
 5655         }
 5656 
 5657         /* Setup the MQ BIN mapping for host_pg_bidx. */
 5658         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)     ||
 5659                 (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
 5660                 REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
 5661 
 5662         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
 5663 
 5664         /* Configure the rx_bd and page chain mbuf cluster size. */
 5665         val = (sc->rx_bd_mbuf_data_len << 16) | sc->pg_bd_mbuf_alloc_size;
 5666         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
 5667 
 5668         /* Configure the context reserved for jumbo support. */
 5669         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
 5670                 BCE_L2CTX_RX_RBDC_JUMBO_KEY);
 5671 
 5672         /* Point the hardware to the first page in the page chain. */
 5673         val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
 5674         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
 5675         val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
 5676         CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
 5677 
 5678         /* Fill up the page chain. */
 5679         bce_fill_pg_chain(sc);
 5680 
 5681         for (i = 0; i < PG_PAGES; i++) {
 5682                 bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
 5683                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 5684         }
 5685 
 5686         DBRUNMSG(BCE_EXTREME_RECV, bce_dump_pg_chain(sc, 0, TOTAL_PG_BD));
 5687         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
 5688                 BCE_VERBOSE_CTX);
 5689         return(rc);
 5690 }
 5691 
 5692 
 5693 /****************************************************************************/
 5694 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
 5695 /* occurs.                                                                  */
 5696 /*                                                                          */
 5697 /* Returns:                                                                 */
 5698 /*   Nothing                                                                */
 5699 /****************************************************************************/
 5700 static void
 5701 bce_fill_pg_chain(struct bce_softc *sc)
 5702 {
 5703         u16 prod, prod_idx;
 5704 
 5705         DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5706             BCE_VERBOSE_CTX);
 5707 
 5708         /* Get the page chain prodcuer index. */
 5709         prod = sc->pg_prod;
 5710 
 5711         /* Keep filling the page chain until it's full. */
 5712         while (sc->free_pg_bd > 0) {
 5713                 prod_idx = PG_CHAIN_IDX(prod);
 5714                 if (bce_get_pg_buf(sc, NULL, &prod, &prod_idx)) {
 5715                         /* Bail out if we can't add an mbuf to the chain. */
 5716                         break;
 5717                 }
 5718                 prod = NEXT_PG_BD(prod);
 5719         }
 5720 
 5721         /* Save the page chain producer index. */
 5722         sc->pg_prod = prod;
 5723 
 5724         DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
 5725             BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
 5726             __FUNCTION__, sc->pg_prod));
 5727 
 5728         /*
 5729          * Write the mailbox and tell the chip about
 5730          * the new rx_bd's in the page chain.
 5731          */
 5732         REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) +
 5733             BCE_L2MQ_RX_HOST_PG_BDIDX, sc->pg_prod);
 5734 
 5735         DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
 5736             BCE_VERBOSE_CTX);
 5737 }
 5738 
 5739 
 5740 /****************************************************************************/
 5741 /* Free memory and clear the RX data structures.                            */
 5742 /*                                                                          */
 5743 /* Returns:                                                                 */
 5744 /*   Nothing.                                                               */
 5745 /****************************************************************************/
 5746 static void
 5747 bce_free_pg_chain(struct bce_softc *sc)
 5748 {
 5749         int i;
 5750 
 5751         DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5752 
 5753         /* Free any mbufs still in the mbuf page chain. */
 5754         for (i = 0; i < TOTAL_PG_BD; i++) {
 5755                 if (sc->pg_mbuf_ptr[i] != NULL) {
 5756                         if (sc->pg_mbuf_map[i] != NULL)
 5757                                 bus_dmamap_sync(sc->pg_mbuf_tag,
 5758                                     sc->pg_mbuf_map[i],
 5759                                     BUS_DMASYNC_POSTREAD);
 5760                         m_freem(sc->pg_mbuf_ptr[i]);
 5761                         sc->pg_mbuf_ptr[i] = NULL;
 5762                         DBRUN(sc->debug_pg_mbuf_alloc--);
 5763                 }
 5764         }
 5765 
 5766         /* Clear each page chain pages. */
 5767         for (i = 0; i < PG_PAGES; i++)
 5768                 bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
 5769 
 5770         sc->free_pg_bd = sc->max_pg_bd;
 5771 
 5772         /* Check if we lost any mbufs in the process. */
 5773         DBRUNIF((sc->debug_pg_mbuf_alloc),
 5774             BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
 5775             __FUNCTION__, sc->debug_pg_mbuf_alloc));
 5776 
 5777         DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
 5778 }
 5779 #endif /* BCE_JUMBO_HDRSPLIT */
 5780 
 5781 
 5782 /****************************************************************************/
 5783 /* Set media options.                                                       */
 5784 /*                                                                          */
 5785 /* Returns:                                                                 */
 5786 /*   0 for success, positive value for failure.                             */
 5787 /****************************************************************************/
 5788 static int
 5789 bce_ifmedia_upd(struct ifnet *ifp)
 5790 {
 5791         struct bce_softc *sc = ifp->if_softc;
 5792         int error;
 5793 
 5794         DBENTER(BCE_VERBOSE);
 5795 
 5796         BCE_LOCK(sc);
 5797         error = bce_ifmedia_upd_locked(ifp);
 5798         BCE_UNLOCK(sc);
 5799 
 5800         DBEXIT(BCE_VERBOSE);
 5801         return (error);
 5802 }
 5803 
 5804 
 5805 /****************************************************************************/
 5806 /* Set media options.                                                       */
 5807 /*                                                                          */
 5808 /* Returns:                                                                 */
 5809 /*   Nothing.                                                               */
 5810 /****************************************************************************/
 5811 static int
 5812 bce_ifmedia_upd_locked(struct ifnet *ifp)
 5813 {
 5814         struct bce_softc *sc = ifp->if_softc;
 5815         struct mii_data *mii;
 5816         int error;
 5817 
 5818         DBENTER(BCE_VERBOSE_PHY);
 5819 
 5820         error = 0;
 5821         BCE_LOCK_ASSERT(sc);
 5822 
 5823         mii = device_get_softc(sc->bce_miibus);
 5824 
 5825         /* Make sure the MII bus has been enumerated. */
 5826         if (mii) {
 5827                 sc->bce_link_up = FALSE;
 5828                 if (mii->mii_instance) {
 5829                         struct mii_softc *miisc;
 5830 
 5831                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 5832                             mii_phy_reset(miisc);
 5833                 }
 5834                 error = mii_mediachg(mii);
 5835         }
 5836 
 5837         DBEXIT(BCE_VERBOSE_PHY);
 5838         return (error);
 5839 }
 5840 
 5841 
 5842 /****************************************************************************/
 5843 /* Reports current media status.                                            */
 5844 /*                                                                          */
 5845 /* Returns:                                                                 */
 5846 /*   Nothing.                                                               */
 5847 /****************************************************************************/
 5848 static void
 5849 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 5850 {
 5851         struct bce_softc *sc = ifp->if_softc;
 5852         struct mii_data *mii;
 5853 
 5854         DBENTER(BCE_VERBOSE_PHY);
 5855 
 5856         BCE_LOCK(sc);
 5857 
 5858         if ((ifp->if_flags & IFF_UP) == 0) {
 5859                 BCE_UNLOCK(sc);
 5860                 return;
 5861         }
 5862         mii = device_get_softc(sc->bce_miibus);
 5863 
 5864         mii_pollstat(mii);
 5865         ifmr->ifm_active = mii->mii_media_active;
 5866         ifmr->ifm_status = mii->mii_media_status;
 5867 
 5868         BCE_UNLOCK(sc);
 5869 
 5870         DBEXIT(BCE_VERBOSE_PHY);
 5871 }
 5872 
 5873 
 5874 /****************************************************************************/
 5875 /* Handles PHY generated interrupt events.                                  */
 5876 /*                                                                          */
 5877 /* Returns:                                                                 */
 5878 /*   Nothing.                                                               */
 5879 /****************************************************************************/
 5880 static void
 5881 bce_phy_intr(struct bce_softc *sc)
 5882 {
 5883         u32 new_link_state, old_link_state;
 5884 
 5885         DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
 5886 
 5887         DBRUN(sc->phy_interrupts++);
 5888 
 5889         new_link_state = sc->status_block->status_attn_bits &
 5890             STATUS_ATTN_BITS_LINK_STATE;
 5891         old_link_state = sc->status_block->status_attn_bits_ack &
 5892             STATUS_ATTN_BITS_LINK_STATE;
 5893 
 5894         /* Handle any changes if the link state has changed. */
 5895         if (new_link_state != old_link_state) {
 5896 
 5897                 /* Update the status_attn_bits_ack field. */
 5898                 if (new_link_state) {
 5899                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
 5900                             STATUS_ATTN_BITS_LINK_STATE);
 5901                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
 5902                             __FUNCTION__);
 5903                 }
 5904                 else {
 5905                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
 5906                             STATUS_ATTN_BITS_LINK_STATE);
 5907                         DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
 5908                             __FUNCTION__);
 5909                 }
 5910 
 5911                 /*
 5912                  * Assume link is down and allow
 5913                  * tick routine to update the state
 5914                  * based on the actual media state.
 5915                  */
 5916                 sc->bce_link_up = FALSE;
 5917                 callout_stop(&sc->bce_tick_callout);
 5918                 bce_tick(sc);
 5919         }
 5920 
 5921         /* Acknowledge the link change interrupt. */
 5922         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
 5923 
 5924         DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
 5925 }
 5926 
 5927 
 5928 /****************************************************************************/
 5929 /* Reads the receive consumer value from the status block (skipping over    */
 5930 /* chain page pointer if necessary).                                        */
 5931 /*                                                                          */
 5932 /* Returns:                                                                 */
 5933 /*   hw_cons                                                                */
 5934 /****************************************************************************/
 5935 static inline u16
 5936 bce_get_hw_rx_cons(struct bce_softc *sc)
 5937 {
 5938         u16 hw_cons;
 5939 
 5940         rmb();
 5941         hw_cons = sc->status_block->status_rx_quick_consumer_index0;
 5942         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
 5943                 hw_cons++;
 5944 
 5945         return hw_cons;
 5946 }
 5947 
 5948 /****************************************************************************/
 5949 /* Handles received frame interrupt events.                                 */
 5950 /*                                                                          */
 5951 /* Returns:                                                                 */
 5952 /*   Nothing.                                                               */
 5953 /****************************************************************************/
 5954 static void
 5955 bce_rx_intr(struct bce_softc *sc)
 5956 {
 5957         struct ifnet *ifp = sc->bce_ifp;
 5958         struct l2_fhdr *l2fhdr;
 5959         struct ether_vlan_header *vh;
 5960         unsigned int pkt_len;
 5961         u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
 5962         u32 status;
 5963 #ifdef BCE_JUMBO_HDRSPLIT
 5964         unsigned int rem_len;
 5965         u16 sw_pg_cons, sw_pg_cons_idx;
 5966 #endif
 5967 
 5968         DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 5969         DBRUN(sc->interrupts_rx++);
 5970         DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
 5971             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
 5972             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
 5973 
 5974         /* Prepare the RX chain pages to be accessed by the host CPU. */
 5975         for (int i = 0; i < RX_PAGES; i++)
 5976                 bus_dmamap_sync(sc->rx_bd_chain_tag,
 5977                     sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
 5978 
 5979 #ifdef BCE_JUMBO_HDRSPLIT
 5980         /* Prepare the page chain pages to be accessed by the host CPU. */
 5981         for (int i = 0; i < PG_PAGES; i++)
 5982                 bus_dmamap_sync(sc->pg_bd_chain_tag,
 5983                     sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
 5984 #endif
 5985 
 5986         /* Get the hardware's view of the RX consumer index. */
 5987         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
 5988 
 5989         /* Get working copies of the driver's view of the consumer indices. */
 5990         sw_rx_cons = sc->rx_cons;
 5991 
 5992 #ifdef BCE_JUMBO_HDRSPLIT
 5993         sw_pg_cons = sc->pg_cons;
 5994 #endif
 5995 
 5996         /* Update some debug statistics counters */
 5997         DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
 5998             sc->rx_low_watermark = sc->free_rx_bd);
 5999         DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
 6000             sc->rx_empty_count++);
 6001 
 6002         /* Scan through the receive chain as long as there is work to do */
 6003         /* ToDo: Consider setting a limit on the number of packets processed. */
 6004         rmb();
 6005         while (sw_rx_cons != hw_rx_cons) {
 6006                 struct mbuf *m0;
 6007 
 6008                 /* Convert the producer/consumer indices to an actual rx_bd index. */
 6009                 sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
 6010 
 6011                 /* Unmap the mbuf from DMA space. */
 6012                 bus_dmamap_sync(sc->rx_mbuf_tag,
 6013                     sc->rx_mbuf_map[sw_rx_cons_idx],
 6014                     BUS_DMASYNC_POSTREAD);
 6015                 bus_dmamap_unload(sc->rx_mbuf_tag,
 6016                     sc->rx_mbuf_map[sw_rx_cons_idx]);
 6017 
 6018                 /* Remove the mbuf from the RX chain. */
 6019                 m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
 6020                 sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
 6021                 DBRUN(sc->debug_rx_mbuf_alloc--);
 6022                 sc->free_rx_bd++;
 6023 
 6024                 if(m0 == NULL) {
 6025                         DBPRINT(sc, BCE_EXTREME_RECV,
 6026                             "%s(): Oops! Empty mbuf pointer "
 6027                             "found in sc->rx_mbuf_ptr[0x%04X]!\n",
 6028                             __FUNCTION__, sw_rx_cons_idx);
 6029                         goto bce_rx_int_next_rx;
 6030                 }
 6031 
 6032                 /*
 6033                  * Frames received on the NetXteme II are prepended
 6034                  * with an l2_fhdr structure which provides status
 6035                  * information about the received frame (including
 6036                  * VLAN tags and checksum info).  The frames are
 6037                  * also automatically adjusted to align the IP
 6038                  * header (i.e. two null bytes are inserted before
 6039                  * the Ethernet header).  As a result the data
 6040                  * DMA'd by the controller into the mbuf looks
 6041                  * like this:
 6042                  *
 6043                  * +---------+-----+---------------------+-----+
 6044                  * | l2_fhdr | pad | packet data         | FCS |
 6045                  * +---------+-----+---------------------+-----+
 6046                  *
 6047                  * The l2_fhdr needs to be checked and skipped and
 6048                  * the FCS needs to be stripped before sending the
 6049                  * packet up the stack.
 6050                  */
 6051                 l2fhdr  = mtod(m0, struct l2_fhdr *);
 6052 
 6053                 /* Get the packet data + FCS length and the status. */
 6054                 pkt_len = l2fhdr->l2_fhdr_pkt_len;
 6055                 status  = l2fhdr->l2_fhdr_status;
 6056 
 6057                 /*
 6058                  * Skip over the l2_fhdr and pad, resulting in the
 6059                  * following data in the mbuf:
 6060                  * +---------------------+-----+
 6061                  * | packet data         | FCS |
 6062                  * +---------------------+-----+
 6063                  */
 6064                 m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
 6065 
 6066 #ifdef BCE_JUMBO_HDRSPLIT
 6067                 /*
 6068                  * Check whether the received frame fits in a single
 6069                  * mbuf or not (i.e. packet data + FCS <=
 6070                  * sc->rx_bd_mbuf_data_len bytes).
 6071                  */
 6072                 if (pkt_len > m0->m_len) {
 6073                         /*
 6074                          * The received frame is larger than a single mbuf.
 6075                          * If the frame was a TCP frame then only the TCP
 6076                          * header is placed in the mbuf, the remaining
 6077                          * payload (including FCS) is placed in the page
 6078                          * chain, the SPLIT flag is set, and the header
 6079                          * length is placed in the IP checksum field.
 6080                          * If the frame is not a TCP frame then the mbuf
 6081                          * is filled and the remaining bytes are placed
 6082                          * in the page chain.
 6083                          */
 6084 
 6085                         DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
 6086                             "packet.\n", __FUNCTION__);
 6087 
 6088                         /*
 6089                          * When the page chain is enabled and the TCP
 6090                          * header has been split from the TCP payload,
 6091                          * the ip_xsum structure will reflect the length
 6092                          * of the TCP header, not the IP checksum.  Set
 6093                          * the packet length of the mbuf accordingly.
 6094                          */
 6095                         if (status & L2_FHDR_STATUS_SPLIT)
 6096                                 m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
 6097 
 6098                         rem_len = pkt_len - m0->m_len;
 6099 
 6100                         /* Pull mbufs off the page chain for the remaining data. */
 6101                         while (rem_len > 0) {
 6102                                 struct mbuf *m_pg;
 6103 
 6104                                 sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
 6105 
 6106                                 /* Remove the mbuf from the page chain. */
 6107                                 m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
 6108                                 sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
 6109                                 DBRUN(sc->debug_pg_mbuf_alloc--);
 6110                                 sc->free_pg_bd++;
 6111 
 6112                                 /* Unmap the page chain mbuf from DMA space. */
 6113                                 bus_dmamap_sync(sc->pg_mbuf_tag,
 6114                                     sc->pg_mbuf_map[sw_pg_cons_idx],
 6115                                     BUS_DMASYNC_POSTREAD);
 6116                                 bus_dmamap_unload(sc->pg_mbuf_tag,
 6117                                     sc->pg_mbuf_map[sw_pg_cons_idx]);
 6118 
 6119                                 /* Adjust the mbuf length. */
 6120                                 if (rem_len < m_pg->m_len) {
 6121                                         /* The mbuf chain is complete. */
 6122                                         m_pg->m_len = rem_len;
 6123                                         rem_len = 0;
 6124                                 } else {
 6125                                         /* More packet data is waiting. */
 6126                                         rem_len -= m_pg->m_len;
 6127                                 }
 6128 
 6129                                 /* Concatenate the mbuf cluster to the mbuf. */
 6130                                 m_cat(m0, m_pg);
 6131 
 6132                                 sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
 6133                         }
 6134 
 6135                         /* Set the total packet length. */
 6136                         m0->m_pkthdr.len = pkt_len;
 6137 
 6138                 } else {
 6139                         /*
 6140                          * The received packet is small and fits in a
 6141                          * single mbuf (i.e. the l2_fhdr + pad + packet +
 6142                          * FCS <= MHLEN).  In other words, the packet is
 6143                          * 154 bytes or less in size.
 6144                          */
 6145 
 6146                         DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
 6147                             "packet.\n", __FUNCTION__);
 6148 
 6149                         /* Set the total packet length. */
 6150                         m0->m_pkthdr.len = m0->m_len = pkt_len;
 6151                 }
 6152 #else
 6153                 /* Set the total packet length. */
 6154                 m0->m_pkthdr.len = m0->m_len = pkt_len;
 6155 #endif
 6156 
 6157                 /* Remove the trailing Ethernet FCS. */
 6158                 m_adj(m0, -ETHER_CRC_LEN);
 6159 
 6160                 /* Check that the resulting mbuf chain is valid. */
 6161                 DBRUN(m_sanity(m0, FALSE));
 6162                 DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
 6163                     (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
 6164                      BCE_PRINTF("Invalid Ethernet frame size!\n");
 6165                      m_print(m0, 128));
 6166 
 6167                 DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
 6168                     sc->l2fhdr_error_sim_count++;
 6169                     status = status | L2_FHDR_ERRORS_PHY_DECODE);
 6170 
 6171                 /* Check the received frame for errors. */
 6172                 if (status & (L2_FHDR_ERRORS_BAD_CRC |
 6173                     L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
 6174                     L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
 6175 
 6176                         /* Log the error and release the mbuf. */
 6177                         ifp->if_ierrors++;
 6178                         sc->l2fhdr_error_count++;
 6179 
 6180                         m_freem(m0);
 6181                         m0 = NULL;
 6182                         goto bce_rx_int_next_rx;
 6183                 }
 6184 
 6185                 /* Send the packet to the appropriate interface. */
 6186                 m0->m_pkthdr.rcvif = ifp;
 6187 
 6188                 /* Assume no hardware checksum. */
 6189                 m0->m_pkthdr.csum_flags = 0;
 6190 
 6191                 /* Validate the checksum if offload enabled. */
 6192                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 6193 
 6194                         /* Check for an IP datagram. */
 6195                         if (!(status & L2_FHDR_STATUS_SPLIT) &&
 6196                             (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
 6197                                 m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 6198                                 DBRUN(sc->csum_offload_ip++);
 6199                                 /* Check if the IP checksum is valid. */
 6200                                 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
 6201                                         m0->m_pkthdr.csum_flags |=
 6202                                             CSUM_IP_VALID;
 6203                         }
 6204 
 6205                         /* Check for a valid TCP/UDP frame. */
 6206                         if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
 6207                             L2_FHDR_STATUS_UDP_DATAGRAM)) {
 6208 
 6209                                 /* Check for a good TCP/UDP checksum. */
 6210                                 if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
 6211                                     L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
 6212                                         DBRUN(sc->csum_offload_tcp_udp++);
 6213                                         m0->m_pkthdr.csum_data =
 6214                                             l2fhdr->l2_fhdr_tcp_udp_xsum;
 6215                                         m0->m_pkthdr.csum_flags |=
 6216                                             (CSUM_DATA_VALID
 6217                                             | CSUM_PSEUDO_HDR);
 6218                                 }
 6219                         }
 6220                 }
 6221 
 6222                 /* Attach the VLAN tag. */
 6223                 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
 6224                         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
 6225 #if __FreeBSD_version < 700000
 6226                                 VLAN_INPUT_TAG(ifp, m0,
 6227                                     l2fhdr->l2_fhdr_vlan_tag, continue);
 6228 #else
 6229                                 m0->m_pkthdr.ether_vtag =
 6230                                     l2fhdr->l2_fhdr_vlan_tag;
 6231                                 m0->m_flags |= M_VLANTAG;
 6232 #endif
 6233                         } else {
 6234                                 /*
 6235                                  * bce(4) controllers can't disable VLAN
 6236                                  * tag stripping if management firmware
 6237                                  * (ASF/IPMI/UMP) is running. So we always
 6238                                  * strip VLAN tag and manually reconstruct
 6239                                  * the VLAN frame by appending stripped
 6240                                  * VLAN tag in driver if VLAN tag stripping
 6241                                  * was disabled.
