The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bge/if_bge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Wind River Systems
    3  * Copyright (c) 1997, 1998, 1999, 2001
    4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. All advertising materials mentioning features or use of this software
   15  *    must display the following acknowledgement:
   16  *      This product includes software developed by Bill Paul.
   17  * 4. Neither the name of the author nor the names of any co-contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   31  * THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/8.0/sys/dev/bge/if_bge.c 198296 2009-10-20 16:41:23Z stas $");
   36 
   37 /*
   38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
   39  *
   40  * The Broadcom BCM5700 is based on technology originally developed by
   41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
   42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
   43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
   44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
   45  * frames, highly configurable RX filtering, and 16 RX and TX queues
   46  * (which, along with RX filter rules, can be used for QOS applications).
   47  * Other features, such as TCP segmentation, may be available as part
   48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
   49  * firmware images can be stored in hardware and need not be compiled
   50  * into the driver.
   51  *
   52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
   53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
   54  *
   55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
   56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
   57  * does not support external SSRAM.
   58  *
   59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
   60  * brand name, which is functionally similar but lacks PCI-X support.
   61  *
   62  * Without external SSRAM, you can only have at most 4 TX rings,
   63  * and the use of the mini RX ring is disabled. This seems to imply
   64  * that these features are simply not available on the BCM5701. As a
   65  * result, this driver does not implement any support for the mini RX
   66  * ring.
   67  */
   68 
   69 #ifdef HAVE_KERNEL_OPTION_HEADERS
   70 #include "opt_device_polling.h"
   71 #endif
   72 
   73 #include <sys/param.h>
   74 #include <sys/endian.h>
   75 #include <sys/systm.h>
   76 #include <sys/sockio.h>
   77 #include <sys/mbuf.h>
   78 #include <sys/malloc.h>
   79 #include <sys/kernel.h>
   80 #include <sys/module.h>
   81 #include <sys/socket.h>
   82 #include <sys/sysctl.h>
   83 
   84 #include <net/if.h>
   85 #include <net/if_arp.h>
   86 #include <net/ethernet.h>
   87 #include <net/if_dl.h>
   88 #include <net/if_media.h>
   89 
   90 #include <net/bpf.h>
   91 
   92 #include <net/if_types.h>
   93 #include <net/if_vlan_var.h>
   94 
   95 #include <netinet/in_systm.h>
   96 #include <netinet/in.h>
   97 #include <netinet/ip.h>
   98 
   99 #include <machine/bus.h>
  100 #include <machine/resource.h>
  101 #include <sys/bus.h>
  102 #include <sys/rman.h>
  103 
  104 #include <dev/mii/mii.h>
  105 #include <dev/mii/miivar.h>
  106 #include "miidevs.h"
  107 #include <dev/mii/brgphyreg.h>
  108 
  109 #ifdef __sparc64__
  110 #include <dev/ofw/ofw_bus.h>
  111 #include <dev/ofw/openfirm.h>
  112 #include <machine/ofw_machdep.h>
  113 #include <machine/ver.h>
  114 #endif
  115 
  116 #include <dev/pci/pcireg.h>
  117 #include <dev/pci/pcivar.h>
  118 
  119 #include <dev/bge/if_bgereg.h>
  120 
  121 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
  122 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
  123 
  124 MODULE_DEPEND(bge, pci, 1, 1, 1);
  125 MODULE_DEPEND(bge, ether, 1, 1, 1);
  126 MODULE_DEPEND(bge, miibus, 1, 1, 1);
  127 
  128 /* "device miibus" required.  See GENERIC if you get errors here. */
  129 #include "miibus_if.h"
  130 
  131 /*
  132  * Various supported device vendors/types and their names. Note: the
  133  * spec seems to indicate that the hardware still has Alteon's vendor
  134  * ID burned into it, though it will always be overriden by the vendor
  135  * ID in the EEPROM. Just to be safe, we cover all possibilities.
  136  */
  137 static const struct bge_type {
  138         uint16_t        bge_vid;
  139         uint16_t        bge_did;
  140 } bge_devs[] = {
  141         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
  142         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
  143 
  144         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
  145         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
  146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
  147 
  148         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
  149 
  150         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
  151         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
  152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
  153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
  154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
  155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
  156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
  157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
  158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
  159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
  160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
  161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
  162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
  163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
  164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
  165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
  166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
  167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
  168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
  169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
  170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
  171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
  172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
  173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
  174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
  175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
  176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
  177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
  178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
  179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
  180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
  181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
  182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
  183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
  184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
  185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
  186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
  187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
  188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
  189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
  190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
  191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
  192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
  193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
  194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
  195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
  196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
  197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
  198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
  199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
  200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
  201 
  202         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
  203 
  204         { TC_VENDORID,          TC_DEVICEID_3C996 },
  205 
  206         { 0, 0 }
  207 };
  208 
  209 static const struct bge_vendor {
  210         uint16_t        v_id;
  211         const char      *v_name;
  212 } bge_vendors[] = {
  213         { ALTEON_VENDORID,      "Alteon" },
  214         { ALTIMA_VENDORID,      "Altima" },
  215         { APPLE_VENDORID,       "Apple" },
  216         { BCOM_VENDORID,        "Broadcom" },
  217         { SK_VENDORID,          "SysKonnect" },
  218         { TC_VENDORID,          "3Com" },
  219 
  220         { 0, NULL }
  221 };
  222         
  223 static const struct bge_revision {
  224         uint32_t        br_chipid;
  225         const char      *br_name;
  226 } bge_revisions[] = {
  227         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
  228         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
  229         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
  230         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
  231         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
  232         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
  233         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
  234         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
  235         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
  236         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
  237         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
  238         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
  239         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
  240         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
  241         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
  242         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
  243         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
  244         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
  245         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
  246         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
  247         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
  248         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
  249         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
  250         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
  251         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
  252         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
  253         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
  254         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
  255         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
  256         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
  257         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
  258         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
  259         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
  260         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
  261         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
  262         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
  263         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
  264         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
  265         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
  266         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
  267         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
  268         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
  269         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
  270         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
  271         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
  272         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
  273         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
  274         /* 5754 and 5787 share the same ASIC ID */
  275         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" }, 
  276         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
  277         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
  278         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
  279         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
  280 
  281         { 0, NULL }
  282 };
  283 
  284 /*
  285  * Some defaults for major revisions, so that newer steppings
  286  * that we don't know about have a shot at working.
  287  */
  288 static const struct bge_revision bge_majorrevs[] = {
  289         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
  290         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
  291         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
  292         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
  293         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
  294         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
  295         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
  296         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
  297         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
  298         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
  299         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
  300         /* 5754 and 5787 share the same ASIC ID */
  301         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
  302         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
  303 
  304         { 0, NULL }
  305 };
  306 
  307 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
  308 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
  309 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
  310 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
  311 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
  312 
  313 const struct bge_revision * bge_lookup_rev(uint32_t);
  314 const struct bge_vendor * bge_lookup_vendor(uint16_t);
  315 
  316 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
  317 
  318 static int bge_probe(device_t);
  319 static int bge_attach(device_t);
  320 static int bge_detach(device_t);
  321 static int bge_suspend(device_t);
  322 static int bge_resume(device_t);
  323 static void bge_release_resources(struct bge_softc *);
  324 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  325 static int bge_dma_alloc(device_t);
  326 static void bge_dma_free(struct bge_softc *);
  327 
  328 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
  329 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
  330 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
  331 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
  332 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
  333 
  334 static void bge_txeof(struct bge_softc *);
  335 static int bge_rxeof(struct bge_softc *);
  336 
  337 static void bge_asf_driver_up (struct bge_softc *);
  338 static void bge_tick(void *);
  339 static void bge_stats_update(struct bge_softc *);
  340 static void bge_stats_update_regs(struct bge_softc *);
  341 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
  342 
  343 static void bge_intr(void *);
  344 static void bge_start_locked(struct ifnet *);
  345 static void bge_start(struct ifnet *);
  346 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
  347 static void bge_init_locked(struct bge_softc *);
  348 static void bge_init(void *);
  349 static void bge_stop(struct bge_softc *);
  350 static void bge_watchdog(struct bge_softc *);
  351 static int bge_shutdown(device_t);
  352 static int bge_ifmedia_upd_locked(struct ifnet *);
  353 static int bge_ifmedia_upd(struct ifnet *);
  354 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  355 
  356 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
  357 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
  358 
  359 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
  360 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
  361 
  362 static void bge_setpromisc(struct bge_softc *);
  363 static void bge_setmulti(struct bge_softc *);
  364 static void bge_setvlan(struct bge_softc *);
  365 
  366 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
  367 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
  368 static int bge_init_rx_ring_std(struct bge_softc *);
  369 static void bge_free_rx_ring_std(struct bge_softc *);
  370 static int bge_init_rx_ring_jumbo(struct bge_softc *);
  371 static void bge_free_rx_ring_jumbo(struct bge_softc *);
  372 static void bge_free_tx_ring(struct bge_softc *);
  373 static int bge_init_tx_ring(struct bge_softc *);
  374 
  375 static int bge_chipinit(struct bge_softc *);
  376 static int bge_blockinit(struct bge_softc *);
  377 
  378 static int bge_has_eaddr(struct bge_softc *);
  379 static uint32_t bge_readmem_ind(struct bge_softc *, int);
  380 static void bge_writemem_ind(struct bge_softc *, int, int);
  381 static void bge_writembx(struct bge_softc *, int, int);
  382 #ifdef notdef
  383 static uint32_t bge_readreg_ind(struct bge_softc *, int);
  384 #endif
  385 static void bge_writemem_direct(struct bge_softc *, int, int);
  386 static void bge_writereg_ind(struct bge_softc *, int, int);
  387 static void bge_set_max_readrq(struct bge_softc *, int);
  388 
  389 static int bge_miibus_readreg(device_t, int, int);
  390 static int bge_miibus_writereg(device_t, int, int, int);
  391 static void bge_miibus_statchg(device_t);
  392 #ifdef DEVICE_POLLING
  393 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  394 #endif
  395 
  396 #define BGE_RESET_START 1
  397 #define BGE_RESET_STOP  2
  398 static void bge_sig_post_reset(struct bge_softc *, int);
  399 static void bge_sig_legacy(struct bge_softc *, int);
  400 static void bge_sig_pre_reset(struct bge_softc *, int);
  401 static int bge_reset(struct bge_softc *);
  402 static void bge_link_upd(struct bge_softc *);
  403 
  404 /*
  405  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
  406  * leak information to untrusted users.  It is also known to cause alignment
  407  * traps on certain architectures.
  408  */
  409 #ifdef BGE_REGISTER_DEBUG
  410 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
  411 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
  412 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
  413 #endif
  414 static void bge_add_sysctls(struct bge_softc *);
  415 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
  416 
  417 static device_method_t bge_methods[] = {
  418         /* Device interface */
  419         DEVMETHOD(device_probe,         bge_probe),
  420         DEVMETHOD(device_attach,        bge_attach),
  421         DEVMETHOD(device_detach,        bge_detach),
  422         DEVMETHOD(device_shutdown,      bge_shutdown),
  423         DEVMETHOD(device_suspend,       bge_suspend),
  424         DEVMETHOD(device_resume,        bge_resume),
  425 
  426         /* bus interface */
  427         DEVMETHOD(bus_print_child,      bus_generic_print_child),
  428         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
  429 
  430         /* MII interface */
  431         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
  432         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
  433         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
  434 
  435         { 0, 0 }
  436 };
  437 
  438 static driver_t bge_driver = {
  439         "bge",
  440         bge_methods,
  441         sizeof(struct bge_softc)
  442 };
  443 
  444 static devclass_t bge_devclass;
  445 
  446 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
  447 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
  448 
  449 static int bge_allow_asf = 0;
  450 
  451 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
  452 
  453 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
  454 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
  455         "Allow ASF mode if available");
  456 
  457 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
  458 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
  459 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
  460 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
  461 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
  462 
  463 static int
  464 bge_has_eaddr(struct bge_softc *sc)
  465 {
  466 #ifdef __sparc64__
  467         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
  468         device_t dev;
  469         uint32_t subvendor;
  470 
  471         dev = sc->bge_dev;
  472 
  473         /*
  474          * The on-board BGEs found in sun4u machines aren't fitted with
  475          * an EEPROM which means that we have to obtain the MAC address
  476          * via OFW and that some tests will always fail.  We distinguish
  477          * such BGEs by the subvendor ID, which also has to be obtained
  478          * from OFW instead of the PCI configuration space as the latter
  479          * indicates Broadcom as the subvendor of the netboot interface.
  480          * For early Blade 1500 and 2500 we even have to check the OFW
  481          * device path as the subvendor ID always defaults to Broadcom
  482          * there.
  483          */
  484         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
  485             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
  486             subvendor == SUN_VENDORID)
  487                 return (0);
  488         memset(buf, 0, sizeof(buf));
  489         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
  490                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
  491                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
  492                         return (0);
  493                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
  494                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
  495                         return (0);
  496         }
  497 #endif
  498         return (1);
  499 }
  500 
  501 static uint32_t
  502 bge_readmem_ind(struct bge_softc *sc, int off)
  503 {
  504         device_t dev;
  505         uint32_t val;
  506 
  507         dev = sc->bge_dev;
  508 
  509         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  510         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
  511         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  512         return (val);
  513 }
  514 
  515 static void
  516 bge_writemem_ind(struct bge_softc *sc, int off, int val)
  517 {
  518         device_t dev;
  519 
  520         dev = sc->bge_dev;
  521 
  522         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  523         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
  524         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  525 }
  526 
  527 /*
  528  * PCI Express only
  529  */
  530 static void
  531 bge_set_max_readrq(struct bge_softc *sc, int expr_ptr)
  532 {
  533         device_t dev;
  534         uint16_t val;
  535 
  536         KASSERT((sc->bge_flags & BGE_FLAG_PCIE) && expr_ptr != 0,
  537             ("%s: not applicable", __func__));
  538 
  539         dev = sc->bge_dev;
  540 
  541         val = pci_read_config(dev, expr_ptr + BGE_PCIE_DEVCTL, 2);
  542         if ((val & BGE_PCIE_DEVCTL_MAX_READRQ_MASK) !=
  543             BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
  544                 if (bootverbose)
  545                         device_printf(dev, "adjust device control 0x%04x ",
  546                             val);
  547                 val &= ~BGE_PCIE_DEVCTL_MAX_READRQ_MASK;
  548                 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
  549                 pci_write_config(dev, expr_ptr + BGE_PCIE_DEVCTL, val, 2);
  550                 if (bootverbose)
  551                         printf("-> 0x%04x\n", val);
  552         }
  553 }
  554 
  555 #ifdef notdef
  556 static uint32_t
  557 bge_readreg_ind(struct bge_softc *sc, int off)
  558 {
  559         device_t dev;
  560 
  561         dev = sc->bge_dev;
  562 
  563         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  564         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
  565 }
  566 #endif
  567 
  568 static void
  569 bge_writereg_ind(struct bge_softc *sc, int off, int val)
  570 {
  571         device_t dev;
  572 
  573         dev = sc->bge_dev;
  574 
  575         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  576         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
  577 }
  578 
  579 static void
  580 bge_writemem_direct(struct bge_softc *sc, int off, int val)
  581 {
  582         CSR_WRITE_4(sc, off, val);
  583 }
  584 
  585 static void
  586 bge_writembx(struct bge_softc *sc, int off, int val)
  587 {
  588         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
  589                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
  590 
  591         CSR_WRITE_4(sc, off, val);
  592 }
  593 
  594 /*
  595  * Map a single buffer address.
  596  */
  597 
  598 static void
  599 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  600 {
  601         struct bge_dmamap_arg *ctx;
  602 
  603         if (error)
  604                 return;
  605 
  606         ctx = arg;
  607 
  608         if (nseg > ctx->bge_maxsegs) {
  609                 ctx->bge_maxsegs = 0;
  610                 return;
  611         }
  612 
  613         ctx->bge_busaddr = segs->ds_addr;
  614 }
  615 
  616 static uint8_t
  617 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  618 {
  619         uint32_t access, byte = 0;
  620         int i;
  621 
  622         /* Lock. */
  623         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
  624         for (i = 0; i < 8000; i++) {
  625                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
  626                         break;
  627                 DELAY(20);
  628         }
  629         if (i == 8000)
  630                 return (1);
  631 
  632         /* Enable access. */
  633         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
  634         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
  635 
  636         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
  637         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
  638         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
  639                 DELAY(10);
  640                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
  641                         DELAY(10);
  642                         break;
  643                 }
  644         }
  645 
  646         if (i == BGE_TIMEOUT * 10) {
  647                 if_printf(sc->bge_ifp, "nvram read timed out\n");
  648                 return (1);
  649         }
  650 
  651         /* Get result. */
  652         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
  653 
  654         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
  655 
  656         /* Disable access. */
  657         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
  658 
  659         /* Unlock. */
  660         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
  661         CSR_READ_4(sc, BGE_NVRAM_SWARB);
  662 
  663         return (0);
  664 }
  665 
  666 /*
  667  * Read a sequence of bytes from NVRAM.
  668  */
  669 static int
  670 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
  671 {
  672         int err = 0, i;
  673         uint8_t byte = 0;
  674 
  675         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
  676                 return (1);
  677 
  678         for (i = 0; i < cnt; i++) {
  679                 err = bge_nvram_getbyte(sc, off + i, &byte);
  680                 if (err)
  681                         break;
  682                 *(dest + i) = byte;
  683         }
  684 
  685         return (err ? 1 : 0);
  686 }
  687 
  688 /*
  689  * Read a byte of data stored in the EEPROM at address 'addr.' The
  690  * BCM570x supports both the traditional bitbang interface and an
  691  * auto access interface for reading the EEPROM. We use the auto
  692  * access method.
  693  */
  694 static uint8_t
  695 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  696 {
  697         int i;
  698         uint32_t byte = 0;
  699 
  700         /*
  701          * Enable use of auto EEPROM access so we can avoid
  702          * having to use the bitbang method.
