The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bge/if_bge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Wind River Systems
    3  * Copyright (c) 1997, 1998, 1999, 2001
    4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. All advertising materials mentioning features or use of this software
   15  *    must display the following acknowledgement:
   16  *      This product includes software developed by Bill Paul.
   17  * 4. Neither the name of the author nor the names of any co-contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   31  * THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 /*
   38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
   39  *
   40  * The Broadcom BCM5700 is based on technology originally developed by
   41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
   42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
   43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
   44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
   45  * frames, highly configurable RX filtering, and 16 RX and TX queues
   46  * (which, along with RX filter rules, can be used for QOS applications).
   47  * Other features, such as TCP segmentation, may be available as part
   48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
   49  * firmware images can be stored in hardware and need not be compiled
   50  * into the driver.
   51  *
   52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
   53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
   54  *
   55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
   56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
   57  * does not support external SSRAM.
   58  *
   59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
   60  * brand name, which is functionally similar but lacks PCI-X support.
   61  *
   62  * Without external SSRAM, you can only have at most 4 TX rings,
   63  * and the use of the mini RX ring is disabled. This seems to imply
   64  * that these features are simply not available on the BCM5701. As a
   65  * result, this driver does not implement any support for the mini RX
   66  * ring.
   67  */
   68 
   69 #ifdef HAVE_KERNEL_OPTION_HEADERS
   70 #include "opt_device_polling.h"
   71 #endif
   72 
   73 #include <sys/param.h>
   74 #include <sys/endian.h>
   75 #include <sys/systm.h>
   76 #include <sys/sockio.h>
   77 #include <sys/mbuf.h>
   78 #include <sys/malloc.h>
   79 #include <sys/kernel.h>
   80 #include <sys/module.h>
   81 #include <sys/socket.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <net/if.h>
   85 #include <net/if_arp.h>
   86 #include <net/ethernet.h>
   87 #include <net/if_dl.h>
   88 #include <net/if_media.h>
   89 
   90 #include <net/bpf.h>
   91 
   92 #include <net/if_types.h>
   93 #include <net/if_vlan_var.h>
   94 
   95 #include <netinet/in_systm.h>
   96 #include <netinet/in.h>
   97 #include <netinet/ip.h>
   98 
   99 #include <machine/bus.h>
  100 #include <machine/resource.h>
  101 #include <sys/bus.h>
  102 #include <sys/rman.h>
  103 
  104 #include <dev/mii/mii.h>
  105 #include <dev/mii/miivar.h>
  106 #include "miidevs.h"
  107 #include <dev/mii/brgphyreg.h>
  108 
  109 #ifdef __sparc64__
  110 #include <dev/ofw/ofw_bus.h>
  111 #include <dev/ofw/openfirm.h>
  112 #include <machine/ofw_machdep.h>
  113 #include <machine/ver.h>
  114 #endif
  115 
  116 #include <dev/pci/pcireg.h>
  117 #include <dev/pci/pcivar.h>
  118 
  119 #include <dev/bge/if_bgereg.h>
  120 
  121 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
  122 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
  123 
  124 MODULE_DEPEND(bge, pci, 1, 1, 1);
  125 MODULE_DEPEND(bge, ether, 1, 1, 1);
  126 MODULE_DEPEND(bge, miibus, 1, 1, 1);
  127 
  128 /* "device miibus" required.  See GENERIC if you get errors here. */
  129 #include "miibus_if.h"
  130 
  131 /*
  132  * Various supported device vendors/types and their names. Note: the
  133  * spec seems to indicate that the hardware still has Alteon's vendor
  134  * ID burned into it, though it will always be overriden by the vendor
  135  * ID in the EEPROM. Just to be safe, we cover all possibilities.
  136  */
  137 static struct bge_type {
  138         uint16_t        bge_vid;
  139         uint16_t        bge_did;
  140 } bge_devs[] = {
  141         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
  142         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
  143 
  144         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
  145         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
  146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
  147 
  148         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
  149 
  150         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
  151         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
  152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
  153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
  154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
  155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
  156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
  157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
  158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
  159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
  160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
  161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
  162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
  163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
  164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
  165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
  166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
  167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
  168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
  169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
  170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
  171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
  172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
  173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
  174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
  175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
  176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
  177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
  178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
  179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
  180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
  181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
  182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
  183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
  184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
  185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
  186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
  187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
  188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
  189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
  190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
  191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
  192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
  193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
  194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
  195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
  196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
  197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
  198 
  199         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
  200 
  201         { TC_VENDORID,          TC_DEVICEID_3C996 },
  202 
  203         { 0, 0 }
  204 };
  205 
  206 static const struct bge_vendor {
  207         uint16_t        v_id;
  208         const char      *v_name;
  209 } bge_vendors[] = {
  210         { ALTEON_VENDORID,      "Alteon" },
  211         { ALTIMA_VENDORID,      "Altima" },
  212         { APPLE_VENDORID,       "Apple" },
  213         { BCOM_VENDORID,        "Broadcom" },
  214         { SK_VENDORID,          "SysKonnect" },
  215         { TC_VENDORID,          "3Com" },
  216 
  217         { 0, NULL }
  218 };
  219         
  220 static const struct bge_revision {
  221         uint32_t        br_chipid;
  222         const char      *br_name;
  223 } bge_revisions[] = {
  224         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
  225         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
  226         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
  227         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
  228         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
  229         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
  230         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
  231         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
  232         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
  233         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
  234         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
  235         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
  236         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
  237         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
  238         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
  239         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
  240         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
  241         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
  242         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
  243         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
  244         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
  245         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
  246         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
  247         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
  248         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
  249         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
  250         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
  251         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
  252         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
  253         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
  254         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
  255         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
  256         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
  257         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
  258         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
  259         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
  260         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
  261         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
  262         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
  263         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
  264         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
  265         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
  266         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
  267         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
  268         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
  269         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
  270         /* 5754 and 5787 share the same ASIC ID */
  271         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" }, 
  272         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
  273         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
  274 
  275         { 0, NULL }
  276 };
  277 
  278 /*
  279  * Some defaults for major revisions, so that newer steppings
  280  * that we don't know about have a shot at working.
  281  */
  282 static const struct bge_revision bge_majorrevs[] = {
  283         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
  284         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
  285         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
  286         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
  287         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
  288         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
  289         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
  290         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
  291         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
  292         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
  293         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
  294         /* 5754 and 5787 share the same ASIC ID */
  295         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
  296 
  297         { 0, NULL }
  298 };
  299 
  300 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
  301 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
  302 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
  303 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
  304 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
  305 
  306 const struct bge_revision * bge_lookup_rev(uint32_t);
  307 const struct bge_vendor * bge_lookup_vendor(uint16_t);
  308 static int bge_probe(device_t);
  309 static int bge_attach(device_t);
  310 static int bge_detach(device_t);
  311 static int bge_suspend(device_t);
  312 static int bge_resume(device_t);
  313 static void bge_release_resources(struct bge_softc *);
  314 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  315 static int bge_dma_alloc(device_t);
  316 static void bge_dma_free(struct bge_softc *);
  317 
  318 static void bge_txeof(struct bge_softc *);
  319 static void bge_rxeof(struct bge_softc *);
  320 
  321 static void bge_asf_driver_up (struct bge_softc *);
  322 static void bge_tick(void *);
  323 static void bge_stats_update(struct bge_softc *);
  324 static void bge_stats_update_regs(struct bge_softc *);
  325 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
  326 
  327 static void bge_intr(void *);
  328 static void bge_start_locked(struct ifnet *);
  329 static void bge_start(struct ifnet *);
  330 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
  331 static void bge_init_locked(struct bge_softc *);
  332 static void bge_init(void *);
  333 static void bge_stop(struct bge_softc *);
  334 static void bge_watchdog(struct bge_softc *);
  335 static void bge_shutdown(device_t);
  336 static int bge_ifmedia_upd_locked(struct ifnet *);
  337 static int bge_ifmedia_upd(struct ifnet *);
  338 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  339 
  340 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
  341 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
  342 
  343 static void bge_setpromisc(struct bge_softc *);
  344 static void bge_setmulti(struct bge_softc *);
  345 static void bge_setvlan(struct bge_softc *);
  346 
  347 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
  348 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
  349 static int bge_init_rx_ring_std(struct bge_softc *);
  350 static void bge_free_rx_ring_std(struct bge_softc *);
  351 static int bge_init_rx_ring_jumbo(struct bge_softc *);
  352 static void bge_free_rx_ring_jumbo(struct bge_softc *);
  353 static void bge_free_tx_ring(struct bge_softc *);
  354 static int bge_init_tx_ring(struct bge_softc *);
  355 
  356 static int bge_chipinit(struct bge_softc *);
  357 static int bge_blockinit(struct bge_softc *);
  358 
  359 static int bge_has_eeprom(struct bge_softc *);
  360 static uint32_t bge_readmem_ind(struct bge_softc *, int);
  361 static void bge_writemem_ind(struct bge_softc *, int, int);
  362 #ifdef notdef
  363 static uint32_t bge_readreg_ind(struct bge_softc *, int);
  364 #endif
  365 static void bge_writemem_direct(struct bge_softc *, int, int);
  366 static void bge_writereg_ind(struct bge_softc *, int, int);
  367 
  368 static int bge_miibus_readreg(device_t, int, int);
  369 static int bge_miibus_writereg(device_t, int, int, int);
  370 static void bge_miibus_statchg(device_t);
  371 #ifdef DEVICE_POLLING
  372 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  373 #endif
  374 
  375 #define BGE_RESET_START 1
  376 #define BGE_RESET_STOP  2
  377 static void bge_sig_post_reset(struct bge_softc *, int);
  378 static void bge_sig_legacy(struct bge_softc *, int);
  379 static void bge_sig_pre_reset(struct bge_softc *, int);
  380 static int bge_reset(struct bge_softc *);
  381 static void bge_link_upd(struct bge_softc *);
  382 
  383 /*
  384  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
  385  * leak information to untrusted users.  It is also known to cause alignment
  386  * traps on certain architectures.
  387  */
  388 #ifdef BGE_REGISTER_DEBUG
  389 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
  390 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
  391 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
  392 #endif
  393 static void bge_add_sysctls(struct bge_softc *);
  394 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
  395 
  396 static device_method_t bge_methods[] = {
  397         /* Device interface */
  398         DEVMETHOD(device_probe,         bge_probe),
  399         DEVMETHOD(device_attach,        bge_attach),
  400         DEVMETHOD(device_detach,        bge_detach),
  401         DEVMETHOD(device_shutdown,      bge_shutdown),
  402         DEVMETHOD(device_suspend,       bge_suspend),
  403         DEVMETHOD(device_resume,        bge_resume),
  404 
  405         /* bus interface */
  406         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  407         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  408 
  409         /* MII interface */
  410         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
  411         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
  412         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
  413 
  414         { 0, 0 }
  415 };
  416 
  417 static driver_t bge_driver = {
  418         "bge",
  419         bge_methods,
  420         sizeof(struct bge_softc)
  421 };
  422 
  423 static devclass_t bge_devclass;
  424 
  425 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
  426 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
  427 
  428 static int bge_allow_asf = 0;
  429 
  430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
  431 
  432 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
  433 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
  434         "Allow ASF mode if available");
  435 
  436 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
  437 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
  438 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
  439 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
  440 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
  441 
  442 static int
  443 bge_has_eeprom(struct bge_softc *sc)
  444 {
  445 #ifdef __sparc64__
  446         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
  447         device_t dev;
  448         uint32_t subvendor;
  449 
  450         dev = sc->bge_dev;
  451 
  452         /*
  453          * The on-board BGEs found in sun4u machines aren't fitted with
  454          * an EEPROM which means that we have to obtain the MAC address
  455          * via OFW and that some tests will always fail. We distinguish
  456          * such BGEs by the subvendor ID, which also has to be obtained
  457          * from OFW instead of the PCI configuration space as the latter
  458          * indicates Broadcom as the subvendor of the netboot interface.
  459          * For early Blade 1500 and 2500 we even have to check the OFW
  460          * device path as the subvendor ID always defaults to Broadcom
  461          * there.
  462          */
  463         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
  464             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
  465             subvendor == SUN_VENDORID)
  466                 return (0);
  467         memset(buf, 0, sizeof(buf));
  468         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
  469                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
  470                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
  471                         return (0);
  472                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
  473                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
  474                         return (0);
  475         }
  476 #endif
  477         return (1);
  478 }
  479 
  480 static uint32_t
  481 bge_readmem_ind(struct bge_softc *sc, int off)
  482 {
  483         device_t dev;
  484         uint32_t val;
  485 
  486         dev = sc->bge_dev;
  487 
  488         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  489         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
  490         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  491         return (val);
  492 }
  493 
  494 static void
  495 bge_writemem_ind(struct bge_softc *sc, int off, int val)
  496 {
  497         device_t dev;
  498 
  499         dev = sc->bge_dev;
  500 
  501         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  502         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
  503         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  504 }
  505 
  506 #ifdef notdef
  507 static uint32_t
  508 bge_readreg_ind(struct bge_softc *sc, int off)
  509 {
  510         device_t dev;
  511 
  512         dev = sc->bge_dev;
  513 
  514         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  515         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
  516 }
  517 #endif
  518 
  519 static void
  520 bge_writereg_ind(struct bge_softc *sc, int off, int val)
  521 {
  522         device_t dev;
  523 
  524         dev = sc->bge_dev;
  525 
  526         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  527         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
  528 }
  529 
  530 static void
  531 bge_writemem_direct(struct bge_softc *sc, int off, int val)
  532 {
  533         CSR_WRITE_4(sc, off, val);
  534 }
  535 
  536 /*
  537  * Map a single buffer address.
  538  */
  539 
  540 static void
  541 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  542 {
  543         struct bge_dmamap_arg *ctx;
  544 
  545         if (error)
  546                 return;
  547 
  548         ctx = arg;
  549 
  550         if (nseg > ctx->bge_maxsegs) {
  551                 ctx->bge_maxsegs = 0;
  552                 return;
  553         }
  554 
  555         ctx->bge_busaddr = segs->ds_addr;
  556 }
  557 
  558 /*
  559  * Read a byte of data stored in the EEPROM at address 'addr.' The
  560  * BCM570x supports both the traditional bitbang interface and an
  561  * auto access interface for reading the EEPROM. We use the auto
  562  * access method.
  563  */
  564 static uint8_t
  565 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  566 {
  567         int i;
  568         uint32_t byte = 0;
  569 
  570         /*
  571          * Enable use of auto EEPROM access so we can avoid
  572          * having to use the bitbang method.
  573          */
  574         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
  575 
  576         /* Reset the EEPROM, load the clock period. */
  577         CSR_WRITE_4(sc, BGE_EE_ADDR,
  578             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
  579         DELAY(20);
  580 
  581         /* Issue the read EEPROM command. */
  582         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
  583 
  584         /* Wait for completion */
  585         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
  586                 DELAY(10);
  587                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
  588                         break;
  589         }
  590 
  591         if (i == BGE_TIMEOUT * 10) {
  592                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
  593                 return (1);
  594         }
  595 
  596         /* Get result. */
  597         byte = CSR_READ_4(sc, BGE_EE_DATA);
  598 
  599         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
  600 
  601         return (0);
  602 }
  603 
  604 /*
  605  * Read a sequence of bytes from the EEPROM.
  606  */
  607 static int
  608 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
  609 {
  610         int i, error = 0;
  611         uint8_t byte = 0;
  612 
  613         for (i = 0; i < cnt; i++) {
  614                 error = bge_eeprom_getbyte(sc, off + i, &byte);
  615                 if (error)
  616                         break;
  617                 *(dest + i) = byte;
  618         }
  619 
  620         return (error ? 1 : 0);
  621 }
  622 
  623 static int
  624 bge_miibus_readreg(device_t dev, int phy, int reg)
  625 {
  626         struct bge_softc *sc;
  627         uint32_t val, autopoll;
  628         int i;
  629 
  630         sc = device_get_softc(dev);
  631 
  632         /*
  633          * Broadcom's own driver always assumes the internal
  634          * PHY is at GMII address 1. On some chips, the PHY responds
  635          * to accesses at all addresses, which could cause us to
  636          * bogusly attach the PHY 32 times at probe type. Always
  637          * restricting the lookup to address 1 is simpler than
  638          * trying to figure out which chips revisions should be
  639          * special-cased.