 6242                                  *
 6243                                  * TODO: LLC SNAP handling.
 6244                                  */
 6245                                 bcopy(mtod(m0, uint8_t *),
 6246                                     mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
 6247                                     ETHER_ADDR_LEN * 2);
 6248                                 m0->m_data -= ETHER_VLAN_ENCAP_LEN;
 6249                                 vh = mtod(m0, struct ether_vlan_header *);
 6250                                 vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
 6251                                 vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
 6252                                 m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
 6253                                 m0->m_len += ETHER_VLAN_ENCAP_LEN;
 6254                         }
 6255                 }
 6256 
 6257                 /* Increment received packet statistics. */
 6258                 ifp->if_ipackets++;
 6259 
 6260 bce_rx_int_next_rx:
 6261                 sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
 6262 
 6263                 /* If we have a packet, pass it up the stack */
 6264                 if (m0) {
 6265                         /* Make sure we don't lose our place when we release the lock. */
 6266                         sc->rx_cons = sw_rx_cons;
 6267 #ifdef BCE_JUMBO_HDRSPLIT
 6268                         sc->pg_cons = sw_pg_cons;
 6269 #endif
 6270 
 6271                         BCE_UNLOCK(sc);
 6272                         (*ifp->if_input)(ifp, m0);
 6273                         BCE_LOCK(sc);
 6274 
 6275                         /* Recover our place. */
 6276                         sw_rx_cons = sc->rx_cons;
 6277 #ifdef BCE_JUMBO_HDRSPLIT
 6278                         sw_pg_cons = sc->pg_cons;
 6279 #endif
 6280                 }
 6281 
 6282                 /* Refresh hw_cons to see if there's new work */
 6283                 if (sw_rx_cons == hw_rx_cons)
 6284                         hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
 6285         }
 6286 
 6287 #ifdef BCE_JUMBO_HDRSPLIT
 6288         /* No new packets.  Refill the page chain. */
 6289         sc->pg_cons = sw_pg_cons;
 6290         bce_fill_pg_chain(sc);
 6291 #endif
 6292 
 6293         /* No new packets.  Refill the RX chain. */
 6294         sc->rx_cons = sw_rx_cons;
 6295         bce_fill_rx_chain(sc);
 6296 
 6297         /* Prepare the page chain pages to be accessed by the NIC. */
 6298         for (int i = 0; i < RX_PAGES; i++)
 6299                 bus_dmamap_sync(sc->rx_bd_chain_tag,
 6300                     sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
 6301 
 6302 #ifdef BCE_JUMBO_HDRSPLIT
 6303         for (int i = 0; i < PG_PAGES; i++)
 6304                 bus_dmamap_sync(sc->pg_bd_chain_tag,
 6305                     sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
 6306 #endif
 6307 
 6308         DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
 6309             "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
 6310             __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
 6311         DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 6312 }
 6313 
 6314 
 6315 /****************************************************************************/
 6316 /* Reads the transmit consumer value from the status block (skipping over   */
 6317 /* chain page pointer if necessary).                                        */
 6318 /*                                                                          */
 6319 /* Returns:                                                                 */
 6320 /*   hw_cons                                                                */
 6321 /****************************************************************************/
 6322 static inline u16
 6323 bce_get_hw_tx_cons(struct bce_softc *sc)
 6324 {
 6325         u16 hw_cons;
 6326 
 6327         mb();
 6328         hw_cons = sc->status_block->status_tx_quick_consumer_index0;
 6329         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
 6330                 hw_cons++;
 6331 
 6332         return hw_cons;
 6333 }
 6334 
 6335 
 6336 /****************************************************************************/
 6337 /* Handles transmit completion interrupt events.                            */
 6338 /*                                                                          */
 6339 /* Returns:                                                                 */
 6340 /*   Nothing.                                                               */
 6341 /****************************************************************************/
 6342 static void
 6343 bce_tx_intr(struct bce_softc *sc)
 6344 {
 6345         struct ifnet *ifp = sc->bce_ifp;
 6346         u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
 6347 
 6348         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
 6349         DBRUN(sc->interrupts_tx++);
 6350         DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
 6351             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
 6352             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
 6353 
 6354         BCE_LOCK_ASSERT(sc);
 6355 
 6356         /* Get the hardware's view of the TX consumer index. */
 6357         hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
 6358         sw_tx_cons = sc->tx_cons;
 6359 
 6360         /* Prevent speculative reads of the status block. */
 6361         bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
 6362             BUS_SPACE_BARRIER_READ);
 6363 
 6364         /* Cycle through any completed TX chain page entries. */
 6365         while (sw_tx_cons != hw_tx_cons) {
 6366 #ifdef BCE_DEBUG
 6367                 struct tx_bd *txbd = NULL;
 6368 #endif
 6369                 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
 6370 
 6371                 DBPRINT(sc, BCE_INFO_SEND,
 6372                     "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
 6373                     "sw_tx_chain_cons = 0x%04X\n",
 6374                     __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
 6375 
 6376                 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
 6377                     BCE_PRINTF("%s(%d): TX chain consumer out of range! "
 6378                     " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
 6379                     (int) MAX_TX_BD);
 6380                     bce_breakpoint(sc));
 6381 
 6382                 DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
 6383                     [TX_IDX(sw_tx_chain_cons)]);
 6384 
 6385                 DBRUNIF((txbd == NULL),
 6386                     BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
 6387                     __FILE__, __LINE__, sw_tx_chain_cons);
 6388                     bce_breakpoint(sc));
 6389 
 6390                 DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
 6391                     bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
 6392 
 6393                 /*
 6394                  * Free the associated mbuf. Remember
 6395                  * that only the last tx_bd of a packet
 6396                  * has an mbuf pointer and DMA map.
 6397                  */
 6398                 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
 6399 
 6400                         /* Validate that this is the last tx_bd. */
 6401                         DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
 6402                             BCE_PRINTF("%s(%d): tx_bd END flag not set but "
 6403                             "txmbuf == NULL!\n", __FILE__, __LINE__);
 6404                             bce_breakpoint(sc));
 6405 
 6406                         DBRUNMSG(BCE_INFO_SEND,
 6407                             BCE_PRINTF("%s(): Unloading map/freeing mbuf "
 6408                             "from tx_bd[0x%04X]\n", __FUNCTION__,
 6409                             sw_tx_chain_cons));
 6410 
 6411                         /* Unmap the mbuf. */
 6412                         bus_dmamap_unload(sc->tx_mbuf_tag,
 6413                             sc->tx_mbuf_map[sw_tx_chain_cons]);
 6414 
 6415                         /* Free the mbuf. */
 6416                         m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
 6417                         sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
 6418                         DBRUN(sc->debug_tx_mbuf_alloc--);
 6419 
 6420                         ifp->if_opackets++;
 6421                 }
 6422 
 6423                 sc->used_tx_bd--;
 6424                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
 6425 
 6426                 /* Refresh hw_cons to see if there's new work. */
 6427                 hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
 6428 
 6429                 /* Prevent speculative reads of the status block. */
 6430                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
 6431                     BUS_SPACE_BARRIER_READ);
 6432         }
 6433 
 6434         /* Clear the TX timeout timer. */
 6435         sc->watchdog_timer = 0;
 6436 
 6437         /* Clear the tx hardware queue full flag. */
 6438         if (sc->used_tx_bd < sc->max_tx_bd) {
 6439                 DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
 6440                     DBPRINT(sc, BCE_INFO_SEND,
 6441                     "%s(): Open TX chain! %d/%d (used/total)\n",
 6442                     __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
 6443                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 6444         }
 6445 
 6446         sc->tx_cons = sw_tx_cons;
 6447 
 6448         DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
 6449             "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
 6450             __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
 6451         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
 6452 }
 6453 
 6454 
 6455 /****************************************************************************/
 6456 /* Disables interrupt generation.                                           */
 6457 /*                                                                          */
 6458 /* Returns:                                                                 */
 6459 /*   Nothing.                                                               */
 6460 /****************************************************************************/
 6461 static void
 6462 bce_disable_intr(struct bce_softc *sc)
 6463 {
 6464         DBENTER(BCE_VERBOSE_INTR);
 6465 
 6466         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
 6467         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
 6468 
 6469         DBEXIT(BCE_VERBOSE_INTR);
 6470 }
 6471 
 6472 
 6473 /****************************************************************************/
 6474 /* Enables interrupt generation.                                            */
 6475 /*                                                                          */
 6476 /* Returns:                                                                 */
 6477 /*   Nothing.                                                               */
 6478 /****************************************************************************/
 6479 static void
 6480 bce_enable_intr(struct bce_softc *sc, int coal_now)
 6481 {
 6482         DBENTER(BCE_VERBOSE_INTR);
 6483 
 6484         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
 6485             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
 6486             BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
 6487 
 6488         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
 6489             BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
 6490 
 6491         /* Force an immediate interrupt (whether there is new data or not). */
 6492         if (coal_now)
 6493                 REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
 6494 
 6495         DBEXIT(BCE_VERBOSE_INTR);
 6496 }
 6497 
 6498 
 6499 /****************************************************************************/
 6500 /* Handles controller initialization.                                       */
 6501 /*                                                                          */
 6502 /* Returns:                                                                 */
 6503 /*   Nothing.                                                               */
 6504 /****************************************************************************/
 6505 static void
 6506 bce_init_locked(struct bce_softc *sc)
 6507 {
 6508         struct ifnet *ifp;
 6509         u32 ether_mtu = 0;
 6510 
 6511         DBENTER(BCE_VERBOSE_RESET);
 6512 
 6513         BCE_LOCK_ASSERT(sc);
 6514 
 6515         ifp = sc->bce_ifp;
 6516 
 6517         /* Check if the driver is still running and bail out if it is. */
 6518         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 6519                 goto bce_init_locked_exit;
 6520 
 6521         bce_stop(sc);
 6522 
 6523         if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
 6524                 BCE_PRINTF("%s(%d): Controller reset failed!\n",
 6525                     __FILE__, __LINE__);
 6526                 goto bce_init_locked_exit;
 6527         }
 6528 
 6529         if (bce_chipinit(sc)) {
 6530                 BCE_PRINTF("%s(%d): Controller initialization failed!\n",
 6531                     __FILE__, __LINE__);
 6532                 goto bce_init_locked_exit;
 6533         }
 6534 
 6535         if (bce_blockinit(sc)) {
 6536                 BCE_PRINTF("%s(%d): Block initialization failed!\n",
 6537                     __FILE__, __LINE__);
 6538                 goto bce_init_locked_exit;
 6539         }
 6540 
 6541         /* Load our MAC address. */
 6542         bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
 6543         bce_set_mac_addr(sc);
 6544 
 6545         /*
 6546          * Calculate and program the hardware Ethernet MTU
 6547          * size. Be generous on the receive if we have room.
 6548          */
 6549 #ifdef BCE_JUMBO_HDRSPLIT
 6550         if (ifp->if_mtu <= (sc->rx_bd_mbuf_data_len +
 6551             sc->pg_bd_mbuf_alloc_size))
 6552                 ether_mtu = sc->rx_bd_mbuf_data_len +
 6553                     sc->pg_bd_mbuf_alloc_size;
 6554 #else
 6555         if (ifp->if_mtu <= sc->rx_bd_mbuf_data_len)
 6556                 ether_mtu = sc->rx_bd_mbuf_data_len;
 6557 #endif
 6558         else
 6559                 ether_mtu = ifp->if_mtu;
 6560 
 6561         ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
 6562 
 6563         DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
 6564             __FUNCTION__, ether_mtu);
 6565 
 6566         /* Program the mtu, enabling jumbo frame support if necessary. */
 6567         if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
 6568                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
 6569                     min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
 6570                     BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
 6571         else
 6572                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
 6573 
 6574         DBPRINT(sc, BCE_INFO_LOAD,
 6575             "%s(): rx_bd_mbuf_alloc_size = %d, rx_bce_mbuf_data_len = %d, "
 6576             "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
 6577             sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
 6578             sc->rx_bd_mbuf_align_pad);
 6579 
 6580         /* Program appropriate promiscuous/multicast filtering. */
 6581         bce_set_rx_mode(sc);
 6582 
 6583 #ifdef BCE_JUMBO_HDRSPLIT
 6584         DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_mbuf_alloc_size = %d\n",
 6585             __FUNCTION__, sc->pg_bd_mbuf_alloc_size);
 6586 
 6587         /* Init page buffer descriptor chain. */
 6588         bce_init_pg_chain(sc);
 6589 #endif
 6590 
 6591         /* Init RX buffer descriptor chain. */
 6592         bce_init_rx_chain(sc);
 6593 
 6594         /* Init TX buffer descriptor chain. */
 6595         bce_init_tx_chain(sc);
 6596 
 6597         /* Enable host interrupts. */
 6598         bce_enable_intr(sc, 1);
 6599 
 6600         bce_ifmedia_upd_locked(ifp);
 6601 
 6602         /* Let the OS know the driver is up and running. */
 6603         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 6604         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 6605 
 6606         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
 6607 
 6608 bce_init_locked_exit:
 6609         DBEXIT(BCE_VERBOSE_RESET);
 6610 }
 6611 
 6612 
 6613 /****************************************************************************/
 6614 /* Initialize the controller just enough so that any management firmware    */
 6615 /* running on the device will continue to operate correctly.                */
 6616 /*                                                                          */
 6617 /* Returns:                                                                 */
 6618 /*   Nothing.                                                               */
 6619 /****************************************************************************/
 6620 static void
 6621 bce_mgmt_init_locked(struct bce_softc *sc)
 6622 {
 6623         struct ifnet *ifp;
 6624 
 6625         DBENTER(BCE_VERBOSE_RESET);
 6626 
 6627         BCE_LOCK_ASSERT(sc);
 6628 
 6629         /* Bail out if management firmware is not running. */
 6630         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
 6631                 DBPRINT(sc, BCE_VERBOSE_SPECIAL,
 6632                     "No management firmware running...\n");
 6633                 goto bce_mgmt_init_locked_exit;
 6634         }
 6635 
 6636         ifp = sc->bce_ifp;
 6637 
 6638         /* Enable all critical blocks in the MAC. */
 6639         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
 6640         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
 6641         DELAY(20);
 6642 
 6643         bce_ifmedia_upd_locked(ifp);
 6644 
 6645 bce_mgmt_init_locked_exit:
 6646         DBEXIT(BCE_VERBOSE_RESET);
 6647 }
 6648 
 6649 
 6650 /****************************************************************************/
 6651 /* Handles controller initialization when called from an unlocked routine.  */
 6652 /*                                                                          */
 6653 /* Returns:                                                                 */
 6654 /*   Nothing.                                                               */
 6655 /****************************************************************************/
 6656 static void
 6657 bce_init(void *xsc)
 6658 {
 6659         struct bce_softc *sc = xsc;
 6660 
 6661         DBENTER(BCE_VERBOSE_RESET);
 6662 
 6663         BCE_LOCK(sc);
 6664         bce_init_locked(sc);
 6665         BCE_UNLOCK(sc);
 6666 
 6667         DBEXIT(BCE_VERBOSE_RESET);
 6668 }
 6669 
 6670 
 6671 /****************************************************************************/
 6672 /* Modifies an mbuf for TSO on the hardware.                                */
 6673 /*                                                                          */
 6674 /* Returns:                                                                 */
 6675 /*   Pointer to a modified mbuf.                                            */
 6676 /****************************************************************************/
 6677 static struct mbuf *
 6678 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
 6679 {
 6680         struct mbuf *m;
 6681         struct ether_header *eh;
 6682         struct ip *ip;
 6683         struct tcphdr *th;
 6684         u16 etype;
 6685         int hdr_len, ip_hlen = 0, tcp_hlen = 0, ip_len = 0;
 6686 
 6687         DBRUN(sc->tso_frames_requested++);
 6688 
 6689         /* Controller may modify mbuf chains. */
 6690         if (M_WRITABLE(*m_head) == 0) {
 6691                 m = m_dup(*m_head, M_DONTWAIT);
 6692                 m_freem(*m_head);
 6693                 if (m == NULL) {
 6694                         sc->mbuf_alloc_failed_count++;
 6695                         *m_head = NULL;
 6696                         return (NULL);
 6697                 }
 6698                 *m_head = m;
 6699         }
 6700 
 6701         /*
 6702          * For TSO the controller needs two pieces of info,
 6703          * the MSS and the IP+TCP options length.
 6704          */
 6705         m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
 6706         if (m == NULL) {
 6707                 *m_head = NULL;
 6708                 return (NULL);
 6709         }
 6710         eh = mtod(m, struct ether_header *);
 6711         etype = ntohs(eh->ether_type);
 6712 
 6713         /* Check for supported TSO Ethernet types (only IPv4 for now) */
 6714         switch (etype) {
 6715         case ETHERTYPE_IP:
 6716                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
 6717                 /* TSO only supported for TCP protocol. */
 6718                 if (ip->ip_p != IPPROTO_TCP) {
 6719                         BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
 6720                             __FILE__, __LINE__);
 6721                         m_freem(*m_head);
 6722                         *m_head = NULL;
 6723                         return (NULL);
 6724                 }
 6725 
 6726                 /* Get IP header length in bytes (min 20) */
 6727                 ip_hlen = ip->ip_hl << 2;
 6728                 m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
 6729                     sizeof(struct tcphdr));
 6730                 if (m == NULL) {
 6731                         *m_head = NULL;
 6732                         return (NULL);
 6733                 }
 6734 
 6735                 /* Get the TCP header length in bytes (min 20) */
 6736                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
 6737                 th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
 6738                 tcp_hlen = (th->th_off << 2);
 6739 
 6740                 /* Make sure all IP/TCP options live in the same buffer. */
 6741                 m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
 6742                     tcp_hlen);
 6743                 if (m == NULL) {
 6744                         *m_head = NULL;
 6745                         return (NULL);
 6746                 }
 6747 
 6748                 /* IP header length and checksum will be calc'd by hardware */
 6749                 ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
 6750                 ip_len = ip->ip_len;
 6751                 ip->ip_len = 0;
 6752                 ip->ip_sum = 0;
 6753                 break;
 6754         case ETHERTYPE_IPV6:
 6755                 BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
 6756                     __FILE__, __LINE__);
 6757                 m_freem(*m_head);
 6758                 *m_head = NULL;
 6759                 return (NULL);
 6760                 /* NOT REACHED */
 6761         default:
 6762                 BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
 6763                     __FILE__, __LINE__);
 6764                 m_freem(*m_head);
 6765                 *m_head = NULL;
 6766                 return (NULL);
 6767         }
 6768 
 6769         hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
 6770 
 6771         DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
 6772             "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
 6773             __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
 6774             tcp_hlen, ip_len);
 6775 
 6776         /* Set the LSO flag in the TX BD */
 6777         *flags |= TX_BD_FLAGS_SW_LSO;
 6778 
 6779         /* Set the length of IP + TCP options (in 32 bit words) */
 6780         *flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
 6781             sizeof(struct tcphdr)) >> 2) << 8);
 6782 
 6783         DBRUN(sc->tso_frames_completed++);
 6784         return (*m_head);
 6785 }
 6786 
 6787 
 6788 /****************************************************************************/
 6789 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
 6790 /* memory visible to the controller.                                        */
 6791 /*                                                                          */
 6792 /* Returns:                                                                 */
 6793 /*   0 for success, positive value for failure.                             */
 6794 /* Modified:                                                                */
 6795 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
 6796 /****************************************************************************/
 6797 static int
 6798 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
 6799 {
 6800         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
 6801         bus_dmamap_t map;
 6802         struct tx_bd *txbd = NULL;
 6803         struct mbuf *m0;
 6804         u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
 6805         u32 prod_bseq;
 6806 
 6807 #ifdef BCE_DEBUG
 6808         u16 debug_prod;
 6809 #endif
 6810 
 6811         int i, error, nsegs, rc = 0;
 6812 
 6813         DBENTER(BCE_VERBOSE_SEND);
 6814 
 6815         /* Make sure we have room in the TX chain. */
 6816         if (sc->used_tx_bd >= sc->max_tx_bd)
 6817                 goto bce_tx_encap_exit;
 6818 
 6819         /* Transfer any checksum offload flags to the bd. */
 6820         m0 = *m_head;
 6821         if (m0->m_pkthdr.csum_flags) {
 6822                 if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
 6823                         m0 = bce_tso_setup(sc, m_head, &flags);
 6824                         if (m0 == NULL) {
 6825                                 DBRUN(sc->tso_frames_failed++);
 6826                                 goto bce_tx_encap_exit;
 6827                         }
 6828                         mss = htole16(m0->m_pkthdr.tso_segsz);
 6829                 } else {
 6830                         if (m0->m_pkthdr.csum_flags & CSUM_IP)
 6831                                 flags |= TX_BD_FLAGS_IP_CKSUM;
 6832                         if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
 6833                                 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
 6834                 }
 6835         }
 6836 
 6837         /* Transfer any VLAN tags to the bd. */
 6838         if (m0->m_flags & M_VLANTAG) {
 6839                 flags |= TX_BD_FLAGS_VLAN_TAG;
 6840                 vlan_tag = m0->m_pkthdr.ether_vtag;
 6841         }
 6842 
 6843         /* Map the mbuf into DMAable memory. */
 6844         prod = sc->tx_prod;
 6845         chain_prod = TX_CHAIN_IDX(prod);
 6846         map = sc->tx_mbuf_map[chain_prod];
 6847 
 6848         /* Map the mbuf into our DMA address space. */
 6849         error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
 6850             segs, &nsegs, BUS_DMA_NOWAIT);
 6851 
 6852         /* Check if the DMA mapping was successful */
 6853         if (error == EFBIG) {
 6854                 sc->mbuf_frag_count++;
 6855 
 6856                 /* Try to defrag the mbuf. */
 6857                 m0 = m_collapse(*m_head, M_DONTWAIT, BCE_MAX_SEGMENTS);
 6858                 if (m0 == NULL) {
 6859                         /* Defrag was unsuccessful */
 6860                         m_freem(*m_head);
 6861                         *m_head = NULL;
 6862                         sc->mbuf_alloc_failed_count++;
 6863                         rc = ENOBUFS;
 6864                         goto bce_tx_encap_exit;
 6865                 }
 6866 
 6867                 /* Defrag was successful, try mapping again */
 6868                 *m_head = m0;
 6869                 error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
 6870                     map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
 6871 
 6872                 /* Still getting an error after a defrag. */
 6873                 if (error == ENOMEM) {
 6874                         /* Insufficient DMA buffers available. */
 6875                         sc->dma_map_addr_tx_failed_count++;
 6876                         rc = error;
 6877                         goto bce_tx_encap_exit;
 6878                 } else if (error != 0) {
 6879                         /* Release it and return an error. */
 6880                         BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
 6881                             "TX chain!\n", __FILE__, __LINE__);
 6882                         m_freem(m0);
 6883                         *m_head = NULL;
 6884                         sc->dma_map_addr_tx_failed_count++;
 6885                         rc = ENOBUFS;
 6886                         goto bce_tx_encap_exit;
 6887                 }
 6888         } else if (error == ENOMEM) {
 6889                 /* Insufficient DMA buffers available. */
 6890                 sc->dma_map_addr_tx_failed_count++;
 6891                 rc = error;
 6892                 goto bce_tx_encap_exit;
 6893         } else if (error != 0) {
 6894                 m_freem(m0);
 6895                 *m_head = NULL;
 6896                 sc->dma_map_addr_tx_failed_count++;
 6897                 rc = error;
 6898                 goto bce_tx_encap_exit;
 6899         }
 6900 
 6901         /* Make sure there's room in the chain */
 6902         if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
 6903                 bus_dmamap_unload(sc->tx_mbuf_tag, map);
 6904                 rc = ENOBUFS;
 6905                 goto bce_tx_encap_exit;
 6906         }
 6907 
 6908         /* prod points to an empty tx_bd at this point. */
 6909         prod_bseq  = sc->tx_prod_bseq;
 6910 
 6911 #ifdef BCE_DEBUG
 6912         debug_prod = chain_prod;
 6913 #endif
 6914 
 6915         DBPRINT(sc, BCE_INFO_SEND,
 6916             "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
 6917             "prod_bseq = 0x%08X\n",
 6918             __FUNCTION__, prod, chain_prod, prod_bseq);
 6919 
 6920         /*
 6921          * Cycle through each mbuf segment that makes up
 6922          * the outgoing frame, gathering the mapping info
 6923          * for that segment and creating a tx_bd for
 6924          * the mbuf.
