The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bge/if_bge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Wind River Systems
    3  * Copyright (c) 1997, 1998, 1999, 2001
    4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. All advertising materials mentioning features or use of this software
   15  *    must display the following acknowledgement:
   16  *      This product includes software developed by Bill Paul.
   17  * 4. Neither the name of the author nor the names of any co-contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   31  * THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/6.4/sys/dev/bge/if_bge.c 183162 2008-09-18 22:29:05Z oleg $");
   36 
   37 /*
   38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
   39  *
   40  * The Broadcom BCM5700 is based on technology originally developed by
   41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
   42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
   43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
   44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
   45  * frames, highly configurable RX filtering, and 16 RX and TX queues
   46  * (which, along with RX filter rules, can be used for QOS applications).
   47  * Other features, such as TCP segmentation, may be available as part
   48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
   49  * firmware images can be stored in hardware and need not be compiled
   50  * into the driver.
   51  *
   52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
   53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
   54  *
   55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
   56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
   57  * does not support external SSRAM.
   58  *
   59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
   60  * brand name, which is functionally similar but lacks PCI-X support.
   61  *
   62  * Without external SSRAM, you can only have at most 4 TX rings,
   63  * and the use of the mini RX ring is disabled. This seems to imply
   64  * that these features are simply not available on the BCM5701. As a
   65  * result, this driver does not implement any support for the mini RX
   66  * ring.
   67  */
   68 
   69 #ifdef HAVE_KERNEL_OPTION_HEADERS
   70 #include "opt_device_polling.h"
   71 #endif
   72 
   73 #include <sys/param.h>
   74 #include <sys/endian.h>
   75 #include <sys/systm.h>
   76 #include <sys/sockio.h>
   77 #include <sys/mbuf.h>
   78 #include <sys/malloc.h>
   79 #include <sys/kernel.h>
   80 #include <sys/module.h>
   81 #include <sys/socket.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <net/if.h>
   85 #include <net/if_arp.h>
   86 #include <net/ethernet.h>
   87 #include <net/if_dl.h>
   88 #include <net/if_media.h>
   89 
   90 #include <net/bpf.h>
   91 
   92 #include <net/if_types.h>
   93 #include <net/if_vlan_var.h>
   94 
   95 #include <netinet/in_systm.h>
   96 #include <netinet/in.h>
   97 #include <netinet/ip.h>
   98 
   99 #include <machine/bus.h>
  100 #include <machine/resource.h>
  101 #include <sys/bus.h>
  102 #include <sys/rman.h>
  103 
  104 #include <dev/mii/mii.h>
  105 #include <dev/mii/miivar.h>
  106 #include "miidevs.h"
  107 #include <dev/mii/brgphyreg.h>
  108 
  109 #ifdef __sparc64__
  110 #include <dev/ofw/ofw_bus.h>
  111 #include <dev/ofw/openfirm.h>
  112 #include <machine/ofw_machdep.h>
  113 #include <machine/ver.h>
  114 #endif
  115 
  116 #include <dev/pci/pcireg.h>
  117 #include <dev/pci/pcivar.h>
  118 
  119 #include <dev/bge/if_bgereg.h>
  120 
  121 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
  122 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
  123 
  124 MODULE_DEPEND(bge, pci, 1, 1, 1);
  125 MODULE_DEPEND(bge, ether, 1, 1, 1);
  126 MODULE_DEPEND(bge, miibus, 1, 1, 1);
  127 
  128 /* "device miibus" required.  See GENERIC if you get errors here. */
  129 #include "miibus_if.h"
  130 
  131 /*
  132  * Various supported device vendors/types and their names. Note: the
  133  * spec seems to indicate that the hardware still has Alteon's vendor
  134  * ID burned into it, though it will always be overriden by the vendor
  135  * ID in the EEPROM. Just to be safe, we cover all possibilities.
  136  */
  137 static struct bge_type {
  138         uint16_t        bge_vid;
  139         uint16_t        bge_did;
  140 } bge_devs[] = {
  141         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
  142         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
  143 
  144         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
  145         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
  146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
  147 
  148         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
  149 
  150         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
  151         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
  152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
  153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
  154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
  155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
  156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
  157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
  158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
  159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
  160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
  161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
  162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
  163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
  164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
  165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
  166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
  167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
  168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
  169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
  170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
  171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
  172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
  173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
  174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
  175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
  176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
  177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
  178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
  179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
  180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
  181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
  182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
  183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
  184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
  185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
  186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
  187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
  188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
  189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
  190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
  191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
  192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
  193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
  194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
  195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
  196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
  197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
  198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
  199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
  200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
  201 
  202         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
  203 
  204         { TC_VENDORID,          TC_DEVICEID_3C996 },
  205 
  206         { 0, 0 }
  207 };
  208 
  209 static const struct bge_vendor {
  210         uint16_t        v_id;
  211         const char      *v_name;
  212 } bge_vendors[] = {
  213         { ALTEON_VENDORID,      "Alteon" },
  214         { ALTIMA_VENDORID,      "Altima" },
  215         { APPLE_VENDORID,       "Apple" },
  216         { BCOM_VENDORID,        "Broadcom" },
  217         { SK_VENDORID,          "SysKonnect" },
  218         { TC_VENDORID,          "3Com" },
  219 
  220         { 0, NULL }
  221 };
  222         
  223 static const struct bge_revision {
  224         uint32_t        br_chipid;
  225         const char      *br_name;
  226 } bge_revisions[] = {
  227         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
  228         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
  229         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
  230         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
  231         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
  232         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
  233         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
  234         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
  235         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
  236         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
  237         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
  238         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
  239         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
  240         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
  241         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
  242         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
  243         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
  244         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
  245         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
  246         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
  247         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
  248         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
  249         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
  250         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
  251         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
  252         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
  253         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
  254         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
  255         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
  256         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
  257         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
  258         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
  259         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
  260         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
  261         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
  262         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
  263         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
  264         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
  265         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
  266         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
  267         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
  268         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
  269         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
  270         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
  271         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
  272         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
  273         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
  274         /* 5754 and 5787 share the same ASIC ID */
  275         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" }, 
  276         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
  277         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
  278         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
  279         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
  280 
  281         { 0, NULL }
  282 };
  283 
  284 /*
  285  * Some defaults for major revisions, so that newer steppings
  286  * that we don't know about have a shot at working.
  287  */
  288 static const struct bge_revision bge_majorrevs[] = {
  289         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
  290         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
  291         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
  292         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
  293         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
  294         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
  295         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
  296         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
  297         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
  298         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
  299         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
  300         /* 5754 and 5787 share the same ASIC ID */
  301         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
  302         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
  303 
  304         { 0, NULL }
  305 };
  306 
  307 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
  308 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
  309 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
  310 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
  311 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
  312 
  313 const struct bge_revision * bge_lookup_rev(uint32_t);
  314 const struct bge_vendor * bge_lookup_vendor(uint16_t);
  315 
  316 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
  317 
  318 static int bge_probe(device_t);
  319 static int bge_attach(device_t);
  320 static int bge_detach(device_t);
  321 static int bge_suspend(device_t);
  322 static int bge_resume(device_t);
  323 static void bge_release_resources(struct bge_softc *);
  324 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  325 static int bge_dma_alloc(device_t);
  326 static void bge_dma_free(struct bge_softc *);
  327 
  328 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
  329 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
  330 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
  331 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
  332 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
  333 
  334 static void bge_txeof(struct bge_softc *);
  335 static void bge_rxeof(struct bge_softc *);
  336 
  337 static void bge_asf_driver_up (struct bge_softc *);
  338 static void bge_tick(void *);
  339 static void bge_stats_update(struct bge_softc *);
  340 static void bge_stats_update_regs(struct bge_softc *);
  341 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
  342 
  343 static void bge_intr(void *);
  344 static void bge_start_locked(struct ifnet *);
  345 static void bge_start(struct ifnet *);
  346 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
  347 static void bge_init_locked(struct bge_softc *);
  348 static void bge_init(void *);
  349 static void bge_stop(struct bge_softc *);
  350 static void bge_watchdog(struct bge_softc *);
  351 static void bge_shutdown(device_t);
  352 static int bge_ifmedia_upd_locked(struct ifnet *);
  353 static int bge_ifmedia_upd(struct ifnet *);
  354 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  355 
  356 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
  357 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
  358 
  359 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
  360 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
  361 
  362 static void bge_setpromisc(struct bge_softc *);
  363 static void bge_setmulti(struct bge_softc *);
  364 
  365 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
  366 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
  367 static int bge_init_rx_ring_std(struct bge_softc *);
  368 static void bge_free_rx_ring_std(struct bge_softc *);
  369 static int bge_init_rx_ring_jumbo(struct bge_softc *);
  370 static void bge_free_rx_ring_jumbo(struct bge_softc *);
  371 static void bge_free_tx_ring(struct bge_softc *);
  372 static int bge_init_tx_ring(struct bge_softc *);
  373 
  374 static int bge_chipinit(struct bge_softc *);
  375 static int bge_blockinit(struct bge_softc *);
  376 
  377 static int bge_has_eaddr(struct bge_softc *);
  378 static uint32_t bge_readmem_ind(struct bge_softc *, int);
  379 static void bge_writemem_ind(struct bge_softc *, int, int);
  380 static void bge_writembx(struct bge_softc *, int, int);
  381 #ifdef notdef
  382 static uint32_t bge_readreg_ind(struct bge_softc *, int);
  383 #endif
  384 static void bge_writemem_direct(struct bge_softc *, int, int);
  385 static void bge_writereg_ind(struct bge_softc *, int, int);
  386 
  387 static int bge_miibus_readreg(device_t, int, int);
  388 static int bge_miibus_writereg(device_t, int, int, int);
  389 static void bge_miibus_statchg(device_t);
  390 #ifdef DEVICE_POLLING
  391 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  392 #endif
  393 
  394 #define BGE_RESET_START 1
  395 #define BGE_RESET_STOP  2
  396 static void bge_sig_post_reset(struct bge_softc *, int);
  397 static void bge_sig_legacy(struct bge_softc *, int);
  398 static void bge_sig_pre_reset(struct bge_softc *, int);
  399 static int bge_reset(struct bge_softc *);
  400 static void bge_link_upd(struct bge_softc *);
  401 
  402 /*
  403  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
  404  * leak information to untrusted users.  It is also known to cause alignment
  405  * traps on certain architectures.
  406  */
  407 #ifdef BGE_REGISTER_DEBUG
  408 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
  409 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
  410 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
  411 #endif
  412 static void bge_add_sysctls(struct bge_softc *);
  413 
  414 static device_method_t bge_methods[] = {
  415         /* Device interface */
  416         DEVMETHOD(device_probe,         bge_probe),
  417         DEVMETHOD(device_attach,        bge_attach),
  418         DEVMETHOD(device_detach,        bge_detach),
  419         DEVMETHOD(device_shutdown,      bge_shutdown),
  420         DEVMETHOD(device_suspend,       bge_suspend),
  421         DEVMETHOD(device_resume,        bge_resume),
  422 
  423         /* bus interface */
  424         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  425         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  426 
  427         /* MII interface */
  428         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
  429         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
  430         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
  431 
  432         { 0, 0 }
  433 };
  434 
  435 static driver_t bge_driver = {
  436         "bge",
  437         bge_methods,
  438         sizeof(struct bge_softc)
  439 };
  440 
  441 static devclass_t bge_devclass;
  442 
  443 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
  444 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
  445 
  446 static int bge_allow_asf = 0;
  447 
  448 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
  449 
  450 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
  451 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
  452         "Allow ASF mode if available");
  453 
  454 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
  455 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
  456 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
  457 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
  458 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
  459 
  460 static int
  461 bge_has_eaddr(struct bge_softc *sc)
  462 {
  463 #ifdef __sparc64__
  464         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
  465         device_t dev;
  466         uint32_t subvendor;
  467 
  468         dev = sc->bge_dev;
  469 
  470         /*
  471          * The on-board BGEs found in sun4u machines aren't fitted with
  472          * an EEPROM which means that we have to obtain the MAC address
  473          * via OFW and that some tests will always fail.  We distinguish
  474          * such BGEs by the subvendor ID, which also has to be obtained
  475          * from OFW instead of the PCI configuration space as the latter
  476          * indicates Broadcom as the subvendor of the netboot interface.
  477          * For early Blade 1500 and 2500 we even have to check the OFW
  478          * device path as the subvendor ID always defaults to Broadcom
  479          * there.
  480          */
  481         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
  482             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
  483             subvendor == SUN_VENDORID)
  484                 return (0);
  485         memset(buf, 0, sizeof(buf));
  486         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
  487                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
  488                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
  489                         return (0);
  490                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
  491                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
  492                         return (0);
  493         }
  494 #endif
  495         return (1);
  496 }
  497 
  498 static uint32_t
  499 bge_readmem_ind(struct bge_softc *sc, int off)
  500 {
  501         device_t dev;
  502         uint32_t val;
  503 
  504         dev = sc->bge_dev;
  505 
  506         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  507         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
  508         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  509         return (val);
  510 }
  511 
  512 static void
  513 bge_writemem_ind(struct bge_softc *sc, int off, int val)
  514 {
  515         device_t dev;
  516 
  517         dev = sc->bge_dev;
  518 
  519         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  520         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
  521         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  522 }
  523 
  524 #ifdef notdef
  525 static uint32_t
  526 bge_readreg_ind(struct bge_softc *sc, int off)
  527 {
  528         device_t dev;
  529 
  530         dev = sc->bge_dev;
  531 
  532         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  533         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
  534 }
  535 #endif
  536 
  537 static void
  538 bge_writereg_ind(struct bge_softc *sc, int off, int val)
  539 {
  540         device_t dev;
  541 
  542         dev = sc->bge_dev;
  543 
  544         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  545         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
  546 }
  547 
  548 static void
  549 bge_writemem_direct(struct bge_softc *sc, int off, int val)
  550 {
  551         CSR_WRITE_4(sc, off, val);
  552 }
  553 
  554 static void
  555 bge_writembx(struct bge_softc *sc, int off, int val)
  556 {
  557         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
  558                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
  559 
  560         CSR_WRITE_4(sc, off, val);
  561 }
  562 
  563 /*
  564  * Map a single buffer address.
  565  */
  566 
  567 static void
  568 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  569 {
  570         struct bge_dmamap_arg *ctx;
  571 
  572         if (error)
  573                 return;
  574 
  575         ctx = arg;
  576 
  577         if (nseg > ctx->bge_maxsegs) {
  578                 ctx->bge_maxsegs = 0;
  579                 return;
  580         }
  581 
  582         ctx->bge_busaddr = segs->ds_addr;
  583 }
  584 
  585 static uint8_t
  586 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  587 {
  588         uint32_t access, byte = 0;
  589         int i;
  590 
  591         /* Lock. */
  592         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
  593         for (i = 0; i < 8000; i++) {
  594                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
  595                         break;
  596                 DELAY(20);
  597         }
  598         if (i == 8000)
  599                 return (1);
  600 
  601         /* Enable access. */
  602         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
  603         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
  604 
  605         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
  606         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
  607         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
  608                 DELAY(10);
  609                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
  610                         DELAY(10);
  611                         break;
  612                 }
  613         }
  614 
  615         if (i == BGE_TIMEOUT * 10) {
  616                 if_printf(sc->bge_ifp, "nvram read timed out\n");
  617                 return (1);
  618         }
  619 
  620         /* Get result. */
  621         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
  622 
  623         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
  624 
  625         /* Disable access. */
  626         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
  627 
  628         /* Unlock. */
  629         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
  630         CSR_READ_4(sc, BGE_NVRAM_SWARB);
  631 
  632         return (0);
  633 }
  634 
  635 /*
  636  * Read a sequence of bytes from NVRAM.
  637  */
  638 static int
  639 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
  640 {
  641         int err = 0, i;
  642         uint8_t byte = 0;
  643 
  644         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
  645                 return (1);
  646 
  647         for (i = 0; i < cnt; i++) {
  648                 err = bge_nvram_getbyte(sc, off + i, &byte);
  649                 if (err)
  650                         break;
  651                 *(dest + i) = byte;
  652         }
  653 
  654         return (err ? 1 : 0);
  655 }
  656 
  657 /*
  658  * Read a byte of data stored in the EEPROM at address 'addr.' The
  659  * BCM570x supports both the traditional bitbang interface and an
  660  * auto access interface for reading the EEPROM. We use the auto
  661  * access method.
  662  */
  663 static uint8_t
  664 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  665 {
  666         int i;
  667         uint32_t byte = 0;
  668 
  669         /*
  670          * Enable use of auto EEPROM access so we can avoid
  671          * having to use the bitbang method.