  640          */
  641         if (phy != 1)
  642                 return (0);
  643 
  644         /* Reading with autopolling on may trigger PCI errors */
  645         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
  646         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  647                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  648                 DELAY(40);
  649         }
  650 
  651         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
  652             BGE_MIPHY(phy) | BGE_MIREG(reg));
  653 
  654         for (i = 0; i < BGE_TIMEOUT; i++) {
  655                 DELAY(10);
  656                 val = CSR_READ_4(sc, BGE_MI_COMM);
  657                 if (!(val & BGE_MICOMM_BUSY))
  658                         break;
  659         }
  660 
  661         if (i == BGE_TIMEOUT) {
  662                 device_printf(sc->bge_dev, "PHY read timed out\n");
  663                 val = 0;
  664                 goto done;
  665         }
  666 
  667         val = CSR_READ_4(sc, BGE_MI_COMM);
  668 
  669 done:
  670         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  671                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  672                 DELAY(40);
  673         }
  674 
  675         if (val & BGE_MICOMM_READFAIL)
  676                 return (0);
  677 
  678         return (val & 0xFFFF);
  679 }
  680 
  681 static int
  682 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
  683 {
  684         struct bge_softc *sc;
  685         uint32_t autopoll;
  686         int i;
  687 
  688         sc = device_get_softc(dev);
  689 
  690         /* Reading with autopolling on may trigger PCI errors */
  691         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
  692         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  693                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  694                 DELAY(40);
  695         }
  696 
  697         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
  698             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
  699 
  700         for (i = 0; i < BGE_TIMEOUT; i++) {
  701                 DELAY(10);
  702                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
  703                         break;
  704         }
  705 
  706         if (i == BGE_TIMEOUT) {
  707                 device_printf(sc->bge_dev, "PHY write timed out\n");
  708                 return (0);
  709         }
  710 
  711         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  712                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  713                 DELAY(40);
  714         }
  715 
  716         return (0);
  717 }
  718 
  719 static void
  720 bge_miibus_statchg(device_t dev)
  721 {
  722         struct bge_softc *sc;
  723         struct mii_data *mii;
  724         sc = device_get_softc(dev);
  725         mii = device_get_softc(sc->bge_miibus);
  726 
  727         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
  728         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
  729                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
  730         else
  731                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
  732 
  733         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
  734                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
  735         else
  736                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
  737 }
  738 
  739 /*
  740  * Intialize a standard receive ring descriptor.
  741  */
  742 static int
  743 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
  744 {
  745         struct mbuf *m_new = NULL;
  746         struct bge_rx_bd *r;
  747         struct bge_dmamap_arg ctx;
  748         int error;
  749 
  750         if (m == NULL) {
  751                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
  752                 if (m_new == NULL)
  753                         return (ENOBUFS);
  754                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  755         } else {
  756                 m_new = m;
  757                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  758                 m_new->m_data = m_new->m_ext.ext_buf;
  759         }
  760 
  761         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
  762                 m_adj(m_new, ETHER_ALIGN);
  763         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
  764         r = &sc->bge_ldata.bge_rx_std_ring[i];
  765         ctx.bge_maxsegs = 1;
  766         ctx.sc = sc;
  767         error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
  768             sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
  769             m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
  770         if (error || ctx.bge_maxsegs == 0) {
  771                 if (m == NULL) {
  772                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
  773                         m_freem(m_new);
  774                 }
  775                 return (ENOMEM);
  776         }
  777         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
  778         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
  779         r->bge_flags = BGE_RXBDFLAG_END;
  780         r->bge_len = m_new->m_len;
  781         r->bge_idx = i;
  782 
  783         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  784             sc->bge_cdata.bge_rx_std_dmamap[i],
  785             BUS_DMASYNC_PREREAD);
  786 
  787         return (0);
  788 }
  789 
  790 /*
  791  * Initialize a jumbo receive ring descriptor. This allocates
  792  * a jumbo buffer from the pool managed internally by the driver.
  793  */
  794 static int
  795 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
  796 {
  797         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
  798         struct bge_extrx_bd *r;
  799         struct mbuf *m_new = NULL;
  800         int nsegs;
  801         int error;
  802 
  803         if (m == NULL) {
  804                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
  805                 if (m_new == NULL)
  806                         return (ENOBUFS);
  807 
  808                 m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
  809                 if (!(m_new->m_flags & M_EXT)) {
  810                         m_freem(m_new);
  811                         return (ENOBUFS);
  812                 }
  813                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
  814         } else {
  815                 m_new = m;
  816                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
  817                 m_new->m_data = m_new->m_ext.ext_buf;
  818         }
  819 
  820         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
  821                 m_adj(m_new, ETHER_ALIGN);
  822 
  823         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
  824             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
  825             m_new, segs, &nsegs, BUS_DMA_NOWAIT);
  826         if (error) {
  827                 if (m == NULL)
  828                         m_freem(m_new);
  829                 return (error);
  830         }
  831         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
  832 
  833         /*
  834          * Fill in the extended RX buffer descriptor.
  835          */
  836         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
  837         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
  838         r->bge_idx = i;
  839         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
  840         switch (nsegs) {
  841         case 4:
  842                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
  843                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
  844                 r->bge_len3 = segs[3].ds_len;
  845         case 3:
  846                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
  847                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
  848                 r->bge_len2 = segs[2].ds_len;
  849         case 2:
  850                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
  851                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
  852                 r->bge_len1 = segs[1].ds_len;
  853         case 1:
  854                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
  855                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
  856                 r->bge_len0 = segs[0].ds_len;
  857                 break;
  858         default:
  859                 panic("%s: %d segments\n", __func__, nsegs);
  860         }
  861 
  862         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  863             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
  864             BUS_DMASYNC_PREREAD);
  865 
  866         return (0);
  867 }
  868 
  869 /*
  870  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
  871  * that's 1MB or memory, which is a lot. For now, we fill only the first
  872  * 256 ring entries and hope that our CPU is fast enough to keep up with
  873  * the NIC.
  874  */
  875 static int
  876 bge_init_rx_ring_std(struct bge_softc *sc)
  877 {
  878         int i;
  879 
  880         for (i = 0; i < BGE_SSLOTS; i++) {
  881                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
  882                         return (ENOBUFS);
  883         };
  884 
  885         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
  886             sc->bge_cdata.bge_rx_std_ring_map,
  887             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  888 
  889         sc->bge_std = i - 1;
  890         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
  891 
  892         return (0);
  893 }
  894 
  895 static void
  896 bge_free_rx_ring_std(struct bge_softc *sc)
  897 {
  898         int i;
  899 
  900         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
  901                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
  902                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  903                             sc->bge_cdata.bge_rx_std_dmamap[i],
  904                             BUS_DMASYNC_POSTREAD);
  905                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
  906                             sc->bge_cdata.bge_rx_std_dmamap[i]);
  907                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
  908                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
  909                 }
  910                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
  911                     sizeof(struct bge_rx_bd));
  912         }
  913 }
  914 
  915 static int
  916 bge_init_rx_ring_jumbo(struct bge_softc *sc)
  917 {
  918         struct bge_rcb *rcb;
  919         int i;
  920 
  921         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
  922                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
  923                         return (ENOBUFS);
  924         };
  925 
  926         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
  927             sc->bge_cdata.bge_rx_jumbo_ring_map,
  928             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
  929 
  930         sc->bge_jumbo = i - 1;
  931 
  932         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
  933         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
  934                                     BGE_RCB_FLAG_USE_EXT_RX_BD);
  935         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
  936 
  937         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
  938 
  939         return (0);
  940 }
  941 
  942 static void
  943 bge_free_rx_ring_jumbo(struct bge_softc *sc)
  944 {
  945         int i;
  946 
  947         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
  948                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
  949                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
  950                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
  951                             BUS_DMASYNC_POSTREAD);
  952                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
  953                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
  954                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
  955                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
  956                 }
  957                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
  958                     sizeof(struct bge_extrx_bd));
  959         }
  960 }
  961 
  962 static void
  963 bge_free_tx_ring(struct bge_softc *sc)
  964 {
  965         int i;
  966 
  967         if (sc->bge_ldata.bge_tx_ring == NULL)
  968                 return;
  969 
  970         for (i = 0; i < BGE_TX_RING_CNT; i++) {
  971                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
  972                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  973                             sc->bge_cdata.bge_tx_dmamap[i],
  974                             BUS_DMASYNC_POSTWRITE);
  975                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
  976                             sc->bge_cdata.bge_tx_dmamap[i]);
  977                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
  978                         sc->bge_cdata.bge_tx_chain[i] = NULL;
  979                 }
  980                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
  981                     sizeof(struct bge_tx_bd));
  982         }
  983 }
  984 
  985 static int
  986 bge_init_tx_ring(struct bge_softc *sc)
  987 {
  988         sc->bge_txcnt = 0;
  989         sc->bge_tx_saved_considx = 0;
  990 
  991         /* Initialize transmit producer index for host-memory send ring. */
  992         sc->bge_tx_prodidx = 0;
  993         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
  994 
  995         /* 5700 b2 errata */
  996         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
  997                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
  998 
  999         /* NIC-memory send ring not used; initialize to zero. */
 1000         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1001         /* 5700 b2 errata */
 1002         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1003                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1004 
 1005         return (0);
 1006 }
 1007 
 1008 static void
 1009 bge_setpromisc(struct bge_softc *sc)
 1010 {
 1011         struct ifnet *ifp;
 1012 
 1013         BGE_LOCK_ASSERT(sc);
 1014 
 1015         ifp = sc->bge_ifp;
 1016 
 1017         /* Enable or disable promiscuous mode as needed. */
 1018         if (ifp->if_flags & IFF_PROMISC)
 1019                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1020         else
 1021                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1022 }
 1023 
 1024 static void
 1025 bge_setmulti(struct bge_softc *sc)
 1026 {
 1027         struct ifnet *ifp;
 1028         struct ifmultiaddr *ifma;
 1029         uint32_t hashes[4] = { 0, 0, 0, 0 };
 1030         int h, i;
 1031 
 1032         BGE_LOCK_ASSERT(sc);
 1033 
 1034         ifp = sc->bge_ifp;
 1035 
 1036         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
 1037                 for (i = 0; i < 4; i++)
 1038                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
 1039                 return;
 1040         }
 1041 
 1042         /* First, zot all the existing filters. */
 1043         for (i = 0; i < 4; i++)
 1044                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
 1045 
 1046         /* Now program new ones. */
 1047         IF_ADDR_LOCK(ifp);
 1048         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1049                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1050                         continue;
 1051                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 1052                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
 1053                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
 1054         }
 1055         IF_ADDR_UNLOCK(ifp);
 1056 
 1057         for (i = 0; i < 4; i++)
 1058                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
 1059 }
 1060 
 1061 static void
 1062 bge_setvlan(struct bge_softc *sc)
 1063 {
 1064         struct ifnet *ifp;
 1065 
 1066         BGE_LOCK_ASSERT(sc);
 1067 
 1068         ifp = sc->bge_ifp;
 1069 
 1070         /* Enable or disable VLAN tag stripping as needed. */
 1071         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 1072                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1073         else
 1074                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1075 }
 1076 
 1077 static void
 1078 bge_sig_pre_reset(sc, type)
 1079         struct bge_softc *sc;
 1080         int type;
 1081 {
 1082         /*
 1083          * Some chips don't like this so only do this if ASF is enabled
 1084          */
 1085         if (sc->bge_asf_mode)
 1086                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
 1087 
 1088         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1089                 switch (type) {
 1090                 case BGE_RESET_START:
 1091                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
 1092                         break;
 1093                 case BGE_RESET_STOP:
 1094                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
 1095                         break;
 1096                 }
 1097         }
 1098 }
 1099 
 1100 static void
 1101 bge_sig_post_reset(sc, type)
 1102         struct bge_softc *sc;
 1103         int type;
 1104 {
 1105         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1106                 switch (type) {
 1107                 case BGE_RESET_START:
 1108                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 
 1109                         /* START DONE */
 1110                         break;
 1111                 case BGE_RESET_STOP:
 1112                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 
 1113                         break;
 1114                 }
 1115         }
 1116 }
 1117 
 1118 static void
 1119 bge_sig_legacy(sc, type)
 1120         struct bge_softc *sc;
 1121         int type;
 1122 {
 1123         if (sc->bge_asf_mode) {
 1124                 switch (type) {
 1125                 case BGE_RESET_START:
 1126                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
 1127                         break;
 1128                 case BGE_RESET_STOP:
 1129                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
 1130                         break;
 1131                 }
 1132         }
 1133 }
 1134 
 1135 void bge_stop_fw(struct bge_softc *);
 1136 void
 1137 bge_stop_fw(sc)
 1138         struct bge_softc *sc;
 1139 {
 1140         int i;
 1141 
 1142         if (sc->bge_asf_mode) {
 1143                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
 1144                 CSR_WRITE_4(sc, BGE_CPU_EVENT,
 1145                     CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
 1146 
 1147                 for (i = 0; i < 100; i++ ) {
 1148                         if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
 1149                                 break;
 1150                         DELAY(10);
 1151                 }
 1152         }
 1153 }
 1154 
 1155 /*
 1156  * Do endian, PCI and DMA initialization. Also check the on-board ROM
 1157  * self-test results.
 1158  */
 1159 static int
 1160 bge_chipinit(struct bge_softc *sc)
 1161 {
 1162         uint32_t dma_rw_ctl;
 1163         int i;
 1164 
 1165         /* Set endianness before we access any non-PCI registers. */
 1166         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
 1167 
 1168         /*
 1169          * Check the 'ROM failed' bit on the RX CPU to see if
 1170          * self-tests passed. Skip this check when there's no
 1171          * EEPROM fitted, since in that case it will always
 1172          * fail.
 1173          */
 1174         if ((sc->bge_flags & BGE_FLAG_EEPROM) &&
 1175             CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
 1176                 device_printf(sc->bge_dev, "RX CPU self-diagnostics failed!\n");
 1177                 return (ENODEV);
 1178         }
 1179 
 1180         /* Clear the MAC control register */
 1181         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
 1182 
 1183         /*
 1184          * Clear the MAC statistics block in the NIC's
 1185          * internal memory.
 1186          */
 1187         for (i = BGE_STATS_BLOCK;
 1188             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
 1189                 BGE_MEMWIN_WRITE(sc, i, 0);
 1190 
 1191         for (i = BGE_STATUS_BLOCK;
 1192             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
 1193                 BGE_MEMWIN_WRITE(sc, i, 0);
 1194 
 1195         /*
 1196          * Set up the PCI DMA control register.
 1197          */
 1198         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
 1199             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
 1200         if (sc->bge_flags & BGE_FLAG_PCIE) {
 1201                 /* Read watermark not used, 128 bytes for write. */
 1202                 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1203         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
 1204                 if (BGE_IS_5714_FAMILY(sc)) {
 1205                         /* 256 bytes for read and write. */
 1206                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
 1207                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
 1208                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
 1209                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
 1210                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
 1211                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1212                         /* 1536 bytes for read, 384 bytes for write. */
 1213                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1214                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1215                 } else {
 1216                         /* 384 bytes for read and write. */
 1217                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
 1218                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
 1219                             0x0F;
 1220                 }
 1221                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1222                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1223                         uint32_t tmp;
 1224 
 1225                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
 1226                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 1227                         if (tmp == 6 || tmp == 7)
 1228                                 dma_rw_ctl |=
 1229                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
 1230 
 1231                         /* Set PCI-X DMA write workaround. */
 1232                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1233                 }
 1234         } else {
 1235                 /* Conventional PCI bus: 256 bytes for read and write. */
 1236                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1237                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 1238 
 1239                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
 1240                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
 1241                         dma_rw_ctl |= 0x0F;
 1242         }
 1243         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 1244             sc->bge_asicrev == BGE_ASICREV_BCM5701)
 1245                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
 1246                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1247         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1248             sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1249                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
 1250         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
 1251 
 1252         /*
 1253          * Set up general mode register.
 1254          */
 1255         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
 1256             BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
 1257             BGE_MODECTL_TX_NO_PHDR_CSUM);
 1258 
 1259         /*
 1260          * Tell the firmware the driver is running
 1261          */
 1262         if (sc->bge_asf_mode & ASF_STACKUP)
 1263                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 1264 
 1265         /*
 1266          * Disable memory write invalidate.  Apparently it is not supported
 1267          * properly by these devices.
 1268          */
 1269         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
 1270 
 1271         /* Set the timer prescaler (always 66Mhz) */
 1272         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 1273 
 1274         return (0);
 1275 }
 1276 
 1277 static int
 1278 bge_blockinit(struct bge_softc *sc)
 1279 {
 1280         struct bge_rcb *rcb;
 1281         bus_size_t vrcb;
 1282         bge_hostaddr taddr;
 1283         uint32_t val;
 1284         int i;
 1285 
 1286         /*
 1287          * Initialize the memory window pointer register so that
 1288          * we can access the first 32K of internal NIC RAM. This will
 1289          * allow us to set up the TX send ring RCBs and the RX return
 1290          * ring RCBs, plus other things which live in NIC memory.