  703          */
  704         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
  705 
  706         /* Reset the EEPROM, load the clock period. */
  707         CSR_WRITE_4(sc, BGE_EE_ADDR,
  708             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
  709         DELAY(20);
  710 
  711         /* Issue the read EEPROM command. */
  712         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
  713 
  714         /* Wait for completion */
  715         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
  716                 DELAY(10);
  717                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
  718                         break;
  719         }
  720 
  721         if (i == BGE_TIMEOUT * 10) {
  722                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
  723                 return (1);
  724         }
  725 
  726         /* Get result. */
  727         byte = CSR_READ_4(sc, BGE_EE_DATA);
  728 
  729         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
  730 
  731         return (0);
  732 }
  733 
  734 /*
  735  * Read a sequence of bytes from the EEPROM.
  736  */
  737 static int
  738 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
  739 {
  740         int i, error = 0;
  741         uint8_t byte = 0;
  742 
  743         for (i = 0; i < cnt; i++) {
  744                 error = bge_eeprom_getbyte(sc, off + i, &byte);
  745                 if (error)
  746                         break;
  747                 *(dest + i) = byte;
  748         }
  749 
  750         return (error ? 1 : 0);
  751 }
  752 
  753 static int
  754 bge_miibus_readreg(device_t dev, int phy, int reg)
  755 {
  756         struct bge_softc *sc;
  757         uint32_t val, autopoll;
  758         int i;
  759 
  760         sc = device_get_softc(dev);
  761 
  762         /*
  763          * Broadcom's own driver always assumes the internal
  764          * PHY is at GMII address 1. On some chips, the PHY responds
  765          * to accesses at all addresses, which could cause us to
  766          * bogusly attach the PHY 32 times at probe type. Always
  767          * restricting the lookup to address 1 is simpler than
  768          * trying to figure out which chips revisions should be
  769          * special-cased.
  770          */
  771         if (phy != 1)
  772                 return (0);
  773 
  774         /* Reading with autopolling on may trigger PCI errors */
  775         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
  776         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  777                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  778                 DELAY(40);
  779         }
  780 
  781         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
  782             BGE_MIPHY(phy) | BGE_MIREG(reg));
  783 
  784         for (i = 0; i < BGE_TIMEOUT; i++) {
  785                 DELAY(10);
  786                 val = CSR_READ_4(sc, BGE_MI_COMM);
  787                 if (!(val & BGE_MICOMM_BUSY))
  788                         break;
  789         }
  790 
  791         if (i == BGE_TIMEOUT) {
  792                 device_printf(sc->bge_dev,
  793                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
  794                     phy, reg, val);
  795                 val = 0;
  796                 goto done;
  797         }
  798 
  799         DELAY(5);
  800         val = CSR_READ_4(sc, BGE_MI_COMM);
  801 
  802 done:
  803         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  804                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  805                 DELAY(40);
  806         }
  807 
  808         if (val & BGE_MICOMM_READFAIL)
  809                 return (0);
  810 
  811         return (val & 0xFFFF);
  812 }
  813 
  814 static int
  815 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
  816 {
  817         struct bge_softc *sc;
  818         uint32_t autopoll;
  819         int i;
  820 
  821         sc = device_get_softc(dev);
  822 
  823         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
  824             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
  825                 return(0);
  826 
  827         /* Reading with autopolling on may trigger PCI errors */
  828         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
  829         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  830                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  831                 DELAY(40);
  832         }
  833 
  834         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
  835             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
  836 
  837         for (i = 0; i < BGE_TIMEOUT; i++) {
  838                 DELAY(10);
  839                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
  840                         DELAY(5);
  841                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
  842                         break;
  843                 }
  844         }
  845 
  846         if (i == BGE_TIMEOUT) {
  847                 device_printf(sc->bge_dev,
  848                     "PHY write timed out (phy %d, reg %d, val %d)\n",
  849                     phy, reg, val);
  850                 return (0);
  851         }
  852 
  853         if (autopoll & BGE_MIMODE_AUTOPOLL) {
  854                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
  855                 DELAY(40);
  856         }
  857 
  858         return (0);
  859 }
  860 
  861 static void
  862 bge_miibus_statchg(device_t dev)
  863 {
  864         struct bge_softc *sc;
  865         struct mii_data *mii;
  866         sc = device_get_softc(dev);
  867         mii = device_get_softc(sc->bge_miibus);
  868 
  869         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
  870         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
  871                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
  872         else
  873                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
  874 
  875         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
  876                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
  877         else
  878                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
  879 }
  880 
  881 /*
  882  * Intialize a standard receive ring descriptor.
  883  */
  884 static int
  885 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
  886 {
  887         struct mbuf *m_new = NULL;
  888         struct bge_rx_bd *r;
  889         struct bge_dmamap_arg ctx;
  890         int error;
  891 
  892         if (m == NULL) {
  893                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
  894                 if (m_new == NULL)
  895                         return (ENOBUFS);
  896                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  897         } else {
  898                 m_new = m;
  899                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
  900                 m_new->m_data = m_new->m_ext.ext_buf;
  901         }
  902 
  903         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
  904                 m_adj(m_new, ETHER_ALIGN);
  905         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
  906         r = &sc->bge_ldata.bge_rx_std_ring[i];
  907         ctx.bge_maxsegs = 1;
  908         ctx.sc = sc;
  909         error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
  910             sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
  911             m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
  912         if (error || ctx.bge_maxsegs == 0) {
  913                 if (m == NULL) {
  914                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
  915                         m_freem(m_new);
  916                 }
  917                 return (ENOMEM);
  918         }
  919         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
  920         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
  921         r->bge_flags = BGE_RXBDFLAG_END;
  922         r->bge_len = m_new->m_len;
  923         r->bge_idx = i;
  924 
  925         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
  926             sc->bge_cdata.bge_rx_std_dmamap[i],
  927             BUS_DMASYNC_PREREAD);
  928 
  929         return (0);
  930 }
  931 
  932 /*
  933  * Initialize a jumbo receive ring descriptor. This allocates
  934  * a jumbo buffer from the pool managed internally by the driver.
  935  */
  936 static int
  937 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
  938 {
  939         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
  940         struct bge_extrx_bd *r;
  941         struct mbuf *m_new = NULL;
  942         int nsegs;
  943         int error;
  944 
  945         if (m == NULL) {
  946                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
  947                 if (m_new == NULL)
  948                         return (ENOBUFS);
  949 
  950                 m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
  951                 if (!(m_new->m_flags & M_EXT)) {
  952                         m_freem(m_new);
  953                         return (ENOBUFS);
  954                 }
  955                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
  956         } else {
  957                 m_new = m;
  958                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
  959                 m_new->m_data = m_new->m_ext.ext_buf;
  960         }
  961 
  962         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
  963                 m_adj(m_new, ETHER_ALIGN);
  964 
  965         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
  966             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
  967             m_new, segs, &nsegs, BUS_DMA_NOWAIT);
  968         if (error) {
  969                 if (m == NULL)
  970                         m_freem(m_new);
  971                 return (error);
  972         }
  973         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
  974 
  975         /*
  976          * Fill in the extended RX buffer descriptor.
  977          */
  978         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
  979         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
  980         r->bge_idx = i;
  981         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
  982         switch (nsegs) {
  983         case 4:
  984                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
  985                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
  986                 r->bge_len3 = segs[3].ds_len;
  987         case 3:
  988                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
  989                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
  990                 r->bge_len2 = segs[2].ds_len;
  991         case 2:
  992                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
  993                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
  994                 r->bge_len1 = segs[1].ds_len;
  995         case 1:
  996                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
  997                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
  998                 r->bge_len0 = segs[0].ds_len;
  999                 break;
 1000         default:
 1001                 panic("%s: %d segments\n", __func__, nsegs);
 1002         }
 1003 
 1004         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 1005             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
 1006             BUS_DMASYNC_PREREAD);
 1007 
 1008         return (0);
 1009 }
 1010 
 1011 /*
 1012  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
 1013  * that's 1MB or memory, which is a lot. For now, we fill only the first
 1014  * 256 ring entries and hope that our CPU is fast enough to keep up with
 1015  * the NIC.
 1016  */
 1017 static int
 1018 bge_init_rx_ring_std(struct bge_softc *sc)
 1019 {
 1020         int i;
 1021 
 1022         for (i = 0; i < BGE_SSLOTS; i++) {
 1023                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
 1024                         return (ENOBUFS);
 1025         };
 1026 
 1027         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 1028             sc->bge_cdata.bge_rx_std_ring_map,
 1029             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1030 
 1031         sc->bge_std = i - 1;
 1032         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
 1033 
 1034         return (0);
 1035 }
 1036 
 1037 static void
 1038 bge_free_rx_ring_std(struct bge_softc *sc)
 1039 {
 1040         int i;
 1041 
 1042         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1043                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 1044                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 1045                             sc->bge_cdata.bge_rx_std_dmamap[i],
 1046                             BUS_DMASYNC_POSTREAD);
 1047                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 1048                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1049                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
 1050                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
 1051                 }
 1052                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
 1053                     sizeof(struct bge_rx_bd));
 1054         }
 1055 }
 1056 
 1057 static int
 1058 bge_init_rx_ring_jumbo(struct bge_softc *sc)
 1059 {
 1060         struct bge_rcb *rcb;
 1061         int i;
 1062 
 1063         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1064                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
 1065                         return (ENOBUFS);
 1066         };
 1067 
 1068         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1069             sc->bge_cdata.bge_rx_jumbo_ring_map,
 1070             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 1071 
 1072         sc->bge_jumbo = i - 1;
 1073 
 1074         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1075         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 1076                                     BGE_RCB_FLAG_USE_EXT_RX_BD);
 1077         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1078 
 1079         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
 1080 
 1081         return (0);
 1082 }
 1083 
 1084 static void
 1085 bge_free_rx_ring_jumbo(struct bge_softc *sc)
 1086 {
 1087         int i;
 1088 
 1089         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1090                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 1091                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1092                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
 1093                             BUS_DMASYNC_POSTREAD);
 1094                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 1095                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1096                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
 1097                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
 1098                 }
 1099                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
 1100                     sizeof(struct bge_extrx_bd));
 1101         }
 1102 }
 1103 
 1104 static void
 1105 bge_free_tx_ring(struct bge_softc *sc)
 1106 {
 1107         int i;
 1108 
 1109         if (sc->bge_ldata.bge_tx_ring == NULL)
 1110                 return;
 1111 
 1112         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1113                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
 1114                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 1115                             sc->bge_cdata.bge_tx_dmamap[i],
 1116                             BUS_DMASYNC_POSTWRITE);
 1117                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 1118                             sc->bge_cdata.bge_tx_dmamap[i]);
 1119                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
 1120                         sc->bge_cdata.bge_tx_chain[i] = NULL;
 1121                 }
 1122                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
 1123                     sizeof(struct bge_tx_bd));
 1124         }
 1125 }
 1126 
 1127 static int
 1128 bge_init_tx_ring(struct bge_softc *sc)
 1129 {
 1130         sc->bge_txcnt = 0;
 1131         sc->bge_tx_saved_considx = 0;
 1132 
 1133         /* Initialize transmit producer index for host-memory send ring. */
 1134         sc->bge_tx_prodidx = 0;
 1135         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1136 
 1137         /* 5700 b2 errata */
 1138         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1139                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1140 
 1141         /* NIC-memory send ring not used; initialize to zero. */
 1142         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1143         /* 5700 b2 errata */
 1144         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1145                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1146 
 1147         return (0);
 1148 }
 1149 
 1150 static void
 1151 bge_setpromisc(struct bge_softc *sc)
 1152 {
 1153         struct ifnet *ifp;
 1154 
 1155         BGE_LOCK_ASSERT(sc);
 1156 
 1157         ifp = sc->bge_ifp;
 1158 
 1159         /* Enable or disable promiscuous mode as needed. */
 1160         if (ifp->if_flags & IFF_PROMISC)
 1161                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1162         else
 1163                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1164 }
 1165 
 1166 static void
 1167 bge_setmulti(struct bge_softc *sc)
 1168 {
 1169         struct ifnet *ifp;
 1170         struct ifmultiaddr *ifma;
 1171         uint32_t hashes[4] = { 0, 0, 0, 0 };
 1172         int h, i;
 1173 
 1174         BGE_LOCK_ASSERT(sc);
 1175 
 1176         ifp = sc->bge_ifp;
 1177 
 1178         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
 1179                 for (i = 0; i < 4; i++)
 1180                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
 1181                 return;
 1182         }
 1183 
 1184         /* First, zot all the existing filters. */
 1185         for (i = 0; i < 4; i++)
 1186                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
 1187 
 1188         /* Now program new ones. */
 1189         if_maddr_rlock(ifp);
 1190         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1191                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1192                         continue;
 1193                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 1194                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
 1195                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
 1196         }
 1197         if_maddr_runlock(ifp);
 1198 
 1199         for (i = 0; i < 4; i++)
 1200                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
 1201 }
 1202 
 1203 static void
 1204 bge_setvlan(struct bge_softc *sc)
 1205 {
 1206         struct ifnet *ifp;
 1207 
 1208         BGE_LOCK_ASSERT(sc);
 1209 
 1210         ifp = sc->bge_ifp;
 1211 
 1212         /* Enable or disable VLAN tag stripping as needed. */
 1213         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 1214                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1215         else
 1216                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1217 }
 1218 
 1219 static void
 1220 bge_sig_pre_reset(sc, type)
 1221         struct bge_softc *sc;
 1222         int type;
 1223 {
 1224         /*
 1225          * Some chips don't like this so only do this if ASF is enabled
 1226          */
 1227         if (sc->bge_asf_mode)
 1228                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
 1229 
 1230         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1231                 switch (type) {
 1232                 case BGE_RESET_START:
 1233                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
 1234                         break;
 1235                 case BGE_RESET_STOP:
 1236                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
 1237                         break;
 1238                 }
 1239         }
 1240 }
 1241 
 1242 static void
 1243 bge_sig_post_reset(sc, type)
 1244         struct bge_softc *sc;
 1245         int type;
 1246 {
 1247         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1248                 switch (type) {
 1249                 case BGE_RESET_START:
 1250                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 
 1251                         /* START DONE */
 1252                         break;
 1253                 case BGE_RESET_STOP:
 1254                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 
 1255                         break;
 1256                 }
 1257         }
 1258 }
 1259 
 1260 static void
 1261 bge_sig_legacy(sc, type)
 1262         struct bge_softc *sc;
 1263         int type;
 1264 {
 1265         if (sc->bge_asf_mode) {
 1266                 switch (type) {
 1267                 case BGE_RESET_START:
 1268                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
 1269                         break;
 1270                 case BGE_RESET_STOP:
 1271                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
 1272                         break;
 1273                 }
 1274         }
 1275 }
 1276 
 1277 void bge_stop_fw(struct bge_softc *);
 1278 void
 1279 bge_stop_fw(sc)
 1280         struct bge_softc *sc;
 1281 {
 1282         int i;
 1283 
 1284         if (sc->bge_asf_mode) {
 1285                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
 1286                 CSR_WRITE_4(sc, BGE_CPU_EVENT,
 1287                     CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
 1288 
 1289                 for (i = 0; i < 100; i++ ) {
 1290                         if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
 1291                                 break;
 1292                         DELAY(10);
 1293                 }
 1294         }
 1295 }
 1296 
 1297 /*
 1298  * Do endian, PCI and DMA initialization.
 1299  */
 1300 static int
 1301 bge_chipinit(struct bge_softc *sc)
 1302 {
 1303         uint32_t dma_rw_ctl;
 1304         int i;
 1305 
 1306         /* Set endianness before we access any non-PCI registers. */
 1307         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
 1308 
 1309         /* Clear the MAC control register */
 1310         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
 1311 
 1312         /*
 1313          * Clear the MAC statistics block in the NIC's
 1314          * internal memory.
 1315          */
 1316         for (i = BGE_STATS_BLOCK;
 1317             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
 1318                 BGE_MEMWIN_WRITE(sc, i, 0);
 1319 
 1320         for (i = BGE_STATUS_BLOCK;
 1321             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
 1322                 BGE_MEMWIN_WRITE(sc, i, 0);
 1323 
 1324         /*
 1325          * Set up the PCI DMA control register.
 1326          */
 1327         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
 1328             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
 1329         if (sc->bge_flags & BGE_FLAG_PCIE) {
 1330                 /* Read watermark not used, 128 bytes for write. */
 1331                 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1332         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
 1333                 if (BGE_IS_5714_FAMILY(sc)) {
 1334                         /* 256 bytes for read and write. */
 1335                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
 1336                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
 1337                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
 1338                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
 1339                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
 1340                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1341                         /* 1536 bytes for read, 384 bytes for write. */
 1342                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1343                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1344                 } else {
 1345                         /* 384 bytes for read and write. */
 1346                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
 1347                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
 1348                             0x0F;
 1349                 }
 1350                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1351                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1352                         uint32_t tmp;
 1353 
 1354                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
 1355                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 1356                         if (tmp == 6 || tmp == 7)
 1357                                 dma_rw_ctl |=
 1358                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
 1359 
 1360                         /* Set PCI-X DMA write workaround. */
 1361                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1362                 }
 1363         } else {
 1364                 /* Conventional PCI bus: 256 bytes for read and write. */
 1365                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1366                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 1367 
 1368                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
 1369                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
 1370                         dma_rw_ctl |= 0x0F;
 1371         }
 1372         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 1373             sc->bge_asicrev == BGE_ASICREV_BCM5701)
 1374                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
 1375                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1376         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1377             sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1378                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
 1379         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
 1380 
 1381         /*
 1382          * Set up general mode register.
 1383          */
 1384         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
 1385             BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
 1386             BGE_MODECTL_TX_NO_PHDR_CSUM);
 1387 
 1388         /*
 1389          * BCM5701 B5 have a bug causing data corruption when using
 1390          * 64-bit DMA reads, which can be terminated early and then
 1391          * completed later as 32-bit accesses, in combination with
 1392          * certain bridges.