 6925          */
 6926         for (i = 0; i < nsegs ; i++) {
 6927 
 6928                 chain_prod = TX_CHAIN_IDX(prod);
 6929                 txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
 6930                     [TX_IDX(chain_prod)];
 6931 
 6932                 txbd->tx_bd_haddr_lo =
 6933                     htole32(BCE_ADDR_LO(segs[i].ds_addr));
 6934                 txbd->tx_bd_haddr_hi =
 6935                     htole32(BCE_ADDR_HI(segs[i].ds_addr));
 6936                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
 6937                     htole16(segs[i].ds_len);
 6938                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
 6939                 txbd->tx_bd_flags = htole16(flags);
 6940                 prod_bseq += segs[i].ds_len;
 6941                 if (i == 0)
 6942                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
 6943                 prod = NEXT_TX_BD(prod);
 6944         }
 6945 
 6946         /* Set the END flag on the last TX buffer descriptor. */
 6947         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
 6948 
 6949         DBRUNMSG(BCE_EXTREME_SEND,
 6950             bce_dump_tx_chain(sc, debug_prod, nsegs));
 6951 
 6952         /*
 6953          * Ensure that the mbuf pointer for this transmission
 6954          * is placed at the array index of the last
 6955          * descriptor in this chain.  This is done
 6956          * because a single map is used for all
 6957          * segments of the mbuf and we don't want to
 6958          * unload the map before all of the segments
 6959          * have been freed.
 6960          */
 6961         sc->tx_mbuf_ptr[chain_prod] = m0;
 6962         sc->used_tx_bd += nsegs;
 6963 
 6964         /* Update some debug statistic counters */
 6965         DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
 6966             sc->tx_hi_watermark = sc->used_tx_bd);
 6967         DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
 6968         DBRUNIF(sc->debug_tx_mbuf_alloc++);
 6969 
 6970         DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
 6971 
 6972         /* prod points to the next free tx_bd at this point. */
 6973         sc->tx_prod = prod;
 6974         sc->tx_prod_bseq = prod_bseq;
 6975 
 6976         /* Tell the chip about the waiting TX frames. */
 6977         REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
 6978             BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
 6979         REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
 6980             BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
 6981 
 6982 bce_tx_encap_exit:
 6983         DBEXIT(BCE_VERBOSE_SEND);
 6984         return(rc);
 6985 }
 6986 
 6987 
 6988 /****************************************************************************/
 6989 /* Main transmit routine when called from another routine with a lock.      */
 6990 /*                                                                          */
 6991 /* Returns:                                                                 */
 6992 /*   Nothing.                                                               */
 6993 /****************************************************************************/
 6994 static void
 6995 bce_start_locked(struct ifnet *ifp)
 6996 {
 6997         struct bce_softc *sc = ifp->if_softc;
 6998         struct mbuf *m_head = NULL;
 6999         int count = 0;
 7000         u16 tx_prod, tx_chain_prod;
 7001 
 7002         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 7003 
 7004         BCE_LOCK_ASSERT(sc);
 7005 
 7006         /* prod points to the next free tx_bd. */
 7007         tx_prod = sc->tx_prod;
 7008         tx_chain_prod = TX_CHAIN_IDX(tx_prod);
 7009 
 7010         DBPRINT(sc, BCE_INFO_SEND,
 7011             "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
 7012             "tx_prod_bseq = 0x%08X\n",
 7013             __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
 7014 
 7015         /* If there's no link or the transmit queue is empty then just exit. */
 7016         if (sc->bce_link_up == FALSE) {
 7017                 DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
 7018                     __FUNCTION__);
 7019                 goto bce_start_locked_exit;
 7020         }
 7021 
 7022         if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
 7023                 DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
 7024                     __FUNCTION__);
 7025                 goto bce_start_locked_exit;
 7026         }
 7027 
 7028         /*
 7029          * Keep adding entries while there is space in the ring.
 7030          */
 7031         while (sc->used_tx_bd < sc->max_tx_bd) {
 7032 
 7033                 /* Check for any frames to send. */
 7034                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 7035 
 7036                 /* Stop when the transmit queue is empty. */
 7037                 if (m_head == NULL)
 7038                         break;
 7039 
 7040                 /*
 7041                  * Pack the data into the transmit ring. If we
 7042                  * don't have room, place the mbuf back at the
 7043                  * head of the queue and set the OACTIVE flag
 7044                  * to wait for the NIC to drain the chain.
 7045                  */
 7046                 if (bce_tx_encap(sc, &m_head)) {
 7047                         if (m_head != NULL)
 7048                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 7049                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 7050                         DBPRINT(sc, BCE_INFO_SEND,
 7051                             "TX chain is closed for business! Total "
 7052                             "tx_bd used = %d\n", sc->used_tx_bd);
 7053                         break;
 7054                 }
 7055 
 7056                 count++;
 7057 
 7058                 /* Send a copy of the frame to any BPF listeners. */
 7059                 ETHER_BPF_MTAP(ifp, m_head);
 7060         }
 7061 
 7062         /* Exit if no packets were dequeued. */
 7063         if (count == 0) {
 7064                 DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
 7065                     "dequeued\n", __FUNCTION__);
 7066                 goto bce_start_locked_exit;
 7067         }
 7068 
 7069         DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
 7070             "send queue.\n", __FUNCTION__, count);
 7071 
 7072         /* Set the tx timeout. */
 7073         sc->watchdog_timer = BCE_TX_TIMEOUT;
 7074 
 7075         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
 7076         DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
 7077 
 7078 bce_start_locked_exit:
 7079         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
 7080         return;
 7081 }
 7082 
 7083 
 7084 /****************************************************************************/
 7085 /* Main transmit routine when called from another routine without a lock.   */
 7086 /*                                                                          */
 7087 /* Returns:                                                                 */
 7088 /*   Nothing.                                                               */
 7089 /****************************************************************************/
 7090 static void
 7091 bce_start(struct ifnet *ifp)
 7092 {
 7093         struct bce_softc *sc = ifp->if_softc;
 7094 
 7095         DBENTER(BCE_VERBOSE_SEND);
 7096 
 7097         BCE_LOCK(sc);
 7098         bce_start_locked(ifp);
 7099         BCE_UNLOCK(sc);
 7100 
 7101         DBEXIT(BCE_VERBOSE_SEND);
 7102 }
 7103 
 7104 
 7105 /****************************************************************************/
 7106 /* Handles any IOCTL calls from the operating system.                       */
 7107 /*                                                                          */
 7108 /* Returns:                                                                 */
 7109 /*   0 for success, positive value for failure.                             */
 7110 /****************************************************************************/
 7111 static int
 7112 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 7113 {
 7114         struct bce_softc *sc = ifp->if_softc;
 7115         struct ifreq *ifr = (struct ifreq *) data;
 7116         struct mii_data *mii;
 7117         int mask, error = 0, reinit;
 7118 
 7119         DBENTER(BCE_VERBOSE_MISC);
 7120 
 7121         switch(command) {
 7122 
 7123         /* Set the interface MTU. */
 7124         case SIOCSIFMTU:
 7125                 /* Check that the MTU setting is supported. */
 7126                 if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
 7127                         (ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
 7128                         error = EINVAL;
 7129                         break;
 7130                 }
 7131 
 7132                 DBPRINT(sc, BCE_INFO_MISC,
 7133                     "SIOCSIFMTU: Changing MTU from %d to %d\n",
 7134                     (int) ifp->if_mtu, (int) ifr->ifr_mtu);
 7135 
 7136                 BCE_LOCK(sc);
 7137                 ifp->if_mtu = ifr->ifr_mtu;
 7138                 reinit = 0;
 7139                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 7140                         /*
 7141                          * Because allocation size is used in RX
 7142                          * buffer allocation, stop controller if
 7143                          * it is already running.
 7144                          */
 7145                         bce_stop(sc);
 7146                         reinit = 1;
 7147                 }
 7148 #ifdef BCE_JUMBO_HDRSPLIT
 7149                 /* No buffer allocation size changes are necessary. */
 7150 #else
 7151                 /* Recalculate our buffer allocation sizes. */
 7152                 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
 7153                      ETHER_CRC_LEN) > MCLBYTES) {
 7154                         sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
 7155                         sc->rx_bd_mbuf_align_pad  =
 7156                             roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
 7157                         sc->rx_bd_mbuf_data_len =
 7158                             sc->rx_bd_mbuf_alloc_size -
 7159                             sc->rx_bd_mbuf_align_pad;
 7160                 } else {
 7161                         sc->rx_bd_mbuf_alloc_size = MCLBYTES;
 7162                         sc->rx_bd_mbuf_align_pad  =
 7163                             roundup2(MCLBYTES, 16) - MCLBYTES;
 7164                         sc->rx_bd_mbuf_data_len =
 7165                             sc->rx_bd_mbuf_alloc_size -
 7166                             sc->rx_bd_mbuf_align_pad;
 7167                 }
 7168 #endif
 7169 
 7170                 if (reinit != 0)
 7171                         bce_init_locked(sc);
 7172                 BCE_UNLOCK(sc);
 7173                 break;
 7174 
 7175         /* Set interface flags. */
 7176         case SIOCSIFFLAGS:
 7177                 DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
 7178 
 7179                 BCE_LOCK(sc);
 7180 
 7181                 /* Check if the interface is up. */
 7182                 if (ifp->if_flags & IFF_UP) {
 7183                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 7184                                 /* Change promiscuous/multicast flags as necessary. */
 7185                                 bce_set_rx_mode(sc);
 7186                         } else {
 7187                                 /* Start the HW */
 7188                                 bce_init_locked(sc);
 7189                         }
 7190                 } else {
 7191                         /* The interface is down, check if driver is running. */
 7192                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 7193                                 bce_stop(sc);
 7194 
 7195                                 /* If MFW is running, restart the controller a bit. */
 7196                                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
 7197                                         bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
 7198                                         bce_chipinit(sc);
 7199                                         bce_mgmt_init_locked(sc);
 7200                                 }
 7201                         }
 7202                 }
 7203 
 7204                 BCE_UNLOCK(sc);
 7205                 break;
 7206 
 7207         /* Add/Delete multicast address */
 7208         case SIOCADDMULTI:
 7209         case SIOCDELMULTI:
 7210                 DBPRINT(sc, BCE_VERBOSE_MISC,
 7211                     "Received SIOCADDMULTI/SIOCDELMULTI\n");
 7212 
 7213                 BCE_LOCK(sc);
 7214                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 7215                         bce_set_rx_mode(sc);
 7216                 BCE_UNLOCK(sc);
 7217 
 7218                 break;
 7219 
 7220         /* Set/Get Interface media */
 7221         case SIOCSIFMEDIA:
 7222         case SIOCGIFMEDIA:
 7223                 DBPRINT(sc, BCE_VERBOSE_MISC,
 7224                     "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
 7225 
 7226                 mii = device_get_softc(sc->bce_miibus);
 7227                 error = ifmedia_ioctl(ifp, ifr,
 7228                     &mii->mii_media, command);
 7229                 break;
 7230 
 7231         /* Set interface capability */
 7232         case SIOCSIFCAP:
 7233                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 7234                 DBPRINT(sc, BCE_INFO_MISC,
 7235                     "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
 7236 
 7237                 /* Toggle the TX checksum capabilities enable flag. */
 7238                 if (mask & IFCAP_TXCSUM &&
 7239                     ifp->if_capabilities & IFCAP_TXCSUM) {
 7240                         ifp->if_capenable ^= IFCAP_TXCSUM;
 7241                         if (IFCAP_TXCSUM & ifp->if_capenable)
 7242                                 ifp->if_hwassist |= BCE_IF_HWASSIST;
 7243                         else
 7244                                 ifp->if_hwassist &= ~BCE_IF_HWASSIST;
 7245                 }
 7246 
 7247                 /* Toggle the RX checksum capabilities enable flag. */
 7248                 if (mask & IFCAP_RXCSUM &&
 7249                     ifp->if_capabilities & IFCAP_RXCSUM)
 7250                         ifp->if_capenable ^= IFCAP_RXCSUM;
 7251 
 7252                 /* Toggle the TSO capabilities enable flag. */
 7253                 if (bce_tso_enable && (mask & IFCAP_TSO4) &&
 7254                     ifp->if_capabilities & IFCAP_TSO4) {
 7255                         ifp->if_capenable ^= IFCAP_TSO4;
 7256                         if (IFCAP_TSO4 & ifp->if_capenable)
 7257                                 ifp->if_hwassist |= CSUM_TSO;
 7258                         else
 7259                                 ifp->if_hwassist &= ~CSUM_TSO;
 7260                 }
 7261 
 7262                 if (mask & IFCAP_VLAN_HWCSUM &&
 7263                     ifp->if_capabilities & IFCAP_VLAN_HWCSUM)
 7264                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
 7265 
 7266                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 7267                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 7268                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 7269                 /*
 7270                  * Don't actually disable VLAN tag stripping as
 7271                  * management firmware (ASF/IPMI/UMP) requires the
 7272                  * feature. If VLAN tag stripping is disabled driver
 7273                  * will manually reconstruct the VLAN frame by
 7274                  * appending stripped VLAN tag.
 7275                  */
 7276                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 7277                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) {
 7278                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 7279                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 7280                             == 0)
 7281                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 7282                 }
 7283                 VLAN_CAPABILITIES(ifp);
 7284                 break;
 7285         default:
 7286                 /* We don't know how to handle the IOCTL, pass it on. */
 7287                 error = ether_ioctl(ifp, command, data);
 7288                 break;
 7289         }
 7290 
 7291         DBEXIT(BCE_VERBOSE_MISC);
 7292         return(error);
 7293 }
 7294 
 7295 
 7296 /****************************************************************************/
 7297 /* Transmit timeout handler.                                                */
 7298 /*                                                                          */
 7299 /* Returns:                                                                 */
 7300 /*   Nothing.                                                               */
 7301 /****************************************************************************/
 7302 static void
 7303 bce_watchdog(struct bce_softc *sc)
 7304 {
 7305         DBENTER(BCE_EXTREME_SEND);
 7306 
 7307         BCE_LOCK_ASSERT(sc);
 7308 
 7309         /* If the watchdog timer hasn't expired then just exit. */
 7310         if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
 7311                 goto bce_watchdog_exit;
 7312 
 7313         /* If pause frames are active then don't reset the hardware. */
 7314         /* ToDo: Should we reset the timer here? */
 7315         if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
 7316                 goto bce_watchdog_exit;
 7317 
 7318         BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
 7319             __FILE__, __LINE__);
 7320 
 7321         DBRUNMSG(BCE_INFO,
 7322             bce_dump_driver_state(sc);
 7323             bce_dump_status_block(sc);
 7324             bce_dump_stats_block(sc);
 7325             bce_dump_ftqs(sc);
 7326             bce_dump_txp_state(sc, 0);
 7327             bce_dump_rxp_state(sc, 0);
 7328             bce_dump_tpat_state(sc, 0);
 7329             bce_dump_cp_state(sc, 0);
 7330             bce_dump_com_state(sc, 0));
 7331 
 7332         DBRUN(bce_breakpoint(sc));
 7333 
 7334         sc->bce_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 7335 
 7336         bce_init_locked(sc);
 7337         sc->bce_ifp->if_oerrors++;
 7338 
 7339 bce_watchdog_exit:
 7340         DBEXIT(BCE_EXTREME_SEND);
 7341 }
 7342 
 7343 
 7344 /*
 7345  * Interrupt handler.
 7346  */
 7347 /****************************************************************************/
 7348 /* Main interrupt entry point.  Verifies that the controller generated the  */
 7349 /* interrupt and then calls a separate routine for handle the various       */
 7350 /* interrupt causes (PHY, TX, RX).                                          */
 7351 /*                                                                          */
 7352 /* Returns:                                                                 */
 7353 /*   0 for success, positive value for failure.                             */
 7354 /****************************************************************************/
 7355 static void
 7356 bce_intr(void *xsc)
 7357 {
 7358         struct bce_softc *sc;
 7359         struct ifnet *ifp;
 7360         u32 status_attn_bits;
 7361         u16 hw_rx_cons, hw_tx_cons;
 7362 
 7363         sc = xsc;
 7364         ifp = sc->bce_ifp;
 7365 
 7366         DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 7367         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
 7368         DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
 7369 
 7370         BCE_LOCK(sc);
 7371 
 7372         DBRUN(sc->interrupts_generated++);
 7373 
 7374         /* Synchnorize before we read from interface's status block */
 7375         bus_dmamap_sync(sc->status_tag, sc->status_map,
 7376             BUS_DMASYNC_POSTREAD);
 7377 
 7378         /*
 7379          * If the hardware status block index
 7380          * matches the last value read by the
 7381          * driver and we haven't asserted our
 7382          * interrupt then there's nothing to do.