 1291          */
 1292         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
 1293 
 1294         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
 1295 
 1296         if (!(BGE_IS_5705_PLUS(sc))) {
 1297                 /* Configure mbuf memory pool */
 1298                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
 1299                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1300                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
 1301                 else
 1302                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
 1303 
 1304                 /* Configure DMA resource pool */
 1305                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
 1306                     BGE_DMA_DESCRIPTORS);
 1307                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
 1308         }
 1309 
 1310         /* Configure mbuf pool watermarks */
 1311         if (BGE_IS_5705_PLUS(sc)) {
 1312                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1313                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
 1314         } else {
 1315                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
 1316                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
 1317         }
 1318         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1319 
 1320         /* Configure DMA resource watermarks */
 1321         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
 1322         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
 1323 
 1324         /* Enable buffer manager */
 1325         if (!(BGE_IS_5705_PLUS(sc))) {
 1326                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
 1327                     BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
 1328 
 1329                 /* Poll for buffer manager start indication */
 1330                 for (i = 0; i < BGE_TIMEOUT; i++) {
 1331                         DELAY(10);
 1332                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
 1333                                 break;
 1334                 }
 1335 
 1336                 if (i == BGE_TIMEOUT) {
 1337                         device_printf(sc->bge_dev,
 1338                             "buffer manager failed to start\n");
 1339                         return (ENXIO);
 1340                 }
 1341         }
 1342 
 1343         /* Enable flow-through queues */
 1344         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 1345         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 1346 
 1347         /* Wait until queue initialization is complete */
 1348         for (i = 0; i < BGE_TIMEOUT; i++) {
 1349                 DELAY(10);
 1350                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
 1351                         break;
 1352         }
 1353 
 1354         if (i == BGE_TIMEOUT) {
 1355                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
 1356                 return (ENXIO);
 1357         }
 1358 
 1359         /* Initialize the standard RX ring control block */
 1360         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
 1361         rcb->bge_hostaddr.bge_addr_lo =
 1362             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
 1363         rcb->bge_hostaddr.bge_addr_hi =
 1364             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
 1365         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 1366             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
 1367         if (BGE_IS_5705_PLUS(sc))
 1368                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
 1369         else
 1370                 rcb->bge_maxlen_flags =
 1371                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
 1372         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
 1373         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
 1374         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
 1375 
 1376         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1377         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
 1378 
 1379         /*
 1380          * Initialize the jumbo RX ring control block
 1381          * We set the 'ring disabled' bit in the flags
 1382          * field until we're actually ready to start
 1383          * using this ring (i.e. once we set the MTU
 1384          * high enough to require it).
 1385          */
 1386         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 1387                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1388 
 1389                 rcb->bge_hostaddr.bge_addr_lo =
 1390                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 1391                 rcb->bge_hostaddr.bge_addr_hi =
 1392                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 1393                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1394                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 1395                     BUS_DMASYNC_PREREAD);
 1396                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 1397                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
 1398                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
 1399                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
 1400                     rcb->bge_hostaddr.bge_addr_hi);
 1401                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
 1402                     rcb->bge_hostaddr.bge_addr_lo);
 1403 
 1404                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
 1405                     rcb->bge_maxlen_flags);
 1406                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
 1407 
 1408                 /* Set up dummy disabled mini ring RCB */
 1409                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
 1410                 rcb->bge_maxlen_flags =
 1411                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
 1412                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
 1413                     rcb->bge_maxlen_flags);
 1414         }
 1415 
 1416         /*
 1417          * Set the BD ring replentish thresholds. The recommended
 1418          * values are 1/8th the number of descriptors allocated to
 1419          * each ring.
 1420          * XXX The 5754 requires a lower threshold, so it might be a
 1421          * requirement of all 575x family chips.  The Linux driver sets
 1422          * the lower threshold for all 5705 family chips as well, but there
 1423          * are reports that it might not need to be so strict.
 1424          */
 1425         if (BGE_IS_5705_PLUS(sc))
 1426                 val = 8;
 1427         else
 1428                 val = BGE_STD_RX_RING_CNT / 8;
 1429         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
 1430         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
 1431 
 1432         /*
 1433          * Disable all unused send rings by setting the 'ring disabled'
 1434          * bit in the flags field of all the TX send ring control blocks.
 1435          * These are located in NIC memory.
 1436          */
 1437         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 1438         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
 1439                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1440                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
 1441                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 1442                 vrcb += sizeof(struct bge_rcb);
 1443         }
 1444 
 1445         /* Configure TX RCB 0 (we use only the first ring) */
 1446         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 1447         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
 1448         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 1449         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 1450         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
 1451             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
 1452         if (!(BGE_IS_5705_PLUS(sc)))
 1453                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1454                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
 1455 
 1456         /* Disable all unused RX return rings */
 1457         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 1458         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
 1459                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
 1460                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
 1461                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1462                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
 1463                     BGE_RCB_FLAG_RING_DISABLED));
 1464                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 1465                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
 1466                     (i * (sizeof(uint64_t))), 0);
 1467                 vrcb += sizeof(struct bge_rcb);
 1468         }
 1469 
 1470         /* Initialize RX ring indexes */
 1471         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
 1472         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
 1473         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
 1474 
 1475         /*
 1476          * Set up RX return ring 0
 1477          * Note that the NIC address for RX return rings is 0x00000000.
 1478          * The return rings live entirely within the host, so the
 1479          * nicaddr field in the RCB isn't used.
 1480          */
 1481         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 1482         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
 1483         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 1484         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 1485         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
 1486         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1487             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));  
 1488 
 1489         /* Set random backoff seed for TX */
 1490         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
 1491             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
 1492             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
 1493             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
 1494             BGE_TX_BACKOFF_SEED_MASK);
 1495 
 1496         /* Set inter-packet gap */
 1497         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
 1498 
 1499         /*
 1500          * Specify which ring to use for packets that don't match
 1501          * any RX rules.
 1502          */
 1503         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
 1504 
 1505         /*
 1506          * Configure number of RX lists. One interrupt distribution
 1507          * list, sixteen active lists, one bad frames class.
 1508          */
 1509         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
 1510 
 1511         /* Inialize RX list placement stats mask. */
 1512         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
 1513         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
 1514 
 1515         /* Disable host coalescing until we get it set up */
 1516         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
 1517 
 1518         /* Poll to make sure it's shut down. */
 1519         for (i = 0; i < BGE_TIMEOUT; i++) {
 1520                 DELAY(10);
 1521                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
 1522                         break;
 1523         }
 1524 
 1525         if (i == BGE_TIMEOUT) {
 1526                 device_printf(sc->bge_dev,
 1527                     "host coalescing engine failed to idle\n");
 1528                 return (ENXIO);
 1529         }
 1530 
 1531         /* Set up host coalescing defaults */
 1532         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
 1533         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
 1534         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
 1535         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
 1536         if (!(BGE_IS_5705_PLUS(sc))) {
 1537                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
 1538                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
 1539         }
 1540         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
 1541         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
 1542 
 1543         /* Set up address of statistics block */
 1544         if (!(BGE_IS_5705_PLUS(sc))) {
 1545                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
 1546                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
 1547                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
 1548                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
 1549                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
 1550                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
 1551                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
 1552         }
 1553 
 1554         /* Set up address of status block */
 1555         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
 1556             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
 1557         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
 1558             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
 1559         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
 1560         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
 1561 
 1562         /* Turn on host coalescing state machine */
 1563         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 1564 
 1565         /* Turn on RX BD completion state machine and enable attentions */
 1566         CSR_WRITE_4(sc, BGE_RBDC_MODE,
 1567             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
 1568 
 1569         /* Turn on RX list placement state machine */
 1570         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 1571 
 1572         /* Turn on RX list selector state machine. */
 1573         if (!(BGE_IS_5705_PLUS(sc)))
 1574                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 1575 
 1576         /* Turn on DMA, clear stats */
 1577         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
 1578             BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
 1579             BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
 1580             BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
 1581             ((sc->bge_flags & BGE_FLAG_TBI) ?
 1582             BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
 1583 
 1584         /* Set misc. local control, enable interrupts on attentions */
 1585         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
 1586 
 1587 #ifdef notdef
 1588         /* Assert GPIO pins for PHY reset */
 1589         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
 1590             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
 1591         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
 1592             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
 1593 #endif
 1594 
 1595         /* Turn on DMA completion state machine */
 1596         if (!(BGE_IS_5705_PLUS(sc)))
 1597                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 1598 
 1599         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
 1600 
 1601         /* Enable host coalescing bug fix. */
 1602         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 1603             sc->bge_asicrev == BGE_ASICREV_BCM5787)
 1604                         val |= 1 << 29;
 1605 
 1606         /* Turn on write DMA state machine */
 1607         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
 1608 
 1609         /* Turn on read DMA state machine */
 1610         CSR_WRITE_4(sc, BGE_RDMA_MODE,
 1611             BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS);
 1612 
 1613         /* Turn on RX data completion state machine */
 1614         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 1615 
 1616         /* Turn on RX BD initiator state machine */
 1617         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 1618 
 1619         /* Turn on RX data and RX BD initiator state machine */
 1620         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
 1621 
 1622         /* Turn on Mbuf cluster free state machine */
 1623         if (!(BGE_IS_5705_PLUS(sc)))
 1624                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 1625 
 1626         /* Turn on send BD completion state machine */
 1627         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 1628 
 1629         /* Turn on send data completion state machine */
 1630         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 1631 
 1632         /* Turn on send data initiator state machine */
 1633         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 1634 
 1635         /* Turn on send BD initiator state machine */
 1636         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 1637 
 1638         /* Turn on send BD selector state machine */
 1639         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 1640 
 1641         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
 1642         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
 1643             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
 1644 
 1645         /* ack/clear link change events */
 1646         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 1647             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 1648             BGE_MACSTAT_LINK_CHANGED);
 1649         CSR_WRITE_4(sc, BGE_MI_STS, 0);
 1650 
 1651         /* Enable PHY auto polling (for MII/GMII only) */
 1652         if (sc->bge_flags & BGE_FLAG_TBI) {
 1653                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
 1654         } else {
 1655                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
 1656                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 1657                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
 1658                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 1659                             BGE_EVTENB_MI_INTERRUPT);
 1660         }
 1661 
 1662         /*
 1663          * Clear any pending link state attention.
 1664          * Otherwise some link state change events may be lost until attention
 1665          * is cleared by bge_intr() -> bge_link_upd() sequence.
 1666          * It's not necessary on newer BCM chips - perhaps enabling link
 1667          * state change attentions implies clearing pending attention.
 1668          */
 1669         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 1670             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 1671             BGE_MACSTAT_LINK_CHANGED);
 1672 
 1673         /* Enable link state change attentions. */
 1674         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
 1675 
 1676         return (0);
 1677 }
 1678 
 1679 const struct bge_revision *
 1680 bge_lookup_rev(uint32_t chipid)
 1681 {
 1682         const struct bge_revision *br;
 1683 
 1684         for (br = bge_revisions; br->br_name != NULL; br++) {
 1685                 if (br->br_chipid == chipid)
 1686                         return (br);
 1687         }
 1688 
 1689         for (br = bge_majorrevs; br->br_name != NULL; br++) {
 1690                 if (br->br_chipid == BGE_ASICREV(chipid))
 1691                         return (br);
 1692         }
 1693 
 1694         return (NULL);
 1695 }
 1696 
 1697 const struct bge_vendor *
 1698 bge_lookup_vendor(uint16_t vid)
 1699 {
 1700         const struct bge_vendor *v;
 1701 
 1702         for (v = bge_vendors; v->v_name != NULL; v++)
 1703                 if (v->v_id == vid)
 1704                         return (v);
 1705                 
 1706         panic("%s: unknown vendor %d", __func__, vid);
 1707         return (NULL);
 1708 }
 1709 
 1710 /*
 1711  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
 1712  * against our list and return its name if we find a match.
 1713  *
 1714  * Note that since the Broadcom controller contains VPD support, we
 1715  * try to get the device name string from the controller itself instead
 1716  * of the compiled-in string. It guarantees we'll always announce the
 1717  * right product name. We fall back to the compiled-in string when
 1718  * VPD is unavailable or corrupt.
 1719  */
 1720 static int
 1721 bge_probe(device_t dev)
 1722 {
 1723         struct bge_type *t = bge_devs;
 1724         struct bge_softc *sc = device_get_softc(dev);
 1725         uint16_t vid, did;
 1726 
 1727         sc->bge_dev = dev;
 1728         vid = pci_get_vendor(dev);
 1729         did = pci_get_device(dev);
 1730         while(t->bge_vid != 0) {
 1731                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
 1732                         char model[64], buf[96];
 1733                         const struct bge_revision *br;
 1734                         const struct bge_vendor *v;
 1735                         uint32_t id;
 1736 
 1737                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
 1738                             BGE_PCIMISCCTL_ASICREV;
 1739                         br = bge_lookup_rev(id);
 1740                         v = bge_lookup_vendor(vid);
 1741                         {
 1742 #if __FreeBSD_version > 700024
 1743                                 const char *pname;
 1744 
 1745                                 if (pci_get_vpd_ident(dev, &pname) == 0)
 1746                                         snprintf(model, 64, "%s", pname);
 1747                                 else
 1748 #endif
 1749                                         snprintf(model, 64, "%s %s",
 1750                                             v->v_name,
 1751                                             br != NULL ? br->br_name :
 1752                                             "NetXtreme Ethernet Controller");
 1753                         }
 1754                         snprintf(buf, 96, "%s, %sASIC rev. %#04x", model,
 1755                             br != NULL ? "" : "unknown ", id >> 16);
 1756                         device_set_desc_copy(dev, buf);
 1757                         if (pci_get_subvendor(dev) == DELL_VENDORID)
 1758                                 sc->bge_flags |= BGE_FLAG_NO_3LED;
 1759                         if (did == BCOM_DEVICEID_BCM5755M)
 1760                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
 1761                         return (0);
 1762                 }
 1763                 t++;
 1764         }
 1765 
 1766         return (ENXIO);
 1767 }
 1768 
 1769 static void
 1770 bge_dma_free(struct bge_softc *sc)
 1771 {
 1772         int i;
 1773 
 1774         /* Destroy DMA maps for RX buffers. */
 1775         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1776                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
 1777                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
 1778                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1779         }
 1780 
 1781         /* Destroy DMA maps for jumbo RX buffers. */
 1782         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1783                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
 1784                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 1785                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1786         }
 1787 
 1788         /* Destroy DMA maps for TX buffers. */
 1789         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1790                 if (sc->bge_cdata.bge_tx_dmamap[i])
 1791                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
 1792                             sc->bge_cdata.bge_tx_dmamap[i]);
 1793         }
 1794 
 1795         if (sc->bge_cdata.bge_mtag)
 1796                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
 1797 
 1798 
 1799         /* Destroy standard RX ring. */
 1800         if (sc->bge_cdata.bge_rx_std_ring_map)
 1801                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
 1802                     sc->bge_cdata.bge_rx_std_ring_map);
 1803         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
 1804                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
 1805                     sc->bge_ldata.bge_rx_std_ring,
 1806                     sc->bge_cdata.bge_rx_std_ring_map);
 1807 
 1808         if (sc->bge_cdata.bge_rx_std_ring_tag)
 1809                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
 1810 
 1811         /* Destroy jumbo RX ring. */
 1812         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
 1813                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1814                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 1815 
 1816         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
 1817             sc->bge_ldata.bge_rx_jumbo_ring)
 1818                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1819                     sc->bge_ldata.bge_rx_jumbo_ring,
 1820                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 1821 
 1822         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
 1823                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
 1824 
 1825         /* Destroy RX return ring. */
 1826         if (sc->bge_cdata.bge_rx_return_ring_map)
 1827                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
 1828                     sc->bge_cdata.bge_rx_return_ring_map);
 1829 
 1830         if (sc->bge_cdata.bge_rx_return_ring_map &&
 1831             sc->bge_ldata.bge_rx_return_ring)
 1832                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
 1833                     sc->bge_ldata.bge_rx_return_ring,
 1834                     sc->bge_cdata.bge_rx_return_ring_map);
 1835 
 1836         if (sc->bge_cdata.bge_rx_return_ring_tag)
 1837                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
 1838 
 1839         /* Destroy TX ring. */
 1840         if (sc->bge_cdata.bge_tx_ring_map)
 1841                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
 1842                     sc->bge_cdata.bge_tx_ring_map);
 1843 
 1844         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
 1845                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
 1846                     sc->bge_ldata.bge_tx_ring,
 1847                     sc->bge_cdata.bge_tx_ring_map);
 1848 
 1849         if (sc->bge_cdata.bge_tx_ring_tag)
 1850                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
 1851 
 1852         /* Destroy status block. */
 1853         if (sc->bge_cdata.bge_status_map)
 1854                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
 1855                     sc->bge_cdata.bge_status_map);
 1856 
 1857         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
 1858                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
 1859                     sc->bge_ldata.bge_status_block,
 1860                     sc->bge_cdata.bge_status_map);
 1861 
 1862         if (sc->bge_cdata.bge_status_tag)
 1863                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
 1864 
 1865         /* Destroy statistics block. */
 1866         if (sc->bge_cdata.bge_stats_map)
 1867                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
 1868                     sc->bge_cdata.bge_stats_map);
 1869 
 1870         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
 1871                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
 1872                     sc->bge_ldata.bge_stats,
 1873                     sc->bge_cdata.bge_stats_map);
 1874 
 1875         if (sc->bge_cdata.bge_stats_tag)
 1876                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
 1877 
 1878         /* Destroy the parent tag. */
 1879         if (sc->bge_cdata.bge_parent_tag)
 1880                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
 1881 }
 1882 
 1883 static int
 1884 bge_dma_alloc(device_t dev)
 1885 {
 1886         struct bge_dmamap_arg ctx;
 1887         struct bge_softc *sc;
 1888         int i, error;
 1889 
 1890         sc = device_get_softc(dev);
 1891 
 1892         /*
 1893          * Allocate the parent bus DMA tag appropriate for PCI.