 1393          */
 1394         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 1395             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
 1396                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
 1397 
 1398         /*
 1399          * Tell the firmware the driver is running
 1400          */
 1401         if (sc->bge_asf_mode & ASF_STACKUP)
 1402                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 1403 
 1404         /*
 1405          * Disable memory write invalidate.  Apparently it is not supported
 1406          * properly by these devices.  Also ensure that INTx isn't disabled,
 1407          * as these chips need it even when using MSI.
 1408          */
 1409         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
 1410             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
 1411 
 1412         /* Set the timer prescaler (always 66Mhz) */
 1413         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 1414 
 1415         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
 1416         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1417                 DELAY(40);      /* XXX */
 1418 
 1419                 /* Put PHY into ready state */
 1420                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
 1421                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
 1422                 DELAY(40);
 1423         }
 1424 
 1425         return (0);
 1426 }
 1427 
 1428 static int
 1429 bge_blockinit(struct bge_softc *sc)
 1430 {
 1431         struct bge_rcb *rcb;
 1432         bus_size_t vrcb;
 1433         bge_hostaddr taddr;
 1434         uint32_t val;
 1435         int i;
 1436 
 1437         /*
 1438          * Initialize the memory window pointer register so that
 1439          * we can access the first 32K of internal NIC RAM. This will
 1440          * allow us to set up the TX send ring RCBs and the RX return
 1441          * ring RCBs, plus other things which live in NIC memory.
 1442          */
 1443         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
 1444 
 1445         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
 1446 
 1447         if (!(BGE_IS_5705_PLUS(sc))) {
 1448                 /* Configure mbuf memory pool */
 1449                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
 1450                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1451                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
 1452                 else
 1453                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
 1454 
 1455                 /* Configure DMA resource pool */
 1456                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
 1457                     BGE_DMA_DESCRIPTORS);
 1458                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
 1459         }
 1460 
 1461         /* Configure mbuf pool watermarks */
 1462         if (!BGE_IS_5705_PLUS(sc)) {
 1463                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
 1464                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
 1465                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1466         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1467                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1468                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
 1469                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
 1470         } else {
 1471                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1472                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
 1473                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1474         }
 1475 
 1476         /* Configure DMA resource watermarks */
 1477         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
 1478         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
 1479 
 1480         /* Enable buffer manager */
 1481         if (!(BGE_IS_5705_PLUS(sc))) {
 1482                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
 1483                     BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
 1484 
 1485                 /* Poll for buffer manager start indication */
 1486                 for (i = 0; i < BGE_TIMEOUT; i++) {
 1487                         DELAY(10);
 1488                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
 1489                                 break;
 1490                 }
 1491 
 1492                 if (i == BGE_TIMEOUT) {
 1493                         device_printf(sc->bge_dev,
 1494                             "buffer manager failed to start\n");
 1495                         return (ENXIO);
 1496                 }
 1497         }
 1498 
 1499         /* Enable flow-through queues */
 1500         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 1501         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 1502 
 1503         /* Wait until queue initialization is complete */
 1504         for (i = 0; i < BGE_TIMEOUT; i++) {
 1505                 DELAY(10);
 1506                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
 1507                         break;
 1508         }
 1509 
 1510         if (i == BGE_TIMEOUT) {
 1511                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
 1512                 return (ENXIO);
 1513         }
 1514 
 1515         /* Initialize the standard RX ring control block */
 1516         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
 1517         rcb->bge_hostaddr.bge_addr_lo =
 1518             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
 1519         rcb->bge_hostaddr.bge_addr_hi =
 1520             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
 1521         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 1522             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
 1523         if (BGE_IS_5705_PLUS(sc))
 1524                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
 1525         else
 1526                 rcb->bge_maxlen_flags =
 1527                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
 1528         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
 1529         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
 1530         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
 1531 
 1532         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1533         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
 1534 
 1535         /*
 1536          * Initialize the jumbo RX ring control block
 1537          * We set the 'ring disabled' bit in the flags
 1538          * field until we're actually ready to start
 1539          * using this ring (i.e. once we set the MTU
 1540          * high enough to require it).
 1541          */
 1542         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 1543                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1544 
 1545                 rcb->bge_hostaddr.bge_addr_lo =
 1546                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 1547                 rcb->bge_hostaddr.bge_addr_hi =
 1548                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 1549                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1550                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 1551                     BUS_DMASYNC_PREREAD);
 1552                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 1553                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
 1554                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
 1555                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
 1556                     rcb->bge_hostaddr.bge_addr_hi);
 1557                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
 1558                     rcb->bge_hostaddr.bge_addr_lo);
 1559 
 1560                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
 1561                     rcb->bge_maxlen_flags);
 1562                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
 1563 
 1564                 /* Set up dummy disabled mini ring RCB */
 1565                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
 1566                 rcb->bge_maxlen_flags =
 1567                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
 1568                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
 1569                     rcb->bge_maxlen_flags);
 1570         }
 1571 
 1572         /*
 1573          * Set the BD ring replentish thresholds. The recommended
 1574          * values are 1/8th the number of descriptors allocated to
 1575          * each ring.
 1576          * XXX The 5754 requires a lower threshold, so it might be a
 1577          * requirement of all 575x family chips.  The Linux driver sets
 1578          * the lower threshold for all 5705 family chips as well, but there
 1579          * are reports that it might not need to be so strict.
 1580          *
 1581          * XXX Linux does some extra fiddling here for the 5906 parts as
 1582          * well.
 1583          */
 1584         if (BGE_IS_5705_PLUS(sc))
 1585                 val = 8;
 1586         else
 1587                 val = BGE_STD_RX_RING_CNT / 8;
 1588         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
 1589         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
 1590 
 1591         /*
 1592          * Disable all unused send rings by setting the 'ring disabled'
 1593          * bit in the flags field of all the TX send ring control blocks.
 1594          * These are located in NIC memory.
 1595          */
 1596         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 1597         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
 1598                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1599                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
 1600                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 1601                 vrcb += sizeof(struct bge_rcb);
 1602         }
 1603 
 1604         /* Configure TX RCB 0 (we use only the first ring) */
 1605         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 1606         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
 1607         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 1608         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 1609         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
 1610             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
 1611         if (!(BGE_IS_5705_PLUS(sc)))
 1612                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1613                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
 1614 
 1615         /* Disable all unused RX return rings */
 1616         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 1617         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
 1618                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
 1619                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
 1620                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1621                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
 1622                     BGE_RCB_FLAG_RING_DISABLED));
 1623                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 1624                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
 1625                     (i * (sizeof(uint64_t))), 0);
 1626                 vrcb += sizeof(struct bge_rcb);
 1627         }
 1628 
 1629         /* Initialize RX ring indexes */
 1630         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
 1631         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
 1632         bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
 1633 
 1634         /*
 1635          * Set up RX return ring 0
 1636          * Note that the NIC address for RX return rings is 0x00000000.
 1637          * The return rings live entirely within the host, so the
 1638          * nicaddr field in the RCB isn't used.
 1639          */
 1640         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 1641         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
 1642         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 1643         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 1644         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
 1645         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 1646             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));  
 1647 
 1648         /* Set random backoff seed for TX */
 1649         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
 1650             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
 1651             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
 1652             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
 1653             BGE_TX_BACKOFF_SEED_MASK);
 1654 
 1655         /* Set inter-packet gap */
 1656         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
 1657 
 1658         /*
 1659          * Specify which ring to use for packets that don't match
 1660          * any RX rules.
 1661          */
 1662         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
 1663 
 1664         /*
 1665          * Configure number of RX lists. One interrupt distribution
 1666          * list, sixteen active lists, one bad frames class.
 1667          */
 1668         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
 1669 
 1670         /* Inialize RX list placement stats mask. */
 1671         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
 1672         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
 1673 
 1674         /* Disable host coalescing until we get it set up */
 1675         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
 1676 
 1677         /* Poll to make sure it's shut down. */
 1678         for (i = 0; i < BGE_TIMEOUT; i++) {
 1679                 DELAY(10);
 1680                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
 1681                         break;
 1682         }
 1683 
 1684         if (i == BGE_TIMEOUT) {
 1685                 device_printf(sc->bge_dev,
 1686                     "host coalescing engine failed to idle\n");
 1687                 return (ENXIO);
 1688         }
 1689 
 1690         /* Set up host coalescing defaults */
 1691         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
 1692         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
 1693         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
 1694         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
 1695         if (!(BGE_IS_5705_PLUS(sc))) {
 1696                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
 1697                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
 1698         }
 1699         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
 1700         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
 1701 
 1702         /* Set up address of statistics block */
 1703         if (!(BGE_IS_5705_PLUS(sc))) {
 1704                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
 1705                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
 1706                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
 1707                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
 1708                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
 1709                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
 1710                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
 1711         }
 1712 
 1713         /* Set up address of status block */
 1714         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
 1715             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
 1716         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
 1717             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
 1718         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
 1719         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
 1720 
 1721         /* Turn on host coalescing state machine */
 1722         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 1723 
 1724         /* Turn on RX BD completion state machine and enable attentions */
 1725         CSR_WRITE_4(sc, BGE_RBDC_MODE,
 1726             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
 1727 
 1728         /* Turn on RX list placement state machine */
 1729         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 1730 
 1731         /* Turn on RX list selector state machine. */
 1732         if (!(BGE_IS_5705_PLUS(sc)))
 1733                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 1734 
 1735         /* Turn on DMA, clear stats */
 1736         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
 1737             BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
 1738             BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
 1739             BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
 1740             ((sc->bge_flags & BGE_FLAG_TBI) ?
 1741             BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
 1742 
 1743         /* Set misc. local control, enable interrupts on attentions */
 1744         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
 1745 
 1746 #ifdef notdef
 1747         /* Assert GPIO pins for PHY reset */
 1748         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
 1749             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
 1750         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
 1751             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
 1752 #endif
 1753 
 1754         /* Turn on DMA completion state machine */
 1755         if (!(BGE_IS_5705_PLUS(sc)))
 1756                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 1757 
 1758         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
 1759 
 1760         /* Enable host coalescing bug fix. */
 1761         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 1762             sc->bge_asicrev == BGE_ASICREV_BCM5787)
 1763                 val |= 1 << 29;
 1764 
 1765         /* Turn on write DMA state machine */
 1766         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
 1767         DELAY(40);
 1768 
 1769         /* Turn on read DMA state machine */
 1770         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
 1771         if (sc->bge_flags & BGE_FLAG_PCIE)
 1772                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
 1773         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
 1774         DELAY(40);
 1775 
 1776         /* Turn on RX data completion state machine */
 1777         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 1778 
 1779         /* Turn on RX BD initiator state machine */
 1780         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 1781 
 1782         /* Turn on RX data and RX BD initiator state machine */
 1783         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
 1784 
 1785         /* Turn on Mbuf cluster free state machine */
 1786         if (!(BGE_IS_5705_PLUS(sc)))
 1787                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 1788 
 1789         /* Turn on send BD completion state machine */
 1790         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 1791 
 1792         /* Turn on send data completion state machine */
 1793         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 1794 
 1795         /* Turn on send data initiator state machine */
 1796         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 1797 
 1798         /* Turn on send BD initiator state machine */
 1799         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 1800 
 1801         /* Turn on send BD selector state machine */
 1802         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 1803 
 1804         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
 1805         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
 1806             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
 1807 
 1808         /* ack/clear link change events */
 1809         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 1810             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 1811             BGE_MACSTAT_LINK_CHANGED);
 1812         CSR_WRITE_4(sc, BGE_MI_STS, 0);
 1813 
 1814         /* Enable PHY auto polling (for MII/GMII only) */
 1815         if (sc->bge_flags & BGE_FLAG_TBI) {
 1816                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
 1817         } else {
 1818                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
 1819                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 1820                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
 1821                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 1822                             BGE_EVTENB_MI_INTERRUPT);
 1823         }
 1824 
 1825         /*
 1826          * Clear any pending link state attention.
 1827          * Otherwise some link state change events may be lost until attention
 1828          * is cleared by bge_intr() -> bge_link_upd() sequence.
 1829          * It's not necessary on newer BCM chips - perhaps enabling link
 1830          * state change attentions implies clearing pending attention.
 1831          */
 1832         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 1833             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 1834             BGE_MACSTAT_LINK_CHANGED);
 1835 
 1836         /* Enable link state change attentions. */
 1837         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
 1838 
 1839         return (0);
 1840 }
 1841 
 1842 const struct bge_revision *
 1843 bge_lookup_rev(uint32_t chipid)
 1844 {
 1845         const struct bge_revision *br;
 1846 
 1847         for (br = bge_revisions; br->br_name != NULL; br++) {
 1848                 if (br->br_chipid == chipid)
 1849                         return (br);
 1850         }
 1851 
 1852         for (br = bge_majorrevs; br->br_name != NULL; br++) {
 1853                 if (br->br_chipid == BGE_ASICREV(chipid))
 1854                         return (br);
 1855         }
 1856 
 1857         return (NULL);
 1858 }
 1859 
 1860 const struct bge_vendor *
 1861 bge_lookup_vendor(uint16_t vid)
 1862 {
 1863         const struct bge_vendor *v;
 1864 
 1865         for (v = bge_vendors; v->v_name != NULL; v++)
 1866                 if (v->v_id == vid)
 1867                         return (v);
 1868                 
 1869         panic("%s: unknown vendor %d", __func__, vid);
 1870         return (NULL);
 1871 }
 1872 
 1873 /*
 1874  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
 1875  * against our list and return its name if we find a match.
 1876  *
 1877  * Note that since the Broadcom controller contains VPD support, we
 1878  * try to get the device name string from the controller itself instead
 1879  * of the compiled-in string. It guarantees we'll always announce the
 1880  * right product name. We fall back to the compiled-in string when
 1881  * VPD is unavailable or corrupt.
 1882  */
 1883 static int
 1884 bge_probe(device_t dev)
 1885 {
 1886         const struct bge_type *t = bge_devs;
 1887         struct bge_softc *sc = device_get_softc(dev);
 1888         uint16_t vid, did;
 1889 
 1890         sc->bge_dev = dev;
 1891         vid = pci_get_vendor(dev);
 1892         did = pci_get_device(dev);
 1893         while(t->bge_vid != 0) {
 1894                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
 1895                         char model[64], buf[96];
 1896                         const struct bge_revision *br;
 1897                         const struct bge_vendor *v;
 1898                         uint32_t id;
 1899 
 1900                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
 1901                             BGE_PCIMISCCTL_ASICREV;
 1902                         br = bge_lookup_rev(id);
 1903                         v = bge_lookup_vendor(vid);
 1904                         {
 1905 #if __FreeBSD_version > 700024
 1906                                 const char *pname;
 1907 
 1908                                 if (bge_has_eaddr(sc) &&
 1909                                     pci_get_vpd_ident(dev, &pname) == 0)
 1910                                         snprintf(model, 64, "%s", pname);
 1911                                 else
 1912 #endif
 1913                                         snprintf(model, 64, "%s %s",
 1914                                             v->v_name,
 1915                                             br != NULL ? br->br_name :
 1916                                             "NetXtreme Ethernet Controller");
 1917                         }
 1918                         snprintf(buf, 96, "%s, %sASIC rev. %#04x", model,
 1919                             br != NULL ? "" : "unknown ", id >> 16);
 1920                         device_set_desc_copy(dev, buf);
 1921                         if (pci_get_subvendor(dev) == DELL_VENDORID)
 1922                                 sc->bge_flags |= BGE_FLAG_NO_3LED;
 1923                         if (did == BCOM_DEVICEID_BCM5755M)
 1924                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
 1925                         return (0);
 1926                 }
 1927                 t++;
 1928         }
 1929 
 1930         return (ENXIO);
 1931 }
 1932 
 1933 static void
 1934 bge_dma_free(struct bge_softc *sc)
 1935 {
 1936         int i;
 1937 
 1938         /* Destroy DMA maps for RX buffers. */
 1939         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1940                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
 1941                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
 1942                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1943         }
 1944 
 1945         /* Destroy DMA maps for jumbo RX buffers. */
 1946         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1947                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
 1948                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 1949                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1950         }
 1951 
 1952         /* Destroy DMA maps for TX buffers. */
 1953         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1954                 if (sc->bge_cdata.bge_tx_dmamap[i])
 1955                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
 1956                             sc->bge_cdata.bge_tx_dmamap[i]);
 1957         }
 1958 
 1959         if (sc->bge_cdata.bge_mtag)
 1960                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
 1961 
 1962 
 1963         /* Destroy standard RX ring. */
 1964         if (sc->bge_cdata.bge_rx_std_ring_map)
 1965                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
 1966                     sc->bge_cdata.bge_rx_std_ring_map);
 1967         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
 1968                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
 1969                     sc->bge_ldata.bge_rx_std_ring,
 1970                     sc->bge_cdata.bge_rx_std_ring_map);
 1971 
 1972         if (sc->bge_cdata.bge_rx_std_ring_tag)
 1973                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
 1974 
 1975         /* Destroy jumbo RX ring. */
 1976         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
 1977                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1978                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 1979 
 1980         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
 1981             sc->bge_ldata.bge_rx_jumbo_ring)
 1982                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1983                     sc->bge_ldata.bge_rx_jumbo_ring,
 1984                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 1985 
 1986         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
 1987                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
 1988 
 1989         /* Destroy RX return ring. */
 1990         if (sc->bge_cdata.bge_rx_return_ring_map)
 1991                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
 1992                     sc->bge_cdata.bge_rx_return_ring_map);
 1993 
 1994         if (sc->bge_cdata.bge_rx_return_ring_map &&
 1995             sc->bge_ldata.bge_rx_return_ring)
 1996                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
 1997                     sc->bge_ldata.bge_rx_return_ring,
 1998                     sc->bge_cdata.bge_rx_return_ring_map);
 1999 
 2000         if (sc->bge_cdata.bge_rx_return_ring_tag)
 2001                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
 2002 
 2003         /* Destroy TX ring. */
 2004         if (sc->bge_cdata.bge_tx_ring_map)
 2005                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
 2006                     sc->bge_cdata.bge_tx_ring_map);
 2007 
 2008         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
 2009                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
 2010                     sc->bge_ldata.bge_tx_ring,
 2011                     sc->bge_cdata.bge_tx_ring_map);
 2012 
 2013         if (sc->bge_cdata.bge_tx_ring_tag)
 2014                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
 2015 
 2016         /* Destroy status block. */
 2017         if (sc->bge_cdata.bge_status_map)
 2018                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
 2019                     sc->bge_cdata.bge_status_map);
 2020 
 2021         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
 2022                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
 2023                     sc->bge_ldata.bge_status_block,
 2024                     sc->bge_cdata.bge_status_map);
 2025 
 2026         if (sc->bge_cdata.bge_status_tag)
 2027                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
 2028 
 2029         /* Destroy statistics block. */
 2030         if (sc->bge_cdata.bge_stats_map)
 2031                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
 2032                     sc->bge_cdata.bge_stats_map);
 2033 
 2034         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
 2035                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
 2036                     sc->bge_ldata.bge_stats,
 2037                     sc->bge_cdata.bge_stats_map);
 2038 
 2039         if (sc->bge_cdata.bge_stats_tag)
 2040                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
 2041 
 2042         /* Destroy the parent tag. */
 2043         if (sc->bge_cdata.bge_parent_tag)
 2044                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
 2045 }
 2046 
 2047 static int
 2048 bge_dma_alloc(device_t dev)
 2049 {
 2050         struct bge_dmamap_arg ctx;
 2051         struct bge_softc *sc;
 2052         int i, error;
 2053 
 2054         sc = device_get_softc(dev);
 2055 
 2056         /*
 2057          * Allocate the parent bus DMA tag appropriate for PCI.