 7383          */
 7384         if ((sc->status_block->status_idx == sc->last_status_idx) &&
 7385             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
 7386              BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
 7387                 DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
 7388                     __FUNCTION__);
 7389                 goto bce_intr_exit;
 7390         }
 7391 
 7392         /* Ack the interrupt and stop others from occuring. */
 7393         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
 7394             BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
 7395             BCE_PCICFG_INT_ACK_CMD_MASK_INT);
 7396 
 7397         /* Check if the hardware has finished any work. */
 7398         hw_rx_cons = bce_get_hw_rx_cons(sc);
 7399         hw_tx_cons = bce_get_hw_tx_cons(sc);
 7400 
 7401         /* Keep processing data as long as there is work to do. */
 7402         for (;;) {
 7403 
 7404                 status_attn_bits = sc->status_block->status_attn_bits;
 7405 
 7406                 DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
 7407                     BCE_PRINTF("Simulating unexpected status attention "
 7408                     "bit set.");
 7409                     sc->unexpected_attention_sim_count++;
 7410                     status_attn_bits = status_attn_bits |
 7411                     STATUS_ATTN_BITS_PARITY_ERROR);
 7412 
 7413                 /* Was it a link change interrupt? */
 7414                 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
 7415                     (sc->status_block->status_attn_bits_ack &
 7416                      STATUS_ATTN_BITS_LINK_STATE)) {
 7417                         bce_phy_intr(sc);
 7418 
 7419                         /* Clear transient updates during link state change. */
 7420                         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
 7421                             BCE_HC_COMMAND_COAL_NOW_WO_INT);
 7422                         REG_RD(sc, BCE_HC_COMMAND);
 7423                 }
 7424 
 7425                 /* If any other attention is asserted, the chip is toast. */
 7426                 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
 7427                     (sc->status_block->status_attn_bits_ack &
 7428                     ~STATUS_ATTN_BITS_LINK_STATE))) {
 7429 
 7430                         sc->unexpected_attention_count++;
 7431 
 7432                         BCE_PRINTF("%s(%d): Fatal attention detected: "
 7433                             "0x%08X\n", __FILE__, __LINE__,
 7434                             sc->status_block->status_attn_bits);
 7435 
 7436                         DBRUNMSG(BCE_FATAL,
 7437                             if (unexpected_attention_sim_control == 0)
 7438                                 bce_breakpoint(sc));
 7439 
 7440                         bce_init_locked(sc);
 7441                         goto bce_intr_exit;
 7442                 }
 7443 
 7444                 /* Check for any completed RX frames. */
 7445                 if (hw_rx_cons != sc->hw_rx_cons)
 7446                         bce_rx_intr(sc);
 7447 
 7448                 /* Check for any completed TX frames. */
 7449                 if (hw_tx_cons != sc->hw_tx_cons)
 7450                         bce_tx_intr(sc);
 7451 
 7452                 /* Save status block index value for the next interrupt. */
 7453                 sc->last_status_idx = sc->status_block->status_idx;
 7454 
 7455                 /*
 7456                  * Prevent speculative reads from getting
 7457                  * ahead of the status block.
 7458                  */
 7459                 bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
 7460                     BUS_SPACE_BARRIER_READ);
 7461 
 7462                 /*
 7463                  * If there's no work left then exit the
 7464                  * interrupt service routine.
 7465                  */
 7466                 hw_rx_cons = bce_get_hw_rx_cons(sc);
 7467                 hw_tx_cons = bce_get_hw_tx_cons(sc);
 7468 
 7469                 if ((hw_rx_cons == sc->hw_rx_cons) &&
 7470                     (hw_tx_cons == sc->hw_tx_cons))
 7471                         break;
 7472 
 7473         }
 7474 
 7475         bus_dmamap_sync(sc->status_tag, sc->status_map,
 7476             BUS_DMASYNC_PREREAD);
 7477 
 7478         /* Re-enable interrupts. */
 7479         bce_enable_intr(sc, 0);
 7480 
 7481         /* Handle any frames that arrived while handling the interrupt. */
 7482         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 7483             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 7484                 bce_start_locked(ifp);
 7485 
 7486 bce_intr_exit:
 7487         BCE_UNLOCK(sc);
 7488 
 7489         DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
 7490 }
 7491 
 7492 
 7493 /****************************************************************************/
 7494 /* Programs the various packet receive modes (broadcast and multicast).     */
 7495 /*                                                                          */
 7496 /* Returns:                                                                 */
 7497 /*   Nothing.                                                               */
 7498 /****************************************************************************/
 7499 static void
 7500 bce_set_rx_mode(struct bce_softc *sc)
 7501 {
 7502         struct ifnet *ifp;
 7503         struct ifmultiaddr *ifma;
 7504         u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 7505         u32 rx_mode, sort_mode;
 7506         int h, i;
 7507 
 7508         DBENTER(BCE_VERBOSE_MISC);
 7509 
 7510         BCE_LOCK_ASSERT(sc);
 7511 
 7512         ifp = sc->bce_ifp;
 7513 
 7514         /* Initialize receive mode default settings. */
 7515         rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
 7516             BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
 7517         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
 7518 
 7519         /*
 7520          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
 7521          * be enbled.
 7522          */
 7523         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
 7524             (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
 7525                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
 7526 
 7527         /*
 7528          * Check for promiscuous, all multicast, or selected
 7529          * multicast address filtering.
 7530          */
 7531         if (ifp->if_flags & IFF_PROMISC) {
 7532                 DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
 7533 
 7534                 /* Enable promiscuous mode. */
 7535                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
 7536                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
 7537         } else if (ifp->if_flags & IFF_ALLMULTI) {
 7538                 DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
 7539 
 7540                 /* Enable all multicast addresses. */
 7541                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
 7542                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
 7543         }
 7544                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
 7545         } else {
 7546                 /* Accept one or more multicast(s). */
 7547                 DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
 7548 
 7549                 IF_ADDR_LOCK(ifp);
 7550                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 7551                         if (ifma->ifma_addr->sa_family != AF_LINK)
 7552                                 continue;
 7553                         h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 7554                             ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
 7555                             hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
 7556                 }
 7557                 IF_ADDR_UNLOCK(ifp);
 7558 
 7559                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
 7560                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
 7561 
 7562                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
 7563         }
 7564 
 7565         /* Only make changes if the recive mode has actually changed. */
 7566         if (rx_mode != sc->rx_mode) {
 7567                 DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
 7568                     "0x%08X\n", rx_mode);
 7569 
 7570                 sc->rx_mode = rx_mode;
 7571                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
 7572         }
 7573 
 7574         /* Disable and clear the exisitng sort before enabling a new sort. */
 7575         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
 7576         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
 7577         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
 7578 
 7579         DBEXIT(BCE_VERBOSE_MISC);
 7580 }
 7581 
 7582 
 7583 /****************************************************************************/
 7584 /* Called periodically to updates statistics from the controllers           */
 7585 /* statistics block.                                                        */
 7586 /*                                                                          */
 7587 /* Returns:                                                                 */
 7588 /*   Nothing.                                                               */
 7589 /****************************************************************************/
 7590 static void
 7591 bce_stats_update(struct bce_softc *sc)
 7592 {
 7593         struct ifnet *ifp;
 7594         struct statistics_block *stats;
 7595 
 7596         DBENTER(BCE_EXTREME_MISC);
 7597 
 7598         ifp = sc->bce_ifp;
 7599 
 7600         stats = (struct statistics_block *) sc->stats_block;
 7601 
 7602         /*
 7603          * Certain controllers don't report
 7604          * carrier sense errors correctly.
 7605          * See errata E11_5708CA0_1165.
 7606          */
 7607         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
 7608             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
 7609                 ifp->if_oerrors +=
 7610                     (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
 7611 
 7612         /*
 7613          * Update the sysctl statistics from the
 7614          * hardware statistics.
 7615          */
 7616         sc->stat_IfHCInOctets =
 7617             ((u64) stats->stat_IfHCInOctets_hi << 32) +
 7618              (u64) stats->stat_IfHCInOctets_lo;
 7619 
 7620         sc->stat_IfHCInBadOctets =
 7621             ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
 7622              (u64) stats->stat_IfHCInBadOctets_lo;
 7623 
 7624         sc->stat_IfHCOutOctets =
 7625             ((u64) stats->stat_IfHCOutOctets_hi << 32) +
 7626              (u64) stats->stat_IfHCOutOctets_lo;
 7627 
 7628         sc->stat_IfHCOutBadOctets =
 7629             ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
 7630              (u64) stats->stat_IfHCOutBadOctets_lo;
 7631 
 7632         sc->stat_IfHCInUcastPkts =
 7633             ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
 7634              (u64) stats->stat_IfHCInUcastPkts_lo;
 7635 
 7636         sc->stat_IfHCInMulticastPkts =
 7637             ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
 7638              (u64) stats->stat_IfHCInMulticastPkts_lo;
 7639 
 7640         sc->stat_IfHCInBroadcastPkts =
 7641             ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
 7642              (u64) stats->stat_IfHCInBroadcastPkts_lo;
 7643 
 7644         sc->stat_IfHCOutUcastPkts =
 7645             ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
 7646              (u64) stats->stat_IfHCOutUcastPkts_lo;
 7647 
 7648         sc->stat_IfHCOutMulticastPkts =
 7649             ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
 7650              (u64) stats->stat_IfHCOutMulticastPkts_lo;
 7651 
 7652         sc->stat_IfHCOutBroadcastPkts =
 7653             ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
 7654              (u64) stats->stat_IfHCOutBroadcastPkts_lo;
 7655 
 7656         /* ToDo: Preserve counters beyond 32 bits? */
 7657         /* ToDo: Read the statistics from auto-clear regs? */
 7658 
 7659         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
 7660             stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
 7661 
 7662         sc->stat_Dot3StatsCarrierSenseErrors =
 7663             stats->stat_Dot3StatsCarrierSenseErrors;
 7664 
 7665         sc->stat_Dot3StatsFCSErrors =
 7666             stats->stat_Dot3StatsFCSErrors;
 7667 
 7668         sc->stat_Dot3StatsAlignmentErrors =
 7669             stats->stat_Dot3StatsAlignmentErrors;
 7670 
 7671         sc->stat_Dot3StatsSingleCollisionFrames =
 7672             stats->stat_Dot3StatsSingleCollisionFrames;
 7673 
 7674         sc->stat_Dot3StatsMultipleCollisionFrames =
 7675             stats->stat_Dot3StatsMultipleCollisionFrames;
 7676 
 7677         sc->stat_Dot3StatsDeferredTransmissions =
 7678             stats->stat_Dot3StatsDeferredTransmissions;
 7679 
 7680         sc->stat_Dot3StatsExcessiveCollisions =
 7681             stats->stat_Dot3StatsExcessiveCollisions;
 7682 
 7683         sc->stat_Dot3StatsLateCollisions =
 7684             stats->stat_Dot3StatsLateCollisions;
 7685 
 7686         sc->stat_EtherStatsCollisions =
 7687             stats->stat_EtherStatsCollisions;
 7688 
 7689         sc->stat_EtherStatsFragments =
 7690             stats->stat_EtherStatsFragments;
 7691 
 7692         sc->stat_EtherStatsJabbers =
 7693             stats->stat_EtherStatsJabbers;
 7694 
 7695         sc->stat_EtherStatsUndersizePkts =
 7696             stats->stat_EtherStatsUndersizePkts;
 7697 
 7698         sc->stat_EtherStatsOversizePkts =
 7699              stats->stat_EtherStatsOversizePkts;
 7700 
 7701         sc->stat_EtherStatsPktsRx64Octets =
 7702             stats->stat_EtherStatsPktsRx64Octets;
 7703 
 7704         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
 7705             stats->stat_EtherStatsPktsRx65Octetsto127Octets;
 7706 
 7707         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
 7708             stats->stat_EtherStatsPktsRx128Octetsto255Octets;
 7709 
 7710         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
 7711             stats->stat_EtherStatsPktsRx256Octetsto511Octets;
 7712 
 7713         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
 7714             stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
 7715 
 7716         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
 7717             stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
 7718 
 7719         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
 7720             stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
 7721 
 7722         sc->stat_EtherStatsPktsTx64Octets =
 7723             stats->stat_EtherStatsPktsTx64Octets;
 7724 
 7725         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
 7726             stats->stat_EtherStatsPktsTx65Octetsto127Octets;
 7727 
 7728         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
 7729             stats->stat_EtherStatsPktsTx128Octetsto255Octets;
 7730 
 7731         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
 7732             stats->stat_EtherStatsPktsTx256Octetsto511Octets;
 7733 
 7734         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
 7735             stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
 7736 
 7737         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
 7738             stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
 7739 
 7740         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
 7741             stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
 7742 
 7743         sc->stat_XonPauseFramesReceived =
 7744             stats->stat_XonPauseFramesReceived;
 7745 
 7746         sc->stat_XoffPauseFramesReceived =
 7747             stats->stat_XoffPauseFramesReceived;
 7748 
 7749         sc->stat_OutXonSent =
 7750             stats->stat_OutXonSent;
 7751 
 7752         sc->stat_OutXoffSent =
 7753             stats->stat_OutXoffSent;
 7754 
 7755         sc->stat_FlowControlDone =
 7756             stats->stat_FlowControlDone;
 7757 
 7758         sc->stat_MacControlFramesReceived =
 7759             stats->stat_MacControlFramesReceived;
 7760 
 7761         sc->stat_XoffStateEntered =
 7762             stats->stat_XoffStateEntered;
 7763 
 7764         sc->stat_IfInFramesL2FilterDiscards =
 7765             stats->stat_IfInFramesL2FilterDiscards;
 7766 
 7767         sc->stat_IfInRuleCheckerDiscards =
 7768             stats->stat_IfInRuleCheckerDiscards;
 7769 
 7770         sc->stat_IfInFTQDiscards =
 7771             stats->stat_IfInFTQDiscards;
 7772 
 7773         sc->stat_IfInMBUFDiscards =
 7774             stats->stat_IfInMBUFDiscards;
 7775 
 7776         sc->stat_IfInRuleCheckerP4Hit =
 7777             stats->stat_IfInRuleCheckerP4Hit;
 7778 
 7779         sc->stat_CatchupInRuleCheckerDiscards =
 7780             stats->stat_CatchupInRuleCheckerDiscards;
 7781 
 7782         sc->stat_CatchupInFTQDiscards =
 7783             stats->stat_CatchupInFTQDiscards;
 7784 
 7785         sc->stat_CatchupInMBUFDiscards =
 7786             stats->stat_CatchupInMBUFDiscards;
 7787 
 7788         sc->stat_CatchupInRuleCheckerP4Hit =
 7789             stats->stat_CatchupInRuleCheckerP4Hit;
 7790 
 7791         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
 7792 
 7793         /*
 7794          * Update the interface statistics from the
 7795          * hardware statistics.
 7796          */
 7797         ifp->if_collisions =
 7798             (u_long) sc->stat_EtherStatsCollisions;
 7799 
 7800         /* ToDo: This method loses soft errors. */
 7801         ifp->if_ierrors =
 7802             (u_long) sc->stat_EtherStatsUndersizePkts +
 7803             (u_long) sc->stat_EtherStatsOversizePkts +
 7804             (u_long) sc->stat_IfInMBUFDiscards +
 7805             (u_long) sc->stat_Dot3StatsAlignmentErrors +
 7806             (u_long) sc->stat_Dot3StatsFCSErrors +
 7807             (u_long) sc->stat_IfInRuleCheckerDiscards +
 7808             (u_long) sc->stat_IfInFTQDiscards +
 7809             (u_long) sc->com_no_buffers;
 7810 
 7811         /* ToDo: This method loses soft errors. */
 7812         ifp->if_oerrors =
 7813             (u_long) sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
 7814             (u_long) sc->stat_Dot3StatsExcessiveCollisions +
 7815             (u_long) sc->stat_Dot3StatsLateCollisions;
 7816 
 7817         /* ToDo: Add additional statistics? */
 7818 
 7819         DBEXIT(BCE_EXTREME_MISC);
 7820 }
 7821 
 7822 
 7823 /****************************************************************************/
 7824 /* Periodic function to notify the bootcode that the driver is still        */
 7825 /* present.                                                                 */
 7826 /*                                                                          */
 7827 /* Returns:                                                                 */
 7828 /*   Nothing.                                                               */
 7829 /****************************************************************************/
 7830 static void
 7831 bce_pulse(void *xsc)
 7832 {
 7833         struct bce_softc *sc = xsc;
 7834         u32 msg;
 7835 
 7836         DBENTER(BCE_EXTREME_MISC);
 7837 
 7838         BCE_LOCK_ASSERT(sc);
 7839 
 7840         /* Tell the firmware that the driver is still running. */
 7841         msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
 7842         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
 7843 
 7844         /* Update the bootcode condition. */
 7845         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
 7846 
 7847         /* Report whether the bootcode still knows the driver is running. */
 7848         if (bootverbose) {
 7849                 if (sc->bce_drv_cardiac_arrest == FALSE) {
 7850                         if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
 7851                                 sc->bce_drv_cardiac_arrest = TRUE;
 7852                                 BCE_PRINTF("%s(): Warning: bootcode "
 7853                                     "thinks driver is absent! "
 7854                                     "(bc_state = 0x%08X)\n",
 7855                                     __FUNCTION__, sc->bc_state);
 7856                         }
 7857                 } else {
 7858                         /*
 7859                          * Not supported by all bootcode versions.
 7860                          * (v5.0.11+ and v5.2.1+)  Older bootcode
 7861                          * will require the driver to reset the
 7862                          * controller to clear this condition.