 1894          */
 1895         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), /* parent */
 1896                         1, 0,                   /* alignment, boundary */
 1897                         BUS_SPACE_MAXADDR,      /* lowaddr */
 1898                         BUS_SPACE_MAXADDR,      /* highaddr */
 1899                         NULL, NULL,             /* filter, filterarg */
 1900                         MAXBSIZE, BGE_NSEG_NEW, /* maxsize, nsegments */
 1901                         BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
 1902                         0,                      /* flags */
 1903                         NULL, NULL,             /* lockfunc, lockarg */
 1904                         &sc->bge_cdata.bge_parent_tag);
 1905 
 1906         if (error != 0) {
 1907                 device_printf(sc->bge_dev,
 1908                     "could not allocate parent dma tag\n");
 1909                 return (ENOMEM);
 1910         }
 1911 
 1912         /*
 1913          * Create tag for RX mbufs.
 1914          */
 1915         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
 1916             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 1917             NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
 1918             BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
 1919 
 1920         if (error) {
 1921                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 1922                 return (ENOMEM);
 1923         }
 1924 
 1925         /* Create DMA maps for RX buffers. */
 1926         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1927                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
 1928                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
 1929                 if (error) {
 1930                         device_printf(sc->bge_dev,
 1931                             "can't create DMA map for RX\n");
 1932                         return (ENOMEM);
 1933                 }
 1934         }
 1935 
 1936         /* Create DMA maps for TX buffers. */
 1937         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1938                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
 1939                             &sc->bge_cdata.bge_tx_dmamap[i]);
 1940                 if (error) {
 1941                         device_printf(sc->bge_dev,
 1942                             "can't create DMA map for RX\n");
 1943                         return (ENOMEM);
 1944                 }
 1945         }
 1946 
 1947         /* Create tag for standard RX ring. */
 1948         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 1949             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 1950             NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
 1951             NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
 1952 
 1953         if (error) {
 1954                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 1955                 return (ENOMEM);
 1956         }
 1957 
 1958         /* Allocate DMA'able memory for standard RX ring. */
 1959         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
 1960             (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
 1961             &sc->bge_cdata.bge_rx_std_ring_map);
 1962         if (error)
 1963                 return (ENOMEM);
 1964 
 1965         bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
 1966 
 1967         /* Load the address of the standard RX ring. */
 1968         ctx.bge_maxsegs = 1;
 1969         ctx.sc = sc;
 1970 
 1971         error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
 1972             sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
 1973             BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 1974 
 1975         if (error)
 1976                 return (ENOMEM);
 1977 
 1978         sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
 1979 
 1980         /* Create tags for jumbo mbufs. */
 1981         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 1982                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 1983                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 1984                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
 1985                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
 1986                 if (error) {
 1987                         device_printf(sc->bge_dev,
 1988                             "could not allocate jumbo dma tag\n");
 1989                         return (ENOMEM);
 1990                 }
 1991 
 1992                 /* Create tag for jumbo RX ring. */
 1993                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 1994                     PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 1995                     NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
 1996                     NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
 1997 
 1998                 if (error) {
 1999                         device_printf(sc->bge_dev,
 2000                             "could not allocate jumbo ring dma tag\n");
 2001                         return (ENOMEM);
 2002                 }
 2003 
 2004                 /* Allocate DMA'able memory for jumbo RX ring. */
 2005                 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2006                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
 2007                     BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 2008                     &sc->bge_cdata.bge_rx_jumbo_ring_map);
 2009                 if (error)
 2010                         return (ENOMEM);
 2011 
 2012                 /* Load the address of the jumbo RX ring. */
 2013                 ctx.bge_maxsegs = 1;
 2014                 ctx.sc = sc;
 2015 
 2016                 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2017                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 2018                     sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
 2019                     bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2020 
 2021                 if (error)
 2022                         return (ENOMEM);
 2023 
 2024                 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
 2025 
 2026                 /* Create DMA maps for jumbo RX buffers. */
 2027                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 2028                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 2029                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 2030                         if (error) {
 2031                                 device_printf(sc->bge_dev,
 2032                                     "can't create DMA map for jumbo RX\n");
 2033                                 return (ENOMEM);
 2034                         }
 2035                 }
 2036 
 2037         }
 2038 
 2039         /* Create tag for RX return ring. */
 2040         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2041             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2042             NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
 2043             NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
 2044 
 2045         if (error) {
 2046                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2047                 return (ENOMEM);
 2048         }
 2049 
 2050         /* Allocate DMA'able memory for RX return ring. */
 2051         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
 2052             (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
 2053             &sc->bge_cdata.bge_rx_return_ring_map);
 2054         if (error)
 2055                 return (ENOMEM);
 2056 
 2057         bzero((char *)sc->bge_ldata.bge_rx_return_ring,
 2058             BGE_RX_RTN_RING_SZ(sc));
 2059 
 2060         /* Load the address of the RX return ring. */
 2061         ctx.bge_maxsegs = 1;
 2062         ctx.sc = sc;
 2063 
 2064         error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
 2065             sc->bge_cdata.bge_rx_return_ring_map,
 2066             sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
 2067             bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2068 
 2069         if (error)
 2070                 return (ENOMEM);
 2071 
 2072         sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
 2073 
 2074         /* Create tag for TX ring. */
 2075         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2076             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2077             NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
 2078             &sc->bge_cdata.bge_tx_ring_tag);
 2079 
 2080         if (error) {
 2081                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2082                 return (ENOMEM);
 2083         }
 2084 
 2085         /* Allocate DMA'able memory for TX ring. */
 2086         error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
 2087             (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
 2088             &sc->bge_cdata.bge_tx_ring_map);
 2089         if (error)
 2090                 return (ENOMEM);
 2091 
 2092         bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
 2093 
 2094         /* Load the address of the TX ring. */
 2095         ctx.bge_maxsegs = 1;
 2096         ctx.sc = sc;
 2097 
 2098         error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
 2099             sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
 2100             BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2101 
 2102         if (error)
 2103                 return (ENOMEM);
 2104 
 2105         sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
 2106 
 2107         /* Create tag for status block. */
 2108         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2109             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2110             NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
 2111             NULL, NULL, &sc->bge_cdata.bge_status_tag);
 2112 
 2113         if (error) {
 2114                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2115                 return (ENOMEM);
 2116         }
 2117 
 2118         /* Allocate DMA'able memory for status block. */
 2119         error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
 2120             (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
 2121             &sc->bge_cdata.bge_status_map);
 2122         if (error)
 2123                 return (ENOMEM);
 2124 
 2125         bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
 2126 
 2127         /* Load the address of the status block. */
 2128         ctx.sc = sc;
 2129         ctx.bge_maxsegs = 1;
 2130 
 2131         error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
 2132             sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
 2133             BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2134 
 2135         if (error)
 2136                 return (ENOMEM);
 2137 
 2138         sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
 2139 
 2140         /* Create tag for statistics block. */
 2141         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2142             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2143             NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
 2144             &sc->bge_cdata.bge_stats_tag);
 2145 
 2146         if (error) {
 2147                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2148                 return (ENOMEM);
 2149         }
 2150 
 2151         /* Allocate DMA'able memory for statistics block. */
 2152         error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
 2153             (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
 2154             &sc->bge_cdata.bge_stats_map);
 2155         if (error)
 2156                 return (ENOMEM);
 2157 
 2158         bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
 2159 
 2160         /* Load the address of the statstics block. */
 2161         ctx.sc = sc;
 2162         ctx.bge_maxsegs = 1;
 2163 
 2164         error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
 2165             sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
 2166             BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2167 
 2168         if (error)
 2169                 return (ENOMEM);
 2170 
 2171         sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
 2172 
 2173         return (0);
 2174 }
 2175 
 2176 #if __FreeBSD_version > 602105
 2177 /*
 2178  * Return true if this device has more than one port.
 2179  */
 2180 static int
 2181 bge_has_multiple_ports(struct bge_softc *sc)
 2182 {
 2183         device_t dev = sc->bge_dev;
 2184         u_int b, d, f, fscan, s;
 2185 
 2186         d = pci_get_domain(dev);
 2187         b = pci_get_bus(dev);
 2188         s = pci_get_slot(dev);
 2189         f = pci_get_function(dev);
 2190         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
 2191                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
 2192                         return (1);
 2193         return (0);
 2194 }
 2195 
 2196 /*
 2197  * Return true if MSI can be used with this device.
 2198  */
 2199 static int
 2200 bge_can_use_msi(struct bge_softc *sc)
 2201 {
 2202         int can_use_msi = 0;
 2203 
 2204         switch (sc->bge_asicrev) {
 2205         case BGE_ASICREV_BCM5714:
 2206                 /*
 2207                  * Apparently, MSI doesn't work when this chip is configured
 2208                  * in single-port mode.
 2209                  */
 2210                 if (bge_has_multiple_ports(sc))
 2211                         can_use_msi = 1;
 2212                 break;
 2213         case BGE_ASICREV_BCM5750:
 2214                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
 2215                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
 2216                         can_use_msi = 1;
 2217                 break;
 2218         case BGE_ASICREV_BCM5752:
 2219         case BGE_ASICREV_BCM5780:
 2220                 can_use_msi = 1;
 2221                 break;
 2222         }
 2223         return (can_use_msi);
 2224 }
 2225 #endif
 2226 
 2227 static int
 2228 bge_attach(device_t dev)
 2229 {
 2230         struct ifnet *ifp;
 2231         struct bge_softc *sc;
 2232         uint32_t hwcfg = 0;
 2233         uint32_t mac_tmp = 0;
 2234         u_char eaddr[ETHER_ADDR_LEN];
 2235         int error, reg, rid, trys;
 2236 
 2237         sc = device_get_softc(dev);
 2238         sc->bge_dev = dev;
 2239 
 2240         /*
 2241          * Map control/status registers.
 2242          */
 2243         pci_enable_busmaster(dev);
 2244 
 2245         rid = BGE_PCI_BAR0;
 2246         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 2247             RF_ACTIVE | PCI_RF_DENSE);
 2248 
 2249         if (sc->bge_res == NULL) {
 2250                 device_printf (sc->bge_dev, "couldn't map memory\n");
 2251                 error = ENXIO;
 2252                 goto fail;
 2253         }
 2254 
 2255         sc->bge_btag = rman_get_bustag(sc->bge_res);
 2256         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
 2257 
 2258         /* Save ASIC rev. */
 2259 
 2260         sc->bge_chipid =
 2261             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
 2262             BGE_PCIMISCCTL_ASICREV;
 2263         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
 2264         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
 2265 
 2266         if (bge_has_eeprom(sc))
 2267                 sc->bge_flags |= BGE_FLAG_EEPROM;
 2268 
 2269         /* Save chipset family. */
 2270         switch (sc->bge_asicrev) {
 2271         case BGE_ASICREV_BCM5700:
 2272         case BGE_ASICREV_BCM5701:
 2273         case BGE_ASICREV_BCM5703:
 2274         case BGE_ASICREV_BCM5704:
 2275                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
 2276                 break;
 2277         case BGE_ASICREV_BCM5714_A0:
 2278         case BGE_ASICREV_BCM5780:
 2279         case BGE_ASICREV_BCM5714:
 2280                 sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
 2281                 /* FALLTHRU */
 2282         case BGE_ASICREV_BCM5750:
 2283         case BGE_ASICREV_BCM5752:
 2284         case BGE_ASICREV_BCM5755:
 2285         case BGE_ASICREV_BCM5787:
 2286                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
 2287                 /* FALLTHRU */
 2288         case BGE_ASICREV_BCM5705:
 2289                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
 2290                 break;
 2291         }
 2292 
 2293         /* Set various bug flags. */
 2294         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
 2295             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
 2296                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
 2297         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
 2298             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
 2299                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
 2300         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
 2301                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
 2302         if (BGE_IS_5705_PLUS(sc) &&
 2303             !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
 2304                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2305                     sc->bge_asicrev == BGE_ASICREV_BCM5787)
 2306                         sc->bge_flags |= BGE_FLAG_JITTER_BUG;
 2307                 else
 2308                         sc->bge_flags |= BGE_FLAG_BER_BUG;
 2309         }
 2310 
 2311         /*
 2312          * Check if this is a PCI-X or PCI Express device.
 2313          */
 2314 #if __FreeBSD_version > 602101
 2315         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
 2316                 /*
 2317                  * Found a PCI Express capabilities register, this
 2318                  * must be a PCI Express device.
 2319                  */
 2320                 if (reg != 0)
 2321                         sc->bge_flags |= BGE_FLAG_PCIE;
 2322         } else if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
 2323                 if (reg != 0)
 2324                         sc->bge_flags |= BGE_FLAG_PCIX;
 2325         }
 2326                         
 2327 #else
 2328         if (BGE_IS_5705_PLUS(sc)) {
 2329                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
 2330                 if ((reg & 0xFF) == BGE_PCIE_CAPID)
 2331                         sc->bge_flags |= BGE_FLAG_PCIE;
 2332         } else {
 2333                 /*
 2334                  * Check if the device is in PCI-X Mode.
 2335                  * (This bit is not valid on PCI Express controllers.)
 2336                  */
 2337                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
 2338                     BGE_PCISTATE_PCI_BUSMODE) == 0)
 2339                         sc->bge_flags |= BGE_FLAG_PCIX;
 2340         }
 2341 #endif
 2342 
 2343 #if __FreeBSD_version > 602105
 2344         {
 2345                 int msicount;
 2346 
 2347                 /*
 2348                  * Allocate the interrupt, using MSI if possible.  These devices
 2349                  * support 8 MSI messages, but only the first one is used in
 2350                  * normal operation.
 2351                  */
 2352                 if (bge_can_use_msi(sc)) {
 2353                         msicount = pci_msi_count(dev);
 2354                         if (msicount > 1)
 2355                                 msicount = 1;
 2356                 } else
 2357                         msicount = 0;
 2358                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
 2359                         rid = 1;
 2360                         sc->bge_flags |= BGE_FLAG_MSI;
 2361                 } else
 2362                         rid = 0;
 2363         }
 2364 #else
 2365         rid = 0;
 2366 #endif
 2367 
 2368         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 2369             RF_SHAREABLE | RF_ACTIVE);
 2370 
 2371         if (sc->bge_irq == NULL) {
 2372                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
 2373                 error = ENXIO;
 2374                 goto fail;
 2375         }
 2376 
 2377         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
 2378 
 2379         /* Try to reset the chip. */
 2380         if (bge_reset(sc)) {
 2381                 device_printf(sc->bge_dev, "chip reset failed\n");
 2382                 error = ENXIO;
 2383                 goto fail;
 2384         }
 2385 
 2386         sc->bge_asf_mode = 0;
 2387         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
 2388             == BGE_MAGIC_NUMBER)) {
 2389                 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
 2390                     & BGE_HWCFG_ASF) {
 2391                         sc->bge_asf_mode |= ASF_ENABLE;
 2392                         sc->bge_asf_mode |= ASF_STACKUP;
 2393                         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
 2394                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
 2395                         }
 2396                 }
 2397         }
 2398 
 2399         /* Try to reset the chip again the nice way. */
 2400         bge_stop_fw(sc);
 2401         bge_sig_pre_reset(sc, BGE_RESET_STOP);
 2402         if (bge_reset(sc)) {
 2403                 device_printf(sc->bge_dev, "chip reset failed\n");
 2404                 error = ENXIO;
 2405                 goto fail;
 2406         }
 2407 
 2408         bge_sig_legacy(sc, BGE_RESET_STOP);
 2409         bge_sig_post_reset(sc, BGE_RESET_STOP);
 2410 
 2411         if (bge_chipinit(sc)) {
 2412                 device_printf(sc->bge_dev, "chip initialization failed\n");
 2413                 error = ENXIO;
 2414                 goto fail;
 2415         }
 2416 
 2417 #ifdef __sparc64__
 2418         if ((sc->bge_flags & BGE_FLAG_EEPROM) == 0)
 2419                 OF_getetheraddr(dev, eaddr);
 2420         else
 2421 #endif
 2422         {
 2423                 mac_tmp = bge_readmem_ind(sc, 0x0C14);
 2424                 if ((mac_tmp >> 16) == 0x484B) {
 2425                         eaddr[0] = (u_char)(mac_tmp >> 8);
 2426                         eaddr[1] = (u_char)mac_tmp;
 2427                         mac_tmp = bge_readmem_ind(sc, 0x0C18);
 2428                         eaddr[2] = (u_char)(mac_tmp >> 24);
 2429                         eaddr[3] = (u_char)(mac_tmp >> 16);
 2430                         eaddr[4] = (u_char)(mac_tmp >> 8);
 2431                         eaddr[5] = (u_char)mac_tmp;
 2432                 } else if (bge_read_eeprom(sc, eaddr,
 2433                     BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
 2434                         device_printf(sc->bge_dev,
 2435                             "failed to read station address\n");
 2436                         error = ENXIO;
 2437                         goto fail;
 2438                 }
 2439         }
 2440 
 2441         /* 5705 limits RX return ring to 512 entries. */
 2442         if (BGE_IS_5705_PLUS(sc))
 2443                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
 2444         else
 2445                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 2446 
 2447         if (bge_dma_alloc(dev)) {
 2448                 device_printf(sc->bge_dev,
 2449                     "failed to allocate DMA resources\n");
 2450                 error = ENXIO;
 2451                 goto fail;
 2452         }
 2453 
 2454         /* Set default tuneable values. */
 2455         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
 2456         sc->bge_rx_coal_ticks = 150;
 2457         sc->bge_tx_coal_ticks = 150;
 2458         sc->bge_rx_max_coal_bds = 10;
 2459         sc->bge_tx_max_coal_bds = 10;
 2460 
 2461         /* Set up ifnet structure */
 2462         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
 2463         if (ifp == NULL) {
 2464                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
 2465                 error = ENXIO;
 2466                 goto fail;
 2467         }
 2468         ifp->if_softc = sc;
 2469         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2470         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2471         ifp->if_ioctl = bge_ioctl;
 2472         ifp->if_start = bge_start;
 2473         ifp->if_init = bge_init;
 2474         ifp->if_mtu = ETHERMTU;
 2475         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
 2476         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 2477         IFQ_SET_READY(&ifp->if_snd);
 2478         ifp->if_hwassist = BGE_CSUM_FEATURES;
 2479         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
 2480             IFCAP_VLAN_MTU;
 2481 #ifdef IFCAP_VLAN_HWCSUM
 2482         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
 2483 #endif
 2484         ifp->if_capenable = ifp->if_capabilities;
 2485 #ifdef DEVICE_POLLING
 2486         ifp->if_capabilities |= IFCAP_POLLING;
 2487 #endif
 2488 
 2489         /*
 2490          * 5700 B0 chips do not support checksumming correctly due
 2491          * to hardware bugs.
