The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bge/if_bge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 2001 Wind River Systems
    5  * Copyright (c) 1997, 1998, 1999, 2001
    6  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. All advertising materials mentioning features or use of this software
   17  *    must display the following acknowledgement:
   18  *      This product includes software developed by Bill Paul.
   19  * 4. Neither the name of the author nor the names of any co-contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   33  * THE POSSIBILITY OF SUCH DAMAGE.
   34  */
   35 
   36 #include <sys/cdefs.h>
   37 __FBSDID("$FreeBSD$");
   38 
   39 /*
   40  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
   41  *
   42  * The Broadcom BCM5700 is based on technology originally developed by
   43  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
   44  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
   45  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
   46  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
   47  * frames, highly configurable RX filtering, and 16 RX and TX queues
   48  * (which, along with RX filter rules, can be used for QOS applications).
   49  * Other features, such as TCP segmentation, may be available as part
   50  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
   51  * firmware images can be stored in hardware and need not be compiled
   52  * into the driver.
   53  *
   54  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
   55  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
   56  *
   57  * The BCM5701 is a single-chip solution incorporating both the BCM5700
   58  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
   59  * does not support external SSRAM.
   60  *
   61  * Broadcom also produces a variation of the BCM5700 under the "Altima"
   62  * brand name, which is functionally similar but lacks PCI-X support.
   63  *
   64  * Without external SSRAM, you can only have at most 4 TX rings,
   65  * and the use of the mini RX ring is disabled. This seems to imply
   66  * that these features are simply not available on the BCM5701. As a
   67  * result, this driver does not implement any support for the mini RX
   68  * ring.
   69  */
   70 
   71 #ifdef HAVE_KERNEL_OPTION_HEADERS
   72 #include "opt_device_polling.h"
   73 #endif
   74 
   75 #include <sys/param.h>
   76 #include <sys/endian.h>
   77 #include <sys/systm.h>
   78 #include <sys/sockio.h>
   79 #include <sys/mbuf.h>
   80 #include <sys/malloc.h>
   81 #include <sys/kernel.h>
   82 #include <sys/module.h>
   83 #include <sys/socket.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/taskqueue.h>
   86 
   87 #include <net/debugnet.h>
   88 #include <net/if.h>
   89 #include <net/if_var.h>
   90 #include <net/if_arp.h>
   91 #include <net/ethernet.h>
   92 #include <net/if_dl.h>
   93 #include <net/if_media.h>
   94 
   95 #include <net/bpf.h>
   96 
   97 #include <net/if_types.h>
   98 #include <net/if_vlan_var.h>
   99 
  100 #include <netinet/in_systm.h>
  101 #include <netinet/in.h>
  102 #include <netinet/ip.h>
  103 #include <netinet/tcp.h>
  104 
  105 #include <machine/bus.h>
  106 #include <machine/resource.h>
  107 #include <sys/bus.h>
  108 #include <sys/rman.h>
  109 
  110 #include <dev/mii/mii.h>
  111 #include <dev/mii/miivar.h>
  112 #include "miidevs.h"
  113 #include <dev/mii/brgphyreg.h>
  114 
  115 #include <dev/pci/pcireg.h>
  116 #include <dev/pci/pcivar.h>
  117 
  118 #include <dev/bge/if_bgereg.h>
  119 
  120 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
  121 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
  122 
  123 MODULE_DEPEND(bge, pci, 1, 1, 1);
  124 MODULE_DEPEND(bge, ether, 1, 1, 1);
  125 MODULE_DEPEND(bge, miibus, 1, 1, 1);
  126 
  127 /* "device miibus" required.  See GENERIC if you get errors here. */
  128 #include "miibus_if.h"
  129 
  130 /*
  131  * Various supported device vendors/types and their names. Note: the
  132  * spec seems to indicate that the hardware still has Alteon's vendor
  133  * ID burned into it, though it will always be overridden by the vendor
  134  * ID in the EEPROM. Just to be safe, we cover all possibilities.
  135  */
  136 static const struct bge_type {
  137         uint16_t        bge_vid;
  138         uint16_t        bge_did;
  139 } bge_devs[] = {
  140         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
  141         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
  142 
  143         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
  144         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
  145         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
  146 
  147         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
  148 
  149         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
  150         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
  151         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
  152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
  153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
  154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
  155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
  156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
  157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
  158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
  159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
  160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
  161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
  162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
  163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
  164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
  165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
  166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
  167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
  168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
  169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
  170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717C },
  171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
  172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
  173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
  174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
  175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
  176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
  177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5725 },
  178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5727 },
  179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
  180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
  181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
  182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
  183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
  184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
  185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
  186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
  187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
  188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
  189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
  190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
  191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
  192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
  193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
  194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
  195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
  196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
  197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
  198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5762 },
  199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
  200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
  201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
  202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
  203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
  204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
  205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
  206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
  207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
  208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
  209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
  210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
  211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
  212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
  213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
  214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
  215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
  216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
  217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
  218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
  219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
  220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
  221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57764 },
  222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
  223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
  224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57767 },
  225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
  226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
  227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57782 },
  228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
  229         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57786 },
  230         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57787 },
  231         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
  232         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
  233         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
  234         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
  235 
  236         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
  237 
  238         { TC_VENDORID,          TC_DEVICEID_3C996 },
  239 
  240         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
  241         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
  242         { 0, 0 }
  243 };
  244 
  245 static const struct bge_vendor {
  246         uint16_t        v_id;
  247         const char      *v_name;
  248 } bge_vendors[] = {
  249         { ALTEON_VENDORID,      "Alteon" },
  250         { ALTIMA_VENDORID,      "Altima" },
  251         { APPLE_VENDORID,       "Apple" },
  252         { BCOM_VENDORID,        "Broadcom" },
  253         { SK_VENDORID,          "SysKonnect" },
  254         { TC_VENDORID,          "3Com" },
  255         { FJTSU_VENDORID,       "Fujitsu" },
  256         { 0, NULL }
  257 };
  258 
  259 static const struct bge_revision {
  260         uint32_t        br_chipid;
  261         const char      *br_name;
  262 } bge_revisions[] = {
  263         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
  264         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
  265         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
  266         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
  267         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
  268         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
  269         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
  270         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
  271         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
  272         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
  273         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
  274         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
  275         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
  276         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
  277         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
  278         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
  279         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
  280         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
  281         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
  282         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
  283         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
  284         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
  285         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
  286         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
  287         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
  288         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
  289         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
  290         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
  291         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
  292         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
  293         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
  294         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
  295         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
  296         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
  297         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
  298         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
  299         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
  300         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
  301         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
  302         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
  303         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
  304         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
  305         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
  306         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
  307         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
  308         { BGE_CHIPID_BCM5717_C0,        "BCM5717 C0" },
  309         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
  310         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
  311         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
  312         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
  313         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
  314         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
  315         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
  316         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
  317         { BGE_CHIPID_BCM5762_A0,        "BCM5762 A0" },
  318         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
  319         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
  320         /* 5754 and 5787 share the same ASIC ID */
  321         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
  322         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
  323         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
  324         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
  325         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
  326         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
  327         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
  328         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
  329         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
  330         { 0, NULL }
  331 };
  332 
  333 /*
  334  * Some defaults for major revisions, so that newer steppings
  335  * that we don't know about have a shot at working.
  336  */
  337 static const struct bge_revision bge_majorrevs[] = {
  338         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
  339         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
  340         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
  341         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
  342         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
  343         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
  344         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
  345         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
  346         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
  347         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
  348         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
  349         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
  350         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
  351         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
  352         /* 5754 and 5787 share the same ASIC ID */
  353         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
  354         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
  355         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
  356         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
  357         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
  358         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
  359         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
  360         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
  361         { BGE_ASICREV_BCM5762,          "unknown BCM5762" },
  362         { 0, NULL }
  363 };
  364 
  365 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
  366 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
  367 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
  368 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
  369 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
  370 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
  371 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
  372 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
  373 
  374 static uint32_t bge_chipid(device_t);
  375 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
  376 static const struct bge_revision * bge_lookup_rev(uint32_t);
  377 
  378 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
  379 
  380 static int bge_probe(device_t);
  381 static int bge_attach(device_t);
  382 static int bge_detach(device_t);
  383 static int bge_suspend(device_t);
  384 static int bge_resume(device_t);
  385 static void bge_release_resources(struct bge_softc *);
  386 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  387 static int bge_dma_alloc(struct bge_softc *);
  388 static void bge_dma_free(struct bge_softc *);
  389 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
  390     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
  391 
  392 static void bge_devinfo(struct bge_softc *);
  393 static int bge_mbox_reorder(struct bge_softc *);
  394 
  395 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
  396 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
  397 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
  398 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
  399 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
  400 
  401 static void bge_txeof(struct bge_softc *, uint16_t);
  402 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
  403 static int bge_rxeof(struct bge_softc *, uint16_t, int);
  404 
  405 static void bge_asf_driver_up (struct bge_softc *);
  406 static void bge_tick(void *);
  407 static void bge_stats_clear_regs(struct bge_softc *);
  408 static void bge_stats_update(struct bge_softc *);
  409 static void bge_stats_update_regs(struct bge_softc *);
  410 static struct mbuf *bge_check_short_dma(struct mbuf *);
  411 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
  412     uint16_t *, uint16_t *);
  413 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
  414 
  415 static void bge_intr(void *);
  416 static int bge_msi_intr(void *);
  417 static void bge_intr_task(void *, int);
  418 static void bge_start(if_t);
  419 static void bge_start_locked(if_t);
  420 static void bge_start_tx(struct bge_softc *, uint32_t);
  421 static int bge_ioctl(if_t, u_long, caddr_t);
  422 static void bge_init_locked(struct bge_softc *);
  423 static void bge_init(void *);
  424 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
  425 static void bge_stop(struct bge_softc *);
  426 static void bge_watchdog(struct bge_softc *);
  427 static int bge_shutdown(device_t);
  428 static int bge_ifmedia_upd_locked(if_t);
  429 static int bge_ifmedia_upd(if_t);
  430 static void bge_ifmedia_sts(if_t, struct ifmediareq *);
  431 static uint64_t bge_get_counter(if_t, ift_counter);
  432 
  433 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
  434 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
  435 
  436 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
  437 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
  438 
  439 static void bge_setpromisc(struct bge_softc *);
  440 static void bge_setmulti(struct bge_softc *);
  441 static void bge_setvlan(struct bge_softc *);
  442 
  443 static __inline void bge_rxreuse_std(struct bge_softc *, int);
  444 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
  445 static int bge_newbuf_std(struct bge_softc *, int);
  446 static int bge_newbuf_jumbo(struct bge_softc *, int);
  447 static int bge_init_rx_ring_std(struct bge_softc *);
  448 static void bge_free_rx_ring_std(struct bge_softc *);
  449 static int bge_init_rx_ring_jumbo(struct bge_softc *);
  450 static void bge_free_rx_ring_jumbo(struct bge_softc *);
  451 static void bge_free_tx_ring(struct bge_softc *);
  452 static int bge_init_tx_ring(struct bge_softc *);
  453 
  454 static int bge_chipinit(struct bge_softc *);
  455 static int bge_blockinit(struct bge_softc *);
  456 static uint32_t bge_dma_swap_options(struct bge_softc *);
  457 
  458 static int bge_has_eaddr(struct bge_softc *);
  459 static uint32_t bge_readmem_ind(struct bge_softc *, int);
  460 static void bge_writemem_ind(struct bge_softc *, int, int);
  461 static void bge_writembx(struct bge_softc *, int, int);
  462 #ifdef notdef
  463 static uint32_t bge_readreg_ind(struct bge_softc *, int);
  464 #endif
  465 static void bge_writemem_direct(struct bge_softc *, int, int);
  466 static void bge_writereg_ind(struct bge_softc *, int, int);
  467 
  468 static int bge_miibus_readreg(device_t, int, int);
  469 static int bge_miibus_writereg(device_t, int, int, int);
  470 static void bge_miibus_statchg(device_t);
  471 #ifdef DEVICE_POLLING
  472 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
  473 #endif
  474 
  475 #define BGE_RESET_SHUTDOWN      0
  476 #define BGE_RESET_START         1
  477 #define BGE_RESET_SUSPEND       2
  478 static void bge_sig_post_reset(struct bge_softc *, int);
  479 static void bge_sig_legacy(struct bge_softc *, int);
  480 static void bge_sig_pre_reset(struct bge_softc *, int);
  481 static void bge_stop_fw(struct bge_softc *);
  482 static int bge_reset(struct bge_softc *);
  483 static void bge_link_upd(struct bge_softc *);
  484 
  485 static void bge_ape_lock_init(struct bge_softc *);
  486 static void bge_ape_read_fw_ver(struct bge_softc *);
  487 static int bge_ape_lock(struct bge_softc *, int);
  488 static void bge_ape_unlock(struct bge_softc *, int);
  489 static void bge_ape_send_event(struct bge_softc *, uint32_t);
  490 static void bge_ape_driver_state_change(struct bge_softc *, int);
  491 
  492 /*
  493  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
  494  * leak information to untrusted users.  It is also known to cause alignment
  495  * traps on certain architectures.
  496  */
  497 #ifdef BGE_REGISTER_DEBUG
  498 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
  499 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
  500 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
  501 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
  502 #endif
  503 static void bge_add_sysctls(struct bge_softc *);
  504 static void bge_add_sysctl_stats_regs(struct bge_softc *,
  505     struct sysctl_ctx_list *, struct sysctl_oid_list *);
  506 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
  507     struct sysctl_oid_list *);
  508 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
  509 
  510 DEBUGNET_DEFINE(bge);
  511 
  512 static device_method_t bge_methods[] = {
  513         /* Device interface */
  514         DEVMETHOD(device_probe,         bge_probe),
  515         DEVMETHOD(device_attach,        bge_attach),
  516         DEVMETHOD(device_detach,        bge_detach),
  517         DEVMETHOD(device_shutdown,      bge_shutdown),
  518         DEVMETHOD(device_suspend,       bge_suspend),
  519         DEVMETHOD(device_resume,        bge_resume),
  520 
  521         /* MII interface */
  522         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
  523         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
  524         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
  525 
  526         DEVMETHOD_END
  527 };
  528 
  529 static driver_t bge_driver = {
  530         "bge",
  531         bge_methods,
  532         sizeof(struct bge_softc)
  533 };
  534 
  535 DRIVER_MODULE(bge, pci, bge_driver, 0, 0);
  536 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
  537     nitems(bge_devs) - 1);
  538 DRIVER_MODULE(miibus, bge, miibus_driver, 0, 0);
  539 
  540 static int bge_allow_asf = 1;
  541 
  542 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  543     "BGE driver parameters");
  544 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
  545         "Allow ASF mode if available");
  546 
  547 static int
  548 bge_has_eaddr(struct bge_softc *sc)
  549 {
  550         return (1);
  551 }
  552 
  553 static uint32_t
  554 bge_readmem_ind(struct bge_softc *sc, int off)
  555 {
  556         device_t dev;
  557         uint32_t val;
  558 
  559         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
  560             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
  561                 return (0);
  562 
  563         dev = sc->bge_dev;
  564 
  565         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  566         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
  567         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  568         return (val);
  569 }
  570 
  571 static void
  572 bge_writemem_ind(struct bge_softc *sc, int off, int val)
  573 {
  574         device_t dev;
  575 
  576         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
  577             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
  578                 return;
  579 
  580         dev = sc->bge_dev;
  581 
  582         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  583         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
  584         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  585 }
  586 
  587 #ifdef notdef
  588 static uint32_t
  589 bge_readreg_ind(struct bge_softc *sc, int off)
  590 {
  591         device_t dev;
  592 
  593         dev = sc->bge_dev;
  594 
  595         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  596         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
  597 }
  598 #endif
  599 
  600 static void
  601 bge_writereg_ind(struct bge_softc *sc, int off, int val)
  602 {
  603         device_t dev;
  604 
  605         dev = sc->bge_dev;
  606 
  607         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  608         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
  609 }
  610 
  611 static void
  612 bge_writemem_direct(struct bge_softc *sc, int off, int val)
  613 {
  614         CSR_WRITE_4(sc, off, val);
  615 }
  616 
  617 static void
  618 bge_writembx(struct bge_softc *sc, int off, int val)
  619 {
  620         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
  621                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
  622 
  623         CSR_WRITE_4(sc, off, val);
  624         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
  625                 CSR_READ_4(sc, off);
  626 }
  627 
  628 /*
  629  * Clear all stale locks and select the lock for this driver instance.
  630  */
  631 static void
  632 bge_ape_lock_init(struct bge_softc *sc)
  633 {
  634         uint32_t bit, regbase;
  635         int i;
  636 
  637         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  638                 regbase = BGE_APE_LOCK_GRANT;
  639         else
  640                 regbase = BGE_APE_PER_LOCK_GRANT;
  641 
  642         /* Clear any stale locks. */
  643         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
  644                 switch (i) {
  645                 case BGE_APE_LOCK_PHY0:
  646                 case BGE_APE_LOCK_PHY1:
  647                 case BGE_APE_LOCK_PHY2:
  648                 case BGE_APE_LOCK_PHY3:
  649                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  650                         break;
  651                 default:
  652                         if (sc->bge_func_addr == 0)
  653                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
  654                         else
  655                                 bit = (1 << sc->bge_func_addr);
  656                 }
  657                 APE_WRITE_4(sc, regbase + 4 * i, bit);
  658         }
  659 
  660         /* Select the PHY lock based on the device's function number. */
  661         switch (sc->bge_func_addr) {
  662         case 0:
  663                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
  664                 break;
  665         case 1:
  666                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
  667                 break;
  668         case 2:
  669                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
  670                 break;
  671         case 3:
  672                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
  673                 break;
  674         default:
  675                 device_printf(sc->bge_dev,
  676                     "PHY lock not supported on this function\n");
  677         }
  678 }
  679 
  680 /*
  681  * Check for APE firmware, set flags, and print version info.
  682  */
  683 static void
  684 bge_ape_read_fw_ver(struct bge_softc *sc)
  685 {
  686         const char *fwtype;
  687         uint32_t apedata, features;
  688 
  689         /* Check for a valid APE signature in shared memory. */
  690         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
  691         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
  692                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
  693                 return;
  694         }
  695 
  696         /* Check if APE firmware is running. */
  697         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
  698         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
  699                 device_printf(sc->bge_dev, "APE signature found "
  700                     "but FW status not ready! 0x%08x\n", apedata);
  701                 return;
  702         }
  703 
  704         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
  705 
  706         /* Fetch the APE firwmare type and version. */
  707         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
  708         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
  709         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
  710                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
  711                 fwtype = "NCSI";
  712         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
  713                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
  714                 fwtype = "DASH";
  715         } else
  716                 fwtype = "UNKN";
  717 
  718         /* Print the APE firmware version. */
  719         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
  720             fwtype,
  721             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
  722             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
  723             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
  724             (apedata & BGE_APE_FW_VERSION_BLDMSK));
  725 }
  726 
  727 static int
  728 bge_ape_lock(struct bge_softc *sc, int locknum)
  729 {
  730         uint32_t bit, gnt, req, status;
  731         int i, off;
  732 
  733         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  734                 return (0);
  735 
  736         /* Lock request/grant registers have different bases. */
  737         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
  738                 req = BGE_APE_LOCK_REQ;
  739                 gnt = BGE_APE_LOCK_GRANT;
  740         } else {
  741                 req = BGE_APE_PER_LOCK_REQ;
  742                 gnt = BGE_APE_PER_LOCK_GRANT;
  743         }
  744 
  745         off = 4 * locknum;
  746 
  747         switch (locknum) {
  748         case BGE_APE_LOCK_GPIO:
  749                 /* Lock required when using GPIO. */
  750                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  751                         return (0);
  752                 if (sc->bge_func_addr == 0)
  753                         bit = BGE_APE_LOCK_REQ_DRIVER0;
  754                 else
  755                         bit = (1 << sc->bge_func_addr);
  756                 break;
  757         case BGE_APE_LOCK_GRC:
  758                 /* Lock required to reset the device. */
  759                 if (sc->bge_func_addr == 0)
  760                         bit = BGE_APE_LOCK_REQ_DRIVER0;
  761                 else
  762                         bit = (1 << sc->bge_func_addr);
  763                 break;
  764         case BGE_APE_LOCK_MEM:
  765                 /* Lock required when accessing certain APE memory. */
  766                 if (sc->bge_func_addr == 0)
  767                         bit = BGE_APE_LOCK_REQ_DRIVER0;
  768                 else
  769                         bit = (1 << sc->bge_func_addr);
  770                 break;
  771         case BGE_APE_LOCK_PHY0:
  772         case BGE_APE_LOCK_PHY1:
  773         case BGE_APE_LOCK_PHY2:
  774         case BGE_APE_LOCK_PHY3:
  775                 /* Lock required when accessing PHYs. */
  776                 bit = BGE_APE_LOCK_REQ_DRIVER0;
  777                 break;
  778         default:
  779                 return (EINVAL);
  780         }
  781 
  782         /* Request a lock. */
  783         APE_WRITE_4(sc, req + off, bit);
  784 
  785         /* Wait up to 1 second to acquire lock. */
  786         for (i = 0; i < 20000; i++) {
  787                 status = APE_READ_4(sc, gnt + off);
  788                 if (status == bit)
  789                         break;
  790                 DELAY(50);
  791         }
  792 
  793         /* Handle any errors. */
  794         if (status != bit) {
  795                 device_printf(sc->bge_dev, "APE lock %d request failed! "
  796                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
  797                     locknum, req + off, bit & 0xFFFF, gnt + off,
  798                     status & 0xFFFF);
  799                 /* Revoke the lock request. */
  800                 APE_WRITE_4(sc, gnt + off, bit);
  801                 return (EBUSY);
  802         }
  803 
  804         return (0);
  805 }
  806 
  807 static void
  808 bge_ape_unlock(struct bge_softc *sc, int locknum)
  809 {
  810         uint32_t bit, gnt;
  811         int off;
  812 
  813         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  814                 return;
  815 
  816         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  817                 gnt = BGE_APE_LOCK_GRANT;
  818         else
  819                 gnt = BGE_APE_PER_LOCK_GRANT;
  820 
  821         off = 4 * locknum;
  822 
  823         switch (locknum) {
  824         case BGE_APE_LOCK_GPIO:
  825                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  826                         return;
  827                 if (sc->bge_func_addr == 0)
  828                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  829                 else
  830                         bit = (1 << sc->bge_func_addr);
  831                 break;
  832         case BGE_APE_LOCK_GRC:
  833                 if (sc->bge_func_addr == 0)
  834                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  835                 else
  836                         bit = (1 << sc->bge_func_addr);
  837                 break;
  838         case BGE_APE_LOCK_MEM:
  839                 if (sc->bge_func_addr == 0)
  840                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  841                 else
  842                         bit = (1 << sc->bge_func_addr);
  843                 break;
  844         case BGE_APE_LOCK_PHY0:
  845         case BGE_APE_LOCK_PHY1:
  846         case BGE_APE_LOCK_PHY2:
  847         case BGE_APE_LOCK_PHY3:
  848                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
  849                 break;
  850         default:
  851                 return;
  852         }
  853 
  854         APE_WRITE_4(sc, gnt + off, bit);
  855 }
  856 
  857 /*
  858  * Send an event to the APE firmware.
  859  */
  860 static void
  861 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
  862 {
  863         uint32_t apedata;
  864         int i;
  865 
  866         /* NCSI does not support APE events. */
  867         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  868                 return;
  869 
  870         /* Wait up to 1ms for APE to service previous event. */
  871         for (i = 10; i > 0; i--) {
  872                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
  873                         break;
  874                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
  875                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
  876                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
  877                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
  878                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
  879                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
  880                         break;
  881                 }
  882                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
  883                 DELAY(100);
  884         }
  885         if (i == 0)
  886                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
  887                     event);
  888 }
  889 
  890 static void
  891 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
  892 {
  893         uint32_t apedata, event;
  894 
  895         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  896                 return;
  897 
  898         switch (kind) {
  899         case BGE_RESET_START:
  900                 /* If this is the first load, clear the load counter. */
  901                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
  902                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
  903                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
  904                 else {
  905                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
  906                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
  907                 }
  908                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
  909                     BGE_APE_HOST_SEG_SIG_MAGIC);
  910                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
  911                     BGE_APE_HOST_SEG_LEN_MAGIC);
  912 
  913                 /* Add some version info if bge(4) supports it. */
  914                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
  915                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
  916                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
  917                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
  918                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
  919                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
  920                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
  921                     BGE_APE_HOST_DRVR_STATE_START);
  922                 event = BGE_APE_EVENT_STATUS_STATE_START;
  923                 break;
  924         case BGE_RESET_SHUTDOWN:
  925                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
  926                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
  927                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
  928                 break;
  929         case BGE_RESET_SUSPEND:
  930                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
  931                 break;
  932         default:
  933                 return;
  934         }
  935 
  936         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
  937             BGE_APE_EVENT_STATUS_STATE_CHNGE);
  938 }
  939 
  940 /*
  941  * Map a single buffer address.
  942  */
  943 
  944 static void
  945 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  946 {
  947         struct bge_dmamap_arg *ctx;
  948 
  949         if (error)
  950                 return;
  951 
  952         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
  953 
  954         ctx = arg;
  955         ctx->bge_busaddr = segs->ds_addr;
  956 }
  957 
  958 static uint8_t
  959 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  960 {
  961         uint32_t access, byte = 0;
  962         int i;
  963 
  964         /* Lock. */
  965         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
  966         for (i = 0; i < 8000; i++) {
  967                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
  968                         break;
  969                 DELAY(20);
  970         }
  971         if (i == 8000)
  972                 return (1);
  973 
  974         /* Enable access. */
  975         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
  976         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
  977 
  978         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
  979         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
  980         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
  981                 DELAY(10);
  982                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
  983                         DELAY(10);
  984                         break;
  985                 }
  986         }
  987 
  988         if (i == BGE_TIMEOUT * 10) {
  989                 if_printf(sc->bge_ifp, "nvram read timed out\n");
  990                 return (1);
  991         }
  992 
  993         /* Get result. */
  994         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
  995 
  996         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
  997 
  998         /* Disable access. */
  999         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
 1000 
 1001         /* Unlock. */
 1002         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
 1003         CSR_READ_4(sc, BGE_NVRAM_SWARB);
 1004 
 1005         return (0);
 1006 }
 1007 
 1008 /*
 1009  * Read a sequence of bytes from NVRAM.