  672          */
  673         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
  674 
  675         /* Reset the EEPROM, load the clock period. */
  676         CSR_WRITE_4(sc, BGE_EE_ADDR,
  677             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
  678         DELAY(20);
  679 
  680         /* Issue the read EEPROM command. */
  681         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
  682 
  683         /* Wait for completion */
  684         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
  685                 DELAY(10);
  686                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
  687                         break;
  688         }
  689 
  690         if (i == BGE_TIMEOUT * 10) {
  691                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
  692                 return (1);
  693         }
  694 
  695         /* Get result. */
  696         byte = CSR_READ_4(sc, BGE_EE_DATA);
  697 
  698         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
  699 
  700         return (0);
  701 }
  702 
  703 /*
  704  * Read a sequence of bytes from the EEPROM.
  705  */
  706 static int
  707 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
  708 {
  709         int i, error = 0;
  710         uint8_t byte = 0;
  711 
  712         for (i = 0; i < cnt; i++) {
  713                 error = bge_eeprom_getbyte(sc, off + i, &byte);
  714                 if (error)
  715                         break;
  716                 *(dest + i) = byte;
  717         }
  718 
  719         return (error ? 1 : 0);
  720 }
  721 
  722 static int
  723 bge_miibus_readreg(device_t dev, int phy, int reg)
  724 {
  725         struct bge_softc *sc;
  726         uint32_t val, autopoll;
  727         int i;
  728 
  729         sc = device_get_softc(dev);
  730 
  731         /*
  732          * Broadcom's own driver always assumes the internal
  733          * PHY is at GMII address 1. On some chips, the PHY responds
  734          * to accesses at all addresses, which could cause us to
  735          * bogusly attach the PHY 32 times at probe type. Always
  736          * restricting the lookup to address 1 is simpler than
  737          * trying to figure out which chips revisions should be
  738          * special-cased.
  739          */
  740         if (phy != 1)
  741                 return (0);
  742 
  743         /* Reading with autopolling on may trigger PCI errors */
  744         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
  745         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  746                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  747                 DELAY(40);
  748         }
  749 
  750         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
  751             BGE_MIPHY(phy) | BGE_MIREG(reg));
  752 
  753         for (i = 0; i < BGE_TIMEOUT; i++) {
  754                 DELAY(10);
  755                 val = CSR_READ_4(sc, BGE_MI_COMM);
  756                 if (!(val & BGE_MICOMM_BUSY))
  757                         break;
  758         }
  759 
  760         if (i == BGE_TIMEOUT) {
  761                 device_printf(sc->bge_dev,
  762                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
  763                     phy, reg, val);
  764                 val = 0;
  765                 goto done;
  766         }
  767 
  768         DELAY(5);
  769         val = CSR_READ_4(sc, BGE_MI_COMM);
  770 
  771 done:
  772         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  773                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  774                 DELAY(40);
  775         }
  776 
  777         if (val & BGE_MICOMM_READFAIL)
  778                 return (0);
  779 
  780         return (val & 0xFFFF);
  781 }
  782 
  783 static int
  784 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
  785 {
  786         struct bge_softc *sc;
  787         uint32_t autopoll;
  788         int i;
  789 
  790         sc = device_get_softc(dev);
  791 
  792         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
  793             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
  794                 return(0);
  795 
  796         /* Reading with autopolling on may trigger PCI errors */
  797         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
  798         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  799                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  800                 DELAY(40);
  801         }
  802 
  803         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
  804             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
  805 
  806         for (i = 0; i < BGE_TIMEOUT; i++) {
  807                 DELAY(10);
  808                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
  809                         DELAY(5);
  810                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
  811                         break;
  812                 }
  813         }
  814 
  815         if (i == BGE_TIMEOUT) {
  816                 device_printf(sc->bge_dev,
  817                     "PHY write timed out (phy %d, reg %d, val %d)\n",
  818                     phy, reg, val);
  819                 return (0);
  820         }
  821 
  822         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  823                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  824                 DELAY(40);
  825         }
  826 
  827 
  828         return (0);
  829 }
  830 
  831 static void
  832 bge_miibus_statchg(device_t dev)
  833 {
  834         struct bge_softc *sc;
  835         struct mii_data *mii;
  836         sc = device_get_softc(dev);
  837         mii = device_get_softc(sc->bge_miibus);
  838 
  839         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
  840         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
  841                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
  842         else
  843                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
  844 
  845         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
  846                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
  847         else
  848                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
  849 }
  850 
  851 /*
  852  * Intialize a standard receive ring descriptor.
  853  */
  854 static int
  855 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
  856 {
  857         struct mbuf *m_new = NULL;
  858         struct bge_rx_bd *r;
  859         struct bge_dmamap_arg ctx;
  860         int error;
  861 
  862         if (m == NULL) {
  863                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
  864                 if (m_new == NULL)
  865                         return (ENOBUFS);
  866                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  867         } else {
  868                 m_new = m;
  869                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  870                 m_new->m_data = m_new->m_ext.ext_buf;
  871         }
  872 
  873         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
  874                 m_adj(m_new, ETHER_ALIGN);
  875         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
  876         r = &sc->bge_ldata.bge_rx_std_ring[i];
  877         ctx.bge_maxsegs = 1;
  878         ctx.sc = sc;
  879         error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
  880             sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
  881             m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
  882         if (error || ctx.bge_maxsegs == 0) {
  883                 if (m == NULL) {
  884                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
  885                         m_freem(m_new);
  886                 }
  887                 return (ENOMEM);
  888         }
  889         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
  890         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
  891         r->bge_flags = BGE_RXBDFLAG_END;
  892         r->bge_len = m_new->m_len;
  893         r->bge_idx = i;
  894 
  895         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  896             sc->bge_cdata.bge_rx_std_dmamap[i],
  897             BUS_DMASYNC_PREREAD);
  898 
  899         return (0);
  900 }
  901 
  902 /*
  903  * Initialize a jumbo receive ring descriptor. This allocates
  904  * a jumbo buffer from the pool managed internally by the driver.
  905  */
  906 static int
  907 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
  908 {
  909         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
  910         struct bge_extrx_bd *r;
  911         struct mbuf *m_new = NULL;
  912         int nsegs;
  913         int error;
  914 
  915         if (m == NULL) {
  916                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
  917                 if (m_new == NULL)
  918                         return (ENOBUFS);
  919 
  920                 m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
  921                 if (!(m_new->m_flags & M_EXT)) {
  922                         m_freem(m_new);
  923                         return (ENOBUFS);
  924                 }
  925                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
  926         } else {
  927                 m_new = m;
  928                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
  929                 m_new->m_data = m_new->m_ext.ext_buf;
  930         }
  931 
  932         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
  933                 m_adj(m_new, ETHER_ALIGN);
  934 
  935         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
  936             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
  937             m_new, segs, &nsegs, BUS_DMA_NOWAIT);
  938         if (error) {
  939                 if (m == NULL)
  940                         m_freem(m_new);
  941                 return (error);
  942         }
  943         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
  944 
  945         /*
  946          * Fill in the extended RX buffer descriptor.
  947          */
  948         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
  949         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
  950         r->bge_idx = i;
  951         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
  952         switch (nsegs) {
  953         case 4:
  954                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
  955                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
  956                 r->bge_len3 = segs[3].ds_len;
  957         case 3:
  958                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
  959                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
  960                 r->bge_len2 = segs[2].ds_len;
  961         case 2:
  962                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
  963                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
  964                 r->bge_len1 = segs[1].ds_len;
  965         case 1:
  966                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
  967                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
  968                 r->bge_len0 = segs[0].ds_len;
  969                 break;
  970         default:
  971                 panic("%s: %d segments\n", __func__, nsegs);
  972         }
  973 
  974         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  975             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
  976             BUS_DMASYNC_PREREAD);
  977 
  978         return (0);
  979 }
  980 
  981 /*
  982  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
  983  * that's 1MB or memory, which is a lot. For now, we fill only the first
  984  * 256 ring entries and hope that our CPU is fast enough to keep up with
  985  * the NIC.
  986  */
  987 static int
  988 bge_init_rx_ring_std(struct bge_softc *sc)
  989 {
  990         int i;
  991 
  992         for (i = 0; i < BGE_SSLOTS; i++) {
  993                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
  994                         return (ENOBUFS);
  995         };
  996 
  997         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
  998             sc->bge_cdata.bge_rx_std_ring_map,
  999             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1000 
 1001         sc->bge_std = i - 1;
 1002         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
 1003 
 1004         return (0);
 1005 }
 1006 
 1007 static void
 1008 bge_free_rx_ring_std(struct bge_softc *sc)
 1009 {
 1010         int i;
 1011 
 1012         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1013                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 1014                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 1015                             sc->bge_cdata.bge_rx_std_dmamap[i],
 1016                             BUS_DMASYNC_POSTREAD);
 1017                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 1018                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1019                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
 1020                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
 1021                 }
 1022                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
 1023                     sizeof(struct bge_rx_bd));
 1024         }
 1025 }
 1026 
 1027 static int
 1028 bge_init_rx_ring_jumbo(struct bge_softc *sc)
 1029 {
 1030         struct bge_rcb *rcb;
 1031         int i;
 1032 
 1033         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1034                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
 1035                         return (ENOBUFS);
 1036         };
 1037 
 1038         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1039             sc->bge_cdata.bge_rx_jumbo_ring_map,
 1040             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1041 
 1042         sc->bge_jumbo = i - 1;
 1043 
 1044         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1045         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 1046                                     BGE_RCB_FLAG_USE_EXT_RX_BD);
 1047         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1048 
 1049         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
 1050 
 1051         return (0);
 1052 }
 1053 
 1054 static void
 1055 bge_free_rx_ring_jumbo(struct bge_softc *sc)
 1056 {
 1057         int i;
 1058 
 1059         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1060                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 1061                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1062                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
 1063                             BUS_DMASYNC_POSTREAD);
 1064                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 1065                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1066                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
 1067                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
 1068                 }
 1069                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
 1070                     sizeof(struct bge_extrx_bd));
 1071         }
 1072 }
 1073 
 1074 static void
 1075 bge_free_tx_ring(struct bge_softc *sc)
 1076 {
 1077         int i;
 1078 
 1079         if (sc->bge_ldata.bge_tx_ring == NULL)
 1080                 return;
 1081 
 1082         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1083                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
 1084                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 1085                             sc->bge_cdata.bge_tx_dmamap[i],
 1086                             BUS_DMASYNC_POSTWRITE);
 1087                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 1088                             sc->bge_cdata.bge_tx_dmamap[i]);
 1089                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
 1090                         sc->bge_cdata.bge_tx_chain[i] = NULL;
 1091                 }
 1092                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
 1093                     sizeof(struct bge_tx_bd));
 1094         }
 1095 }
 1096 
 1097 static int
 1098 bge_init_tx_ring(struct bge_softc *sc)
 1099 {
 1100         sc->bge_txcnt = 0;
 1101         sc->bge_tx_saved_considx = 0;
 1102 
 1103         /* Initialize transmit producer index for host-memory send ring. */
 1104         sc->bge_tx_prodidx = 0;
 1105         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1106 
 1107         /* 5700 b2 errata */
 1108         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1109                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1110 
 1111         /* NIC-memory send ring not used; initialize to zero. */
 1112         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1113         /* 5700 b2 errata */
 1114         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1115                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1116 
 1117         return (0);
 1118 }
 1119 
 1120 static void
 1121 bge_setpromisc(struct bge_softc *sc)
 1122 {
 1123         struct ifnet *ifp;
 1124 
 1125         BGE_LOCK_ASSERT(sc);
 1126 
 1127         ifp = sc->bge_ifp;
 1128 
 1129         /* Enable or disable promiscuous mode as needed. */
 1130         if (ifp->if_flags & IFF_PROMISC)
 1131                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1132         else
 1133                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1134 }
 1135 
 1136 static void
 1137 bge_setmulti(struct bge_softc *sc)
 1138 {
 1139         struct ifnet *ifp;
 1140         struct ifmultiaddr *ifma;
 1141         uint32_t hashes[4] = { 0, 0, 0, 0 };
 1142         int h, i;
 1143 
 1144         BGE_LOCK_ASSERT(sc);
 1145 
 1146         ifp = sc->bge_ifp;
 1147 
 1148         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
 1149                 for (i = 0; i < 4; i++)
 1150                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
 1151                 return;
 1152         }
 1153 
 1154         /* First, zot all the existing filters. */
 1155         for (i = 0; i < 4; i++)
 1156                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
 1157 
 1158         /* Now program new ones. */
 1159         IF_ADDR_LOCK(ifp);
 1160         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1161                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1162                         continue;
 1163                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 1164                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
 1165                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
 1166         }
 1167         IF_ADDR_UNLOCK(ifp);
 1168 
 1169         for (i = 0; i < 4; i++)
 1170                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
 1171 }
 1172 
 1173 static void
 1174 bge_sig_pre_reset(sc, type)
 1175         struct bge_softc *sc;
 1176         int type;
 1177 {
 1178         /*
 1179          * Some chips don't like this so only do this if ASF is enabled
 1180          */
 1181         if (sc->bge_asf_mode)
 1182                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
 1183 
 1184         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1185                 switch (type) {
 1186                 case BGE_RESET_START:
 1187                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
 1188                         break;
 1189                 case BGE_RESET_STOP:
 1190                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
 1191                         break;
 1192                 }
 1193         }
 1194 }
 1195 
 1196 static void
 1197 bge_sig_post_reset(sc, type)
 1198         struct bge_softc *sc;
 1199         int type;
 1200 {
 1201         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1202                 switch (type) {
 1203                 case BGE_RESET_START:
 1204                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 
 1205                         /* START DONE */
 1206                         break;
 1207                 case BGE_RESET_STOP:
 1208                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 
 1209                         break;
 1210                 }
 1211         }
 1212 }
 1213 
 1214 static void
 1215 bge_sig_legacy(sc, type)
 1216         struct bge_softc *sc;
 1217         int type;
 1218 {
 1219         if (sc->bge_asf_mode) {
 1220                 switch (type) {
 1221                 case BGE_RESET_START:
 1222                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
 1223                         break;
 1224                 case BGE_RESET_STOP:
 1225                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
 1226                         break;
 1227                 }
 1228         }
 1229 }
 1230 
 1231 void bge_stop_fw(struct bge_softc *);
 1232 void
 1233 bge_stop_fw(sc)
 1234         struct bge_softc *sc;
 1235 {
 1236         int i;
 1237 
 1238         if (sc->bge_asf_mode) {
 1239                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
 1240                 CSR_WRITE_4(sc, BGE_CPU_EVENT,
 1241                     CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
 1242 
 1243                 for (i = 0; i < 100; i++ ) {
 1244                         if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
 1245                                 break;
 1246                         DELAY(10);
 1247                 }
 1248         }
 1249 }
 1250 
 1251 /*
 1252  * Do endian, PCI and DMA initialization. Also check the on-board ROM
 1253  * self-test results.
 1254  */
 1255 static int
 1256 bge_chipinit(struct bge_softc *sc)
 1257 {
 1258         uint32_t dma_rw_ctl;
 1259         int i;
 1260 
 1261         /* Set endianness before we access any non-PCI registers. */
 1262         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
 1263 
 1264         /*
 1265          * Check the 'ROM failed' bit on the RX CPU to see if
 1266          * self-tests passed. Skip this check when there's no
 1267          * chip containing the Ethernet address fitted, since
 1268          * in that case it will always fail.
 1269          */
 1270         if ((sc->bge_flags & BGE_FLAG_EADDR) &&
 1271             CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
 1272                 device_printf(sc->bge_dev, "RX CPU self-diagnostics failed!\n");
 1273                 return (ENODEV);
 1274         }
 1275 
 1276         /* Clear the MAC control register */
 1277         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
 1278 
 1279         /*
 1280          * Clear the MAC statistics block in the NIC's
 1281          * internal memory.
 1282          */
 1283         for (i = BGE_STATS_BLOCK;
 1284             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
 1285                 BGE_MEMWIN_WRITE(sc, i, 0);
 1286 
 1287         for (i = BGE_STATUS_BLOCK;
 1288             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
 1289                 BGE_MEMWIN_WRITE(sc, i, 0);
 1290 
 1291         /* Set up the PCI DMA control register. */
 1292         if (sc->bge_flags & BGE_FLAG_PCIE) {
 1293                 /* PCI Express bus */
 1294                 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
 1295                     BGE_PCIDMARWCTL_RD_WAT_SHIFT(0xF) |
 1296                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x2);
 1297         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
 1298                 /* PCI-X bus */
 1299                 if (BGE_IS_5714_FAMILY(sc)) {
 1300                         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
 1301                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
 1302                         /* XXX magic values, Broadcom-supplied Linux driver */
 1303                         dma_rw_ctl |= (1 << 20) | (1 << 18);
 1304                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780)
 1305                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
 1306                         else
 1307                                 dma_rw_ctl |= 1 << 15;
 1308 
 1309                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1310                         /*
 1311                          * The 5704 uses a different encoding of read/write
 1312                          * watermarks.
 1313                          */
 1314                         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
 1315                             BGE_PCIDMARWCTL_RD_WAT_SHIFT(0x7) |
 1316                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x3);
 1317                 else
 1318                         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
 1319                             BGE_PCIDMARWCTL_RD_WAT_SHIFT(0x3) |
 1320                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x3) |
 1321                             0x0F;
 1322 
 1323                 /*
 1324                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
 1325                  * for hardware bugs.