 7863                          */
 7864                         if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
 7865                                 sc->bce_drv_cardiac_arrest = FALSE;
 7866                                 BCE_PRINTF("%s(): Bootcode found the "
 7867                                     "driver pulse! (bc_state = 0x%08X)\n",
 7868                                     __FUNCTION__, sc->bc_state);
 7869                         }
 7870                 }
 7871         }
 7872 
 7873 
 7874         /* Schedule the next pulse. */
 7875         callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
 7876 
 7877         DBEXIT(BCE_EXTREME_MISC);
 7878 }
 7879 
 7880 
 7881 /****************************************************************************/
 7882 /* Periodic function to perform maintenance tasks.                          */
 7883 /*                                                                          */
 7884 /* Returns:                                                                 */
 7885 /*   Nothing.                                                               */
 7886 /****************************************************************************/
 7887 static void
 7888 bce_tick(void *xsc)
 7889 {
 7890         struct bce_softc *sc = xsc;
 7891         struct mii_data *mii;
 7892         struct ifnet *ifp;
 7893 
 7894         ifp = sc->bce_ifp;
 7895 
 7896         DBENTER(BCE_EXTREME_MISC);
 7897 
 7898         BCE_LOCK_ASSERT(sc);
 7899 
 7900         /* Schedule the next tick. */
 7901         callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
 7902 
 7903         /* Update the statistics from the hardware statistics block. */
 7904         bce_stats_update(sc);
 7905 
 7906         /* Top off the receive and page chains. */
 7907 #ifdef BCE_JUMBO_HDRSPLIT
 7908         bce_fill_pg_chain(sc);
 7909 #endif
 7910         bce_fill_rx_chain(sc);
 7911 
 7912         /* Check that chip hasn't hung. */
 7913         bce_watchdog(sc);
 7914 
 7915         /* If link is up already up then we're done. */
 7916         if (sc->bce_link_up == TRUE)
 7917                 goto bce_tick_exit;
 7918 
 7919         /* Link is down.  Check what the PHY's doing. */
 7920         mii = device_get_softc(sc->bce_miibus);
 7921         mii_tick(mii);
 7922 
 7923         /* Check if the link has come up. */
 7924         if ((mii->mii_media_status & IFM_ACTIVE) &&
 7925             (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
 7926                 DBPRINT(sc, BCE_VERBOSE_MISC,
 7927                     "%s(): Link up!\n", __FUNCTION__);
 7928                 sc->bce_link_up = TRUE;
 7929                 if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
 7930                     IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
 7931                     IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
 7932                     bootverbose)
 7933                         BCE_PRINTF("Gigabit link up!\n");
 7934 
 7935                 /* Now that link is up, handle any outstanding TX traffic. */
 7936                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
 7937                         DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
 7938                             "pending TX traffic.\n", __FUNCTION__);
 7939                         bce_start_locked(ifp);
 7940                 }
 7941         }
 7942 
 7943 bce_tick_exit:
 7944         DBEXIT(BCE_EXTREME_MISC);
 7945         return;
 7946 }
 7947 
 7948 
 7949 #ifdef BCE_DEBUG
 7950 /****************************************************************************/
 7951 /* Allows the driver state to be dumped through the sysctl interface.       */
 7952 /*                                                                          */
 7953 /* Returns:                                                                 */
 7954 /*   0 for success, positive value for failure.                             */
 7955 /****************************************************************************/
 7956 static int
 7957 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
 7958 {
 7959         int error;
 7960         int result;
 7961         struct bce_softc *sc;
 7962 
 7963         result = -1;
 7964         error = sysctl_handle_int(oidp, &result, 0, req);
 7965 
 7966         if (error || !req->newptr)
 7967                 return (error);
 7968 
 7969         if (result == 1) {
 7970                 sc = (struct bce_softc *)arg1;
 7971                 bce_dump_driver_state(sc);
 7972         }
 7973 
 7974         return error;
 7975 }
 7976 
 7977 
 7978 /****************************************************************************/
 7979 /* Allows the hardware state to be dumped through the sysctl interface.     */
 7980 /*                                                                          */
 7981 /* Returns:                                                                 */
 7982 /*   0 for success, positive value for failure.                             */
 7983 /****************************************************************************/
 7984 static int
 7985 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
 7986 {
 7987         int error;
 7988         int result;
 7989         struct bce_softc *sc;
 7990 
 7991         result = -1;
 7992         error = sysctl_handle_int(oidp, &result, 0, req);
 7993 
 7994         if (error || !req->newptr)
 7995                 return (error);
 7996 
 7997         if (result == 1) {
 7998                 sc = (struct bce_softc *)arg1;
 7999                 bce_dump_hw_state(sc);
 8000         }
 8001 
 8002         return error;
 8003 }
 8004 
 8005 
 8006 /****************************************************************************/
 8007 /* Allows the status block to be dumped through the sysctl interface.       */
 8008 /*                                                                          */
 8009 /* Returns:                                                                 */
 8010 /*   0 for success, positive value for failure.                             */
 8011 /****************************************************************************/
 8012 static int
 8013 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
 8014 {
 8015         int error;
 8016         int result;
 8017         struct bce_softc *sc;
 8018 
 8019         result = -1;
 8020         error = sysctl_handle_int(oidp, &result, 0, req);
 8021 
 8022         if (error || !req->newptr)
 8023                 return (error);
 8024 
 8025         if (result == 1) {
 8026                 sc = (struct bce_softc *)arg1;
 8027                 bce_dump_status_block(sc);
 8028         }
 8029 
 8030         return error;
 8031 }
 8032 
 8033 
 8034 /****************************************************************************/
 8035 /* Allows the stats block to be dumped through the sysctl interface.        */
 8036 /*                                                                          */
 8037 /* Returns:                                                                 */
 8038 /*   0 for success, positive value for failure.                             */
 8039 /****************************************************************************/
 8040 static int
 8041 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
 8042 {
 8043         int error;
 8044         int result;
 8045         struct bce_softc *sc;
 8046 
 8047         result = -1;
 8048         error = sysctl_handle_int(oidp, &result, 0, req);
 8049 
 8050         if (error || !req->newptr)
 8051                 return (error);
 8052 
 8053         if (result == 1) {
 8054                 sc = (struct bce_softc *)arg1;
 8055                 bce_dump_stats_block(sc);
 8056         }
 8057 
 8058         return error;
 8059 }
 8060 
 8061 
 8062 /****************************************************************************/
 8063 /* Allows the stat counters to be cleared without unloading/reloading the   */
 8064 /* driver.                                                                  */
 8065 /*                                                                          */
 8066 /* Returns:                                                                 */
 8067 /*   0 for success, positive value for failure.                             */
 8068 /****************************************************************************/
 8069 static int
 8070 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
 8071 {
 8072         int error;
 8073         int result;
 8074         struct bce_softc *sc;
 8075 
 8076         result = -1;
 8077         error = sysctl_handle_int(oidp, &result, 0, req);
 8078 
 8079         if (error || !req->newptr)
 8080                 return (error);
 8081 
 8082         if (result == 1) {
 8083                 sc = (struct bce_softc *)arg1;
 8084 
 8085                 /* Clear the internal H/W statistics counters. */
 8086                 REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
 8087 
 8088                 /* Reset the driver maintained statistics. */
 8089                 sc->interrupts_rx =
 8090                     sc->interrupts_tx = 0;
 8091                 sc->tso_frames_requested =
 8092                     sc->tso_frames_completed =
 8093                     sc->tso_frames_failed = 0;
 8094                 sc->rx_empty_count =
 8095                     sc->tx_full_count = 0;
 8096                 sc->rx_low_watermark = USABLE_RX_BD;
 8097                 sc->tx_hi_watermark = 0;
 8098                 sc->l2fhdr_error_count =
 8099                     sc->l2fhdr_error_sim_count = 0;
 8100                 sc->mbuf_alloc_failed_count =
 8101                     sc->mbuf_alloc_failed_sim_count = 0;
 8102                 sc->dma_map_addr_rx_failed_count =
 8103                     sc->dma_map_addr_tx_failed_count = 0;
 8104                 sc->mbuf_frag_count = 0;
 8105                 sc->csum_offload_tcp_udp =
 8106                    sc->csum_offload_ip = 0;
 8107                 sc->vlan_tagged_frames_rcvd =
 8108                    sc->vlan_tagged_frames_stripped = 0;
 8109 
 8110                 /* Clear firmware maintained statistics. */
 8111                 REG_WR_IND(sc, 0x120084, 0);
 8112         }
 8113 
 8114         return error;
 8115 }
 8116 
 8117 
 8118 /****************************************************************************/
 8119 /* Allows the bootcode state to be dumped through the sysctl interface.     */
 8120 /*                                                                          */
 8121 /* Returns:                                                                 */
 8122 /*   0 for success, positive value for failure.                             */
 8123 /****************************************************************************/
 8124 static int
 8125 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
 8126 {
 8127         int error;
 8128         int result;
 8129         struct bce_softc *sc;
 8130 
 8131         result = -1;
 8132         error = sysctl_handle_int(oidp, &result, 0, req);
 8133 
 8134         if (error || !req->newptr)
 8135                 return (error);
 8136 
 8137         if (result == 1) {
 8138                 sc = (struct bce_softc *)arg1;
 8139                 bce_dump_bc_state(sc);
 8140         }
 8141 
 8142         return error;
 8143 }
 8144 
 8145 
 8146 /****************************************************************************/
 8147 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
 8148 /*                                                                          */
 8149 /* Returns:                                                                 */
 8150 /*   0 for success, positive value for failure.                             */
 8151 /****************************************************************************/
 8152 static int
 8153 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
 8154 {
 8155         int error;
 8156         int result;
 8157         struct bce_softc *sc;
 8158 
 8159         result = -1;
 8160         error = sysctl_handle_int(oidp, &result, 0, req);
 8161 
 8162         if (error || !req->newptr)
 8163                 return (error);
 8164 
 8165         if (result == 1) {
 8166                 sc = (struct bce_softc *)arg1;
 8167                 bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD);
 8168         }
 8169 
 8170         return error;
 8171 }
 8172 
 8173 
 8174 /****************************************************************************/
 8175 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
 8176 /*                                                                          */
 8177 /* Returns:                                                                 */
 8178 /*   0 for success, positive value for failure.                             */
 8179 /****************************************************************************/
 8180 static int
 8181 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
 8182 {
 8183         int error;
 8184         int result;
 8185         struct bce_softc *sc;
 8186 
 8187         result = -1;
 8188         error = sysctl_handle_int(oidp, &result, 0, req);
 8189 
 8190         if (error || !req->newptr)
 8191                 return (error);
 8192 
 8193         if (result == 1) {
 8194                 sc = (struct bce_softc *)arg1;
 8195                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
 8196         }
 8197 
 8198         return error;
 8199 }
 8200 
 8201 
 8202 /****************************************************************************/
 8203 /* Provides a sysctl interface to allow dumping the TX chain.               */
 8204 /*                                                                          */
 8205 /* Returns:                                                                 */
 8206 /*   0 for success, positive value for failure.                             */
 8207 /****************************************************************************/
 8208 static int
 8209 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
 8210 {
 8211         int error;
 8212         int result;
 8213         struct bce_softc *sc;
 8214 
 8215         result = -1;
 8216         error = sysctl_handle_int(oidp, &result, 0, req);
 8217 
 8218         if (error || !req->newptr)
 8219                 return (error);
 8220 
 8221         if (result == 1) {
 8222                 sc = (struct bce_softc *)arg1;
 8223                 bce_dump_tx_chain(sc, 0, TOTAL_TX_BD);
 8224         }
 8225 
 8226         return error;
 8227 }
 8228 
 8229 
 8230 #ifdef BCE_JUMBO_HDRSPLIT
 8231 /****************************************************************************/
 8232 /* Provides a sysctl interface to allow dumping the page chain.             */
 8233 /*                                                                          */
 8234 /* Returns:                                                                 */
 8235 /*   0 for success, positive value for failure.                             */
 8236 /****************************************************************************/
 8237 static int
 8238 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
 8239 {
 8240         int error;
 8241         int result;
 8242         struct bce_softc *sc;
 8243 
 8244         result = -1;
 8245         error = sysctl_handle_int(oidp, &result, 0, req);
 8246 
 8247         if (error || !req->newptr)
 8248                 return (error);
 8249 
 8250         if (result == 1) {
 8251                 sc = (struct bce_softc *)arg1;
 8252                 bce_dump_pg_chain(sc, 0, TOTAL_PG_BD);
 8253         }
 8254 
 8255         return error;
 8256 }
 8257 #endif
 8258 
 8259 /****************************************************************************/
 8260 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
 8261 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
 8262 /*                                                                          */
 8263 /* Returns:                                                                 */
 8264 /*   0 for success, positive value for failure.                             */
 8265 /****************************************************************************/
 8266 static int
 8267 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
 8268 {
 8269         struct bce_softc *sc = (struct bce_softc *)arg1;
 8270         int error;
 8271         u32 result;
 8272         u32 val[1];
 8273         u8 *data = (u8 *) val;
 8274 
 8275         result = -1;
 8276         error = sysctl_handle_int(oidp, &result, 0, req);
 8277         if (error || (req->newptr == NULL))
 8278                 return (error);
 8279 
 8280         bce_nvram_read(sc, result, data, 4);
 8281         BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
 8282 
 8283         return (error);
 8284 }
 8285 
 8286 
 8287 /****************************************************************************/
 8288 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
 8289 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
 8290 /*                                                                          */
 8291 /* Returns:                                                                 */
 8292 /*   0 for success, positive value for failure.                             */
 8293 /****************************************************************************/
 8294 static int
 8295 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 8296 {
 8297         struct bce_softc *sc = (struct bce_softc *)arg1;
 8298         int error;
 8299         u32 val, result;
 8300 
 8301         result = -1;
 8302         error = sysctl_handle_int(oidp, &result, 0, req);
 8303         if (error || (req->newptr == NULL))
 8304                 return (error);
 8305 
 8306         /* Make sure the register is accessible. */
 8307         if (result < 0x8000) {
 8308                 val = REG_RD(sc, result);
 8309                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
 8310         } else if (result < 0x0280000) {
 8311                 val = REG_RD_IND(sc, result);
 8312                 BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
 8313         }
 8314 
 8315         return (error);
 8316 }
 8317 
 8318 
 8319 /****************************************************************************/
 8320 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
 8321 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
 8322 /*                                                                          */
 8323 /* Returns:                                                                 */
 8324 /*   0 for success, positive value for failure.                             */
 8325 /****************************************************************************/
 8326 static int
 8327 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
 8328 {
 8329         struct bce_softc *sc;
 8330         device_t dev;
 8331         int error, result;
 8332         u16 val;
 8333 
 8334         result = -1;
 8335         error = sysctl_handle_int(oidp, &result, 0, req);
 8336         if (error || (req->newptr == NULL))
 8337                 return (error);
 8338 
 8339         /* Make sure the register is accessible. */
 8340         if (result < 0x20) {
 8341                 sc = (struct bce_softc *)arg1;
 8342                 dev = sc->bce_dev;
 8343                 val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
 8344                 BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
 8345         }
 8346         return (error);
 8347 }
 8348 
 8349 
 8350 /****************************************************************************/
 8351 /* Provides a sysctl interface to allow reading a CID.                      */
 8352 /*                                                                          */
 8353 /* Returns:                                                                 */
 8354 /*   0 for success, positive value for failure.                             */
 8355 /****************************************************************************/
 8356 static int
 8357 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
 8358 {
 8359         struct bce_softc *sc;
 8360         int error, result;
 8361 
 8362         result = -1;
 8363         error = sysctl_handle_int(oidp, &result, 0, req);
 8364         if (error || (req->newptr == NULL))
 8365                 return (error);
 8366 
 8367         /* Make sure the register is accessible. */
 8368         if (result <= TX_CID) {
 8369                 sc = (struct bce_softc *)arg1;
 8370                 bce_dump_ctx(sc, result);
 8371         }
 8372 
 8373         return (error);
 8374 }
 8375 
 8376 
 8377  /****************************************************************************/
 8378 /* Provides a sysctl interface to forcing the driver to dump state and      */
 8379 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
 8380 /*                                                                          */
 8381 /* Returns:                                                                 */
 8382 /*   0 for success, positive value for failure.                             */
 8383 /****************************************************************************/
 8384 static int
 8385 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
 8386 {
 8387         int error;
 8388         int result;
 8389         struct bce_softc *sc;
 8390 
 8391         result = -1;
 8392         error = sysctl_handle_int(oidp, &result, 0, req);
 8393 
 8394         if (error || !req->newptr)
 8395                 return (error);
 8396 
 8397         if (result == 1) {
 8398                 sc = (struct bce_softc *)arg1;
 8399                 bce_breakpoint(sc);
 8400         }
 8401 
 8402         return error;
 8403 }
 8404 #endif
 8405 
 8406 
 8407 /****************************************************************************/
 8408 /* Adds any sysctl parameters for tuning or debugging purposes.             */
 8409 /*                                                                          */
 8410 /* Returns:                                                                 */
 8411 /*   0 for success, positive value for failure.                             */
 8412 /****************************************************************************/
 8413 static void
 8414 bce_add_sysctls(struct bce_softc *sc)
 8415 {
 8416         struct sysctl_ctx_list *ctx;
 8417         struct sysctl_oid_list *children;
 8418 
 8419         DBENTER(BCE_VERBOSE_MISC);
 8420 
 8421         ctx = device_get_sysctl_ctx(sc->bce_dev);
 8422         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
 8423 
 8424 #ifdef BCE_DEBUG
 8425         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8426             "l2fhdr_error_sim_control",
 8427             CTLFLAG_RW, &l2fhdr_error_sim_control,
 8428             0, "Debug control to force l2fhdr errors");
 8429 
 8430         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8431             "l2fhdr_error_sim_count",
 8432             CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
 8433             0, "Number of simulated l2_fhdr errors");
 8434 #endif
 8435 
 8436         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8437             "l2fhdr_error_count",
 8438             CTLFLAG_RD, &sc->l2fhdr_error_count,
 8439             0, "Number of l2_fhdr errors");
 8440 
 8441 #ifdef BCE_DEBUG
 8442         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8443             "mbuf_alloc_failed_sim_control",
 8444             CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
 8445             0, "Debug control to force mbuf allocation failures");
 8446 
 8447         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8448             "mbuf_alloc_failed_sim_count",
 8449             CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
 8450             0, "Number of simulated mbuf cluster allocation failures");
 8451 #endif
 8452 
 8453         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8454             "mbuf_alloc_failed_count",
 8455             CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
 8456             0, "Number of mbuf allocation failures");
 8457 
 8458         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8459             "mbuf_frag_count",
 8460             CTLFLAG_RD, &sc->mbuf_frag_count,
 8461             0, "Number of fragmented mbufs");
 8462 
 8463 #ifdef BCE_DEBUG
 8464         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8465             "dma_map_addr_failed_sim_control",
 8466             CTLFLAG_RW, &dma_map_addr_failed_sim_control,
 8467             0, "Debug control to force DMA mapping failures");
 8468 
 8469         /* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
 8470         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8471             "dma_map_addr_failed_sim_count",
 8472             CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
 8473             0, "Number of simulated DMA mapping failures");
 8474 
 8475 #endif
 8476 
 8477         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8478             "dma_map_addr_rx_failed_count",
 8479             CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
 8480             0, "Number of RX DMA mapping failures");
 8481 
 8482         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8483             "dma_map_addr_tx_failed_count",
 8484             CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
 8485             0, "Number of TX DMA mapping failures");
 8486 
 8487 #ifdef BCE_DEBUG
 8488         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8489             "unexpected_attention_sim_control",
 8490             CTLFLAG_RW, &unexpected_attention_sim_control,
 8491             0, "Debug control to simulate unexpected attentions");
 8492 
 8493         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8494             "unexpected_attention_sim_count",
 8495             CTLFLAG_RW, &sc->unexpected_attention_sim_count,
 8496             0, "Number of simulated unexpected attentions");
 8497 #endif
 8498 
 8499         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8500             "unexpected_attention_count",
 8501             CTLFLAG_RW, &sc->unexpected_attention_count,
 8502             0, "Number of unexpected attentions");
 8503 
 8504 #ifdef BCE_DEBUG
 8505         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8506             "debug_bootcode_running_failure",
 8507             CTLFLAG_RW, &bootcode_running_failure_sim_control,
 8508             0, "Debug control to force bootcode running failures");
 8509 
 8510         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8511             "rx_low_watermark",
 8512             CTLFLAG_RD, &sc->rx_low_watermark,
 8513             0, "Lowest level of free rx_bd's");
 8514 
 8515         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8516             "rx_empty_count",
 8517             CTLFLAG_RD, &sc->rx_empty_count,
 8518             0, "Number of times the RX chain was empty");
 8519 
 8520         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8521             "tx_hi_watermark",
 8522             CTLFLAG_RD, &sc->tx_hi_watermark,
 8523             0, "Highest level of used tx_bd's");
 8524 
 8525         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8526             "tx_full_count",
 8527             CTLFLAG_RD, &sc->tx_full_count,
 8528             0, "Number of times the TX chain was full");
 8529 
 8530         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8531             "tso_frames_requested",
 8532             CTLFLAG_RD, &sc->tso_frames_requested,
 8533             0, "Number of TSO frames requested");
 8534 
 8535         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8536             "tso_frames_completed",
 8537             CTLFLAG_RD, &sc->tso_frames_completed,
 8538             0, "Number of TSO frames completed");
 8539 
 8540         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8541             "tso_frames_failed",
 8542             CTLFLAG_RD, &sc->tso_frames_failed,
 8543             0, "Number of TSO frames failed");
 8544 
 8545         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8546             "csum_offload_ip",
 8547             CTLFLAG_RD, &sc->csum_offload_ip,
 8548             0, "Number of IP checksum offload frames");
 8549 
 8550         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8551             "csum_offload_tcp_udp",
 8552             CTLFLAG_RD, &sc->csum_offload_tcp_udp,
 8553             0, "Number of TCP/UDP checksum offload frames");
 8554 
 8555         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8556             "vlan_tagged_frames_rcvd",
 8557             CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
 8558             0, "Number of VLAN tagged frames received");
 8559 
 8560         SYSCTL_ADD_INT(ctx, children, OID_AUTO,
 8561             "vlan_tagged_frames_stripped",
 8562             CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
 8563             0, "Number of VLAN tagged frames stripped");
 8564 
 8565         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8566             "interrupts_rx",
 8567             CTLFLAG_RD, &sc->interrupts_rx,
 8568             0, "Number of RX interrupts");
 8569 
 8570         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8571             "interrupts_tx",
 8572             CTLFLAG_RD, &sc->interrupts_tx,
 8573             0, "Number of TX interrupts");
 8574 #endif
 8575 
 8576         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8577             "stat_IfHcInOctets",
 8578             CTLFLAG_RD, &sc->stat_IfHCInOctets,
 8579             "Bytes received");
 8580 
 8581         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8582             "stat_IfHCInBadOctets",
 8583             CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
 8584             "Bad bytes received");
 8585 
 8586         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8587             "stat_IfHCOutOctets",
 8588             CTLFLAG_RD, &sc->stat_IfHCOutOctets,
 8589             "Bytes sent");
 8590 
 8591         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8592             "stat_IfHCOutBadOctets",
 8593             CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
 8594             "Bad bytes sent");
 8595 
 8596         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8597             "stat_IfHCInUcastPkts",
 8598             CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
 8599             "Unicast packets received");
 8600 
 8601         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8602             "stat_IfHCInMulticastPkts",
 8603             CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
 8604             "Multicast packets received");
 8605 
 8606         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8607             "stat_IfHCInBroadcastPkts",
 8608             CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
 8609             "Broadcast packets received");
 8610 
 8611         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8612             "stat_IfHCOutUcastPkts",
 8613             CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
 8614             "Unicast packets sent");
 8615 
 8616         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8617             "stat_IfHCOutMulticastPkts",
 8618             CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
 8619             "Multicast packets sent");
 8620 
 8621         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 8622             "stat_IfHCOutBroadcastPkts",
 8623             CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
 8624             "Broadcast packets sent");
 8625 
 8626         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8627             "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
 8628             CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
 8629             0, "Internal MAC transmit errors");
 8630 
 8631         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8632             "stat_Dot3StatsCarrierSenseErrors",
 8633             CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
 8634             0, "Carrier sense errors");
 8635 
 8636         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8637             "stat_Dot3StatsFCSErrors",
 8638             CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
 8639             0, "Frame check sequence errors");
 8640 
 8641         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8642             "stat_Dot3StatsAlignmentErrors",
 8643             CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
 8644             0, "Alignment errors");
 8645 
 8646         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8647             "stat_Dot3StatsSingleCollisionFrames",
 8648             CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
 8649             0, "Single Collision Frames");
 8650 
 8651         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8652             "stat_Dot3StatsMultipleCollisionFrames",
 8653             CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
 8654             0, "Multiple Collision Frames");
 8655 
 8656         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8657             "stat_Dot3StatsDeferredTransmissions",
 8658             CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
 8659             0, "Deferred Transmissions");
 8660 
 8661         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8662             "stat_Dot3StatsExcessiveCollisions",
 8663             CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
 8664             0, "Excessive Collisions");
 8665 
 8666         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8667             "stat_Dot3StatsLateCollisions",
 8668             CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
 8669             0, "Late Collisions");
 8670 
 8671         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8672             "stat_EtherStatsCollisions",
 8673             CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
 8674             0, "Collisions");
 8675 
 8676         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8677             "stat_EtherStatsFragments",
 8678             CTLFLAG_RD, &sc->stat_EtherStatsFragments,
 8679             0, "Fragments");
 8680 
 8681         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8682             "stat_EtherStatsJabbers",
 8683             CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
 8684             0, "Jabbers");
 8685 
 8686         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8687             "stat_EtherStatsUndersizePkts",
 8688             CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
 8689             0, "Undersize packets");
 8690 
 8691         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8692             "stat_EtherStatsOversizePkts",
 8693             CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
 8694             0, "stat_EtherStatsOversizePkts");
 8695 
 8696         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8697             "stat_EtherStatsPktsRx64Octets",