 1010  */
 1011 static int
 1012 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
 1013 {
 1014         int err = 0, i;
 1015         uint8_t byte = 0;
 1016 
 1017         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 1018                 return (1);
 1019 
 1020         for (i = 0; i < cnt; i++) {
 1021                 err = bge_nvram_getbyte(sc, off + i, &byte);
 1022                 if (err)
 1023                         break;
 1024                 *(dest + i) = byte;
 1025         }
 1026 
 1027         return (err ? 1 : 0);
 1028 }
 1029 
 1030 /*
 1031  * Read a byte of data stored in the EEPROM at address 'addr.' The
 1032  * BCM570x supports both the traditional bitbang interface and an
 1033  * auto access interface for reading the EEPROM. We use the auto
 1034  * access method.
 1035  */
 1036 static uint8_t
 1037 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
 1038 {
 1039         int i;
 1040         uint32_t byte = 0;
 1041 
 1042         /*
 1043          * Enable use of auto EEPROM access so we can avoid
 1044          * having to use the bitbang method.
 1045          */
 1046         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
 1047 
 1048         /* Reset the EEPROM, load the clock period. */
 1049         CSR_WRITE_4(sc, BGE_EE_ADDR,
 1050             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
 1051         DELAY(20);
 1052 
 1053         /* Issue the read EEPROM command. */
 1054         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
 1055 
 1056         /* Wait for completion */
 1057         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
 1058                 DELAY(10);
 1059                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
 1060                         break;
 1061         }
 1062 
 1063         if (i == BGE_TIMEOUT * 10) {
 1064                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
 1065                 return (1);
 1066         }
 1067 
 1068         /* Get result. */
 1069         byte = CSR_READ_4(sc, BGE_EE_DATA);
 1070 
 1071         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
 1072 
 1073         return (0);
 1074 }
 1075 
 1076 /*
 1077  * Read a sequence of bytes from the EEPROM.
 1078  */
 1079 static int
 1080 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
 1081 {
 1082         int i, error = 0;
 1083         uint8_t byte = 0;
 1084 
 1085         for (i = 0; i < cnt; i++) {
 1086                 error = bge_eeprom_getbyte(sc, off + i, &byte);
 1087                 if (error)
 1088                         break;
 1089                 *(dest + i) = byte;
 1090         }
 1091 
 1092         return (error ? 1 : 0);
 1093 }
 1094 
 1095 static int
 1096 bge_miibus_readreg(device_t dev, int phy, int reg)
 1097 {
 1098         struct bge_softc *sc;
 1099         uint32_t val;
 1100         int i;
 1101 
 1102         sc = device_get_softc(dev);
 1103 
 1104         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
 1105                 return (0);
 1106 
 1107         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
 1108         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1109                 CSR_WRITE_4(sc, BGE_MI_MODE,
 1110                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
 1111                 DELAY(80);
 1112         }
 1113 
 1114         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
 1115             BGE_MIPHY(phy) | BGE_MIREG(reg));
 1116 
 1117         /* Poll for the PHY register access to complete. */
 1118         for (i = 0; i < BGE_TIMEOUT; i++) {
 1119                 DELAY(10);
 1120                 val = CSR_READ_4(sc, BGE_MI_COMM);
 1121                 if ((val & BGE_MICOMM_BUSY) == 0) {
 1122                         DELAY(5);
 1123                         val = CSR_READ_4(sc, BGE_MI_COMM);
 1124                         break;
 1125                 }
 1126         }
 1127 
 1128         if (i == BGE_TIMEOUT) {
 1129                 device_printf(sc->bge_dev,
 1130                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
 1131                     phy, reg, val);
 1132                 val = 0;
 1133         }
 1134 
 1135         /* Restore the autopoll bit if necessary. */
 1136         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1137                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 1138                 DELAY(80);
 1139         }
 1140 
 1141         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
 1142 
 1143         if (val & BGE_MICOMM_READFAIL)
 1144                 return (0);
 1145 
 1146         return (val & 0xFFFF);
 1147 }
 1148 
 1149 static int
 1150 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
 1151 {
 1152         struct bge_softc *sc;
 1153         int i;
 1154 
 1155         sc = device_get_softc(dev);
 1156 
 1157         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
 1158             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
 1159                 return (0);
 1160 
 1161         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
 1162                 return (0);
 1163 
 1164         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
 1165         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1166                 CSR_WRITE_4(sc, BGE_MI_MODE,
 1167                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
 1168                 DELAY(80);
 1169         }
 1170 
 1171         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
 1172             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
 1173 
 1174         for (i = 0; i < BGE_TIMEOUT; i++) {
 1175                 DELAY(10);
 1176                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
 1177                         DELAY(5);
 1178                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
 1179                         break;
 1180                 }
 1181         }
 1182 
 1183         /* Restore the autopoll bit if necessary. */
 1184         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1185                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 1186                 DELAY(80);
 1187         }
 1188 
 1189         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
 1190 
 1191         if (i == BGE_TIMEOUT)
 1192                 device_printf(sc->bge_dev,
 1193                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
 1194                     phy, reg, val);
 1195 
 1196         return (0);
 1197 }
 1198 
 1199 static void
 1200 bge_miibus_statchg(device_t dev)
 1201 {
 1202         struct bge_softc *sc;
 1203         struct mii_data *mii;
 1204         uint32_t mac_mode, rx_mode, tx_mode;
 1205 
 1206         sc = device_get_softc(dev);
 1207         if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
 1208                 return;
 1209         mii = device_get_softc(sc->bge_miibus);
 1210 
 1211         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1212             (IFM_ACTIVE | IFM_AVALID)) {
 1213                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1214                 case IFM_10_T:
 1215                 case IFM_100_TX:
 1216                         sc->bge_link = 1;
 1217                         break;
 1218                 case IFM_1000_T:
 1219                 case IFM_1000_SX:
 1220                 case IFM_2500_SX:
 1221                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 1222                                 sc->bge_link = 1;
 1223                         else
 1224                                 sc->bge_link = 0;
 1225                         break;
 1226                 default:
 1227                         sc->bge_link = 0;
 1228                         break;
 1229                 }
 1230         } else
 1231                 sc->bge_link = 0;
 1232         if (sc->bge_link == 0)
 1233                 return;
 1234 
 1235         /*
 1236          * APE firmware touches these registers to keep the MAC
 1237          * connected to the outside world.  Try to keep the
 1238          * accesses atomic.
 1239          */
 1240 
 1241         /* Set the port mode (MII/GMII) to match the link speed. */
 1242         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
 1243             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
 1244         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
 1245         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
 1246 
 1247         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
 1248             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
 1249                 mac_mode |= BGE_PORTMODE_GMII;
 1250         else
 1251                 mac_mode |= BGE_PORTMODE_MII;
 1252 
 1253         /* Set MAC flow control behavior to match link flow control settings. */
 1254         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
 1255         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
 1256         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 1257                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 1258                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
 1259                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 1260                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
 1261         } else
 1262                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
 1263 
 1264         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
 1265         DELAY(40);
 1266         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
 1267         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
 1268 }
 1269 
 1270 /*
 1271  * Intialize a standard receive ring descriptor.
 1272  */
 1273 static int
 1274 bge_newbuf_std(struct bge_softc *sc, int i)
 1275 {
 1276         struct mbuf *m;
 1277         struct bge_rx_bd *r;
 1278         bus_dma_segment_t segs[1];
 1279         bus_dmamap_t map;
 1280         int error, nsegs;
 1281 
 1282         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
 1283             (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
 1284             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
 1285                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
 1286                 if (m == NULL)
 1287                         return (ENOBUFS);
 1288                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 1289         } else {
 1290                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1291                 if (m == NULL)
 1292                         return (ENOBUFS);
 1293                 m->m_len = m->m_pkthdr.len = MCLBYTES;
 1294         }
 1295         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
 1296                 m_adj(m, ETHER_ALIGN);
 1297 
 1298         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
 1299             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
 1300         if (error != 0) {
 1301                 m_freem(m);
 1302                 return (error);
 1303         }
 1304         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 1305                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 1306                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
 1307                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
 1308                     sc->bge_cdata.bge_rx_std_dmamap[i]);
 1309         }
 1310         map = sc->bge_cdata.bge_rx_std_dmamap[i];
 1311         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
 1312         sc->bge_cdata.bge_rx_std_sparemap = map;
 1313         sc->bge_cdata.bge_rx_std_chain[i] = m;
 1314         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
 1315         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
 1316         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
 1317         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
 1318         r->bge_flags = BGE_RXBDFLAG_END;
 1319         r->bge_len = segs[0].ds_len;
 1320         r->bge_idx = i;
 1321 
 1322         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 1323             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
 1324 
 1325         return (0);
 1326 }
 1327 
 1328 /*
 1329  * Initialize a jumbo receive ring descriptor. This allocates
 1330  * a jumbo buffer from the pool managed internally by the driver.
 1331  */
 1332 static int
 1333 bge_newbuf_jumbo(struct bge_softc *sc, int i)
 1334 {
 1335         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
 1336         bus_dmamap_t map;
 1337         struct bge_extrx_bd *r;
 1338         struct mbuf *m;
 1339         int error, nsegs;
 1340 
 1341         MGETHDR(m, M_NOWAIT, MT_DATA);
 1342         if (m == NULL)
 1343                 return (ENOBUFS);
 1344 
 1345         if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
 1346                 m_freem(m);
 1347                 return (ENOBUFS);
 1348         }
 1349         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 1350         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
 1351                 m_adj(m, ETHER_ALIGN);
 1352 
 1353         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
 1354             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
 1355         if (error != 0) {
 1356                 m_freem(m);
 1357                 return (error);
 1358         }
 1359 
 1360         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 1361                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1362                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
 1363                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 1364                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1365         }
 1366         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
 1367         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
 1368             sc->bge_cdata.bge_rx_jumbo_sparemap;
 1369         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
 1370         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
 1371         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
 1372         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
 1373         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
 1374         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
 1375 
 1376         /*
 1377          * Fill in the extended RX buffer descriptor.
 1378          */
 1379         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
 1380         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
 1381         r->bge_idx = i;
 1382         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
 1383         switch (nsegs) {
 1384         case 4:
 1385                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
 1386                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
 1387                 r->bge_len3 = segs[3].ds_len;
 1388                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
 1389         case 3:
 1390                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
 1391                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
 1392                 r->bge_len2 = segs[2].ds_len;
 1393                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
 1394         case 2:
 1395                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
 1396                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
 1397                 r->bge_len1 = segs[1].ds_len;
 1398                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
 1399         case 1:
 1400                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
 1401                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
 1402                 r->bge_len0 = segs[0].ds_len;
 1403                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
 1404                 break;
 1405         default:
 1406                 panic("%s: %d segments\n", __func__, nsegs);
 1407         }
 1408 
 1409         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1410             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
 1411 
 1412         return (0);
 1413 }
 1414 
 1415 static int
 1416 bge_init_rx_ring_std(struct bge_softc *sc)
 1417 {
 1418         int error, i;
 1419 
 1420         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
 1421         sc->bge_std = 0;
 1422         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1423                 if ((error = bge_newbuf_std(sc, i)) != 0)
 1424                         return (error);
 1425                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 1426         }
 1427 
 1428         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 1429             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 1430 
 1431         sc->bge_std = 0;
 1432         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
 1433 
 1434         return (0);
 1435 }
 1436 
 1437 static void
 1438 bge_free_rx_ring_std(struct bge_softc *sc)
 1439 {
 1440         int i;
 1441 
 1442         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1443                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 1444                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 1445                             sc->bge_cdata.bge_rx_std_dmamap[i],
 1446                             BUS_DMASYNC_POSTREAD);
 1447                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
 1448                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1449                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
 1450                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
 1451                 }
 1452                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
 1453                     sizeof(struct bge_rx_bd));
 1454         }
 1455 }
 1456 
 1457 static int
 1458 bge_init_rx_ring_jumbo(struct bge_softc *sc)
 1459 {
 1460         struct bge_rcb *rcb;
 1461         int error, i;
 1462 
 1463         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
 1464         sc->bge_jumbo = 0;
 1465         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1466                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
 1467                         return (error);
 1468                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 1469         }
 1470 
 1471         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1472             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 1473 
 1474         sc->bge_jumbo = 0;
 1475 
 1476         /* Enable the jumbo receive producer ring. */
 1477         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1478         rcb->bge_maxlen_flags =
 1479             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
 1480         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1481 
 1482         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
 1483 
 1484         return (0);
 1485 }
 1486 
 1487 static void
 1488 bge_free_rx_ring_jumbo(struct bge_softc *sc)
 1489 {
 1490         int i;
 1491 
 1492         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1493                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 1494                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1495                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
 1496                             BUS_DMASYNC_POSTREAD);
 1497                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 1498                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1499                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
 1500                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
 1501                 }
 1502                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
 1503                     sizeof(struct bge_extrx_bd));
 1504         }
 1505 }
 1506 
 1507 static void
 1508 bge_free_tx_ring(struct bge_softc *sc)
 1509 {
 1510         int i;
 1511 
 1512         if (sc->bge_ldata.bge_tx_ring == NULL)
 1513                 return;
 1514 
 1515         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1516                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
 1517                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
 1518                             sc->bge_cdata.bge_tx_dmamap[i],
 1519                             BUS_DMASYNC_POSTWRITE);
 1520                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
 1521                             sc->bge_cdata.bge_tx_dmamap[i]);
 1522                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
 1523                         sc->bge_cdata.bge_tx_chain[i] = NULL;
 1524                 }
 1525                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
 1526                     sizeof(struct bge_tx_bd));
 1527         }
 1528 }
 1529 
 1530 static int
 1531 bge_init_tx_ring(struct bge_softc *sc)
 1532 {
 1533         sc->bge_txcnt = 0;
 1534         sc->bge_tx_saved_considx = 0;
 1535 
 1536         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
 1537         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 1538             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
 1539 
 1540         /* Initialize transmit producer index for host-memory send ring. */
 1541         sc->bge_tx_prodidx = 0;
 1542         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1543 
 1544         /* 5700 b2 errata */
 1545         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1546                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1547 
 1548         /* NIC-memory send ring not used; initialize to zero. */
 1549         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1550         /* 5700 b2 errata */
 1551         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1552                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1553 
 1554         return (0);
 1555 }
 1556 
 1557 static void
 1558 bge_setpromisc(struct bge_softc *sc)
 1559 {
 1560         if_t ifp;
 1561 
 1562         BGE_LOCK_ASSERT(sc);
 1563 
 1564         ifp = sc->bge_ifp;
 1565 
 1566         /* Enable or disable promiscuous mode as needed. */
 1567         if (if_getflags(ifp) & IFF_PROMISC)
 1568                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1569         else
 1570                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1571 }
 1572 
 1573 static u_int
 1574 bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 1575 {
 1576         uint32_t *hashes = arg;
 1577         int h;
 1578 
 1579         h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F;
 1580         hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
 1581 
 1582         return (1);
 1583 }
 1584 
 1585 static void
 1586 bge_setmulti(struct bge_softc *sc)
 1587 {
 1588         if_t ifp;
 1589         uint32_t hashes[4] = { 0, 0, 0, 0 };
 1590         int i;
 1591 
 1592         BGE_LOCK_ASSERT(sc);
 1593 
 1594         ifp = sc->bge_ifp;
 1595 
 1596         if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
 1597                 for (i = 0; i < 4; i++)
 1598                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
 1599                 return;
 1600         }
 1601 
 1602         /* First, zot all the existing filters. */
 1603         for (i = 0; i < 4; i++)
 1604                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
 1605 
 1606         if_foreach_llmaddr(ifp, bge_hash_maddr, hashes);
 1607 
 1608         for (i = 0; i < 4; i++)
 1609                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
 1610 }
 1611 
 1612 static void
 1613 bge_setvlan(struct bge_softc *sc)
 1614 {
 1615         if_t ifp;
 1616 
 1617         BGE_LOCK_ASSERT(sc);
 1618 
 1619         ifp = sc->bge_ifp;
 1620 
 1621         /* Enable or disable VLAN tag stripping as needed. */
 1622         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
 1623                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1624         else
 1625                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1626 }
 1627 
 1628 static void
 1629 bge_sig_pre_reset(struct bge_softc *sc, int type)
 1630 {
 1631 
 1632         /*
 1633          * Some chips don't like this so only do this if ASF is enabled
 1634          */
 1635         if (sc->bge_asf_mode)
 1636                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
 1637 
 1638         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1639                 switch (type) {
 1640                 case BGE_RESET_START:
 1641                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1642                             BGE_FW_DRV_STATE_START);
 1643                         break;
 1644                 case BGE_RESET_SHUTDOWN:
 1645                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1646                             BGE_FW_DRV_STATE_UNLOAD);
 1647                         break;
 1648                 case BGE_RESET_SUSPEND:
 1649                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1650                             BGE_FW_DRV_STATE_SUSPEND);
 1651                         break;
 1652                 }
 1653         }
 1654 
 1655         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
 1656                 bge_ape_driver_state_change(sc, type);
 1657 }
 1658 
 1659 static void
 1660 bge_sig_post_reset(struct bge_softc *sc, int type)
 1661 {
 1662 
 1663         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1664                 switch (type) {
 1665                 case BGE_RESET_START:
 1666                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1667                             BGE_FW_DRV_STATE_START_DONE);
 1668                         /* START DONE */
 1669                         break;
 1670                 case BGE_RESET_SHUTDOWN:
 1671                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1672                             BGE_FW_DRV_STATE_UNLOAD_DONE);
 1673                         break;
 1674                 }
 1675         }
 1676         if (type == BGE_RESET_SHUTDOWN)
 1677                 bge_ape_driver_state_change(sc, type);
 1678 }
 1679 
 1680 static void
 1681 bge_sig_legacy(struct bge_softc *sc, int type)
 1682 {
 1683 
 1684         if (sc->bge_asf_mode) {
 1685                 switch (type) {
 1686                 case BGE_RESET_START:
 1687                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1688                             BGE_FW_DRV_STATE_START);
 1689                         break;
 1690                 case BGE_RESET_SHUTDOWN:
 1691                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1692                             BGE_FW_DRV_STATE_UNLOAD);
 1693                         break;
 1694                 }
 1695         }
 1696 }
 1697 
 1698 static void
 1699 bge_stop_fw(struct bge_softc *sc)
 1700 {
 1701         int i;
 1702 
 1703         if (sc->bge_asf_mode) {
 1704                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
 1705                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
 1706                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
 1707 
 1708                 for (i = 0; i < 100; i++ ) {
 1709                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
 1710                             BGE_RX_CPU_DRV_EVENT))
 1711                                 break;
 1712                         DELAY(10);
 1713                 }
 1714         }
 1715 }
 1716 
 1717 static uint32_t
 1718 bge_dma_swap_options(struct bge_softc *sc)
 1719 {
 1720         uint32_t dma_options;
 1721 
 1722         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
 1723             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
 1724 #if BYTE_ORDER == BIG_ENDIAN
 1725         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
 1726 #endif
 1727         return (dma_options);
 1728 }
 1729 
 1730 /*
 1731  * Do endian, PCI and DMA initialization.
 1732  */
 1733 static int
 1734 bge_chipinit(struct bge_softc *sc)
 1735 {
 1736         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
 1737         uint16_t val;
 1738         int i;
 1739 
 1740         /* Set endianness before we access any non-PCI registers. */
 1741         misc_ctl = BGE_INIT;
 1742         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
 1743                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
 1744         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
 1745 
 1746         /*
 1747          * Clear the MAC statistics block in the NIC's
 1748          * internal memory.
 1749          */
 1750         for (i = BGE_STATS_BLOCK;
 1751             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
 1752                 BGE_MEMWIN_WRITE(sc, i, 0);
 1753 
 1754         for (i = BGE_STATUS_BLOCK;
 1755             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
 1756                 BGE_MEMWIN_WRITE(sc, i, 0);
 1757 
 1758         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
 1759                 /*
 1760                  *  Fix data corruption caused by non-qword write with WB.
 1761                  *  Fix master abort in PCI mode.
 1762                  *  Fix PCI latency timer.
 1763                  */
 1764                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
 1765                 val |= (1 << 10) | (1 << 12) | (1 << 13);
 1766                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
 1767         }
 1768 
 1769         if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
 1770             sc->bge_asicrev == BGE_ASICREV_BCM57766) {
 1771                 /*
 1772                  * For the 57766 and non Ax versions of 57765, bootcode
 1773                  * needs to setup the PCIE Fast Training Sequence (FTS)
 1774                  * value to prevent transmit hangs.
 1775                  */
 1776                 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
 1777                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
 1778                             CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
 1779                             BGE_CPMU_PADRNG_CTL_RDIV2);
 1780                 }
 1781         }
 1782 
 1783         /*
 1784          * Set up the PCI DMA control register.
 1785          */
 1786         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
 1787             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
 1788         if (sc->bge_flags & BGE_FLAG_PCIE) {
 1789                 if (sc->bge_mps >= 256)
 1790                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 1791                 else
 1792                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1793         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
 1794                 if (BGE_IS_5714_FAMILY(sc)) {
 1795                         /* 256 bytes for read and write. */
 1796                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
 1797                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
 1798                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
 1799                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
 1800                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
 1801                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
 1802                         /*
 1803                          * In the BCM5703, the DMA read watermark should
 1804                          * be set to less than or equal to the maximum
 1805                          * memory read byte count of the PCI-X command
 1806                          * register.
 1807                          */
 1808                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
 1809                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1810                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1811                         /* 1536 bytes for read, 384 bytes for write. */
 1812                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1813                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1814                 } else {
 1815                         /* 384 bytes for read and write. */
 1816                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
 1817                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
 1818                             0x0F;
 1819                 }
 1820                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1821                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1822                         uint32_t tmp;
 1823 
 1824                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
 1825                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 1826                         if (tmp == 6 || tmp == 7)
 1827                                 dma_rw_ctl |=
 1828                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
 1829 
 1830                         /* Set PCI-X DMA write workaround. */
 1831                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1832                 }
 1833         } else {
 1834                 /* Conventional PCI bus: 256 bytes for read and write. */
 1835                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1836                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 1837 
 1838                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
 1839                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
 1840                         dma_rw_ctl |= 0x0F;
 1841         }
 1842         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 1843             sc->bge_asicrev == BGE_ASICREV_BCM5701)
 1844                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
 1845                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1846         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1847             sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1848                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
 1849         if (BGE_IS_5717_PLUS(sc)) {
 1850                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
 1851                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
 1852                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
 1853                 /*
 1854                  * Enable HW workaround for controllers that misinterpret
 1855                  * a status tag update and leave interrupts permanently
 1856                  * disabled.
 1857                  */
 1858                 if (!BGE_IS_57765_PLUS(sc) &&
 1859                     sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
 1860                     sc->bge_asicrev != BGE_ASICREV_BCM5762)
 1861                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
 1862         }
 1863         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
 1864 
 1865         /*
 1866          * Set up general mode register.
 1867          */
 1868         mode_ctl = bge_dma_swap_options(sc);
 1869         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 1870             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 1871                 /* Retain Host-2-BMC settings written by APE firmware. */
 1872                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
 1873                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
 1874                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
 1875                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
 1876         }
 1877         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
 1878             BGE_MODECTL_TX_NO_PHDR_CSUM;
 1879 
 1880         /*
 1881          * BCM5701 B5 have a bug causing data corruption when using
 1882          * 64-bit DMA reads, which can be terminated early and then
 1883          * completed later as 32-bit accesses, in combination with
 1884          * certain bridges.
 1885          */
 1886         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 1887             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
 1888                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
 1889 
 1890         /*
 1891          * Tell the firmware the driver is running
 1892          */
 1893         if (sc->bge_asf_mode & ASF_STACKUP)
 1894                 mode_ctl |= BGE_MODECTL_STACKUP;
 1895 
 1896         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
 1897 
 1898         /*
 1899          * Disable memory write invalidate.  Apparently it is not supported
 1900          * properly by these devices.
 1901          */
 1902         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
 1903 
 1904         /* Set the timer prescaler (always 66 MHz). */
 1905         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 1906 
 1907         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
 1908         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1909                 DELAY(40);      /* XXX */
 1910 
 1911                 /* Put PHY into ready state */
 1912                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
 1913                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
 1914                 DELAY(40);
 1915         }
 1916 
 1917         return (0);
 1918 }
 1919 
 1920 static int
 1921 bge_blockinit(struct bge_softc *sc)
 1922 {
 1923         struct bge_rcb *rcb;
 1924         bus_size_t vrcb;
 1925         bge_hostaddr taddr;
 1926         uint32_t dmactl, rdmareg, val;
 1927         int i, limit;
 1928 
 1929         /*
 1930          * Initialize the memory window pointer register so that
 1931          * we can access the first 32K of internal NIC RAM. This will
 1932          * allow us to set up the TX send ring RCBs and the RX return
 1933          * ring RCBs, plus other things which live in NIC memory.