 1326                  */
 1327                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1328                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1329                         uint32_t tmp;
 1330 
 1331                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 1332                         if (tmp == 0x6 || tmp == 0x7)
 1333                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
 1334                 }
 1335         } else
 1336                 /* Conventional PCI bus */
 1337                 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
 1338                     BGE_PCIDMARWCTL_RD_WAT_SHIFT(0x7) |
 1339                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x7) |
 1340                     0x0F;
 1341 
 1342         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1343             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
 1344             sc->bge_asicrev == BGE_ASICREV_BCM5705)
 1345                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
 1346         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
 1347 
 1348         /*
 1349          * Set up general mode register.
 1350          */
 1351         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
 1352             BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
 1353             BGE_MODECTL_TX_NO_PHDR_CSUM);
 1354 
 1355         /*
 1356          * Tell the firmware the driver is running
 1357          */
 1358         if (sc->bge_asf_mode & ASF_STACKUP)
 1359                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 1360 
 1361         /*
 1362          * Disable memory write invalidate.  Apparently it is not supported
 1363          * properly by these devices.
 1364          */
 1365         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
 1366 
 1367 #ifdef __brokenalpha__
 1368         /*
 1369          * Must insure that we do not cross an 8K (bytes) boundary
 1370          * for DMA reads.  Our highest limit is 1K bytes.  This is a
 1371          * restriction on some ALPHA platforms with early revision
 1372          * 21174 PCI chipsets, such as the AlphaPC 164lx
 1373          */
 1374         PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
 1375             BGE_PCI_READ_BNDRY_1024BYTES, 4);
 1376 #endif
 1377 
 1378         /* Set the timer prescaler (always 66Mhz) */
 1379         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 1380 
 1381         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
 1382         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1383                 DELAY(40);      /* XXX */
 1384 
 1385                 /* Put PHY into ready state */
 1386                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
 1387                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
 1388                 DELAY(40);
 1389         }
 1390 
 1391         return (0);
 1392 }
 1393 
 1394 static int
 1395 bge_blockinit(struct bge_softc *sc)
 1396 {
 1397         struct bge_rcb *rcb;
 1398         bus_size_t vrcb;
 1399         bge_hostaddr taddr;
 1400         uint32_t val;
 1401         int i;
 1402 
 1403         /*
 1404          * Initialize the memory window pointer register so that
 1405          * we can access the first 32K of internal NIC RAM. This will
 1406          * allow us to set up the TX send ring RCBs and the RX return
 1407          * ring RCBs, plus other things which live in NIC memory.
 1408          */
 1409         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
 1410 
 1411         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
 1412 
 1413         if (!(BGE_IS_5705_PLUS(sc))) {
 1414                 /* Configure mbuf memory pool */
 1415                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
 1416                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1417                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
 1418                 else
 1419                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
 1420 
 1421                 /* Configure DMA resource pool */
 1422                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
 1423                     BGE_DMA_DESCRIPTORS);
 1424                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
 1425         }
 1426 
 1427         /* Configure mbuf pool watermarks */
 1428         if (!BGE_IS_5705_PLUS(sc)) {
 1429                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
 1430                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
 1431                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1432         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1433                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1434                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
 1435                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
 1436         } else {
 1437                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1438                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
 1439                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1440         }
 1441 
 1442         /* Configure DMA resource watermarks */
 1443         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
 1444         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
 1445 
 1446         /* Enable buffer manager */
 1447         if (!(BGE_IS_5705_PLUS(sc))) {
 1448                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
 1449                     BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
 1450 
 1451                 /* Poll for buffer manager start indication */
 1452                 for (i = 0; i < BGE_TIMEOUT; i++) {
 1453                         DELAY(10);
 1454                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
 1455                                 break;
 1456                 }
 1457 
 1458                 if (i == BGE_TIMEOUT) {
 1459                         device_printf(sc->bge_dev,
 1460                             "buffer manager failed to start\n");
 1461                         return (ENXIO);
 1462                 }
 1463         }
 1464 
 1465         /* Enable flow-through queues */
 1466         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 1467         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 1468 
 1469         /* Wait until queue initialization is complete */
 1470         for (i = 0; i < BGE_TIMEOUT; i++) {
 1471                 DELAY(10);
 1472                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
 1473                         break;
 1474         }
 1475 
 1476         if (i == BGE_TIMEOUT) {
 1477                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
 1478                 return (ENXIO);
 1479         }
 1480 
 1481         /* Initialize the standard RX ring control block */
 1482         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
 1483         rcb->bge_hostaddr.bge_addr_lo =
 1484             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
 1485         rcb->bge_hostaddr.bge_addr_hi =
 1486             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
 1487         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 1488             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
 1489         if (BGE_IS_5705_PLUS(sc))
 1490                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
 1491         else
 1492                 rcb->bge_maxlen_flags =
 1493                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
 1494         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
 1495         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
 1496         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
 1497 
 1498         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1499         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
 1500 
 1501         /*
 1502          * Initialize the jumbo RX ring control block
 1503          * We set the 'ring disabled' bit in the flags
 1504          * field until we're actually ready to start
 1505          * using this ring (i.e. once we set the MTU
 1506          * high enough to require it).
 1507          */
 1508         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 1509                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1510 
 1511                 rcb->bge_hostaddr.bge_addr_lo =
 1512                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 1513                 rcb->bge_hostaddr.bge_addr_hi =
 1514                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 1515                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1516                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 1517                     BUS_DMASYNC_PREREAD);
 1518                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 1519                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
 1520                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
 1521                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
 1522                     rcb->bge_hostaddr.bge_addr_hi);
 1523                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
 1524                     rcb->bge_hostaddr.bge_addr_lo);
 1525 
 1526                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
 1527                     rcb->bge_maxlen_flags);
 1528                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
 1529 
 1530                 /* Set up dummy disabled mini ring RCB */
 1531                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
 1532                 rcb->bge_maxlen_flags =
 1533                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
 1534                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
 1535                     rcb->bge_maxlen_flags);
 1536         }
 1537 
 1538         /*
 1539          * Set the BD ring replentish thresholds. The recommended
 1540          * values are 1/8th the number of descriptors allocated to
 1541          * each ring.
 1542          * XXX The 5754 requires a lower threshold, so it might be a
 1543          * requirement of all 575x family chips.  The Linux driver sets
 1544          * the lower threshold for all 5705 family chips as well, but there
 1545          * are reports that it might not need to be so strict.
 1546          *
 1547          * XXX Linux does some extra fiddling here for the 5906 parts as
 1548          * well.
 1549          */
 1550         if (BGE_IS_5705_PLUS(sc))
 1551                 val = 8;
 1552         else
 1553                 val = BGE_STD_RX_RING_CNT / 8;
 1554         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
 1555         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
 1556 
 1557         /*
 1558          * Disable all unused send rings by setting the 'ring disabled'
 1559          * bit in the flags field of all the TX send ring control blocks.
 1560          * These are located in NIC memory.
 1561          */
 1562         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 1563         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
 1564                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1565                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
 1566                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 1567                 vrcb += sizeof(struct bge_rcb);
 1568         }
 1569 
 1570         /* Configure TX RCB 0 (we use only the first ring) */
 1571         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 1572         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
 1573         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 1574         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 1575         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
 1576             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
 1577         if (!(BGE_IS_5705_PLUS(sc)))
 1578                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1579                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
 1580 
 1581         /* Disable all unused RX return rings */
 1582         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 1583         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
 1584                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
 1585                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
 1586                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1587                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
 1588                     BGE_RCB_FLAG_RING_DISABLED));
 1589                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 1590                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
 1591                     (i * (sizeof(uint64_t))), 0);
 1592                 vrcb += sizeof(struct bge_rcb);
 1593         }
 1594 
 1595         /* Initialize RX ring indexes */
 1596         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
 1597         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
 1598         bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
 1599 
 1600         /*
 1601          * Set up RX return ring 0
 1602          * Note that the NIC address for RX return rings is 0x00000000.
 1603          * The return rings live entirely within the host, so the
 1604          * nicaddr field in the RCB isn't used.
 1605          */
 1606         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 1607         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
 1608         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 1609         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 1610         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
 1611         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1612             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));  
 1613 
 1614         /* Set random backoff seed for TX */
 1615         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
 1616             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
 1617             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
 1618             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
 1619             BGE_TX_BACKOFF_SEED_MASK);
 1620 
 1621         /* Set inter-packet gap */
 1622         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
 1623 
 1624         /*
 1625          * Specify which ring to use for packets that don't match
 1626          * any RX rules.
 1627          */
 1628         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
 1629 
 1630         /*
 1631          * Configure number of RX lists. One interrupt distribution
 1632          * list, sixteen active lists, one bad frames class.
 1633          */
 1634         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
 1635 
 1636         /* Inialize RX list placement stats mask. */
 1637         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
 1638         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
 1639 
 1640         /* Disable host coalescing until we get it set up */
 1641         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
 1642 
 1643         /* Poll to make sure it's shut down. */
 1644         for (i = 0; i < BGE_TIMEOUT; i++) {
 1645                 DELAY(10);
 1646                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
 1647                         break;
 1648         }
 1649 
 1650         if (i == BGE_TIMEOUT) {
 1651                 device_printf(sc->bge_dev,
 1652                     "host coalescing engine failed to idle\n");
 1653                 return (ENXIO);
 1654         }
 1655 
 1656         /* Set up host coalescing defaults */
 1657         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
 1658         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
 1659         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
 1660         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
 1661         if (!(BGE_IS_5705_PLUS(sc))) {
 1662                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
 1663                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
 1664         }
 1665         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
 1666         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
 1667 
 1668         /* Set up address of statistics block */
 1669         if (!(BGE_IS_5705_PLUS(sc))) {
 1670                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
 1671                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
 1672                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
 1673                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
 1674                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
 1675                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
 1676                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
 1677         }
 1678 
 1679         /* Set up address of status block */
 1680         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
 1681             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
 1682         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
 1683             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
 1684         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
 1685         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
 1686 
 1687         /* Turn on host coalescing state machine */
 1688         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 1689 
 1690         /* Turn on RX BD completion state machine and enable attentions */
 1691         CSR_WRITE_4(sc, BGE_RBDC_MODE,
 1692             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
 1693 
 1694         /* Turn on RX list placement state machine */
 1695         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 1696 
 1697         /* Turn on RX list selector state machine. */
 1698         if (!(BGE_IS_5705_PLUS(sc)))
 1699                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 1700 
 1701         /* Turn on DMA, clear stats */
 1702         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
 1703             BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
 1704             BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
 1705             BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
 1706             ((sc->bge_flags & BGE_FLAG_TBI) ?
 1707             BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
 1708 
 1709         /* Set misc. local control, enable interrupts on attentions */
 1710         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
 1711 
 1712 #ifdef notdef
 1713         /* Assert GPIO pins for PHY reset */
 1714         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
 1715             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
 1716         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
 1717             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
 1718 #endif
 1719 
 1720         /* Turn on DMA completion state machine */
 1721         if (!(BGE_IS_5705_PLUS(sc)))
 1722                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 1723 
 1724         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
 1725 
 1726         /* Enable host coalescing bug fix. */
 1727         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 1728             sc->bge_asicrev == BGE_ASICREV_BCM5787)
 1729                         val |= 1 << 29;
 1730 
 1731         /* Turn on write DMA state machine */
 1732         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
 1733 
 1734         /* Turn on read DMA state machine */
 1735         CSR_WRITE_4(sc, BGE_RDMA_MODE,
 1736             BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS);
 1737 
 1738         /* Turn on RX data completion state machine */
 1739         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 1740 
 1741         /* Turn on RX BD initiator state machine */
 1742         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 1743 
 1744         /* Turn on RX data and RX BD initiator state machine */
 1745         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
 1746 
 1747         /* Turn on Mbuf cluster free state machine */
 1748         if (!(BGE_IS_5705_PLUS(sc)))
 1749                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 1750 
 1751         /* Turn on send BD completion state machine */
 1752         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 1753 
 1754         /* Turn on send data completion state machine */
 1755         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 1756 
 1757         /* Turn on send data initiator state machine */
 1758         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 1759 
 1760         /* Turn on send BD initiator state machine */
 1761         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 1762 
 1763         /* Turn on send BD selector state machine */
 1764         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 1765 
 1766         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
 1767         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
 1768             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
 1769 
 1770         /* ack/clear link change events */
 1771         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 1772             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 1773             BGE_MACSTAT_LINK_CHANGED);
 1774         CSR_WRITE_4(sc, BGE_MI_STS, 0);
 1775 
 1776         /* Enable PHY auto polling (for MII/GMII only) */
 1777         if (sc->bge_flags & BGE_FLAG_TBI) {
 1778                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
 1779         } else {
 1780                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
 1781                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 1782                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
 1783                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 1784                             BGE_EVTENB_MI_INTERRUPT);
 1785         }
 1786 
 1787         /*
 1788          * Clear any pending link state attention.
 1789          * Otherwise some link state change events may be lost until attention
 1790          * is cleared by bge_intr() -> bge_link_upd() sequence.
 1791          * It's not necessary on newer BCM chips - perhaps enabling link
 1792          * state change attentions implies clearing pending attention.
 1793          */
 1794         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 1795             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 1796             BGE_MACSTAT_LINK_CHANGED);
 1797 
 1798         /* Enable link state change attentions. */
 1799         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
 1800 
 1801         return (0);
 1802 }
 1803 
 1804 const struct bge_revision *
 1805 bge_lookup_rev(uint32_t chipid)
 1806 {
 1807         const struct bge_revision *br;
 1808 
 1809         for (br = bge_revisions; br->br_name != NULL; br++) {
 1810                 if (br->br_chipid == chipid)
 1811                         return (br);
 1812         }
 1813 
 1814         for (br = bge_majorrevs; br->br_name != NULL; br++) {
 1815                 if (br->br_chipid == BGE_ASICREV(chipid))
 1816                         return (br);
 1817         }
 1818 
 1819         return (NULL);
 1820 }
 1821 
 1822 const struct bge_vendor *
 1823 bge_lookup_vendor(uint16_t vid)
 1824 {
 1825         const struct bge_vendor *v;
 1826 
 1827         for (v = bge_vendors; v->v_name != NULL; v++)
 1828                 if (v->v_id == vid)
 1829                         return (v);
 1830                 
 1831         panic("%s: unknown vendor %d", __func__, vid);
 1832         return (NULL);
 1833 }
 1834 
 1835 /*
 1836  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
 1837  * against our list and return its name if we find a match.
 1838  *
 1839  * Note that since the Broadcom controller contains VPD support, we
 1840  * try to get the device name string from the controller itself instead
 1841  * of the compiled-in string. It guarantees we'll always announce the
 1842  * right product name. We fall back to the compiled-in string when
 1843  * VPD is unavailable or corrupt.