 2058          */
 2059         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 2060             1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2061             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 2062             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
 2063 
 2064         if (error != 0) {
 2065                 device_printf(sc->bge_dev,
 2066                     "could not allocate parent dma tag\n");
 2067                 return (ENOMEM);
 2068         }
 2069 
 2070         /*
 2071          * Create tag for mbufs.
 2072          */
 2073         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
 2074             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2075             NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
 2076             BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
 2077 
 2078         if (error) {
 2079                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2080                 return (ENOMEM);
 2081         }
 2082 
 2083         /* Create DMA maps for RX buffers. */
 2084         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 2085                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
 2086                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
 2087                 if (error) {
 2088                         device_printf(sc->bge_dev,
 2089                             "can't create DMA map for RX\n");
 2090                         return (ENOMEM);
 2091                 }
 2092         }
 2093 
 2094         /* Create DMA maps for TX buffers. */
 2095         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 2096                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
 2097                             &sc->bge_cdata.bge_tx_dmamap[i]);
 2098                 if (error) {
 2099                         device_printf(sc->bge_dev,
 2100                             "can't create DMA map for RX\n");
 2101                         return (ENOMEM);
 2102                 }
 2103         }
 2104 
 2105         /* Create tag for standard RX ring. */
 2106         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2107             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2108             NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
 2109             NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
 2110 
 2111         if (error) {
 2112                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2113                 return (ENOMEM);
 2114         }
 2115 
 2116         /* Allocate DMA'able memory for standard RX ring. */
 2117         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
 2118             (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
 2119             &sc->bge_cdata.bge_rx_std_ring_map);
 2120         if (error)
 2121                 return (ENOMEM);
 2122 
 2123         bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
 2124 
 2125         /* Load the address of the standard RX ring. */
 2126         ctx.bge_maxsegs = 1;
 2127         ctx.sc = sc;
 2128 
 2129         error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
 2130             sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
 2131             BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2132 
 2133         if (error)
 2134                 return (ENOMEM);
 2135 
 2136         sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
 2137 
 2138         /* Create tags for jumbo mbufs. */
 2139         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 2140                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2141                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2142                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
 2143                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
 2144                 if (error) {
 2145                         device_printf(sc->bge_dev,
 2146                             "could not allocate jumbo dma tag\n");
 2147                         return (ENOMEM);
 2148                 }
 2149 
 2150                 /* Create tag for jumbo RX ring. */
 2151                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2152                     PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2153                     NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
 2154                     NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
 2155 
 2156                 if (error) {
 2157                         device_printf(sc->bge_dev,
 2158                             "could not allocate jumbo ring dma tag\n");
 2159                         return (ENOMEM);
 2160                 }
 2161 
 2162                 /* Allocate DMA'able memory for jumbo RX ring. */
 2163                 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2164                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
 2165                     BUS_DMA_NOWAIT | BUS_DMA_ZERO,
 2166                     &sc->bge_cdata.bge_rx_jumbo_ring_map);
 2167                 if (error)
 2168                         return (ENOMEM);
 2169 
 2170                 /* Load the address of the jumbo RX ring. */
 2171                 ctx.bge_maxsegs = 1;
 2172                 ctx.sc = sc;
 2173 
 2174                 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2175                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 2176                     sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
 2177                     bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2178 
 2179                 if (error)
 2180                         return (ENOMEM);
 2181 
 2182                 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
 2183 
 2184                 /* Create DMA maps for jumbo RX buffers. */
 2185                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 2186                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 2187                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 2188                         if (error) {
 2189                                 device_printf(sc->bge_dev,
 2190                                     "can't create DMA map for jumbo RX\n");
 2191                                 return (ENOMEM);
 2192                         }
 2193                 }
 2194 
 2195         }
 2196 
 2197         /* Create tag for RX return ring. */
 2198         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2199             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2200             NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
 2201             NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
 2202 
 2203         if (error) {
 2204                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2205                 return (ENOMEM);
 2206         }
 2207 
 2208         /* Allocate DMA'able memory for RX return ring. */
 2209         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
 2210             (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
 2211             &sc->bge_cdata.bge_rx_return_ring_map);
 2212         if (error)
 2213                 return (ENOMEM);
 2214 
 2215         bzero((char *)sc->bge_ldata.bge_rx_return_ring,
 2216             BGE_RX_RTN_RING_SZ(sc));
 2217 
 2218         /* Load the address of the RX return ring. */
 2219         ctx.bge_maxsegs = 1;
 2220         ctx.sc = sc;
 2221 
 2222         error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
 2223             sc->bge_cdata.bge_rx_return_ring_map,
 2224             sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
 2225             bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2226 
 2227         if (error)
 2228                 return (ENOMEM);
 2229 
 2230         sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
 2231 
 2232         /* Create tag for TX ring. */
 2233         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2234             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2235             NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
 2236             &sc->bge_cdata.bge_tx_ring_tag);
 2237 
 2238         if (error) {
 2239                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2240                 return (ENOMEM);
 2241         }
 2242 
 2243         /* Allocate DMA'able memory for TX ring. */
 2244         error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
 2245             (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
 2246             &sc->bge_cdata.bge_tx_ring_map);
 2247         if (error)
 2248                 return (ENOMEM);
 2249 
 2250         bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
 2251 
 2252         /* Load the address of the TX ring. */
 2253         ctx.bge_maxsegs = 1;
 2254         ctx.sc = sc;
 2255 
 2256         error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
 2257             sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
 2258             BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2259 
 2260         if (error)
 2261                 return (ENOMEM);
 2262 
 2263         sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
 2264 
 2265         /* Create tag for status block. */
 2266         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2267             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2268             NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
 2269             NULL, NULL, &sc->bge_cdata.bge_status_tag);
 2270 
 2271         if (error) {
 2272                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2273                 return (ENOMEM);
 2274         }
 2275 
 2276         /* Allocate DMA'able memory for status block. */
 2277         error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
 2278             (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
 2279             &sc->bge_cdata.bge_status_map);
 2280         if (error)
 2281                 return (ENOMEM);
 2282 
 2283         bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
 2284 
 2285         /* Load the address of the status block. */
 2286         ctx.sc = sc;
 2287         ctx.bge_maxsegs = 1;
 2288 
 2289         error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
 2290             sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
 2291             BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2292 
 2293         if (error)
 2294                 return (ENOMEM);
 2295 
 2296         sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
 2297 
 2298         /* Create tag for statistics block. */
 2299         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2300             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 2301             NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
 2302             &sc->bge_cdata.bge_stats_tag);
 2303 
 2304         if (error) {
 2305                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
 2306                 return (ENOMEM);
 2307         }
 2308 
 2309         /* Allocate DMA'able memory for statistics block. */
 2310         error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
 2311             (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
 2312             &sc->bge_cdata.bge_stats_map);
 2313         if (error)
 2314                 return (ENOMEM);
 2315 
 2316         bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
 2317 
 2318         /* Load the address of the statstics block. */
 2319         ctx.sc = sc;
 2320         ctx.bge_maxsegs = 1;
 2321 
 2322         error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
 2323             sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
 2324             BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
 2325 
 2326         if (error)
 2327                 return (ENOMEM);
 2328 
 2329         sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
 2330 
 2331         return (0);
 2332 }
 2333 
 2334 #if __FreeBSD_version > 602105
 2335 /*
 2336  * Return true if this device has more than one port.
 2337  */
 2338 static int
 2339 bge_has_multiple_ports(struct bge_softc *sc)
 2340 {
 2341         device_t dev = sc->bge_dev;
 2342         u_int b, d, f, fscan, s;
 2343 
 2344         d = pci_get_domain(dev);
 2345         b = pci_get_bus(dev);
 2346         s = pci_get_slot(dev);
 2347         f = pci_get_function(dev);
 2348         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
 2349                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
 2350                         return (1);
 2351         return (0);
 2352 }
 2353 
 2354 /*
 2355  * Return true if MSI can be used with this device.
 2356  */
 2357 static int
 2358 bge_can_use_msi(struct bge_softc *sc)
 2359 {
 2360         int can_use_msi = 0;
 2361 
 2362         switch (sc->bge_asicrev) {
 2363         case BGE_ASICREV_BCM5714_A0:
 2364         case BGE_ASICREV_BCM5714:
 2365                 /*
 2366                  * Apparently, MSI doesn't work when these chips are
 2367                  * configured in single-port mode.
 2368                  */
 2369                 if (bge_has_multiple_ports(sc))
 2370                         can_use_msi = 1;
 2371                 break;
 2372         case BGE_ASICREV_BCM5750:
 2373                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
 2374                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
 2375                         can_use_msi = 1;
 2376                 break;
 2377         default:
 2378                 if (BGE_IS_575X_PLUS(sc))
 2379                         can_use_msi = 1;
 2380         }
 2381         return (can_use_msi);
 2382 }
 2383 #endif
 2384 
 2385 static int
 2386 bge_attach(device_t dev)
 2387 {
 2388         struct ifnet *ifp;
 2389         struct bge_softc *sc;
 2390         uint32_t hwcfg = 0, misccfg;
 2391         u_char eaddr[ETHER_ADDR_LEN];
 2392         int error, reg, rid, trys;
 2393 
 2394         sc = device_get_softc(dev);
 2395         sc->bge_dev = dev;
 2396 
 2397         /*
 2398          * Map control/status registers.
 2399          */
 2400         pci_enable_busmaster(dev);
 2401 
 2402         rid = BGE_PCI_BAR0;
 2403         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 2404             RF_ACTIVE);
 2405 
 2406         if (sc->bge_res == NULL) {
 2407                 device_printf (sc->bge_dev, "couldn't map memory\n");
 2408                 error = ENXIO;
 2409                 goto fail;
 2410         }
 2411 
 2412         /* Save various chip information. */
 2413         sc->bge_chipid =
 2414             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
 2415             BGE_PCIMISCCTL_ASICREV;
 2416         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
 2417         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
 2418 
 2419         /*
 2420          * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
 2421          * 5705 A0 and A1 chips.
 2422          */
 2423         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
 2424             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
 2425             sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
 2426             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
 2427                 sc->bge_flags |= BGE_FLAG_WIRESPEED;
 2428 
 2429         if (bge_has_eaddr(sc))
 2430                 sc->bge_flags |= BGE_FLAG_EADDR;
 2431 
 2432         /* Save chipset family. */
 2433         switch (sc->bge_asicrev) {
 2434         case BGE_ASICREV_BCM5700:
 2435         case BGE_ASICREV_BCM5701:
 2436         case BGE_ASICREV_BCM5703:
 2437         case BGE_ASICREV_BCM5704:
 2438                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
 2439                 break;
 2440         case BGE_ASICREV_BCM5714_A0:
 2441         case BGE_ASICREV_BCM5780:
 2442         case BGE_ASICREV_BCM5714:
 2443                 sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
 2444                 /* FALLTHROUGH */
 2445         case BGE_ASICREV_BCM5750:
 2446         case BGE_ASICREV_BCM5752:
 2447         case BGE_ASICREV_BCM5755:
 2448         case BGE_ASICREV_BCM5787:
 2449         case BGE_ASICREV_BCM5906:
 2450                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
 2451                 /* FALLTHROUGH */
 2452         case BGE_ASICREV_BCM5705:
 2453                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
 2454                 break;
 2455         }
 2456 
 2457         /* Set various bug flags. */
 2458         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
 2459             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
 2460                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
 2461         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
 2462             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
 2463                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
 2464         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
 2465                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
 2466         if (BGE_IS_5705_PLUS(sc) &&
 2467             !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
 2468                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2469                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 2470                         if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
 2471                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
 2472                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 2473                         sc->bge_flags |= BGE_FLAG_BER_BUG;
 2474         }
 2475 
 2476 
 2477         /*
 2478          * We could possibly check for BCOM_DEVICEID_BCM5788 in bge_probe()
 2479          * but I do not know the DEVICEID for the 5788M.
 2480          */
 2481         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID;
 2482         if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
 2483             misccfg == BGE_MISCCFG_BOARD_ID_5788M)
 2484                 sc->bge_flags |= BGE_FLAG_5788;
 2485 
 2486         /*
 2487          * Check if this is a PCI-X or PCI Express device.
 2488          */
 2489 #if __FreeBSD_version > 602101
 2490         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
 2491                 /*
 2492                  * Found a PCI Express capabilities register, this
 2493                  * must be a PCI Express device.
 2494                  */
 2495                 if (reg != 0) {
 2496                         sc->bge_flags |= BGE_FLAG_PCIE;
 2497 #else
 2498         if (BGE_IS_5705_PLUS(sc)) {
 2499                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
 2500                 if ((reg & 0xFF) == BGE_PCIE_CAPID) {
 2501                         sc->bge_flags |= BGE_FLAG_PCIE;
 2502                         reg = BGE_PCIE_CAPID;
 2503 #endif
 2504                         bge_set_max_readrq(sc, reg);
 2505                 }
 2506         } else {
 2507                 /*
 2508                  * Check if the device is in PCI-X Mode.
 2509                  * (This bit is not valid on PCI Express controllers.)
 2510                  */
 2511                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
 2512                     BGE_PCISTATE_PCI_BUSMODE) == 0)
 2513                         sc->bge_flags |= BGE_FLAG_PCIX;
 2514         }
 2515 
 2516 #if __FreeBSD_version > 602105
 2517         {
 2518                 int msicount;
 2519 
 2520                 /*
 2521                  * Allocate the interrupt, using MSI if possible.  These devices
 2522                  * support 8 MSI messages, but only the first one is used in
 2523                  * normal operation.
 2524                  */
 2525                 if (bge_can_use_msi(sc)) {
 2526                         msicount = pci_msi_count(dev);
 2527                         if (msicount > 1)
 2528                                 msicount = 1;
 2529                 } else
 2530                         msicount = 0;
 2531                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
 2532                         rid = 1;
 2533                         sc->bge_flags |= BGE_FLAG_MSI;
 2534                 } else
 2535                         rid = 0;
 2536         }
 2537 #else
 2538         rid = 0;
 2539 #endif
 2540 
 2541         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 2542             RF_SHAREABLE | RF_ACTIVE);
 2543 
 2544         if (sc->bge_irq == NULL) {
 2545                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
 2546                 error = ENXIO;
 2547                 goto fail;
 2548         }
 2549 
 2550         if (bootverbose)
 2551                 device_printf(dev,
 2552                     "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
 2553                     sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
 2554                     (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X" :
 2555                     ((sc->bge_flags & BGE_FLAG_PCIE) ? "PCI-E" : "PCI"));
 2556 
 2557         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
 2558 
 2559         /* Try to reset the chip. */
 2560         if (bge_reset(sc)) {
 2561                 device_printf(sc->bge_dev, "chip reset failed\n");
 2562                 error = ENXIO;
 2563                 goto fail;
 2564         }
 2565 
 2566         sc->bge_asf_mode = 0;
 2567         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
 2568             == BGE_MAGIC_NUMBER)) {
 2569                 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
 2570                     & BGE_HWCFG_ASF) {
 2571                         sc->bge_asf_mode |= ASF_ENABLE;
 2572                         sc->bge_asf_mode |= ASF_STACKUP;
 2573                         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
 2574                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
 2575                         }
 2576                 }
 2577         }
 2578 
 2579         /* Try to reset the chip again the nice way. */
 2580         bge_stop_fw(sc);
 2581         bge_sig_pre_reset(sc, BGE_RESET_STOP);
 2582         if (bge_reset(sc)) {
 2583                 device_printf(sc->bge_dev, "chip reset failed\n");
 2584                 error = ENXIO;
 2585                 goto fail;
 2586         }
 2587 
 2588         bge_sig_legacy(sc, BGE_RESET_STOP);
 2589         bge_sig_post_reset(sc, BGE_RESET_STOP);
 2590 
 2591         if (bge_chipinit(sc)) {
 2592                 device_printf(sc->bge_dev, "chip initialization failed\n");
 2593                 error = ENXIO;
 2594                 goto fail;
 2595         }
 2596 
 2597         error = bge_get_eaddr(sc, eaddr);
 2598         if (error) {
 2599                 device_printf(sc->bge_dev,
 2600                     "failed to read station address\n");
 2601                 error = ENXIO;
 2602                 goto fail;
 2603         }
 2604 
 2605         /* 5705 limits RX return ring to 512 entries. */
 2606         if (BGE_IS_5705_PLUS(sc))
 2607                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
 2608         else
 2609                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 2610 
 2611         if (bge_dma_alloc(dev)) {
 2612                 device_printf(sc->bge_dev,
 2613                     "failed to allocate DMA resources\n");
 2614                 error = ENXIO;
 2615                 goto fail;
 2616         }
 2617 
 2618         /* Set default tuneable values. */
 2619         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
 2620         sc->bge_rx_coal_ticks = 150;
 2621         sc->bge_tx_coal_ticks = 150;
 2622         sc->bge_rx_max_coal_bds = 10;
 2623         sc->bge_tx_max_coal_bds = 10;
 2624 
 2625         /* Set up ifnet structure */
 2626         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
 2627         if (ifp == NULL) {
 2628                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
 2629                 error = ENXIO;
 2630                 goto fail;
 2631         }
 2632         ifp->if_softc = sc;
 2633         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2634         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2635         ifp->if_ioctl = bge_ioctl;
 2636         ifp->if_start = bge_start;
 2637         ifp->if_init = bge_init;
 2638         ifp->if_mtu = ETHERMTU;
 2639         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
 2640         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 2641         IFQ_SET_READY(&ifp->if_snd);
 2642         ifp->if_hwassist = BGE_CSUM_FEATURES;
 2643         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
 2644             IFCAP_VLAN_MTU;
 2645 #ifdef IFCAP_VLAN_HWCSUM
 2646         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
 2647 #endif
 2648         ifp->if_capenable = ifp->if_capabilities;
 2649 #ifdef DEVICE_POLLING
 2650         ifp->if_capabilities |= IFCAP_POLLING;
 2651 #endif
 2652 
 2653         /*
 2654          * 5700 B0 chips do not support checksumming correctly due
 2655          * to hardware bugs.