 2492          */
 2493         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
 2494                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
 2495                 ifp->if_capenable &= IFCAP_HWCSUM;
 2496                 ifp->if_hwassist = 0;
 2497         }
 2498 
 2499         /*
 2500          * Figure out what sort of media we have by checking the
 2501          * hardware config word in the first 32k of NIC internal memory,
 2502          * or fall back to examining the EEPROM if necessary.
 2503          * Note: on some BCM5700 cards, this value appears to be unset.
 2504          * If that's the case, we have to rely on identifying the NIC
 2505          * by its PCI subsystem ID, as we do below for the SysKonnect
 2506          * SK-9D41.
 2507          */
 2508         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
 2509                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
 2510         else if (sc->bge_flags & BGE_FLAG_EEPROM) {
 2511                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
 2512                     sizeof(hwcfg))) {
 2513                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
 2514                         error = ENXIO;
 2515                         goto fail;
 2516                 }
 2517                 hwcfg = ntohl(hwcfg);
 2518         }
 2519 
 2520         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
 2521                 sc->bge_flags |= BGE_FLAG_TBI;
 2522 
 2523         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
 2524         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
 2525                 sc->bge_flags |= BGE_FLAG_TBI;
 2526 
 2527         if (sc->bge_flags & BGE_FLAG_TBI) {
 2528                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
 2529                     bge_ifmedia_sts);
 2530                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
 2531                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
 2532                     0, NULL);
 2533                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 2534                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
 2535                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
 2536         } else {
 2537                 /*
 2538                  * Do transceiver setup and tell the firmware the
 2539                  * driver is down so we can try to get access the
 2540                  * probe if ASF is running.  Retry a couple of times
 2541                  * if we get a conflict with the ASF firmware accessing
 2542                  * the PHY.
 2543                  */
 2544                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2545 again:
 2546                 bge_asf_driver_up(sc);
 2547 
 2548                 trys = 0;
 2549                 if (mii_phy_probe(dev, &sc->bge_miibus,
 2550                     bge_ifmedia_upd, bge_ifmedia_sts)) {
 2551                         if (trys++ < 4) {
 2552                                 device_printf(sc->bge_dev, "Try again\n");
 2553                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
 2554                                     BMCR_RESET);
 2555                                 goto again;
 2556                         }
 2557 
 2558                         device_printf(sc->bge_dev, "MII without any PHY!\n");
 2559                         error = ENXIO;
 2560                         goto fail;
 2561                 }
 2562 
 2563                 /*
 2564                  * Now tell the firmware we are going up after probing the PHY
 2565                  */
 2566                 if (sc->bge_asf_mode & ASF_STACKUP)
 2567                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2568         }
 2569 
 2570         /*
 2571          * When using the BCM5701 in PCI-X mode, data corruption has
 2572          * been observed in the first few bytes of some received packets.
 2573          * Aligning the packet buffer in memory eliminates the corruption.
 2574          * Unfortunately, this misaligns the packet payloads.  On platforms
 2575          * which do not support unaligned accesses, we will realign the
 2576          * payloads by copying the received packets.
 2577          */
 2578         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 2579             sc->bge_flags & BGE_FLAG_PCIX)
 2580                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
 2581 
 2582         /*
 2583          * Call MI attach routine.
 2584          */
 2585         ether_ifattach(ifp, eaddr);
 2586         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
 2587 
 2588         /*
 2589          * Hookup IRQ last.
 2590          */
 2591 #if __FreeBSD_version > 700030
 2592         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2593            NULL, bge_intr, sc, &sc->bge_intrhand);
 2594 #else
 2595         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2596            bge_intr, sc, &sc->bge_intrhand);
 2597 #endif
 2598 
 2599         if (error) {
 2600                 bge_detach(dev);
 2601                 device_printf(sc->bge_dev, "couldn't set up irq\n");
 2602         }
 2603 
 2604         bge_add_sysctls(sc);
 2605 
 2606         return (0);
 2607 
 2608 fail:
 2609         bge_release_resources(sc);
 2610 
 2611         return (error);
 2612 }
 2613 
 2614 static int
 2615 bge_detach(device_t dev)
 2616 {
 2617         struct bge_softc *sc;
 2618         struct ifnet *ifp;
 2619 
 2620         sc = device_get_softc(dev);
 2621         ifp = sc->bge_ifp;
 2622 
 2623 #ifdef DEVICE_POLLING
 2624         if (ifp->if_capenable & IFCAP_POLLING)
 2625                 ether_poll_deregister(ifp);
 2626 #endif
 2627 
 2628         BGE_LOCK(sc);
 2629         bge_stop(sc);
 2630         bge_reset(sc);
 2631         BGE_UNLOCK(sc);
 2632 
 2633         callout_drain(&sc->bge_stat_ch);
 2634 
 2635         ether_ifdetach(ifp);
 2636 
 2637         if (sc->bge_flags & BGE_FLAG_TBI) {
 2638                 ifmedia_removeall(&sc->bge_ifmedia);
 2639         } else {
 2640                 bus_generic_detach(dev);
 2641                 device_delete_child(dev, sc->bge_miibus);
 2642         }
 2643 
 2644         bge_release_resources(sc);
 2645 
 2646         return (0);
 2647 }
 2648 
 2649 static void
 2650 bge_release_resources(struct bge_softc *sc)
 2651 {
 2652         device_t dev;
 2653 
 2654         dev = sc->bge_dev;
 2655 
 2656         if (sc->bge_intrhand != NULL)
 2657                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
 2658 
 2659         if (sc->bge_irq != NULL)
 2660                 bus_release_resource(dev, SYS_RES_IRQ,
 2661                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
 2662 
 2663 #if __FreeBSD_version > 602105
 2664         if (sc->bge_flags & BGE_FLAG_MSI)
 2665                 pci_release_msi(dev);
 2666 #endif
 2667 
 2668         if (sc->bge_res != NULL)
 2669                 bus_release_resource(dev, SYS_RES_MEMORY,
 2670                     BGE_PCI_BAR0, sc->bge_res);
 2671 
 2672         if (sc->bge_ifp != NULL)
 2673                 if_free(sc->bge_ifp);
 2674 
 2675         bge_dma_free(sc);
 2676 
 2677         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
 2678                 BGE_LOCK_DESTROY(sc);
 2679 }
 2680 
 2681 static int
 2682 bge_reset(struct bge_softc *sc)
 2683 {
 2684         device_t dev;
 2685         uint32_t cachesize, command, pcistate, reset;
 2686         void (*write_op)(struct bge_softc *, int, int);
 2687         int i, val = 0;
 2688 
 2689         dev = sc->bge_dev;
 2690 
 2691         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
 2692                 if (sc->bge_flags & BGE_FLAG_PCIE)
 2693                         write_op = bge_writemem_direct;
 2694                 else
 2695                         write_op = bge_writemem_ind;
 2696         } else
 2697                 write_op = bge_writereg_ind;
 2698 
 2699         /* Save some important PCI state. */
 2700         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
 2701         command = pci_read_config(dev, BGE_PCI_CMD, 4);
 2702         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
 2703 
 2704         pci_write_config(dev, BGE_PCI_MISC_CTL,
 2705             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 2706             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 2707 
 2708         /* Disable fastboot on controllers that support it. */
 2709         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
 2710             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2711             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 2712                 if (bootverbose)
 2713                         device_printf(sc->bge_dev, "Disabling fastboot\n");
 2714                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
 2715         }
 2716 
 2717         /*
 2718          * Write the magic number to SRAM at offset 0xB50.
 2719          * When firmware finishes its initialization it will
 2720          * write ~BGE_MAGIC_NUMBER to the same location.
 2721          */
 2722         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
 2723 
 2724         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
 2725 
 2726         /* XXX: Broadcom Linux driver. */
 2727         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2728                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
 2729                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
 2730                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 2731                         /* Prevent PCIE link training during global reset */
 2732                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
 2733                         reset |= 1 << 29;
 2734                 }
 2735         }
 2736 
 2737         /* 
 2738          * Set GPHY Power Down Override to leave GPHY
 2739          * powered up in D0 uninitialized.
 2740          */
 2741         if (BGE_IS_5705_PLUS(sc))
 2742                 reset |= 0x04000000;
 2743 
 2744         /* Issue global reset */
 2745         write_op(sc, BGE_MISC_CFG, reset);
 2746 
 2747         DELAY(1000);
 2748 
 2749         /* XXX: Broadcom Linux driver. */
 2750         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2751                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
 2752                         uint32_t v;
 2753 
 2754                         DELAY(500000); /* wait for link training to complete */
 2755                         v = pci_read_config(dev, 0xC4, 4);
 2756                         pci_write_config(dev, 0xC4, v | (1 << 15), 4);
 2757                 }
 2758                 /*
 2759                  * Set PCIE max payload size to 128 bytes and clear error
 2760                  * status.
 2761                  */
 2762                 pci_write_config(dev, 0xD8, 0xF5000, 4);
 2763         }
 2764 
 2765         /* Reset some of the PCI state that got zapped by reset. */
 2766         pci_write_config(dev, BGE_PCI_MISC_CTL,
 2767             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 2768             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 2769         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
 2770         pci_write_config(dev, BGE_PCI_CMD, command, 4);
 2771         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 2772 
 2773         /* Re-enable MSI, if neccesary, and enable the memory arbiter. */
 2774         if (BGE_IS_5714_FAMILY(sc)) {
 2775                 uint32_t val;
 2776 
 2777                 /* This chip disables MSI on reset. */
 2778                 if (sc->bge_flags & BGE_FLAG_MSI) {
 2779                         val = pci_read_config(dev, BGE_PCI_MSI_CTL, 2);
 2780                         pci_write_config(dev, BGE_PCI_MSI_CTL,
 2781                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
 2782                         val = CSR_READ_4(sc, BGE_MSI_MODE);
 2783                         CSR_WRITE_4(sc, BGE_MSI_MODE,
 2784                             val | BGE_MSIMODE_ENABLE);
 2785                 }
 2786                 val = CSR_READ_4(sc, BGE_MARB_MODE);
 2787                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
 2788         } else
 2789                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 2790 
 2791         /*
 2792          * Poll until we see the 1's complement of the magic number.
 2793          * This indicates that the firmware initialization is complete.
 2794          * We expect this to fail if no EEPROM is fitted though.
 2795          */
 2796         for (i = 0; i < BGE_TIMEOUT; i++) {
 2797                 DELAY(10);
 2798                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
 2799                 if (val == ~BGE_MAGIC_NUMBER)
 2800                         break;
 2801         }
 2802 
 2803         if ((sc->bge_flags & BGE_FLAG_EEPROM) && i == BGE_TIMEOUT)
 2804                 device_printf(sc->bge_dev, "firmware handshake timed out, "
 2805                     "found 0x%08x\n", val);
 2806 
 2807         /*
 2808          * XXX Wait for the value of the PCISTATE register to
 2809          * return to its original pre-reset state. This is a
 2810          * fairly good indicator of reset completion. If we don't
 2811          * wait for the reset to fully complete, trying to read
 2812          * from the device's non-PCI registers may yield garbage
 2813          * results.
 2814          */
 2815         for (i = 0; i < BGE_TIMEOUT; i++) {
 2816                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
 2817                         break;
 2818                 DELAY(10);
 2819         }
 2820 
 2821         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2822                 reset = bge_readmem_ind(sc, 0x7C00);
 2823                 bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
 2824         }
 2825 
 2826         /* Fix up byte swapping. */
 2827         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
 2828             BGE_MODECTL_BYTESWAP_DATA);
 2829 
 2830         /* Tell the ASF firmware we are up */
 2831         if (sc->bge_asf_mode & ASF_STACKUP)
 2832                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2833 
 2834         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
 2835 
 2836         /*
 2837          * The 5704 in TBI mode apparently needs some special
 2838          * adjustment to insure the SERDES drive level is set
 2839          * to 1.2V.
 2840          */
 2841         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
 2842             sc->bge_flags & BGE_FLAG_TBI) {
 2843                 uint32_t serdescfg;
 2844 
 2845                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
 2846                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
 2847                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
 2848         }
 2849 
 2850         /* XXX: Broadcom Linux driver. */
 2851         if (sc->bge_flags & BGE_FLAG_PCIE &&
 2852             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 2853                 uint32_t v;
 2854 
 2855                 v = CSR_READ_4(sc, 0x7C00);
 2856                 CSR_WRITE_4(sc, 0x7C00, v | (1 << 25));
 2857         }
 2858         DELAY(10000);
 2859 
 2860         return(0);
 2861 }
 2862 
 2863 /*
 2864  * Frame reception handling. This is called if there's a frame
 2865  * on the receive return list.
 2866  *
 2867  * Note: we have to be able to handle two possibilities here:
 2868  * 1) the frame is from the jumbo receive ring
 2869  * 2) the frame is from the standard receive ring
 2870  */
 2871 
 2872 static void
 2873 bge_rxeof(struct bge_softc *sc)
 2874 {
 2875         struct ifnet *ifp;
 2876         int stdcnt = 0, jumbocnt = 0;
 2877 
 2878         BGE_LOCK_ASSERT(sc);
 2879 
 2880         /* Nothing to do. */
 2881         if (sc->bge_rx_saved_considx ==
 2882             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
 2883                 return;
 2884 
 2885         ifp = sc->bge_ifp;
 2886 
 2887         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 2888             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 2889         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 2890             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
 2891         if (BGE_IS_JUMBO_CAPABLE(sc))
 2892                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2893                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTREAD);
 2894 
 2895         while(sc->bge_rx_saved_considx !=
 2896             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
 2897                 struct bge_rx_bd        *cur_rx;
 2898                 uint32_t                rxidx;
 2899                 struct mbuf             *m = NULL;
 2900                 uint16_t                vlan_tag = 0;
 2901                 int                     have_tag = 0;
 2902 
 2903 #ifdef DEVICE_POLLING
 2904                 if (ifp->if_capenable & IFCAP_POLLING) {
 2905                         if (sc->rxcycles <= 0)
 2906                                 break;
 2907                         sc->rxcycles--;
 2908                 }
 2909 #endif
 2910 
 2911                 cur_rx =
 2912             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
 2913 
 2914                 rxidx = cur_rx->bge_idx;
 2915                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
 2916 
 2917                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
 2918                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
 2919                         have_tag = 1;
 2920                         vlan_tag = cur_rx->bge_vlan_tag;
 2921                 }
 2922 
 2923                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
 2924                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 2925                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 2926                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
 2927                             BUS_DMASYNC_POSTREAD);
 2928                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 2929                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
 2930                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
 2931                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
 2932                         jumbocnt++;
 2933                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 2934                                 ifp->if_ierrors++;
 2935                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
 2936                                 continue;
 2937                         }
 2938                         if (bge_newbuf_jumbo(sc,
 2939                             sc->bge_jumbo, NULL) == ENOBUFS) {
 2940                                 ifp->if_ierrors++;
 2941                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
 2942                                 continue;
 2943                         }
 2944                 } else {
 2945                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 2946                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 2947                             sc->bge_cdata.bge_rx_std_dmamap[rxidx],
 2948                             BUS_DMASYNC_POSTREAD);
 2949                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 2950                             sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
 2951                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
 2952                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
 2953                         stdcnt++;
 2954                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 2955                                 ifp->if_ierrors++;
 2956                                 bge_newbuf_std(sc, sc->bge_std, m);
 2957                                 continue;
 2958                         }
 2959                         if (bge_newbuf_std(sc, sc->bge_std,
 2960                             NULL) == ENOBUFS) {
 2961                                 ifp->if_ierrors++;
 2962                                 bge_newbuf_std(sc, sc->bge_std, m);
 2963                                 continue;
 2964                         }
 2965                 }
 2966 
 2967                 ifp->if_ipackets++;
 2968 #ifndef __NO_STRICT_ALIGNMENT
 2969                 /*
 2970                  * For architectures with strict alignment we must make sure
 2971                  * the payload is aligned.