 1934          */
 1935         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
 1936 
 1937         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
 1938 
 1939         if (!(BGE_IS_5705_PLUS(sc))) {
 1940                 /* Configure mbuf memory pool */
 1941                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
 1942                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1943                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
 1944                 else
 1945                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
 1946 
 1947                 /* Configure DMA resource pool */
 1948                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
 1949                     BGE_DMA_DESCRIPTORS);
 1950                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
 1951         }
 1952 
 1953         /* Configure mbuf pool watermarks */
 1954         if (BGE_IS_5717_PLUS(sc)) {
 1955                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1956                 if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
 1957                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
 1958                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
 1959                 } else {
 1960                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
 1961                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
 1962                 }
 1963         } else if (!BGE_IS_5705_PLUS(sc)) {
 1964                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
 1965                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
 1966                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1967         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1968                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1969                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
 1970                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
 1971         } else {
 1972                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1973                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
 1974                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1975         }
 1976 
 1977         /* Configure DMA resource watermarks */
 1978         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
 1979         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
 1980 
 1981         /* Enable buffer manager */
 1982         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
 1983         /*
 1984          * Change the arbitration algorithm of TXMBUF read request to
 1985          * round-robin instead of priority based for BCM5719.  When
 1986          * TXFIFO is almost empty, RDMA will hold its request until
 1987          * TXFIFO is not almost empty.
 1988          */
 1989         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 1990                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
 1991         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
 1992 
 1993         /* Poll for buffer manager start indication */
 1994         for (i = 0; i < BGE_TIMEOUT; i++) {
 1995                 DELAY(10);
 1996                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
 1997                         break;
 1998         }
 1999 
 2000         if (i == BGE_TIMEOUT) {
 2001                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
 2002                 return (ENXIO);
 2003         }
 2004 
 2005         /* Enable flow-through queues */
 2006         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 2007         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 2008 
 2009         /* Wait until queue initialization is complete */
 2010         for (i = 0; i < BGE_TIMEOUT; i++) {
 2011                 DELAY(10);
 2012                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
 2013                         break;
 2014         }
 2015 
 2016         if (i == BGE_TIMEOUT) {
 2017                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
 2018                 return (ENXIO);
 2019         }
 2020 
 2021         /*
 2022          * Summary of rings supported by the controller:
 2023          *
 2024          * Standard Receive Producer Ring
 2025          * - This ring is used to feed receive buffers for "standard"
 2026          *   sized frames (typically 1536 bytes) to the controller.
 2027          *
 2028          * Jumbo Receive Producer Ring
 2029          * - This ring is used to feed receive buffers for jumbo sized
 2030          *   frames (i.e. anything bigger than the "standard" frames)
 2031          *   to the controller.
 2032          *
 2033          * Mini Receive Producer Ring
 2034          * - This ring is used to feed receive buffers for "mini"
 2035          *   sized frames to the controller.
 2036          * - This feature required external memory for the controller
 2037          *   but was never used in a production system.  Should always
 2038          *   be disabled.
 2039          *
 2040          * Receive Return Ring
 2041          * - After the controller has placed an incoming frame into a
 2042          *   receive buffer that buffer is moved into a receive return
 2043          *   ring.  The driver is then responsible to passing the
 2044          *   buffer up to the stack.  Many versions of the controller
 2045          *   support multiple RR rings.
 2046          *
 2047          * Send Ring
 2048          * - This ring is used for outgoing frames.  Many versions of
 2049          *   the controller support multiple send rings.
 2050          */
 2051 
 2052         /* Initialize the standard receive producer ring control block. */
 2053         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
 2054         rcb->bge_hostaddr.bge_addr_lo =
 2055             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
 2056         rcb->bge_hostaddr.bge_addr_hi =
 2057             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
 2058         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 2059             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
 2060         if (BGE_IS_5717_PLUS(sc)) {
 2061                 /*
 2062                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
 2063                  * Bits 15-2 : Maximum RX frame size
 2064                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
 2065                  * Bit 0     : Reserved
 2066                  */
 2067                 rcb->bge_maxlen_flags =
 2068                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
 2069         } else if (BGE_IS_5705_PLUS(sc)) {
 2070                 /*
 2071                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
 2072                  * Bits 15-2 : Reserved (should be 0)
 2073                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
 2074                  * Bit 0     : Reserved
 2075                  */
 2076                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
 2077         } else {
 2078                 /*
 2079                  * Ring size is always XXX entries
 2080                  * Bits 31-16: Maximum RX frame size
 2081                  * Bits 15-2 : Reserved (should be 0)
 2082                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
 2083                  * Bit 0     : Reserved
 2084                  */
 2085                 rcb->bge_maxlen_flags =
 2086                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
 2087         }
 2088         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2089             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2090             sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2091                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
 2092         else
 2093                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
 2094         /* Write the standard receive producer ring control block. */
 2095         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
 2096         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
 2097         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 2098         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
 2099 
 2100         /* Reset the standard receive producer ring producer index. */
 2101         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
 2102 
 2103         /*
 2104          * Initialize the jumbo RX producer ring control
 2105          * block.  We set the 'ring disabled' bit in the
 2106          * flags field until we're actually ready to start
 2107          * using this ring (i.e. once we set the MTU
 2108          * high enough to require it).
 2109          */
 2110         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 2111                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 2112                 /* Get the jumbo receive producer ring RCB parameters. */
 2113                 rcb->bge_hostaddr.bge_addr_lo =
 2114                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 2115                 rcb->bge_hostaddr.bge_addr_hi =
 2116                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 2117                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2118                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 2119                     BUS_DMASYNC_PREREAD);
 2120                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 2121                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
 2122                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2123                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2124                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2125                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
 2126                 else
 2127                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
 2128                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
 2129                     rcb->bge_hostaddr.bge_addr_hi);
 2130                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
 2131                     rcb->bge_hostaddr.bge_addr_lo);
 2132                 /* Program the jumbo receive producer ring RCB parameters. */
 2133                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
 2134                     rcb->bge_maxlen_flags);
 2135                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
 2136                 /* Reset the jumbo receive producer ring producer index. */
 2137                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
 2138         }
 2139 
 2140         /* Disable the mini receive producer ring RCB. */
 2141         if (BGE_IS_5700_FAMILY(sc)) {
 2142                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
 2143                 rcb->bge_maxlen_flags =
 2144                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
 2145                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
 2146                     rcb->bge_maxlen_flags);
 2147                 /* Reset the mini receive producer ring producer index. */
 2148                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
 2149         }
 2150 
 2151         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
 2152         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 2153                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
 2154                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
 2155                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
 2156                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
 2157                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
 2158         }
 2159         /*
 2160          * The BD ring replenish thresholds control how often the
 2161          * hardware fetches new BD's from the producer rings in host
 2162          * memory.  Setting the value too low on a busy system can
 2163          * starve the hardware and recue the throughpout.
 2164          *
 2165          * Set the BD ring replentish thresholds. The recommended
 2166          * values are 1/8th the number of descriptors allocated to
 2167          * each ring.
 2168          * XXX The 5754 requires a lower threshold, so it might be a
 2169          * requirement of all 575x family chips.  The Linux driver sets
 2170          * the lower threshold for all 5705 family chips as well, but there
 2171          * are reports that it might not need to be so strict.
 2172          *
 2173          * XXX Linux does some extra fiddling here for the 5906 parts as
 2174          * well.
 2175          */
 2176         if (BGE_IS_5705_PLUS(sc))
 2177                 val = 8;
 2178         else
 2179                 val = BGE_STD_RX_RING_CNT / 8;
 2180         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
 2181         if (BGE_IS_JUMBO_CAPABLE(sc))
 2182                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
 2183                     BGE_JUMBO_RX_RING_CNT/8);
 2184         if (BGE_IS_5717_PLUS(sc)) {
 2185                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
 2186                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
 2187         }
 2188 
 2189         /*
 2190          * Disable all send rings by setting the 'ring disabled' bit
 2191          * in the flags field of all the TX send ring control blocks,
 2192          * located in NIC memory.
 2193          */
 2194         if (!BGE_IS_5705_PLUS(sc))
 2195                 /* 5700 to 5704 had 16 send rings. */
 2196                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
 2197         else if (BGE_IS_57765_PLUS(sc) ||
 2198             sc->bge_asicrev == BGE_ASICREV_BCM5762)
 2199                 limit = 2;
 2200         else if (BGE_IS_5717_PLUS(sc))
 2201                 limit = 4;
 2202         else
 2203                 limit = 1;
 2204         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 2205         for (i = 0; i < limit; i++) {
 2206                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2207                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
 2208                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 2209                 vrcb += sizeof(struct bge_rcb);
 2210         }
 2211 
 2212         /* Configure send ring RCB 0 (we use only the first ring) */
 2213         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 2214         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
 2215         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 2216         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 2217         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2218             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2219             sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2220                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
 2221         else
 2222                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
 2223                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
 2224         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2225             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
 2226 
 2227         /*
 2228          * Disable all receive return rings by setting the
 2229          * 'ring diabled' bit in the flags field of all the receive
 2230          * return ring control blocks, located in NIC memory.
 2231          */
 2232         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2233             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2234             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 2235                 /* Should be 17, use 16 until we get an SRAM map. */
 2236                 limit = 16;
 2237         } else if (!BGE_IS_5705_PLUS(sc))
 2238                 limit = BGE_RX_RINGS_MAX;
 2239         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2240             sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
 2241             BGE_IS_57765_PLUS(sc))
 2242                 limit = 4;
 2243         else
 2244                 limit = 1;
 2245         /* Disable all receive return rings. */
 2246         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 2247         for (i = 0; i < limit; i++) {
 2248                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
 2249                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
 2250                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2251                     BGE_RCB_FLAG_RING_DISABLED);
 2252                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 2253                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
 2254                     (i * (sizeof(uint64_t))), 0);
 2255                 vrcb += sizeof(struct bge_rcb);
 2256         }
 2257 
 2258         /*
 2259          * Set up receive return ring 0.  Note that the NIC address
 2260          * for RX return rings is 0x0.  The return rings live entirely
 2261          * within the host, so the nicaddr field in the RCB isn't used.
 2262          */
 2263         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 2264         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
 2265         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 2266         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 2267         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 2268         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2269             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
 2270 
 2271         /* Set random backoff seed for TX */
 2272         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
 2273             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
 2274             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
 2275             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
 2276             BGE_TX_BACKOFF_SEED_MASK);
 2277 
 2278         /* Set inter-packet gap */
 2279         val = 0x2620;
 2280         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 2281             sc->bge_asicrev == BGE_ASICREV_BCM5762)
 2282                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
 2283                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
 2284         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
 2285 
 2286         /*
 2287          * Specify which ring to use for packets that don't match
 2288          * any RX rules.
 2289          */
 2290         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
 2291 
 2292         /*
 2293          * Configure number of RX lists. One interrupt distribution
 2294          * list, sixteen active lists, one bad frames class.
 2295          */
 2296         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
 2297 
 2298         /* Inialize RX list placement stats mask. */
 2299         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
 2300         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
 2301 
 2302         /* Disable host coalescing until we get it set up */
 2303         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
 2304 
 2305         /* Poll to make sure it's shut down. */
 2306         for (i = 0; i < BGE_TIMEOUT; i++) {
 2307                 DELAY(10);
 2308                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
 2309                         break;
 2310         }
 2311 
 2312         if (i == BGE_TIMEOUT) {
 2313                 device_printf(sc->bge_dev,
 2314                     "host coalescing engine failed to idle\n");
 2315                 return (ENXIO);
 2316         }
 2317 
 2318         /* Set up host coalescing defaults */
 2319         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
 2320         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
 2321         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
 2322         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
 2323         if (!(BGE_IS_5705_PLUS(sc))) {
 2324                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
 2325                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
 2326         }
 2327         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
 2328         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
 2329 
 2330         /* Set up address of statistics block */
 2331         if (!(BGE_IS_5705_PLUS(sc))) {
 2332                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
 2333                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
 2334                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
 2335                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
 2336                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
 2337                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
 2338                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
 2339         }
 2340 
 2341         /* Set up address of status block */
 2342         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
 2343             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
 2344         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
 2345             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
 2346 
 2347         /* Set up status block size. */
 2348         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 2349             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
 2350                 val = BGE_STATBLKSZ_FULL;
 2351                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
 2352         } else {
 2353                 val = BGE_STATBLKSZ_32BYTE;
 2354                 bzero(sc->bge_ldata.bge_status_block, 32);
 2355         }
 2356         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 2357             sc->bge_cdata.bge_status_map,
 2358             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2359 
 2360         /* Turn on host coalescing state machine */
 2361         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
 2362 
 2363         /* Turn on RX BD completion state machine and enable attentions */
 2364         CSR_WRITE_4(sc, BGE_RBDC_MODE,
 2365             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
 2366 
 2367         /* Turn on RX list placement state machine */
 2368         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 2369 
 2370         /* Turn on RX list selector state machine. */
 2371         if (!(BGE_IS_5705_PLUS(sc)))
 2372                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 2373 
 2374         /* Turn on DMA, clear stats. */
 2375         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
 2376             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
 2377             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
 2378             BGE_MACMODE_FRMHDR_DMA_ENB;
 2379 
 2380         if (sc->bge_flags & BGE_FLAG_TBI)
 2381                 val |= BGE_PORTMODE_TBI;
 2382         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
 2383                 val |= BGE_PORTMODE_GMII;
 2384         else
 2385                 val |= BGE_PORTMODE_MII;
 2386 
 2387         /* Allow APE to send/receive frames. */
 2388         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 2389                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
 2390 
 2391         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
 2392         DELAY(40);
 2393 
 2394         /* Set misc. local control, enable interrupts on attentions */
 2395         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
 2396 
 2397 #ifdef notdef
 2398         /* Assert GPIO pins for PHY reset */
 2399         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
 2400             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
 2401         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
 2402             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
 2403 #endif
 2404 
 2405         /* Turn on DMA completion state machine */
 2406         if (!(BGE_IS_5705_PLUS(sc)))
 2407                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 2408 
 2409         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
 2410 
 2411         /* Enable host coalescing bug fix. */
 2412         if (BGE_IS_5755_PLUS(sc))
 2413                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
 2414 
 2415         /* Request larger DMA burst size to get better performance. */
 2416         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
 2417                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
 2418 
 2419         /* Turn on write DMA state machine */
 2420         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
 2421         DELAY(40);
 2422 
 2423         /* Turn on read DMA state machine */
 2424         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
 2425 
 2426         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
 2427                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
 2428 
 2429         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 2430             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 2431             sc->bge_asicrev == BGE_ASICREV_BCM57780)
 2432                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
 2433                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
 2434                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
 2435         if (sc->bge_flags & BGE_FLAG_PCIE)
 2436                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
 2437         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
 2438                 val |= BGE_RDMAMODE_TSO4_ENABLE;
 2439                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
 2440                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 2441                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
 2442                         val |= BGE_RDMAMODE_TSO6_ENABLE;
 2443         }
 2444 
 2445         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 2446             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 2447                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
 2448                         BGE_RDMAMODE_H2BNC_VLAN_DET;
 2449                 /*
 2450                  * Allow multiple outstanding read requests from
 2451                  * non-LSO read DMA engine.
 2452                  */
 2453                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
 2454         }
 2455 
 2456         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 2457             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 2458             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 2459             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
 2460             BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
 2461                 if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
 2462                         rdmareg = BGE_RDMA_RSRVCTRL_REG2;
 2463                 else
 2464                         rdmareg = BGE_RDMA_RSRVCTRL;
 2465                 dmactl = CSR_READ_4(sc, rdmareg);
 2466                 /*
 2467                  * Adjust tx margin to prevent TX data corruption and
 2468                  * fix internal FIFO overflow.
 2469                  */
 2470                 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
 2471                     sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 2472                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
 2473                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
 2474                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
 2475                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
 2476                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
 2477                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
 2478                 }
 2479                 /*
 2480                  * Enable fix for read DMA FIFO overruns.
 2481                  * The fix is to limit the number of RX BDs
 2482                  * the hardware would fetch at a fime.
 2483                  */
 2484                 CSR_WRITE_4(sc, rdmareg, dmactl |
 2485                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
 2486         }
 2487 
 2488         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
 2489                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
 2490                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
 2491                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
 2492                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 2493         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 2494                 /*
 2495                  * Allow 4KB burst length reads for non-LSO frames.
 2496                  * Enable 512B burst length reads for buffer descriptors.
 2497                  */
 2498                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
 2499                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
 2500                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
 2501                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 2502         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 2503                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
 2504                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
 2505                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
 2506                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 2507         }
 2508 
 2509         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
 2510         DELAY(40);
 2511 
 2512         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
 2513                 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
 2514                         val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
 2515                         if ((val & 0xFFFF) > BGE_FRAMELEN)
 2516                                 break;
 2517                         if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
 2518                                 break;
 2519                 }
 2520                 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
 2521                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
 2522                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 2523                                 val |= BGE_RDMA_TX_LENGTH_WA_5719;
 2524                         else
 2525                                 val |= BGE_RDMA_TX_LENGTH_WA_5720;
 2526                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
 2527                 }
 2528         }
 2529 
 2530         /* Turn on RX data completion state machine */
 2531         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 2532 
 2533         /* Turn on RX BD initiator state machine */
 2534         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 2535 
 2536         /* Turn on RX data and RX BD initiator state machine */
 2537         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
 2538 
 2539         /* Turn on Mbuf cluster free state machine */
 2540         if (!(BGE_IS_5705_PLUS(sc)))
 2541                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 2542 
 2543         /* Turn on send BD completion state machine */
 2544         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 2545 
 2546         /* Turn on send data completion state machine */
 2547         val = BGE_SDCMODE_ENABLE;
 2548         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 2549                 val |= BGE_SDCMODE_CDELAY;
 2550         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
 2551 
 2552         /* Turn on send data initiator state machine */
 2553         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
 2554                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
 2555                     BGE_SDIMODE_HW_LSO_PRE_DMA);
 2556         else
 2557                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 2558 
 2559         /* Turn on send BD initiator state machine */
 2560         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 2561 
 2562         /* Turn on send BD selector state machine */
 2563         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 2564 
 2565         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
 2566         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
 2567             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
 2568 
 2569         /* ack/clear link change events */
 2570         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 2571             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 2572             BGE_MACSTAT_LINK_CHANGED);
 2573         CSR_WRITE_4(sc, BGE_MI_STS, 0);
 2574 
 2575         /*
 2576          * Enable attention when the link has changed state for
 2577          * devices that use auto polling.
 2578          */
 2579         if (sc->bge_flags & BGE_FLAG_TBI) {
 2580                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
 2581         } else {
 2582                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
 2583                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 2584                         DELAY(80);
 2585                 }
 2586                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 2587                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
 2588                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 2589                             BGE_EVTENB_MI_INTERRUPT);
 2590         }
 2591 
 2592         /*
 2593          * Clear any pending link state attention.
 2594          * Otherwise some link state change events may be lost until attention
 2595          * is cleared by bge_intr() -> bge_link_upd() sequence.
 2596          * It's not necessary on newer BCM chips - perhaps enabling link
 2597          * state change attentions implies clearing pending attention.
 2598          */
 2599         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 2600             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 2601             BGE_MACSTAT_LINK_CHANGED);
 2602 
 2603         /* Enable link state change attentions. */
 2604         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
 2605 
 2606         return (0);
 2607 }
 2608 
 2609 static const struct bge_revision *
 2610 bge_lookup_rev(uint32_t chipid)
 2611 {
 2612         const struct bge_revision *br;
 2613 
 2614         for (br = bge_revisions; br->br_name != NULL; br++) {
 2615                 if (br->br_chipid == chipid)
 2616                         return (br);
 2617         }
 2618 
 2619         for (br = bge_majorrevs; br->br_name != NULL; br++) {
 2620                 if (br->br_chipid == BGE_ASICREV(chipid))
 2621                         return (br);
 2622         }
 2623 
 2624         return (NULL);
 2625 }
 2626 
 2627 static const struct bge_vendor *
 2628 bge_lookup_vendor(uint16_t vid)
 2629 {
 2630         const struct bge_vendor *v;
 2631 
 2632         for (v = bge_vendors; v->v_name != NULL; v++)
 2633                 if (v->v_id == vid)
 2634                         return (v);
 2635 
 2636         return (NULL);
 2637 }
 2638 
 2639 static uint32_t
 2640 bge_chipid(device_t dev)
 2641 {
 2642         uint32_t id;
 2643 
 2644         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
 2645             BGE_PCIMISCCTL_ASICREV_SHIFT;
 2646         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
 2647                 /*
 2648                  * Find the ASCI revision.  Different chips use different
 2649                  * registers.
 2650                  */
 2651                 switch (pci_get_device(dev)) {
 2652                 case BCOM_DEVICEID_BCM5717C:
 2653                         /* 5717 C0 seems to belong to 5720 line. */
 2654                         id = BGE_CHIPID_BCM5720_A0;
 2655                         break;
 2656                 case BCOM_DEVICEID_BCM5717:
 2657                 case BCOM_DEVICEID_BCM5718:
 2658                 case BCOM_DEVICEID_BCM5719:
 2659                 case BCOM_DEVICEID_BCM5720:
 2660                 case BCOM_DEVICEID_BCM5725:
 2661                 case BCOM_DEVICEID_BCM5727:
 2662                 case BCOM_DEVICEID_BCM5762:
 2663                 case BCOM_DEVICEID_BCM57764:
 2664                 case BCOM_DEVICEID_BCM57767:
 2665                 case BCOM_DEVICEID_BCM57787:
 2666                         id = pci_read_config(dev,
 2667                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
 2668                         break;
 2669                 case BCOM_DEVICEID_BCM57761:
 2670                 case BCOM_DEVICEID_BCM57762:
 2671                 case BCOM_DEVICEID_BCM57765:
 2672                 case BCOM_DEVICEID_BCM57766:
 2673                 case BCOM_DEVICEID_BCM57781:
 2674                 case BCOM_DEVICEID_BCM57782:
 2675                 case BCOM_DEVICEID_BCM57785:
 2676                 case BCOM_DEVICEID_BCM57786:
 2677                 case BCOM_DEVICEID_BCM57791:
 2678                 case BCOM_DEVICEID_BCM57795:
 2679                         id = pci_read_config(dev,
 2680                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
 2681                         break;
 2682                 default:
 2683                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
 2684                 }
 2685         }
 2686         return (id);
 2687 }
 2688 
 2689 /*
 2690  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
 2691  * against our list and return its name if we find a match.
 2692  *
 2693  * Note that since the Broadcom controller contains VPD support, we
 2694  * try to get the device name string from the controller itself instead
 2695  * of the compiled-in string. It guarantees we'll always announce the
 2696  * right product name. We fall back to the compiled-in string when
 2697  * VPD is unavailable or corrupt.
 2698  */
 2699 static int
 2700 bge_probe(device_t dev)
 2701 {
 2702         char buf[96];
 2703         char model[64];
 2704         const struct bge_revision *br;
 2705         const char *pname;
 2706         struct bge_softc *sc;
 2707         const struct bge_type *t = bge_devs;
 2708         const struct bge_vendor *v;
 2709         uint32_t id;
 2710         uint16_t did, vid;
 2711 
 2712         sc = device_get_softc(dev);
 2713         sc->bge_dev = dev;
 2714         vid = pci_get_vendor(dev);
 2715         did = pci_get_device(dev);
 2716         while(t->bge_vid != 0) {
 2717                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
 2718                         id = bge_chipid(dev);
 2719                         br = bge_lookup_rev(id);
 2720                         if (bge_has_eaddr(sc) &&
 2721                             pci_get_vpd_ident(dev, &pname) == 0)
 2722                                 snprintf(model, sizeof(model), "%s", pname);
 2723                         else {
 2724                                 v = bge_lookup_vendor(vid);
 2725                                 snprintf(model, sizeof(model), "%s %s",
 2726                                     v != NULL ? v->v_name : "Unknown",
 2727                                     br != NULL ? br->br_name :
 2728                                     "NetXtreme/NetLink Ethernet Controller");
 2729                         }
 2730                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
 2731                             model, br != NULL ? "" : "unknown ", id);
 2732                         device_set_desc_copy(dev, buf);
 2733                         return (BUS_PROBE_DEFAULT);
 2734                 }
 2735                 t++;
 2736         }
 2737 
 2738         return (ENXIO);
 2739 }
 2740 
 2741 static void
 2742 bge_dma_free(struct bge_softc *sc)
 2743 {
 2744         int i;
 2745 
 2746         /* Destroy DMA maps for RX buffers. */
 2747         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 2748                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
 2749                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
 2750                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 2751         }
 2752         if (sc->bge_cdata.bge_rx_std_sparemap)
 2753                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
 2754                     sc->bge_cdata.bge_rx_std_sparemap);
 2755 
 2756         /* Destroy DMA maps for jumbo RX buffers. */
 2757         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 2758                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
 2759                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 2760                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 2761         }
 2762         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
 2763                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 2764                     sc->bge_cdata.bge_rx_jumbo_sparemap);
 2765 
 2766         /* Destroy DMA maps for TX buffers. */
 2767         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 2768                 if (sc->bge_cdata.bge_tx_dmamap[i])
 2769                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
 2770                             sc->bge_cdata.bge_tx_dmamap[i]);
 2771         }
 2772 
 2773         if (sc->bge_cdata.bge_rx_mtag)
 2774                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
 2775         if (sc->bge_cdata.bge_mtag_jumbo)
 2776                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
 2777         if (sc->bge_cdata.bge_tx_mtag)
 2778                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
 2779 
 2780         /* Destroy standard RX ring. */
 2781         if (sc->bge_ldata.bge_rx_std_ring_paddr)
 2782                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
 2783                     sc->bge_cdata.bge_rx_std_ring_map);
 2784         if (sc->bge_ldata.bge_rx_std_ring)
 2785                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
 2786                     sc->bge_ldata.bge_rx_std_ring,
 2787                     sc->bge_cdata.bge_rx_std_ring_map);
 2788 
 2789         if (sc->bge_cdata.bge_rx_std_ring_tag)
 2790                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
 2791 
 2792         /* Destroy jumbo RX ring. */
 2793         if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
 2794                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2795                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 2796 
 2797         if (sc->bge_ldata.bge_rx_jumbo_ring)
 2798                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2799                     sc->bge_ldata.bge_rx_jumbo_ring,
 2800                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 2801 
 2802         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
 2803                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
 2804 
 2805         /* Destroy RX return ring. */
 2806         if (sc->bge_ldata.bge_rx_return_ring_paddr)
 2807                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
 2808                     sc->bge_cdata.bge_rx_return_ring_map);
 2809 
 2810         if (sc->bge_ldata.bge_rx_return_ring)
 2811                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
 2812                     sc->bge_ldata.bge_rx_return_ring,
 2813                     sc->bge_cdata.bge_rx_return_ring_map);
 2814 
 2815         if (sc->bge_cdata.bge_rx_return_ring_tag)
 2816                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
 2817 
 2818         /* Destroy TX ring. */
 2819         if (sc->bge_ldata.bge_tx_ring_paddr)
 2820                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
 2821                     sc->bge_cdata.bge_tx_ring_map);
 2822 
 2823         if (sc->bge_ldata.bge_tx_ring)
 2824                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
 2825                     sc->bge_ldata.bge_tx_ring,
 2826                     sc->bge_cdata.bge_tx_ring_map);
 2827 
 2828         if (sc->bge_cdata.bge_tx_ring_tag)
 2829                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
 2830 
 2831         /* Destroy status block. */
 2832         if (sc->bge_ldata.bge_status_block_paddr)
 2833                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
 2834                     sc->bge_cdata.bge_status_map);
 2835 
 2836         if (sc->bge_ldata.bge_status_block)
 2837                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
 2838                     sc->bge_ldata.bge_status_block,
 2839                     sc->bge_cdata.bge_status_map);
 2840 
 2841         if (sc->bge_cdata.bge_status_tag)
 2842                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
 2843 
 2844         /* Destroy statistics block. */
 2845         if (sc->bge_ldata.bge_stats_paddr)
 2846                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
 2847                     sc->bge_cdata.bge_stats_map);
 2848 
 2849         if (sc->bge_ldata.bge_stats)
 2850                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
 2851                     sc->bge_ldata.bge_stats,
 2852                     sc->bge_cdata.bge_stats_map);
 2853 
 2854         if (sc->bge_cdata.bge_stats_tag)
 2855                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
 2856 
 2857         if (sc->bge_cdata.bge_buffer_tag)
 2858                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
 2859 
 2860         /* Destroy the parent tag. */
 2861         if (sc->bge_cdata.bge_parent_tag)
 2862                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
 2863 }
 2864 
 2865 static int
 2866 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
 2867     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
 2868     bus_addr_t *paddr, const char *msg)
 2869 {
 2870         struct bge_dmamap_arg ctx;
 2871         bus_addr_t lowaddr;
 2872         bus_size_t ring_end;
 2873         int error;
 2874 
 2875         lowaddr = BUS_SPACE_MAXADDR;
 2876 again:
 2877         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2878             alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
 2879             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
 2880         if (error != 0) {
 2881                 device_printf(sc->bge_dev,
 2882                     "could not create %s dma tag\n", msg);
 2883                 return (ENOMEM);
 2884         }
 2885         /* Allocate DMA'able memory for ring. */
 2886         error = bus_dmamem_alloc(*tag, (void **)ring,
 2887             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
 2888         if (error != 0) {
 2889                 device_printf(sc->bge_dev,
 2890                     "could not allocate DMA'able memory for %s\n", msg);
 2891                 return (ENOMEM);
 2892         }
 2893         /* Load the address of the ring. */
 2894         ctx.bge_busaddr = 0;
 2895         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
 2896             &ctx, BUS_DMA_NOWAIT);
 2897         if (error != 0) {
 2898                 device_printf(sc->bge_dev,
 2899                     "could not load DMA'able memory for %s\n", msg);
 2900                 return (ENOMEM);
 2901         }
 2902         *paddr = ctx.bge_busaddr;
 2903         ring_end = *paddr + maxsize;
 2904         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
 2905             BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
 2906                 /*
 2907                  * 4GB boundary crossed.  Limit maximum allowable DMA
 2908                  * address space to 32bit and try again.