 2656          */
 2657         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
 2658                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
 2659                 ifp->if_capenable &= IFCAP_HWCSUM;
 2660                 ifp->if_hwassist = 0;
 2661         }
 2662 
 2663         /*
 2664          * Figure out what sort of media we have by checking the
 2665          * hardware config word in the first 32k of NIC internal memory,
 2666          * or fall back to examining the EEPROM if necessary.
 2667          * Note: on some BCM5700 cards, this value appears to be unset.
 2668          * If that's the case, we have to rely on identifying the NIC
 2669          * by its PCI subsystem ID, as we do below for the SysKonnect
 2670          * SK-9D41.
 2671          */
 2672         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
 2673                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
 2674         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
 2675             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 2676                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
 2677                     sizeof(hwcfg))) {
 2678                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
 2679                         error = ENXIO;
 2680                         goto fail;
 2681                 }
 2682                 hwcfg = ntohl(hwcfg);
 2683         }
 2684 
 2685         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
 2686                 sc->bge_flags |= BGE_FLAG_TBI;
 2687 
 2688         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
 2689         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
 2690                 sc->bge_flags |= BGE_FLAG_TBI;
 2691 
 2692         if (sc->bge_flags & BGE_FLAG_TBI) {
 2693                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
 2694                     bge_ifmedia_sts);
 2695                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
 2696                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
 2697                     0, NULL);
 2698                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 2699                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
 2700                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
 2701         } else {
 2702                 /*
 2703                  * Do transceiver setup and tell the firmware the
 2704                  * driver is down so we can try to get access the
 2705                  * probe if ASF is running.  Retry a couple of times
 2706                  * if we get a conflict with the ASF firmware accessing
 2707                  * the PHY.
 2708                  */
 2709                 trys = 0;
 2710                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2711 again:
 2712                 bge_asf_driver_up(sc);
 2713 
 2714                 if (mii_phy_probe(dev, &sc->bge_miibus,
 2715                     bge_ifmedia_upd, bge_ifmedia_sts)) {
 2716                         if (trys++ < 4) {
 2717                                 device_printf(sc->bge_dev, "Try again\n");
 2718                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
 2719                                     BMCR_RESET);
 2720                                 goto again;
 2721                         }
 2722 
 2723                         device_printf(sc->bge_dev, "MII without any PHY!\n");
 2724                         error = ENXIO;
 2725                         goto fail;
 2726                 }
 2727 
 2728                 /*
 2729                  * Now tell the firmware we are going up after probing the PHY
 2730                  */
 2731                 if (sc->bge_asf_mode & ASF_STACKUP)
 2732                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 2733         }
 2734 
 2735         /*
 2736          * When using the BCM5701 in PCI-X mode, data corruption has
 2737          * been observed in the first few bytes of some received packets.
 2738          * Aligning the packet buffer in memory eliminates the corruption.
 2739          * Unfortunately, this misaligns the packet payloads.  On platforms
 2740          * which do not support unaligned accesses, we will realign the
 2741          * payloads by copying the received packets.
 2742          */
 2743         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 2744             sc->bge_flags & BGE_FLAG_PCIX)
 2745                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
 2746 
 2747         /*
 2748          * Call MI attach routine.
 2749          */
 2750         ether_ifattach(ifp, eaddr);
 2751         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
 2752 
 2753         /*
 2754          * Hookup IRQ last.
 2755          */
 2756 #if __FreeBSD_version > 700030
 2757         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2758            NULL, bge_intr, sc, &sc->bge_intrhand);
 2759 #else
 2760         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2761            bge_intr, sc, &sc->bge_intrhand);
 2762 #endif
 2763 
 2764         if (error) {
 2765                 bge_detach(dev);
 2766                 device_printf(sc->bge_dev, "couldn't set up irq\n");
 2767         }
 2768 
 2769         bge_add_sysctls(sc);
 2770 
 2771         return (0);
 2772 
 2773 fail:
 2774         bge_release_resources(sc);
 2775 
 2776         return (error);
 2777 }
 2778 
 2779 static int
 2780 bge_detach(device_t dev)
 2781 {
 2782         struct bge_softc *sc;
 2783         struct ifnet *ifp;
 2784 
 2785         sc = device_get_softc(dev);
 2786         ifp = sc->bge_ifp;
 2787 
 2788 #ifdef DEVICE_POLLING
 2789         if (ifp->if_capenable & IFCAP_POLLING)
 2790                 ether_poll_deregister(ifp);
 2791 #endif
 2792 
 2793         BGE_LOCK(sc);
 2794         bge_stop(sc);
 2795         bge_reset(sc);
 2796         BGE_UNLOCK(sc);
 2797 
 2798         callout_drain(&sc->bge_stat_ch);
 2799 
 2800         ether_ifdetach(ifp);
 2801 
 2802         if (sc->bge_flags & BGE_FLAG_TBI) {
 2803                 ifmedia_removeall(&sc->bge_ifmedia);
 2804         } else {
 2805                 bus_generic_detach(dev);
 2806                 device_delete_child(dev, sc->bge_miibus);
 2807         }
 2808 
 2809         bge_release_resources(sc);
 2810 
 2811         return (0);
 2812 }
 2813 
 2814 static void
 2815 bge_release_resources(struct bge_softc *sc)
 2816 {
 2817         device_t dev;
 2818 
 2819         dev = sc->bge_dev;
 2820 
 2821         if (sc->bge_intrhand != NULL)
 2822                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
 2823 
 2824         if (sc->bge_irq != NULL)
 2825                 bus_release_resource(dev, SYS_RES_IRQ,
 2826                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
 2827 
 2828 #if __FreeBSD_version > 602105
 2829         if (sc->bge_flags & BGE_FLAG_MSI)
 2830                 pci_release_msi(dev);
 2831 #endif
 2832 
 2833         if (sc->bge_res != NULL)
 2834                 bus_release_resource(dev, SYS_RES_MEMORY,
 2835                     BGE_PCI_BAR0, sc->bge_res);
 2836 
 2837         if (sc->bge_ifp != NULL)
 2838                 if_free(sc->bge_ifp);
 2839 
 2840         bge_dma_free(sc);
 2841 
 2842         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
 2843                 BGE_LOCK_DESTROY(sc);
 2844 }
 2845 
 2846 static int
 2847 bge_reset(struct bge_softc *sc)
 2848 {
 2849         device_t dev;
 2850         uint32_t cachesize, command, pcistate, reset, val;
 2851         void (*write_op)(struct bge_softc *, int, int);
 2852         int i;
 2853 
 2854         dev = sc->bge_dev;
 2855 
 2856         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
 2857             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 2858                 if (sc->bge_flags & BGE_FLAG_PCIE)
 2859                         write_op = bge_writemem_direct;
 2860                 else
 2861                         write_op = bge_writemem_ind;
 2862         } else
 2863                 write_op = bge_writereg_ind;
 2864 
 2865         /* Save some important PCI state. */
 2866         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
 2867         command = pci_read_config(dev, BGE_PCI_CMD, 4);
 2868         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
 2869 
 2870         pci_write_config(dev, BGE_PCI_MISC_CTL,
 2871             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 2872             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 2873 
 2874         /* Disable fastboot on controllers that support it. */
 2875         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
 2876             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2877             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 2878                 if (bootverbose)
 2879                         device_printf(sc->bge_dev, "Disabling fastboot\n");
 2880                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
 2881         }
 2882 
 2883         /*
 2884          * Write the magic number to SRAM at offset 0xB50.
 2885          * When firmware finishes its initialization it will
 2886          * write ~BGE_MAGIC_NUMBER to the same location.
 2887          */
 2888         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
 2889 
 2890         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
 2891 
 2892         /* XXX: Broadcom Linux driver. */
 2893         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2894                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
 2895                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
 2896                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 2897                         /* Prevent PCIE link training during global reset */
 2898                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
 2899                         reset |= 1 << 29;
 2900                 }
 2901         }
 2902 
 2903         /* 
 2904          * Set GPHY Power Down Override to leave GPHY
 2905          * powered up in D0 uninitialized.
 2906          */
 2907         if (BGE_IS_5705_PLUS(sc))
 2908                 reset |= 0x04000000;
 2909 
 2910         /* Issue global reset */
 2911         write_op(sc, BGE_MISC_CFG, reset);
 2912 
 2913         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 2914                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 2915                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
 2916                     val | BGE_VCPU_STATUS_DRV_RESET);
 2917                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
 2918                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
 2919                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
 2920         }
 2921 
 2922         DELAY(1000);
 2923 
 2924         /* XXX: Broadcom Linux driver. */
 2925         if (sc->bge_flags & BGE_FLAG_PCIE) {
 2926                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
 2927                         DELAY(500000); /* wait for link training to complete */
 2928                         val = pci_read_config(dev, 0xC4, 4);
 2929                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
 2930                 }
 2931                 /*
 2932                  * Set PCIE max payload size to 128 bytes and clear error
 2933                  * status.
 2934                  */
 2935                 pci_write_config(dev, 0xD8, 0xF5000, 4);
 2936         }
 2937 
 2938         /* Reset some of the PCI state that got zapped by reset. */
 2939         pci_write_config(dev, BGE_PCI_MISC_CTL,
 2940             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 2941             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 2942         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
 2943         pci_write_config(dev, BGE_PCI_CMD, command, 4);
 2944         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 2945 
 2946         /* Re-enable MSI, if neccesary, and enable the memory arbiter. */
 2947         if (BGE_IS_5714_FAMILY(sc)) {
 2948                 /* This chip disables MSI on reset. */
 2949                 if (sc->bge_flags & BGE_FLAG_MSI) {
 2950                         val = pci_read_config(dev, BGE_PCI_MSI_CTL, 2);
 2951                         pci_write_config(dev, BGE_PCI_MSI_CTL,
 2952                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
 2953                         val = CSR_READ_4(sc, BGE_MSI_MODE);
 2954                         CSR_WRITE_4(sc, BGE_MSI_MODE,
 2955                             val | BGE_MSIMODE_ENABLE);
 2956                 }
 2957                 val = CSR_READ_4(sc, BGE_MARB_MODE);
 2958                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
 2959         } else
 2960                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 2961 
 2962         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 2963                 for (i = 0; i < BGE_TIMEOUT; i++) {
 2964                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 2965                         if (val & BGE_VCPU_STATUS_INIT_DONE)
 2966                                 break;
 2967                         DELAY(100);
 2968                 }
 2969                 if (i == BGE_TIMEOUT) {
 2970                         device_printf(sc->bge_dev, "reset timed out\n");
 2971                         return (1);
 2972                 }
 2973         } else {
 2974                 /*
 2975                  * Poll until we see the 1's complement of the magic number.
 2976                  * This indicates that the firmware initialization is complete.
 2977                  * We expect this to fail if no chip containing the Ethernet
 2978                  * address is fitted though.
 2979                  */
 2980                 for (i = 0; i < BGE_TIMEOUT; i++) {
 2981                         DELAY(10);
 2982                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
 2983                         if (val == ~BGE_MAGIC_NUMBER)
 2984                                 break;
 2985                 }
 2986 
 2987                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
 2988                         device_printf(sc->bge_dev, "firmware handshake timed out, "
 2989                             "found 0x%08x\n", val);
 2990         }
 2991 
 2992         /*
 2993          * XXX Wait for the value of the PCISTATE register to
 2994          * return to its original pre-reset state. This is a
 2995          * fairly good indicator of reset completion. If we don't
 2996          * wait for the reset to fully complete, trying to read
 2997          * from the device's non-PCI registers may yield garbage
 2998          * results.
 2999          */
 3000         for (i = 0; i < BGE_TIMEOUT; i++) {
 3001                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
 3002                         break;
 3003                 DELAY(10);
 3004         }
 3005 
 3006         if (sc->bge_flags & BGE_FLAG_PCIE) {
 3007                 reset = bge_readmem_ind(sc, 0x7C00);
 3008                 bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
 3009         }
 3010 
 3011         /* Fix up byte swapping. */
 3012         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
 3013             BGE_MODECTL_BYTESWAP_DATA);
 3014 
 3015         /* Tell the ASF firmware we are up */
 3016         if (sc->bge_asf_mode & ASF_STACKUP)
 3017                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3018 
 3019         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
 3020 
 3021         /*
 3022          * The 5704 in TBI mode apparently needs some special
 3023          * adjustment to insure the SERDES drive level is set
 3024          * to 1.2V.
 3025          */
 3026         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
 3027             sc->bge_flags & BGE_FLAG_TBI) {
 3028                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
 3029                 val = (val & ~0xFFF) | 0x880;
 3030                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
 3031         }
 3032 
 3033         /* XXX: Broadcom Linux driver. */
 3034         if (sc->bge_flags & BGE_FLAG_PCIE &&
 3035             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 3036                 val = CSR_READ_4(sc, 0x7C00);
 3037                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
 3038         }
 3039         DELAY(10000);
 3040 
 3041         return(0);
 3042 }
 3043 
 3044 /*
 3045  * Frame reception handling. This is called if there's a frame
 3046  * on the receive return list.
 3047  *
 3048  * Note: we have to be able to handle two possibilities here:
 3049  * 1) the frame is from the jumbo receive ring
 3050  * 2) the frame is from the standard receive ring
 3051  */
 3052 
 3053 static int
 3054 bge_rxeof(struct bge_softc *sc)
 3055 {
 3056         struct ifnet *ifp;
 3057         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
 3058         uint16_t rx_prod, rx_cons;
 3059 
 3060         BGE_LOCK_ASSERT(sc);
 3061         rx_cons = sc->bge_rx_saved_considx;
 3062         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 3063 
 3064         /* Nothing to do. */
 3065         if (rx_cons == rx_prod)
 3066                 return (rx_npkts);
 3067 
 3068         ifp = sc->bge_ifp;
 3069 
 3070         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 3071             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 3072         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 3073             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
 3074         if (BGE_IS_JUMBO_CAPABLE(sc))
 3075                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 3076                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTREAD);
 3077 
 3078         while (rx_cons != rx_prod) {
 3079                 struct bge_rx_bd        *cur_rx;
 3080                 uint32_t                rxidx;
 3081                 struct mbuf             *m = NULL;
 3082                 uint16_t                vlan_tag = 0;
 3083                 int                     have_tag = 0;
 3084 
 3085 #ifdef DEVICE_POLLING
 3086                 if (ifp->if_capenable & IFCAP_POLLING) {
 3087                         if (sc->rxcycles <= 0)
 3088                                 break;
 3089                         sc->rxcycles--;
 3090                 }
 3091 #endif
 3092 
 3093                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
 3094 
 3095                 rxidx = cur_rx->bge_idx;
 3096                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
 3097 
 3098                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
 3099                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
 3100                         have_tag = 1;
 3101                         vlan_tag = cur_rx->bge_vlan_tag;
 3102                 }
 3103 
 3104                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
 3105                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 3106                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 3107                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
 3108                             BUS_DMASYNC_POSTREAD);
 3109                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 3110                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
 3111                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
 3112                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
 3113                         jumbocnt++;
 3114                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 3115                                 ifp->if_ierrors++;
 3116                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
 3117                                 continue;
 3118                         }
 3119                         if (bge_newbuf_jumbo(sc,
 3120                             sc->bge_jumbo, NULL) == ENOBUFS) {
 3121                                 ifp->if_ierrors++;
 3122                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
 3123                                 continue;
 3124                         }
 3125                 } else {
 3126                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 3127                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 3128                             sc->bge_cdata.bge_rx_std_dmamap[rxidx],
 3129                             BUS_DMASYNC_POSTREAD);
 3130                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 3131                             sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
 3132                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
 3133                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
 3134                         stdcnt++;
 3135                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 3136                                 ifp->if_ierrors++;
 3137                                 bge_newbuf_std(sc, sc->bge_std, m);
 3138                                 continue;
 3139                         }
 3140                         if (bge_newbuf_std(sc, sc->bge_std,
 3141                             NULL) == ENOBUFS) {
 3142                                 ifp->if_ierrors++;
 3143                                 bge_newbuf_std(sc, sc->bge_std, m);
 3144                                 continue;
 3145                         }
 3146                 }
 3147 
 3148                 ifp->if_ipackets++;
 3149 #ifndef __NO_STRICT_ALIGNMENT
 3150                 /*
 3151                  * For architectures with strict alignment we must make sure
 3152                  * the payload is aligned.