 2972                  */
 2973                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
 2974                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
 2975                             cur_rx->bge_len);
 2976                         m->m_data += ETHER_ALIGN;
 2977                 }
 2978 #endif
 2979                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
 2980                 m->m_pkthdr.rcvif = ifp;
 2981 
 2982                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 2983                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 2984                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 2985                                 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
 2986                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 2987                         }
 2988                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
 2989                             m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
 2990                                 m->m_pkthdr.csum_data =
 2991                                     cur_rx->bge_tcp_udp_csum;
 2992                                 m->m_pkthdr.csum_flags |=
 2993                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 2994                         }
 2995                 }
 2996 
 2997                 /*
 2998                  * If we received a packet with a vlan tag,
 2999                  * attach that information to the packet.
 3000                  */
 3001                 if (have_tag) {
 3002 #if __FreeBSD_version > 700022
 3003                         m->m_pkthdr.ether_vtag = vlan_tag;
 3004                         m->m_flags |= M_VLANTAG;
 3005 #else
 3006                         VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
 3007                         if (m == NULL)
 3008                                 continue;
 3009 #endif
 3010                 }
 3011 
 3012                 BGE_UNLOCK(sc);
 3013                 (*ifp->if_input)(ifp, m);
 3014                 BGE_LOCK(sc);
 3015         }
 3016 
 3017         if (stdcnt > 0)
 3018                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 3019                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 3020 
 3021         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0)
 3022                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 3023                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 3024 
 3025         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
 3026         if (stdcnt)
 3027                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
 3028         if (jumbocnt)
 3029                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
 3030 #ifdef notyet
 3031         /*
 3032          * This register wraps very quickly under heavy packet drops.
 3033          * If you need correct statistics, you can enable this check.
 3034          */
 3035         if (BGE_IS_5705_PLUS(sc))
 3036                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 3037 #endif
 3038 }
 3039 
 3040 static void
 3041 bge_txeof(struct bge_softc *sc)
 3042 {
 3043         struct bge_tx_bd *cur_tx = NULL;
 3044         struct ifnet *ifp;
 3045 
 3046         BGE_LOCK_ASSERT(sc);
 3047 
 3048         /* Nothing to do. */
 3049         if (sc->bge_tx_saved_considx ==
 3050             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
 3051                 return;
 3052 
 3053         ifp = sc->bge_ifp;
 3054 
 3055         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 3056             sc->bge_cdata.bge_tx_ring_map,
 3057             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 3058         /*
 3059          * Go through our tx ring and free mbufs for those
 3060          * frames that have been sent.
 3061          */
 3062         while (sc->bge_tx_saved_considx !=
 3063             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
 3064                 uint32_t                idx = 0;
 3065 
 3066                 idx = sc->bge_tx_saved_considx;
 3067                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
 3068                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
 3069                         ifp->if_opackets++;
 3070                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
 3071                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 3072                             sc->bge_cdata.bge_tx_dmamap[idx],
 3073                             BUS_DMASYNC_POSTWRITE);
 3074                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 3075                             sc->bge_cdata.bge_tx_dmamap[idx]);
 3076                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
 3077                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
 3078                 }
 3079                 sc->bge_txcnt--;
 3080                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
 3081         }
 3082 
 3083         if (cur_tx != NULL)
 3084                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3085         if (sc->bge_txcnt == 0)
 3086                 sc->bge_timer = 0;
 3087 }
 3088 
 3089 #ifdef DEVICE_POLLING
 3090 static void
 3091 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3092 {
 3093         struct bge_softc *sc = ifp->if_softc;
 3094         uint32_t statusword;
 3095         
 3096         BGE_LOCK(sc);
 3097         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3098                 BGE_UNLOCK(sc);
 3099                 return;
 3100         }
 3101 
 3102         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3103             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
 3104 
 3105         statusword = atomic_readandclear_32(
 3106             &sc->bge_ldata.bge_status_block->bge_status);
 3107 
 3108         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3109             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
 3110 
 3111         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
 3112         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
 3113                 sc->bge_link_evt++;
 3114 
 3115         if (cmd == POLL_AND_CHECK_STATUS)
 3116                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 3117                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 3118                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
 3119                         bge_link_upd(sc);
 3120 
 3121         sc->rxcycles = count;
 3122         bge_rxeof(sc);
 3123         bge_txeof(sc);
 3124         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3125                 bge_start_locked(ifp);
 3126 
 3127         BGE_UNLOCK(sc);
 3128 }
 3129 #endif /* DEVICE_POLLING */
 3130 
 3131 static void
 3132 bge_intr(void *xsc)
 3133 {
 3134         struct bge_softc *sc;
 3135         struct ifnet *ifp;
 3136         uint32_t statusword;
 3137 
 3138         sc = xsc;
 3139 
 3140         BGE_LOCK(sc);
 3141 
 3142         ifp = sc->bge_ifp;
 3143 
 3144 #ifdef DEVICE_POLLING
 3145         if (ifp->if_capenable & IFCAP_POLLING) {
 3146                 BGE_UNLOCK(sc);
 3147                 return;
 3148         }
 3149 #endif
 3150 
 3151         /*
 3152          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
 3153          * disable interrupts by writing nonzero like we used to, since with
 3154          * our current organization this just gives complications and
 3155          * pessimizations for re-enabling interrupts.  We used to have races
 3156          * instead of the necessary complications.  Disabling interrupts
 3157          * would just reduce the chance of a status update while we are
 3158          * running (by switching to the interrupt-mode coalescence
 3159          * parameters), but this chance is already very low so it is more
 3160          * efficient to get another interrupt than prevent it.
 3161          *
 3162          * We do the ack first to ensure another interrupt if there is a
 3163          * status update after the ack.  We don't check for the status
 3164          * changing later because it is more efficient to get another
 3165          * interrupt than prevent it, not quite as above (not checking is
 3166          * a smaller optimization than not toggling the interrupt enable,
 3167          * since checking doesn't involve PCI accesses and toggling require
 3168          * the status check).  So toggling would probably be a pessimization
 3169          * even with MSI.  It would only be needed for using a task queue.
 3170          */
 3171         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
 3172 
 3173         /*
 3174          * Do the mandatory PCI flush as well as get the link status.
 3175          */
 3176         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
 3177 
 3178         /* Make sure the descriptor ring indexes are coherent. */
 3179         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3180             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
 3181         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3182             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
 3183 
 3184         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 3185             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 3186             statusword || sc->bge_link_evt)
 3187                 bge_link_upd(sc);
 3188 
 3189         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3190                 /* Check RX return ring producer/consumer. */
 3191                 bge_rxeof(sc);
 3192 
 3193                 /* Check TX ring producer/consumer. */
 3194                 bge_txeof(sc);
 3195         }
 3196 
 3197         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 3198             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3199                 bge_start_locked(ifp);
 3200 
 3201         BGE_UNLOCK(sc);
 3202 }
 3203 
 3204 static void
 3205 bge_asf_driver_up(struct bge_softc *sc)
 3206 {
 3207         if (sc->bge_asf_mode & ASF_STACKUP) {
 3208                 /* Send ASF heartbeat aprox. every 2s */
 3209                 if (sc->bge_asf_count)
 3210                         sc->bge_asf_count --;
 3211                 else {
 3212                         sc->bge_asf_count = 5;
 3213                         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
 3214                             BGE_FW_DRV_ALIVE);
 3215                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
 3216                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
 3217                         CSR_WRITE_4(sc, BGE_CPU_EVENT,
 3218                             CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
 3219                 }
 3220         }
 3221 }
 3222 
 3223 static void
 3224 bge_tick(void *xsc)
 3225 {
 3226         struct bge_softc *sc = xsc;
 3227         struct mii_data *mii = NULL;
 3228 
 3229         BGE_LOCK_ASSERT(sc);
 3230 
 3231         /* Synchronize with possible callout reset/stop. */
 3232         if (callout_pending(&sc->bge_stat_ch) ||
 3233             !callout_active(&sc->bge_stat_ch))
 3234                 return;
 3235 
 3236         if (BGE_IS_5705_PLUS(sc))
 3237                 bge_stats_update_regs(sc);
 3238         else
 3239                 bge_stats_update(sc);
 3240 
 3241         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 3242                 mii = device_get_softc(sc->bge_miibus);
 3243                 /* Don't mess with the PHY in IPMI/ASF mode */
 3244                 if (!((sc->bge_asf_mode & ASF_STACKUP) && (sc->bge_link)))
 3245                         mii_tick(mii);
 3246         } else {
 3247                 /*
 3248                  * Since in TBI mode auto-polling can't be used we should poll
 3249                  * link status manually. Here we register pending link event
 3250                  * and trigger interrupt.
 3251                  */
 3252 #ifdef DEVICE_POLLING
 3253                 /* In polling mode we poll link state in bge_poll(). */
 3254                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
 3255 #endif
 3256                 {
 3257                 sc->bge_link_evt++;
 3258                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 3259                 }
 3260         }
 3261 
 3262         bge_asf_driver_up(sc);
 3263         bge_watchdog(sc);
 3264 
 3265         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 3266 }
 3267 
 3268 static void
 3269 bge_stats_update_regs(struct bge_softc *sc)
 3270 {
 3271         struct ifnet *ifp;
 3272 
 3273         ifp = sc->bge_ifp;
 3274 
 3275         ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
 3276             offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
 3277 
 3278         ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 3279 }
 3280 
 3281 static void
 3282 bge_stats_update(struct bge_softc *sc)
 3283 {
 3284         struct ifnet *ifp;
 3285         bus_size_t stats;
 3286         uint32_t cnt;   /* current register value */
 3287 
 3288         ifp = sc->bge_ifp;
 3289 
 3290         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
 3291 
 3292 #define READ_STAT(sc, stats, stat) \
 3293         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
 3294 
 3295         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
 3296         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
 3297         sc->bge_tx_collisions = cnt;
 3298 
 3299         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
 3300         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
 3301         sc->bge_rx_discards = cnt;
 3302 
 3303         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
 3304         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
 3305         sc->bge_tx_discards = cnt;
 3306 
 3307 #undef  READ_STAT
 3308 }
 3309 
 3310 /*
 3311  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
 3312  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
 3313  * but when such padded frames employ the bge IP/TCP checksum offload,
 3314  * the hardware checksum assist gives incorrect results (possibly
 3315  * from incorporating its own padding into the UDP/TCP checksum; who knows).
 3316  * If we pad such runts with zeros, the onboard checksum comes out correct.
 3317  */
 3318 static __inline int
 3319 bge_cksum_pad(struct mbuf *m)
 3320 {
 3321         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
 3322         struct mbuf *last;
 3323 
 3324         /* If there's only the packet-header and we can pad there, use it. */
 3325         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
 3326             M_TRAILINGSPACE(m) >= padlen) {
 3327                 last = m;
 3328         } else {
 3329                 /*
 3330                  * Walk packet chain to find last mbuf. We will either
 3331                  * pad there, or append a new mbuf and pad it.
 3332                  */
 3333                 for (last = m; last->m_next != NULL; last = last->m_next);
 3334                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
 3335                         /* Allocate new empty mbuf, pad it. Compact later. */
 3336                         struct mbuf *n;
 3337 
 3338                         MGET(n, M_DONTWAIT, MT_DATA);
 3339                         if (n == NULL)
 3340                                 return (ENOBUFS);
 3341                         n->m_len = 0;
 3342                         last->m_next = n;
 3343                         last = n;
 3344                 }
 3345         }
 3346         
 3347         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
 3348         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
 3349         last->m_len += padlen;
 3350         m->m_pkthdr.len += padlen;
 3351 
 3352         return (0);
 3353 }
 3354 
 3355 /*
 3356  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
 3357  * pointers to descriptors.
 3358  */
 3359 static int
 3360 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
 3361 {
 3362         bus_dma_segment_t       segs[BGE_NSEG_NEW];
 3363         bus_dmamap_t            map;
 3364         struct bge_tx_bd        *d;
 3365         struct mbuf             *m = *m_head;
 3366         uint32_t                idx = *txidx;
 3367         uint16_t                csum_flags;
 3368         int                     nsegs, i, error;
 3369 
 3370         csum_flags = 0;
 3371         if (m->m_pkthdr.csum_flags) {
 3372                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 3373                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
 3374                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
 3375                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
 3376                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
 3377                             (error = bge_cksum_pad(m)) != 0) {
 3378                                 m_freem(m);
 3379                                 *m_head = NULL;
 3380                                 return (error);
 3381                         }
 3382                 }
 3383                 if (m->m_flags & M_LASTFRAG)
 3384                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
 3385                 else if (m->m_flags & M_FRAG)
 3386                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
 3387         }
 3388 
 3389         map = sc->bge_cdata.bge_tx_dmamap[idx];
 3390         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m, segs,
 3391             &nsegs, BUS_DMA_NOWAIT);
 3392         if (error == EFBIG) {
 3393                 m = m_defrag(m, M_DONTWAIT);
 3394                 if (m == NULL) {
 3395                         m_freem(*m_head);
 3396                         *m_head = NULL;
 3397                         return (ENOBUFS);
 3398                 }
 3399                 *m_head = m;
 3400                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m,
 3401                     segs, &nsegs, BUS_DMA_NOWAIT);
 3402                 if (error) {
 3403                         m_freem(m);
 3404                         *m_head = NULL;
 3405                         return (error);
 3406                 }
 3407         } else if (error != 0)
 3408                 return (error);
 3409 
 3410         /*
 3411          * Sanity check: avoid coming within 16 descriptors
 3412          * of the end of the ring.
 3413          */
 3414         if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
 3415                 bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
 3416                 return (ENOBUFS);
 3417         }
 3418 
 3419         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
 3420 
 3421         for (i = 0; ; i++) {
 3422                 d = &sc->bge_ldata.bge_tx_ring[idx];
 3423                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 3424                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 3425                 d->bge_len = segs[i].ds_len;
 3426                 d->bge_flags = csum_flags;
 3427                 if (i == nsegs - 1)
 3428                         break;
 3429                 BGE_INC(idx, BGE_TX_RING_CNT);
 3430         }
 3431 
 3432         /* Mark the last segment as end of packet... */
 3433         d->bge_flags |= BGE_TXBDFLAG_END;
 3434 
 3435         /* ... and put VLAN tag into first segment.  */
 3436         d = &sc->bge_ldata.bge_tx_ring[*txidx];
 3437 #if __FreeBSD_version > 700022
 3438         if (m->m_flags & M_VLANTAG) {
 3439                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
 3440                 d->bge_vlan_tag = m->m_pkthdr.ether_vtag;
 3441         } else
 3442                 d->bge_vlan_tag = 0;
 3443 #else
 3444         {
 3445                 struct m_tag            *mtag;
 3446 
 3447                 if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
 3448                         d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
 3449                         d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
 3450                 } else
 3451                         d->bge_vlan_tag = 0;
 3452         }
 3453 #endif
 3454 
 3455         /*
 3456          * Insure that the map for this transmission
 3457          * is placed at the array index of the last descriptor
 3458          * in this chain.
 3459          */
 3460         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
 3461         sc->bge_cdata.bge_tx_dmamap[idx] = map;
 3462         sc->bge_cdata.bge_tx_chain[idx] = m;
 3463         sc->bge_txcnt += nsegs;
 3464 
 3465         BGE_INC(idx, BGE_TX_RING_CNT);
 3466         *txidx = idx;
 3467 
 3468         return (0);
 3469 }
 3470 
 3471 /*
 3472  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3473  * to the mbuf data regions directly in the transmit descriptors.
 3474  */
 3475 static void
 3476 bge_start_locked(struct ifnet *ifp)
 3477 {
 3478         struct bge_softc *sc;
 3479         struct mbuf *m_head = NULL;
 3480         uint32_t prodidx;
 3481         int count = 0;
 3482 
 3483         sc = ifp->if_softc;
 3484 
 3485         if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3486                 return;
 3487 
 3488         prodidx = sc->bge_tx_prodidx;
 3489 
 3490         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
 3491                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3492                 if (m_head == NULL)
 3493                         break;
 3494 
 3495                 /*
 3496                  * XXX
 3497                  * The code inside the if() block is never reached since we
 3498                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
 3499                  * requests to checksum TCP/UDP in a fragmented packet.
