The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bge/if_bge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Wind River Systems
    3  * Copyright (c) 1997, 1998, 1999, 2001
    4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. All advertising materials mentioning features or use of this software
   15  *    must display the following acknowledgement:
   16  *      This product includes software developed by Bill Paul.
   17  * 4. Neither the name of the author nor the names of any co-contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   31  * THE POSSIBILITY OF SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/9.2/sys/dev/bge/if_bge.c 253197 2013-07-11 08:41:45Z yongari $");
   36 
   37 /*
   38  * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
   39  *
   40  * The Broadcom BCM5700 is based on technology originally developed by
   41  * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
   42  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
   43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
   44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
   45  * frames, highly configurable RX filtering, and 16 RX and TX queues
   46  * (which, along with RX filter rules, can be used for QOS applications).
   47  * Other features, such as TCP segmentation, may be available as part
   48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
   49  * firmware images can be stored in hardware and need not be compiled
   50  * into the driver.
   51  *
   52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
   53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
   54  *
   55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
   56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
   57  * does not support external SSRAM.
   58  *
   59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
   60  * brand name, which is functionally similar but lacks PCI-X support.
   61  *
   62  * Without external SSRAM, you can only have at most 4 TX rings,
   63  * and the use of the mini RX ring is disabled. This seems to imply
   64  * that these features are simply not available on the BCM5701. As a
   65  * result, this driver does not implement any support for the mini RX
   66  * ring.
   67  */
   68 
   69 #ifdef HAVE_KERNEL_OPTION_HEADERS
   70 #include "opt_device_polling.h"
   71 #endif
   72 
   73 #include <sys/param.h>
   74 #include <sys/endian.h>
   75 #include <sys/systm.h>
   76 #include <sys/sockio.h>
   77 #include <sys/mbuf.h>
   78 #include <sys/malloc.h>
   79 #include <sys/kernel.h>
   80 #include <sys/module.h>
   81 #include <sys/socket.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/taskqueue.h>
   84 
   85 #include <net/if.h>
   86 #include <net/if_arp.h>
   87 #include <net/ethernet.h>
   88 #include <net/if_dl.h>
   89 #include <net/if_media.h>
   90 
   91 #include <net/bpf.h>
   92 
   93 #include <net/if_types.h>
   94 #include <net/if_vlan_var.h>
   95 
   96 #include <netinet/in_systm.h>
   97 #include <netinet/in.h>
   98 #include <netinet/ip.h>
   99 #include <netinet/tcp.h>
  100 
  101 #include <machine/bus.h>
  102 #include <machine/resource.h>
  103 #include <sys/bus.h>
  104 #include <sys/rman.h>
  105 
  106 #include <dev/mii/mii.h>
  107 #include <dev/mii/miivar.h>
  108 #include "miidevs.h"
  109 #include <dev/mii/brgphyreg.h>
  110 
  111 #ifdef __sparc64__
  112 #include <dev/ofw/ofw_bus.h>
  113 #include <dev/ofw/openfirm.h>
  114 #include <machine/ofw_machdep.h>
  115 #include <machine/ver.h>
  116 #endif
  117 
  118 #include <dev/pci/pcireg.h>
  119 #include <dev/pci/pcivar.h>
  120 
  121 #include <dev/bge/if_bgereg.h>
  122 
  123 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
  124 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
  125 
  126 MODULE_DEPEND(bge, pci, 1, 1, 1);
  127 MODULE_DEPEND(bge, ether, 1, 1, 1);
  128 MODULE_DEPEND(bge, miibus, 1, 1, 1);
  129 
  130 /* "device miibus" required.  See GENERIC if you get errors here. */
  131 #include "miibus_if.h"
  132 
  133 /*
  134  * Various supported device vendors/types and their names. Note: the
  135  * spec seems to indicate that the hardware still has Alteon's vendor
  136  * ID burned into it, though it will always be overriden by the vendor
  137  * ID in the EEPROM. Just to be safe, we cover all possibilities.