 8698             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
 8699             0, "Bytes received in 64 byte packets");
 8700 
 8701         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8702             "stat_EtherStatsPktsRx65Octetsto127Octets",
 8703             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
 8704             0, "Bytes received in 65 to 127 byte packets");
 8705 
 8706         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8707             "stat_EtherStatsPktsRx128Octetsto255Octets",
 8708             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
 8709             0, "Bytes received in 128 to 255 byte packets");
 8710 
 8711         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8712             "stat_EtherStatsPktsRx256Octetsto511Octets",
 8713             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
 8714             0, "Bytes received in 256 to 511 byte packets");
 8715 
 8716         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8717             "stat_EtherStatsPktsRx512Octetsto1023Octets",
 8718             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
 8719             0, "Bytes received in 512 to 1023 byte packets");
 8720 
 8721         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8722             "stat_EtherStatsPktsRx1024Octetsto1522Octets",
 8723             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
 8724             0, "Bytes received in 1024 t0 1522 byte packets");
 8725 
 8726         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8727             "stat_EtherStatsPktsRx1523Octetsto9022Octets",
 8728             CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
 8729             0, "Bytes received in 1523 to 9022 byte packets");
 8730 
 8731         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8732             "stat_EtherStatsPktsTx64Octets",
 8733             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
 8734             0, "Bytes sent in 64 byte packets");
 8735 
 8736         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8737             "stat_EtherStatsPktsTx65Octetsto127Octets",
 8738             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
 8739             0, "Bytes sent in 65 to 127 byte packets");
 8740 
 8741         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8742             "stat_EtherStatsPktsTx128Octetsto255Octets",
 8743             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
 8744             0, "Bytes sent in 128 to 255 byte packets");
 8745 
 8746         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8747             "stat_EtherStatsPktsTx256Octetsto511Octets",
 8748             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
 8749             0, "Bytes sent in 256 to 511 byte packets");
 8750 
 8751         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8752             "stat_EtherStatsPktsTx512Octetsto1023Octets",
 8753             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
 8754             0, "Bytes sent in 512 to 1023 byte packets");
 8755 
 8756         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8757             "stat_EtherStatsPktsTx1024Octetsto1522Octets",
 8758             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
 8759             0, "Bytes sent in 1024 to 1522 byte packets");
 8760 
 8761         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8762             "stat_EtherStatsPktsTx1523Octetsto9022Octets",
 8763             CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
 8764             0, "Bytes sent in 1523 to 9022 byte packets");
 8765 
 8766         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8767             "stat_XonPauseFramesReceived",
 8768             CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
 8769             0, "XON pause frames receved");
 8770 
 8771         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8772             "stat_XoffPauseFramesReceived",
 8773             CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
 8774             0, "XOFF pause frames received");
 8775 
 8776         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8777             "stat_OutXonSent",
 8778             CTLFLAG_RD, &sc->stat_OutXonSent,
 8779             0, "XON pause frames sent");
 8780 
 8781         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8782             "stat_OutXoffSent",
 8783             CTLFLAG_RD, &sc->stat_OutXoffSent,
 8784             0, "XOFF pause frames sent");
 8785 
 8786         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8787             "stat_FlowControlDone",
 8788             CTLFLAG_RD, &sc->stat_FlowControlDone,
 8789             0, "Flow control done");
 8790 
 8791         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8792             "stat_MacControlFramesReceived",
 8793             CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
 8794             0, "MAC control frames received");
 8795 
 8796         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8797             "stat_XoffStateEntered",
 8798             CTLFLAG_RD, &sc->stat_XoffStateEntered,
 8799             0, "XOFF state entered");
 8800 
 8801         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8802             "stat_IfInFramesL2FilterDiscards",
 8803             CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
 8804             0, "Received L2 packets discarded");
 8805 
 8806         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8807             "stat_IfInRuleCheckerDiscards",
 8808             CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
 8809             0, "Received packets discarded by rule");
 8810 
 8811         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8812             "stat_IfInFTQDiscards",
 8813             CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
 8814             0, "Received packet FTQ discards");
 8815 
 8816         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8817             "stat_IfInMBUFDiscards",
 8818             CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
 8819             0, "Received packets discarded due to lack "
 8820             "of controller buffer memory");
 8821 
 8822         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8823             "stat_IfInRuleCheckerP4Hit",
 8824             CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
 8825             0, "Received packets rule checker hits");
 8826 
 8827         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8828             "stat_CatchupInRuleCheckerDiscards",
 8829             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
 8830             0, "Received packets discarded in Catchup path");
 8831 
 8832         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8833             "stat_CatchupInFTQDiscards",
 8834             CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
 8835             0, "Received packets discarded in FTQ in Catchup path");
 8836 
 8837         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8838             "stat_CatchupInMBUFDiscards",
 8839             CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
 8840             0, "Received packets discarded in controller "
 8841             "buffer memory in Catchup path");
 8842 
 8843         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8844             "stat_CatchupInRuleCheckerP4Hit",
 8845             CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
 8846             0, "Received packets rule checker hits in Catchup path");
 8847 
 8848         SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
 8849             "com_no_buffers",
 8850             CTLFLAG_RD, &sc->com_no_buffers,
 8851             0, "Valid packets received but no RX buffers available");
 8852 
 8853 #ifdef BCE_DEBUG
 8854         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8855             "driver_state", CTLTYPE_INT | CTLFLAG_RW,
 8856             (void *)sc, 0,
 8857             bce_sysctl_driver_state, "I", "Drive state information");
 8858 
 8859         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8860             "hw_state", CTLTYPE_INT | CTLFLAG_RW,
 8861             (void *)sc, 0,
 8862             bce_sysctl_hw_state, "I", "Hardware state information");
 8863 
 8864         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8865             "status_block", CTLTYPE_INT | CTLFLAG_RW,
 8866             (void *)sc, 0,
 8867             bce_sysctl_status_block, "I", "Dump status block");
 8868 
 8869         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8870             "stats_block", CTLTYPE_INT | CTLFLAG_RW,
 8871             (void *)sc, 0,
 8872             bce_sysctl_stats_block, "I", "Dump statistics block");
 8873 
 8874         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8875             "stats_clear", CTLTYPE_INT | CTLFLAG_RW,
 8876             (void *)sc, 0,
 8877             bce_sysctl_stats_clear, "I", "Clear statistics block");
 8878 
 8879         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8880             "bc_state", CTLTYPE_INT | CTLFLAG_RW,
 8881             (void *)sc, 0,
 8882             bce_sysctl_bc_state, "I", "Bootcode state information");
 8883 
 8884         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8885             "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW,
 8886             (void *)sc, 0,
 8887             bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
 8888 
 8889         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8890             "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW,
 8891             (void *)sc, 0,
 8892             bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
 8893 
 8894         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8895             "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW,
 8896             (void *)sc, 0,
 8897             bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
 8898 
 8899 #ifdef BCE_JUMBO_HDRSPLIT
 8900         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8901             "dump_pg_chain", CTLTYPE_INT | CTLFLAG_RW,
 8902             (void *)sc, 0,
 8903             bce_sysctl_dump_pg_chain, "I", "Dump page chain");
 8904 #endif
 8905         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8906             "dump_ctx", CTLTYPE_INT | CTLFLAG_RW,
 8907             (void *)sc, 0,
 8908             bce_sysctl_dump_ctx, "I", "Dump context memory");
 8909 
 8910         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8911             "breakpoint", CTLTYPE_INT | CTLFLAG_RW,
 8912             (void *)sc, 0,
 8913             bce_sysctl_breakpoint, "I", "Driver breakpoint");
 8914 
 8915         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8916             "reg_read", CTLTYPE_INT | CTLFLAG_RW,
 8917             (void *)sc, 0,
 8918             bce_sysctl_reg_read, "I", "Register read");
 8919 
 8920         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8921             "nvram_read", CTLTYPE_INT | CTLFLAG_RW,
 8922             (void *)sc, 0,
 8923             bce_sysctl_nvram_read, "I", "NVRAM read");
 8924 
 8925         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
 8926             "phy_read", CTLTYPE_INT | CTLFLAG_RW,
 8927             (void *)sc, 0,
 8928             bce_sysctl_phy_read, "I", "PHY register read");
 8929 
 8930 #endif
 8931 
 8932         DBEXIT(BCE_VERBOSE_MISC);
 8933 }
 8934 
 8935 
 8936 /****************************************************************************/
 8937 /* BCE Debug Routines                                                       */
 8938 /****************************************************************************/
 8939 #ifdef BCE_DEBUG
 8940 
 8941 /****************************************************************************/
 8942 /* Freezes the controller to allow for a cohesive state dump.               */
 8943 /*                                                                          */
 8944 /* Returns:                                                                 */
 8945 /*   Nothing.                                                               */
 8946 /****************************************************************************/
 8947 static __attribute__ ((noinline)) void
 8948 bce_freeze_controller(struct bce_softc *sc)
 8949 {
 8950         u32 val;
 8951         val = REG_RD(sc, BCE_MISC_COMMAND);
 8952         val |= BCE_MISC_COMMAND_DISABLE_ALL;
 8953         REG_WR(sc, BCE_MISC_COMMAND, val);
 8954 }
 8955 
 8956 
 8957 /****************************************************************************/
 8958 /* Unfreezes the controller after a freeze operation.  This may not always  */
 8959 /* work and the controller will require a reset!                            */
 8960 /*                                                                          */
 8961 /* Returns:                                                                 */
 8962 /*   Nothing.                                                               */
 8963 /****************************************************************************/
 8964 static __attribute__ ((noinline)) void
 8965 bce_unfreeze_controller(struct bce_softc *sc)
 8966 {
 8967         u32 val;
 8968         val = REG_RD(sc, BCE_MISC_COMMAND);
 8969         val |= BCE_MISC_COMMAND_ENABLE_ALL;
 8970         REG_WR(sc, BCE_MISC_COMMAND, val);
 8971 }
 8972 
 8973 
 8974 /****************************************************************************/
 8975 /* Prints out Ethernet frame information from an mbuf.                      */
 8976 /*                                                                          */
 8977 /* Partially decode an Ethernet frame to look at some important headers.    */
 8978 /*                                                                          */
 8979 /* Returns:                                                                 */
 8980 /*   Nothing.                                                               */
 8981 /****************************************************************************/
 8982 static __attribute__ ((noinline)) void
 8983 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
 8984 {
 8985         struct ether_vlan_header *eh;
 8986         u16 etype;
 8987         int ehlen;
 8988         struct ip *ip;
 8989         struct tcphdr *th;
 8990         struct udphdr *uh;
 8991         struct arphdr *ah;
 8992 
 8993         BCE_PRINTF(
 8994             "-----------------------------"
 8995             " Frame Decode "
 8996             "-----------------------------\n");
 8997 
 8998         eh = mtod(m, struct ether_vlan_header *);
 8999 
 9000         /* Handle VLAN encapsulation if present. */
 9001         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
 9002                 etype = ntohs(eh->evl_proto);
 9003                 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
 9004         } else {
 9005                 etype = ntohs(eh->evl_encap_proto);
 9006                 ehlen = ETHER_HDR_LEN;
 9007         }
 9008 
 9009         /* ToDo: Add VLAN output. */
 9010         BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
 9011             eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
 9012 
 9013         switch (etype) {
 9014         case ETHERTYPE_IP:
 9015                 ip = (struct ip *)(m->m_data + ehlen);
 9016                 BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
 9017                     "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
 9018                     ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
 9019                     ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
 9020 
 9021                 switch (ip->ip_p) {
 9022                 case IPPROTO_TCP:
 9023                         th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
 9024                         BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
 9025                             "%d bytes, flags = 0x%b, csum = 0x%04X\n",
 9026                             ntohs(th->th_dport), ntohs(th->th_sport),
 9027                             (th->th_off << 2), th->th_flags,
 9028                             "\2\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
 9029                             "\02SYN\01FIN", ntohs(th->th_sum));
 9030                         break;
 9031                 case IPPROTO_UDP:
 9032                         uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
 9033                         BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
 9034                             "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
 9035                             ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
 9036                             ntohs(uh->uh_sum));
 9037                         break;
 9038                 case IPPROTO_ICMP:
 9039                         BCE_PRINTF("icmp:\n");
 9040                         break;
 9041                 default:
 9042                         BCE_PRINTF("----: Other IP protocol.\n");
 9043                         }
 9044                 break;
 9045         case ETHERTYPE_IPV6:
 9046                 BCE_PRINTF("ipv6: No decode supported.\n");
 9047                 break;
 9048         case ETHERTYPE_ARP:
 9049                 BCE_PRINTF("-arp: ");
 9050                 ah = (struct arphdr *) (m->m_data + ehlen);
 9051                 switch (ntohs(ah->ar_op)) {
 9052                 case ARPOP_REVREQUEST:
 9053                         printf("reverse ARP request\n");
 9054                         break;
 9055                 case ARPOP_REVREPLY:
 9056                         printf("reverse ARP reply\n");
 9057                         break;
 9058                 case ARPOP_REQUEST:
 9059                         printf("ARP request\n");
 9060                         break;
 9061                 case ARPOP_REPLY:
 9062                         printf("ARP reply\n");
 9063                         break;
 9064                 default:
 9065                         printf("other ARP operation\n");
 9066                 }
 9067                 break;
 9068         default:
 9069                 BCE_PRINTF("----: Other protocol.\n");
 9070         }
 9071 
 9072         BCE_PRINTF(
 9073                 "-----------------------------"
 9074                 "--------------"
 9075                 "-----------------------------\n");
 9076 }
 9077 
 9078 
 9079 /****************************************************************************/
 9080 /* Prints out information about an mbuf.                                    */
 9081 /*                                                                          */
 9082 /* Returns:                                                                 */
 9083 /*   Nothing.                                                               */
 9084 /****************************************************************************/
 9085 static __attribute__ ((noinline)) void
 9086 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
 9087 {
 9088         struct mbuf *mp = m;
 9089 
 9090         if (m == NULL) {
 9091                 BCE_PRINTF("mbuf: null pointer\n");
 9092                 return;
 9093         }
 9094 
 9095         while (mp) {
 9096                 BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
 9097                     "m_data = %p\n", mp, mp->m_len, mp->m_flags,
 9098                     "\2\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
 9099 
 9100                 if (mp->m_flags & M_PKTHDR) {
 9101                         BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
 9102                             "csum_flags = %b\n", mp->m_pkthdr.len,
 9103                             mp->m_flags, "\2\12M_BCAST\13M_MCAST\14M_FRAG"
 9104                             "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
 9105                             "\22M_PROMISC\23M_NOFREE",
 9106                             mp->m_pkthdr.csum_flags,
 9107                             "\2\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
 9108                             "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
 9109                             "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
 9110                             "\14CSUM_PSEUDO_HDR");
 9111                 }
 9112 
 9113                 if (mp->m_flags & M_EXT) {
 9114                         BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
 9115                             mp->m_ext.ext_buf, mp->m_ext.ext_size);
 9116                         switch (mp->m_ext.ext_type) {
 9117                         case EXT_CLUSTER:
 9118                                 printf("EXT_CLUSTER\n"); break;
 9119                         case EXT_SFBUF:
 9120                                 printf("EXT_SFBUF\n"); break;
 9121                         case EXT_JUMBO9:
 9122                                 printf("EXT_JUMBO9\n"); break;
 9123                         case EXT_JUMBO16:
 9124                                 printf("EXT_JUMBO16\n"); break;
 9125                         case EXT_PACKET:
 9126                                 printf("EXT_PACKET\n"); break;
 9127                         case EXT_MBUF:
 9128                                 printf("EXT_MBUF\n"); break;
 9129                         case EXT_NET_DRV:
 9130                                 printf("EXT_NET_DRV\n"); break;
 9131                         case EXT_MOD_TYPE:
 9132                                 printf("EXT_MDD_TYPE\n"); break;
 9133                         case EXT_DISPOSABLE:
 9134                                 printf("EXT_DISPOSABLE\n"); break;
 9135                         case EXT_EXTREF:
 9136                                 printf("EXT_EXTREF\n"); break;
 9137                         default:
 9138                                 printf("UNKNOWN\n");
 9139                         }
 9140                 }
 9141 
 9142                 mp = mp->m_next;
 9143         }
 9144 }
 9145 
 9146 
 9147 /****************************************************************************/
 9148 /* Prints out the mbufs in the TX mbuf chain.                               */
 9149 /*                                                                          */
 9150 /* Returns:                                                                 */
 9151 /*   Nothing.                                                               */
 9152 /****************************************************************************/
 9153 static __attribute__ ((noinline)) void
 9154 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
 9155 {
 9156         struct mbuf *m;
 9157 
 9158         BCE_PRINTF(
 9159                 "----------------------------"
 9160                 "  tx mbuf data  "
 9161                 "----------------------------\n");
 9162 
 9163         for (int i = 0; i < count; i++) {
 9164                 m = sc->tx_mbuf_ptr[chain_prod];
 9165                 BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
 9166                 bce_dump_mbuf(sc, m);
 9167                 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
 9168         }
 9169 
 9170         BCE_PRINTF(
 9171                 "----------------------------"
 9172                 "----------------"
 9173                 "----------------------------\n");
 9174 }
 9175 
 9176 
 9177 /****************************************************************************/
 9178 /* Prints out the mbufs in the RX mbuf chain.                               */
 9179 /*                                                                          */
 9180 /* Returns:                                                                 */
 9181 /*   Nothing.                                                               */
 9182 /****************************************************************************/
 9183 static __attribute__ ((noinline)) void
 9184 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
 9185 {
 9186         struct mbuf *m;
 9187 
 9188         BCE_PRINTF(
 9189                 "----------------------------"
 9190                 "  rx mbuf data  "
 9191                 "----------------------------\n");
 9192 
 9193         for (int i = 0; i < count; i++) {
 9194                 m = sc->rx_mbuf_ptr[chain_prod];
 9195                 BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
 9196                 bce_dump_mbuf(sc, m);
 9197                 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
 9198         }
 9199 
 9200 
 9201         BCE_PRINTF(
 9202                 "----------------------------"
 9203                 "----------------"
 9204                 "----------------------------\n");
 9205 }
 9206 
 9207 
 9208 #ifdef BCE_JUMBO_HDRSPLIT
 9209 /****************************************************************************/
 9210 /* Prints out the mbufs in the mbuf page chain.                             */
 9211 /*                                                                          */
 9212 /* Returns:                                                                 */
 9213 /*   Nothing.                                                               */
 9214 /****************************************************************************/
 9215 static __attribute__ ((noinline)) void
 9216 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
 9217 {
 9218         struct mbuf *m;
 9219 
 9220         BCE_PRINTF(
 9221                 "----------------------------"
 9222                 "  pg mbuf data  "
 9223                 "----------------------------\n");
 9224 
 9225         for (int i = 0; i < count; i++) {
 9226                 m = sc->pg_mbuf_ptr[chain_prod];
 9227                 BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
 9228                 bce_dump_mbuf(sc, m);
 9229                 chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
 9230         }
 9231 
 9232 
 9233         BCE_PRINTF(
 9234                 "----------------------------"
 9235                 "----------------"
 9236                 "----------------------------\n");
 9237 }
 9238 #endif
 9239 
 9240 
 9241 /****************************************************************************/
 9242 /* Prints out a tx_bd structure.                                            */
 9243 /*                                                                          */
 9244 /* Returns:                                                                 */
 9245 /*   Nothing.                                                               */
 9246 /****************************************************************************/
 9247 static __attribute__ ((noinline)) void
 9248 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
 9249 {
 9250         int i = 0;
 9251 
 9252         if (idx > MAX_TX_BD)
 9253                 /* Index out of range. */
 9254                 BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
 9255         else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
 9256                 /* TX Chain page pointer. */
 9257                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
 9258                     "pointer\n", idx, txbd->tx_bd_haddr_hi,
 9259                     txbd->tx_bd_haddr_lo);
 9260         else {
 9261                 /* Normal tx_bd entry. */
 9262                 BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
 9263                     "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
 9264                     "0x%04X (", idx, txbd->tx_bd_haddr_hi,
 9265                     txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
 9266                     txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
 9267 
 9268                 if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
 9269                         if (i>0)
 9270                                 printf("|");
 9271                         printf("CONN_FAULT");
 9272                         i++;
 9273                 }
 9274 
 9275                 if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
 9276                         if (i>0)
 9277                                 printf("|");
 9278                         printf("TCP_UDP_CKSUM");
 9279                         i++;
 9280                 }
 9281 
 9282                 if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
 9283                         if (i>0)
 9284                                 printf("|");
 9285                         printf("IP_CKSUM");
 9286                         i++;
 9287                 }
 9288 
 9289                 if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
 9290                         if (i>0)
 9291                                 printf("|");
 9292                         printf("VLAN");
 9293                         i++;
 9294                 }
 9295 
 9296                 if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
 9297                         if (i>0)
 9298                                 printf("|");
 9299                         printf("COAL_NOW");
 9300                         i++;
 9301                 }
 9302 
 9303                 if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
 9304                         if (i>0)
 9305                                 printf("|");
 9306                         printf("DONT_GEN_CRC");
 9307                         i++;
 9308                 }
 9309 
 9310                 if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
 9311                         if (i>0)
 9312                                 printf("|");
 9313                         printf("START");
 9314                         i++;
 9315                 }
 9316 
 9317                 if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
 9318                         if (i>0)
 9319                                 printf("|");
 9320                         printf("END");
 9321                         i++;
 9322                 }
 9323 
 9324                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
 9325                         if (i>0)
 9326                                 printf("|");
 9327                         printf("LSO");
 9328                         i++;
 9329                 }
 9330 
 9331                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
 9332                         if (i>0)
 9333                                 printf("|");
 9334                         printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
 9335                             TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
 9336                 }
 9337 
 9338                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
 9339                         if (i>0)
 9340                                 printf("|");
 9341                         printf("SW_FLAGS");
 9342                         i++;
 9343                 }
 9344 
 9345                 if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
 9346                         if (i>0)
 9347                                 printf("|");
 9348                         printf("SNAP)");
 9349                 } else {
 9350                         printf(")\n");
 9351                 }
 9352         }
 9353 }
 9354 
 9355 
 9356 /****************************************************************************/
 9357 /* Prints out a rx_bd structure.                                            */
 9358 /*                                                                          */
 9359 /* Returns:                                                                 */
 9360 /*   Nothing.                                                               */
 9361 /****************************************************************************/
 9362 static __attribute__ ((noinline)) void
 9363 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
 9364 {
 9365         if (idx > MAX_RX_BD)
 9366                 /* Index out of range. */
 9367                 BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
 9368         else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
 9369                 /* RX Chain page pointer. */
 9370                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
 9371                     "pointer\n", idx, rxbd->rx_bd_haddr_hi,
 9372                     rxbd->rx_bd_haddr_lo);
 9373         else
 9374                 /* Normal rx_bd entry. */
 9375                 BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
 9376                     "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
 9377                     rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
 9378                     rxbd->rx_bd_flags);
 9379 }
 9380 
 9381 
 9382 #ifdef BCE_JUMBO_HDRSPLIT
 9383 /****************************************************************************/
 9384 /* Prints out a rx_bd structure in the page chain.                          */
 9385 /*                                                                          */
 9386 /* Returns:                                                                 */
 9387 /*   Nothing.                                                               */
 9388 /****************************************************************************/
 9389 static __attribute__ ((noinline)) void
 9390 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
 9391 {
 9392         if (idx > MAX_PG_BD)
 9393                 /* Index out of range. */
 9394                 BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
 9395         else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
 9396                 /* Page Chain page pointer. */
 9397                 BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
 9398                         idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
 9399         else
 9400                 /* Normal rx_bd entry. */
 9401                 BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
 9402                         "flags = 0x%08X\n", idx,
 9403                         pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
 9404                         pgbd->rx_bd_len, pgbd->rx_bd_flags);
 9405 }
 9406 #endif
 9407 
 9408 
 9409 /****************************************************************************/
 9410 /* Prints out a l2_fhdr structure.                                          */
 9411 /*                                                                          */
 9412 /* Returns:                                                                 */
 9413 /*   Nothing.                                                               */
 9414 /****************************************************************************/
 9415 static __attribute__ ((noinline)) void
 9416 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
 9417 {
 9418         BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
 9419                 "pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
 9420                 "tcp_udp_xsum = 0x%04X\n", idx,
 9421                 l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
 9422                 l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
 9423                 l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