 3500                  *
 3501                  * XXX
 3502                  * safety overkill.  If this is a fragmented packet chain
 3503                  * with delayed TCP/UDP checksums, then only encapsulate
 3504                  * it if we have enough descriptors to handle the entire
 3505                  * chain at once.
 3506                  * (paranoia -- may not actually be needed)
 3507                  */
 3508                 if (m_head->m_flags & M_FIRSTFRAG &&
 3509                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
 3510                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
 3511                             m_head->m_pkthdr.csum_data + 16) {
 3512                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3513                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3514                                 break;
 3515                         }
 3516                 }
 3517 
 3518                 /*
 3519                  * Pack the data into the transmit ring. If we
 3520                  * don't have room, set the OACTIVE flag and wait
 3521                  * for the NIC to drain the ring.
 3522                  */
 3523                 if (bge_encap(sc, &m_head, &prodidx)) {
 3524                         if (m_head == NULL)
 3525                                 break;
 3526                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3527                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3528                         break;
 3529                 }
 3530                 ++count;
 3531 
 3532                 /*
 3533                  * If there's a BPF listener, bounce a copy of this frame
 3534                  * to him.
 3535                  */
 3536 #ifdef ETHER_BPF_MTAP
 3537                 ETHER_BPF_MTAP(ifp, m_head);
 3538 #else
 3539                 BPF_MTAP(ifp, m_head);
 3540 #endif
 3541         }
 3542 
 3543         if (count == 0)
 3544                 /* No packets were dequeued. */
 3545                 return;
 3546 
 3547         /* Transmit. */
 3548         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 3549         /* 5700 b2 errata */
 3550         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 3551                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 3552 
 3553         sc->bge_tx_prodidx = prodidx;
 3554 
 3555         /*
 3556          * Set a timeout in case the chip goes out to lunch.
 3557          */
 3558         sc->bge_timer = 5;
 3559 }
 3560 
 3561 /*
 3562  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3563  * to the mbuf data regions directly in the transmit descriptors.
 3564  */
 3565 static void
 3566 bge_start(struct ifnet *ifp)
 3567 {
 3568         struct bge_softc *sc;
 3569 
 3570         sc = ifp->if_softc;
 3571         BGE_LOCK(sc);
 3572         bge_start_locked(ifp);
 3573         BGE_UNLOCK(sc);
 3574 }
 3575 
 3576 static void
 3577 bge_init_locked(struct bge_softc *sc)
 3578 {
 3579         struct ifnet *ifp;
 3580         uint16_t *m;
 3581 
 3582         BGE_LOCK_ASSERT(sc);
 3583 
 3584         ifp = sc->bge_ifp;
 3585 
 3586         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3587                 return;
 3588 
 3589         /* Cancel pending I/O and flush buffers. */
 3590         bge_stop(sc);
 3591 
 3592         bge_stop_fw(sc);
 3593         bge_sig_pre_reset(sc, BGE_RESET_START);
 3594         bge_reset(sc);
 3595         bge_sig_legacy(sc, BGE_RESET_START);
 3596         bge_sig_post_reset(sc, BGE_RESET_START);
 3597 
 3598         bge_chipinit(sc);
 3599 
 3600         /*
 3601          * Init the various state machines, ring
 3602          * control blocks and firmware.
 3603          */
 3604         if (bge_blockinit(sc)) {
 3605                 device_printf(sc->bge_dev, "initialization failure\n");
 3606                 return;
 3607         }
 3608 
 3609         ifp = sc->bge_ifp;
 3610 
 3611         /* Specify MTU. */
 3612         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
 3613             ETHER_HDR_LEN + ETHER_CRC_LEN +
 3614             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
 3615 
 3616         /* Load our MAC address. */
 3617         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
 3618         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
 3619         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
 3620 
 3621         /* Program promiscuous mode. */
 3622         bge_setpromisc(sc);
 3623 
 3624         /* Program multicast filter. */
 3625         bge_setmulti(sc);
 3626 
 3627         /* Program VLAN tag stripping. */
 3628         bge_setvlan(sc);
 3629 
 3630         /* Init RX ring. */
 3631         bge_init_rx_ring_std(sc);
 3632 
 3633         /*
 3634          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
 3635          * memory to insure that the chip has in fact read the first
 3636          * entry of the ring.
 3637          */
 3638         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
 3639                 uint32_t                v, i;
 3640                 for (i = 0; i < 10; i++) {
 3641                         DELAY(20);
 3642                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
 3643                         if (v == (MCLBYTES - ETHER_ALIGN))
 3644                                 break;
 3645                 }
 3646                 if (i == 10)
 3647                         device_printf (sc->bge_dev,
 3648                             "5705 A0 chip failed to load RX ring\n");
 3649         }
 3650 
 3651         /* Init jumbo RX ring. */
 3652         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
 3653                 bge_init_rx_ring_jumbo(sc);
 3654 
 3655         /* Init our RX return ring index. */
 3656         sc->bge_rx_saved_considx = 0;
 3657 
 3658         /* Init our RX/TX stat counters. */
 3659         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
 3660 
 3661         /* Init TX ring. */
 3662         bge_init_tx_ring(sc);
 3663 
 3664         /* Turn on transmitter. */
 3665         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
 3666 
 3667         /* Turn on receiver. */
 3668         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 3669 
 3670         /* Tell firmware we're alive. */
 3671         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3672 
 3673 #ifdef DEVICE_POLLING
 3674         /* Disable interrupts if we are polling. */
 3675         if (ifp->if_capenable & IFCAP_POLLING) {
 3676                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 3677                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 3678                 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
 3679         } else
 3680 #endif
 3681 
 3682         /* Enable host interrupts. */
 3683         {
 3684         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
 3685         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 3686         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
 3687         }
 3688         
 3689         bge_ifmedia_upd_locked(ifp);
 3690 
 3691         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3692         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3693 
 3694         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 3695 }
 3696 
 3697 static void
 3698 bge_init(void *xsc)
 3699 {
 3700         struct bge_softc *sc = xsc;
 3701 
 3702         BGE_LOCK(sc);
 3703         bge_init_locked(sc);
 3704         BGE_UNLOCK(sc);
 3705 }
 3706 
 3707 /*
 3708  * Set media options.
 3709  */
 3710 static int
 3711 bge_ifmedia_upd(struct ifnet *ifp)
 3712 {
 3713         struct bge_softc *sc = ifp->if_softc;
 3714         int res;
 3715 
 3716         BGE_LOCK(sc);
 3717         res = bge_ifmedia_upd_locked(ifp);
 3718         BGE_UNLOCK(sc);
 3719 
 3720         return (res);
 3721 }
 3722 
 3723 static int
 3724 bge_ifmedia_upd_locked(struct ifnet *ifp)
 3725 {
 3726         struct bge_softc *sc = ifp->if_softc;
 3727         struct mii_data *mii;
 3728         struct ifmedia *ifm;
 3729 
 3730         BGE_LOCK_ASSERT(sc);
 3731 
 3732         ifm = &sc->bge_ifmedia;
 3733 
 3734         /* If this is a 1000baseX NIC, enable the TBI port. */
 3735         if (sc->bge_flags & BGE_FLAG_TBI) {
 3736                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 3737                         return (EINVAL);
 3738                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
 3739                 case IFM_AUTO:
 3740                         /*
 3741                          * The BCM5704 ASIC appears to have a special
 3742                          * mechanism for programming the autoneg
 3743                          * advertisement registers in TBI mode.
 3744                          */
 3745                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 3746                                 uint32_t sgdig;
 3747                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
 3748                                 if (sgdig & BGE_SGDIGSTS_DONE) {
 3749                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
 3750                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
 3751                                         sgdig |= BGE_SGDIGCFG_AUTO |
 3752                                             BGE_SGDIGCFG_PAUSE_CAP |
 3753                                             BGE_SGDIGCFG_ASYM_PAUSE;
 3754                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
 3755                                             sgdig | BGE_SGDIGCFG_SEND);
 3756                                         DELAY(5);
 3757                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
 3758                                 }
 3759                         }
 3760                         break;
 3761                 case IFM_1000_SX:
 3762                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 3763                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
 3764                                     BGE_MACMODE_HALF_DUPLEX);
 3765                         } else {
 3766                                 BGE_SETBIT(sc, BGE_MAC_MODE,
 3767                                     BGE_MACMODE_HALF_DUPLEX);
 3768                         }
 3769                         break;
 3770                 default:
 3771                         return (EINVAL);
 3772                 }
 3773                 return (0);
 3774         }
 3775 
 3776         sc->bge_link_evt++;
 3777         mii = device_get_softc(sc->bge_miibus);
 3778         if (mii->mii_instance) {
 3779                 struct mii_softc *miisc;
 3780                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
 3781                     miisc = LIST_NEXT(miisc, mii_list))
 3782                         mii_phy_reset(miisc);
 3783         }
 3784         mii_mediachg(mii);
 3785 
 3786         return (0);
 3787 }
 3788 
 3789 /*
 3790  * Report current media status.
 3791  */
 3792 static void
 3793 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3794 {
 3795         struct bge_softc *sc = ifp->if_softc;
 3796         struct mii_data *mii;
 3797 
 3798         BGE_LOCK(sc);
 3799 
 3800         if (sc->bge_flags & BGE_FLAG_TBI) {
 3801                 ifmr->ifm_status = IFM_AVALID;
 3802                 ifmr->ifm_active = IFM_ETHER;
 3803                 if (CSR_READ_4(sc, BGE_MAC_STS) &
 3804                     BGE_MACSTAT_TBI_PCS_SYNCHED)
 3805                         ifmr->ifm_status |= IFM_ACTIVE;
 3806                 else {
 3807                         ifmr->ifm_active |= IFM_NONE;
 3808                         BGE_UNLOCK(sc);
 3809                         return;
 3810                 }
 3811                 ifmr->ifm_active |= IFM_1000_SX;
 3812                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
 3813                         ifmr->ifm_active |= IFM_HDX;
 3814                 else
 3815                         ifmr->ifm_active |= IFM_FDX;
 3816                 BGE_UNLOCK(sc);
 3817                 return;
 3818         }
 3819 
 3820         mii = device_get_softc(sc->bge_miibus);
 3821         mii_pollstat(mii);
 3822         ifmr->ifm_active = mii->mii_media_active;
 3823         ifmr->ifm_status = mii->mii_media_status;
 3824 
 3825         BGE_UNLOCK(sc);
 3826 }
 3827 
 3828 static int
 3829 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3830 {
 3831         struct bge_softc *sc = ifp->if_softc;
 3832         struct ifreq *ifr = (struct ifreq *) data;
 3833         struct mii_data *mii;
 3834         int flags, mask, error = 0;
 3835 
 3836         switch (command) {
 3837         case SIOCSIFMTU:
 3838                 if (ifr->ifr_mtu < ETHERMIN ||
 3839                     ((BGE_IS_JUMBO_CAPABLE(sc)) &&
 3840                     ifr->ifr_mtu > BGE_JUMBO_MTU) ||
 3841                     ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
 3842                     ifr->ifr_mtu > ETHERMTU))
 3843                         error = EINVAL;
 3844                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 3845                         ifp->if_mtu = ifr->ifr_mtu;
 3846                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3847                         bge_init(sc);
 3848                 }
 3849                 break;
 3850         case SIOCSIFFLAGS:
 3851                 BGE_LOCK(sc);
 3852                 if (ifp->if_flags & IFF_UP) {
 3853                         /*
 3854                          * If only the state of the PROMISC flag changed,
 3855                          * then just use the 'set promisc mode' command
 3856                          * instead of reinitializing the entire NIC. Doing
 3857                          * a full re-init means reloading the firmware and
 3858                          * waiting for it to start up, which may take a
 3859                          * second or two.  Similarly for ALLMULTI.
 3860                          */
 3861                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3862                                 flags = ifp->if_flags ^ sc->bge_if_flags;
 3863                                 if (flags & IFF_PROMISC)
 3864                                         bge_setpromisc(sc);
 3865                                 if (flags & IFF_ALLMULTI)
 3866                                         bge_setmulti(sc);
 3867                         } else
 3868                                 bge_init_locked(sc);
 3869                 } else {
 3870                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3871                                 bge_stop(sc);
 3872                         }
 3873                 }
 3874                 sc->bge_if_flags = ifp->if_flags;
 3875                 BGE_UNLOCK(sc);
 3876                 error = 0;
 3877                 break;
 3878         case SIOCADDMULTI:
 3879         case SIOCDELMULTI:
 3880                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3881                         BGE_LOCK(sc);
 3882                         bge_setmulti(sc);
 3883                         BGE_UNLOCK(sc);
 3884                         error = 0;
 3885                 }
 3886                 break;
 3887         case SIOCSIFMEDIA:
 3888         case SIOCGIFMEDIA:
 3889                 if (sc->bge_flags & BGE_FLAG_TBI) {
 3890                         error = ifmedia_ioctl(ifp, ifr,
 3891                             &sc->bge_ifmedia, command);
 3892                 } else {
 3893                         mii = device_get_softc(sc->bge_miibus);
 3894                         error = ifmedia_ioctl(ifp, ifr,
 3895                             &mii->mii_media, command);
 3896                 }
 3897                 break;
 3898         case SIOCSIFCAP:
 3899                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 3900 #ifdef DEVICE_POLLING
 3901                 if (mask & IFCAP_POLLING) {
 3902                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 3903                                 error = ether_poll_register(bge_poll, ifp);
 3904                                 if (error)
 3905                                         return (error);
 3906                                 BGE_LOCK(sc);
 3907                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 3908                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 3909                                 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
 3910                                 ifp->if_capenable |= IFCAP_POLLING;
 3911                                 BGE_UNLOCK(sc);
 3912                         } else {
 3913                                 error = ether_poll_deregister(ifp);
 3914                                 /* Enable interrupt even in error case */
 3915                                 BGE_LOCK(sc);
 3916                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
 3917                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 3918                                 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
 3919                                 ifp->if_capenable &= ~IFCAP_POLLING;
 3920                                 BGE_UNLOCK(sc);
 3921                         }
 3922                 }
 3923 #endif
 3924                 if (mask & IFCAP_HWCSUM) {
 3925                         ifp->if_capenable ^= IFCAP_HWCSUM;
 3926                         if (IFCAP_HWCSUM & ifp->if_capenable &&
 3927                             IFCAP_HWCSUM & ifp->if_capabilities)
 3928                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
 3929                         else
 3930                                 ifp->if_hwassist = 0;
 3931 #ifdef VLAN_CAPABILITIES
 3932                         VLAN_CAPABILITIES(ifp);
 3933 #endif
 3934                 }
 3935 
 3936                 if (mask & IFCAP_VLAN_MTU) {
 3937                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
 3938                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3939                         bge_init(sc);
 3940                 }
 3941 
 3942                 if (mask & IFCAP_VLAN_HWTAGGING) {
 3943                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 3944                         BGE_LOCK(sc);
 3945                         bge_setvlan(sc);
 3946                         BGE_UNLOCK(sc);
 3947 #ifdef VLAN_CAPABILITIES
 3948                         VLAN_CAPABILITIES(ifp);
 3949 #endif
 3950                 }
 3951 
 3952                 break;
 3953         default:
 3954                 error = ether_ioctl(ifp, command, data);
 3955                 break;
 3956         }
 3957 
 3958         return (error);
 3959 }
 3960 
 3961 static void
 3962 bge_watchdog(struct bge_softc *sc)
 3963 {
 3964         struct ifnet *ifp;
 3965 
 3966         BGE_LOCK_ASSERT(sc);
 3967 
 3968         if (sc->bge_timer == 0 || --sc->bge_timer)
 3969                 return;
 3970 
 3971         ifp = sc->bge_ifp;
 3972 
 3973         if_printf(ifp, "watchdog timeout -- resetting\n");
 3974 
 3975         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3976         bge_init_locked(sc);
 3977 
 3978         ifp->if_oerrors++;
 3979 }
 3980 
 3981 /*
 3982  * Stop the adapter and free any mbufs allocated to the
 3983  * RX and TX lists.
 3984  */
 3985 static void
 3986 bge_stop(struct bge_softc *sc)
 3987 {
 3988         struct ifnet *ifp;
 3989         struct ifmedia_entry *ifm;
 3990         struct mii_data *mii = NULL;
 3991         int mtmp, itmp;
 3992 
 3993         BGE_LOCK_ASSERT(sc);
 3994 
 3995         ifp = sc->bge_ifp;
 3996 
 3997         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
 3998                 mii = device_get_softc(sc->bge_miibus);
 3999 
 4000         callout_stop(&sc->bge_stat_ch);
 4001 
 4002         /*
 4003          * Disable all of the receiver blocks.
 4004          */
 4005         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 4006         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 4007         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 4008         if (!(BGE_IS_5705_PLUS(sc)))
 4009                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 4010         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
 4011         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 4012         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
 4013 
 4014         /*
 4015          * Disable all of the transmit blocks.
 4016          */
 4017         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 4018         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 4019         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 4020         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
 4021         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 4022         if (!(BGE_IS_5705_PLUS(sc)))
 4023                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 4024         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 4025 
 4026         /*
 4027          * Shut down all of the memory managers and related
 4028          * state machines.