  138  */
  139 static const struct bge_type {
  140         uint16_t        bge_vid;
  141         uint16_t        bge_did;
  142 } bge_devs[] = {
  143         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
  144         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
  145 
  146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
  147         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
  148         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
  149 
  150         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
  151 
  152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
  153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
  154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
  155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
  156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
  157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
  158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
  159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
  160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
  161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
  162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
  163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
  164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
  165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
  166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
  167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
  168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
  169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
  170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
  171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
  172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5717 },
  173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5718 },
  174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5719 },
  175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
  176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
  177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
  178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5723 },
  179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
  180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
  181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
  182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
  183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
  184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
  185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
  186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
  187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
  188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
  189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
  190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
  191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
  192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
  193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5756 },
  194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761 },
  195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761E },
  196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761S },
  197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5761SE },
  198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5764 },
  199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
  200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
  201         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
  202         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
  203         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5784 },
  204         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785F },
  205         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5785G },
  206         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
  207         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
  208         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787F },
  209         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
  210         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
  211         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
  212         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
  213         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
  214         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
  215         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
  216         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
  217         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57760 },
  218         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57761 },
  219         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57762 },
  220         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57765 },
  221         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57766 },
  222         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57780 },
  223         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57781 },
  224         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57785 },
  225         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57788 },
  226         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57790 },
  227         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57791 },
  228         { BCOM_VENDORID,        BCOM_DEVICEID_BCM57795 },
  229 
  230         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
  231 
  232         { TC_VENDORID,          TC_DEVICEID_3C996 },
  233 
  234         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE4 },
  235         { FJTSU_VENDORID,       FJTSU_DEVICEID_PW008GE5 },
  236         { FJTSU_VENDORID,       FJTSU_DEVICEID_PP250450 },
  237 
  238         { 0, 0 }
  239 };
  240 
  241 static const struct bge_vendor {
  242         uint16_t        v_id;
  243         const char      *v_name;
  244 } bge_vendors[] = {
  245         { ALTEON_VENDORID,      "Alteon" },
  246         { ALTIMA_VENDORID,      "Altima" },
  247         { APPLE_VENDORID,       "Apple" },
  248         { BCOM_VENDORID,        "Broadcom" },
  249         { SK_VENDORID,          "SysKonnect" },
  250         { TC_VENDORID,          "3Com" },
  251         { FJTSU_VENDORID,       "Fujitsu" },
  252 
  253         { 0, NULL }
  254 };
  255 
  256 static const struct bge_revision {
  257         uint32_t        br_chipid;
  258         const char      *br_name;
  259 } bge_revisions[] = {
  260         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
  261         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
  262         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
  263         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
  264         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
  265         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
  266         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
  267         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
  268         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
  269         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
  270         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
  271         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
  272         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
  273         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
  274         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
  275         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
  276         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
  277         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
  278         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
  279         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
  280         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
  281         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
  282         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
  283         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
  284         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
  285         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
  286         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
  287         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
  288         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
  289         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
  290         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
  291         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
  292         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
  293         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
  294         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
  295         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
  296         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
  297         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
  298         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
  299         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
  300         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
  301         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
  302         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
  303         { BGE_CHIPID_BCM5717_A0,        "BCM5717 A0" },
  304         { BGE_CHIPID_BCM5717_B0,        "BCM5717 B0" },
  305         { BGE_CHIPID_BCM5719_A0,        "BCM5719 A0" },
  306         { BGE_CHIPID_BCM5720_A0,        "BCM5720 A0" },
  307         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
  308         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
  309         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
  310         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
  311         { BGE_CHIPID_BCM5761_A0,        "BCM5761 A0" },
  312         { BGE_CHIPID_BCM5761_A1,        "BCM5761 A1" },
  313         { BGE_CHIPID_BCM5784_A0,        "BCM5784 A0" },
  314         { BGE_CHIPID_BCM5784_A1,        "BCM5784 A1" },
  315         /* 5754 and 5787 share the same ASIC ID */
  316         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" },
  317         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
  318         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
  319         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
  320         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
  321         { BGE_CHIPID_BCM57765_A0,       "BCM57765 A0" },
  322         { BGE_CHIPID_BCM57765_B0,       "BCM57765 B0" },
  323         { BGE_CHIPID_BCM57780_A0,       "BCM57780 A0" },
  324         { BGE_CHIPID_BCM57780_A1,       "BCM57780 A1" },
  325 
  326         { 0, NULL }
  327 };
  328 
  329 /*
  330  * Some defaults for major revisions, so that newer steppings
  331  * that we don't know about have a shot at working.