 2909                  */
 2910                 bus_dmamap_unload(*tag, *map);
 2911                 bus_dmamem_free(*tag, *ring, *map);
 2912                 bus_dma_tag_destroy(*tag);
 2913                 if (bootverbose)
 2914                         device_printf(sc->bge_dev, "4GB boundary crossed, "
 2915                             "limit DMA address space to 32bit for %s\n", msg);
 2916                 *ring = NULL;
 2917                 *tag = NULL;
 2918                 *map = NULL;
 2919                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 2920                 goto again;
 2921         }
 2922         return (0);
 2923 }
 2924 
 2925 static int
 2926 bge_dma_alloc(struct bge_softc *sc)
 2927 {
 2928         bus_addr_t lowaddr;
 2929         bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
 2930         int i, error;
 2931 
 2932         lowaddr = BUS_SPACE_MAXADDR;
 2933         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
 2934                 lowaddr = BGE_DMA_MAXADDR;
 2935         /*
 2936          * Allocate the parent bus DMA tag appropriate for PCI.
 2937          */
 2938         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 2939             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
 2940             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 2941             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
 2942         if (error != 0) {
 2943                 device_printf(sc->bge_dev,
 2944                     "could not allocate parent dma tag\n");
 2945                 return (ENOMEM);
 2946         }
 2947 
 2948         /* Create tag for standard RX ring. */
 2949         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
 2950             &sc->bge_cdata.bge_rx_std_ring_tag,
 2951             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
 2952             &sc->bge_cdata.bge_rx_std_ring_map,
 2953             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
 2954         if (error)
 2955                 return (error);
 2956 
 2957         /* Create tag for RX return ring. */
 2958         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
 2959             &sc->bge_cdata.bge_rx_return_ring_tag,
 2960             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
 2961             &sc->bge_cdata.bge_rx_return_ring_map,
 2962             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
 2963         if (error)
 2964                 return (error);
 2965 
 2966         /* Create tag for TX ring. */
 2967         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
 2968             &sc->bge_cdata.bge_tx_ring_tag,
 2969             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
 2970             &sc->bge_cdata.bge_tx_ring_map,
 2971             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
 2972         if (error)
 2973                 return (error);
 2974 
 2975         /*
 2976          * Create tag for status block.
 2977          * Because we only use single Tx/Rx/Rx return ring, use
 2978          * minimum status block size except BCM5700 AX/BX which
 2979          * seems to want to see full status block size regardless
 2980          * of configured number of ring.
 2981          */
 2982         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 2983             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
 2984                 sbsz = BGE_STATUS_BLK_SZ;
 2985         else
 2986                 sbsz = 32;
 2987         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
 2988             &sc->bge_cdata.bge_status_tag,
 2989             (uint8_t **)&sc->bge_ldata.bge_status_block,
 2990             &sc->bge_cdata.bge_status_map,
 2991             &sc->bge_ldata.bge_status_block_paddr, "status block");
 2992         if (error)
 2993                 return (error);
 2994 
 2995         /* Create tag for statistics block. */
 2996         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
 2997             &sc->bge_cdata.bge_stats_tag,
 2998             (uint8_t **)&sc->bge_ldata.bge_stats,
 2999             &sc->bge_cdata.bge_stats_map,
 3000             &sc->bge_ldata.bge_stats_paddr, "statistics block");
 3001         if (error)
 3002                 return (error);
 3003 
 3004         /* Create tag for jumbo RX ring. */
 3005         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 3006                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
 3007                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
 3008                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
 3009                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
 3010                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
 3011                 if (error)
 3012                         return (error);
 3013         }
 3014 
 3015         /* Create parent tag for buffers. */
 3016         boundary = 0;
 3017         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
 3018                 boundary = BGE_DMA_BNDRY;
 3019                 /*
 3020                  * XXX
 3021                  * watchdog timeout issue was observed on BCM5704 which
 3022                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
 3023                  * Both limiting DMA address space to 32bits and flushing
 3024                  * mailbox write seem to address the issue.
 3025                  */
 3026                 if (sc->bge_pcixcap != 0)
 3027                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
 3028         }
 3029         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 3030             1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
 3031             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 3032             0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
 3033         if (error != 0) {
 3034                 device_printf(sc->bge_dev,
 3035                     "could not allocate buffer dma tag\n");
 3036                 return (ENOMEM);
 3037         }
 3038         /* Create tag for Tx mbufs. */
 3039         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
 3040                 txsegsz = BGE_TSOSEG_SZ;
 3041                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
 3042         } else {
 3043                 txsegsz = MCLBYTES;
 3044                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
 3045         }
 3046         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
 3047             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 3048             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
 3049             &sc->bge_cdata.bge_tx_mtag);
 3050 
 3051         if (error) {
 3052                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
 3053                 return (ENOMEM);
 3054         }
 3055 
 3056         /* Create tag for Rx mbufs. */
 3057         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
 3058                 rxmaxsegsz = MJUM9BYTES;
 3059         else
 3060                 rxmaxsegsz = MCLBYTES;
 3061         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
 3062             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
 3063             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
 3064 
 3065         if (error) {
 3066                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
 3067                 return (ENOMEM);
 3068         }
 3069 
 3070         /* Create DMA maps for RX buffers. */
 3071         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
 3072             &sc->bge_cdata.bge_rx_std_sparemap);
 3073         if (error) {
 3074                 device_printf(sc->bge_dev,
 3075                     "can't create spare DMA map for RX\n");
 3076                 return (ENOMEM);
 3077         }
 3078         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 3079                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
 3080                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
 3081                 if (error) {
 3082                         device_printf(sc->bge_dev,
 3083                             "can't create DMA map for RX\n");
 3084                         return (ENOMEM);
 3085                 }
 3086         }
 3087 
 3088         /* Create DMA maps for TX buffers. */
 3089         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 3090                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
 3091                             &sc->bge_cdata.bge_tx_dmamap[i]);
 3092                 if (error) {
 3093                         device_printf(sc->bge_dev,
 3094                             "can't create DMA map for TX\n");
 3095                         return (ENOMEM);
 3096                 }
 3097         }
 3098 
 3099         /* Create tags for jumbo RX buffers. */
 3100         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 3101                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
 3102                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 3103                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
 3104                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
 3105                 if (error) {
 3106                         device_printf(sc->bge_dev,
 3107                             "could not allocate jumbo dma tag\n");
 3108                         return (ENOMEM);
 3109                 }
 3110                 /* Create DMA maps for jumbo RX buffers. */
 3111                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 3112                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
 3113                 if (error) {
 3114                         device_printf(sc->bge_dev,
 3115                             "can't create spare DMA map for jumbo RX\n");
 3116                         return (ENOMEM);
 3117                 }
 3118                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 3119                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 3120                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 3121                         if (error) {
 3122                                 device_printf(sc->bge_dev,
 3123                                     "can't create DMA map for jumbo RX\n");
 3124                                 return (ENOMEM);
 3125                         }
 3126                 }
 3127         }
 3128 
 3129         return (0);
 3130 }
 3131 
 3132 /*
 3133  * Return true if this device has more than one port.
 3134  */
 3135 static int
 3136 bge_has_multiple_ports(struct bge_softc *sc)
 3137 {
 3138         device_t dev = sc->bge_dev;
 3139         u_int b, d, f, fscan, s;
 3140 
 3141         d = pci_get_domain(dev);
 3142         b = pci_get_bus(dev);
 3143         s = pci_get_slot(dev);
 3144         f = pci_get_function(dev);
 3145         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
 3146                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
 3147                         return (1);
 3148         return (0);
 3149 }
 3150 
 3151 /*
 3152  * Return true if MSI can be used with this device.
 3153  */
 3154 static int
 3155 bge_can_use_msi(struct bge_softc *sc)
 3156 {
 3157         int can_use_msi = 0;
 3158 
 3159         if (sc->bge_msi == 0)
 3160                 return (0);
 3161 
 3162         /* Disable MSI for polling(4). */
 3163 #ifdef DEVICE_POLLING
 3164         return (0);
 3165 #endif
 3166         switch (sc->bge_asicrev) {
 3167         case BGE_ASICREV_BCM5714_A0:
 3168         case BGE_ASICREV_BCM5714:
 3169                 /*
 3170                  * Apparently, MSI doesn't work when these chips are
 3171                  * configured in single-port mode.
 3172                  */
 3173                 if (bge_has_multiple_ports(sc))
 3174                         can_use_msi = 1;
 3175                 break;
 3176         case BGE_ASICREV_BCM5750:
 3177                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
 3178                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
 3179                         can_use_msi = 1;
 3180                 break;
 3181         case BGE_ASICREV_BCM5784:
 3182                 /*
 3183                  * Prevent infinite "watchdog timeout" errors
 3184                  * in some MacBook Pro and make it work out-of-the-box.
 3185                  */
 3186                 if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
 3187                         break;
 3188                 /* FALLTHROUGH */
 3189         default:
 3190                 if (BGE_IS_575X_PLUS(sc))
 3191                         can_use_msi = 1;
 3192         }
 3193         return (can_use_msi);
 3194 }
 3195 
 3196 static int
 3197 bge_mbox_reorder(struct bge_softc *sc)
 3198 {
 3199         /* Lists of PCI bridges that are known to reorder mailbox writes. */
 3200         static const struct mbox_reorder {
 3201                 const uint16_t vendor;
 3202                 const uint16_t device;
 3203                 const char *desc;
 3204         } mbox_reorder_lists[] = {
 3205                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
 3206         };
 3207         devclass_t pci, pcib;
 3208         device_t bus, dev;
 3209         int i;
 3210 
 3211         pci = devclass_find("pci");
 3212         pcib = devclass_find("pcib");
 3213         dev = sc->bge_dev;
 3214         bus = device_get_parent(dev);
 3215         for (;;) {
 3216                 dev = device_get_parent(bus);
 3217                 bus = device_get_parent(dev);
 3218                 if (device_get_devclass(dev) != pcib)
 3219                         break;
 3220                 if (device_get_devclass(bus) != pci)
 3221                         break;
 3222                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
 3223                         if (pci_get_vendor(dev) ==
 3224                             mbox_reorder_lists[i].vendor &&
 3225                             pci_get_device(dev) ==
 3226                             mbox_reorder_lists[i].device) {
 3227                                 device_printf(sc->bge_dev,
 3228                                     "enabling MBOX workaround for %s\n",
 3229                                     mbox_reorder_lists[i].desc);
 3230                                 return (1);
 3231                         }
 3232                 }
 3233         }
 3234         return (0);
 3235 }
 3236 
 3237 static void
 3238 bge_devinfo(struct bge_softc *sc)
 3239 {
 3240         uint32_t cfg, clk;
 3241 
 3242         device_printf(sc->bge_dev,
 3243             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
 3244             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
 3245         if (sc->bge_flags & BGE_FLAG_PCIE)
 3246                 printf("PCI-E\n");
 3247         else if (sc->bge_flags & BGE_FLAG_PCIX) {
 3248                 printf("PCI-X ");
 3249                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
 3250                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
 3251                         clk = 133;
 3252                 else {
 3253                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 3254                         switch (clk) {
 3255                         case 0:
 3256                                 clk = 33;
 3257                                 break;
 3258                         case 2:
 3259                                 clk = 50;
 3260                                 break;
 3261                         case 4:
 3262                                 clk = 66;
 3263                                 break;
 3264                         case 6:
 3265                                 clk = 100;
 3266                                 break;
 3267                         case 7:
 3268                                 clk = 133;
 3269                                 break;
 3270                         }
 3271                 }
 3272                 printf("%u MHz\n", clk);
 3273         } else {
 3274                 if (sc->bge_pcixcap != 0)
 3275                         printf("PCI on PCI-X ");
 3276                 else
 3277                         printf("PCI ");
 3278                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
 3279                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
 3280                         clk = 66;
 3281                 else
 3282                         clk = 33;
 3283                 if (cfg & BGE_PCISTATE_32BIT_BUS)
 3284                         printf("%u MHz; 32bit\n", clk);
 3285                 else
 3286                         printf("%u MHz; 64bit\n", clk);
 3287         }
 3288 }
 3289 
 3290 static int
 3291 bge_attach(device_t dev)
 3292 {
 3293         if_t ifp;
 3294         struct bge_softc *sc;
 3295         uint32_t hwcfg = 0, misccfg, pcistate;
 3296         u_char eaddr[ETHER_ADDR_LEN];
 3297         int capmask, error, reg, rid, trys;
 3298 
 3299         sc = device_get_softc(dev);
 3300         sc->bge_dev = dev;
 3301 
 3302         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
 3303         NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
 3304         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
 3305 
 3306         pci_enable_busmaster(dev);
 3307 
 3308         /*
 3309          * Allocate control/status registers.
 3310          */
 3311         rid = PCIR_BAR(0);
 3312         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 3313             RF_ACTIVE);
 3314 
 3315         if (sc->bge_res == NULL) {
 3316                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
 3317                 error = ENXIO;
 3318                 goto fail;
 3319         }
 3320 
 3321         /* Save various chip information. */
 3322         sc->bge_func_addr = pci_get_function(dev);
 3323         sc->bge_chipid = bge_chipid(dev);
 3324         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
 3325         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
 3326 
 3327         /* Set default PHY address. */
 3328         sc->bge_phy_addr = 1;
 3329          /*
 3330           * PHY address mapping for various devices.
 3331           *
 3332           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
 3333           * ---------+-------+-------+-------+-------+
 3334           * BCM57XX  |   1   |   X   |   X   |   X   |
 3335           * BCM5704  |   1   |   X   |   1   |   X   |
 3336           * BCM5717  |   1   |   8   |   2   |   9   |
 3337           * BCM5719  |   1   |   8   |   2   |   9   |
 3338           * BCM5720  |   1   |   8   |   2   |   9   |
 3339           *
 3340           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
 3341           * ---------+-------+-------+-------+-------+
 3342           * BCM57XX  |   X   |   X   |   X   |   X   |
 3343           * BCM5704  |   X   |   X   |   X   |   X   |
 3344           * BCM5717  |   X   |   X   |   X   |   X   |
 3345           * BCM5719  |   3   |   10  |   4   |   11  |
 3346           * BCM5720  |   X   |   X   |   X   |   X   |
 3347           *
 3348           * Other addresses may respond but they are not
 3349           * IEEE compliant PHYs and should be ignored.
 3350           */
 3351         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 3352             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 3353             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 3354                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
 3355                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
 3356                             BGE_SGDIGSTS_IS_SERDES)
 3357                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
 3358                         else
 3359                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
 3360                 } else {
 3361                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
 3362                             BGE_CPMU_PHY_STRAP_IS_SERDES)
 3363                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
 3364                         else
 3365                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
 3366                 }
 3367         }
 3368 
 3369         if (bge_has_eaddr(sc))
 3370                 sc->bge_flags |= BGE_FLAG_EADDR;
 3371 
 3372         /* Save chipset family. */
 3373         switch (sc->bge_asicrev) {
 3374         case BGE_ASICREV_BCM5762:
 3375         case BGE_ASICREV_BCM57765:
 3376         case BGE_ASICREV_BCM57766:
 3377                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
 3378                 /* FALLTHROUGH */
 3379         case BGE_ASICREV_BCM5717:
 3380         case BGE_ASICREV_BCM5719:
 3381         case BGE_ASICREV_BCM5720:
 3382                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
 3383                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
 3384                     BGE_FLAG_JUMBO_FRAME;
 3385                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 3386                     sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 3387                         /*
 3388                          * Enable work around for DMA engine miscalculation
 3389                          * of TXMBUF available space.
 3390                          */
 3391                         sc->bge_flags |= BGE_FLAG_RDMA_BUG;
 3392                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 3393                             sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 3394                                 /* Jumbo frame on BCM5719 A0 does not work. */
 3395                                 sc->bge_flags &= ~BGE_FLAG_JUMBO;
 3396                         }
 3397                 }
 3398                 break;
 3399         case BGE_ASICREV_BCM5755:
 3400         case BGE_ASICREV_BCM5761:
 3401         case BGE_ASICREV_BCM5784:
 3402         case BGE_ASICREV_BCM5785:
 3403         case BGE_ASICREV_BCM5787:
 3404         case BGE_ASICREV_BCM57780:
 3405                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
 3406                     BGE_FLAG_5705_PLUS;
 3407                 break;
 3408         case BGE_ASICREV_BCM5700:
 3409         case BGE_ASICREV_BCM5701:
 3410         case BGE_ASICREV_BCM5703:
 3411         case BGE_ASICREV_BCM5704:
 3412                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
 3413                 break;
 3414         case BGE_ASICREV_BCM5714_A0:
 3415         case BGE_ASICREV_BCM5780:
 3416         case BGE_ASICREV_BCM5714:
 3417                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
 3418                 /* FALLTHROUGH */
 3419         case BGE_ASICREV_BCM5750:
 3420         case BGE_ASICREV_BCM5752:
 3421         case BGE_ASICREV_BCM5906:
 3422                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
 3423                 /* FALLTHROUGH */
 3424         case BGE_ASICREV_BCM5705:
 3425                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
 3426                 break;
 3427         }
 3428 
 3429         /* Identify chips with APE processor. */
 3430         switch (sc->bge_asicrev) {
 3431         case BGE_ASICREV_BCM5717:
 3432         case BGE_ASICREV_BCM5719:
 3433         case BGE_ASICREV_BCM5720:
 3434         case BGE_ASICREV_BCM5761:
 3435         case BGE_ASICREV_BCM5762:
 3436                 sc->bge_flags |= BGE_FLAG_APE;
 3437                 break;
 3438         }
 3439 
 3440         /* Chips with APE need BAR2 access for APE registers/memory. */
 3441         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
 3442                 rid = PCIR_BAR(2);
 3443                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 3444                     RF_ACTIVE);
 3445                 if (sc->bge_res2 == NULL) {
 3446                         device_printf (sc->bge_dev,
 3447                             "couldn't map BAR2 memory\n");
 3448                         error = ENXIO;
 3449                         goto fail;
 3450                 }
 3451 
 3452                 /* Enable APE register/memory access by host driver. */
 3453                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
 3454                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
 3455                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
 3456                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
 3457                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
 3458 
 3459                 bge_ape_lock_init(sc);
 3460                 bge_ape_read_fw_ver(sc);
 3461         }
 3462 
 3463         /* Add SYSCTLs, requires the chipset family to be set. */
 3464         bge_add_sysctls(sc);
 3465 
 3466         /* Identify the chips that use an CPMU. */
 3467         if (BGE_IS_5717_PLUS(sc) ||
 3468             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 3469             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 3470             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 3471             sc->bge_asicrev == BGE_ASICREV_BCM57780)
 3472                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
 3473         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
 3474                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
 3475         else
 3476                 sc->bge_mi_mode = BGE_MIMODE_BASE;
 3477         /* Enable auto polling for BCM570[0-5]. */
 3478         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
 3479                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
 3480 
 3481         /*
 3482          * All Broadcom controllers have 4GB boundary DMA bug.
 3483          * Whenever an address crosses a multiple of the 4GB boundary
 3484          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
 3485          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
 3486          * state machine will lockup and cause the device to hang.
 3487          */
 3488         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
 3489 
 3490         /* BCM5755 or higher and BCM5906 have short DMA bug. */
 3491         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
 3492                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
 3493 
 3494         /*
 3495          * BCM5719 cannot handle DMA requests for DMA segments that
 3496          * have larger than 4KB in size.  However the maximum DMA
 3497          * segment size created in DMA tag is 4KB for TSO, so we
 3498          * wouldn't encounter the issue here.
 3499          */
 3500         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 3501                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
 3502 
 3503         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
 3504         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
 3505                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
 3506                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
 3507                         sc->bge_flags |= BGE_FLAG_5788;
 3508         }
 3509 
 3510         capmask = BMSR_DEFCAPMASK;
 3511         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
 3512             (misccfg == 0x4000 || misccfg == 0x8000)) ||
 3513             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
 3514             pci_get_vendor(dev) == BCOM_VENDORID &&
 3515             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
 3516             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
 3517             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
 3518             (pci_get_vendor(dev) == BCOM_VENDORID &&
 3519             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
 3520             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
 3521             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
 3522             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
 3523             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
 3524             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
 3525             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 3526                 /* These chips are 10/100 only. */
 3527                 capmask &= ~BMSR_EXTSTAT;
 3528                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 3529         }
 3530 
 3531         /*
 3532          * Some controllers seem to require a special firmware to use
 3533          * TSO. But the firmware is not available to FreeBSD and Linux
 3534          * claims that the TSO performed by the firmware is slower than
 3535          * hardware based TSO. Moreover the firmware based TSO has one
 3536          * known bug which can't handle TSO if Ethernet header + IP/TCP
 3537          * header is greater than 80 bytes. A workaround for the TSO
 3538          * bug exist but it seems it's too expensive than not using
 3539          * TSO at all. Some hardwares also have the TSO bug so limit
 3540          * the TSO to the controllers that are not affected TSO issues
 3541          * (e.g. 5755 or higher).
 3542          */
 3543         if (BGE_IS_5717_PLUS(sc)) {
 3544                 /* BCM5717 requires different TSO configuration. */
 3545                 sc->bge_flags |= BGE_FLAG_TSO3;
 3546                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 3547                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 3548                         /* TSO on BCM5719 A0 does not work. */
 3549                         sc->bge_flags &= ~BGE_FLAG_TSO3;
 3550                 }
 3551         } else if (BGE_IS_5755_PLUS(sc)) {
 3552                 /*
 3553                  * BCM5754 and BCM5787 shares the same ASIC id so
 3554                  * explicit device id check is required.
 3555                  * Due to unknown reason TSO does not work on BCM5755M.
 3556                  */
 3557                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
 3558                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
 3559                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
 3560                         sc->bge_flags |= BGE_FLAG_TSO;
 3561         }
 3562 
 3563         /*
 3564          * Check if this is a PCI-X or PCI Express device.
 3565          */
 3566         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
 3567                 /*
 3568                  * Found a PCI Express capabilities register, this
 3569                  * must be a PCI Express device.
 3570                  */
 3571                 sc->bge_flags |= BGE_FLAG_PCIE;
 3572                 sc->bge_expcap = reg;
 3573                 /* Extract supported maximum payload size. */
 3574                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
 3575                     PCIER_DEVICE_CAP, 2);
 3576                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
 3577                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 3578                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
 3579                         sc->bge_expmrq = 2048;
 3580                 else
 3581                         sc->bge_expmrq = 4096;
 3582                 pci_set_max_read_req(dev, sc->bge_expmrq);
 3583         } else {
 3584                 /*
 3585                  * Check if the device is in PCI-X Mode.