 3153                  */
 3154                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
 3155                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
 3156                             cur_rx->bge_len);
 3157                         m->m_data += ETHER_ALIGN;
 3158                 }
 3159 #endif
 3160                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
 3161                 m->m_pkthdr.rcvif = ifp;
 3162 
 3163                 if (ifp->if_capenable & IFCAP_RXCSUM) {
 3164                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 3165                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 3166                                 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
 3167                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 3168                         }
 3169                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
 3170                             m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
 3171                                 m->m_pkthdr.csum_data =
 3172                                     cur_rx->bge_tcp_udp_csum;
 3173                                 m->m_pkthdr.csum_flags |=
 3174                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
 3175                         }
 3176                 }
 3177 
 3178                 /*
 3179                  * If we received a packet with a vlan tag,
 3180                  * attach that information to the packet.
 3181                  */
 3182                 if (have_tag) {
 3183 #if __FreeBSD_version > 700022
 3184                         m->m_pkthdr.ether_vtag = vlan_tag;
 3185                         m->m_flags |= M_VLANTAG;
 3186 #else
 3187                         VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
 3188                         if (m == NULL)
 3189                                 continue;
 3190 #endif
 3191                 }
 3192 
 3193                 BGE_UNLOCK(sc);
 3194                 (*ifp->if_input)(ifp, m);
 3195                 BGE_LOCK(sc);
 3196                 rx_npkts++;
 3197 
 3198                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
 3199                         return (rx_npkts);
 3200         }
 3201 
 3202         if (stdcnt > 0)
 3203                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 3204                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 3205 
 3206         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0)
 3207                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 3208                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 3209 
 3210         sc->bge_rx_saved_considx = rx_cons;
 3211         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
 3212         if (stdcnt)
 3213                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
 3214         if (jumbocnt)
 3215                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
 3216 #ifdef notyet
 3217         /*
 3218          * This register wraps very quickly under heavy packet drops.
 3219          * If you need correct statistics, you can enable this check.
 3220          */
 3221         if (BGE_IS_5705_PLUS(sc))
 3222                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 3223 #endif
 3224         return (rx_npkts);
 3225 }
 3226 
 3227 static void
 3228 bge_txeof(struct bge_softc *sc)
 3229 {
 3230         struct bge_tx_bd *cur_tx = NULL;
 3231         struct ifnet *ifp;
 3232 
 3233         BGE_LOCK_ASSERT(sc);
 3234 
 3235         /* Nothing to do. */
 3236         if (sc->bge_tx_saved_considx ==
 3237             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
 3238                 return;
 3239 
 3240         ifp = sc->bge_ifp;
 3241 
 3242         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 3243             sc->bge_cdata.bge_tx_ring_map,
 3244             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 3245         /*
 3246          * Go through our tx ring and free mbufs for those
 3247          * frames that have been sent.
 3248          */
 3249         while (sc->bge_tx_saved_considx !=
 3250             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
 3251                 uint32_t                idx = 0;
 3252 
 3253                 idx = sc->bge_tx_saved_considx;
 3254                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
 3255                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
 3256                         ifp->if_opackets++;
 3257                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
 3258                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
 3259                             sc->bge_cdata.bge_tx_dmamap[idx],
 3260                             BUS_DMASYNC_POSTWRITE);
 3261                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
 3262                             sc->bge_cdata.bge_tx_dmamap[idx]);
 3263                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
 3264                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
 3265                 }
 3266                 sc->bge_txcnt--;
 3267                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
 3268         }
 3269 
 3270         if (cur_tx != NULL)
 3271                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3272         if (sc->bge_txcnt == 0)
 3273                 sc->bge_timer = 0;
 3274 }
 3275 
 3276 #ifdef DEVICE_POLLING
 3277 static int
 3278 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3279 {
 3280         struct bge_softc *sc = ifp->if_softc;
 3281         uint32_t statusword;
 3282         int rx_npkts = 0;
 3283 
 3284         BGE_LOCK(sc);
 3285         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3286                 BGE_UNLOCK(sc);
 3287                 return (rx_npkts);
 3288         }
 3289 
 3290         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3291             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
 3292 
 3293         statusword = atomic_readandclear_32(
 3294             &sc->bge_ldata.bge_status_block->bge_status);
 3295 
 3296         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3297             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
 3298 
 3299         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
 3300         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
 3301                 sc->bge_link_evt++;
 3302 
 3303         if (cmd == POLL_AND_CHECK_STATUS)
 3304                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 3305                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 3306                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
 3307                         bge_link_upd(sc);
 3308 
 3309         sc->rxcycles = count;
 3310         rx_npkts = bge_rxeof(sc);
 3311         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3312                 BGE_UNLOCK(sc);
 3313                 return (rx_npkts);
 3314         }
 3315         bge_txeof(sc);
 3316         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3317                 bge_start_locked(ifp);
 3318 
 3319         BGE_UNLOCK(sc);
 3320         return (rx_npkts);
 3321 }
 3322 #endif /* DEVICE_POLLING */
 3323 
 3324 static void
 3325 bge_intr(void *xsc)
 3326 {
 3327         struct bge_softc *sc;
 3328         struct ifnet *ifp;
 3329         uint32_t statusword;
 3330 
 3331         sc = xsc;
 3332 
 3333         BGE_LOCK(sc);
 3334 
 3335         ifp = sc->bge_ifp;
 3336 
 3337 #ifdef DEVICE_POLLING
 3338         if (ifp->if_capenable & IFCAP_POLLING) {
 3339                 BGE_UNLOCK(sc);
 3340                 return;
 3341         }
 3342 #endif
 3343 
 3344         /*
 3345          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
 3346          * disable interrupts by writing nonzero like we used to, since with
 3347          * our current organization this just gives complications and
 3348          * pessimizations for re-enabling interrupts.  We used to have races
 3349          * instead of the necessary complications.  Disabling interrupts
 3350          * would just reduce the chance of a status update while we are
 3351          * running (by switching to the interrupt-mode coalescence
 3352          * parameters), but this chance is already very low so it is more
 3353          * efficient to get another interrupt than prevent it.
 3354          *
 3355          * We do the ack first to ensure another interrupt if there is a
 3356          * status update after the ack.  We don't check for the status
 3357          * changing later because it is more efficient to get another
 3358          * interrupt than prevent it, not quite as above (not checking is
 3359          * a smaller optimization than not toggling the interrupt enable,
 3360          * since checking doesn't involve PCI accesses and toggling require
 3361          * the status check).  So toggling would probably be a pessimization
 3362          * even with MSI.  It would only be needed for using a task queue.
 3363          */
 3364         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 3365 
 3366         /*
 3367          * Do the mandatory PCI flush as well as get the link status.
 3368          */
 3369         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
 3370 
 3371         /* Make sure the descriptor ring indexes are coherent. */
 3372         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3373             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
 3374         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 3375             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
 3376 
 3377         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 3378             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 3379             statusword || sc->bge_link_evt)
 3380                 bge_link_upd(sc);
 3381 
 3382         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3383                 /* Check RX return ring producer/consumer. */
 3384                 bge_rxeof(sc);
 3385         }
 3386 
 3387         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3388                 /* Check TX ring producer/consumer. */
 3389                 bge_txeof(sc);
 3390         }
 3391 
 3392         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 3393             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3394                 bge_start_locked(ifp);
 3395 
 3396         BGE_UNLOCK(sc);
 3397 }
 3398 
 3399 static void
 3400 bge_asf_driver_up(struct bge_softc *sc)
 3401 {
 3402         if (sc->bge_asf_mode & ASF_STACKUP) {
 3403                 /* Send ASF heartbeat aprox. every 2s */
 3404                 if (sc->bge_asf_count)
 3405                         sc->bge_asf_count --;
 3406                 else {
 3407                         sc->bge_asf_count = 5;
 3408                         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
 3409                             BGE_FW_DRV_ALIVE);
 3410                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
 3411                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
 3412                         CSR_WRITE_4(sc, BGE_CPU_EVENT,
 3413                             CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
 3414                 }
 3415         }
 3416 }
 3417 
 3418 static void
 3419 bge_tick(void *xsc)
 3420 {
 3421         struct bge_softc *sc = xsc;
 3422         struct mii_data *mii = NULL;
 3423 
 3424         BGE_LOCK_ASSERT(sc);
 3425 
 3426         /* Synchronize with possible callout reset/stop. */
 3427         if (callout_pending(&sc->bge_stat_ch) ||
 3428             !callout_active(&sc->bge_stat_ch))
 3429                 return;
 3430 
 3431         if (BGE_IS_5705_PLUS(sc))
 3432                 bge_stats_update_regs(sc);
 3433         else
 3434                 bge_stats_update(sc);
 3435 
 3436         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 3437                 mii = device_get_softc(sc->bge_miibus);
 3438                 /*
 3439                  * Do not touch PHY if we have link up. This could break
 3440                  * IPMI/ASF mode or produce extra input errors
 3441                  * (extra errors was reported for bcm5701 & bcm5704).
 3442                  */
 3443                 if (!sc->bge_link)
 3444                         mii_tick(mii);
 3445         } else {
 3446                 /*
 3447                  * Since in TBI mode auto-polling can't be used we should poll
 3448                  * link status manually. Here we register pending link event
 3449                  * and trigger interrupt.
 3450                  */
 3451 #ifdef DEVICE_POLLING
 3452                 /* In polling mode we poll link state in bge_poll(). */
 3453                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
 3454 #endif
 3455                 {
 3456                 sc->bge_link_evt++;
 3457                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 3458                     sc->bge_flags & BGE_FLAG_5788)
 3459                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 3460                 else
 3461                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 3462                 }
 3463         }
 3464 
 3465         bge_asf_driver_up(sc);
 3466         bge_watchdog(sc);
 3467 
 3468         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 3469 }
 3470 
 3471 static void
 3472 bge_stats_update_regs(struct bge_softc *sc)
 3473 {
 3474         struct ifnet *ifp;
 3475 
 3476         ifp = sc->bge_ifp;
 3477 
 3478         ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
 3479             offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
 3480 
 3481         ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 3482 }
 3483 
 3484 static void
 3485 bge_stats_update(struct bge_softc *sc)
 3486 {
 3487         struct ifnet *ifp;
 3488         bus_size_t stats;
 3489         uint32_t cnt;   /* current register value */
 3490 
 3491         ifp = sc->bge_ifp;
 3492 
 3493         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
 3494 
 3495 #define READ_STAT(sc, stats, stat) \
 3496         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
 3497 
 3498         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
 3499         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
 3500         sc->bge_tx_collisions = cnt;
 3501 
 3502         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
 3503         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
 3504         sc->bge_rx_discards = cnt;
 3505 
 3506         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
 3507         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
 3508         sc->bge_tx_discards = cnt;
 3509 
 3510 #undef  READ_STAT
 3511 }
 3512 
 3513 /*
 3514  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
 3515  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
 3516  * but when such padded frames employ the bge IP/TCP checksum offload,
 3517  * the hardware checksum assist gives incorrect results (possibly
 3518  * from incorporating its own padding into the UDP/TCP checksum; who knows).
 3519  * If we pad such runts with zeros, the onboard checksum comes out correct.
 3520  */
 3521 static __inline int
 3522 bge_cksum_pad(struct mbuf *m)
 3523 {
 3524         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
 3525         struct mbuf *last;
 3526 
 3527         /* If there's only the packet-header and we can pad there, use it. */
 3528         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
 3529             M_TRAILINGSPACE(m) >= padlen) {
 3530                 last = m;
 3531         } else {
 3532                 /*
 3533                  * Walk packet chain to find last mbuf. We will either
 3534                  * pad there, or append a new mbuf and pad it.
 3535                  */
 3536                 for (last = m; last->m_next != NULL; last = last->m_next);
 3537                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
 3538                         /* Allocate new empty mbuf, pad it. Compact later. */
 3539                         struct mbuf *n;
 3540 
 3541                         MGET(n, M_DONTWAIT, MT_DATA);
 3542                         if (n == NULL)
 3543                                 return (ENOBUFS);
 3544                         n->m_len = 0;
 3545                         last->m_next = n;
 3546                         last = n;
 3547                 }
 3548         }
 3549         
 3550         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
 3551         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
 3552         last->m_len += padlen;
 3553         m->m_pkthdr.len += padlen;
 3554 
 3555         return (0);
 3556 }
 3557 
 3558 /*
 3559  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
 3560  * pointers to descriptors.
 3561  */
 3562 static int
 3563 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
 3564 {
 3565         bus_dma_segment_t       segs[BGE_NSEG_NEW];
 3566         bus_dmamap_t            map;
 3567         struct bge_tx_bd        *d;
 3568         struct mbuf             *m = *m_head;
 3569         uint32_t                idx = *txidx;
 3570         uint16_t                csum_flags;
 3571         int                     nsegs, i, error;
 3572 
 3573         csum_flags = 0;
 3574         if (m->m_pkthdr.csum_flags) {
 3575                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 3576                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
 3577                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
 3578                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
 3579                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
 3580                             (error = bge_cksum_pad(m)) != 0) {
 3581                                 m_freem(m);
 3582                                 *m_head = NULL;
 3583                                 return (error);
 3584                         }
 3585                 }
 3586                 if (m->m_flags & M_LASTFRAG)
 3587                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
 3588                 else if (m->m_flags & M_FRAG)
 3589                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
 3590         }
 3591 
 3592         map = sc->bge_cdata.bge_tx_dmamap[idx];
 3593         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m, segs,
 3594             &nsegs, BUS_DMA_NOWAIT);
 3595         if (error == EFBIG) {
 3596                 m = m_collapse(m, M_DONTWAIT, BGE_NSEG_NEW);
 3597                 if (m == NULL) {
 3598                         m_freem(*m_head);
 3599                         *m_head = NULL;
 3600                         return (ENOBUFS);
 3601                 }
 3602                 *m_head = m;
 3603                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m,
 3604                     segs, &nsegs, BUS_DMA_NOWAIT);
 3605                 if (error) {
 3606                         m_freem(m);
 3607                         *m_head = NULL;
 3608                         return (error);
 3609                 }
 3610         } else if (error != 0)
 3611                 return (error);
 3612 
 3613         /*
 3614          * Sanity check: avoid coming within 16 descriptors
 3615          * of the end of the ring.
 3616          */
 3617         if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
 3618                 bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
 3619                 return (ENOBUFS);
 3620         }
 3621 
 3622         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
 3623 
 3624         for (i = 0; ; i++) {
 3625                 d = &sc->bge_ldata.bge_tx_ring[idx];
 3626                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 3627                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 3628                 d->bge_len = segs[i].ds_len;
 3629                 d->bge_flags = csum_flags;
 3630                 if (i == nsegs - 1)
 3631                         break;
 3632                 BGE_INC(idx, BGE_TX_RING_CNT);
 3633         }
 3634 
 3635         /* Mark the last segment as end of packet... */
 3636         d->bge_flags |= BGE_TXBDFLAG_END;
 3637 
 3638         /* ... and put VLAN tag into first segment.  */
 3639         d = &sc->bge_ldata.bge_tx_ring[*txidx];
 3640 #if __FreeBSD_version > 700022
 3641         if (m->m_flags & M_VLANTAG) {
 3642                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
 3643                 d->bge_vlan_tag = m->m_pkthdr.ether_vtag;
 3644         } else
 3645                 d->bge_vlan_tag = 0;
 3646 #else
 3647         {
 3648                 struct m_tag            *mtag;
 3649 
 3650                 if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
 3651                         d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
 3652                         d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
 3653                 } else
 3654                         d->bge_vlan_tag = 0;
 3655         }
 3656 #endif
 3657 
 3658         /*
 3659          * Insure that the map for this transmission
 3660          * is placed at the array index of the last descriptor
 3661          * in this chain.
 3662          */
 3663         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
 3664         sc->bge_cdata.bge_tx_dmamap[idx] = map;
 3665         sc->bge_cdata.bge_tx_chain[idx] = m;
 3666         sc->bge_txcnt += nsegs;
 3667 
 3668         BGE_INC(idx, BGE_TX_RING_CNT);
 3669         *txidx = idx;
 3670 
 3671         return (0);
 3672 }
 3673 
 3674 /*
 3675  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3676  * to the mbuf data regions directly in the transmit descriptors.
 3677  */
 3678 static void
 3679 bge_start_locked(struct ifnet *ifp)
 3680 {
 3681         struct bge_softc *sc;
 3682         struct mbuf *m_head = NULL;
 3683         uint32_t prodidx;
 3684         int count = 0;
 3685 
 3686         sc = ifp->if_softc;
 3687 
 3688         if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3689                 return;
 3690 
 3691         prodidx = sc->bge_tx_prodidx;
 3692 
 3693         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
 3694                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3695                 if (m_head == NULL)
 3696                         break;
 3697 
 3698                 /*
 3699                  * XXX
 3700                  * The code inside the if() block is never reached since we
 3701                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
 3702                  * requests to checksum TCP/UDP in a fragmented packet.
 3703                  *
 3704                  * XXX
 3705                  * safety overkill.  If this is a fragmented packet chain
 3706                  * with delayed TCP/UDP checksums, then only encapsulate
 3707                  * it if we have enough descriptors to handle the entire
 3708                  * chain at once.
 3709                  * (paranoia -- may not actually be needed)
 3710                  */
 3711                 if (m_head->m_flags & M_FIRSTFRAG &&
 3712                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
 3713                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
 3714                             m_head->m_pkthdr.csum_data + 16) {
 3715                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3716                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3717                                 break;
 3718                         }
 3719                 }
 3720 
 3721                 /*
 3722                  * Pack the data into the transmit ring. If we
 3723                  * don't have room, set the OACTIVE flag and wait
 3724                  * for the NIC to drain the ring.