  332  */
  333 static const struct bge_revision bge_majorrevs[] = {
  334         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
  335         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
  336         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
  337         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
  338         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
  339         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
  340         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
  341         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
  342         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
  343         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
  344         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
  345         { BGE_ASICREV_BCM5761,          "unknown BCM5761" },
  346         { BGE_ASICREV_BCM5784,          "unknown BCM5784" },
  347         { BGE_ASICREV_BCM5785,          "unknown BCM5785" },
  348         /* 5754 and 5787 share the same ASIC ID */
  349         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
  350         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
  351         { BGE_ASICREV_BCM57765,         "unknown BCM57765" },
  352         { BGE_ASICREV_BCM57766,         "unknown BCM57766" },
  353         { BGE_ASICREV_BCM57780,         "unknown BCM57780" },
  354         { BGE_ASICREV_BCM5717,          "unknown BCM5717" },
  355         { BGE_ASICREV_BCM5719,          "unknown BCM5719" },
  356         { BGE_ASICREV_BCM5720,          "unknown BCM5720" },
  357 
  358         { 0, NULL }
  359 };
  360 
  361 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
  362 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
  363 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
  364 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
  365 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
  366 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
  367 #define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
  368 #define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
  369 
  370 static uint32_t bge_chipid(device_t);
  371 static const struct bge_vendor * bge_lookup_vendor(uint16_t);
  372 static const struct bge_revision * bge_lookup_rev(uint32_t);
  373 
  374 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
  375 
  376 static int bge_probe(device_t);
  377 static int bge_attach(device_t);
  378 static int bge_detach(device_t);
  379 static int bge_suspend(device_t);
  380 static int bge_resume(device_t);
  381 static void bge_release_resources(struct bge_softc *);
  382 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  383 static int bge_dma_alloc(struct bge_softc *);
  384 static void bge_dma_free(struct bge_softc *);
  385 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
  386     bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
  387 
  388 static void bge_devinfo(struct bge_softc *);
  389 static int bge_mbox_reorder(struct bge_softc *);
  390 
  391 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
  392 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
  393 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
  394 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
  395 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
  396 
  397 static void bge_txeof(struct bge_softc *, uint16_t);
  398 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
  399 static int bge_rxeof(struct bge_softc *, uint16_t, int);
  400 
  401 static void bge_asf_driver_up (struct bge_softc *);
  402 static void bge_tick(void *);
  403 static void bge_stats_clear_regs(struct bge_softc *);
  404 static void bge_stats_update(struct bge_softc *);
  405 static void bge_stats_update_regs(struct bge_softc *);
  406 static struct mbuf *bge_check_short_dma(struct mbuf *);
  407 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
  408     uint16_t *, uint16_t *);
  409 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
  410 
  411 static void bge_intr(void *);
  412 static int bge_msi_intr(void *);
  413 static void bge_intr_task(void *, int);
  414 static void bge_start_locked(struct ifnet *);
  415 static void bge_start(struct ifnet *);
  416 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
  417 static void bge_init_locked(struct bge_softc *);
  418 static void bge_init(void *);
  419 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
  420 static void bge_stop(struct bge_softc *);
  421 static void bge_watchdog(struct bge_softc *);
  422 static int bge_shutdown(device_t);
  423 static int bge_ifmedia_upd_locked(struct ifnet *);
  424 static int bge_ifmedia_upd(struct ifnet *);
  425 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  426 
  427 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
  428 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
  429 
  430 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
  431 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
  432 
  433 static void bge_setpromisc(struct bge_softc *);
  434 static void bge_setmulti(struct bge_softc *);
  435 static void bge_setvlan(struct bge_softc *);
  436 
  437 static __inline void bge_rxreuse_std(struct bge_softc *, int);
  438 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
  439 static int bge_newbuf_std(struct bge_softc *, int);
  440 static int bge_newbuf_jumbo(struct bge_softc *, int);
  441 static int bge_init_rx_ring_std(struct bge_softc *);
  442 static void bge_free_rx_ring_std(struct bge_softc *);
  443 static int bge_init_rx_ring_jumbo(struct bge_softc *);
  444 static void bge_free_rx_ring_jumbo(struct bge_softc *);
  445 static void bge_free_tx_ring(struct bge_softc *);
  446 static int bge_init_tx_ring(struct bge_softc *);
  447 
  448 static int bge_chipinit(struct bge_softc *);
  449 static int bge_blockinit(struct bge_softc *);
  450 static uint32_t bge_dma_swap_options(struct bge_softc *);
  451 
  452 static int bge_has_eaddr(struct bge_softc *);
  453 static uint32_t bge_readmem_ind(struct bge_softc *, int);
  454 static void bge_writemem_ind(struct bge_softc *, int, int);
  455 static void bge_writembx(struct bge_softc *, int, int);
  456 #ifdef notdef