 1844  */
 1845 static int
 1846 bge_probe(device_t dev)
 1847 {
 1848         struct bge_type *t = bge_devs;
 1849         struct bge_softc *sc = device_get_softc(dev);
 1850         uint16_t vid, did;
 1851 
 1852         sc->bge_dev = dev;
 1853         vid = pci_get_vendor(dev);
 1854         did = pci_get_device(dev);
 1855         while(t->bge_vid != 0) {
 1856                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
 1857                         char model[64], buf[96];
 1858                         const struct bge_revision *br;
 1859                         const struct bge_vendor *v;
 1860                         uint32_t id;
 1861 
 1862                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
 1863                             BGE_PCIMISCCTL_ASICREV;
 1864                         br = bge_lookup_rev(id);
 1865                         v = bge_lookup_vendor(vid);
 1866                         {
 1867 #if __FreeBSD_version > 700024
 1868                                 const char *pname;
 1869 
 1870                                 if (pci_get_vpd_ident(dev, &pname) == 0)
 1871                                         snprintf(model, 64, "%s", pname);
 1872                                 else
 1873 #endif
 1874                                         snprintf(model, 64, "%s %s",
 1875                                             v->v_name,
 1876                                             br != NULL ? br->br_name :
 1877                                             "NetXtreme Ethernet Controller");
 1878                         }
 1879                         snprintf(buf, 96, "%s, %sASIC rev. %#04x", model,
 1880                             br != NULL ? "" : "unknown ", id >> 16);
 1881                         device_set_desc_copy(dev, buf);
 1882                         if (pci_get_subvendor(dev) == DELL_VENDORID)
 1883                                 sc->bge_flags |= BGE_FLAG_NO_3LED;
 1884                         if (did == BCOM_DEVICEID_BCM5755M)
 1885                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
 1886                         return (0);
 1887                 }
 1888                 t++;
 1889         }
 1890 
 1891         return (ENXIO);
 1892 }
 1893 
 1894 static void
 1895 bge_dma_free(struct bge_softc *sc)
 1896 {
 1897         int i;
 1898 
 1899         /* Destroy DMA maps for RX buffers. */
 1900         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1901                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
 1902                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
 1903                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1904         }
 1905 
 1906         /* Destroy DMA maps for jumbo RX buffers. */
 1907         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1908                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
 1909                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 1910                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1911         }
 1912 
 1913         /* Destroy DMA maps for TX buffers. */
 1914         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1915                 if (sc->bge_cdata.bge_tx_dmamap[i])
 1916                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
 1917                             sc->bge_cdata.bge_tx_dmamap[i]);
 1918         }
 1919 
 1920         if (sc->bge_cdata.bge_mtag)
 1921                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
 1922 
 1923 
 1924         /* Destroy standard RX ring. */
 1925         if (sc->bge_cdata.bge_rx_std_ring_map)
 1926                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
 1927                     sc->bge_cdata.bge_rx_std_ring_map);
 1928         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
 1929                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
 1930                     sc->bge_ldata.bge_rx_std_ring,
 1931                     sc->bge_cdata.bge_rx_std_ring_map);
 1932 
 1933         if (sc->bge_cdata.bge_rx_std_ring_tag)
 1934                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
 1935 
 1936         /* Destroy jumbo RX ring. */
 1937         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
 1938                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1939                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 1940 
 1941         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
 1942             sc->bge_ldata.bge_rx_jumbo_ring)
 1943                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1944                     sc->bge_ldata.bge_rx_jumbo_ring,
 1945                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 1946 
 1947         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
 1948                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
 1949 
 1950         /* Destroy RX return ring. */
 1951         if (sc->bge_cdata.bge_rx_return_ring_map)
 1952                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
 1953                     sc->bge_cdata.bge_rx_return_ring_map);
 1954 
 1955         if (sc->bge_cdata.bge_rx_return_ring_map &&
 1956             sc->bge_ldata.bge_rx_return_ring)
 1957                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
 1958                     sc->bge_ldata.bge_rx_return_ring,
 1959                     sc->bge_cdata.bge_rx_return_ring_map);
 1960 
 1961         if (sc->bge_cdata.bge_rx_return_ring_tag)
 1962                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
 1963 
 1964         /* Destroy TX ring. */
 1965         if (sc->bge_cdata.bge_tx_ring_map)
 1966                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
 1967                     sc->bge_cdata.bge_tx_ring_map);
 1968 
 1969         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
 1970                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
 1971                     sc->bge_ldata.bge_tx_ring,
 1972                     sc->bge_cdata.bge_tx_ring_map);
 1973 
 1974         if (sc->bge_cdata.bge_tx_ring_tag)
 1975                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
 1976 
 1977         /* Destroy status block. */
 1978         if (sc->bge_cdata.bge_status_map)
 1979                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
 1980                     sc->bge_cdata.bge_status_map);
 1981 
 1982         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
 1983                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
 1984                     sc->bge_ldata.bge_status_block,
 1985                     sc->bge_cdata.bge_status_map);
 1986 
 1987         if (sc->bge_cdata.bge_status_tag)
 1988                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
 1989 
 1990         /* Destroy statistics block. */
 1991         if (sc->bge_cdata.bge_stats_map)
 1992                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
 1993                     sc->bge_cdata.bge_stats_map);
 1994 
 1995         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
 1996                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
 1997                     sc->bge_ldata.bge_stats,
 1998                     sc->bge_cdata.bge_stats_map);
 1999 
 2000         if (sc->bge_cdata.bge_stats_tag)
 2001                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
 2002 
 2003         /* Destroy the parent tag. */
 2004         if (sc->bge_cdata.bge_parent_tag)
 2005                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
 2006 }
 2007 
 2008 static int
 2009 bge_dma_alloc(device_t dev)
 2010 {
 2011         struct bge_dmamap_arg ctx;
 2012         struct bge_softc *sc;
 2013         int i, error;
 2014 
 2015         sc = device_get_softc(dev);
 2016 
 2017         /*
 2018          * Allocate the parent bus DMA tag appropriate for PCI.
 2019          */
 2020         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 2021             1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2022             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 2023             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
 2024 
 2025         if (error != 0) {
 2026                 device_printf(sc->bge_dev,
 2027                     "could not allocate parent dma tag\n");
 2028                 return (ENOMEM);
 2029         }
 2030 
 2031         /*
 2032          * Create tag for mbufs.
 2033          */
 2034         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
 2035             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2036             NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
 2037             BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
 2038 
 2039         if (error) {
 2040                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2041                 return (ENOMEM);
 2042         }
 2043 
 2044         /* Create DMA maps for RX buffers. */
 2045         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 2046                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
 2047                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
 2048                 if (error) {
 2049                         device_printf(sc->bge_dev,
 2050                             "can't create DMA map for RX\n");
 2051                         return (ENOMEM);
 2052                 }
 2053         }
 2054 
 2055         /* Create DMA maps for TX buffers. */
 2056         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 2057                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
 2058                             &sc->bge_cdata.bge_tx_dmamap[i]);
 2059                 if (error) {
 2060                         device_printf(sc->bge_dev,
 2061                             "can't create DMA map for RX\n");
 2062                         return (ENOMEM);
 2063                 }
 2064         }
 2065 
 2066         /* Create tag for standard RX ring. */
 2067         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2068             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2069             NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
 2070             NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
 2071 
 2072         if (error) {
 2073                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2074                 return (ENOMEM);
 2075         }
 2076 
 2077         /* Allocate DMA'able memory for standard RX ring. */
 2078         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
 2079             (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
 2080             &sc->bge_cdata.bge_rx_std_ring_map);
 2081         if (error)
 2082                 return (ENOMEM);
 2083 
 2084         bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
 2085 
 2086         /* Load the address of the standard RX ring. */
 2087         ctx.bge_maxsegs = 1;
 2088         ctx.sc = sc;
 2089 
 2090         error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
 2091             sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
 2092             BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2093 
 2094         if (error)
 2095                 return (ENOMEM);
 2096 
 2097         sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
 2098 
 2099         /* Create tags for jumbo mbufs. */
 2100         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 2101                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2102                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2103                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
 2104                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
 2105                 if (error) {
 2106                         device_printf(sc->bge_dev,
 2107                             "could not allocate jumbo dma tag\n");
 2108                         return (ENOMEM);
 2109                 }
 2110 
 2111                 /* Create tag for jumbo RX ring. */
 2112                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2113                     PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2114                     NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
 2115                     NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
 2116 
 2117                 if (error) {
 2118                         device_printf(sc->bge_dev,
 2119                             "could not allocate jumbo ring dma tag\n");
 2120                         return (ENOMEM);
 2121                 }
 2122 
 2123                 /* Allocate DMA'able memory for jumbo RX ring. */
 2124                 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2125                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
 2126                     BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 2127                     &sc->bge_cdata.bge_rx_jumbo_ring_map);
 2128                 if (error)
 2129                         return (ENOMEM);
 2130 
 2131                 /* Load the address of the jumbo RX ring. */
 2132                 ctx.bge_maxsegs = 1;
 2133                 ctx.sc = sc;
 2134 
 2135                 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2136                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 2137                     sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
 2138                     bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2139 
 2140                 if (error)
 2141                         return (ENOMEM);
 2142 
 2143                 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
 2144 
 2145                 /* Create DMA maps for jumbo RX buffers. */
 2146                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 2147                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 2148                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 2149                         if (error) {
 2150                                 device_printf(sc->bge_dev,
 2151                                     "can't create DMA map for jumbo RX\n");
 2152                                 return (ENOMEM);
 2153                         }
 2154                 }
 2155 
 2156         }
 2157 
 2158         /* Create tag for RX return ring. */
 2159         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2160             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2161             NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
 2162             NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
 2163 
 2164         if (error) {
 2165                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2166                 return (ENOMEM);
 2167         }
 2168 
 2169         /* Allocate DMA'able memory for RX return ring. */
 2170         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
 2171             (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
 2172             &sc->bge_cdata.bge_rx_return_ring_map);
 2173         if (error)
 2174                 return (ENOMEM);
 2175 
 2176         bzero((char *)sc->bge_ldata.bge_rx_return_ring,
 2177             BGE_RX_RTN_RING_SZ(sc));
 2178 
 2179         /* Load the address of the RX return ring. */
 2180         ctx.bge_maxsegs = 1;
 2181         ctx.sc = sc;
 2182 
 2183         error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
 2184             sc->bge_cdata.bge_rx_return_ring_map,
 2185             sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
 2186             bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2187 
 2188         if (error)
 2189                 return (ENOMEM);
 2190 
 2191         sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
 2192 
 2193         /* Create tag for TX ring. */
 2194         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2195             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2196             NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
 2197             &sc->bge_cdata.bge_tx_ring_tag);
 2198 
 2199         if (error) {
 2200                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2201                 return (ENOMEM);
 2202         }
 2203 
 2204         /* Allocate DMA'able memory for TX ring. */
 2205         error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
 2206             (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
 2207             &sc->bge_cdata.bge_tx_ring_map);
 2208         if (error)
 2209                 return (ENOMEM);
 2210 
 2211         bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
 2212 
 2213         /* Load the address of the TX ring. */
 2214         ctx.bge_maxsegs = 1;
 2215         ctx.sc = sc;
 2216 
 2217         error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
 2218             sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
 2219             BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2220 
 2221         if (error)
 2222                 return (ENOMEM);
 2223 
 2224         sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
 2225 
 2226         /* Create tag for status block. */
 2227         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2228             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2229             NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
 2230             NULL, NULL, &sc->bge_cdata.bge_status_tag);
 2231 
 2232         if (error) {
 2233                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2234                 return (ENOMEM);
 2235         }
 2236 
 2237         /* Allocate DMA'able memory for status block. */
 2238         error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
 2239             (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
 2240             &sc->bge_cdata.bge_status_map);
 2241         if (error)
 2242                 return (ENOMEM);
 2243 
 2244         bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
 2245 
 2246         /* Load the address of the status block. */
 2247         ctx.sc = sc;
 2248         ctx.bge_maxsegs = 1;
 2249 
 2250         error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
 2251             sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
 2252             BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2253 
 2254         if (error)
 2255                 return (ENOMEM);
 2256 
 2257         sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
 2258 
 2259         /* Create tag for statistics block. */
 2260         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2261             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2262             NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
 2263             &sc->bge_cdata.bge_stats_tag);
 2264 
 2265         if (error) {
 2266                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2267                 return (ENOMEM);
 2268         }
 2269 
 2270         /* Allocate DMA'able memory for statistics block. */
 2271         error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
 2272             (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
 2273             &sc->bge_cdata.bge_stats_map);
 2274         if (error)
 2275                 return (ENOMEM);
 2276 
 2277         bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
 2278 
 2279         /* Load the address of the statstics block. */
 2280         ctx.sc = sc;
 2281         ctx.bge_maxsegs = 1;
 2282 
 2283         error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
 2284             sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
 2285             BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2286 
 2287         if (error)
 2288                 return (ENOMEM);
 2289 
 2290         sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
 2291 
 2292         return (0);
 2293 }
 2294 
 2295 #if __FreeBSD_version > 602105
 2296 /*
 2297  * Return true if this device has more than one port.
 2298  */
 2299 static int
 2300 bge_has_multiple_ports(struct bge_softc *sc)
 2301 {
 2302         device_t dev = sc->bge_dev;
 2303         u_int b, s, f, fscan;
 2304 
 2305         b = pci_get_bus(dev);
 2306         s = pci_get_slot(dev);
 2307         f = pci_get_function(dev);
 2308         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
 2309                 if (fscan != f && pci_find_bsf(b, s, fscan) != NULL)
 2310                         return (1);
 2311         return (0);
 2312 }
 2313 
 2314 /*
 2315  * Return true if MSI can be used with this device.
 2316  */
 2317 static int
 2318 bge_can_use_msi(struct bge_softc *sc)
 2319 {
 2320         int can_use_msi = 0;
 2321 
 2322         switch (sc->bge_asicrev) {
 2323         case BGE_ASICREV_BCM5714:
 2324                 /*
 2325                  * Apparently, MSI doesn't work when this chip is configured
 2326                  * in single-port mode.
 2327                  */
 2328                 if (bge_has_multiple_ports(sc))
 2329                         can_use_msi = 1;
 2330                 break;
 2331         case BGE_ASICREV_BCM5750:
 2332                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
 2333                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
 2334                         can_use_msi = 1;
 2335                 break;
 2336         case BGE_ASICREV_BCM5752:
 2337         case BGE_ASICREV_BCM5780:
 2338                 can_use_msi = 1;
 2339                 break;
 2340         }
 2341         return (can_use_msi);
 2342 }
 2343 #endif
 2344 
 2345 static int
 2346 bge_attach(device_t dev)
 2347 {
 2348         struct ifnet *ifp;
 2349         struct bge_softc *sc;
 2350         uint32_t hwcfg = 0;
 2351         u_char eaddr[ETHER_ADDR_LEN];
 2352         int error, reg, rid, trys;
 2353 
 2354         sc = device_get_softc(dev);
 2355         sc->bge_dev = dev;
 2356 
 2357         /*
 2358          * Map control/status registers.
 2359          */
 2360         pci_enable_busmaster(dev);
 2361 
 2362         rid = BGE_PCI_BAR0;
 2363         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 2364             RF_ACTIVE | PCI_RF_DENSE);
 2365 
 2366         if (sc->bge_res == NULL) {
 2367                 device_printf (sc->bge_dev, "couldn't map memory\n");
 2368                 error = ENXIO;
 2369                 goto fail;
 2370         }
 2371 
 2372         sc->bge_btag = rman_get_bustag(sc->bge_res);
 2373         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
 2374 
 2375         /* Save ASIC rev. */
 2376 
 2377         sc->bge_chipid =
 2378             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
 2379             BGE_PCIMISCCTL_ASICREV;
 2380         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
 2381         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
 2382 
 2383         /*
 2384          * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
 2385          * 5705 A0 and A1 chips.
 2386          */
 2387         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
 2388             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
 2389             sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
 2390             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
 2391                 sc->bge_flags |= BGE_FLAG_WIRESPEED;
 2392 
 2393         if (bge_has_eaddr(sc))
 2394                 sc->bge_flags |= BGE_FLAG_EADDR;
 2395 
 2396         /* Save chipset family. */
 2397         switch (sc->bge_asicrev) {
 2398         case BGE_ASICREV_BCM5700:
 2399         case BGE_ASICREV_BCM5701:
 2400         case BGE_ASICREV_BCM5703:
 2401         case BGE_ASICREV_BCM5704:
 2402                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
 2403                 break;
 2404         case BGE_ASICREV_BCM5714_A0:
 2405         case BGE_ASICREV_BCM5780:
 2406         case BGE_ASICREV_BCM5714:
 2407                 sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
 2408                 /* FALLTHRU */
 2409         case BGE_ASICREV_BCM5750:
 2410         case BGE_ASICREV_BCM5752:
 2411         case BGE_ASICREV_BCM5755:
 2412         case BGE_ASICREV_BCM5787:
 2413         case BGE_ASICREV_BCM5906:
 2414                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
 2415                 /* FALLTHRU */
 2416         case BGE_ASICREV_BCM5705:
 2417                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
 2418                 break;
 2419         }
 2420 
 2421         /* Set various bug flags. */
 2422         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
 2423             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
 2424                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
 2425         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
 2426             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
 2427                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
 2428         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
 2429                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
 2430         if (BGE_IS_5705_PLUS(sc) &&
 2431             !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
 2432                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2433                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 2434                         if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
 2435                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
 2436                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 2437                         sc->bge_flags |= BGE_FLAG_BER_BUG;
 2438         }
 2439 
 2440         /*
 2441          * Check if this is a PCI-X or PCI Express device.
 2442          */
 2443 #if __FreeBSD_version > 602101
 2444         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
 2445                 /*
 2446                  * Found a PCI Express capabilities register, this
 2447                  * must be a PCI Express device.
 2448                  */
 2449                 if (reg != 0)
 2450                         sc->bge_flags |= BGE_FLAG_PCIE;
 2451         } else if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
 2452                 if (reg != 0)
 2453                         sc->bge_flags |= BGE_FLAG_PCIX;
 2454         }
 2455                         
 2456 #else
 2457         if (BGE_IS_5705_PLUS(sc)) {
 2458                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
 2459                 if ((reg & 0xFF) == BGE_PCIE_CAPID)
 2460                         sc->bge_flags |= BGE_FLAG_PCIE;
 2461         } else {
 2462                 /*
 2463                  * Check if the device is in PCI-X Mode.
 2464                  * (This bit is not valid on PCI Express controllers.)
 2465                  */
 2466                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
 2467                     BGE_PCISTATE_PCI_BUSMODE) == 0)
 2468                         sc->bge_flags |= BGE_FLAG_PCIX;
 2469         }
 2470 #endif
 2471 
 2472 #if __FreeBSD_version > 602105
 2473         {
 2474                 int msicount;
 2475 
 2476                 /*
 2477                  * Allocate the interrupt, using MSI if possible.  These devices
 2478                  * support 8 MSI messages, but only the first one is used in
 2479                  * normal operation.