 3586                  * (This bit is not valid on PCI Express controllers.)
 3587                  */
 3588                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
 3589                         sc->bge_pcixcap = reg;
 3590                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
 3591                     BGE_PCISTATE_PCI_BUSMODE) == 0)
 3592                         sc->bge_flags |= BGE_FLAG_PCIX;
 3593         }
 3594 
 3595         /*
 3596          * The 40bit DMA bug applies to the 5714/5715 controllers and is
 3597          * not actually a MAC controller bug but an issue with the embedded
 3598          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
 3599          */
 3600         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
 3601                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
 3602         /*
 3603          * Some PCI-X bridges are known to trigger write reordering to
 3604          * the mailbox registers. Typical phenomena is watchdog timeouts
 3605          * caused by out-of-order TX completions.  Enable workaround for
 3606          * PCI-X devices that live behind these bridges.
 3607          * Note, PCI-X controllers can run in PCI mode so we can't use
 3608          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
 3609          */
 3610         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
 3611                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
 3612         /*
 3613          * Allocate the interrupt, using MSI if possible.  These devices
 3614          * support 8 MSI messages, but only the first one is used in
 3615          * normal operation.
 3616          */
 3617         rid = 0;
 3618         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
 3619                 sc->bge_msicap = reg;
 3620                 reg = 1;
 3621                 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
 3622                         rid = 1;
 3623                         sc->bge_flags |= BGE_FLAG_MSI;
 3624                 }
 3625         }
 3626 
 3627         /*
 3628          * All controllers except BCM5700 supports tagged status but
 3629          * we use tagged status only for MSI case on BCM5717. Otherwise
 3630          * MSI on BCM5717 does not work.
 3631          */
 3632 #ifndef DEVICE_POLLING
 3633         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
 3634                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
 3635 #endif
 3636 
 3637         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 3638             RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
 3639 
 3640         if (sc->bge_irq == NULL) {
 3641                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
 3642                 error = ENXIO;
 3643                 goto fail;
 3644         }
 3645 
 3646         bge_devinfo(sc);
 3647 
 3648         sc->bge_asf_mode = 0;
 3649         /* No ASF if APE present. */
 3650         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
 3651                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
 3652                     BGE_SRAM_DATA_SIG_MAGIC)) {
 3653                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
 3654                             BGE_HWCFG_ASF) {
 3655                                 sc->bge_asf_mode |= ASF_ENABLE;
 3656                                 sc->bge_asf_mode |= ASF_STACKUP;
 3657                                 if (BGE_IS_575X_PLUS(sc))
 3658                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
 3659                         }
 3660                 }
 3661         }
 3662 
 3663         bge_stop_fw(sc);
 3664         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
 3665         if (bge_reset(sc)) {
 3666                 device_printf(sc->bge_dev, "chip reset failed\n");
 3667                 error = ENXIO;
 3668                 goto fail;
 3669         }
 3670 
 3671         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
 3672         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
 3673 
 3674         if (bge_chipinit(sc)) {
 3675                 device_printf(sc->bge_dev, "chip initialization failed\n");
 3676                 error = ENXIO;
 3677                 goto fail;
 3678         }
 3679 
 3680         error = bge_get_eaddr(sc, eaddr);
 3681         if (error) {
 3682                 device_printf(sc->bge_dev,
 3683                     "failed to read station address\n");
 3684                 error = ENXIO;
 3685                 goto fail;
 3686         }
 3687 
 3688         /* 5705 limits RX return ring to 512 entries. */
 3689         if (BGE_IS_5717_PLUS(sc))
 3690                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 3691         else if (BGE_IS_5705_PLUS(sc))
 3692                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
 3693         else
 3694                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 3695 
 3696         if (bge_dma_alloc(sc)) {
 3697                 device_printf(sc->bge_dev,
 3698                     "failed to allocate DMA resources\n");
 3699                 error = ENXIO;
 3700                 goto fail;
 3701         }
 3702 
 3703         /* Set default tuneable values. */
 3704         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
 3705         sc->bge_rx_coal_ticks = 150;
 3706         sc->bge_tx_coal_ticks = 150;
 3707         sc->bge_rx_max_coal_bds = 10;
 3708         sc->bge_tx_max_coal_bds = 10;
 3709 
 3710         /* Initialize checksum features to use. */
 3711         sc->bge_csum_features = BGE_CSUM_FEATURES;
 3712         if (sc->bge_forced_udpcsum != 0)
 3713                 sc->bge_csum_features |= CSUM_UDP;
 3714 
 3715         /* Set up ifnet structure */
 3716         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
 3717         if (ifp == NULL) {
 3718                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
 3719                 error = ENXIO;
 3720                 goto fail;
 3721         }
 3722         if_setsoftc(ifp, sc);
 3723         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 3724         if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
 3725         if_setioctlfn(ifp, bge_ioctl);
 3726         if_setstartfn(ifp, bge_start);
 3727         if_setinitfn(ifp, bge_init);
 3728         if_setgetcounterfn(ifp, bge_get_counter);
 3729         if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
 3730         if_setsendqready(ifp);
 3731         if_sethwassist(ifp, sc->bge_csum_features);
 3732         if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
 3733             IFCAP_VLAN_MTU);
 3734         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
 3735                 if_sethwassistbits(ifp, CSUM_TSO, 0);
 3736                 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
 3737         }
 3738 #ifdef IFCAP_VLAN_HWCSUM
 3739         if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
 3740 #endif
 3741         if_setcapenable(ifp, if_getcapabilities(ifp));
 3742 #ifdef DEVICE_POLLING
 3743         if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
 3744 #endif
 3745 
 3746         /*
 3747          * 5700 B0 chips do not support checksumming correctly due
 3748          * to hardware bugs.
 3749          */
 3750         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
 3751                 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
 3752                 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
 3753                 if_sethwassist(ifp, 0);
 3754         }
 3755 
 3756         /*
 3757          * Figure out what sort of media we have by checking the
 3758          * hardware config word in the first 32k of NIC internal memory,
 3759          * or fall back to examining the EEPROM if necessary.
 3760          * Note: on some BCM5700 cards, this value appears to be unset.
 3761          * If that's the case, we have to rely on identifying the NIC
 3762          * by its PCI subsystem ID, as we do below for the SysKonnect
 3763          * SK-9D41.
 3764          */
 3765         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
 3766                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
 3767         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
 3768             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 3769                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
 3770                     sizeof(hwcfg))) {
 3771                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
 3772                         error = ENXIO;
 3773                         goto fail;
 3774                 }
 3775                 hwcfg = ntohl(hwcfg);
 3776         }
 3777 
 3778         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
 3779         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
 3780             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
 3781                 if (BGE_IS_5705_PLUS(sc)) {
 3782                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
 3783                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 3784                 } else
 3785                         sc->bge_flags |= BGE_FLAG_TBI;
 3786         }
 3787 
 3788         /* Set various PHY bug flags. */
 3789         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
 3790             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
 3791                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
 3792         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
 3793             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
 3794                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
 3795         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
 3796                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
 3797         if (pci_get_subvendor(dev) == DELL_VENDORID)
 3798                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
 3799         if ((BGE_IS_5705_PLUS(sc)) &&
 3800             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
 3801             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
 3802             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
 3803             !BGE_IS_5717_PLUS(sc)) {
 3804                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 3805                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 3806                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 3807                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 3808                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
 3809                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
 3810                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
 3811                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
 3812                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
 3813                 } else
 3814                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
 3815         }
 3816 
 3817         /*
 3818          * Don't enable Ethernet@WireSpeed for the 5700 or the
 3819          * 5705 A0 and A1 chips.
 3820          */
 3821         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 3822             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
 3823             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
 3824             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
 3825                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 3826 
 3827         if (sc->bge_flags & BGE_FLAG_TBI) {
 3828                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
 3829                     bge_ifmedia_sts);
 3830                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
 3831                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
 3832                     0, NULL);
 3833                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 3834                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
 3835                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
 3836         } else {
 3837                 /*
 3838                  * Do transceiver setup and tell the firmware the
 3839                  * driver is down so we can try to get access the
 3840                  * probe if ASF is running.  Retry a couple of times
 3841                  * if we get a conflict with the ASF firmware accessing
 3842                  * the PHY.
 3843                  */
 3844                 trys = 0;
 3845                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3846 again:
 3847                 bge_asf_driver_up(sc);
 3848 
 3849                 error = mii_attach(dev, &sc->bge_miibus, ifp, 
 3850                     (ifm_change_cb_t)bge_ifmedia_upd,
 3851                     (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 
 3852                     MII_OFFSET_ANY, MIIF_DOPAUSE);
 3853                 if (error != 0) {
 3854                         if (trys++ < 4) {
 3855                                 device_printf(sc->bge_dev, "Try again\n");
 3856                                 bge_miibus_writereg(sc->bge_dev,
 3857                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
 3858                                 goto again;
 3859                         }
 3860                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
 3861                         goto fail;
 3862                 }
 3863 
 3864                 /*
 3865                  * Now tell the firmware we are going up after probing the PHY
 3866                  */
 3867                 if (sc->bge_asf_mode & ASF_STACKUP)
 3868                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3869         }
 3870 
 3871         /*
 3872          * When using the BCM5701 in PCI-X mode, data corruption has
 3873          * been observed in the first few bytes of some received packets.
 3874          * Aligning the packet buffer in memory eliminates the corruption.
 3875          * Unfortunately, this misaligns the packet payloads.  On platforms
 3876          * which do not support unaligned accesses, we will realign the
 3877          * payloads by copying the received packets.
 3878          */
 3879         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 3880             sc->bge_flags & BGE_FLAG_PCIX)
 3881                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
 3882 
 3883         /*
 3884          * Call MI attach routine.
 3885          */
 3886         ether_ifattach(ifp, eaddr);
 3887 
 3888         /* Tell upper layer we support long frames. */
 3889         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
 3890 
 3891         /*
 3892          * Hookup IRQ last.
 3893          */
 3894         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
 3895                 /* Take advantage of single-shot MSI. */
 3896                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
 3897                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
 3898                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
 3899                     taskqueue_thread_enqueue, &sc->bge_tq);
 3900                 if (sc->bge_tq == NULL) {
 3901                         device_printf(dev, "could not create taskqueue.\n");
 3902                         ether_ifdetach(ifp);
 3903                         error = ENOMEM;
 3904                         goto fail;
 3905                 }
 3906                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
 3907                     "%s taskq", device_get_nameunit(sc->bge_dev));
 3908                 if (error != 0) {
 3909                         device_printf(dev, "could not start threads.\n");
 3910                         ether_ifdetach(ifp);
 3911                         goto fail;
 3912                 }
 3913                 error = bus_setup_intr(dev, sc->bge_irq,
 3914                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
 3915                     &sc->bge_intrhand);
 3916         } else
 3917                 error = bus_setup_intr(dev, sc->bge_irq,
 3918                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
 3919                     &sc->bge_intrhand);
 3920 
 3921         if (error) {
 3922                 ether_ifdetach(ifp);
 3923                 device_printf(sc->bge_dev, "couldn't set up irq\n");
 3924                 goto fail;
 3925         }
 3926 
 3927         /* Attach driver debugnet methods. */
 3928         DEBUGNET_SET(ifp, bge);
 3929 
 3930 fail:
 3931         if (error)
 3932                 bge_detach(dev);
 3933         return (error);
 3934 }
 3935 
 3936 static int
 3937 bge_detach(device_t dev)
 3938 {
 3939         struct bge_softc *sc;
 3940         if_t ifp;
 3941 
 3942         sc = device_get_softc(dev);
 3943         ifp = sc->bge_ifp;
 3944 
 3945 #ifdef DEVICE_POLLING
 3946         if (if_getcapenable(ifp) & IFCAP_POLLING)
 3947                 ether_poll_deregister(ifp);
 3948 #endif
 3949 
 3950         if (device_is_attached(dev)) {
 3951                 ether_ifdetach(ifp);
 3952                 BGE_LOCK(sc);
 3953                 bge_stop(sc);
 3954                 BGE_UNLOCK(sc);
 3955                 callout_drain(&sc->bge_stat_ch);
 3956         }
 3957 
 3958         if (sc->bge_tq)
 3959                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
 3960 
 3961         if (sc->bge_flags & BGE_FLAG_TBI)
 3962                 ifmedia_removeall(&sc->bge_ifmedia);
 3963         else if (sc->bge_miibus != NULL) {
 3964                 bus_generic_detach(dev);
 3965                 device_delete_child(dev, sc->bge_miibus);
 3966         }
 3967 
 3968         bge_release_resources(sc);
 3969 
 3970         return (0);
 3971 }
 3972 
 3973 static void
 3974 bge_release_resources(struct bge_softc *sc)
 3975 {
 3976         device_t dev;
 3977 
 3978         dev = sc->bge_dev;
 3979 
 3980         if (sc->bge_tq != NULL)
 3981                 taskqueue_free(sc->bge_tq);
 3982 
 3983         if (sc->bge_intrhand != NULL)
 3984                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
 3985 
 3986         if (sc->bge_irq != NULL) {
 3987                 bus_release_resource(dev, SYS_RES_IRQ,
 3988                     rman_get_rid(sc->bge_irq), sc->bge_irq);
 3989                 pci_release_msi(dev);
 3990         }
 3991 
 3992         if (sc->bge_res != NULL)
 3993                 bus_release_resource(dev, SYS_RES_MEMORY,
 3994                     rman_get_rid(sc->bge_res), sc->bge_res);
 3995 
 3996         if (sc->bge_res2 != NULL)
 3997                 bus_release_resource(dev, SYS_RES_MEMORY,
 3998                     rman_get_rid(sc->bge_res2), sc->bge_res2);
 3999 
 4000         if (sc->bge_ifp != NULL)
 4001                 if_free(sc->bge_ifp);
 4002 
 4003         bge_dma_free(sc);
 4004 
 4005         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
 4006                 BGE_LOCK_DESTROY(sc);
 4007 }
 4008 
 4009 static int
 4010 bge_reset(struct bge_softc *sc)
 4011 {
 4012         device_t dev;
 4013         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
 4014         void (*write_op)(struct bge_softc *, int, int);
 4015         uint16_t devctl;
 4016         int i;
 4017 
 4018         dev = sc->bge_dev;
 4019 
 4020         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
 4021         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 4022                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
 4023         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
 4024 
 4025         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
 4026             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 4027                 if (sc->bge_flags & BGE_FLAG_PCIE)
 4028                         write_op = bge_writemem_direct;
 4029                 else
 4030                         write_op = bge_writemem_ind;
 4031         } else
 4032                 write_op = bge_writereg_ind;
 4033 
 4034         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
 4035             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
 4036                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
 4037                 for (i = 0; i < 8000; i++) {
 4038                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
 4039                             BGE_NVRAMSWARB_GNT1)
 4040                                 break;
 4041                         DELAY(20);
 4042                 }
 4043                 if (i == 8000) {
 4044                         if (bootverbose)
 4045                                 device_printf(dev, "NVRAM lock timedout!\n");
 4046                 }
 4047         }
 4048         /* Take APE lock when performing reset. */
 4049         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
 4050 
 4051         /* Save some important PCI state. */
 4052         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
 4053         command = pci_read_config(dev, BGE_PCI_CMD, 4);
 4054 
 4055         pci_write_config(dev, BGE_PCI_MISC_CTL,
 4056             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 4057             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 4058 
 4059         /* Disable fastboot on controllers that support it. */
 4060         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
 4061             BGE_IS_5755_PLUS(sc)) {
 4062                 if (bootverbose)
 4063                         device_printf(dev, "Disabling fastboot\n");
 4064                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
 4065         }
 4066 
 4067         /*
 4068          * Write the magic number to SRAM at offset 0xB50.
 4069          * When firmware finishes its initialization it will
 4070          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
 4071          */
 4072         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
 4073 
 4074         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
 4075 
 4076         /* XXX: Broadcom Linux driver. */
 4077         if (sc->bge_flags & BGE_FLAG_PCIE) {
 4078                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
 4079                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
 4080                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
 4081                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
 4082                 }
 4083                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 4084                         /* Prevent PCIE link training during global reset */
 4085                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
 4086                         reset |= 1 << 29;
 4087                 }
 4088         }
 4089 
 4090         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 4091                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 4092                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
 4093                     val | BGE_VCPU_STATUS_DRV_RESET);
 4094                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
 4095                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
 4096                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
 4097         }
 4098 
 4099         /*
 4100          * Set GPHY Power Down Override to leave GPHY
 4101          * powered up in D0 uninitialized.
 4102          */
 4103         if (BGE_IS_5705_PLUS(sc) &&
 4104             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
 4105                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
 4106 
 4107         /* Issue global reset */
 4108         write_op(sc, BGE_MISC_CFG, reset);
 4109 
 4110         if (sc->bge_flags & BGE_FLAG_PCIE)
 4111                 DELAY(100 * 1000);
 4112         else
 4113                 DELAY(1000);
 4114 
 4115         /* XXX: Broadcom Linux driver. */
 4116         if (sc->bge_flags & BGE_FLAG_PCIE) {
 4117                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
 4118                         DELAY(500000); /* wait for link training to complete */
 4119                         val = pci_read_config(dev, 0xC4, 4);
 4120                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
 4121                 }
 4122                 devctl = pci_read_config(dev,
 4123                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
 4124                 /* Clear enable no snoop and disable relaxed ordering. */
 4125                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
 4126                     PCIEM_CTL_NOSNOOP_ENABLE);
 4127                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
 4128                     devctl, 2);
 4129                 pci_set_max_read_req(dev, sc->bge_expmrq);
 4130                 /* Clear error status. */
 4131                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
 4132                     PCIEM_STA_CORRECTABLE_ERROR |
 4133                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
 4134                     PCIEM_STA_UNSUPPORTED_REQ, 2);
 4135         }
 4136 
 4137         /* Reset some of the PCI state that got zapped by reset. */
 4138         pci_write_config(dev, BGE_PCI_MISC_CTL,
 4139             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 4140             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 4141         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
 4142         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
 4143             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
 4144                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
 4145         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 4146                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
 4147                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
 4148                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
 4149         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
 4150         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
 4151         pci_write_config(dev, BGE_PCI_CMD, command, 4);
 4152         /*
 4153          * Disable PCI-X relaxed ordering to ensure status block update
 4154          * comes first then packet buffer DMA. Otherwise driver may
 4155          * read stale status block.
 4156          */
 4157         if (sc->bge_flags & BGE_FLAG_PCIX) {
 4158                 devctl = pci_read_config(dev,
 4159                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
 4160                 devctl &= ~PCIXM_COMMAND_ERO;
 4161                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
 4162                         devctl &= ~PCIXM_COMMAND_MAX_READ;
 4163                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
 4164                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 4165                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
 4166                             PCIXM_COMMAND_MAX_READ);
 4167                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
 4168                 }
 4169                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
 4170                     devctl, 2);
 4171         }
 4172         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
 4173         if (BGE_IS_5714_FAMILY(sc)) {
 4174                 /* This chip disables MSI on reset. */
 4175                 if (sc->bge_flags & BGE_FLAG_MSI) {
 4176                         val = pci_read_config(dev,
 4177                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
 4178                         pci_write_config(dev,
 4179                             sc->bge_msicap + PCIR_MSI_CTRL,
 4180                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
 4181                         val = CSR_READ_4(sc, BGE_MSI_MODE);
 4182                         CSR_WRITE_4(sc, BGE_MSI_MODE,
 4183                             val | BGE_MSIMODE_ENABLE);
 4184                 }
 4185                 val = CSR_READ_4(sc, BGE_MARB_MODE);
 4186                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
 4187         } else
 4188                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 4189 
 4190         /* Fix up byte swapping. */
 4191         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
 4192 
 4193         val = CSR_READ_4(sc, BGE_MAC_MODE);
 4194         val = (val & ~mac_mode_mask) | mac_mode;
 4195         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
 4196         DELAY(40);
 4197 
 4198         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
 4199 
 4200         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 4201                 for (i = 0; i < BGE_TIMEOUT; i++) {
 4202                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 4203                         if (val & BGE_VCPU_STATUS_INIT_DONE)
 4204                                 break;
 4205                         DELAY(100);
 4206                 }
 4207                 if (i == BGE_TIMEOUT) {
 4208                         device_printf(dev, "reset timed out\n");
 4209                         return (1);
 4210                 }
 4211         } else {
 4212                 /*
 4213                  * Poll until we see the 1's complement of the magic number.
 4214                  * This indicates that the firmware initialization is complete.
 4215                  * We expect this to fail if no chip containing the Ethernet
 4216                  * address is fitted though.
 4217                  */
 4218                 for (i = 0; i < BGE_TIMEOUT; i++) {
 4219                         DELAY(10);
 4220                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
 4221                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
 4222                                 break;
 4223                 }
 4224 
 4225                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
 4226                         device_printf(dev,
 4227                             "firmware handshake timed out, found 0x%08x\n",
 4228                             val);
 4229                 /* BCM57765 A0 needs additional time before accessing. */
 4230                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
 4231                         DELAY(10 * 1000);       /* XXX */
 4232         }
 4233 
 4234         /*
 4235          * The 5704 in TBI mode apparently needs some special
 4236          * adjustment to insure the SERDES drive level is set
 4237          * to 1.2V.
 4238          */
 4239         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
 4240             sc->bge_flags & BGE_FLAG_TBI) {
 4241                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
 4242                 val = (val & ~0xFFF) | 0x880;
 4243                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
 4244         }
 4245 
 4246         /* XXX: Broadcom Linux driver. */
 4247         if (sc->bge_flags & BGE_FLAG_PCIE &&
 4248             !BGE_IS_5717_PLUS(sc) &&
 4249             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
 4250             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
 4251                 /* Enable Data FIFO protection. */
 4252                 val = CSR_READ_4(sc, 0x7C00);
 4253                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
 4254         }
 4255 
 4256         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
 4257                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
 4258                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
 4259 
 4260         return (0);
 4261 }
 4262 
 4263 static __inline void
 4264 bge_rxreuse_std(struct bge_softc *sc, int i)
 4265 {
 4266         struct bge_rx_bd *r;
 4267 
 4268         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
 4269         r->bge_flags = BGE_RXBDFLAG_END;
 4270         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
 4271         r->bge_idx = i;
 4272         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 4273 }
 4274 
 4275 static __inline void
 4276 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
 4277 {
 4278         struct bge_extrx_bd *r;
 4279 
 4280         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
 4281         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
 4282         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
 4283         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
 4284         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
 4285         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
 4286         r->bge_idx = i;
 4287         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 4288 }
 4289 
 4290 /*
 4291  * Frame reception handling. This is called if there's a frame
 4292  * on the receive return list.
 4293  *
 4294  * Note: we have to be able to handle two possibilities here:
 4295  * 1) the frame is from the jumbo receive ring
 4296  * 2) the frame is from the standard receive ring
 4297  */
 4298 
 4299 static int
 4300 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
 4301 {
 4302         if_t ifp;
 4303         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
 4304         uint16_t rx_cons;
 4305 
 4306         rx_cons = sc->bge_rx_saved_considx;
 4307 
 4308         /* Nothing to do. */
 4309         if (rx_cons == rx_prod)
 4310                 return (rx_npkts);
 4311 
 4312         ifp = sc->bge_ifp;
 4313 
 4314         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 4315             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 4316         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 4317             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
 4318         if (BGE_IS_JUMBO_CAPABLE(sc) &&
 4319             if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
 4320             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
 4321                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 4322                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
 4323 
 4324         while (rx_cons != rx_prod) {
 4325                 struct bge_rx_bd        *cur_rx;
 4326                 uint32_t                rxidx;
 4327                 struct mbuf             *m = NULL;
 4328                 uint16_t                vlan_tag = 0;
 4329                 int                     have_tag = 0;
 4330 
 4331 #ifdef DEVICE_POLLING
 4332                 if (if_getcapenable(ifp) & IFCAP_POLLING) {
 4333                         if (sc->rxcycles <= 0)
 4334                                 break;
 4335                         sc->rxcycles--;
 4336                 }
 4337 #endif
 4338 
 4339                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
 4340 
 4341                 rxidx = cur_rx->bge_idx;
 4342                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
 4343 
 4344                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
 4345                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
 4346                         have_tag = 1;
 4347                         vlan_tag = cur_rx->bge_vlan_tag;
 4348                 }
 4349 
 4350                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
 4351                         jumbocnt++;
 4352                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
 4353                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 4354                                 bge_rxreuse_jumbo(sc, rxidx);
 4355                                 continue;
 4356                         }
 4357                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
 4358                                 bge_rxreuse_jumbo(sc, rxidx);
 4359                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 4360                                 continue;
 4361                         }
 4362                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 4363                 } else {
 4364                         stdcnt++;
 4365                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
 4366                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 4367                                 bge_rxreuse_std(sc, rxidx);
 4368                                 continue;
 4369                         }
 4370                         if (bge_newbuf_std(sc, rxidx) != 0) {
 4371                                 bge_rxreuse_std(sc, rxidx);
 4372                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 4373                                 continue;
 4374                         }
 4375                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 4376                 }
 4377 
 4378                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 4379 #ifndef __NO_STRICT_ALIGNMENT
 4380                 /*
 4381                  * For architectures with strict alignment we must make sure
 4382                  * the payload is aligned.
 4383                  */
 4384                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
 4385                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
 4386                             cur_rx->bge_len);
 4387                         m->m_data += ETHER_ALIGN;
 4388                 }
 4389 #endif
 4390                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
 4391                 m->m_pkthdr.rcvif = ifp;
 4392 
 4393                 if (if_getcapenable(ifp) & IFCAP_RXCSUM)
 4394                         bge_rxcsum(sc, cur_rx, m);
 4395 
 4396                 /*
 4397                  * If we received a packet with a vlan tag,
 4398                  * attach that information to the packet.