 3725                  */
 3726                 if (bge_encap(sc, &m_head, &prodidx)) {
 3727                         if (m_head == NULL)
 3728                                 break;
 3729                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3730                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3731                         break;
 3732                 }
 3733                 ++count;
 3734 
 3735                 /*
 3736                  * If there's a BPF listener, bounce a copy of this frame
 3737                  * to him.
 3738                  */
 3739 #ifdef ETHER_BPF_MTAP
 3740                 ETHER_BPF_MTAP(ifp, m_head);
 3741 #else
 3742                 BPF_MTAP(ifp, m_head);
 3743 #endif
 3744         }
 3745 
 3746         if (count == 0)
 3747                 /* No packets were dequeued. */
 3748                 return;
 3749 
 3750         /* Transmit. */
 3751         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 3752         /* 5700 b2 errata */
 3753         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 3754                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 3755 
 3756         sc->bge_tx_prodidx = prodidx;
 3757 
 3758         /*
 3759          * Set a timeout in case the chip goes out to lunch.
 3760          */
 3761         sc->bge_timer = 5;
 3762 }
 3763 
 3764 /*
 3765  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 3766  * to the mbuf data regions directly in the transmit descriptors.
 3767  */
 3768 static void
 3769 bge_start(struct ifnet *ifp)
 3770 {
 3771         struct bge_softc *sc;
 3772 
 3773         sc = ifp->if_softc;
 3774         BGE_LOCK(sc);
 3775         bge_start_locked(ifp);
 3776         BGE_UNLOCK(sc);
 3777 }
 3778 
 3779 static void
 3780 bge_init_locked(struct bge_softc *sc)
 3781 {
 3782         struct ifnet *ifp;
 3783         uint16_t *m;
 3784 
 3785         BGE_LOCK_ASSERT(sc);
 3786 
 3787         ifp = sc->bge_ifp;
 3788 
 3789         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3790                 return;
 3791 
 3792         /* Cancel pending I/O and flush buffers. */
 3793         bge_stop(sc);
 3794 
 3795         bge_stop_fw(sc);
 3796         bge_sig_pre_reset(sc, BGE_RESET_START);
 3797         bge_reset(sc);
 3798         bge_sig_legacy(sc, BGE_RESET_START);
 3799         bge_sig_post_reset(sc, BGE_RESET_START);
 3800 
 3801         bge_chipinit(sc);
 3802 
 3803         /*
 3804          * Init the various state machines, ring
 3805          * control blocks and firmware.
 3806          */
 3807         if (bge_blockinit(sc)) {
 3808                 device_printf(sc->bge_dev, "initialization failure\n");
 3809                 return;
 3810         }
 3811 
 3812         ifp = sc->bge_ifp;
 3813 
 3814         /* Specify MTU. */
 3815         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
 3816             ETHER_HDR_LEN + ETHER_CRC_LEN +
 3817             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
 3818 
 3819         /* Load our MAC address. */
 3820         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
 3821         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
 3822         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
 3823 
 3824         /* Program promiscuous mode. */
 3825         bge_setpromisc(sc);
 3826 
 3827         /* Program multicast filter. */
 3828         bge_setmulti(sc);
 3829 
 3830         /* Program VLAN tag stripping. */
 3831         bge_setvlan(sc);
 3832 
 3833         /* Init RX ring. */
 3834         bge_init_rx_ring_std(sc);
 3835 
 3836         /*
 3837          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
 3838          * memory to insure that the chip has in fact read the first
 3839          * entry of the ring.
 3840          */
 3841         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
 3842                 uint32_t                v, i;
 3843                 for (i = 0; i < 10; i++) {
 3844                         DELAY(20);
 3845                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
 3846                         if (v == (MCLBYTES - ETHER_ALIGN))
 3847                                 break;
 3848                 }
 3849                 if (i == 10)
 3850                         device_printf (sc->bge_dev,
 3851                             "5705 A0 chip failed to load RX ring\n");
 3852         }
 3853 
 3854         /* Init jumbo RX ring. */
 3855         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
 3856                 bge_init_rx_ring_jumbo(sc);
 3857 
 3858         /* Init our RX return ring index. */
 3859         sc->bge_rx_saved_considx = 0;
 3860 
 3861         /* Init our RX/TX stat counters. */
 3862         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
 3863 
 3864         /* Init TX ring. */
 3865         bge_init_tx_ring(sc);
 3866 
 3867         /* Turn on transmitter. */
 3868         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
 3869 
 3870         /* Turn on receiver. */
 3871         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 3872 
 3873         /* Tell firmware we're alive. */
 3874         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3875 
 3876 #ifdef DEVICE_POLLING
 3877         /* Disable interrupts if we are polling. */
 3878         if (ifp->if_capenable & IFCAP_POLLING) {
 3879                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 3880                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 3881                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 3882         } else
 3883 #endif
 3884 
 3885         /* Enable host interrupts. */
 3886         {
 3887         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
 3888         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 3889         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 3890         }
 3891         
 3892         bge_ifmedia_upd_locked(ifp);
 3893 
 3894         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3895         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3896 
 3897         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 3898 }
 3899 
 3900 static void
 3901 bge_init(void *xsc)
 3902 {
 3903         struct bge_softc *sc = xsc;
 3904 
 3905         BGE_LOCK(sc);
 3906         bge_init_locked(sc);
 3907         BGE_UNLOCK(sc);
 3908 }
 3909 
 3910 /*
 3911  * Set media options.
 3912  */
 3913 static int
 3914 bge_ifmedia_upd(struct ifnet *ifp)
 3915 {
 3916         struct bge_softc *sc = ifp->if_softc;
 3917         int res;
 3918 
 3919         BGE_LOCK(sc);
 3920         res = bge_ifmedia_upd_locked(ifp);
 3921         BGE_UNLOCK(sc);
 3922 
 3923         return (res);
 3924 }
 3925 
 3926 static int
 3927 bge_ifmedia_upd_locked(struct ifnet *ifp)
 3928 {
 3929         struct bge_softc *sc = ifp->if_softc;
 3930         struct mii_data *mii;
 3931         struct mii_softc *miisc;
 3932         struct ifmedia *ifm;
 3933 
 3934         BGE_LOCK_ASSERT(sc);
 3935 
 3936         ifm = &sc->bge_ifmedia;
 3937 
 3938         /* If this is a 1000baseX NIC, enable the TBI port. */
 3939         if (sc->bge_flags & BGE_FLAG_TBI) {
 3940                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 3941                         return (EINVAL);
 3942                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
 3943                 case IFM_AUTO:
 3944                         /*
 3945                          * The BCM5704 ASIC appears to have a special
 3946                          * mechanism for programming the autoneg
 3947                          * advertisement registers in TBI mode.
 3948                          */
 3949                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 3950                                 uint32_t sgdig;
 3951                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
 3952                                 if (sgdig & BGE_SGDIGSTS_DONE) {
 3953                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
 3954                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
 3955                                         sgdig |= BGE_SGDIGCFG_AUTO |
 3956                                             BGE_SGDIGCFG_PAUSE_CAP |
 3957                                             BGE_SGDIGCFG_ASYM_PAUSE;
 3958                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
 3959                                             sgdig | BGE_SGDIGCFG_SEND);
 3960                                         DELAY(5);
 3961                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
 3962                                 }
 3963                         }
 3964                         break;
 3965                 case IFM_1000_SX:
 3966                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 3967                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
 3968                                     BGE_MACMODE_HALF_DUPLEX);
 3969                         } else {
 3970                                 BGE_SETBIT(sc, BGE_MAC_MODE,
 3971                                     BGE_MACMODE_HALF_DUPLEX);
 3972                         }
 3973                         break;
 3974                 default:
 3975                         return (EINVAL);
 3976                 }
 3977                 return (0);
 3978         }
 3979 
 3980         sc->bge_link_evt++;
 3981         mii = device_get_softc(sc->bge_miibus);
 3982         if (mii->mii_instance)
 3983                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 3984                         mii_phy_reset(miisc);
 3985         mii_mediachg(mii);
 3986 
 3987         /*
 3988          * Force an interrupt so that we will call bge_link_upd
 3989          * if needed and clear any pending link state attention.
 3990          * Without this we are not getting any further interrupts
 3991          * for link state changes and thus will not UP the link and
 3992          * not be able to send in bge_start_locked. The only
 3993          * way to get things working was to receive a packet and
 3994          * get an RX intr.
 3995          * bge_tick should help for fiber cards and we might not
 3996          * need to do this here if BGE_FLAG_TBI is set but as
 3997          * we poll for fiber anyway it should not harm.
 3998          */
 3999         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 4000             sc->bge_flags & BGE_FLAG_5788)
 4001                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 4002         else
 4003                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 4004 
 4005         return (0);
 4006 }
 4007 
 4008 /*
 4009  * Report current media status.
 4010  */
 4011 static void
 4012 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 4013 {
 4014         struct bge_softc *sc = ifp->if_softc;
 4015         struct mii_data *mii;
 4016 
 4017         BGE_LOCK(sc);
 4018 
 4019         if (sc->bge_flags & BGE_FLAG_TBI) {
 4020                 ifmr->ifm_status = IFM_AVALID;
 4021                 ifmr->ifm_active = IFM_ETHER;
 4022                 if (CSR_READ_4(sc, BGE_MAC_STS) &
 4023                     BGE_MACSTAT_TBI_PCS_SYNCHED)
 4024                         ifmr->ifm_status |= IFM_ACTIVE;
 4025                 else {
 4026                         ifmr->ifm_active |= IFM_NONE;
 4027                         BGE_UNLOCK(sc);
 4028                         return;
 4029                 }
 4030                 ifmr->ifm_active |= IFM_1000_SX;
 4031                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
 4032                         ifmr->ifm_active |= IFM_HDX;
 4033                 else
 4034                         ifmr->ifm_active |= IFM_FDX;
 4035                 BGE_UNLOCK(sc);
 4036                 return;
 4037         }
 4038 
 4039         mii = device_get_softc(sc->bge_miibus);
 4040         mii_pollstat(mii);
 4041         ifmr->ifm_active = mii->mii_media_active;
 4042         ifmr->ifm_status = mii->mii_media_status;
 4043 
 4044         BGE_UNLOCK(sc);
 4045 }
 4046 
 4047 static int
 4048 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 4049 {
 4050         struct bge_softc *sc = ifp->if_softc;
 4051         struct ifreq *ifr = (struct ifreq *) data;
 4052         struct mii_data *mii;
 4053         int flags, mask, error = 0;
 4054 
 4055         switch (command) {
 4056         case SIOCSIFMTU:
 4057                 if (ifr->ifr_mtu < ETHERMIN ||
 4058                     ((BGE_IS_JUMBO_CAPABLE(sc)) &&
 4059                     ifr->ifr_mtu > BGE_JUMBO_MTU) ||
 4060                     ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
 4061                     ifr->ifr_mtu > ETHERMTU))
 4062                         error = EINVAL;
 4063                 else if (ifp->if_mtu != ifr->ifr_mtu) {
 4064                         ifp->if_mtu = ifr->ifr_mtu;
 4065                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 4066                         bge_init(sc);
 4067                 }
 4068                 break;
 4069         case SIOCSIFFLAGS:
 4070                 BGE_LOCK(sc);
 4071                 if (ifp->if_flags & IFF_UP) {
 4072                         /*
 4073                          * If only the state of the PROMISC flag changed,
 4074                          * then just use the 'set promisc mode' command
 4075                          * instead of reinitializing the entire NIC. Doing
 4076                          * a full re-init means reloading the firmware and
 4077                          * waiting for it to start up, which may take a
 4078                          * second or two.  Similarly for ALLMULTI.
 4079                          */
 4080                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4081                                 flags = ifp->if_flags ^ sc->bge_if_flags;
 4082                                 if (flags & IFF_PROMISC)
 4083                                         bge_setpromisc(sc);
 4084                                 if (flags & IFF_ALLMULTI)
 4085                                         bge_setmulti(sc);
 4086                         } else
 4087                                 bge_init_locked(sc);
 4088                 } else {
 4089                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4090                                 bge_stop(sc);
 4091                         }
 4092                 }
 4093                 sc->bge_if_flags = ifp->if_flags;
 4094                 BGE_UNLOCK(sc);
 4095                 error = 0;
 4096                 break;
 4097         case SIOCADDMULTI:
 4098         case SIOCDELMULTI:
 4099                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4100                         BGE_LOCK(sc);
 4101                         bge_setmulti(sc);
 4102                         BGE_UNLOCK(sc);
 4103                         error = 0;
 4104                 }
 4105                 break;
 4106         case SIOCSIFMEDIA:
 4107         case SIOCGIFMEDIA:
 4108                 if (sc->bge_flags & BGE_FLAG_TBI) {
 4109                         error = ifmedia_ioctl(ifp, ifr,
 4110                             &sc->bge_ifmedia, command);
 4111                 } else {
 4112                         mii = device_get_softc(sc->bge_miibus);
 4113                         error = ifmedia_ioctl(ifp, ifr,
 4114                             &mii->mii_media, command);
 4115                 }
 4116                 break;
 4117         case SIOCSIFCAP:
 4118                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 4119 #ifdef DEVICE_POLLING
 4120                 if (mask & IFCAP_POLLING) {
 4121                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 4122                                 error = ether_poll_register(bge_poll, ifp);
 4123                                 if (error)
 4124                                         return (error);
 4125                                 BGE_LOCK(sc);
 4126                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 4127                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 4128                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 4129                                 ifp->if_capenable |= IFCAP_POLLING;
 4130                                 BGE_UNLOCK(sc);
 4131                         } else {
 4132                                 error = ether_poll_deregister(ifp);
 4133                                 /* Enable interrupt even in error case */
 4134                                 BGE_LOCK(sc);
 4135                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
 4136                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 4137                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 4138                                 ifp->if_capenable &= ~IFCAP_POLLING;
 4139                                 BGE_UNLOCK(sc);
 4140                         }
 4141                 }
 4142 #endif
 4143                 if (mask & IFCAP_HWCSUM) {
 4144                         ifp->if_capenable ^= IFCAP_HWCSUM;
 4145                         if (IFCAP_HWCSUM & ifp->if_capenable &&
 4146                             IFCAP_HWCSUM & ifp->if_capabilities)
 4147                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
 4148                         else
 4149                                 ifp->if_hwassist = 0;
 4150 #ifdef VLAN_CAPABILITIES
 4151                         VLAN_CAPABILITIES(ifp);
 4152 #endif
 4153                 }
 4154 
 4155                 if (mask & IFCAP_VLAN_MTU) {
 4156                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
 4157                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 4158                         bge_init(sc);
 4159                 }
 4160 
 4161                 if (mask & IFCAP_VLAN_HWTAGGING) {
 4162                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 4163                         BGE_LOCK(sc);
 4164                         bge_setvlan(sc);
 4165                         BGE_UNLOCK(sc);
 4166 #ifdef VLAN_CAPABILITIES
 4167                         VLAN_CAPABILITIES(ifp);
 4168 #endif
 4169                 }
 4170 
 4171                 break;
 4172         default:
 4173                 error = ether_ioctl(ifp, command, data);
 4174                 break;
 4175         }
 4176 
 4177         return (error);
 4178 }
 4179 
 4180 static void
 4181 bge_watchdog(struct bge_softc *sc)
 4182 {
 4183         struct ifnet *ifp;
 4184 
 4185         BGE_LOCK_ASSERT(sc);
 4186 
 4187         if (sc->bge_timer == 0 || --sc->bge_timer)
 4188                 return;
 4189 
 4190         ifp = sc->bge_ifp;
 4191 
 4192         if_printf(ifp, "watchdog timeout -- resetting\n");
 4193 
 4194         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 4195         bge_init_locked(sc);
 4196 
 4197         ifp->if_oerrors++;
 4198 }
 4199 
 4200 /*
 4201  * Stop the adapter and free any mbufs allocated to the
 4202  * RX and TX lists.
 4203  */
 4204 static void
 4205 bge_stop(struct bge_softc *sc)
 4206 {
 4207         struct ifnet *ifp;
 4208         struct ifmedia_entry *ifm;
 4209         struct mii_data *mii = NULL;
 4210         int mtmp, itmp;
 4211 
 4212         BGE_LOCK_ASSERT(sc);
 4213 
 4214         ifp = sc->bge_ifp;
 4215 
 4216         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
 4217                 mii = device_get_softc(sc->bge_miibus);
 4218 
 4219         callout_stop(&sc->bge_stat_ch);
 4220 
 4221         /*
 4222          * Disable all of the receiver blocks.
 4223          */
 4224         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 4225         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 4226         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 4227         if (!(BGE_IS_5705_PLUS(sc)))
 4228                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 4229         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
 4230         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 4231         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
 4232 
 4233         /*
 4234          * Disable all of the transmit blocks.
 4235          */
 4236         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 4237         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 4238         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 4239         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
 4240         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 4241         if (!(BGE_IS_5705_PLUS(sc)))
 4242                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 4243         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 4244 
 4245         /*
 4246          * Shut down all of the memory managers and related
 4247          * state machines.
 4248          */
 4249         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 4250         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
 4251         if (!(BGE_IS_5705_PLUS(sc)))
 4252                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 4253         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 4254         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 4255         if (!(BGE_IS_5705_PLUS(sc))) {
 4256                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
 4257                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 4258         }
 4259 
 4260         /* Disable host interrupts. */
 4261         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 4262         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 4263 
 4264         /*
 4265          * Tell firmware we're shutting down.
 4266          */
 4267 
 4268         bge_stop_fw(sc);
 4269         bge_sig_pre_reset(sc, BGE_RESET_STOP);
 4270         bge_reset(sc);
 4271         bge_sig_legacy(sc, BGE_RESET_STOP);
 4272         bge_sig_post_reset(sc, BGE_RESET_STOP);
 4273 
 4274         /* 
 4275          * Keep the ASF firmware running if up.