 2480                  */
 2481                 if (bge_can_use_msi(sc)) {
 2482                         msicount = pci_msi_count(dev);
 2483                         if (msicount > 1)
 2484                                 msicount = 1;
 2485                 } else
 2486                         msicount = 0;
 2487                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
 2488                         rid = 1;
 2489                         sc->bge_flags |= BGE_FLAG_MSI;
 2490                 } else
 2491                         rid = 0;
 2492         }
 2493 #else
 2494         rid = 0;
 2495 #endif
 2496 
 2497         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 2498             RF_SHAREABLE | RF_ACTIVE);
 2499 
 2500         if (sc->bge_irq == NULL) {
 2501                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
 2502                 error = ENXIO;
 2503                 goto fail;
 2504         }
 2505 
 2506         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
 2507 
 2508         /* Try to reset the chip. */
 2509         if (bge_reset(sc)) {
 2510                 device_printf(sc->bge_dev, "chip reset failed\n");
 2511                 error = ENXIO;
 2512                 goto fail;
 2513         }
 2514 
 2515         sc->bge_asf_mode = 0;
 2516         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
 2517             == BGE_MAGIC_NUMBER)) {
 2518                 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
 2519                     & BGE_HWCFG_ASF) {
 2520                         sc->bge_asf_mode |= ASF_ENABLE;
 2521                         sc->bge_asf_mode |= ASF_STACKUP;
 2522                         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
 2523                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
 2524                         }
 2525                 }
 2526         }
 2527 
 2528         /* Try to reset the chip again the nice way. */
 2529         bge_stop_fw(sc);
 2530         bge_sig_pre_reset(sc, BGE_RESET_STOP);
 2531         if (bge_reset(sc)) {
 2532                 device_printf(sc->bge_dev, "chip reset failed\n");
 2533                 error = ENXIO;
 2534                 goto fail;
 2535         }
 2536 
 2537         bge_sig_legacy(sc, BGE_RESET_STOP);
 2538         bge_sig_post_reset(sc, BGE_RESET_STOP);
 2539 
 2540         if (bge_chipinit(sc)) {
 2541                 device_printf(sc->bge_dev, "chip initialization failed\n");
 2542                 error = ENXIO;
 2543                 goto fail;
 2544         }
 2545 
 2546         error = bge_get_eaddr(sc, eaddr);
 2547         if (error) {
 2548                 device_printf(sc->bge_dev,
 2549                     "failed to read station address\n");
 2550                 error = ENXIO;
 2551                 goto fail;
 2552         }
 2553 
 2554         /* 5705 limits RX return ring to 512 entries. */
 2555         if (BGE_IS_5705_PLUS(sc))
 2556                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
 2557         else
 2558                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 2559 
 2560         if (bge_dma_alloc(dev)) {
 2561                 device_printf(sc->bge_dev,
 2562                     "failed to allocate DMA resources\n");
 2563                 error = ENXIO;
 2564                 goto fail;
 2565         }
 2566 
 2567         /* Set default tuneable values. */
 2568         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
 2569         sc->bge_rx_coal_ticks = 150;
 2570         sc->bge_tx_coal_ticks = 150;
 2571         sc->bge_rx_max_coal_bds = 10;
 2572         sc->bge_tx_max_coal_bds = 10;
 2573 
 2574         /* Set up ifnet structure */
 2575         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
 2576         if (ifp == NULL) {
 2577                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
 2578                 error = ENXIO;
 2579                 goto fail;
 2580         }
 2581         ifp->if_softc = sc;
 2582         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2583         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2584         ifp->if_ioctl = bge_ioctl;
 2585         ifp->if_start = bge_start;
 2586         ifp->if_init = bge_init;
 2587         ifp->if_mtu = ETHERMTU;
 2588         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
 2589         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 2590         IFQ_SET_READY(&ifp->if_snd);
 2591         ifp->if_hwassist = BGE_CSUM_FEATURES;
 2592         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
 2593             IFCAP_VLAN_MTU;
 2594 #ifdef IFCAP_VLAN_HWCSUM
 2595         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
 2596 #endif
 2597         ifp->if_capenable = ifp->if_capabilities;
 2598 #ifdef DEVICE_POLLING
 2599         ifp->if_capabilities |= IFCAP_POLLING;
 2600 #endif
 2601 
 2602         /*
 2603          * 5700 B0 chips do not support checksumming correctly due
 2604          * to hardware bugs.
 2605          */
 2606         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
 2607                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
 2608                 ifp->if_capenable &= IFCAP_HWCSUM;
 2609                 ifp->if_hwassist = 0;
 2610         }
 2611 
 2612         /*
 2613          * Figure out what sort of media we have by checking the
 2614          * hardware config word in the first 32k of NIC internal memory,
 2615          * or fall back to examining the EEPROM if necessary.
 2616          * Note: on some BCM5700 cards, this value appears to be unset.
 2617          * If that's the case, we have to rely on identifying the NIC
 2618          * by its PCI subsystem ID, as we do below for the SysKonnect
 2619          * SK-9D41.
 2620          */
 2621         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
 2622                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
 2623         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
 2624             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 2625                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
 2626                     sizeof(hwcfg))) {
 2627                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
 2628                         error = ENXIO;
 2629                         goto fail;
 2630                 }
 2631                 hwcfg = ntohl(hwcfg);
 2632         }
 2633 
 2634         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
 2635                 sc->bge_flags |= BGE_FLAG_TBI;
 2636 
 2637         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
 2638         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
 2639                 sc->bge_flags |= BGE_FLAG_TBI;
 2640 
 2641         if (sc->bge_flags & BGE_FLAG_TBI) {
 2642                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
 2643                     bge_ifmedia_sts);
 2644                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
 2645                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
 2646                     0, NULL);
 2647                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 2648                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
 2649                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
 2650         } else {
 2651                 /*
 2652                  * Do transceiver setup and tell the firmware the
 2653                  * driver is down so we can try to get access the
 2654                  * probe if ASF is running.  Retry a couple of times
 2655                  * if we get a conflict with the ASF firmware accessing
 2656                  * the PHY.
 2657                  */
 2658                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2659 again:
 2660                 bge_asf_driver_up(sc);
 2661 
 2662                 trys = 0;
 2663                 if (mii_phy_probe(dev, &sc->bge_miibus,
 2664                     bge_ifmedia_upd, bge_ifmedia_sts)) {
 2665                         if (trys++ < 4) {
 2666                                 device_printf(sc->bge_dev, "Try again\n");
 2667                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
 2668                                     BMCR_RESET);
 2669                                 goto again;
 2670                         }
 2671 
 2672                         device_printf(sc->bge_dev, "MII without any PHY!\n");
 2673                         error = ENXIO;
 2674                         goto fail;
 2675                 }
 2676 
 2677                 /*
 2678                  * Now tell the firmware we are going up after probing the PHY
 2679                  */
 2680                 if (sc->bge_asf_mode & ASF_STACKUP)
 2681                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2682         }
 2683 
 2684         /*
 2685          * When using the BCM5701 in PCI-X mode, data corruption has
 2686          * been observed in the first few bytes of some received packets.
 2687          * Aligning the packet buffer in memory eliminates the corruption.
 2688          * Unfortunately, this misaligns the packet payloads.  On platforms
 2689          * which do not support unaligned accesses, we will realign the
 2690          * payloads by copying the received packets.
 2691          */
 2692         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 2693             sc->bge_flags & BGE_FLAG_PCIX)
 2694                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
 2695 
 2696         /*
 2697          * Call MI attach routine.
 2698          */
 2699         ether_ifattach(ifp, eaddr);
 2700         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
 2701 
 2702         /*
 2703          * Hookup IRQ last.
 2704          */
 2705 #if __FreeBSD_version > 700030
 2706         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2707            NULL, bge_intr, sc, &sc->bge_intrhand);
 2708 #else
 2709         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2710            bge_intr, sc, &sc->bge_intrhand);
 2711 #endif
 2712 
 2713         if (error) {
 2714                 bge_detach(dev);
 2715                 device_printf(sc->bge_dev, "couldn't set up irq\n");
 2716         }
 2717 
 2718         bge_add_sysctls(sc);
 2719 
 2720         return (0);
 2721 
 2722 fail:
 2723         bge_release_resources(sc);
 2724 
 2725         return (error);
 2726 }
 2727 
 2728 static int
 2729 bge_detach(device_t dev)
 2730 {
 2731         struct bge_softc *sc;
 2732         struct ifnet *ifp;
 2733 
 2734         sc = device_get_softc(dev);
 2735         ifp = sc->bge_ifp;
 2736 
 2737 #ifdef DEVICE_POLLING
 2738         if (ifp->if_capenable & IFCAP_POLLING)
 2739                 ether_poll_deregister(ifp);
 2740 #endif
 2741 
 2742         BGE_LOCK(sc);
 2743         bge_stop(sc);
 2744         bge_reset(sc);
 2745         BGE_UNLOCK(sc);
 2746 
 2747         callout_drain(&sc->bge_stat_ch);
 2748 
 2749         ether_ifdetach(ifp);
 2750 
 2751         if (sc->bge_flags & BGE_FLAG_TBI) {
 2752                 ifmedia_removeall(&sc->bge_ifmedia);
 2753         } else {
 2754                 bus_generic_detach(dev);
 2755                 device_delete_child(dev, sc->bge_miibus);
 2756         }
 2757 
 2758         bge_release_resources(sc);
 2759 
 2760         return (0);
 2761 }
 2762 
 2763 static void
 2764 bge_release_resources(struct bge_softc *sc)
 2765 {
 2766         device_t dev;
 2767 
 2768         dev = sc->bge_dev;
 2769 
 2770         if (sc->bge_intrhand != NULL)
 2771                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
 2772 
 2773         if (sc->bge_irq != NULL)
 2774                 bus_release_resource(dev, SYS_RES_IRQ,
 2775                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
 2776 
 2777 #if __FreeBSD_version > 602105
 2778         if (sc->bge_flags & BGE_FLAG_MSI)
 2779                 pci_release_msi(dev);
 2780 #endif
 2781 
 2782         if (sc->bge_res != NULL)
 2783                 bus_release_resource(dev, SYS_RES_MEMORY,
 2784                     BGE_PCI_BAR0, sc->bge_res);
 2785 
 2786         if (sc->bge_ifp != NULL)
 2787                 if_free(sc->bge_ifp);
 2788 
 2789         bge_dma_free(sc);
 2790 
 2791         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
 2792                 BGE_LOCK_DESTROY(sc);
 2793 }
 2794 
 2795 static int
 2796 bge_reset(struct bge_softc *sc)
 2797 {
 2798         device_t dev;
 2799         uint32_t cachesize, command, pcistate, reset, val;
 2800         void (*write_op)(struct bge_softc *, int, int);
 2801         int i;
 2802 
 2803         dev = sc->bge_dev;
 2804 
 2805         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
 2806             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 2807                 if (sc->bge_flags & BGE_FLAG_PCIE)
 2808                         write_op = bge_writemem_direct;
 2809                 else
 2810                         write_op = bge_writemem_ind;
 2811         } else
 2812                 write_op = bge_writereg_ind;
 2813 
 2814         /* Save some important PCI state. */
 2815         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
 2816         command = pci_read_config(dev, BGE_PCI_CMD, 4);
 2817         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
 2818 
 2819         pci_write_config(dev, BGE_PCI_MISC_CTL,
 2820             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 2821             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 2822 
 2823         /* Disable fastboot on controllers that support it. */
 2824         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
 2825             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2826             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 2827                 if (bootverbose)
 2828                         device_printf(sc->bge_dev, "Disabling fastboot\n");
 2829                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
 2830         }
 2831 
 2832         /*
 2833          * Write the magic number to SRAM at offset 0xB50.
 2834          * When firmware finishes its initialization it will
 2835          * write ~BGE_MAGIC_NUMBER to the same location.
 2836          */
 2837         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
 2838 
 2839         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
 2840 
 2841         /* XXX: Broadcom Linux driver. */
 2842         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2843                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
 2844                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
 2845                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 2846                         /* Prevent PCIE link training during global reset */
 2847                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
 2848                         reset |= 1 << 29;
 2849                 }
 2850         }
 2851 
 2852         /* 
 2853          * Set GPHY Power Down Override to leave GPHY
 2854          * powered up in D0 uninitialized.
 2855          */
 2856         if (BGE_IS_5705_PLUS(sc))
 2857                 reset |= 0x04000000;
 2858 
 2859         /* Issue global reset */
 2860         write_op(sc, BGE_MISC_CFG, reset);
 2861 
 2862         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 2863                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 2864                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
 2865                     val | BGE_VCPU_STATUS_DRV_RESET);
 2866                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
 2867                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
 2868                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
 2869         }
 2870 
 2871         DELAY(1000);
 2872 
 2873         /* XXX: Broadcom Linux driver. */
 2874         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2875                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
 2876                         DELAY(500000); /* wait for link training to complete */
 2877                         val = pci_read_config(dev, 0xC4, 4);
 2878                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
 2879                 }
 2880                 /*
 2881                  * Set PCIE max payload size to 128 bytes and clear error
 2882                  * status.
 2883                  */
 2884                 pci_write_config(dev, 0xD8, 0xF5000, 4);
 2885         }
 2886 
 2887         /* Reset some of the PCI state that got zapped by reset. */
 2888         pci_write_config(dev, BGE_PCI_MISC_CTL,
 2889             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 2890             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 2891         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
 2892         pci_write_config(dev, BGE_PCI_CMD, command, 4);
 2893         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 2894 
 2895         /* Re-enable MSI, if neccesary, and enable the memory arbiter. */
 2896         if (BGE_IS_5714_FAMILY(sc)) {
 2897                 /* This chip disables MSI on reset. */
 2898                 if (sc->bge_flags & BGE_FLAG_MSI) {
 2899                         val = pci_read_config(dev, BGE_PCI_MSI_CTL, 2);
 2900                         pci_write_config(dev, BGE_PCI_MSI_CTL,
 2901                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
 2902                         val = CSR_READ_4(sc, BGE_MSI_MODE);
 2903                         CSR_WRITE_4(sc, BGE_MSI_MODE,
 2904                             val | BGE_MSIMODE_ENABLE);
 2905                 }
 2906                 val = CSR_READ_4(sc, BGE_MARB_MODE);
 2907                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
 2908         } else
 2909                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 2910 
 2911         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 2912                 for (i = 0; i < BGE_TIMEOUT; i++) {
 2913                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 2914                         if (val & BGE_VCPU_STATUS_INIT_DONE)
 2915                                 break;
 2916                         DELAY(100);
 2917                 }
 2918                 if (i == BGE_TIMEOUT) {
 2919                         device_printf(sc->bge_dev, "reset timed out\n");
 2920                         return (1);
 2921                 }
 2922         } else {
 2923                 /*
 2924                  * Poll until we see the 1's complement of the magic number.
 2925                  * This indicates that the firmware initialization is complete.
 2926                  * We expect this to fail if no chip containing the Ethernet
 2927                  * address is fitted though.
 2928                  */
 2929                 for (i = 0; i < BGE_TIMEOUT; i++) {
 2930                         DELAY(10);
 2931                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
 2932                         if (val == ~BGE_MAGIC_NUMBER)
 2933                                 break;
 2934                 }
 2935 
 2936                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
 2937                         device_printf(sc->bge_dev, "firmware handshake timed out, "
 2938                             "found 0x%08x\n", val);
 2939         }
 2940 
 2941         /*
 2942          * XXX Wait for the value of the PCISTATE register to
 2943          * return to its original pre-reset state. This is a
 2944          * fairly good indicator of reset completion. If we don't
 2945          * wait for the reset to fully complete, trying to read
 2946          * from the device's non-PCI registers may yield garbage
 2947          * results.
 2948          */
 2949         for (i = 0; i < BGE_TIMEOUT; i++) {
 2950                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
 2951                         break;
 2952                 DELAY(10);
 2953         }
 2954 
 2955         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2956                 reset = bge_readmem_ind(sc, 0x7C00);
 2957                 bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
 2958         }
 2959 
 2960         /* Fix up byte swapping. */
 2961         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
 2962             BGE_MODECTL_BYTESWAP_DATA);
 2963 
 2964         /* Tell the ASF firmware we are up */
 2965         if (sc->bge_asf_mode & ASF_STACKUP)
 2966                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2967 
 2968         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
 2969 
 2970         /*
 2971          * The 5704 in TBI mode apparently needs some special
 2972          * adjustment to insure the SERDES drive level is set
 2973          * to 1.2V.
 2974          */
 2975         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
 2976             sc->bge_flags & BGE_FLAG_TBI) {
 2977                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
 2978                 val = (val & ~0xFFF) | 0x880;
 2979                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
 2980         }
 2981 
 2982         /* XXX: Broadcom Linux driver. */
 2983         if (sc->bge_flags & BGE_FLAG_PCIE &&
 2984             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 2985                 val = CSR_READ_4(sc, 0x7C00);
 2986                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
 2987         }
 2988         DELAY(10000);
 2989 
 2990         return(0);
 2991 }
 2992 
 2993 /*
 2994  * Frame reception handling. This is called if there's a frame
 2995  * on the receive return list.