 4029          */
 4030         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 4031         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
 4032         if (!(BGE_IS_5705_PLUS(sc)))
 4033                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 4034         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 4035         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 4036         if (!(BGE_IS_5705_PLUS(sc))) {
 4037                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
 4038                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 4039         }
 4040 
 4041         /* Disable host interrupts. */
 4042         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 4043         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
 4044 
 4045         /*
 4046          * Tell firmware we're shutting down.
 4047          */
 4048 
 4049         bge_stop_fw(sc);
 4050         bge_sig_pre_reset(sc, BGE_RESET_STOP);
 4051         bge_reset(sc);
 4052         bge_sig_legacy(sc, BGE_RESET_STOP);
 4053         bge_sig_post_reset(sc, BGE_RESET_STOP);
 4054 
 4055         /* 
 4056          * Keep the ASF firmware running if up.
 4057          */
 4058         if (sc->bge_asf_mode & ASF_STACKUP)
 4059                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 4060         else
 4061                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 4062 
 4063         /* Free the RX lists. */
 4064         bge_free_rx_ring_std(sc);
 4065 
 4066         /* Free jumbo RX list. */
 4067         if (BGE_IS_JUMBO_CAPABLE(sc))
 4068                 bge_free_rx_ring_jumbo(sc);
 4069 
 4070         /* Free TX buffers. */
 4071         bge_free_tx_ring(sc);
 4072 
 4073         /*
 4074          * Isolate/power down the PHY, but leave the media selection
 4075          * unchanged so that things will be put back to normal when
 4076          * we bring the interface back up.
 4077          */
 4078         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 4079                 itmp = ifp->if_flags;
 4080                 ifp->if_flags |= IFF_UP;
 4081                 /*
 4082                  * If we are called from bge_detach(), mii is already NULL.
 4083                  */
 4084                 if (mii != NULL) {
 4085                         ifm = mii->mii_media.ifm_cur;
 4086                         mtmp = ifm->ifm_media;
 4087                         ifm->ifm_media = IFM_ETHER | IFM_NONE;
 4088                         mii_mediachg(mii);
 4089                         ifm->ifm_media = mtmp;
 4090                 }
 4091                 ifp->if_flags = itmp;
 4092         }
 4093 
 4094         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
 4095 
 4096         /* Clear MAC's link state (PHY may still have link UP). */
 4097         if (bootverbose && sc->bge_link)
 4098                 if_printf(sc->bge_ifp, "link DOWN\n");
 4099         sc->bge_link = 0;
 4100 
 4101         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 4102 }
 4103 
 4104 /*
 4105  * Stop all chip I/O so that the kernel's probe routines don't
 4106  * get confused by errant DMAs when rebooting.
 4107  */
 4108 static void
 4109 bge_shutdown(device_t dev)
 4110 {
 4111         struct bge_softc *sc;
 4112 
 4113         sc = device_get_softc(dev);
 4114 
 4115         BGE_LOCK(sc);
 4116         bge_stop(sc);
 4117         bge_reset(sc);
 4118         BGE_UNLOCK(sc);
 4119 }
 4120 
 4121 static int
 4122 bge_suspend(device_t dev)
 4123 {
 4124         struct bge_softc *sc;
 4125 
 4126         sc = device_get_softc(dev);
 4127         BGE_LOCK(sc);
 4128         bge_stop(sc);
 4129         BGE_UNLOCK(sc);
 4130 
 4131         return (0);
 4132 }
 4133 
 4134 static int
 4135 bge_resume(device_t dev)
 4136 {
 4137         struct bge_softc *sc;
 4138         struct ifnet *ifp;
 4139 
 4140         sc = device_get_softc(dev);
 4141         BGE_LOCK(sc);
 4142         ifp = sc->bge_ifp;
 4143         if (ifp->if_flags & IFF_UP) {
 4144                 bge_init_locked(sc);
 4145                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 4146                         bge_start_locked(ifp);
 4147         }
 4148         BGE_UNLOCK(sc);
 4149 
 4150         return (0);
 4151 }
 4152 
 4153 static void
 4154 bge_link_upd(struct bge_softc *sc)
 4155 {
 4156         struct mii_data *mii;
 4157         uint32_t link, status;
 4158 
 4159         BGE_LOCK_ASSERT(sc);
 4160 
 4161         /* Clear 'pending link event' flag. */
 4162         sc->bge_link_evt = 0;
 4163 
 4164         /*
 4165          * Process link state changes.
 4166          * Grrr. The link status word in the status block does
 4167          * not work correctly on the BCM5700 rev AX and BX chips,
 4168          * according to all available information. Hence, we have
 4169          * to enable MII interrupts in order to properly obtain
 4170          * async link changes. Unfortunately, this also means that
 4171          * we have to read the MAC status register to detect link
 4172          * changes, thereby adding an additional register access to
 4173          * the interrupt handler.
 4174          *
 4175          * XXX: perhaps link state detection procedure used for
 4176          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
 4177          */
 4178 
 4179         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4180             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
 4181                 status = CSR_READ_4(sc, BGE_MAC_STS);
 4182                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
 4183                         mii = device_get_softc(sc->bge_miibus);
 4184                         mii_pollstat(mii);
 4185                         if (!sc->bge_link &&
 4186                             mii->mii_media_status & IFM_ACTIVE &&
 4187                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 4188                                 sc->bge_link++;
 4189                                 if (bootverbose)
 4190                                         if_printf(sc->bge_ifp, "link UP\n");
 4191                         } else if (sc->bge_link &&
 4192                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 4193                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 4194                                 sc->bge_link = 0;
 4195                                 if (bootverbose)
 4196                                         if_printf(sc->bge_ifp, "link DOWN\n");
 4197                         }
 4198 
 4199                         /* Clear the interrupt. */
 4200                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 4201                             BGE_EVTENB_MI_INTERRUPT);
 4202                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
 4203                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
 4204                             BRGPHY_INTRS);
 4205                 }
 4206                 return;
 4207         }
 4208 
 4209         if (sc->bge_flags & BGE_FLAG_TBI) {
 4210                 status = CSR_READ_4(sc, BGE_MAC_STS);
 4211                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
 4212                         if (!sc->bge_link) {
 4213                                 sc->bge_link++;
 4214                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 4215                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
 4216                                             BGE_MACMODE_TBI_SEND_CFGS);
 4217                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
 4218                                 if (bootverbose)
 4219                                         if_printf(sc->bge_ifp, "link UP\n");
 4220                                 if_link_state_change(sc->bge_ifp,
 4221                                     LINK_STATE_UP);
 4222                         }
 4223                 } else if (sc->bge_link) {
 4224                         sc->bge_link = 0;
 4225                         if (bootverbose)
 4226                                 if_printf(sc->bge_ifp, "link DOWN\n");
 4227                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
 4228                 }
 4229         } else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
 4230                 /*
 4231                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
 4232                  * in status word always set. Workaround this bug by reading
 4233                  * PHY link status directly.
 4234                  */
 4235                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
 4236 
 4237                 if (link != sc->bge_link ||
 4238                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
 4239                         mii = device_get_softc(sc->bge_miibus);
 4240                         mii_pollstat(mii);
 4241                         if (!sc->bge_link &&
 4242                             mii->mii_media_status & IFM_ACTIVE &&
 4243                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 4244                                 sc->bge_link++;
 4245                                 if (bootverbose)
 4246                                         if_printf(sc->bge_ifp, "link UP\n");
 4247                         } else if (sc->bge_link &&
 4248                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 4249                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 4250                                 sc->bge_link = 0;
 4251                                 if (bootverbose)
 4252                                         if_printf(sc->bge_ifp, "link DOWN\n");
 4253                         }
 4254                 }
 4255         } else {
 4256                 /*
 4257                  * Discard link events for MII/GMII controllers
 4258                  * if MI auto-polling is disabled.
 4259                  */
 4260         }
 4261 
 4262         /* Clear the attention. */
 4263         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 4264             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 4265             BGE_MACSTAT_LINK_CHANGED);
 4266 }
 4267 
 4268 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
 4269         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
 4270             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
 4271             desc)
 4272 
 4273 static void
 4274 bge_add_sysctls(struct bge_softc *sc)
 4275 {
 4276         struct sysctl_ctx_list *ctx;
 4277         struct sysctl_oid_list *children, *schildren;
 4278         struct sysctl_oid *tree;
 4279 
 4280         ctx = device_get_sysctl_ctx(sc->bge_dev);
 4281         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
 4282 
 4283 #ifdef BGE_REGISTER_DEBUG
 4284         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
 4285             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
 4286             "Debug Information");
 4287 
 4288         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
 4289             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
 4290             "Register Read");
 4291 
 4292         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
 4293             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
 4294             "Memory Read");
 4295 
 4296 #endif
 4297 
 4298         if (BGE_IS_5705_PLUS(sc))
 4299                 return;
 4300 
 4301         tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
 4302             NULL, "BGE Statistics");
 4303         schildren = children = SYSCTL_CHILDREN(tree);
 4304         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
 4305             children, COSFramesDroppedDueToFilters,
 4306             "FramesDroppedDueToFilters");
 4307         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
 4308             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
 4309         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
 4310             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
 4311         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
 4312             children, nicNoMoreRxBDs, "NoMoreRxBDs");
 4313         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
 4314             children, ifInDiscards, "InputDiscards");
 4315         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
 4316             children, ifInErrors, "InputErrors");
 4317         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
 4318             children, nicRecvThresholdHit, "RecvThresholdHit");
 4319         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
 4320             children, nicDmaReadQueueFull, "DmaReadQueueFull");
 4321         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
 4322             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
 4323         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
 4324             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
 4325         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
 4326             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
 4327         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
 4328             children, nicRingStatusUpdate, "RingStatusUpdate");
 4329         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
 4330             children, nicInterrupts, "Interrupts");
 4331         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
 4332             children, nicAvoidedInterrupts, "AvoidedInterrupts");
 4333         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
 4334             children, nicSendThresholdHit, "SendThresholdHit");
 4335 
 4336         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
 4337             NULL, "BGE RX Statistics");
 4338         children = SYSCTL_CHILDREN(tree);
 4339         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
 4340             children, rxstats.ifHCInOctets, "Octets");
 4341         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
 4342             children, rxstats.etherStatsFragments, "Fragments");
 4343         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
 4344             children, rxstats.ifHCInUcastPkts, "UcastPkts");
 4345         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
 4346             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
 4347         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
 4348             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
 4349         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
 4350             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
 4351         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
 4352             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
 4353         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
 4354             children, rxstats.xoffPauseFramesReceived,
 4355             "xoffPauseFramesReceived");
 4356         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
 4357             children, rxstats.macControlFramesReceived,
 4358             "ControlFramesReceived");
 4359         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
 4360             children, rxstats.xoffStateEntered, "xoffStateEntered");
 4361         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
 4362             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
 4363         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
 4364             children, rxstats.etherStatsJabbers, "Jabbers");
 4365         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
 4366             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
 4367         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
 4368             children, rxstats.inRangeLengthError, "inRangeLengthError");
 4369         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
 4370             children, rxstats.outRangeLengthError, "outRangeLengthError");
 4371 
 4372         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
 4373             NULL, "BGE TX Statistics");
 4374         children = SYSCTL_CHILDREN(tree);
 4375         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
 4376             children, txstats.ifHCOutOctets, "Octets");
 4377         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
 4378             children, txstats.etherStatsCollisions, "Collisions");
 4379         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
 4380             children, txstats.outXonSent, "XonSent");
 4381         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
 4382             children, txstats.outXoffSent, "XoffSent");
 4383         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
 4384             children, txstats.flowControlDone, "flowControlDone");
 4385         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
 4386             children, txstats.dot3StatsInternalMacTransmitErrors,
 4387             "InternalMacTransmitErrors");
 4388         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
 4389             children, txstats.dot3StatsSingleCollisionFrames,
 4390             "SingleCollisionFrames");
 4391         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
 4392             children, txstats.dot3StatsMultipleCollisionFrames,
 4393             "MultipleCollisionFrames");
 4394         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 
 4395             children, txstats.dot3StatsDeferredTransmissions,
 4396             "DeferredTransmissions");
 4397         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
 4398             children, txstats.dot3StatsExcessiveCollisions,
 4399             "ExcessiveCollisions");
 4400         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
 4401             children, txstats.dot3StatsLateCollisions,
 4402             "LateCollisions");
 4403         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 
 4404             children, txstats.ifHCOutUcastPkts, "UcastPkts");
 4405         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
 4406             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
 4407         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
 4408             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
 4409         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
 4410             children, txstats.dot3StatsCarrierSenseErrors,
 4411             "CarrierSenseErrors");
 4412         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
 4413             children, txstats.ifOutDiscards, "Discards");
 4414         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
 4415             children, txstats.ifOutErrors, "Errors");
 4416 }
 4417 
 4418 static int
 4419 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
 4420 {
 4421         struct bge_softc *sc;
 4422         uint32_t result;
 4423         int offset;
 4424 
 4425         sc = (struct bge_softc *)arg1;
 4426         offset = arg2;
 4427         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
 4428             offsetof(bge_hostaddr, bge_addr_lo));
 4429         return (sysctl_handle_int(oidp, &result, 0, req));
 4430 }
 4431 
 4432 #ifdef BGE_REGISTER_DEBUG
 4433 static int
 4434 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 4435 {
 4436         struct bge_softc *sc;
 4437         uint16_t *sbdata;
 4438         int error;
 4439         int result;
 4440         int i, j;
 4441 
 4442         result = -1;
 4443         error = sysctl_handle_int(oidp, &result, 0, req);
 4444         if (error || (req->newptr == NULL))
 4445                 return (error);
 4446 
 4447         if (result == 1) {
 4448                 sc = (struct bge_softc *)arg1;
 4449 
 4450                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
 4451                 printf("Status Block:\n");
 4452                 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
 4453                         printf("%06x:", i);
 4454                         for (j = 0; j < 8; j++) {
 4455                                 printf(" %04x", sbdata[i]);
 4456                                 i += 4;
 4457                         }
 4458                         printf("\n");
 4459                 }
 4460 
 4461                 printf("Registers:\n");
 4462                 for (i = 0x800; i < 0xA00; ) {
 4463                         printf("%06x:", i);
 4464                         for (j = 0; j < 8; j++) {
 4465                                 printf(" %08x", CSR_READ_4(sc, i));
 4466                                 i += 4;
 4467                         }
 4468                         printf("\n");
 4469                 }
 4470 
 4471                 printf("Hardware Flags:\n");
 4472                 if (BGE_IS_575X_PLUS(sc))
 4473                         printf(" - 575X Plus\n");
 4474                 if (BGE_IS_5705_PLUS(sc))
 4475                         printf(" - 5705 Plus\n");
 4476                 if (BGE_IS_5714_FAMILY(sc))
 4477                         printf(" - 5714 Family\n");
 4478                 if (BGE_IS_5700_FAMILY(sc))
 4479                         printf(" - 5700 Family\n");
 4480                 if (sc->bge_flags & BGE_FLAG_JUMBO)
 4481                         printf(" - Supports Jumbo Frames\n");
 4482                 if (sc->bge_flags & BGE_FLAG_PCIX)
 4483                         printf(" - PCI-X Bus\n");
 4484                 if (sc->bge_flags & BGE_FLAG_PCIE)
 4485                         printf(" - PCI Express Bus\n");
 4486                 if (sc->bge_flags & BGE_FLAG_NO_3LED)
 4487                         printf(" - No 3 LEDs\n");
 4488                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
 4489                         printf(" - RX Alignment Bug\n");
 4490         }
 4491 
 4492         return (error);
 4493 }
 4494 
 4495 static int
 4496 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 4497 {
 4498         struct bge_softc *sc;
 4499         int error;
 4500         uint16_t result;
 4501         uint32_t val;
 4502 
 4503         result = -1;
 4504         error = sysctl_handle_int(oidp, &result, 0, req);
 4505         if (error || (req->newptr == NULL))
 4506                 return (error);
 4507 
 4508         if (result < 0x8000) {
 4509                 sc = (struct bge_softc *)arg1;
 4510                 val = CSR_READ_4(sc, result);
 4511                 printf("reg 0x%06X = 0x%08X\n", result, val);
 4512         }
 4513 
 4514         return (error);
 4515 }
 4516 
 4517 static int
 4518 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
 4519 {
 4520         struct bge_softc *sc;
 4521         int error;
 4522         uint16_t result;
 4523         uint32_t val;
 4524 
 4525         result = -1;
 4526         error = sysctl_handle_int(oidp, &result, 0, req);
 4527         if (error || (req->newptr == NULL))
 4528                 return (error);
 4529 
 4530         if (result < 0x8000) {
 4531                 sc = (struct bge_softc *)arg1;
 4532                 val = bge_readmem_ind(sc, result);
 4533                 printf("mem 0x%06X = 0x%08X\n", result, val);
 4534         }
 4535 
 4536         return (error);
 4537 }
 4538 #endif

Cache object: fb1d58fee2830821c0856580100d4748


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.