 9424 }
 9425 
 9426 
 9427 /****************************************************************************/
 9428 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
 9429 /*                                                                          */
 9430 /* Returns:                                                                 */
 9431 /*   Nothing.                                                               */
 9432 /****************************************************************************/
 9433 static __attribute__ ((noinline)) void
 9434 bce_dump_ctx(struct bce_softc *sc, u16 cid)
 9435 {
 9436         if (cid > TX_CID) {
 9437                 BCE_PRINTF(" Unknown CID\n");
 9438                 return;
 9439         }
 9440 
 9441         BCE_PRINTF(
 9442             "----------------------------"
 9443             "    CTX Data    "
 9444             "----------------------------\n");
 9445 
 9446         BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
 9447 
 9448         if (cid == RX_CID) {
 9449                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
 9450                    "producer index\n",
 9451                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
 9452                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
 9453                     "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9454                     BCE_L2CTX_RX_HOST_BSEQ));
 9455                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
 9456                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
 9457                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
 9458                     "descriptor address\n",
 9459                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
 9460                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
 9461                     "descriptor address\n",
 9462                     CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
 9463                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
 9464                     "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9465                     BCE_L2CTX_RX_NX_BDIDX));
 9466                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
 9467                     "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9468                     BCE_L2CTX_RX_HOST_PG_BDIDX));
 9469                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
 9470                     "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9471                     BCE_L2CTX_RX_PG_BUF_SIZE));
 9472                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
 9473                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9474                     BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
 9475                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
 9476                     "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9477                     BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
 9478                 BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
 9479                     "consumer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9480                     BCE_L2CTX_RX_NX_PG_BDIDX));
 9481         } else if (cid == TX_CID) {
 9482                 if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 9483                     (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 9484                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
 9485                             CTX_RD(sc, GET_CID_ADDR(cid),
 9486                             BCE_L2CTX_TX_TYPE_XI));
 9487                         BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
 9488                             "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9489                             BCE_L2CTX_TX_CMD_TYPE_XI));
 9490                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
 9491                             "h/w buffer descriptor address\n",
 9492                             CTX_RD(sc, GET_CID_ADDR(cid),
 9493                             BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
 9494                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
 9495                             "h/w buffer descriptor address\n",
 9496                             CTX_RD(sc, GET_CID_ADDR(cid),
 9497                             BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
 9498                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
 9499                             "host producer index\n",
 9500                             CTX_RD(sc, GET_CID_ADDR(cid),
 9501                             BCE_L2CTX_TX_HOST_BIDX_XI));
 9502                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
 9503                             "host byte sequence\n",
 9504                             CTX_RD(sc, GET_CID_ADDR(cid),
 9505                             BCE_L2CTX_TX_HOST_BSEQ_XI));
 9506                 } else {
 9507                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
 9508                             CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
 9509                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
 9510                             CTX_RD(sc, GET_CID_ADDR(cid),
 9511                             BCE_L2CTX_TX_CMD_TYPE));
 9512                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
 9513                             "h/w buffer descriptor address\n",
 9514                             CTX_RD(sc, GET_CID_ADDR(cid),
 9515                             BCE_L2CTX_TX_TBDR_BHADDR_HI));
 9516                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
 9517                             "h/w buffer descriptor address\n",
 9518                             CTX_RD(sc, GET_CID_ADDR(cid),
 9519                             BCE_L2CTX_TX_TBDR_BHADDR_LO));
 9520                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
 9521                             "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9522                             BCE_L2CTX_TX_HOST_BIDX));
 9523                         BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
 9524                             "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
 9525                             BCE_L2CTX_TX_HOST_BSEQ));
 9526                 }
 9527         }
 9528 
 9529         BCE_PRINTF(
 9530            "----------------------------"
 9531            "    Raw CTX     "
 9532            "----------------------------\n");
 9533 
 9534         for (int i = 0x0; i < 0x300; i += 0x10) {
 9535                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
 9536                    CTX_RD(sc, GET_CID_ADDR(cid), i),
 9537                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
 9538                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
 9539                    CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
 9540         }
 9541 
 9542 
 9543         BCE_PRINTF(
 9544            "----------------------------"
 9545            "----------------"
 9546            "----------------------------\n");
 9547 }
 9548 
 9549 
 9550 /****************************************************************************/
 9551 /* Prints out the FTQ data.                                                 */
 9552 /*                                                                          */
 9553 /* Returns:                                                                */
 9554 /*   Nothing.                                                               */
 9555 /****************************************************************************/
 9556 static __attribute__ ((noinline)) void
 9557 bce_dump_ftqs(struct bce_softc *sc)
 9558 {
 9559         u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
 9560 
 9561         BCE_PRINTF(
 9562             "----------------------------"
 9563             "    FTQ Data    "
 9564             "----------------------------\n");
 9565 
 9566         BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
 9567             "Max_Depth  Valid_Cnt \n");
 9568         BCE_PRINTF(" ------- ---------- ---------- ---------- "
 9569             "---------- ----------\n");
 9570 
 9571         /* Setup the generic statistic counters for the FTQ valid count. */
 9572         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
 9573             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
 9574             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
 9575             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
 9576         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
 9577 
 9578         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
 9579             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
 9580             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
 9581             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
 9582         REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
 9583 
 9584         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
 9585             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
 9586             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
 9587             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
 9588         REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
 9589 
 9590         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
 9591             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
 9592             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
 9593             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
 9594         REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
 9595 
 9596         /* Input queue to the Receive Lookup state machine */
 9597         cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
 9598         ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
 9599         cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
 9600         max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
 9601         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
 9602         BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9603             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9604 
 9605         /* Input queue to the Receive Processor */
 9606         cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
 9607         ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
 9608         cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
 9609         max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
 9610         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
 9611         BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9612             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9613 
 9614         /* Input queue to the Recevie Processor */
 9615         cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
 9616         ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
 9617         cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
 9618         max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
 9619         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
 9620         BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9621             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9622 
 9623         /* Input queue to the Receive Virtual to Physical state machine */
 9624         cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
 9625         ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
 9626         cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
 9627         max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
 9628         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
 9629         BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9630             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9631 
 9632         /* Input queue to the Recevie Virtual to Physical state machine */
 9633         cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
 9634         ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
 9635         cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
 9636         max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
 9637         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
 9638         BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9639             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9640 
 9641         /* Input queue to the Receive Virtual to Physical state machine */
 9642         cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
 9643         ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
 9644         cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
 9645         max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
 9646         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
 9647         BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9648             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9649 
 9650         /* Input queue to the Receive DMA state machine */
 9651         cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
 9652         ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
 9653         cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
 9654         max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
 9655         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
 9656         BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9657             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9658 
 9659         /* Input queue to the Transmit Scheduler state machine */
 9660         cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
 9661         ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
 9662         cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
 9663         max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
 9664         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
 9665         BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9666             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9667 
 9668         /* Input queue to the Transmit Buffer Descriptor state machine */
 9669         cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
 9670         ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
 9671         cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
 9672         max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
 9673         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
 9674         BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9675             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9676 
 9677         /* Input queue to the Transmit Processor */
 9678         cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
 9679         ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
 9680         cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
 9681         max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
 9682         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
 9683         BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9684             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9685 
 9686         /* Input queue to the Transmit DMA state machine */
 9687         cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
 9688         ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
 9689         cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
 9690         max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
 9691         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
 9692         BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9693             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9694 
 9695         /* Input queue to the Transmit Patch-Up Processor */
 9696         cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
 9697         ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
 9698         cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
 9699         max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
 9700         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
 9701         BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9702             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9703 
 9704         /* Input queue to the Transmit Assembler state machine */
 9705         cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
 9706         ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
 9707         cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
 9708         max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
 9709         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
 9710         BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9711             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9712 
 9713         /* Input queue to the Completion Processor */
 9714         cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
 9715         ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
 9716         cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
 9717         max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
 9718         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
 9719         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9720             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9721 
 9722         /* Input queue to the Completion Processor */
 9723         cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
 9724         ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
 9725         cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
 9726         max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
 9727         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
 9728         BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9729             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9730 
 9731         /* Input queue to the Completion Processor */
 9732         cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
 9733         ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
 9734         cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
 9735         max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
 9736         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
 9737         BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9738             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9739 
 9740         /* Setup the generic statistic counters for the FTQ valid count. */
 9741         val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
 9742             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
 9743             (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
 9744 
 9745         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 9746             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716))
 9747                 val = val |
 9748                     (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
 9749                      24);
 9750         REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
 9751 
 9752         /* Input queue to the Management Control Processor */
 9753         cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
 9754         ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
 9755         cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
 9756         max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
 9757         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
 9758         BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9759             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9760 
 9761         /* Input queue to the Command Processor */
 9762         cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
 9763         ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
 9764         cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
 9765         max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
 9766         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
 9767         BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9768             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9769 
 9770         /* Input queue to the Completion Scheduler state machine */
 9771         cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
 9772         ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
 9773         cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
 9774         max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
 9775         valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
 9776         BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9777             cmd, ctl, cur_depth, max_depth, valid_cnt);
 9778 
 9779         if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) ||
 9780             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716)) {
 9781                 /* Input queue to the RV2P Command Scheduler */
 9782                 cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
 9783                 ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
 9784                 cur_depth = (ctl & 0xFFC00000) >> 22;
 9785                 max_depth = (ctl & 0x003FF000) >> 12;
 9786                 valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
 9787                 BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
 9788                     cmd, ctl, cur_depth, max_depth, valid_cnt);
 9789         }
 9790 
 9791         BCE_PRINTF(
 9792             "----------------------------"
 9793             "----------------"
 9794             "----------------------------\n");
 9795 }
 9796 
 9797 
 9798 /****************************************************************************/
 9799 /* Prints out the TX chain.                                                 */
 9800 /*                                                                          */
 9801 /* Returns:                                                                 */
 9802 /*   Nothing.                                                               */
 9803 /****************************************************************************/
 9804 static __attribute__ ((noinline)) void
 9805 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
 9806 {
 9807         struct tx_bd *txbd;
 9808 
 9809         /* First some info about the tx_bd chain structure. */
 9810         BCE_PRINTF(
 9811             "----------------------------"
 9812             "  tx_bd  chain  "
 9813             "----------------------------\n");
 9814 
 9815         BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
 9816             (u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
 9817         BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
 9818             (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
 9819         BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD);
 9820 
 9821         BCE_PRINTF(
 9822             "----------------------------"
 9823             "   tx_bd data   "
 9824             "----------------------------\n");
 9825 
 9826         /* Now print out a decoded list of TX buffer descriptors. */
 9827         for (int i = 0; i < count; i++) {
 9828                 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
 9829                 bce_dump_txbd(sc, tx_prod, txbd);
 9830                 tx_prod++;
 9831         }
 9832 
 9833         BCE_PRINTF(
 9834             "----------------------------"
 9835             "----------------"
 9836             "----------------------------\n");
 9837 }
 9838 
 9839 
 9840 /****************************************************************************/
 9841 /* Prints out the RX chain.                                                 */
 9842 /*                                                                          */
 9843 /* Returns:                                                                 */
 9844 /*   Nothing.                                                               */
 9845 /****************************************************************************/
 9846 static __attribute__ ((noinline)) void
 9847 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
 9848 {
 9849         struct rx_bd *rxbd;
 9850 
 9851         /* First some info about the rx_bd chain structure. */
 9852         BCE_PRINTF(
 9853             "----------------------------"
 9854             "  rx_bd  chain  "
 9855             "----------------------------\n");
 9856 
 9857         BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
 9858             (u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
 9859 
 9860         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
 9861             (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
 9862 
 9863         BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD);
 9864 
 9865         BCE_PRINTF(
 9866             "----------------------------"
 9867             "   rx_bd data   "
 9868             "----------------------------\n");
 9869 
 9870         /* Now print out the rx_bd's themselves. */
 9871         for (int i = 0; i < count; i++) {
 9872                 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
 9873                 bce_dump_rxbd(sc, rx_prod, rxbd);
 9874                 rx_prod = RX_CHAIN_IDX(rx_prod + 1);
 9875         }
 9876 
 9877         BCE_PRINTF(
 9878             "----------------------------"
 9879             "----------------"
 9880             "----------------------------\n");
 9881 }
 9882 
 9883 
 9884 #ifdef BCE_JUMBO_HDRSPLIT
 9885 /****************************************************************************/
 9886 /* Prints out the page chain.                                               */
 9887 /*                                                                          */
 9888 /* Returns:                                                                 */
 9889 /*   Nothing.                                                               */
 9890 /****************************************************************************/
 9891 static __attribute__ ((noinline)) void
 9892 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
 9893 {
 9894         struct rx_bd *pgbd;
 9895 
 9896         /* First some info about the page chain structure. */
 9897         BCE_PRINTF(
 9898             "----------------------------"
 9899             "   page chain   "
 9900             "----------------------------\n");
 9901 
 9902         BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
 9903             (u32) BCM_PAGE_SIZE, (u32) PG_PAGES);
 9904 
 9905         BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
 9906             (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
 9907 
 9908         BCE_PRINTF("total rx_bd    = 0x%08X, max_pg_bd             = 0x%08X\n",
 9909             (u32) TOTAL_PG_BD, (u32) MAX_PG_BD);
 9910 
 9911         BCE_PRINTF(
 9912             "----------------------------"
 9913             "   page data    "
 9914             "----------------------------\n");
 9915 
 9916         /* Now print out the rx_bd's themselves. */
 9917         for (int i = 0; i < count; i++) {
 9918                 pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
 9919                 bce_dump_pgbd(sc, pg_prod, pgbd);
 9920                 pg_prod = PG_CHAIN_IDX(pg_prod + 1);
 9921         }
 9922 
 9923         BCE_PRINTF(
 9924             "----------------------------"
 9925             "----------------"
 9926             "----------------------------\n");
 9927 }
 9928 #endif
 9929 
 9930 
 9931 #define BCE_PRINT_RX_CONS(arg)                                          \
 9932 if (sblk->status_rx_quick_consumer_index##arg)                          \
 9933         BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",      \
 9934             sblk->status_rx_quick_consumer_index##arg, (u16)            \
 9935             RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),    \
 9936             arg);
 9937 
 9938 
 9939 #define BCE_PRINT_TX_CONS(arg)                                          \
 9940 if (sblk->status_tx_quick_consumer_index##arg)                          \
 9941         BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",      \
 9942             sblk->status_tx_quick_consumer_index##arg, (u16)            \
 9943             TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),    \
 9944             arg);
 9945 
 9946 /****************************************************************************/
 9947 /* Prints out the status block from host memory.                            */
 9948 /*                                                                          */
 9949 /* Returns:                                                                 */
 9950 /*   Nothing.                                                               */
 9951 /****************************************************************************/
 9952 static __attribute__ ((noinline)) void
 9953 bce_dump_status_block(struct bce_softc *sc)
 9954 {
 9955         struct status_block *sblk;
 9956 
 9957         sblk = sc->status_block;
 9958 
 9959         BCE_PRINTF(
 9960             "----------------------------"
 9961             "  Status Block  "
 9962             "----------------------------\n");
 9963 
 9964         /* Theses indices are used for normal L2 drivers. */
 9965         BCE_PRINTF("    0x%08X - attn_bits\n",
 9966             sblk->status_attn_bits);
 9967 
 9968         BCE_PRINTF("    0x%08X - attn_bits_ack\n",
 9969             sblk->status_attn_bits_ack);
 9970 
 9971         BCE_PRINT_RX_CONS(0);
 9972         BCE_PRINT_TX_CONS(0)
 9973 
 9974         BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
 9975 
 9976         /* Theses indices are not used for normal L2 drivers. */
 9977         BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
 9978         BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
 9979         BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
 9980         BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
 9981         BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
 9982 
 9983         BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
 9984 
 9985         if (sblk->status_completion_producer_index ||
 9986             sblk->status_cmd_consumer_index)
 9987                 BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
 9988                     sblk->status_completion_producer_index,
 9989                     sblk->status_cmd_consumer_index);
 9990 
 9991         BCE_PRINTF(
 9992             "----------------------------"
 9993             "----------------"
 9994             "----------------------------\n");
 9995 }
 9996 
 9997 
 9998 #define BCE_PRINT_64BIT_STAT(arg)                               \
 9999 if (sblk->arg##_lo || sblk->arg##_hi)                           \
10000         BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,        \
10001             sblk->arg##_lo, #arg);
10002 
10003 #define BCE_PRINT_32BIT_STAT(arg)                               \
10004 if (sblk->arg)                                                  \
10005         BCE_PRINTF("         0x%08X : %s\n",                    \
10006             sblk->arg, #arg);
10007 
10008 /****************************************************************************/
10009 /* Prints out the statistics block from host memory.                        */
10010 /*                                                                          */
10011 /* Returns:                                                                 */
10012 /*   Nothing.                                                               */
10013 /****************************************************************************/
10014 static __attribute__ ((noinline)) void
10015 bce_dump_stats_block(struct bce_softc *sc)
10016 {
10017         struct statistics_block *sblk;
10018 
10019         sblk = sc->stats_block;
10020 
10021         BCE_PRINTF(
10022             "---------------"
10023             " Stats Block  (All Stats Not Shown Are 0) "
10024             "---------------\n");
10025 
10026         BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10027         BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10028         BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10029         BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10030         BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10031         BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10032         BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10033         BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10034         BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10035         BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10036         BCE_PRINT_32BIT_STAT(
10037             stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10038         BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10039         BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10040         BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10041         BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10042         BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10043         BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10044         BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10045         BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10046         BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10047         BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10048         BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10049         BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10050         BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10051         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10052         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10053         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10054         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10055         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10056         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10057         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10058         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10059         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10060         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10061         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10062         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10063         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10064         BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10065         BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10066         BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10067         BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10068         BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10069         BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10070         BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10071         BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10072         BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10073         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10074         BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10075         BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10076         BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10077         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10078         BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10079         BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10080         BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10081 