 2996  *
 2997  * Note: we have to be able to handle two possibilities here:
 2998  * 1) the frame is from the jumbo receive ring
 2999  * 2) the frame is from the standard receive ring
 3000  */
 3001 
 3002 static void
 3003 bge_rxeof(struct bge_softc *sc)
 3004 {
 3005         struct ifnet *ifp;
 3006         int stdcnt = 0, jumbocnt = 0;
 3007 
 3008         BGE_LOCK_ASSERT(sc);
 3009 
 3010         /* Nothing to do. */
 3011         if (sc->bge_rx_saved_considx ==
 3012             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
 3013                 return;
 3014 
 3015         ifp = sc->bge_ifp;
 3016 
 3017         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 3018             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 3019         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 3020             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
 3021         if (BGE_IS_JUMBO_CAPABLE(sc))
 3022                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 3023                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTREAD);
 3024 
 3025         while(sc->bge_rx_saved_considx !=
 3026             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
 3027                 struct bge_rx_bd        *cur_rx;
 3028                 uint32_t                rxidx;
 3029                 struct mbuf             *m = NULL;
 3030                 uint16_t                vlan_tag = 0;
 3031                 int                     have_tag = 0;
 3032 
 3033 #ifdef DEVICE_POLLING
 3034                 if (ifp->if_capenable & IFCAP_POLLING) {
 3035                         if (sc->rxcycles <= 0)
 3036                                 break;
 3037                         sc->rxcycles--;
 3038                 }
 3039 #endif
 3040 
 3041                 cur_rx =
 3042             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
 3043 
 3044                 rxidx = cur_rx->bge_idx;
 3045                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
 3046 
 3047                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
 3048                         have_tag = 1;
 3049                         vlan_tag = cur_rx->bge_vlan_tag;
 3050                 }
 3051 
 3052                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
 3053                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 3054                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 3055                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
 3056                             BUS_DMASYNC_POSTREAD);
 3057                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 3058                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
 3059                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
 3060                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
 3061                         jumbocnt++;
 3062                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 3063                                 ifp->if_ierrors++;
 3064                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
 3065                                 continue;
 3066                         }
 3067                         if (bge_newbuf_jumbo(sc,
 3068                             sc->bge_jumbo, NULL) == ENOBUFS) {
 3069                                 ifp->if_ierrors++;
 3070                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
 3071                                 continue;
 3072                         }
 3073                 } else {
 3074                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 3075                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 3076                             sc->bge_cdata.bge_rx_std_dmamap[rxidx],
 3077                             BUS_DMASYNC_POSTREAD);
 3078                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 3079                             sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
 3080                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
 3081                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
 3082                         stdcnt++;
 3083                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 3084                                 ifp->if_ierrors++;
 3085                                 bge_newbuf_std(sc, sc->bge_std, m);
 3086                                 continue;
 3087                         }
 3088                         if (bge_newbuf_std(sc, sc->bge_std,
 3089                             NULL) == ENOBUFS) {
 3090                                 ifp->if_ierrors++;
 3091                                 bge_newbuf_std(sc, sc->bge_std, m);
 3092                                 continue;
 3093                         }
 3094                 }
 3095 
 3096                 ifp->if_ipackets++;
 3097 #ifndef __NO_STRICT_ALIGNMENT
 3098                 /*
 3099                  * For architectures with strict alignment we must make sure
 3100                  * the payload is aligned.
 3101                  */
 3102                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
 3103                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
 3104                             cur_rx->bge_len);
 3105                         m->m_data += ETHER_ALIGN;
 3106                 }
 3107 #endif
 3108                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
 3109                 m->m_pkthdr.rcvif = ifp;
 3110 
 3111                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 3112                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 3113                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 3114                                 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
 3115                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 3116                         }
 3117                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
 3118                             m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
 3119                                 m->m_pkthdr.csum_data =
 3120                                     cur_rx->bge_tcp_udp_csum;
 3121                                 m->m_pkthdr.csum_flags |=
 3122                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 3123                         }
 3124                 }
 3125 
 3126                 /*
 3127                  * If we received a packet with a vlan tag,
 3128                  * attach that information to the packet.
 3129                  */
 3130                 if (have_tag) {
 3131 #if __FreeBSD_version > 700022
 3132                         m->m_pkthdr.ether_vtag = vlan_tag;
 3133                         m->m_flags |= M_VLANTAG;
 3134 #else
 3135                         VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
 3136                         if (m == NULL)
 3137                                 continue;
 3138 #endif
 3139                 }
 3140 
 3141                 BGE_UNLOCK(sc);
 3142                 (*ifp->if_input)(ifp, m);
 3143                 BGE_LOCK(sc);
 3144         }
 3145 
 3146         if (stdcnt > 0)
 3147                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 3148                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 3149 
 3150         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0)
 3151                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 3152                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 3153 
 3154         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
 3155         if (stdcnt)
 3156                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
 3157         if (jumbocnt)
 3158                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
 3159 #ifdef notyet
 3160         /*
 3161          * This register wraps very quickly under heavy packet drops.
 3162          * If you need correct statistics, you can enable this check.
 3163          */
 3164         if (BGE_IS_5705_PLUS(sc))
 3165                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 3166 #endif
 3167 }
 3168 
 3169 static void
 3170 bge_txeof(struct bge_softc *sc)
 3171 {
 3172         struct bge_tx_bd *cur_tx = NULL;
 3173         struct ifnet *ifp;
 3174 
 3175         BGE_LOCK_ASSERT(sc);
 3176 
 3177         /* Nothing to do. */
 3178         if (sc->bge_tx_saved_considx ==
 3179             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
 3180                 return;
 3181 
 3182         ifp = sc->bge_ifp;
 3183 
 3184         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 3185             sc->bge_cdata.bge_tx_ring_map,
 3186             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 3187         /*
 3188          * Go through our tx ring and free mbufs for those
 3189          * frames that have been sent.
 3190          */
 3191         while (sc->bge_tx_saved_considx !=
 3192             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
 3193                 uint32_t                idx = 0;
 3194 
 3195                 idx = sc->bge_tx_saved_considx;
 3196                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
 3197                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
 3198                         ifp->if_opackets++;
 3199                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
 3200                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 3201                             sc->bge_cdata.bge_tx_dmamap[idx],
 3202                             BUS_DMASYNC_POSTWRITE);
 3203                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 3204                             sc->bge_cdata.bge_tx_dmamap[idx]);
 3205                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
 3206                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
 3207                 }
 3208                 sc->bge_txcnt--;
 3209                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
 3210         }
 3211 
 3212         if (cur_tx != NULL)
 3213                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3214         if (sc->bge_txcnt == 0)
 3215                 sc->bge_timer = 0;
 3216 }
 3217 
 3218 #ifdef DEVICE_POLLING
 3219 static void
 3220 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3221 {
 3222         struct bge_softc *sc = ifp->if_softc;
 3223         uint32_t statusword;
 3224         
 3225         BGE_LOCK(sc);
 3226         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3227                 BGE_UNLOCK(sc);
 3228                 return;
 3229         }
 3230 
 3231         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3232             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
 3233 
 3234         statusword = atomic_readandclear_32(
 3235             &sc->bge_ldata.bge_status_block->bge_status);
 3236 
 3237         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3238             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
 3239 
 3240         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
 3241         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
 3242                 sc->bge_link_evt++;
 3243 
 3244         if (cmd == POLL_AND_CHECK_STATUS)
 3245                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 3246                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 3247                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
 3248                         bge_link_upd(sc);
 3249 
 3250         sc->rxcycles = count;
 3251         bge_rxeof(sc);
 3252         bge_txeof(sc);
 3253         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3254                 bge_start_locked(ifp);
 3255 
 3256         BGE_UNLOCK(sc);
 3257 }
 3258 #endif /* DEVICE_POLLING */
 3259 
 3260 static void
 3261 bge_intr(void *xsc)
 3262 {
 3263         struct bge_softc *sc;
 3264         struct ifnet *ifp;
 3265         uint32_t statusword;
 3266 
 3267         sc = xsc;
 3268 
 3269         BGE_LOCK(sc);
 3270 
 3271         ifp = sc->bge_ifp;
 3272 
 3273 #ifdef DEVICE_POLLING
 3274         if (ifp->if_capenable & IFCAP_POLLING) {
 3275                 BGE_UNLOCK(sc);
 3276                 return;
 3277         }
 3278 #endif
 3279 
 3280         /*
 3281          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
 3282          * disable interrupts by writing nonzero like we used to, since with
 3283          * our current organization this just gives complications and
 3284          * pessimizations for re-enabling interrupts.  We used to have races
 3285          * instead of the necessary complications.  Disabling interrupts
 3286          * would just reduce the chance of a status update while we are
 3287          * running (by switching to the interrupt-mode coalescence
 3288          * parameters), but this chance is already very low so it is more
 3289          * efficient to get another interrupt than prevent it.
 3290          *
 3291          * We do the ack first to ensure another interrupt if there is a
 3292          * status update after the ack.  We don't check for the status
 3293          * changing later because it is more efficient to get another
 3294          * interrupt than prevent it, not quite as above (not checking is
 3295          * a smaller optimization than not toggling the interrupt enable,
 3296          * since checking doesn't involve PCI accesses and toggling require
 3297          * the status check).  So toggling would probably be a pessimization
 3298          * even with MSI.  It would only be needed for using a task queue.
 3299          */
 3300         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 3301 
 3302         /*
 3303          * Do the mandatory PCI flush as well as get the link status.
 3304          */
 3305         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
 3306 
 3307         /* Make sure the descriptor ring indexes are coherent. */
 3308         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3309             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
 3310         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3311             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
 3312 
 3313         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 3314             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 3315             statusword || sc->bge_link_evt)
 3316                 bge_link_upd(sc);
 3317 
 3318         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3319                 /* Check RX return ring producer/consumer. */
 3320                 bge_rxeof(sc);
 3321 
 3322                 /* Check TX ring producer/consumer. */
 3323                 bge_txeof(sc);
 3324         }
 3325 
 3326         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 3327             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3328                 bge_start_locked(ifp);
 3329 
 3330         BGE_UNLOCK(sc);
 3331 }
 3332 
 3333 static void
 3334 bge_asf_driver_up(struct bge_softc *sc)
 3335 {
 3336         if (sc->bge_asf_mode & ASF_STACKUP) {
 3337                 /* Send ASF heartbeat aprox. every 2s */
 3338                 if (sc->bge_asf_count)
 3339                         sc->bge_asf_count --;
 3340                 else {
 3341                         sc->bge_asf_count = 5;
 3342                         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
 3343                             BGE_FW_DRV_ALIVE);
 3344                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
 3345                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
 3346                         CSR_WRITE_4(sc, BGE_CPU_EVENT,
 3347                             CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
 3348                 }
 3349         }
 3350 }
 3351 
 3352 static void
 3353 bge_tick(void *xsc)
 3354 {
 3355         struct bge_softc *sc = xsc;
 3356         struct mii_data *mii = NULL;
 3357 
 3358         BGE_LOCK_ASSERT(sc);
 3359 
 3360         /* Synchronize with possible callout reset/stop. */
 3361         if (callout_pending(&sc->bge_stat_ch) ||
 3362             !callout_active(&sc->bge_stat_ch))
 3363                 return;
 3364 
 3365         if (BGE_IS_5705_PLUS(sc))
 3366                 bge_stats_update_regs(sc);
 3367         else
 3368                 bge_stats_update(sc);
 3369 
 3370         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 3371                 mii = device_get_softc(sc->bge_miibus);
 3372                 /*
 3373                  * Do not touch PHY if we have link up. This could break
 3374                  * IPMI/ASF mode or produce extra input errors
 3375                  * (extra errors was reported for bcm5701 & bcm5704).
 3376                  */
 3377                 if (!sc->bge_link)
 3378                         mii_tick(mii);
 3379         } else {
 3380                 /*
 3381                  * Since in TBI mode auto-polling can't be used we should poll
 3382                  * link status manually. Here we register pending link event
 3383                  * and trigger interrupt.
 3384                  */
 3385 #ifdef DEVICE_POLLING
 3386                 /* In polling mode we poll link state in bge_poll(). */
 3387                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
 3388 #endif
 3389                 {
 3390                 sc->bge_link_evt++;
 3391                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 3392                 }
 3393         }
 3394 
 3395         bge_asf_driver_up(sc);
 3396         bge_watchdog(sc);
 3397 
 3398         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 3399 }
 3400 
 3401 static void
 3402 bge_stats_update_regs(struct bge_softc *sc)
 3403 {
 3404         struct ifnet *ifp;
 3405 
 3406         ifp = sc->bge_ifp;
 3407 
 3408         ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
 3409             offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
 3410 
 3411         ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 3412 }
 3413 
 3414 static void
 3415 bge_stats_update(struct bge_softc *sc)
 3416 {
 3417         struct ifnet *ifp;
 3418         bus_size_t stats;
 3419         uint32_t cnt;   /* current register value */
 3420 
 3421         ifp = sc->bge_ifp;
 3422 
 3423         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
 3424 
 3425 #define READ_STAT(sc, stats, stat) \
 3426         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
 3427 
 3428         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
 3429         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
 3430         sc->bge_tx_collisions = cnt;
 3431 
 3432         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
 3433         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
 3434         sc->bge_rx_discards = cnt;
 3435 
 3436         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
 3437         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
 3438         sc->bge_tx_discards = cnt;
 3439 
 3440 #undef  READ_STAT
 3441 }
 3442 
 3443 /*
 3444  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
 3445  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
 3446  * but when such padded frames employ the bge IP/TCP checksum offload,
 3447  * the hardware checksum assist gives incorrect results (possibly
 3448  * from incorporating its own padding into the UDP/TCP checksum; who knows).
 3449  * If we pad such runts with zeros, the onboard checksum comes out correct.
 3450  */
 3451 static __inline int
 3452 bge_cksum_pad(struct mbuf *m)
 3453 {
 3454         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
 3455         struct mbuf *last;
 3456 
 3457         /* If there's only the packet-header and we can pad there, use it. */
 3458         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
 3459             M_TRAILINGSPACE(m) >= padlen) {
 3460                 last = m;
 3461         } else {
 3462                 /*
 3463                  * Walk packet chain to find last mbuf. We will either
 3464                  * pad there, or append a new mbuf and pad it.
 3465                  */
 3466                 for (last = m; last->m_next != NULL; last = last->m_next);
 3467                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
 3468                         /* Allocate new empty mbuf, pad it. Compact later. */
 3469                         struct mbuf *n;
 3470 
 3471                         MGET(n, M_DONTWAIT, MT_DATA);
 3472                         if (n == NULL)
 3473                                 return (ENOBUFS);
 3474                         n->m_len = 0;
 3475                         last->m_next = n;
 3476                         last = n;
 3477                 }
 3478         }
 3479         
 3480         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
 3481         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
 3482         last->m_len += padlen;
 3483         m->m_pkthdr.len += padlen;
 3484 
 3485         return (0);
 3486 }
 3487 
 3488 /*
 3489  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
 3490  * pointers to descriptors.
 3491  */
 3492 static int
 3493 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
 3494 {
 3495         bus_dma_segment_t       segs[BGE_NSEG_NEW];
 3496         bus_dmamap_t            map;
 3497         struct bge_tx_bd        *d;
 3498         struct mbuf             *m = *m_head;
 3499         uint32_t                idx = *txidx;
 3500         uint16_t                csum_flags;
 3501         int                     nsegs, i, error;
 3502 
 3503         csum_flags = 0;
 3504         if (m->m_pkthdr.csum_flags) {
 3505                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 3506                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
 3507                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
 3508                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
 3509                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
 3510                             (error = bge_cksum_pad(m)) != 0) {
 3511                                 m_freem(m);
 3512                                 *m_head = NULL;
 3513                                 return (error);
 3514                         }
 3515                 }
 3516                 if (m->m_flags & M_LASTFRAG)
 3517                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
 3518                 else if (m->m_flags & M_FRAG)
 3519                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
 3520         }
 3521 
 3522         map = sc->bge_cdata.bge_tx_dmamap[idx];
 3523         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m, segs,
 3524             &nsegs, BUS_DMA_NOWAIT);
 3525         if (error == EFBIG) {
 3526                 m = m_defrag(m, M_DONTWAIT);
 3527                 if (m == NULL) {
 3528                         m_freem(*m_head);
 3529                         *m_head = NULL;
 3530                         return (ENOBUFS);
 3531                 }
 3532                 *m_head = m;
 3533                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m,
 3534                     segs, &nsegs, BUS_DMA_NOWAIT);
 3535                 if (error) {
 3536                         m_freem(m);
 3537                         *m_head = NULL;
 3538                         return (error);
 3539                 }
 3540         } else if (error != 0)
 3541                 return (error);
 3542 
 3543         /*
 3544          * Sanity check: avoid coming within 16 descriptors
 3545          * of the end of the ring.