 4399                  */
 4400                 if (have_tag) {
 4401                         m->m_pkthdr.ether_vtag = vlan_tag;
 4402                         m->m_flags |= M_VLANTAG;
 4403                 }
 4404 
 4405                 if (holdlck != 0) {
 4406                         BGE_UNLOCK(sc);
 4407                         if_input(ifp, m);
 4408                         BGE_LOCK(sc);
 4409                 } else
 4410                         if_input(ifp, m);
 4411                 rx_npkts++;
 4412 
 4413                 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
 4414                         return (rx_npkts);
 4415         }
 4416 
 4417         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 4418             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
 4419         if (stdcnt > 0)
 4420                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 4421                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 4422 
 4423         if (jumbocnt > 0)
 4424                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 4425                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 4426 
 4427         sc->bge_rx_saved_considx = rx_cons;
 4428         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
 4429         if (stdcnt)
 4430                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
 4431                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
 4432         if (jumbocnt)
 4433                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
 4434                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
 4435 #ifdef notyet
 4436         /*
 4437          * This register wraps very quickly under heavy packet drops.
 4438          * If you need correct statistics, you can enable this check.
 4439          */
 4440         if (BGE_IS_5705_PLUS(sc))
 4441                 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
 4442 #endif
 4443         return (rx_npkts);
 4444 }
 4445 
 4446 static void
 4447 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
 4448 {
 4449 
 4450         if (BGE_IS_5717_PLUS(sc)) {
 4451                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
 4452                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 4453                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 4454                                 if ((cur_rx->bge_error_flag &
 4455                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
 4456                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 4457                         }
 4458                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
 4459                                 m->m_pkthdr.csum_data =
 4460                                     cur_rx->bge_tcp_udp_csum;
 4461                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 4462                                     CSUM_PSEUDO_HDR;
 4463                         }
 4464                 }
 4465         } else {
 4466                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 4467                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 4468                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
 4469                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 4470                 }
 4471                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
 4472                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
 4473                         m->m_pkthdr.csum_data =
 4474                             cur_rx->bge_tcp_udp_csum;
 4475                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 4476                             CSUM_PSEUDO_HDR;
 4477                 }
 4478         }
 4479 }
 4480 
 4481 static void
 4482 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
 4483 {
 4484         struct bge_tx_bd *cur_tx;
 4485         if_t ifp;
 4486 
 4487         BGE_LOCK_ASSERT(sc);
 4488 
 4489         /* Nothing to do. */
 4490         if (sc->bge_tx_saved_considx == tx_cons)
 4491                 return;
 4492 
 4493         ifp = sc->bge_ifp;
 4494 
 4495         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 4496             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
 4497         /*
 4498          * Go through our tx ring and free mbufs for those
 4499          * frames that have been sent.
 4500          */
 4501         while (sc->bge_tx_saved_considx != tx_cons) {
 4502                 uint32_t                idx;
 4503 
 4504                 idx = sc->bge_tx_saved_considx;
 4505                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
 4506                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
 4507                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 4508                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
 4509                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
 4510                             sc->bge_cdata.bge_tx_dmamap[idx],
 4511                             BUS_DMASYNC_POSTWRITE);
 4512                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
 4513                             sc->bge_cdata.bge_tx_dmamap[idx]);
 4514                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
 4515                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
 4516                 }
 4517                 sc->bge_txcnt--;
 4518                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
 4519         }
 4520 
 4521         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
 4522         if (sc->bge_txcnt == 0)
 4523                 sc->bge_timer = 0;
 4524 }
 4525 
 4526 #ifdef DEVICE_POLLING
 4527 static int
 4528 bge_poll(if_t ifp, enum poll_cmd cmd, int count)
 4529 {
 4530         struct bge_softc *sc = if_getsoftc(ifp);
 4531         uint16_t rx_prod, tx_cons;
 4532         uint32_t statusword;
 4533         int rx_npkts = 0;
 4534 
 4535         BGE_LOCK(sc);
 4536         if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
 4537                 BGE_UNLOCK(sc);
 4538                 return (rx_npkts);
 4539         }
 4540 
 4541         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4542             sc->bge_cdata.bge_status_map,
 4543             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 4544         /* Fetch updates from the status block. */
 4545         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 4546         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 4547 
 4548         statusword = sc->bge_ldata.bge_status_block->bge_status;
 4549         /* Clear the status so the next pass only sees the changes. */
 4550         sc->bge_ldata.bge_status_block->bge_status = 0;
 4551 
 4552         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4553             sc->bge_cdata.bge_status_map,
 4554             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4555 
 4556         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
 4557         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
 4558                 sc->bge_link_evt++;
 4559 
 4560         if (cmd == POLL_AND_CHECK_STATUS)
 4561                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4562                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 4563                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
 4564                         bge_link_upd(sc);
 4565 
 4566         sc->rxcycles = count;
 4567         rx_npkts = bge_rxeof(sc, rx_prod, 1);
 4568         if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
 4569                 BGE_UNLOCK(sc);
 4570                 return (rx_npkts);
 4571         }
 4572         bge_txeof(sc, tx_cons);
 4573         if (!if_sendq_empty(ifp))
 4574                 bge_start_locked(ifp);
 4575 
 4576         BGE_UNLOCK(sc);
 4577         return (rx_npkts);
 4578 }
 4579 #endif /* DEVICE_POLLING */
 4580 
 4581 static int
 4582 bge_msi_intr(void *arg)
 4583 {
 4584         struct bge_softc *sc;
 4585 
 4586         sc = (struct bge_softc *)arg;
 4587         /*
 4588          * This interrupt is not shared and controller already
 4589          * disabled further interrupt.
 4590          */
 4591         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
 4592         return (FILTER_HANDLED);
 4593 }
 4594 
 4595 static void
 4596 bge_intr_task(void *arg, int pending)
 4597 {
 4598         struct bge_softc *sc;
 4599         if_t ifp;
 4600         uint32_t status, status_tag;
 4601         uint16_t rx_prod, tx_cons;
 4602 
 4603         sc = (struct bge_softc *)arg;
 4604         ifp = sc->bge_ifp;
 4605 
 4606         BGE_LOCK(sc);
 4607         if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
 4608                 BGE_UNLOCK(sc);
 4609                 return;
 4610         }
 4611 
 4612         /* Get updated status block. */
 4613         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4614             sc->bge_cdata.bge_status_map,
 4615             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 4616 
 4617         /* Save producer/consumer indices. */
 4618         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 4619         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 4620         status = sc->bge_ldata.bge_status_block->bge_status;
 4621         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
 4622         /* Dirty the status flag. */
 4623         sc->bge_ldata.bge_status_block->bge_status = 0;
 4624         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4625             sc->bge_cdata.bge_status_map,
 4626             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4627         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
 4628                 status_tag = 0;
 4629 
 4630         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
 4631                 bge_link_upd(sc);
 4632 
 4633         /* Let controller work. */
 4634         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
 4635 
 4636         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
 4637             sc->bge_rx_saved_considx != rx_prod) {
 4638                 /* Check RX return ring producer/consumer. */
 4639                 BGE_UNLOCK(sc);
 4640                 bge_rxeof(sc, rx_prod, 0);
 4641                 BGE_LOCK(sc);
 4642         }
 4643         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 4644                 /* Check TX ring producer/consumer. */
 4645                 bge_txeof(sc, tx_cons);
 4646                 if (!if_sendq_empty(ifp))
 4647                         bge_start_locked(ifp);
 4648         }
 4649         BGE_UNLOCK(sc);
 4650 }
 4651 
 4652 static void
 4653 bge_intr(void *xsc)
 4654 {
 4655         struct bge_softc *sc;
 4656         if_t ifp;
 4657         uint32_t statusword;
 4658         uint16_t rx_prod, tx_cons;
 4659 
 4660         sc = xsc;
 4661 
 4662         BGE_LOCK(sc);
 4663 
 4664         ifp = sc->bge_ifp;
 4665 
 4666 #ifdef DEVICE_POLLING
 4667         if (if_getcapenable(ifp) & IFCAP_POLLING) {
 4668                 BGE_UNLOCK(sc);
 4669                 return;
 4670         }
 4671 #endif
 4672 
 4673         /*
 4674          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
 4675          * disable interrupts by writing nonzero like we used to, since with
 4676          * our current organization this just gives complications and
 4677          * pessimizations for re-enabling interrupts.  We used to have races
 4678          * instead of the necessary complications.  Disabling interrupts
 4679          * would just reduce the chance of a status update while we are
 4680          * running (by switching to the interrupt-mode coalescence
 4681          * parameters), but this chance is already very low so it is more
 4682          * efficient to get another interrupt than prevent it.
 4683          *
 4684          * We do the ack first to ensure another interrupt if there is a
 4685          * status update after the ack.  We don't check for the status
 4686          * changing later because it is more efficient to get another
 4687          * interrupt than prevent it, not quite as above (not checking is
 4688          * a smaller optimization than not toggling the interrupt enable,
 4689          * since checking doesn't involve PCI accesses and toggling require
 4690          * the status check).  So toggling would probably be a pessimization
 4691          * even with MSI.  It would only be needed for using a task queue.
 4692          */
 4693         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 4694 
 4695         /*
 4696          * Do the mandatory PCI flush as well as get the link status.
 4697          */
 4698         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
 4699 
 4700         /* Make sure the descriptor ring indexes are coherent. */
 4701         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4702             sc->bge_cdata.bge_status_map,
 4703             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 4704         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 4705         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 4706         sc->bge_ldata.bge_status_block->bge_status = 0;
 4707         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4708             sc->bge_cdata.bge_status_map,
 4709             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4710 
 4711         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4712             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 4713             statusword || sc->bge_link_evt)
 4714                 bge_link_upd(sc);
 4715 
 4716         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 4717                 /* Check RX return ring producer/consumer. */
 4718                 bge_rxeof(sc, rx_prod, 1);
 4719         }
 4720 
 4721         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 4722                 /* Check TX ring producer/consumer. */
 4723                 bge_txeof(sc, tx_cons);
 4724         }
 4725 
 4726         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
 4727             !if_sendq_empty(ifp))
 4728                 bge_start_locked(ifp);
 4729 
 4730         BGE_UNLOCK(sc);
 4731 }
 4732 
 4733 static void
 4734 bge_asf_driver_up(struct bge_softc *sc)
 4735 {
 4736         if (sc->bge_asf_mode & ASF_STACKUP) {
 4737                 /* Send ASF heartbeat aprox. every 2s */
 4738                 if (sc->bge_asf_count)
 4739                         sc->bge_asf_count --;
 4740                 else {
 4741                         sc->bge_asf_count = 2;
 4742                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
 4743                             BGE_FW_CMD_DRV_ALIVE);
 4744                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
 4745                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
 4746                             BGE_FW_HB_TIMEOUT_SEC);
 4747                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
 4748                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
 4749                             BGE_RX_CPU_DRV_EVENT);
 4750                 }
 4751         }
 4752 }
 4753 
 4754 static void
 4755 bge_tick(void *xsc)
 4756 {
 4757         struct bge_softc *sc = xsc;
 4758         struct mii_data *mii = NULL;
 4759 
 4760         BGE_LOCK_ASSERT(sc);
 4761 
 4762         /* Synchronize with possible callout reset/stop. */
 4763         if (callout_pending(&sc->bge_stat_ch) ||
 4764             !callout_active(&sc->bge_stat_ch))
 4765                 return;
 4766 
 4767         if (BGE_IS_5705_PLUS(sc))
 4768                 bge_stats_update_regs(sc);
 4769         else
 4770                 bge_stats_update(sc);
 4771 
 4772         /* XXX Add APE heartbeat check here? */
 4773 
 4774         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 4775                 mii = device_get_softc(sc->bge_miibus);
 4776                 /*
 4777                  * Do not touch PHY if we have link up. This could break
 4778                  * IPMI/ASF mode or produce extra input errors
 4779                  * (extra errors was reported for bcm5701 & bcm5704).
 4780                  */
 4781                 if (!sc->bge_link)
 4782                         mii_tick(mii);
 4783         } else {
 4784                 /*
 4785                  * Since in TBI mode auto-polling can't be used we should poll
 4786                  * link status manually. Here we register pending link event
 4787                  * and trigger interrupt.
 4788                  */
 4789 #ifdef DEVICE_POLLING
 4790                 /* In polling mode we poll link state in bge_poll(). */
 4791                 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
 4792 #endif
 4793                 {
 4794                 sc->bge_link_evt++;
 4795                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 4796                     sc->bge_flags & BGE_FLAG_5788)
 4797                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 4798                 else
 4799                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 4800                 }
 4801         }
 4802 
 4803         bge_asf_driver_up(sc);
 4804         bge_watchdog(sc);
 4805 
 4806         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 4807 }
 4808 
 4809 static void
 4810 bge_stats_update_regs(struct bge_softc *sc)
 4811 {
 4812         struct bge_mac_stats *stats;
 4813         uint32_t val;
 4814 
 4815         stats = &sc->bge_mac_stats;
 4816 
 4817         stats->ifHCOutOctets +=
 4818             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
 4819         stats->etherStatsCollisions +=
 4820             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
 4821         stats->outXonSent +=
 4822             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
 4823         stats->outXoffSent +=
 4824             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
 4825         stats->dot3StatsInternalMacTransmitErrors +=
 4826             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
 4827         stats->dot3StatsSingleCollisionFrames +=
 4828             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
 4829         stats->dot3StatsMultipleCollisionFrames +=
 4830             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
 4831         stats->dot3StatsDeferredTransmissions +=
 4832             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
 4833         stats->dot3StatsExcessiveCollisions +=
 4834             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
 4835         stats->dot3StatsLateCollisions +=
 4836             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
 4837         stats->ifHCOutUcastPkts +=
 4838             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
 4839         stats->ifHCOutMulticastPkts +=
 4840             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
 4841         stats->ifHCOutBroadcastPkts +=
 4842             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
 4843 
 4844         stats->ifHCInOctets +=
 4845             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
 4846         stats->etherStatsFragments +=
 4847             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
 4848         stats->ifHCInUcastPkts +=
 4849             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
 4850         stats->ifHCInMulticastPkts +=
 4851             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
 4852         stats->ifHCInBroadcastPkts +=
 4853             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
 4854         stats->dot3StatsFCSErrors +=
 4855             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
 4856         stats->dot3StatsAlignmentErrors +=
 4857             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
 4858         stats->xonPauseFramesReceived +=
 4859             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
 4860         stats->xoffPauseFramesReceived +=
 4861             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
 4862         stats->macControlFramesReceived +=
 4863             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
 4864         stats->xoffStateEntered +=
 4865             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
 4866         stats->dot3StatsFramesTooLong +=
 4867             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
 4868         stats->etherStatsJabbers +=
 4869             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
 4870         stats->etherStatsUndersizePkts +=
 4871             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
 4872 
 4873         stats->FramesDroppedDueToFilters +=
 4874             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
 4875         stats->DmaWriteQueueFull +=
 4876             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
 4877         stats->DmaWriteHighPriQueueFull +=
 4878             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
 4879         stats->NoMoreRxBDs +=
 4880             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
 4881         /*
 4882          * XXX
 4883          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
 4884          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
 4885          * includes number of unwanted multicast frames.  This comes
 4886          * from silicon bug and known workaround to get rough(not
 4887          * exact) counter is to enable interrupt on MBUF low water
 4888          * attention.  This can be accomplished by setting
 4889          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
 4890          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
 4891          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
 4892          * However that change would generate more interrupts and
 4893          * there are still possibilities of losing multiple frames
 4894          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
 4895          * Given that the workaround still would not get correct
 4896          * counter I don't think it's worth to implement it.  So
 4897          * ignore reading the counter on controllers that have the
 4898          * silicon bug.
 4899          */
 4900         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
 4901             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
 4902             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
 4903                 stats->InputDiscards +=
 4904                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 4905         stats->InputErrors +=
 4906             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
 4907         stats->RecvThresholdHit +=
 4908             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
 4909 
 4910         if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
 4911                 /*
 4912                  * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
 4913                  * frames, it's safe to disable workaround for DMA engine's
 4914                  * miscalculation of TXMBUF space.
 4915                  */
 4916                 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
 4917                     stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
 4918                         val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
 4919                         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 4920                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
 4921                         else
 4922                                 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
 4923                         CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
 4924                         sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
 4925                 }
 4926         }
 4927 }
 4928 
 4929 static void
 4930 bge_stats_clear_regs(struct bge_softc *sc)
 4931 {
 4932 
 4933         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
 4934         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
 4935         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
 4936         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
 4937         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
 4938         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
 4939         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
 4940         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
 4941         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
 4942         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
 4943         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
 4944         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
 4945         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
 4946 
 4947         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
 4948         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
 4949         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
 4950         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
 4951         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
 4952         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
 4953         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
 4954         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
 4955         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
 4956         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
 4957         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
 4958         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
 4959         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
 4960         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
 4961 
 4962         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
 4963         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
 4964         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
 4965         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
 4966         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 4967         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
 4968         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
 4969 }
 4970 
 4971 static void
 4972 bge_stats_update(struct bge_softc *sc)
 4973 {
 4974         if_t ifp;
 4975         bus_size_t stats;
 4976         uint32_t cnt;   /* current register value */
 4977 
 4978         ifp = sc->bge_ifp;
 4979 
 4980         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
 4981 
 4982 #define READ_STAT(sc, stats, stat) \
 4983         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
 4984 
 4985         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
 4986         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
 4987         sc->bge_tx_collisions = cnt;
 4988 
 4989         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
 4990         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
 4991         sc->bge_rx_nobds = cnt;
 4992         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
 4993         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
 4994         sc->bge_rx_inerrs = cnt;
 4995         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
 4996         if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
 4997         sc->bge_rx_discards = cnt;
 4998 
 4999         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
 5000         if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
 5001         sc->bge_tx_discards = cnt;
 5002 
 5003 #undef  READ_STAT
 5004 }
 5005 
 5006 /*
 5007  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
 5008  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
 5009  * but when such padded frames employ the bge IP/TCP checksum offload,
 5010  * the hardware checksum assist gives incorrect results (possibly
 5011  * from incorporating its own padding into the UDP/TCP checksum; who knows).
 5012  * If we pad such runts with zeros, the onboard checksum comes out correct.
 5013  */
 5014 static __inline int
 5015 bge_cksum_pad(struct mbuf *m)
 5016 {
 5017         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
 5018         struct mbuf *last;
 5019 
 5020         /* If there's only the packet-header and we can pad there, use it. */
 5021         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
 5022             M_TRAILINGSPACE(m) >= padlen) {
 5023                 last = m;
 5024         } else {
 5025                 /*
 5026                  * Walk packet chain to find last mbuf. We will either
 5027                  * pad there, or append a new mbuf and pad it.
 5028                  */
 5029                 for (last = m; last->m_next != NULL; last = last->m_next);
 5030                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
 5031                         /* Allocate new empty mbuf, pad it. Compact later. */
 5032                         struct mbuf *n;
 5033 
 5034                         MGET(n, M_NOWAIT, MT_DATA);
 5035                         if (n == NULL)
 5036                                 return (ENOBUFS);
 5037                         n->m_len = 0;
 5038                         last->m_next = n;
 5039                         last = n;
 5040                 }
 5041         }
 5042 
 5043         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
 5044         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
 5045         last->m_len += padlen;
 5046         m->m_pkthdr.len += padlen;
 5047 
 5048         return (0);
 5049 }
 5050 
 5051 static struct mbuf *
 5052 bge_check_short_dma(struct mbuf *m)
 5053 {
 5054         struct mbuf *n;
 5055         int found;
 5056 
 5057         /*
 5058          * If device receive two back-to-back send BDs with less than
 5059          * or equal to 8 total bytes then the device may hang.  The two
 5060          * back-to-back send BDs must in the same frame for this failure
 5061          * to occur.  Scan mbuf chains and see whether two back-to-back
 5062          * send BDs are there. If this is the case, allocate new mbuf
 5063          * and copy the frame to workaround the silicon bug.
 5064          */
 5065         for (n = m, found = 0; n != NULL; n = n->m_next) {
 5066                 if (n->m_len < 8) {
 5067                         found++;
 5068                         if (found > 1)
 5069                                 break;
 5070                         continue;
 5071                 }
 5072                 found = 0;
 5073         }
 5074 
 5075         if (found > 1) {
 5076                 n = m_defrag(m, M_NOWAIT);
 5077                 if (n == NULL)
 5078                         m_freem(m);
 5079         } else
 5080                 n = m;
 5081         return (n);
 5082 }
 5083 
 5084 static struct mbuf *
 5085 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
 5086     uint16_t *flags)
 5087 {
 5088         struct ip *ip;
 5089         struct tcphdr *tcp;
 5090         struct mbuf *n;
 5091         uint16_t hlen;
 5092         uint32_t poff;
 5093 
 5094         if (M_WRITABLE(m) == 0) {
 5095                 /* Get a writable copy. */
 5096                 n = m_dup(m, M_NOWAIT);
 5097                 m_freem(m);
 5098                 if (n == NULL)
 5099                         return (NULL);
 5100                 m = n;
 5101         }
 5102         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
 5103         if (m == NULL)
 5104                 return (NULL);
 5105         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
 5106         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
 5107         m = m_pullup(m, poff + sizeof(struct tcphdr));
 5108         if (m == NULL)
 5109                 return (NULL);
 5110         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 5111         m = m_pullup(m, poff + (tcp->th_off << 2));
 5112         if (m == NULL)
 5113                 return (NULL);
 5114         /*
 5115          * It seems controller doesn't modify IP length and TCP pseudo
 5116          * checksum. These checksum computed by upper stack should be 0.
 5117          */
 5118         *mss = m->m_pkthdr.tso_segsz;
 5119         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
 5120         ip->ip_sum = 0;
 5121         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
 5122         /* Clear pseudo checksum computed by TCP stack. */
 5123         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 5124         tcp->th_sum = 0;
 5125         /*
 5126          * Broadcom controllers uses different descriptor format for
 5127          * TSO depending on ASIC revision. Due to TSO-capable firmware
 5128          * license issue and lower performance of firmware based TSO
 5129          * we only support hardware based TSO.
 5130          */
 5131         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
 5132         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
 5133         if (sc->bge_flags & BGE_FLAG_TSO3) {
 5134                 /*
 5135                  * For BCM5717 and newer controllers, hardware based TSO
 5136                  * uses the 14 lower bits of the bge_mss field to store the
 5137                  * MSS and the upper 2 bits to store the lowest 2 bits of
 5138                  * the IP/TCP header length.  The upper 6 bits of the header
 5139                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
 5140                  * frames are supported.
 5141                  */
 5142                 *mss |= ((hlen & 0x3) << 14);
 5143                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
 5144         } else {
 5145                 /*
 5146                  * For BCM5755 and newer controllers, hardware based TSO uses
 5147                  * the lower 11 bits to store the MSS and the upper 5 bits to
 5148                  * store the IP/TCP header length. Jumbo frames are not
 5149                  * supported.
 5150                  */
 5151                 *mss |= (hlen << 11);
 5152         }
 5153         return (m);
 5154 }
 5155 
 5156 /*
 5157  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
 5158  * pointers to descriptors.
 5159  */
 5160 static int
 5161 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
 5162 {
 5163         bus_dma_segment_t       segs[BGE_NSEG_NEW];
 5164         bus_dmamap_t            map;
 5165         struct bge_tx_bd        *d;
 5166         struct mbuf             *m = *m_head;
 5167         uint32_t                idx = *txidx;
 5168         uint16_t                csum_flags, mss, vlan_tag;
 5169         int                     nsegs, i, error;
 5170 
 5171         csum_flags = 0;
 5172         mss = 0;
 5173         vlan_tag = 0;
 5174         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
 5175             m->m_next != NULL) {
 5176                 *m_head = bge_check_short_dma(m);
 5177                 if (*m_head == NULL)
 5178                         return (ENOBUFS);
 5179                 m = *m_head;
 5180         }
 5181         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 5182                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
 5183                 if (*m_head == NULL)
 5184                         return (ENOBUFS);
 5185                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
 5186                     BGE_TXBDFLAG_CPU_POST_DMA;
 5187         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
 5188                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 5189                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
 5190                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
 5191                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
 5192                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
 5193                             (error = bge_cksum_pad(m)) != 0) {
 5194                                 m_freem(m);
 5195                                 *m_head = NULL;
 5196                                 return (error);
 5197                         }
 5198                 }
 5199         }
 5200 
 5201         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
 5202                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
 5203                     m->m_pkthdr.len > ETHER_MAX_LEN)
 5204                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
 5205                 if (sc->bge_forced_collapse > 0 &&
 5206                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
 5207                         /*
 5208                          * Forcedly collapse mbuf chains to overcome hardware
 5209                          * limitation which only support a single outstanding
 5210                          * DMA read operation.
 5211                          */
 5212                         if (sc->bge_forced_collapse == 1)
 5213                                 m = m_defrag(m, M_NOWAIT);
 5214                         else
 5215                                 m = m_collapse(m, M_NOWAIT,
 5216                                     sc->bge_forced_collapse);
 5217                         if (m == NULL)
 5218                                 m = *m_head;
 5219                         *m_head = m;
 5220                 }
 5221         }
 5222 
 5223         map = sc->bge_cdata.bge_tx_dmamap[idx];
 5224         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
 5225             &nsegs, BUS_DMA_NOWAIT);
 5226         if (error == EFBIG) {
 5227                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
 5228                 if (m == NULL) {
 5229                         m_freem(*m_head);
 5230                         *m_head = NULL;
 5231                         return (ENOBUFS);
 5232                 }
 5233                 *m_head = m;
 5234                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
 5235                     m, segs, &nsegs, BUS_DMA_NOWAIT);
 5236                 if (error) {
 5237                         m_freem(m);
 5238                         *m_head = NULL;
 5239                         return (error);
 5240                 }
 5241         } else if (error != 0)
 5242                 return (error);
 5243 
 5244         /* Check if we have enough free send BDs. */
 5245         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
 5246                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
 5247                 return (ENOBUFS);
 5248         }
 5249 
 5250         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
 5251 
 5252         if (m->m_flags & M_VLANTAG) {
 5253                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
 5254                 vlan_tag = m->m_pkthdr.ether_vtag;
 5255         }
 5256 
 5257         if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
 5258             (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 5259                 /*
 5260                  * 5725 family of devices corrupts TSO packets when TSO DMA
 5261                  * buffers cross into regions which are within MSS bytes of
 5262                  * a 4GB boundary.  If we encounter the condition, drop the
 5263                  * packet.