 4276          */
 4277         if (sc->bge_asf_mode & ASF_STACKUP)
 4278                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 4279         else
 4280                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 4281 
 4282         /* Free the RX lists. */
 4283         bge_free_rx_ring_std(sc);
 4284 
 4285         /* Free jumbo RX list. */
 4286         if (BGE_IS_JUMBO_CAPABLE(sc))
 4287                 bge_free_rx_ring_jumbo(sc);
 4288 
 4289         /* Free TX buffers. */
 4290         bge_free_tx_ring(sc);
 4291 
 4292         /*
 4293          * Isolate/power down the PHY, but leave the media selection
 4294          * unchanged so that things will be put back to normal when
 4295          * we bring the interface back up.
 4296          */
 4297         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 4298                 itmp = ifp->if_flags;
 4299                 ifp->if_flags |= IFF_UP;
 4300                 /*
 4301                  * If we are called from bge_detach(), mii is already NULL.
 4302                  */
 4303                 if (mii != NULL) {
 4304                         ifm = mii->mii_media.ifm_cur;
 4305                         mtmp = ifm->ifm_media;
 4306                         ifm->ifm_media = IFM_ETHER | IFM_NONE;
 4307                         mii_mediachg(mii);
 4308                         ifm->ifm_media = mtmp;
 4309                 }
 4310                 ifp->if_flags = itmp;
 4311         }
 4312 
 4313         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
 4314 
 4315         /* Clear MAC's link state (PHY may still have link UP). */
 4316         if (bootverbose && sc->bge_link)
 4317                 if_printf(sc->bge_ifp, "link DOWN\n");
 4318         sc->bge_link = 0;
 4319 
 4320         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 4321 }
 4322 
 4323 /*
 4324  * Stop all chip I/O so that the kernel's probe routines don't
 4325  * get confused by errant DMAs when rebooting.
 4326  */
 4327 static int
 4328 bge_shutdown(device_t dev)
 4329 {
 4330         struct bge_softc *sc;
 4331 
 4332         sc = device_get_softc(dev);
 4333         BGE_LOCK(sc);
 4334         bge_stop(sc);
 4335         bge_reset(sc);
 4336         BGE_UNLOCK(sc);
 4337 
 4338         return (0);
 4339 }
 4340 
 4341 static int
 4342 bge_suspend(device_t dev)
 4343 {
 4344         struct bge_softc *sc;
 4345 
 4346         sc = device_get_softc(dev);
 4347         BGE_LOCK(sc);
 4348         bge_stop(sc);
 4349         BGE_UNLOCK(sc);
 4350 
 4351         return (0);
 4352 }
 4353 
 4354 static int
 4355 bge_resume(device_t dev)
 4356 {
 4357         struct bge_softc *sc;
 4358         struct ifnet *ifp;
 4359 
 4360         sc = device_get_softc(dev);
 4361         BGE_LOCK(sc);
 4362         ifp = sc->bge_ifp;
 4363         if (ifp->if_flags & IFF_UP) {
 4364                 bge_init_locked(sc);
 4365                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 4366                         bge_start_locked(ifp);
 4367         }
 4368         BGE_UNLOCK(sc);
 4369 
 4370         return (0);
 4371 }
 4372 
 4373 static void
 4374 bge_link_upd(struct bge_softc *sc)
 4375 {
 4376         struct mii_data *mii;
 4377         uint32_t link, status;
 4378 
 4379         BGE_LOCK_ASSERT(sc);
 4380 
 4381         /* Clear 'pending link event' flag. */
 4382         sc->bge_link_evt = 0;
 4383 
 4384         /*
 4385          * Process link state changes.
 4386          * Grrr. The link status word in the status block does
 4387          * not work correctly on the BCM5700 rev AX and BX chips,
 4388          * according to all available information. Hence, we have
 4389          * to enable MII interrupts in order to properly obtain
 4390          * async link changes. Unfortunately, this also means that
 4391          * we have to read the MAC status register to detect link
 4392          * changes, thereby adding an additional register access to
 4393          * the interrupt handler.
 4394          *
 4395          * XXX: perhaps link state detection procedure used for
 4396          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
 4397          */
 4398 
 4399         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4400             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
 4401                 status = CSR_READ_4(sc, BGE_MAC_STS);
 4402                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
 4403                         mii = device_get_softc(sc->bge_miibus);
 4404                         mii_pollstat(mii);
 4405                         if (!sc->bge_link &&
 4406                             mii->mii_media_status & IFM_ACTIVE &&
 4407                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 4408                                 sc->bge_link++;
 4409                                 if (bootverbose)
 4410                                         if_printf(sc->bge_ifp, "link UP\n");
 4411                         } else if (sc->bge_link &&
 4412                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 4413                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 4414                                 sc->bge_link = 0;
 4415                                 if (bootverbose)
 4416                                         if_printf(sc->bge_ifp, "link DOWN\n");
 4417                         }
 4418 
 4419                         /* Clear the interrupt. */
 4420                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 4421                             BGE_EVTENB_MI_INTERRUPT);
 4422                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
 4423                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
 4424                             BRGPHY_INTRS);
 4425                 }
 4426                 return;
 4427         }
 4428 
 4429         if (sc->bge_flags & BGE_FLAG_TBI) {
 4430                 status = CSR_READ_4(sc, BGE_MAC_STS);
 4431                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
 4432                         if (!sc->bge_link) {
 4433                                 sc->bge_link++;
 4434                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 4435                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
 4436                                             BGE_MACMODE_TBI_SEND_CFGS);
 4437                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
 4438                                 if (bootverbose)
 4439                                         if_printf(sc->bge_ifp, "link UP\n");
 4440                                 if_link_state_change(sc->bge_ifp,
 4441                                     LINK_STATE_UP);
 4442                         }
 4443                 } else if (sc->bge_link) {
 4444                         sc->bge_link = 0;
 4445                         if (bootverbose)
 4446                                 if_printf(sc->bge_ifp, "link DOWN\n");
 4447                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
 4448                 }
 4449         } else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
 4450                 /*
 4451                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
 4452                  * in status word always set. Workaround this bug by reading
 4453                  * PHY link status directly.
 4454                  */
 4455                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
 4456 
 4457                 if (link != sc->bge_link ||
 4458                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
 4459                         mii = device_get_softc(sc->bge_miibus);
 4460                         mii_pollstat(mii);
 4461                         if (!sc->bge_link &&
 4462                             mii->mii_media_status & IFM_ACTIVE &&
 4463                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 4464                                 sc->bge_link++;
 4465                                 if (bootverbose)
 4466                                         if_printf(sc->bge_ifp, "link UP\n");
 4467                         } else if (sc->bge_link &&
 4468                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 4469                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 4470                                 sc->bge_link = 0;
 4471                                 if (bootverbose)
 4472                                         if_printf(sc->bge_ifp, "link DOWN\n");
 4473                         }
 4474                 }
 4475         } else {
 4476                 /*
 4477                  * Discard link events for MII/GMII controllers
 4478                  * if MI auto-polling is disabled.
 4479                  */
 4480         }
 4481 
 4482         /* Clear the attention. */
 4483         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 4484             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 4485             BGE_MACSTAT_LINK_CHANGED);
 4486 }
 4487 
 4488 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
 4489         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
 4490             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
 4491             desc)
 4492 
 4493 static void
 4494 bge_add_sysctls(struct bge_softc *sc)
 4495 {
 4496         struct sysctl_ctx_list *ctx;
 4497         struct sysctl_oid_list *children, *schildren;
 4498         struct sysctl_oid *tree;
 4499 
 4500         ctx = device_get_sysctl_ctx(sc->bge_dev);
 4501         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
 4502 
 4503 #ifdef BGE_REGISTER_DEBUG
 4504         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
 4505             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
 4506             "Debug Information");
 4507 
 4508         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
 4509             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
 4510             "Register Read");
 4511 
 4512         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
 4513             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
 4514             "Memory Read");
 4515 
 4516 #endif
 4517 
 4518         if (BGE_IS_5705_PLUS(sc))
 4519                 return;
 4520 
 4521         tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
 4522             NULL, "BGE Statistics");
 4523         schildren = children = SYSCTL_CHILDREN(tree);
 4524         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
 4525             children, COSFramesDroppedDueToFilters,
 4526             "FramesDroppedDueToFilters");
 4527         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
 4528             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
 4529         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
 4530             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
 4531         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
 4532             children, nicNoMoreRxBDs, "NoMoreRxBDs");
 4533         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
 4534             children, ifInDiscards, "InputDiscards");
 4535         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
 4536             children, ifInErrors, "InputErrors");
 4537         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
 4538             children, nicRecvThresholdHit, "RecvThresholdHit");
 4539         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
 4540             children, nicDmaReadQueueFull, "DmaReadQueueFull");
 4541         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
 4542             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
 4543         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
 4544             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
 4545         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
 4546             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
 4547         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
 4548             children, nicRingStatusUpdate, "RingStatusUpdate");
 4549         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
 4550             children, nicInterrupts, "Interrupts");
 4551         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
 4552             children, nicAvoidedInterrupts, "AvoidedInterrupts");
 4553         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
 4554             children, nicSendThresholdHit, "SendThresholdHit");
 4555 
 4556         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
 4557             NULL, "BGE RX Statistics");
 4558         children = SYSCTL_CHILDREN(tree);
 4559         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
 4560             children, rxstats.ifHCInOctets, "Octets");
 4561         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
 4562             children, rxstats.etherStatsFragments, "Fragments");
 4563         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
 4564             children, rxstats.ifHCInUcastPkts, "UcastPkts");
 4565         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
 4566             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
 4567         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
 4568             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
 4569         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
 4570             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
 4571         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
 4572             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
 4573         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
 4574             children, rxstats.xoffPauseFramesReceived,
 4575             "xoffPauseFramesReceived");
 4576         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
 4577             children, rxstats.macControlFramesReceived,
 4578             "ControlFramesReceived");
 4579         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
 4580             children, rxstats.xoffStateEntered, "xoffStateEntered");
 4581         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
 4582             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
 4583         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
 4584             children, rxstats.etherStatsJabbers, "Jabbers");
 4585         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
 4586             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
 4587         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
 4588             children, rxstats.inRangeLengthError, "inRangeLengthError");
 4589         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
 4590             children, rxstats.outRangeLengthError, "outRangeLengthError");
 4591 
 4592         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
 4593             NULL, "BGE TX Statistics");
 4594         children = SYSCTL_CHILDREN(tree);
 4595         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
 4596             children, txstats.ifHCOutOctets, "Octets");
 4597         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
 4598             children, txstats.etherStatsCollisions, "Collisions");
 4599         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
 4600             children, txstats.outXonSent, "XonSent");
 4601         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
 4602             children, txstats.outXoffSent, "XoffSent");
 4603         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
 4604             children, txstats.flowControlDone, "flowControlDone");
 4605         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
 4606             children, txstats.dot3StatsInternalMacTransmitErrors,
 4607             "InternalMacTransmitErrors");
 4608         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
 4609             children, txstats.dot3StatsSingleCollisionFrames,
 4610             "SingleCollisionFrames");
 4611         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
 4612             children, txstats.dot3StatsMultipleCollisionFrames,
 4613             "MultipleCollisionFrames");
 4614         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 
 4615             children, txstats.dot3StatsDeferredTransmissions,
 4616             "DeferredTransmissions");
 4617         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
 4618             children, txstats.dot3StatsExcessiveCollisions,
 4619             "ExcessiveCollisions");
 4620         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
 4621             children, txstats.dot3StatsLateCollisions,
 4622             "LateCollisions");
 4623         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 
 4624             children, txstats.ifHCOutUcastPkts, "UcastPkts");
 4625         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
 4626             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
 4627         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
 4628             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
 4629         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
 4630             children, txstats.dot3StatsCarrierSenseErrors,
 4631             "CarrierSenseErrors");
 4632         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
 4633             children, txstats.ifOutDiscards, "Discards");
 4634         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
 4635             children, txstats.ifOutErrors, "Errors");
 4636 }
 4637 
 4638 static int
 4639 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
 4640 {
 4641         struct bge_softc *sc;
 4642         uint32_t result;
 4643         int offset;
 4644 
 4645         sc = (struct bge_softc *)arg1;
 4646         offset = arg2;
 4647         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
 4648             offsetof(bge_hostaddr, bge_addr_lo));
 4649         return (sysctl_handle_int(oidp, &result, 0, req));
 4650 }
 4651 
 4652 #ifdef BGE_REGISTER_DEBUG
 4653 static int
 4654 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 4655 {
 4656         struct bge_softc *sc;
 4657         uint16_t *sbdata;
 4658         int error;
 4659         int result;
 4660         int i, j;
 4661 
 4662         result = -1;
 4663         error = sysctl_handle_int(oidp, &result, 0, req);
 4664         if (error || (req->newptr == NULL))
 4665                 return (error);
 4666 
 4667         if (result == 1) {
 4668                 sc = (struct bge_softc *)arg1;
 4669 
 4670                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
 4671                 printf("Status Block:\n");
 4672                 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
 4673                         printf("%06x:", i);
 4674                         for (j = 0; j < 8; j++) {
 4675                                 printf(" %04x", sbdata[i]);
 4676                                 i += 4;
 4677                         }
 4678                         printf("\n");
 4679                 }
 4680 
 4681                 printf("Registers:\n");
 4682                 for (i = 0x800; i < 0xA00; ) {
 4683                         printf("%06x:", i);
 4684                         for (j = 0; j < 8; j++) {
 4685                                 printf(" %08x", CSR_READ_4(sc, i));
 4686                                 i += 4;
 4687                         }
 4688                         printf("\n");
 4689                 }
 4690 
 4691                 printf("Hardware Flags:\n");
 4692                 if (BGE_IS_575X_PLUS(sc))
 4693                         printf(" - 575X Plus\n");
 4694                 if (BGE_IS_5705_PLUS(sc))
 4695                         printf(" - 5705 Plus\n");
 4696                 if (BGE_IS_5714_FAMILY(sc))
 4697                         printf(" - 5714 Family\n");
 4698                 if (BGE_IS_5700_FAMILY(sc))
 4699                         printf(" - 5700 Family\n");
 4700                 if (sc->bge_flags & BGE_FLAG_JUMBO)
 4701                         printf(" - Supports Jumbo Frames\n");
 4702                 if (sc->bge_flags & BGE_FLAG_PCIX)
 4703                         printf(" - PCI-X Bus\n");
 4704                 if (sc->bge_flags & BGE_FLAG_PCIE)
 4705                         printf(" - PCI Express Bus\n");
 4706                 if (sc->bge_flags & BGE_FLAG_NO_3LED)
 4707                         printf(" - No 3 LEDs\n");
 4708                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
 4709                         printf(" - RX Alignment Bug\n");
 4710         }
 4711 
 4712         return (error);
 4713 }
 4714 
 4715 static int
 4716 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 4717 {
 4718         struct bge_softc *sc;
 4719         int error;
 4720         uint16_t result;
 4721         uint32_t val;
 4722 
 4723         result = -1;
 4724         error = sysctl_handle_int(oidp, &result, 0, req);
 4725         if (error || (req->newptr == NULL))
 4726                 return (error);
 4727 
 4728         if (result < 0x8000) {
 4729                 sc = (struct bge_softc *)arg1;
 4730                 val = CSR_READ_4(sc, result);
 4731                 printf("reg 0x%06X = 0x%08X\n", result, val);
 4732         }
 4733 
 4734         return (error);
 4735 }
 4736 
 4737 static int
 4738 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
 4739 {
 4740         struct bge_softc *sc;
 4741         int error;
 4742         uint16_t result;
 4743         uint32_t val;
 4744 
 4745         result = -1;
 4746         error = sysctl_handle_int(oidp, &result, 0, req);
 4747         if (error || (req->newptr == NULL))
 4748                 return (error);
 4749 
 4750         if (result < 0x8000) {
 4751                 sc = (struct bge_softc *)arg1;
 4752                 val = bge_readmem_ind(sc, result);
 4753                 printf("mem 0x%06X = 0x%08X\n", result, val);
 4754         }
 4755 
 4756         return (error);
 4757 }
 4758 #endif
 4759 
 4760 static int
 4761 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
 4762 {
 4763 
 4764         if (sc->bge_flags & BGE_FLAG_EADDR)
 4765                 return (1);
 4766 
 4767 #ifdef __sparc64__
 4768         OF_getetheraddr(sc->bge_dev, ether_addr);
 4769         return (0);
 4770 #endif
 4771         return (1);
 4772 }
 4773 
 4774 static int
 4775 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
 4776 {
 4777         uint32_t mac_addr;
 4778 
 4779         mac_addr = bge_readmem_ind(sc, 0x0c14);
 4780         if ((mac_addr >> 16) == 0x484b) {
 4781                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
 4782                 ether_addr[1] = (uint8_t)mac_addr;
 4783                 mac_addr = bge_readmem_ind(sc, 0x0c18);
 4784                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
 4785                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
 4786                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
 4787                 ether_addr[5] = (uint8_t)mac_addr;
 4788                 return (0);
 4789         }
 4790         return (1);
 4791 }
 4792 
 4793 static int
 4794 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
 4795 {
 4796         int mac_offset = BGE_EE_MAC_OFFSET;
 4797 
 4798         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 4799                 mac_offset = BGE_EE_MAC_OFFSET_5906;
 4800 
 4801         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
 4802             ETHER_ADDR_LEN));
 4803 }
 4804 
 4805 static int
 4806 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
 4807 {
 4808 
 4809         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 4810                 return (1);
 4811 
 4812         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
 4813            ETHER_ADDR_LEN));
 4814 }
 4815 
 4816 static int
 4817 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
 4818 {
 4819         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
 4820                 /* NOTE: Order is critical */
 4821                 bge_get_eaddr_fw,
 4822                 bge_get_eaddr_mem,
 4823                 bge_get_eaddr_nvram,
 4824                 bge_get_eaddr_eeprom,
 4825                 NULL
 4826         };
 4827         const bge_eaddr_fcn_t *func;
 4828 
 4829         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
 4830                 if ((*func)(sc, eaddr) == 0)
 4831                         break;
 4832         }
 4833         return (*func == NULL ? ENXIO : 0);
 4834 }

Cache object: 30e3934b586c7679fb62a953889ec4c5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.