 3546          */
 3547         if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
 3548                 bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
 3549                 return (ENOBUFS);
 3550         }
 3551 
 3552         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
 3553 
 3554         for (i = 0; ; i++) {
 3555                 d = &sc->bge_ldata.bge_tx_ring[idx];
 3556                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 3557                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 3558                 d->bge_len = segs[i].ds_len;
 3559                 d->bge_flags = csum_flags;
 3560                 if (i == nsegs - 1)
 3561                         break;
 3562                 BGE_INC(idx, BGE_TX_RING_CNT);
 3563         }
 3564 
 3565         /* Mark the last segment as end of packet... */
 3566         d->bge_flags |= BGE_TXBDFLAG_END;
 3567 
 3568         /* ... and put VLAN tag into first segment.  */
 3569         d = &sc->bge_ldata.bge_tx_ring[*txidx];
 3570 #if __FreeBSD_version > 700022
 3571         if (m->m_flags & M_VLANTAG) {
 3572                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
 3573                 d->bge_vlan_tag = m->m_pkthdr.ether_vtag;
 3574         } else
 3575                 d->bge_vlan_tag = 0;
 3576 #else
 3577         {
 3578                 struct m_tag            *mtag;
 3579 
 3580                 if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
 3581                         d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
 3582                         d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
 3583                 } else
 3584                         d->bge_vlan_tag = 0;
 3585         }
 3586 #endif
 3587 
 3588         /*
 3589          * Insure that the map for this transmission
 3590          * is placed at the array index of the last descriptor
 3591          * in this chain.
 3592          */
 3593         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
 3594         sc->bge_cdata.bge_tx_dmamap[idx] = map;
 3595         sc->bge_cdata.bge_tx_chain[idx] = m;
 3596         sc->bge_txcnt += nsegs;
 3597 
 3598         BGE_INC(idx, BGE_TX_RING_CNT);
 3599         *txidx = idx;
 3600 
 3601         return (0);
 3602 }
 3603 
 3604 /*
 3605  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3606  * to the mbuf data regions directly in the transmit descriptors.
 3607  */
 3608 static void
 3609 bge_start_locked(struct ifnet *ifp)
 3610 {
 3611         struct bge_softc *sc;
 3612         struct mbuf *m_head = NULL;
 3613         uint32_t prodidx;
 3614         int count = 0;
 3615 
 3616         sc = ifp->if_softc;
 3617 
 3618         if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3619                 return;
 3620 
 3621         prodidx = sc->bge_tx_prodidx;
 3622 
 3623         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
 3624                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3625                 if (m_head == NULL)
 3626                         break;
 3627 
 3628                 /*
 3629                  * XXX
 3630                  * The code inside the if() block is never reached since we
 3631                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
 3632                  * requests to checksum TCP/UDP in a fragmented packet.
 3633                  *
 3634                  * XXX
 3635                  * safety overkill.  If this is a fragmented packet chain
 3636                  * with delayed TCP/UDP checksums, then only encapsulate
 3637                  * it if we have enough descriptors to handle the entire
 3638                  * chain at once.
 3639                  * (paranoia -- may not actually be needed)
 3640                  */
 3641                 if (m_head->m_flags & M_FIRSTFRAG &&
 3642                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
 3643                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
 3644                             m_head->m_pkthdr.csum_data + 16) {
 3645                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3646                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3647                                 break;
 3648                         }
 3649                 }
 3650 
 3651                 /*
 3652                  * Pack the data into the transmit ring. If we
 3653                  * don't have room, set the OACTIVE flag and wait
 3654                  * for the NIC to drain the ring.
 3655                  */
 3656                 if (bge_encap(sc, &m_head, &prodidx)) {
 3657                         if (m_head == NULL)
 3658                                 break;
 3659                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3660                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3661                         break;
 3662                 }
 3663                 ++count;
 3664 
 3665                 /*
 3666                  * If there's a BPF listener, bounce a copy of this frame
 3667                  * to him.
 3668                  */
 3669 #ifdef ETHER_BPF_MTAP
 3670                 ETHER_BPF_MTAP(ifp, m_head);
 3671 #else
 3672                 BPF_MTAP(ifp, m_head);
 3673 #endif
 3674         }
 3675 
 3676         if (count == 0)
 3677                 /* No packets were dequeued. */
 3678                 return;
 3679 
 3680         /* Transmit. */
 3681         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 3682         /* 5700 b2 errata */
 3683         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 3684                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 3685 
 3686         sc->bge_tx_prodidx = prodidx;
 3687 
 3688         /*
 3689          * Set a timeout in case the chip goes out to lunch.
 3690          */
 3691         sc->bge_timer = 5;
 3692 }
 3693 
 3694 /*
 3695  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3696  * to the mbuf data regions directly in the transmit descriptors.
 3697  */
 3698 static void
 3699 bge_start(struct ifnet *ifp)
 3700 {
 3701         struct bge_softc *sc;
 3702 
 3703         sc = ifp->if_softc;
 3704         BGE_LOCK(sc);
 3705         bge_start_locked(ifp);
 3706         BGE_UNLOCK(sc);
 3707 }
 3708 
 3709 static void
 3710 bge_init_locked(struct bge_softc *sc)
 3711 {
 3712         struct ifnet *ifp;
 3713         uint16_t *m;
 3714 
 3715         BGE_LOCK_ASSERT(sc);
 3716 
 3717         ifp = sc->bge_ifp;
 3718 
 3719         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3720                 return;
 3721 
 3722         /* Cancel pending I/O and flush buffers. */
 3723         bge_stop(sc);
 3724 
 3725         bge_stop_fw(sc);
 3726         bge_sig_pre_reset(sc, BGE_RESET_START);
 3727         bge_reset(sc);
 3728         bge_sig_legacy(sc, BGE_RESET_START);
 3729         bge_sig_post_reset(sc, BGE_RESET_START);
 3730 
 3731         bge_chipinit(sc);
 3732 
 3733         /*
 3734          * Init the various state machines, ring
 3735          * control blocks and firmware.
 3736          */
 3737         if (bge_blockinit(sc)) {
 3738                 device_printf(sc->bge_dev, "initialization failure\n");
 3739                 return;
 3740         }
 3741 
 3742         ifp = sc->bge_ifp;
 3743 
 3744         /* Specify MTU. */
 3745         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
 3746             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
 3747 
 3748         /* Load our MAC address. */
 3749         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
 3750         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
 3751         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
 3752 
 3753         /* Program promiscuous mode. */
 3754         bge_setpromisc(sc);
 3755 
 3756         /* Program multicast filter. */
 3757         bge_setmulti(sc);
 3758 
 3759         /* Init RX ring. */
 3760         bge_init_rx_ring_std(sc);
 3761 
 3762         /*
 3763          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
 3764          * memory to insure that the chip has in fact read the first
 3765          * entry of the ring.
 3766          */
 3767         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
 3768                 uint32_t                v, i;
 3769                 for (i = 0; i < 10; i++) {
 3770                         DELAY(20);
 3771                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
 3772                         if (v == (MCLBYTES - ETHER_ALIGN))
 3773                                 break;
 3774                 }
 3775                 if (i == 10)
 3776                         device_printf (sc->bge_dev,
 3777                             "5705 A0 chip failed to load RX ring\n");
 3778         }
 3779 
 3780         /* Init jumbo RX ring. */
 3781         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
 3782                 bge_init_rx_ring_jumbo(sc);
 3783 
 3784         /* Init our RX return ring index. */
 3785         sc->bge_rx_saved_considx = 0;
 3786 
 3787         /* Init our RX/TX stat counters. */
 3788         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
 3789 
 3790         /* Init TX ring. */
 3791         bge_init_tx_ring(sc);
 3792 
 3793         /* Turn on transmitter. */
 3794         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
 3795 
 3796         /* Turn on receiver. */
 3797         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 3798 
 3799         /* Tell firmware we're alive. */
 3800         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3801 
 3802 #ifdef DEVICE_POLLING
 3803         /* Disable interrupts if we are polling. */
 3804         if (ifp->if_capenable & IFCAP_POLLING) {
 3805                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 3806                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 3807                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 3808         } else
 3809 #endif
 3810 
 3811         /* Enable host interrupts. */
 3812         {
 3813         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
 3814         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 3815         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 3816         }
 3817         
 3818         bge_ifmedia_upd_locked(ifp);
 3819 
 3820         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3821         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3822 
 3823         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 3824 }
 3825 
 3826 static void
 3827 bge_init(void *xsc)
 3828 {
 3829         struct bge_softc *sc = xsc;
 3830 
 3831         BGE_LOCK(sc);
 3832         bge_init_locked(sc);
 3833         BGE_UNLOCK(sc);
 3834 }
 3835 
 3836 /*
 3837  * Set media options.
 3838  */
 3839 static int
 3840 bge_ifmedia_upd(struct ifnet *ifp)
 3841 {
 3842         struct bge_softc *sc = ifp->if_softc;
 3843         int res;
 3844 
 3845         BGE_LOCK(sc);
 3846         res = bge_ifmedia_upd_locked(ifp);
 3847         BGE_UNLOCK(sc);
 3848 
 3849         return (res);
 3850 }
 3851 
 3852 static int
 3853 bge_ifmedia_upd_locked(struct ifnet *ifp)
 3854 {
 3855         struct bge_softc *sc = ifp->if_softc;
 3856         struct mii_data *mii;
 3857         struct ifmedia *ifm;
 3858 
 3859         BGE_LOCK_ASSERT(sc);
 3860 
 3861         ifm = &sc->bge_ifmedia;
 3862 
 3863         /* If this is a 1000baseX NIC, enable the TBI port. */
 3864         if (sc->bge_flags & BGE_FLAG_TBI) {
 3865                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 3866                         return (EINVAL);
 3867                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
 3868                 case IFM_AUTO:
 3869                         /*
 3870                          * The BCM5704 ASIC appears to have a special
 3871                          * mechanism for programming the autoneg
 3872                          * advertisement registers in TBI mode.
 3873                          */
 3874                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 3875                                 uint32_t sgdig;
 3876                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
 3877                                 if (sgdig & BGE_SGDIGSTS_DONE) {
 3878                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
 3879                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
 3880                                         sgdig |= BGE_SGDIGCFG_AUTO |
 3881                                             BGE_SGDIGCFG_PAUSE_CAP |
 3882                                             BGE_SGDIGCFG_ASYM_PAUSE;
 3883                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
 3884                                             sgdig | BGE_SGDIGCFG_SEND);
 3885                                         DELAY(5);
 3886                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
 3887                                 }
 3888                         }
 3889                         break;
 3890                 case IFM_1000_SX:
 3891                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 3892                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
 3893                                     BGE_MACMODE_HALF_DUPLEX);
 3894                         } else {
 3895                                 BGE_SETBIT(sc, BGE_MAC_MODE,
 3896                                     BGE_MACMODE_HALF_DUPLEX);
 3897                         }
 3898                         break;
 3899                 default:
 3900                         return (EINVAL);
 3901                 }
 3902                 return (0);
 3903         }
 3904 
 3905         sc->bge_link_evt++;
 3906         mii = device_get_softc(sc->bge_miibus);
 3907         if (mii->mii_instance) {
 3908                 struct mii_softc *miisc;
 3909                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
 3910                     miisc = LIST_NEXT(miisc, mii_list))
 3911                         mii_phy_reset(miisc);
 3912         }
 3913         mii_mediachg(mii);
 3914 
 3915         return (0);
 3916 }
 3917 
 3918 /*
 3919  * Report current media status.
 3920  */
 3921 static void
 3922 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3923 {
 3924         struct bge_softc *sc = ifp->if_softc;
 3925         struct mii_data *mii;
 3926 
 3927         BGE_LOCK(sc);
 3928 
 3929         if (sc->bge_flags & BGE_FLAG_TBI) {
 3930                 ifmr->ifm_status = IFM_AVALID;
 3931                 ifmr->ifm_active = IFM_ETHER;
 3932                 if (CSR_READ_4(sc, BGE_MAC_STS) &
 3933                     BGE_MACSTAT_TBI_PCS_SYNCHED)
 3934                         ifmr->ifm_status |= IFM_ACTIVE;
 3935                 else {
 3936                         ifmr->ifm_active |= IFM_NONE;
 3937                         BGE_UNLOCK(sc);
 3938                         return;
 3939                 }
 3940                 ifmr->ifm_active |= IFM_1000_SX;
 3941                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
 3942                         ifmr->ifm_active |= IFM_HDX;
 3943                 else
 3944                         ifmr->ifm_active |= IFM_FDX;
 3945                 BGE_UNLOCK(sc);
 3946                 return;
 3947         }
 3948 
 3949         mii = device_get_softc(sc->bge_miibus);
 3950         mii_pollstat(mii);
 3951         ifmr->ifm_active = mii->mii_media_active;
 3952         ifmr->ifm_status = mii->mii_media_status;
 3953 
 3954         BGE_UNLOCK(sc);
 3955 }
 3956 
 3957 static int
 3958 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3959 {
 3960         struct bge_softc *sc = ifp->if_softc;
 3961         struct ifreq *ifr = (struct ifreq *) data;
 3962         struct mii_data *mii;
 3963         int flags, mask, error = 0;
 3964 
 3965         switch (command) {
 3966         case SIOCSIFMTU:
 3967                 if (ifr->ifr_mtu < ETHERMIN ||
 3968                     ((BGE_IS_JUMBO_CAPABLE(sc)) &&
 3969                     ifr->ifr_mtu > BGE_JUMBO_MTU) ||
 3970                     ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
 3971                     ifr->ifr_mtu > ETHERMTU))
 3972                         error = EINVAL;
 3973                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 3974                         ifp->if_mtu = ifr->ifr_mtu;
 3975                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3976                         bge_init(sc);
 3977                 }
 3978                 break;
 3979         case SIOCSIFFLAGS:
 3980                 BGE_LOCK(sc);
 3981                 if (ifp->if_flags & IFF_UP) {
 3982                         /*
 3983                          * If only the state of the PROMISC flag changed,
 3984                          * then just use the 'set promisc mode' command
 3985                          * instead of reinitializing the entire NIC. Doing
 3986                          * a full re-init means reloading the firmware and
 3987                          * waiting for it to start up, which may take a
 3988                          * second or two.  Similarly for ALLMULTI.
 3989                          */
 3990                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3991                                 flags = ifp->if_flags ^ sc->bge_if_flags;
 3992                                 if (flags & IFF_PROMISC)
 3993                                         bge_setpromisc(sc);
 3994                                 if (flags & IFF_ALLMULTI)
 3995                                         bge_setmulti(sc);
 3996                         } else
 3997                                 bge_init_locked(sc);
 3998                 } else {
 3999                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4000                                 bge_stop(sc);
 4001                         }
 4002                 }
 4003                 sc->bge_if_flags = ifp->if_flags;
 4004                 BGE_UNLOCK(sc);
 4005                 error = 0;
 4006                 break;
 4007         case SIOCADDMULTI:
 4008         case SIOCDELMULTI:
 4009                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4010                         BGE_LOCK(sc);
 4011                         bge_setmulti(sc);
 4012                         BGE_UNLOCK(sc);
 4013                         error = 0;
 4014                 }
 4015                 break;
 4016         case SIOCSIFMEDIA:
 4017         case SIOCGIFMEDIA:
 4018                 if (sc->bge_flags & BGE_FLAG_TBI) {
 4019                         error = ifmedia_ioctl(ifp, ifr,
 4020                             &sc->bge_ifmedia, command);
 4021                 } else {
 4022                         mii = device_get_softc(sc->bge_miibus);
 4023                         error = ifmedia_ioctl(ifp, ifr,
 4024                             &mii->mii_media, command);
 4025                 }
 4026                 break;
 4027         case SIOCSIFCAP:
 4028                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 4029 #ifdef DEVICE_POLLING
 4030                 if (mask & IFCAP_POLLING) {
 4031                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 4032                                 error = ether_poll_register(bge_poll, ifp);
 4033                                 if (error)
 4034                                         return (error);
 4035                                 BGE_LOCK(sc);
 4036                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 4037                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 4038                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 4039                                 ifp->if_capenable |= IFCAP_POLLING;
 4040                                 BGE_UNLOCK(sc);
 4041                         } else {
 4042                                 error = ether_poll_deregister(ifp);
 4043                                 /* Enable interrupt even in error case */
 4044                                 BGE_LOCK(sc);
 4045                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
 4046                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 4047                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 4048                                 ifp->if_capenable &= ~IFCAP_POLLING;
 4049                                 BGE_UNLOCK(sc);
 4050                         }
 4051                 }
 4052 #endif
 4053                 if (mask & IFCAP_HWCSUM) {
 4054                         ifp->if_capenable ^= IFCAP_HWCSUM;
 4055                         if (IFCAP_HWCSUM & ifp->if_capenable &&
 4056                             IFCAP_HWCSUM & ifp->if_capabilities)
 4057                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
 4058                         else
 4059                                 ifp->if_hwassist = 0;
 4060 #ifdef VLAN_CAPABILITIES
 4061                         VLAN_CAPABILITIES(ifp);
 4062 #endif
 4063                 }
 4064                 break;
 4065         default:
 4066                 error = ether_ioctl(ifp, command, data);
 4067                 break;
 4068         }
 4069 
 4070         return (error);
 4071 }
 4072 
 4073 static void
 4074 bge_watchdog(struct bge_softc *sc)
 4075 {
 4076         struct ifnet *ifp;
 4077 
 4078         BGE_LOCK_ASSERT(sc);
 4079 
 4080         if (sc->bge_timer == 0 || --sc->bge_timer)
 4081                 return;
 4082 
 4083         ifp = sc->bge_ifp;
 4084 
 4085         if_printf(ifp, "watchdog timeout -- resetting\n");
 4086 
 4087         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 4088         bge_init_locked(sc);
 4089 
 4090         ifp->if_oerrors++;
 4091 }
 4092 
 4093 /*
 4094  * Stop the adapter and free any mbufs allocated to the
 4095  * RX and TX lists.