10082         BCE_PRINTF(
10083             "----------------------------"
10084             "----------------"
10085             "----------------------------\n");
10086 }
10087 
10088 
10089 /****************************************************************************/
10090 /* Prints out a summary of the driver state.                                */
10091 /*                                                                          */
10092 /* Returns:                                                                 */
10093 /*   Nothing.                                                               */
10094 /****************************************************************************/
10095 static __attribute__ ((noinline)) void
10096 bce_dump_driver_state(struct bce_softc *sc)
10097 {
10098         u32 val_hi, val_lo;
10099 
10100         BCE_PRINTF(
10101             "-----------------------------"
10102             " Driver State "
10103             "-----------------------------\n");
10104 
10105         val_hi = BCE_ADDR_HI(sc);
10106         val_lo = BCE_ADDR_LO(sc);
10107         BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10108             "address\n", val_hi, val_lo);
10109 
10110         val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10111         val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10112         BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10113             "address\n", val_hi, val_lo);
10114 
10115         val_hi = BCE_ADDR_HI(sc->status_block);
10116         val_lo = BCE_ADDR_LO(sc->status_block);
10117         BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10118             "virtual address\n",        val_hi, val_lo);
10119 
10120         val_hi = BCE_ADDR_HI(sc->stats_block);
10121         val_lo = BCE_ADDR_LO(sc->stats_block);
10122         BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10123             "virtual address\n", val_hi, val_lo);
10124 
10125         val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10126         val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10127         BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10128             "virtual adddress\n", val_hi, val_lo);
10129 
10130         val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10131         val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10132         BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10133             "virtual address\n", val_hi, val_lo);
10134 
10135 #ifdef BCE_JUMBO_HDRSPLIT
10136         val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10137         val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10138         BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10139             "virtual address\n", val_hi, val_lo);
10140 #endif
10141 
10142         val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10143         val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10144         BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10145             "virtual address\n",        val_hi, val_lo);
10146 
10147         val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10148         val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10149         BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10150             "virtual address\n", val_hi, val_lo);
10151 
10152 #ifdef BCE_JUMBO_HDRSPLIT
10153         val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10154         val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10155         BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10156             "virtual address\n", val_hi, val_lo);
10157 #endif
10158 
10159         BCE_PRINTF("         0x%08X - (sc->interrupts_generated) "
10160             "h/w intrs\n", sc->interrupts_generated);
10161 
10162         BCE_PRINTF("         0x%08X - (sc->interrupts_rx) "
10163             "rx interrupts handled\n", sc->interrupts_rx);
10164 
10165         BCE_PRINTF("         0x%08X - (sc->interrupts_tx) "
10166             "tx interrupts handled\n", sc->interrupts_tx);
10167 
10168         BCE_PRINTF("         0x%08X - (sc->phy_interrupts) "
10169             "phy interrupts handled\n", sc->phy_interrupts);
10170 
10171         BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10172             "status block index\n", sc->last_status_idx);
10173 
10174         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10175             "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10176 
10177         BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10178             "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10179 
10180         BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10181             "byte seq index\n", sc->tx_prod_bseq);
10182 
10183         BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10184             "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10185 
10186         BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10187             "tx_bd's\n", sc->used_tx_bd);
10188 
10189         BCE_PRINTF("0x%08X/%08X - (sc->tx_hi_watermark) tx hi "
10190             "watermark\n", sc->tx_hi_watermark, sc->max_tx_bd);
10191 
10192         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10193             "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10194 
10195         BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10196             "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10197 
10198         BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10199             "byte seq index\n", sc->rx_prod_bseq);
10200 
10201         BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10202             "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10203 
10204         BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10205             "rx_bd's\n", sc->free_rx_bd);
10206 
10207 #ifdef BCE_JUMBO_HDRSPLIT
10208         BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10209             "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10210 
10211         BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10212             "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10213 
10214         BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10215             "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10216 
10217         BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10218             "rx_bd's\n", sc->free_pg_bd);
10219 
10220         BCE_PRINTF("0x%08X/%08X - (sc->pg_low_watermark) page low "
10221             "watermark\n", sc->pg_low_watermark, sc->max_pg_bd);
10222 #endif
10223 
10224         BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10225             "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10226 
10227         BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10228             "bce mac flags\n", sc->bce_flags);
10229 
10230         BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10231             "bce phy flags\n", sc->bce_phy_flags);
10232 
10233         BCE_PRINTF(
10234             "----------------------------"
10235             "----------------"
10236             "----------------------------\n");
10237 }
10238 
10239 
10240 /****************************************************************************/
10241 /* Prints out the hardware state through a summary of important register,   */
10242 /* followed by a complete register dump.                                    */
10243 /*                                                                          */
10244 /* Returns:                                                                 */
10245 /*   Nothing.                                                               */
10246 /****************************************************************************/
10247 static __attribute__ ((noinline)) void
10248 bce_dump_hw_state(struct bce_softc *sc)
10249 {
10250         u32 val;
10251 
10252         BCE_PRINTF(
10253             "----------------------------"
10254             " Hardware State "
10255             "----------------------------\n");
10256 
10257         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10258 
10259         val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10260         BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10261             val, BCE_MISC_ENABLE_STATUS_BITS);
10262 
10263         val = REG_RD(sc, BCE_DMA_STATUS);
10264         BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10265             val, BCE_DMA_STATUS);
10266 
10267         val = REG_RD(sc, BCE_CTX_STATUS);
10268         BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10269             val, BCE_CTX_STATUS);
10270 
10271         val = REG_RD(sc, BCE_EMAC_STATUS);
10272         BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10273             val, BCE_EMAC_STATUS);
10274 
10275         val = REG_RD(sc, BCE_RPM_STATUS);
10276         BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10277             val, BCE_RPM_STATUS);
10278 
10279         /* ToDo: Create a #define for this constant. */
10280         val = REG_RD(sc, 0x2004);
10281         BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10282             val, 0x2004);
10283 
10284         val = REG_RD(sc, BCE_RV2P_STATUS);
10285         BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10286             val, BCE_RV2P_STATUS);
10287 
10288         /* ToDo: Create a #define for this constant. */
10289         val = REG_RD(sc, 0x2c04);
10290         BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10291             val, 0x2c04);
10292 
10293         val = REG_RD(sc, BCE_TBDR_STATUS);
10294         BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10295             val, BCE_TBDR_STATUS);
10296 
10297         val = REG_RD(sc, BCE_TDMA_STATUS);
10298         BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10299             val, BCE_TDMA_STATUS);
10300 
10301         val = REG_RD(sc, BCE_HC_STATUS);
10302         BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10303             val, BCE_HC_STATUS);
10304 
10305         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10306         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10307             val, BCE_TXP_CPU_STATE);
10308 
10309         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10310         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10311             val, BCE_TPAT_CPU_STATE);
10312 
10313         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10314         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10315             val, BCE_RXP_CPU_STATE);
10316 
10317         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10318         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10319             val, BCE_COM_CPU_STATE);
10320 
10321         val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10322         BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10323             val, BCE_MCP_CPU_STATE);
10324 
10325         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10326         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10327             val, BCE_CP_CPU_STATE);
10328 
10329         BCE_PRINTF(
10330             "----------------------------"
10331             "----------------"
10332             "----------------------------\n");
10333 
10334         BCE_PRINTF(
10335             "----------------------------"
10336             " Register  Dump "
10337             "----------------------------\n");
10338 
10339         for (int i = 0x400; i < 0x8000; i += 0x10) {
10340                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10341                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10342                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10343         }
10344 
10345         BCE_PRINTF(
10346             "----------------------------"
10347             "----------------"
10348             "----------------------------\n");
10349 }
10350 
10351 
10352 /****************************************************************************/
10353 /* Prints out the mailbox queue registers.                                  */
10354 /*                                                                          */
10355 /* Returns:                                                                 */
10356 /*   Nothing.                                                               */
10357 /****************************************************************************/
10358 static __attribute__ ((noinline)) void
10359 bce_dump_mq_regs(struct bce_softc *sc)
10360 {
10361         BCE_PRINTF(
10362             "----------------------------"
10363             "    MQ Regs     "
10364             "----------------------------\n");
10365 
10366         BCE_PRINTF(
10367             "----------------------------"
10368             "----------------"
10369             "----------------------------\n");
10370 
10371         for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10372                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10373                     i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10374                     REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10375         }
10376 
10377         BCE_PRINTF(
10378             "----------------------------"
10379             "----------------"
10380             "----------------------------\n");
10381 }
10382 
10383 
10384 /****************************************************************************/
10385 /* Prints out the bootcode state.                                           */
10386 /*                                                                          */
10387 /* Returns:                                                                 */
10388 /*   Nothing.                                                               */
10389 /****************************************************************************/
10390 static __attribute__ ((noinline)) void
10391 bce_dump_bc_state(struct bce_softc *sc)
10392 {
10393         u32 val;
10394 
10395         BCE_PRINTF(
10396             "----------------------------"
10397             " Bootcode State "
10398             "----------------------------\n");
10399 
10400         BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10401 
10402         val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10403         BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10404             val, BCE_BC_RESET_TYPE);
10405 
10406         val = bce_shmem_rd(sc, BCE_BC_STATE);
10407         BCE_PRINTF("0x%08X - (0x%06X) state\n",
10408             val, BCE_BC_STATE);
10409 
10410         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10411         BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10412             val, BCE_BC_STATE_CONDITION);
10413 
10414         val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10415         BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10416             val, BCE_BC_STATE_DEBUG_CMD);
10417 
10418         BCE_PRINTF(
10419             "----------------------------"
10420             "----------------"
10421             "----------------------------\n");
10422 }
10423 
10424 
10425 /****************************************************************************/
10426 /* Prints out the TXP processor state.                                      */
10427 /*                                                                          */
10428 /* Returns:                                                                 */
10429 /*   Nothing.                                                               */
10430 /****************************************************************************/
10431 static __attribute__ ((noinline)) void
10432 bce_dump_txp_state(struct bce_softc *sc, int regs)
10433 {
10434         u32 val;
10435         u32 fw_version[3];
10436 
10437         BCE_PRINTF(
10438             "----------------------------"
10439             "   TXP  State   "
10440             "----------------------------\n");
10441 
10442         for (int i = 0; i < 3; i++)
10443                 fw_version[i] = htonl(REG_RD_IND(sc,
10444                     (BCE_TXP_SCRATCH + 0x10 + i * 4)));
10445         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10446 
10447         val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
10448         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
10449             val, BCE_TXP_CPU_MODE);
10450 
10451         val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10452         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10453             val, BCE_TXP_CPU_STATE);
10454 
10455         val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
10456         BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
10457             val, BCE_TXP_CPU_EVENT_MASK);
10458 
10459         if (regs) {
10460                 BCE_PRINTF(
10461                     "----------------------------"
10462                     " Register  Dump "
10463                     "----------------------------\n");
10464 
10465                 for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
10466                         /* Skip the big blank spaces */
10467                         if (i < 0x454000 && i > 0x5ffff)
10468                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10469                                     "0x%08X 0x%08X\n", i,
10470                                     REG_RD_IND(sc, i),
10471                                     REG_RD_IND(sc, i + 0x4),
10472                                     REG_RD_IND(sc, i + 0x8),
10473                                     REG_RD_IND(sc, i + 0xC));
10474                 }
10475         }
10476 
10477         BCE_PRINTF(
10478             "----------------------------"
10479             "----------------"
10480             "----------------------------\n");
10481 }
10482 
10483 
10484 /****************************************************************************/
10485 /* Prints out the RXP processor state.                                      */
10486 /*                                                                          */
10487 /* Returns:                                                                 */
10488 /*   Nothing.                                                               */
10489 /****************************************************************************/
10490 static __attribute__ ((noinline)) void
10491 bce_dump_rxp_state(struct bce_softc *sc, int regs)
10492 {
10493         u32 val;
10494         u32 fw_version[3];
10495 
10496         BCE_PRINTF(
10497             "----------------------------"
10498             "   RXP  State   "
10499             "----------------------------\n");
10500 
10501         for (int i = 0; i < 3; i++)
10502                 fw_version[i] = htonl(REG_RD_IND(sc,
10503                     (BCE_RXP_SCRATCH + 0x10 + i * 4)));
10504 
10505         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10506 
10507         val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
10508         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
10509             val, BCE_RXP_CPU_MODE);
10510 
10511         val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10512         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10513             val, BCE_RXP_CPU_STATE);
10514 
10515         val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
10516         BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
10517             val, BCE_RXP_CPU_EVENT_MASK);
10518 
10519         if (regs) {
10520                 BCE_PRINTF(
10521                     "----------------------------"
10522                     " Register  Dump "
10523                     "----------------------------\n");
10524 
10525                 for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
10526                         /* Skip the big blank sapces */
10527                         if (i < 0xc5400 && i > 0xdffff)
10528                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10529                                     "0x%08X 0x%08X\n", i,
10530                                     REG_RD_IND(sc, i),
10531                                     REG_RD_IND(sc, i + 0x4),
10532                                     REG_RD_IND(sc, i + 0x8),
10533                                     REG_RD_IND(sc, i + 0xC));
10534                 }
10535         }
10536 
10537         BCE_PRINTF(
10538             "----------------------------"
10539             "----------------"
10540             "----------------------------\n");
10541 }
10542 
10543 
10544 /****************************************************************************/
10545 /* Prints out the TPAT processor state.                                     */
10546 /*                                                                          */
10547 /* Returns:                                                                 */
10548 /*   Nothing.                                                               */
10549 /****************************************************************************/
10550 static __attribute__ ((noinline)) void
10551 bce_dump_tpat_state(struct bce_softc *sc, int regs)
10552 {
10553         u32 val;
10554         u32 fw_version[3];
10555 
10556         BCE_PRINTF(
10557             "----------------------------"
10558             "   TPAT State   "
10559             "----------------------------\n");
10560 
10561         for (int i = 0; i < 3; i++)
10562                 fw_version[i] = htonl(REG_RD_IND(sc,
10563                     (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
10564 
10565         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10566 
10567         val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
10568         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
10569             val, BCE_TPAT_CPU_MODE);
10570 
10571         val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10572         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10573             val, BCE_TPAT_CPU_STATE);
10574 
10575         val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
10576         BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
10577             val, BCE_TPAT_CPU_EVENT_MASK);
10578 
10579         if (regs) {
10580                 BCE_PRINTF(
10581                     "----------------------------"
10582                     " Register  Dump "
10583                     "----------------------------\n");
10584 
10585                 for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
10586                         /* Skip the big blank spaces */
10587                         if (i < 0x854000 && i > 0x9ffff)
10588                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10589                                     "0x%08X 0x%08X\n", i,
10590                                     REG_RD_IND(sc, i),
10591                                     REG_RD_IND(sc, i + 0x4),
10592                                     REG_RD_IND(sc, i + 0x8),
10593                                     REG_RD_IND(sc, i + 0xC));
10594                 }
10595         }
10596 
10597         BCE_PRINTF(
10598                 "----------------------------"
10599                 "----------------"
10600                 "----------------------------\n");
10601 }
10602 
10603 
10604 /****************************************************************************/
10605 /* Prints out the Command Procesor (CP) state.                              */
10606 /*                                                                          */
10607 /* Returns:                                                                 */
10608 /*   Nothing.                                                               */
10609 /****************************************************************************/
10610 static __attribute__ ((noinline)) void
10611 bce_dump_cp_state(struct bce_softc *sc, int regs)
10612 {
10613         u32 val;
10614         u32 fw_version[3];
10615 
10616         BCE_PRINTF(
10617             "----------------------------"
10618             "    CP State    "
10619             "----------------------------\n");
10620 
10621         for (int i = 0; i < 3; i++)
10622                 fw_version[i] = htonl(REG_RD_IND(sc,
10623                     (BCE_CP_SCRATCH + 0x10 + i * 4)));
10624 
10625         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10626 
10627         val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
10628         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
10629             val, BCE_CP_CPU_MODE);
10630 
10631         val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10632         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10633             val, BCE_CP_CPU_STATE);
10634 
10635         val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
10636         BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
10637             BCE_CP_CPU_EVENT_MASK);
10638 
10639         if (regs) {
10640                 BCE_PRINTF(
10641                     "----------------------------"
10642                     " Register  Dump "
10643                     "----------------------------\n");
10644 
10645                 for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
10646                         /* Skip the big blank spaces */
10647                         if (i < 0x185400 && i > 0x19ffff)
10648                                 BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10649                                     "0x%08X 0x%08X\n", i,
10650                                     REG_RD_IND(sc, i),
10651                                     REG_RD_IND(sc, i + 0x4),
10652                                     REG_RD_IND(sc, i + 0x8),
10653                                     REG_RD_IND(sc, i + 0xC));
10654                 }
10655         }
10656 
10657         BCE_PRINTF(
10658             "----------------------------"
10659             "----------------"
10660             "----------------------------\n");
10661 }
10662 
10663 
10664 /****************************************************************************/
10665 /* Prints out the Completion Procesor (COM) state.                          */
10666 /*                                                                          */
10667 /* Returns:                                                                 */
10668 /*   Nothing.                                                               */
10669 /****************************************************************************/
10670 static __attribute__ ((noinline)) void
10671 bce_dump_com_state(struct bce_softc *sc, int regs)
10672 {
10673         u32 val;
10674         u32 fw_version[4];
10675 
10676         BCE_PRINTF(
10677             "----------------------------"
10678             "   COM State    "
10679             "----------------------------\n");
10680 
10681         for (int i = 0; i < 3; i++)
10682                 fw_version[i] = htonl(REG_RD_IND(sc,
10683                     (BCE_COM_SCRATCH + 0x10 + i * 4)));
10684 
10685         BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
10686 
10687         val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
10688         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
10689             val, BCE_COM_CPU_MODE);
10690 
10691         val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10692         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10693             val, BCE_COM_CPU_STATE);
10694 
10695         val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
10696         BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
10697             BCE_COM_CPU_EVENT_MASK);
10698 
10699         if (regs) {
10700                 BCE_PRINTF(
10701                     "----------------------------"
10702                     " Register  Dump "
10703                     "----------------------------\n");
10704 
10705                 for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
10706                         BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
10707                             "0x%08X 0x%08X\n", i,
10708                             REG_RD_IND(sc, i),
10709                             REG_RD_IND(sc, i + 0x4),
10710                             REG_RD_IND(sc, i + 0x8),
10711                             REG_RD_IND(sc, i + 0xC));
10712                 }
10713         }
10714 
10715         BCE_PRINTF(
10716                 "----------------------------"
10717                 "----------------"
10718                 "----------------------------\n");
10719 }
10720 
10721 
10722 /****************************************************************************/
10723 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
10724 /*                                                                          */
10725 /* Returns:                                                                 */
10726 /*   Nothing.                                                               */
10727 /****************************************************************************/
10728 static __attribute__ ((noinline)) void
10729 bce_dump_rv2p_state(struct bce_softc *sc)
10730 {
10731         u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
10732 
10733         BCE_PRINTF(
10734             "----------------------------"
10735             "   RV2P State   "
10736             "----------------------------\n");
10737 
10738         /* Stall the RV2P processors. */
10739         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10740         val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
10741         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10742 
10743         /* Read the firmware version. */
10744         val = 0x00000001;
10745         REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
10746         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10747         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10748             BCE_RV2P_INSTR_HIGH_HIGH;
10749         BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
10750             fw_ver_high, fw_ver_low);
10751 
10752         val = 0x00000001;
10753         REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
10754         fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
10755         fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
10756             BCE_RV2P_INSTR_HIGH_HIGH;
10757         BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
10758             fw_ver_high, fw_ver_low);
10759 
10760         /* Resume the RV2P processors. */
10761         val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
10762         val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
10763         REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
10764 
10765         /* Fetch the program counter value. */
10766         val = 0x68007800;
10767         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10768         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10769         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10770         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10771         BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
10772         BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
10773 
10774         /* Fetch the program counter value again to see if it is advancing. */
10775         val = 0x68007800;
10776         REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
10777         val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
10778         pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
10779         pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
10780         BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
10781         BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
10782 
10783         BCE_PRINTF(
10784             "----------------------------"
10785             "----------------"
10786             "----------------------------\n");
10787 }
10788 
10789 
10790 /****************************************************************************/
10791 /* Prints out the driver state and then enters the debugger.                */
10792 /*                                                                          */
10793 /* Returns:                                                                 */
10794 /*   Nothing.                                                               */
10795 /****************************************************************************/
10796 static __attribute__ ((noinline)) void
10797 bce_breakpoint(struct bce_softc *sc)
10798 {
10799 
10800         /*
10801          * Unreachable code to silence compiler warnings
10802          * about unused functions.
10803          */
10804         if (0) {
10805                 bce_freeze_controller(sc);
10806                 bce_unfreeze_controller(sc);
10807                 bce_dump_enet(sc, NULL);
10808                 bce_dump_txbd(sc, 0, NULL);
10809                 bce_dump_rxbd(sc, 0, NULL);
10810                 bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
10811                 bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
10812                 bce_dump_l2fhdr(sc, 0, NULL);
10813                 bce_dump_ctx(sc, RX_CID);
10814                 bce_dump_ftqs(sc);
10815                 bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
10816                 bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD);
10817                 bce_dump_status_block(sc);
10818                 bce_dump_stats_block(sc);
10819                 bce_dump_driver_state(sc);
10820                 bce_dump_hw_state(sc);
10821                 bce_dump_bc_state(sc);
10822                 bce_dump_txp_state(sc, 0);
10823                 bce_dump_rxp_state(sc, 0);
10824                 bce_dump_tpat_state(sc, 0);
10825                 bce_dump_cp_state(sc, 0);
10826                 bce_dump_com_state(sc, 0);
10827                 bce_dump_rv2p_state(sc);
10828 
10829 #ifdef BCE_JUMBO_HDRSPLIT
10830                 bce_dump_pgbd(sc, 0, NULL);
10831                 bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD);
10832                 bce_dump_pg_chain(sc, 0, USABLE_PG_BD);
10833 #endif
10834         }
10835 
10836         bce_dump_status_block(sc);
10837         bce_dump_driver_state(sc);
10838 
10839         /* Call the debugger. */
10840         breakpoint();
10841 
10842         return;
10843 }
10844 #endif
10845 

Cache object: 0f69c471cac37c7a7ed4fd039148db41


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.