 5264                  */
 5265                 for (i = 0; ; i++) {
 5266                         d = &sc->bge_ldata.bge_tx_ring[idx];
 5267                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 5268                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 5269                         d->bge_len = segs[i].ds_len;
 5270                         if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
 5271                             d->bge_addr.bge_addr_lo)
 5272                                 break;
 5273                         d->bge_flags = csum_flags;
 5274                         d->bge_vlan_tag = vlan_tag;
 5275                         d->bge_mss = mss;
 5276                         if (i == nsegs - 1)
 5277                                 break;
 5278                         BGE_INC(idx, BGE_TX_RING_CNT);
 5279                 }
 5280                 if (i != nsegs - 1) {
 5281                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
 5282                             BUS_DMASYNC_POSTWRITE);
 5283                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
 5284                         m_freem(*m_head);
 5285                         *m_head = NULL;
 5286                         return (EIO);
 5287                 }
 5288         } else {
 5289                 for (i = 0; ; i++) {
 5290                         d = &sc->bge_ldata.bge_tx_ring[idx];
 5291                         d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 5292                         d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 5293                         d->bge_len = segs[i].ds_len;
 5294                         d->bge_flags = csum_flags;
 5295                         d->bge_vlan_tag = vlan_tag;
 5296                         d->bge_mss = mss;
 5297                         if (i == nsegs - 1)
 5298                                 break;
 5299                         BGE_INC(idx, BGE_TX_RING_CNT);
 5300                 }
 5301         }
 5302 
 5303         /* Mark the last segment as end of packet... */
 5304         d->bge_flags |= BGE_TXBDFLAG_END;
 5305 
 5306         /*
 5307          * Insure that the map for this transmission
 5308          * is placed at the array index of the last descriptor
 5309          * in this chain.
 5310          */
 5311         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
 5312         sc->bge_cdata.bge_tx_dmamap[idx] = map;
 5313         sc->bge_cdata.bge_tx_chain[idx] = m;
 5314         sc->bge_txcnt += nsegs;
 5315 
 5316         BGE_INC(idx, BGE_TX_RING_CNT);
 5317         *txidx = idx;
 5318 
 5319         return (0);
 5320 }
 5321 
 5322 /*
 5323  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 5324  * to the mbuf data regions directly in the transmit descriptors.
 5325  */
 5326 static void
 5327 bge_start_locked(if_t ifp)
 5328 {
 5329         struct bge_softc *sc;
 5330         struct mbuf *m_head;
 5331         uint32_t prodidx;
 5332         int count;
 5333 
 5334         sc = if_getsoftc(ifp);
 5335         BGE_LOCK_ASSERT(sc);
 5336 
 5337         if (!sc->bge_link ||
 5338             (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 5339             IFF_DRV_RUNNING)
 5340                 return;
 5341 
 5342         prodidx = sc->bge_tx_prodidx;
 5343 
 5344         for (count = 0; !if_sendq_empty(ifp);) {
 5345                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
 5346                         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 5347                         break;
 5348                 }
 5349                 m_head = if_dequeue(ifp);
 5350                 if (m_head == NULL)
 5351                         break;
 5352 
 5353                 /*
 5354                  * Pack the data into the transmit ring. If we
 5355                  * don't have room, set the OACTIVE flag and wait
 5356                  * for the NIC to drain the ring.
 5357                  */
 5358                 if (bge_encap(sc, &m_head, &prodidx)) {
 5359                         if (m_head == NULL)
 5360                                 break;
 5361                         if_sendq_prepend(ifp, m_head);
 5362                         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 5363                         break;
 5364                 }
 5365                 ++count;
 5366 
 5367                 /*
 5368                  * If there's a BPF listener, bounce a copy of this frame
 5369                  * to him.
 5370                  */
 5371                 if_bpfmtap(ifp, m_head);
 5372         }
 5373 
 5374         if (count > 0)
 5375                 bge_start_tx(sc, prodidx);
 5376 }
 5377 
 5378 static void
 5379 bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
 5380 {
 5381 
 5382         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 5383             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
 5384         /* Transmit. */
 5385         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 5386         /* 5700 b2 errata */
 5387         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 5388                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 5389 
 5390         sc->bge_tx_prodidx = prodidx;
 5391 
 5392         /* Set a timeout in case the chip goes out to lunch. */
 5393         sc->bge_timer = BGE_TX_TIMEOUT;
 5394 }
 5395 
 5396 /*
 5397  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 5398  * to the mbuf data regions directly in the transmit descriptors.
 5399  */
 5400 static void
 5401 bge_start(if_t ifp)
 5402 {
 5403         struct bge_softc *sc;
 5404 
 5405         sc = if_getsoftc(ifp);
 5406         BGE_LOCK(sc);
 5407         bge_start_locked(ifp);
 5408         BGE_UNLOCK(sc);
 5409 }
 5410 
 5411 static void
 5412 bge_init_locked(struct bge_softc *sc)
 5413 {
 5414         if_t ifp;
 5415         uint16_t *m;
 5416         uint32_t mode;
 5417 
 5418         BGE_LOCK_ASSERT(sc);
 5419 
 5420         ifp = sc->bge_ifp;
 5421 
 5422         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 5423                 return;
 5424 
 5425         /* Cancel pending I/O and flush buffers. */
 5426         bge_stop(sc);
 5427 
 5428         bge_stop_fw(sc);
 5429         bge_sig_pre_reset(sc, BGE_RESET_START);
 5430         bge_reset(sc);
 5431         bge_sig_legacy(sc, BGE_RESET_START);
 5432         bge_sig_post_reset(sc, BGE_RESET_START);
 5433 
 5434         bge_chipinit(sc);
 5435 
 5436         /*
 5437          * Init the various state machines, ring
 5438          * control blocks and firmware.
 5439          */
 5440         if (bge_blockinit(sc)) {
 5441                 device_printf(sc->bge_dev, "initialization failure\n");
 5442                 return;
 5443         }
 5444 
 5445         ifp = sc->bge_ifp;
 5446 
 5447         /* Specify MTU. */
 5448         CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
 5449             ETHER_HDR_LEN + ETHER_CRC_LEN +
 5450             (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
 5451 
 5452         /* Load our MAC address. */
 5453         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
 5454         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
 5455         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
 5456 
 5457         /* Program promiscuous mode. */
 5458         bge_setpromisc(sc);
 5459 
 5460         /* Program multicast filter. */
 5461         bge_setmulti(sc);
 5462 
 5463         /* Program VLAN tag stripping. */
 5464         bge_setvlan(sc);
 5465 
 5466         /* Override UDP checksum offloading. */
 5467         if (sc->bge_forced_udpcsum == 0)
 5468                 sc->bge_csum_features &= ~CSUM_UDP;
 5469         else
 5470                 sc->bge_csum_features |= CSUM_UDP;
 5471         if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
 5472             if_getcapenable(ifp) & IFCAP_TXCSUM) {
 5473                 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
 5474                 if_sethwassistbits(ifp, sc->bge_csum_features, 0);
 5475         }
 5476 
 5477         /* Init RX ring. */
 5478         if (bge_init_rx_ring_std(sc) != 0) {
 5479                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
 5480                 bge_stop(sc);
 5481                 return;
 5482         }
 5483 
 5484         /*
 5485          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
 5486          * memory to insure that the chip has in fact read the first
 5487          * entry of the ring.
 5488          */
 5489         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
 5490                 uint32_t                v, i;
 5491                 for (i = 0; i < 10; i++) {
 5492                         DELAY(20);
 5493                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
 5494                         if (v == (MCLBYTES - ETHER_ALIGN))
 5495                                 break;
 5496                 }
 5497                 if (i == 10)
 5498                         device_printf (sc->bge_dev,
 5499                             "5705 A0 chip failed to load RX ring\n");
 5500         }
 5501 
 5502         /* Init jumbo RX ring. */
 5503         if (BGE_IS_JUMBO_CAPABLE(sc) &&
 5504             if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 
 5505             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
 5506                 if (bge_init_rx_ring_jumbo(sc) != 0) {
 5507                         device_printf(sc->bge_dev,
 5508                             "no memory for jumbo Rx buffers.\n");
 5509                         bge_stop(sc);
 5510                         return;
 5511                 }
 5512         }
 5513 
 5514         /* Init our RX return ring index. */
 5515         sc->bge_rx_saved_considx = 0;
 5516 
 5517         /* Init our RX/TX stat counters. */
 5518         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
 5519 
 5520         /* Init TX ring. */
 5521         bge_init_tx_ring(sc);
 5522 
 5523         /* Enable TX MAC state machine lockup fix. */
 5524         mode = CSR_READ_4(sc, BGE_TX_MODE);
 5525         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
 5526                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
 5527         if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
 5528             sc->bge_asicrev == BGE_ASICREV_BCM5762) {
 5529                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
 5530                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
 5531                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
 5532         }
 5533         /* Turn on transmitter. */
 5534         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
 5535         DELAY(100);
 5536 
 5537         /* Turn on receiver. */
 5538         mode = CSR_READ_4(sc, BGE_RX_MODE);
 5539         if (BGE_IS_5755_PLUS(sc))
 5540                 mode |= BGE_RXMODE_IPV6_ENABLE;
 5541         if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
 5542                 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
 5543         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
 5544         DELAY(10);
 5545 
 5546         /*
 5547          * Set the number of good frames to receive after RX MBUF
 5548          * Low Watermark has been reached. After the RX MAC receives
 5549          * this number of frames, it will drop subsequent incoming
 5550          * frames until the MBUF High Watermark is reached.
 5551          */
 5552         if (BGE_IS_57765_PLUS(sc))
 5553                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
 5554         else
 5555                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
 5556 
 5557         /* Clear MAC statistics. */
 5558         if (BGE_IS_5705_PLUS(sc))
 5559                 bge_stats_clear_regs(sc);
 5560 
 5561         /* Tell firmware we're alive. */
 5562         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 5563 
 5564 #ifdef DEVICE_POLLING
 5565         /* Disable interrupts if we are polling. */
 5566         if (if_getcapenable(ifp) & IFCAP_POLLING) {
 5567                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 5568                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 5569                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 5570         } else
 5571 #endif
 5572 
 5573         /* Enable host interrupts. */
 5574         {
 5575         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
 5576         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 5577         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 5578         }
 5579 
 5580         if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
 5581         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
 5582 
 5583         bge_ifmedia_upd_locked(ifp);
 5584 
 5585         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 5586 }
 5587 
 5588 static void
 5589 bge_init(void *xsc)
 5590 {
 5591         struct bge_softc *sc = xsc;
 5592 
 5593         BGE_LOCK(sc);
 5594         bge_init_locked(sc);
 5595         BGE_UNLOCK(sc);
 5596 }
 5597 
 5598 /*
 5599  * Set media options.
 5600  */
 5601 static int
 5602 bge_ifmedia_upd(if_t ifp)
 5603 {
 5604         struct bge_softc *sc = if_getsoftc(ifp);
 5605         int res;
 5606 
 5607         BGE_LOCK(sc);
 5608         res = bge_ifmedia_upd_locked(ifp);
 5609         BGE_UNLOCK(sc);
 5610 
 5611         return (res);
 5612 }
 5613 
 5614 static int
 5615 bge_ifmedia_upd_locked(if_t ifp)
 5616 {
 5617         struct bge_softc *sc = if_getsoftc(ifp);
 5618         struct mii_data *mii;
 5619         struct mii_softc *miisc;
 5620         struct ifmedia *ifm;
 5621 
 5622         BGE_LOCK_ASSERT(sc);
 5623 
 5624         ifm = &sc->bge_ifmedia;
 5625 
 5626         /* If this is a 1000baseX NIC, enable the TBI port. */
 5627         if (sc->bge_flags & BGE_FLAG_TBI) {
 5628                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 5629                         return (EINVAL);
 5630                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
 5631                 case IFM_AUTO:
 5632                         /*
 5633                          * The BCM5704 ASIC appears to have a special
 5634                          * mechanism for programming the autoneg
 5635                          * advertisement registers in TBI mode.
 5636                          */
 5637                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 5638                                 uint32_t sgdig;
 5639                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
 5640                                 if (sgdig & BGE_SGDIGSTS_DONE) {
 5641                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
 5642                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
 5643                                         sgdig |= BGE_SGDIGCFG_AUTO |
 5644                                             BGE_SGDIGCFG_PAUSE_CAP |
 5645                                             BGE_SGDIGCFG_ASYM_PAUSE;
 5646                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
 5647                                             sgdig | BGE_SGDIGCFG_SEND);
 5648                                         DELAY(5);
 5649                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
 5650                                 }
 5651                         }
 5652                         break;
 5653                 case IFM_1000_SX:
 5654                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 5655                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
 5656                                     BGE_MACMODE_HALF_DUPLEX);
 5657                         } else {
 5658                                 BGE_SETBIT(sc, BGE_MAC_MODE,
 5659                                     BGE_MACMODE_HALF_DUPLEX);
 5660                         }
 5661                         DELAY(40);
 5662                         break;
 5663                 default:
 5664                         return (EINVAL);
 5665                 }
 5666                 return (0);
 5667         }
 5668 
 5669         sc->bge_link_evt++;
 5670         mii = device_get_softc(sc->bge_miibus);
 5671         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 5672                 PHY_RESET(miisc);
 5673         mii_mediachg(mii);
 5674 
 5675         /*
 5676          * Force an interrupt so that we will call bge_link_upd
 5677          * if needed and clear any pending link state attention.
 5678          * Without this we are not getting any further interrupts
 5679          * for link state changes and thus will not UP the link and
 5680          * not be able to send in bge_start_locked. The only
 5681          * way to get things working was to receive a packet and
 5682          * get an RX intr.
 5683          * bge_tick should help for fiber cards and we might not
 5684          * need to do this here if BGE_FLAG_TBI is set but as
 5685          * we poll for fiber anyway it should not harm.
 5686          */
 5687         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 5688             sc->bge_flags & BGE_FLAG_5788)
 5689                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 5690         else
 5691                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 5692 
 5693         return (0);
 5694 }
 5695 
 5696 /*
 5697  * Report current media status.
 5698  */
 5699 static void
 5700 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
 5701 {
 5702         struct bge_softc *sc = if_getsoftc(ifp);
 5703         struct mii_data *mii;
 5704 
 5705         BGE_LOCK(sc);
 5706 
 5707         if ((if_getflags(ifp) & IFF_UP) == 0) {
 5708                 BGE_UNLOCK(sc);
 5709                 return;
 5710         }
 5711         if (sc->bge_flags & BGE_FLAG_TBI) {
 5712                 ifmr->ifm_status = IFM_AVALID;
 5713                 ifmr->ifm_active = IFM_ETHER;
 5714                 if (CSR_READ_4(sc, BGE_MAC_STS) &
 5715                     BGE_MACSTAT_TBI_PCS_SYNCHED)
 5716                         ifmr->ifm_status |= IFM_ACTIVE;
 5717                 else {
 5718                         ifmr->ifm_active |= IFM_NONE;
 5719                         BGE_UNLOCK(sc);
 5720                         return;
 5721                 }
 5722                 ifmr->ifm_active |= IFM_1000_SX;
 5723                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
 5724                         ifmr->ifm_active |= IFM_HDX;
 5725                 else
 5726                         ifmr->ifm_active |= IFM_FDX;
 5727                 BGE_UNLOCK(sc);
 5728                 return;
 5729         }
 5730 
 5731         mii = device_get_softc(sc->bge_miibus);
 5732         mii_pollstat(mii);
 5733         ifmr->ifm_active = mii->mii_media_active;
 5734         ifmr->ifm_status = mii->mii_media_status;
 5735 
 5736         BGE_UNLOCK(sc);
 5737 }
 5738 
 5739 static int
 5740 bge_ioctl(if_t ifp, u_long command, caddr_t data)
 5741 {
 5742         struct bge_softc *sc = if_getsoftc(ifp);
 5743         struct ifreq *ifr = (struct ifreq *) data;
 5744         struct mii_data *mii;
 5745         int flags, mask, error = 0;
 5746 
 5747         switch (command) {
 5748         case SIOCSIFMTU:
 5749                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
 5750                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
 5751                         if (ifr->ifr_mtu < ETHERMIN ||
 5752                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
 5753                                 error = EINVAL;
 5754                                 break;
 5755                         }
 5756                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
 5757                         error = EINVAL;
 5758                         break;
 5759                 }
 5760                 BGE_LOCK(sc);
 5761                 if (if_getmtu(ifp) != ifr->ifr_mtu) {
 5762                         if_setmtu(ifp, ifr->ifr_mtu);
 5763                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 5764                                 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
 5765                                 bge_init_locked(sc);
 5766                         }
 5767                 }
 5768                 BGE_UNLOCK(sc);
 5769                 break;
 5770         case SIOCSIFFLAGS:
 5771                 BGE_LOCK(sc);
 5772                 if (if_getflags(ifp) & IFF_UP) {
 5773                         /*
 5774                          * If only the state of the PROMISC flag changed,
 5775                          * then just use the 'set promisc mode' command
 5776                          * instead of reinitializing the entire NIC. Doing
 5777                          * a full re-init means reloading the firmware and
 5778                          * waiting for it to start up, which may take a
 5779                          * second or two.  Similarly for ALLMULTI.
 5780                          */
 5781                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 5782                                 flags = if_getflags(ifp) ^ sc->bge_if_flags;
 5783                                 if (flags & IFF_PROMISC)
 5784                                         bge_setpromisc(sc);
 5785                                 if (flags & IFF_ALLMULTI)
 5786                                         bge_setmulti(sc);
 5787                         } else
 5788                                 bge_init_locked(sc);
 5789                 } else {
 5790                         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 5791                                 bge_stop(sc);
 5792                         }
 5793                 }
 5794                 sc->bge_if_flags = if_getflags(ifp);
 5795                 BGE_UNLOCK(sc);
 5796                 error = 0;
 5797                 break;
 5798         case SIOCADDMULTI:
 5799         case SIOCDELMULTI:
 5800                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 5801                         BGE_LOCK(sc);
 5802                         bge_setmulti(sc);
 5803                         BGE_UNLOCK(sc);
 5804                         error = 0;
 5805                 }
 5806                 break;
 5807         case SIOCSIFMEDIA:
 5808         case SIOCGIFMEDIA:
 5809                 if (sc->bge_flags & BGE_FLAG_TBI) {
 5810                         error = ifmedia_ioctl(ifp, ifr,
 5811                             &sc->bge_ifmedia, command);
 5812                 } else {
 5813                         mii = device_get_softc(sc->bge_miibus);
 5814                         error = ifmedia_ioctl(ifp, ifr,
 5815                             &mii->mii_media, command);
 5816                 }
 5817                 break;
 5818         case SIOCSIFCAP:
 5819                 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
 5820 #ifdef DEVICE_POLLING
 5821                 if (mask & IFCAP_POLLING) {
 5822                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 5823                                 error = ether_poll_register(bge_poll, ifp);
 5824                                 if (error)
 5825                                         return (error);
 5826                                 BGE_LOCK(sc);
 5827                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 5828                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 5829                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 5830                                 if_setcapenablebit(ifp, IFCAP_POLLING, 0);
 5831                                 BGE_UNLOCK(sc);
 5832                         } else {
 5833                                 error = ether_poll_deregister(ifp);
 5834                                 /* Enable interrupt even in error case */
 5835                                 BGE_LOCK(sc);
 5836                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
 5837                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 5838                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 5839                                 if_setcapenablebit(ifp, 0, IFCAP_POLLING);
 5840                                 BGE_UNLOCK(sc);
 5841                         }
 5842                 }
 5843 #endif
 5844                 if ((mask & IFCAP_TXCSUM) != 0 &&
 5845                     (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
 5846                         if_togglecapenable(ifp, IFCAP_TXCSUM);
 5847                         if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
 5848                                 if_sethwassistbits(ifp,
 5849                                     sc->bge_csum_features, 0);
 5850                         else
 5851                                 if_sethwassistbits(ifp, 0,
 5852                                     sc->bge_csum_features);
 5853                 }
 5854 
 5855                 if ((mask & IFCAP_RXCSUM) != 0 &&
 5856                     (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
 5857                         if_togglecapenable(ifp, IFCAP_RXCSUM);
 5858 
 5859                 if ((mask & IFCAP_TSO4) != 0 &&
 5860                     (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
 5861                         if_togglecapenable(ifp, IFCAP_TSO4);
 5862                         if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
 5863                                 if_sethwassistbits(ifp, CSUM_TSO, 0);
 5864                         else
 5865                                 if_sethwassistbits(ifp, 0, CSUM_TSO);
 5866                 }
 5867 
 5868                 if (mask & IFCAP_VLAN_MTU) {
 5869                         if_togglecapenable(ifp, IFCAP_VLAN_MTU);
 5870                         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
 5871                         bge_init(sc);
 5872                 }
 5873 
 5874                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 5875                     (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
 5876                         if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
 5877                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 5878                     (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
 5879                         if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
 5880                         if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
 5881                                 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
 5882                         BGE_LOCK(sc);
 5883                         bge_setvlan(sc);
 5884                         BGE_UNLOCK(sc);
 5885                 }
 5886 #ifdef VLAN_CAPABILITIES
 5887                 if_vlancap(ifp);
 5888 #endif
 5889                 break;
 5890         default:
 5891                 error = ether_ioctl(ifp, command, data);
 5892                 break;
 5893         }
 5894 
 5895         return (error);
 5896 }
 5897 
 5898 static void
 5899 bge_watchdog(struct bge_softc *sc)
 5900 {
 5901         if_t ifp;
 5902         uint32_t status;
 5903 
 5904         BGE_LOCK_ASSERT(sc);
 5905 
 5906         if (sc->bge_timer == 0 || --sc->bge_timer)
 5907                 return;
 5908 
 5909         /* If pause frames are active then don't reset the hardware. */
 5910         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
 5911                 status = CSR_READ_4(sc, BGE_RX_STS);
 5912                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
 5913                         /*
 5914                          * If link partner has us in XOFF state then wait for
 5915                          * the condition to clear.
 5916                          */
 5917                         CSR_WRITE_4(sc, BGE_RX_STS, status);
 5918                         sc->bge_timer = BGE_TX_TIMEOUT;
 5919                         return;
 5920                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
 5921                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
 5922                         /*
 5923                          * If link partner has us in XOFF state then wait for
 5924                          * the condition to clear.
 5925                          */
 5926                         CSR_WRITE_4(sc, BGE_RX_STS, status);
 5927                         sc->bge_timer = BGE_TX_TIMEOUT;
 5928                         return;
 5929                 }
 5930                 /*
 5931                  * Any other condition is unexpected and the controller
 5932                  * should be reset.
 5933                  */
 5934         }
 5935 
 5936         ifp = sc->bge_ifp;
 5937 
 5938         if_printf(ifp, "watchdog timeout -- resetting\n");
 5939 
 5940         if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
 5941         bge_init_locked(sc);
 5942 
 5943         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 5944 }
 5945 
 5946 static void
 5947 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
 5948 {
 5949         int i;
 5950 
 5951         BGE_CLRBIT(sc, reg, bit);
 5952 
 5953         for (i = 0; i < BGE_TIMEOUT; i++) {
 5954                 if ((CSR_READ_4(sc, reg) & bit) == 0)
 5955                         return;
 5956                 DELAY(100);
 5957         }
 5958 }
 5959 
 5960 /*
 5961  * Stop the adapter and free any mbufs allocated to the
 5962  * RX and TX lists.
 5963  */
 5964 static void
 5965 bge_stop(struct bge_softc *sc)
 5966 {
 5967         if_t ifp;
 5968 
 5969         BGE_LOCK_ASSERT(sc);
 5970 
 5971         ifp = sc->bge_ifp;
 5972 
 5973         callout_stop(&sc->bge_stat_ch);
 5974 
 5975         /* Disable host interrupts. */
 5976         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 5977         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 5978 
 5979         /*
 5980          * Tell firmware we're shutting down.
 5981          */
 5982         bge_stop_fw(sc);
 5983         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
 5984 
 5985         /*
 5986          * Disable all of the receiver blocks.
 5987          */
 5988         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 5989         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 5990         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 5991         if (BGE_IS_5700_FAMILY(sc))
 5992                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 5993         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
 5994         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 5995         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
 5996 
 5997         /*
 5998          * Disable all of the transmit blocks.
 5999          */
 6000         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 6001         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 6002         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 6003         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
 6004         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 6005         if (BGE_IS_5700_FAMILY(sc))
 6006                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 6007         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 6008 
 6009         /*
 6010          * Shut down all of the memory managers and related
 6011          * state machines.
 6012          */
 6013         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 6014         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
 6015         if (BGE_IS_5700_FAMILY(sc))
 6016                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 6017 
 6018         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 6019         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 6020         if (!(BGE_IS_5705_PLUS(sc))) {
 6021                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
 6022                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 6023         }
 6024         /* Update MAC statistics. */
 6025         if (BGE_IS_5705_PLUS(sc))
 6026                 bge_stats_update_regs(sc);
 6027 
 6028         bge_reset(sc);
 6029         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
 6030         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
 6031 
 6032         /*
 6033          * Keep the ASF firmware running if up.