 4096  */
 4097 static void
 4098 bge_stop(struct bge_softc *sc)
 4099 {
 4100         struct ifnet *ifp;
 4101         struct ifmedia_entry *ifm;
 4102         struct mii_data *mii = NULL;
 4103         int mtmp, itmp;
 4104 
 4105         BGE_LOCK_ASSERT(sc);
 4106 
 4107         ifp = sc->bge_ifp;
 4108 
 4109         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
 4110                 mii = device_get_softc(sc->bge_miibus);
 4111 
 4112         callout_stop(&sc->bge_stat_ch);
 4113 
 4114         /*
 4115          * Disable all of the receiver blocks.
 4116          */
 4117         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 4118         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 4119         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 4120         if (!(BGE_IS_5705_PLUS(sc)))
 4121                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 4122         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
 4123         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 4124         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
 4125 
 4126         /*
 4127          * Disable all of the transmit blocks.
 4128          */
 4129         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 4130         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 4131         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 4132         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
 4133         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 4134         if (!(BGE_IS_5705_PLUS(sc)))
 4135                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 4136         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 4137 
 4138         /*
 4139          * Shut down all of the memory managers and related
 4140          * state machines.
 4141          */
 4142         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 4143         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
 4144         if (!(BGE_IS_5705_PLUS(sc)))
 4145                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 4146         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 4147         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 4148         if (!(BGE_IS_5705_PLUS(sc))) {
 4149                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
 4150                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 4151         }
 4152 
 4153         /* Disable host interrupts. */
 4154         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 4155         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 4156 
 4157         /*
 4158          * Tell firmware we're shutting down.
 4159          */
 4160 
 4161         bge_stop_fw(sc);
 4162         bge_sig_pre_reset(sc, BGE_RESET_STOP);
 4163         bge_reset(sc);
 4164         bge_sig_legacy(sc, BGE_RESET_STOP);
 4165         bge_sig_post_reset(sc, BGE_RESET_STOP);
 4166 
 4167         /* 
 4168          * Keep the ASF firmware running if up.
 4169          */
 4170         if (sc->bge_asf_mode & ASF_STACKUP)
 4171                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 4172         else
 4173                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 4174 
 4175         /* Free the RX lists. */
 4176         bge_free_rx_ring_std(sc);
 4177 
 4178         /* Free jumbo RX list. */
 4179         if (BGE_IS_JUMBO_CAPABLE(sc))
 4180                 bge_free_rx_ring_jumbo(sc);
 4181 
 4182         /* Free TX buffers. */
 4183         bge_free_tx_ring(sc);
 4184 
 4185         /*
 4186          * Isolate/power down the PHY, but leave the media selection
 4187          * unchanged so that things will be put back to normal when
 4188          * we bring the interface back up.
 4189          */
 4190         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 4191                 itmp = ifp->if_flags;
 4192                 ifp->if_flags |= IFF_UP;
 4193                 /*
 4194                  * If we are called from bge_detach(), mii is already NULL.
 4195                  */
 4196                 if (mii != NULL) {
 4197                         ifm = mii->mii_media.ifm_cur;
 4198                         mtmp = ifm->ifm_media;
 4199                         ifm->ifm_media = IFM_ETHER | IFM_NONE;
 4200                         mii_mediachg(mii);
 4201                         ifm->ifm_media = mtmp;
 4202                 }
 4203                 ifp->if_flags = itmp;
 4204         }
 4205 
 4206         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
 4207 
 4208         /* Clear MAC's link state (PHY may still have link UP). */
 4209         if (bootverbose && sc->bge_link)
 4210                 if_printf(sc->bge_ifp, "link DOWN\n");
 4211         sc->bge_link = 0;
 4212 
 4213         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 4214 }
 4215 
 4216 /*
 4217  * Stop all chip I/O so that the kernel's probe routines don't
 4218  * get confused by errant DMAs when rebooting.
 4219  */
 4220 static void
 4221 bge_shutdown(device_t dev)
 4222 {
 4223         struct bge_softc *sc;
 4224 
 4225         sc = device_get_softc(dev);
 4226 
 4227         BGE_LOCK(sc);
 4228         bge_stop(sc);
 4229         bge_reset(sc);
 4230         BGE_UNLOCK(sc);
 4231 }
 4232 
 4233 static int
 4234 bge_suspend(device_t dev)
 4235 {
 4236         struct bge_softc *sc;
 4237 
 4238         sc = device_get_softc(dev);
 4239         BGE_LOCK(sc);
 4240         bge_stop(sc);
 4241         BGE_UNLOCK(sc);
 4242 
 4243         return (0);
 4244 }
 4245 
 4246 static int
 4247 bge_resume(device_t dev)
 4248 {
 4249         struct bge_softc *sc;
 4250         struct ifnet *ifp;
 4251 
 4252         sc = device_get_softc(dev);
 4253         BGE_LOCK(sc);
 4254         ifp = sc->bge_ifp;
 4255         if (ifp->if_flags & IFF_UP) {
 4256                 bge_init_locked(sc);
 4257                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 4258                         bge_start_locked(ifp);
 4259         }
 4260         BGE_UNLOCK(sc);
 4261 
 4262         return (0);
 4263 }
 4264 
 4265 static void
 4266 bge_link_upd(struct bge_softc *sc)
 4267 {
 4268         struct mii_data *mii;
 4269         uint32_t link, status;
 4270 
 4271         BGE_LOCK_ASSERT(sc);
 4272 
 4273         /* Clear 'pending link event' flag. */
 4274         sc->bge_link_evt = 0;
 4275 
 4276         /*
 4277          * Process link state changes.
 4278          * Grrr. The link status word in the status block does
 4279          * not work correctly on the BCM5700 rev AX and BX chips,
 4280          * according to all available information. Hence, we have
 4281          * to enable MII interrupts in order to properly obtain
 4282          * async link changes. Unfortunately, this also means that
 4283          * we have to read the MAC status register to detect link
 4284          * changes, thereby adding an additional register access to
 4285          * the interrupt handler.
 4286          *
 4287          * XXX: perhaps link state detection procedure used for
 4288          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
 4289          */
 4290 
 4291         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4292             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
 4293                 status = CSR_READ_4(sc, BGE_MAC_STS);
 4294                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
 4295                         mii = device_get_softc(sc->bge_miibus);
 4296                         mii_pollstat(mii);
 4297                         if (!sc->bge_link &&
 4298                             mii->mii_media_status & IFM_ACTIVE &&
 4299                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 4300                                 sc->bge_link++;
 4301                                 if (bootverbose)
 4302                                         if_printf(sc->bge_ifp, "link UP\n");
 4303                         } else if (sc->bge_link &&
 4304                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 4305                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 4306                                 sc->bge_link = 0;
 4307                                 if (bootverbose)
 4308                                         if_printf(sc->bge_ifp, "link DOWN\n");
 4309                         }
 4310 
 4311                         /* Clear the interrupt. */
 4312                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 4313                             BGE_EVTENB_MI_INTERRUPT);
 4314                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
 4315                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
 4316                             BRGPHY_INTRS);
 4317                 }
 4318                 return;
 4319         }
 4320 
 4321         if (sc->bge_flags & BGE_FLAG_TBI) {
 4322                 status = CSR_READ_4(sc, BGE_MAC_STS);
 4323                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
 4324                         if (!sc->bge_link) {
 4325                                 sc->bge_link++;
 4326                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 4327                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
 4328                                             BGE_MACMODE_TBI_SEND_CFGS);
 4329                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
 4330                                 if (bootverbose)
 4331                                         if_printf(sc->bge_ifp, "link UP\n");
 4332                                 if_link_state_change(sc->bge_ifp,
 4333                                     LINK_STATE_UP);
 4334                         }
 4335                 } else if (sc->bge_link) {
 4336                         sc->bge_link = 0;
 4337                         if (bootverbose)
 4338                                 if_printf(sc->bge_ifp, "link DOWN\n");
 4339                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
 4340                 }
 4341         } else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
 4342                 /*
 4343                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
 4344                  * in status word always set. Workaround this bug by reading
 4345                  * PHY link status directly.
 4346                  */
 4347                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
 4348 
 4349                 if (link != sc->bge_link ||
 4350                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
 4351                         mii = device_get_softc(sc->bge_miibus);
 4352                         mii_pollstat(mii);
 4353                         if (!sc->bge_link &&
 4354                             mii->mii_media_status & IFM_ACTIVE &&
 4355                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 4356                                 sc->bge_link++;
 4357                                 if (bootverbose)
 4358                                         if_printf(sc->bge_ifp, "link UP\n");
 4359                         } else if (sc->bge_link &&
 4360                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 4361                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 4362                                 sc->bge_link = 0;
 4363                                 if (bootverbose)
 4364                                         if_printf(sc->bge_ifp, "link DOWN\n");
 4365                         }
 4366                 }
 4367         } else {
 4368                 /*
 4369                  * Discard link events for MII/GMII controllers
 4370                  * if MI auto-polling is disabled.
 4371                  */
 4372         }
 4373 
 4374         /* Clear the attention. */
 4375         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 4376             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 4377             BGE_MACSTAT_LINK_CHANGED);
 4378 }
 4379 
 4380 static void
 4381 bge_add_sysctls(struct bge_softc *sc)
 4382 {
 4383         struct sysctl_ctx_list *ctx;
 4384         struct sysctl_oid_list *children;
 4385 
 4386         ctx = device_get_sysctl_ctx(sc->bge_dev);
 4387         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
 4388 
 4389 #ifdef BGE_REGISTER_DEBUG
 4390         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
 4391             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
 4392             "Debug Information");
 4393 
 4394         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
 4395             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
 4396             "Register Read");
 4397 
 4398         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
 4399             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
 4400             "Memory Read");
 4401 
 4402         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHcInOctets",
 4403             CTLFLAG_RD,
 4404             &sc->bge_ldata.bge_stats->rxstats.ifHCInOctets.bge_addr_lo,
 4405             "Bytes received");
 4406 
 4407         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHcOutOctets",
 4408             CTLFLAG_RD,
 4409             &sc->bge_ldata.bge_stats->txstats.ifHCOutOctets.bge_addr_lo,
 4410             "Bytes received");
 4411 #endif
 4412 }
 4413 
 4414 #ifdef BGE_REGISTER_DEBUG
 4415 static int
 4416 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 4417 {
 4418         struct bge_softc *sc;
 4419         uint16_t *sbdata;
 4420         int error;
 4421         int result;
 4422         int i, j;
 4423 
 4424         result = -1;
 4425         error = sysctl_handle_int(oidp, &result, 0, req);
 4426         if (error || (req->newptr == NULL))
 4427                 return (error);
 4428 
 4429         if (result == 1) {
 4430                 sc = (struct bge_softc *)arg1;
 4431 
 4432                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
 4433                 printf("Status Block:\n");
 4434                 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
 4435                         printf("%06x:", i);
 4436                         for (j = 0; j < 8; j++) {
 4437                                 printf(" %04x", sbdata[i]);
 4438                                 i += 4;
 4439                         }
 4440                         printf("\n");
 4441                 }
 4442 
 4443                 printf("Registers:\n");
 4444                 for (i = 0x800; i < 0xA00; ) {
 4445                         printf("%06x:", i);
 4446                         for (j = 0; j < 8; j++) {
 4447                                 printf(" %08x", CSR_READ_4(sc, i));
 4448                                 i += 4;
 4449                         }
 4450                         printf("\n");
 4451                 }
 4452 
 4453                 printf("Hardware Flags:\n");
 4454                 if (BGE_IS_575X_PLUS(sc))
 4455                         printf(" - 575X Plus\n");
 4456                 if (BGE_IS_5705_PLUS(sc))
 4457                         printf(" - 5705 Plus\n");
 4458                 if (BGE_IS_5714_FAMILY(sc))
 4459                         printf(" - 5714 Family\n");
 4460                 if (BGE_IS_5700_FAMILY(sc))
 4461                         printf(" - 5700 Family\n");
 4462                 if (sc->bge_flags & BGE_FLAG_JUMBO)
 4463                         printf(" - Supports Jumbo Frames\n");
 4464                 if (sc->bge_flags & BGE_FLAG_PCIX)
 4465                         printf(" - PCI-X Bus\n");
 4466                 if (sc->bge_flags & BGE_FLAG_PCIE)
 4467                         printf(" - PCI Express Bus\n");
 4468                 if (sc->bge_flags & BGE_FLAG_NO_3LED)
 4469                         printf(" - No 3 LEDs\n");
 4470                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
 4471                         printf(" - RX Alignment Bug\n");
 4472         }
 4473 
 4474         return (error);
 4475 }
 4476 
 4477 static int
 4478 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 4479 {
 4480         struct bge_softc *sc;
 4481         int error;
 4482         uint16_t result;
 4483         uint32_t val;
 4484 
 4485         result = -1;
 4486         error = sysctl_handle_int(oidp, &result, 0, req);
 4487         if (error || (req->newptr == NULL))
 4488                 return (error);
 4489 
 4490         if (result < 0x8000) {
 4491                 sc = (struct bge_softc *)arg1;
 4492                 val = CSR_READ_4(sc, result);
 4493                 printf("reg 0x%06X = 0x%08X\n", result, val);
 4494         }
 4495 
 4496         return (error);
 4497 }
 4498 
 4499 static int
 4500 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
 4501 {
 4502         struct bge_softc *sc;
 4503         int error;
 4504         uint16_t result;
 4505         uint32_t val;
 4506 
 4507         result = -1;
 4508         error = sysctl_handle_int(oidp, &result, 0, req);
 4509         if (error || (req->newptr == NULL))
 4510                 return (error);
 4511 
 4512         if (result < 0x8000) {
 4513                 sc = (struct bge_softc *)arg1;
 4514                 val = bge_readmem_ind(sc, result);
 4515                 printf("mem 0x%06X = 0x%08X\n", result, val);
 4516         }
 4517 
 4518         return (error);
 4519 }
 4520 #endif
 4521 
 4522 static int
 4523 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
 4524 {
 4525 
 4526         if (sc->bge_flags & BGE_FLAG_EADDR)
 4527                 return (1);
 4528 
 4529 #ifdef __sparc64__
 4530         OF_getetheraddr(sc->bge_dev, ether_addr);
 4531         return (0);
 4532 #endif
 4533         return (1);
 4534 }
 4535 
 4536 static int
 4537 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
 4538 {
 4539         uint32_t mac_addr;
 4540 
 4541         mac_addr = bge_readmem_ind(sc, 0x0c14);
 4542         if ((mac_addr >> 16) == 0x484b) {
 4543                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
 4544                 ether_addr[1] = (uint8_t)mac_addr;
 4545                 mac_addr = bge_readmem_ind(sc, 0x0c18);
 4546                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
 4547                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
 4548                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
 4549                 ether_addr[5] = (uint8_t)mac_addr;
 4550                 return (0);
 4551         }
 4552         return (1);
 4553 }
 4554 
 4555 static int
 4556 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
 4557 {
 4558         int mac_offset = BGE_EE_MAC_OFFSET;
 4559 
 4560         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 4561                 mac_offset = BGE_EE_MAC_OFFSET_5906;
 4562 
 4563         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
 4564             ETHER_ADDR_LEN));
 4565 }
 4566 
 4567 static int
 4568 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
 4569 {
 4570 
 4571         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 4572                 return (1);
 4573 
 4574         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
 4575            ETHER_ADDR_LEN));
 4576 }
 4577 
 4578 static int
 4579 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
 4580 {
 4581         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
 4582                 /* NOTE: Order is critical */
 4583                 bge_get_eaddr_fw,
 4584                 bge_get_eaddr_mem,
 4585                 bge_get_eaddr_nvram,
 4586                 bge_get_eaddr_eeprom,
 4587                 NULL
 4588         };
 4589         const bge_eaddr_fcn_t *func;
 4590 
 4591         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
 4592                 if ((*func)(sc, eaddr) == 0)
 4593                         break;
 4594         }
 4595         return (*func == NULL ? ENXIO : 0);
 4596 }

Cache object: 28d026a18a74db0f0152c38d516b56d9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.