 6034          */
 6035         if (sc->bge_asf_mode & ASF_STACKUP)
 6036                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 6037         else
 6038                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 6039 
 6040         /* Free the RX lists. */
 6041         bge_free_rx_ring_std(sc);
 6042 
 6043         /* Free jumbo RX list. */
 6044         if (BGE_IS_JUMBO_CAPABLE(sc))
 6045                 bge_free_rx_ring_jumbo(sc);
 6046 
 6047         /* Free TX buffers. */
 6048         bge_free_tx_ring(sc);
 6049 
 6050         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
 6051 
 6052         /* Clear MAC's link state (PHY may still have link UP). */
 6053         if (bootverbose && sc->bge_link)
 6054                 if_printf(sc->bge_ifp, "link DOWN\n");
 6055         sc->bge_link = 0;
 6056 
 6057         if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
 6058 }
 6059 
 6060 /*
 6061  * Stop all chip I/O so that the kernel's probe routines don't
 6062  * get confused by errant DMAs when rebooting.
 6063  */
 6064 static int
 6065 bge_shutdown(device_t dev)
 6066 {
 6067         struct bge_softc *sc;
 6068 
 6069         sc = device_get_softc(dev);
 6070         BGE_LOCK(sc);
 6071         bge_stop(sc);
 6072         BGE_UNLOCK(sc);
 6073 
 6074         return (0);
 6075 }
 6076 
 6077 static int
 6078 bge_suspend(device_t dev)
 6079 {
 6080         struct bge_softc *sc;
 6081 
 6082         sc = device_get_softc(dev);
 6083         BGE_LOCK(sc);
 6084         bge_stop(sc);
 6085         BGE_UNLOCK(sc);
 6086 
 6087         return (0);
 6088 }
 6089 
 6090 static int
 6091 bge_resume(device_t dev)
 6092 {
 6093         struct bge_softc *sc;
 6094         if_t ifp;
 6095 
 6096         sc = device_get_softc(dev);
 6097         BGE_LOCK(sc);
 6098         ifp = sc->bge_ifp;
 6099         if (if_getflags(ifp) & IFF_UP) {
 6100                 bge_init_locked(sc);
 6101                 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
 6102                         bge_start_locked(ifp);
 6103         }
 6104         BGE_UNLOCK(sc);
 6105 
 6106         return (0);
 6107 }
 6108 
 6109 static void
 6110 bge_link_upd(struct bge_softc *sc)
 6111 {
 6112         struct mii_data *mii;
 6113         uint32_t link, status;
 6114 
 6115         BGE_LOCK_ASSERT(sc);
 6116 
 6117         /* Clear 'pending link event' flag. */
 6118         sc->bge_link_evt = 0;
 6119 
 6120         /*
 6121          * Process link state changes.
 6122          * Grrr. The link status word in the status block does
 6123          * not work correctly on the BCM5700 rev AX and BX chips,
 6124          * according to all available information. Hence, we have
 6125          * to enable MII interrupts in order to properly obtain
 6126          * async link changes. Unfortunately, this also means that
 6127          * we have to read the MAC status register to detect link
 6128          * changes, thereby adding an additional register access to
 6129          * the interrupt handler.
 6130          *
 6131          * XXX: perhaps link state detection procedure used for
 6132          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
 6133          */
 6134 
 6135         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 6136             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
 6137                 status = CSR_READ_4(sc, BGE_MAC_STS);
 6138                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
 6139                         mii = device_get_softc(sc->bge_miibus);
 6140                         mii_pollstat(mii);
 6141                         if (!sc->bge_link &&
 6142                             mii->mii_media_status & IFM_ACTIVE &&
 6143                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 6144                                 sc->bge_link++;
 6145                                 if (bootverbose)
 6146                                         if_printf(sc->bge_ifp, "link UP\n");
 6147                         } else if (sc->bge_link &&
 6148                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 6149                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 6150                                 sc->bge_link = 0;
 6151                                 if (bootverbose)
 6152                                         if_printf(sc->bge_ifp, "link DOWN\n");
 6153                         }
 6154 
 6155                         /* Clear the interrupt. */
 6156                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 6157                             BGE_EVTENB_MI_INTERRUPT);
 6158                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
 6159                             BRGPHY_MII_ISR);
 6160                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
 6161                             BRGPHY_MII_IMR, BRGPHY_INTRS);
 6162                 }
 6163                 return;
 6164         }
 6165 
 6166         if (sc->bge_flags & BGE_FLAG_TBI) {
 6167                 status = CSR_READ_4(sc, BGE_MAC_STS);
 6168                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
 6169                         if (!sc->bge_link) {
 6170                                 sc->bge_link++;
 6171                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 6172                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
 6173                                             BGE_MACMODE_TBI_SEND_CFGS);
 6174                                         DELAY(40);
 6175                                 }
 6176                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
 6177                                 if (bootverbose)
 6178                                         if_printf(sc->bge_ifp, "link UP\n");
 6179                                 if_link_state_change(sc->bge_ifp,
 6180                                     LINK_STATE_UP);
 6181                         }
 6182                 } else if (sc->bge_link) {
 6183                         sc->bge_link = 0;
 6184                         if (bootverbose)
 6185                                 if_printf(sc->bge_ifp, "link DOWN\n");
 6186                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
 6187                 }
 6188         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 6189                 /*
 6190                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
 6191                  * in status word always set. Workaround this bug by reading
 6192                  * PHY link status directly.
 6193                  */
 6194                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
 6195 
 6196                 if (link != sc->bge_link ||
 6197                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
 6198                         mii = device_get_softc(sc->bge_miibus);
 6199                         mii_pollstat(mii);
 6200                         if (!sc->bge_link &&
 6201                             mii->mii_media_status & IFM_ACTIVE &&
 6202                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 6203                                 sc->bge_link++;
 6204                                 if (bootverbose)
 6205                                         if_printf(sc->bge_ifp, "link UP\n");
 6206                         } else if (sc->bge_link &&
 6207                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 6208                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 6209                                 sc->bge_link = 0;
 6210                                 if (bootverbose)
 6211                                         if_printf(sc->bge_ifp, "link DOWN\n");
 6212                         }
 6213                 }
 6214         } else {
 6215                 /*
 6216                  * For controllers that call mii_tick, we have to poll
 6217                  * link status.
 6218                  */
 6219                 mii = device_get_softc(sc->bge_miibus);
 6220                 mii_pollstat(mii);
 6221                 bge_miibus_statchg(sc->bge_dev);
 6222         }
 6223 
 6224         /* Disable MAC attention when link is up. */
 6225         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 6226             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 6227             BGE_MACSTAT_LINK_CHANGED);
 6228 }
 6229 
 6230 static void
 6231 bge_add_sysctls(struct bge_softc *sc)
 6232 {
 6233         struct sysctl_ctx_list *ctx;
 6234         struct sysctl_oid_list *children;
 6235 
 6236         ctx = device_get_sysctl_ctx(sc->bge_dev);
 6237         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
 6238 
 6239 #ifdef BGE_REGISTER_DEBUG
 6240         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
 6241             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
 6242             bge_sysctl_debug_info, "I", "Debug Information");
 6243 
 6244         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
 6245             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
 6246             bge_sysctl_reg_read, "I", "MAC Register Read");
 6247 
 6248         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
 6249             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
 6250             bge_sysctl_ape_read, "I", "APE Register Read");
 6251 
 6252         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
 6253             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
 6254             bge_sysctl_mem_read, "I", "Memory Read");
 6255 
 6256 #endif
 6257 
 6258         /*
 6259          * A common design characteristic for many Broadcom client controllers
 6260          * is that they only support a single outstanding DMA read operation
 6261          * on the PCIe bus. This means that it will take twice as long to fetch
 6262          * a TX frame that is split into header and payload buffers as it does
 6263          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
 6264          * these controllers, coalescing buffers to reduce the number of memory
 6265          * reads is effective way to get maximum performance(about 940Mbps).
 6266          * Without collapsing TX buffers the maximum TCP bulk transfer
 6267          * performance is about 850Mbps. However forcing coalescing mbufs
 6268          * consumes a lot of CPU cycles, so leave it off by default.
 6269          */
 6270         sc->bge_forced_collapse = 0;
 6271         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
 6272             CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
 6273             "Number of fragmented TX buffers of a frame allowed before "
 6274             "forced collapsing");
 6275 
 6276         sc->bge_msi = 1;
 6277         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
 6278             CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
 6279 
 6280         /*
 6281          * It seems all Broadcom controllers have a bug that can generate UDP
 6282          * datagrams with checksum value 0 when TX UDP checksum offloading is
 6283          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
 6284          * Even though the probability of generating such UDP datagrams is
 6285          * low, I don't want to see FreeBSD boxes to inject such datagrams
 6286          * into network so disable UDP checksum offloading by default.  Users
 6287          * still override this behavior by setting a sysctl variable,
 6288          * dev.bge.0.forced_udpcsum.
 6289          */
 6290         sc->bge_forced_udpcsum = 0;
 6291         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
 6292             CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
 6293             "Enable UDP checksum offloading even if controller can "
 6294             "generate UDP checksum value 0");
 6295 
 6296         if (BGE_IS_5705_PLUS(sc))
 6297                 bge_add_sysctl_stats_regs(sc, ctx, children);
 6298         else
 6299                 bge_add_sysctl_stats(sc, ctx, children);
 6300 }
 6301 
 6302 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
 6303     SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, \
 6304         CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, \
 6305         offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", desc)
 6306 
 6307 static void
 6308 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
 6309     struct sysctl_oid_list *parent)
 6310 {
 6311         struct sysctl_oid *tree;
 6312         struct sysctl_oid_list *children, *schildren;
 6313 
 6314         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
 6315             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics");
 6316         schildren = children = SYSCTL_CHILDREN(tree);
 6317         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
 6318             children, COSFramesDroppedDueToFilters,
 6319             "FramesDroppedDueToFilters");
 6320         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
 6321             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
 6322         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
 6323             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
 6324         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
 6325             children, nicNoMoreRxBDs, "NoMoreRxBDs");
 6326         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
 6327             children, ifInDiscards, "InputDiscards");
 6328         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
 6329             children, ifInErrors, "InputErrors");
 6330         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
 6331             children, nicRecvThresholdHit, "RecvThresholdHit");
 6332         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
 6333             children, nicDmaReadQueueFull, "DmaReadQueueFull");
 6334         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
 6335             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
 6336         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
 6337             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
 6338         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
 6339             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
 6340         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
 6341             children, nicRingStatusUpdate, "RingStatusUpdate");
 6342         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
 6343             children, nicInterrupts, "Interrupts");
 6344         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
 6345             children, nicAvoidedInterrupts, "AvoidedInterrupts");
 6346         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
 6347             children, nicSendThresholdHit, "SendThresholdHit");
 6348 
 6349         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx",
 6350             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics");
 6351         children = SYSCTL_CHILDREN(tree);
 6352         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
 6353             children, rxstats.ifHCInOctets, "ifHCInOctets");
 6354         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
 6355             children, rxstats.etherStatsFragments, "Fragments");
 6356         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
 6357             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
 6358         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
 6359             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
 6360         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
 6361             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
 6362         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
 6363             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
 6364         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
 6365             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
 6366         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
 6367             children, rxstats.xoffPauseFramesReceived,
 6368             "xoffPauseFramesReceived");
 6369         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
 6370             children, rxstats.macControlFramesReceived,
 6371             "ControlFramesReceived");
 6372         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
 6373             children, rxstats.xoffStateEntered, "xoffStateEntered");
 6374         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
 6375             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
 6376         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
 6377             children, rxstats.etherStatsJabbers, "Jabbers");
 6378         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
 6379             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
 6380         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
 6381             children, rxstats.inRangeLengthError, "inRangeLengthError");
 6382         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
 6383             children, rxstats.outRangeLengthError, "outRangeLengthError");
 6384 
 6385         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx",
 6386             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics");
 6387         children = SYSCTL_CHILDREN(tree);
 6388         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
 6389             children, txstats.ifHCOutOctets, "ifHCOutOctets");
 6390         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
 6391             children, txstats.etherStatsCollisions, "Collisions");
 6392         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
 6393             children, txstats.outXonSent, "XonSent");
 6394         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
 6395             children, txstats.outXoffSent, "XoffSent");
 6396         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
 6397             children, txstats.flowControlDone, "flowControlDone");
 6398         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
 6399             children, txstats.dot3StatsInternalMacTransmitErrors,
 6400             "InternalMacTransmitErrors");
 6401         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
 6402             children, txstats.dot3StatsSingleCollisionFrames,
 6403             "SingleCollisionFrames");
 6404         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
 6405             children, txstats.dot3StatsMultipleCollisionFrames,
 6406             "MultipleCollisionFrames");
 6407         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
 6408             children, txstats.dot3StatsDeferredTransmissions,
 6409             "DeferredTransmissions");
 6410         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
 6411             children, txstats.dot3StatsExcessiveCollisions,
 6412             "ExcessiveCollisions");
 6413         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
 6414             children, txstats.dot3StatsLateCollisions,
 6415             "LateCollisions");
 6416         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
 6417             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
 6418         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
 6419             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
 6420         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
 6421             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
 6422         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
 6423             children, txstats.dot3StatsCarrierSenseErrors,
 6424             "CarrierSenseErrors");
 6425         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
 6426             children, txstats.ifOutDiscards, "Discards");
 6427         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
 6428             children, txstats.ifOutErrors, "Errors");
 6429 }
 6430 
 6431 #undef BGE_SYSCTL_STAT
 6432 
 6433 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
 6434             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 6435 
 6436 static void
 6437 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
 6438     struct sysctl_oid_list *parent)
 6439 {
 6440         struct sysctl_oid *tree;
 6441         struct sysctl_oid_list *child, *schild;
 6442         struct bge_mac_stats *stats;
 6443 
 6444         stats = &sc->bge_mac_stats;
 6445         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
 6446             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics");
 6447         schild = child = SYSCTL_CHILDREN(tree);
 6448         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
 6449             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
 6450         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
 6451             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
 6452         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
 6453             &stats->DmaWriteHighPriQueueFull,
 6454             "NIC DMA Write High Priority Queue Full");
 6455         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
 6456             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
 6457         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
 6458             &stats->InputDiscards, "Discarded Input Frames");
 6459         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
 6460             &stats->InputErrors, "Input Errors");
 6461         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
 6462             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
 6463 
 6464         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
 6465             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics");
 6466         child = SYSCTL_CHILDREN(tree);
 6467         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
 6468             &stats->ifHCInOctets, "Inbound Octets");
 6469         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
 6470             &stats->etherStatsFragments, "Fragments");
 6471         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
 6472             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
 6473         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
 6474             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
 6475         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
 6476             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
 6477         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
 6478             &stats->dot3StatsFCSErrors, "FCS Errors");
 6479         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
 6480             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
 6481         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
 6482             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
 6483         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
 6484             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
 6485         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
 6486             &stats->macControlFramesReceived, "MAC Control Frames Received");
 6487         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
 6488             &stats->xoffStateEntered, "XOFF State Entered");
 6489         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
 6490             &stats->dot3StatsFramesTooLong, "Frames Too Long");
 6491         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
 6492             &stats->etherStatsJabbers, "Jabbers");
 6493         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
 6494             &stats->etherStatsUndersizePkts, "Undersized Packets");
 6495 
 6496         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
 6497             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics");
 6498         child = SYSCTL_CHILDREN(tree);
 6499         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
 6500             &stats->ifHCOutOctets, "Outbound Octets");
 6501         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
 6502             &stats->etherStatsCollisions, "TX Collisions");
 6503         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
 6504             &stats->outXonSent, "XON Sent");
 6505         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
 6506             &stats->outXoffSent, "XOFF Sent");
 6507         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
 6508             &stats->dot3StatsInternalMacTransmitErrors,
 6509             "Internal MAC TX Errors");
 6510         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
 6511             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
 6512         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
 6513             &stats->dot3StatsMultipleCollisionFrames,
 6514             "Multiple Collision Frames");
 6515         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
 6516             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
 6517         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
 6518             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
 6519         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
 6520             &stats->dot3StatsLateCollisions, "Late Collisions");
 6521         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
 6522             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
 6523         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
 6524             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
 6525         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
 6526             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
 6527 }
 6528 
 6529 #undef  BGE_SYSCTL_STAT_ADD64
 6530 
 6531 static int
 6532 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
 6533 {
 6534         struct bge_softc *sc;
 6535         uint32_t result;
 6536         int offset;
 6537 
 6538         sc = (struct bge_softc *)arg1;
 6539         offset = arg2;
 6540         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
 6541             offsetof(bge_hostaddr, bge_addr_lo));
 6542         return (sysctl_handle_int(oidp, &result, 0, req));
 6543 }
 6544 
 6545 #ifdef BGE_REGISTER_DEBUG
 6546 static int
 6547 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 6548 {
 6549         struct bge_softc *sc;
 6550         uint16_t *sbdata;
 6551         int error, result, sbsz;
 6552         int i, j;
 6553 
 6554         result = -1;
 6555         error = sysctl_handle_int(oidp, &result, 0, req);
 6556         if (error || (req->newptr == NULL))
 6557                 return (error);
 6558 
 6559         if (result == 1) {
 6560                 sc = (struct bge_softc *)arg1;
 6561 
 6562                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 6563                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
 6564                         sbsz = BGE_STATUS_BLK_SZ;
 6565                 else
 6566                         sbsz = 32;
 6567                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
 6568                 printf("Status Block:\n");
 6569                 BGE_LOCK(sc);
 6570                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 6571                     sc->bge_cdata.bge_status_map,
 6572                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 6573                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
 6574                         printf("%06x:", i);
 6575                         for (j = 0; j < 8; j++)
 6576                                 printf(" %04x", sbdata[i++]);
 6577                         printf("\n");
 6578                 }
 6579 
 6580                 printf("Registers:\n");
 6581                 for (i = 0x800; i < 0xA00; ) {
 6582                         printf("%06x:", i);
 6583                         for (j = 0; j < 8; j++) {
 6584                                 printf(" %08x", CSR_READ_4(sc, i));
 6585                                 i += 4;
 6586                         }
 6587                         printf("\n");
 6588                 }
 6589                 BGE_UNLOCK(sc);
 6590 
 6591                 printf("Hardware Flags:\n");
 6592                 if (BGE_IS_5717_PLUS(sc))
 6593                         printf(" - 5717 Plus\n");
 6594                 if (BGE_IS_5755_PLUS(sc))
 6595                         printf(" - 5755 Plus\n");
 6596                 if (BGE_IS_575X_PLUS(sc))
 6597                         printf(" - 575X Plus\n");
 6598                 if (BGE_IS_5705_PLUS(sc))
 6599                         printf(" - 5705 Plus\n");
 6600                 if (BGE_IS_5714_FAMILY(sc))
 6601                         printf(" - 5714 Family\n");
 6602                 if (BGE_IS_5700_FAMILY(sc))
 6603                         printf(" - 5700 Family\n");
 6604                 if (sc->bge_flags & BGE_FLAG_JUMBO)
 6605                         printf(" - Supports Jumbo Frames\n");
 6606                 if (sc->bge_flags & BGE_FLAG_PCIX)
 6607                         printf(" - PCI-X Bus\n");
 6608                 if (sc->bge_flags & BGE_FLAG_PCIE)
 6609                         printf(" - PCI Express Bus\n");
 6610                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
 6611                         printf(" - No 3 LEDs\n");
 6612                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
 6613                         printf(" - RX Alignment Bug\n");
 6614         }
 6615 
 6616         return (error);
 6617 }
 6618 
 6619 static int
 6620 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 6621 {
 6622         struct bge_softc *sc;
 6623         int error;
 6624         uint16_t result;
 6625         uint32_t val;
 6626 
 6627         result = -1;
 6628         error = sysctl_handle_int(oidp, &result, 0, req);
 6629         if (error || (req->newptr == NULL))
 6630                 return (error);
 6631 
 6632         if (result < 0x8000) {
 6633                 sc = (struct bge_softc *)arg1;
 6634                 val = CSR_READ_4(sc, result);
 6635                 printf("reg 0x%06X = 0x%08X\n", result, val);
 6636         }
 6637 
 6638         return (error);
 6639 }
 6640 
 6641 static int
 6642 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
 6643 {
 6644         struct bge_softc *sc;
 6645         int error;
 6646         uint16_t result;
 6647         uint32_t val;
 6648 
 6649         result = -1;
 6650         error = sysctl_handle_int(oidp, &result, 0, req);
 6651         if (error || (req->newptr == NULL))
 6652                 return (error);
 6653 
 6654         if (result < 0x8000) {
 6655                 sc = (struct bge_softc *)arg1;
 6656                 val = APE_READ_4(sc, result);
 6657                 printf("reg 0x%06X = 0x%08X\n", result, val);
 6658         }
 6659 
 6660         return (error);
 6661 }
 6662 
 6663 static int
 6664 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
 6665 {
 6666         struct bge_softc *sc;
 6667         int error;
 6668         uint16_t result;
 6669         uint32_t val;
 6670 
 6671         result = -1;
 6672         error = sysctl_handle_int(oidp, &result, 0, req);
 6673         if (error || (req->newptr == NULL))
 6674                 return (error);
 6675 
 6676         if (result < 0x8000) {
 6677                 sc = (struct bge_softc *)arg1;
 6678                 val = bge_readmem_ind(sc, result);
 6679                 printf("mem 0x%06X = 0x%08X\n", result, val);
 6680         }
 6681 
 6682         return (error);
 6683 }
 6684 #endif
 6685 
 6686 static int
 6687 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
 6688 {
 6689         return (1);
 6690 }
 6691 
 6692 static int
 6693 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
 6694 {
 6695         uint32_t mac_addr;
 6696 
 6697         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
 6698         if ((mac_addr >> 16) == 0x484b) {
 6699                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
 6700                 ether_addr[1] = (uint8_t)mac_addr;
 6701                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
 6702                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
 6703                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
 6704                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
 6705                 ether_addr[5] = (uint8_t)mac_addr;
 6706                 return (0);
 6707         }
 6708         return (1);
 6709 }
 6710 
 6711 static int
 6712 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
 6713 {
 6714         int mac_offset = BGE_EE_MAC_OFFSET;
 6715 
 6716         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 6717                 mac_offset = BGE_EE_MAC_OFFSET_5906;
 6718 
 6719         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
 6720             ETHER_ADDR_LEN));
 6721 }
 6722 
 6723 static int
 6724 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
 6725 {
 6726 
 6727         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 6728                 return (1);
 6729 
 6730         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
 6731            ETHER_ADDR_LEN));
 6732 }
 6733 
 6734 static int
 6735 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
 6736 {
 6737         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
 6738                 /* NOTE: Order is critical */
 6739                 bge_get_eaddr_fw,
 6740                 bge_get_eaddr_mem,
 6741                 bge_get_eaddr_nvram,
 6742                 bge_get_eaddr_eeprom,
 6743                 NULL
 6744         };
 6745         const bge_eaddr_fcn_t *func;
 6746 
 6747         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
 6748                 if ((*func)(sc, eaddr) == 0)
 6749                         break;
 6750         }
 6751         return (*func == NULL ? ENXIO : 0);
 6752 }
 6753 
 6754 static uint64_t
 6755 bge_get_counter(if_t ifp, ift_counter cnt)
 6756 {
 6757         struct bge_softc *sc;
 6758         struct bge_mac_stats *stats;
 6759 
 6760         sc = if_getsoftc(ifp);
 6761         if (!BGE_IS_5705_PLUS(sc))
 6762                 return (if_get_counter_default(ifp, cnt));
 6763         stats = &sc->bge_mac_stats;
 6764 
 6765         switch (cnt) {
 6766         case IFCOUNTER_IERRORS:
 6767                 return (stats->NoMoreRxBDs + stats->InputDiscards +
 6768                     stats->InputErrors);
 6769         case IFCOUNTER_COLLISIONS:
 6770                 return (stats->etherStatsCollisions);
 6771         default:
 6772                 return (if_get_counter_default(ifp, cnt));
 6773         }
 6774 }
 6775 
 6776 #ifdef DEBUGNET
 6777 static void
 6778 bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
 6779 {
 6780         struct bge_softc *sc;
 6781 
 6782         sc = if_getsoftc(ifp);
 6783         BGE_LOCK(sc);
 6784         /*
 6785          * There is only one logical receive ring, but it is backed
 6786          * by two actual rings, for cluster- and jumbo-sized mbufs.
 6787          * Debugnet expects only one size, so if jumbo is in use,
 6788          * this says we have two rings of jumbo mbufs, but that's
 6789          * only a little wasteful.
 6790          */
 6791         *nrxr = 2;
 6792         *ncl = DEBUGNET_MAX_IN_FLIGHT;
 6793         if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
 6794             (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
 6795             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
 6796                 *clsize = MJUM9BYTES;
 6797         else
 6798                 *clsize = MCLBYTES;
 6799         BGE_UNLOCK(sc);
 6800 }
 6801 
 6802 static void
 6803 bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
 6804 {
 6805 }
 6806 
 6807 static int
 6808 bge_debugnet_transmit(if_t ifp, struct mbuf *m)
 6809 {
 6810         struct bge_softc *sc;
 6811         uint32_t prodidx;
 6812         int error;
 6813 
 6814         sc = if_getsoftc(ifp);
 6815         if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 6816             IFF_DRV_RUNNING)
 6817                 return (1);
 6818 
 6819         prodidx = sc->bge_tx_prodidx;
 6820         error = bge_encap(sc, &m, &prodidx);
 6821         if (error == 0)
 6822                 bge_start_tx(sc, prodidx);
 6823         return (error);
 6824 }
 6825 
 6826 static int
 6827 bge_debugnet_poll(if_t ifp, int count)
 6828 {
 6829         struct bge_softc *sc;
 6830         uint32_t rx_prod, tx_cons;
 6831 
 6832         sc = if_getsoftc(ifp);
 6833         if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 6834             IFF_DRV_RUNNING)
 6835                 return (1);
 6836 
 6837         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 6838             sc->bge_cdata.bge_status_map,
 6839             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 6840 
 6841         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 6842         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 6843 
 6844         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 6845             sc->bge_cdata.bge_status_map,
 6846             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 6847 
 6848         (void)bge_rxeof(sc, rx_prod, 0);
 6849         bge_txeof(sc, tx_cons);
 6850         return (0);
 6851 }
 6852 #endif /* DEBUGNET */

Cache object: 569c92da5b81c9c5e7ac7778d4af9760


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.