  457 static uint32_t bge_readreg_ind(struct bge_softc *, int);
  458 #endif
  459 static void bge_writemem_direct(struct bge_softc *, int, int);
  460 static void bge_writereg_ind(struct bge_softc *, int, int);
  461 
  462 static int bge_miibus_readreg(device_t, int, int);
  463 static int bge_miibus_writereg(device_t, int, int, int);
  464 static void bge_miibus_statchg(device_t);
  465 #ifdef DEVICE_POLLING
  466 static int bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
  467 #endif
  468 
  469 #define BGE_RESET_SHUTDOWN      0
  470 #define BGE_RESET_START         1
  471 #define BGE_RESET_SUSPEND       2
  472 static void bge_sig_post_reset(struct bge_softc *, int);
  473 static void bge_sig_legacy(struct bge_softc *, int);
  474 static void bge_sig_pre_reset(struct bge_softc *, int);
  475 static void bge_stop_fw(struct bge_softc *);
  476 static int bge_reset(struct bge_softc *);
  477 static void bge_link_upd(struct bge_softc *);
  478 
  479 static void bge_ape_lock_init(struct bge_softc *);
  480 static void bge_ape_read_fw_ver(struct bge_softc *);
  481 static int bge_ape_lock(struct bge_softc *, int);
  482 static void bge_ape_unlock(struct bge_softc *, int);
  483 static void bge_ape_send_event(struct bge_softc *, uint32_t);
  484 static void bge_ape_driver_state_change(struct bge_softc *, int);
  485 
  486 /*
  487  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
  488  * leak information to untrusted users.  It is also known to cause alignment
  489  * traps on certain architectures.
  490  */
  491 #ifdef BGE_REGISTER_DEBUG
  492 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
  493 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
  494 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
  495 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
  496 #endif
  497 static void bge_add_sysctls(struct bge_softc *);
  498 static void bge_add_sysctl_stats_regs(struct bge_softc *,
  499     struct sysctl_ctx_list *, struct sysctl_oid_list *);
  500 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
  501     struct sysctl_oid_list *);
  502 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
  503 
  504 static device_method_t bge_methods[] = {
  505         /* Device interface */
  506         DEVMETHOD(device_probe,         bge_probe),
  507         DEVMETHOD(device_attach,        bge_attach),
  508         DEVMETHOD(device_detach,        bge_detach),
  509         DEVMETHOD(device_shutdown,      bge_shutdown),
  510         DEVMETHOD(device_suspend,       bge_suspend),
  511         DEVMETHOD(device_resume,        bge_resume),
  512 
  513         /* MII interface */
  514         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
  515         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
  516         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
  517 
  518         DEVMETHOD_END
  519 };
  520 
  521 static driver_t bge_driver = {
  522         "bge",
  523         bge_methods,
  524         sizeof(struct bge_softc)
  525 };
  526 
  527 static devclass_t bge_devclass;
  528 
  529 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
  530 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
  531 
  532 static int bge_allow_asf = 1;
  533 
  534 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
  535 
  536 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
  537 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
  538         "Allow ASF mode if available");
  539 
  540 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
  541 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
  542 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
  543 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
  544 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
  545 
  546 static int
  547 bge_has_eaddr(struct bge_softc *sc)
  548 {
  549 #ifdef __sparc64__
  550         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
  551         device_t dev;
  552         uint32_t subvendor;
  553 
  554         dev = sc->bge_dev;
  555 
  556         /*
  557          * The on-board BGEs found in sun4u machines aren't fitted with
  558          * an EEPROM which means that we have to obtain the MAC address
  559          * via OFW and that some tests will always fail.  We distinguish
  560          * such BGEs by the subvendor ID, which also has to be obtained
  561          * from OFW instead of the PCI configuration space as the latter
  562          * indicates Broadcom as the subvendor of the netboot interface.
  563          * For early Blade 1500 and 2500 we even have to check the OFW
  564          * device path as the subvendor ID always defaults to Broadcom
  565          * there.
  566          */
  567         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
  568             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
  569             (subvendor == FJTSU_VENDORID || subvendor == SUN_VENDORID))
  570                 return (0);
  571         memset(buf, 0, sizeof(buf));
  572         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
  573                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
  574                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
  575                         return (0);
  576                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
  577                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
  578                         return (0);
  579         }
  580 #endif
  581         return (1);
  582 }
  583 
  584 static uint32_t
  585 bge_readmem_ind(struct bge_softc *sc, int off)
  586 {
  587         device_t dev;
  588         uint32_t val;
  589 
  590         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
  591             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
  592                 return (0);
  593 
  594         dev = sc->bge_dev;
  595 
  596         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  597         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
  598         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  599         return (val);
  600 }
  601 
  602 static void
  603 bge_writemem_ind(struct bge_softc *sc, int off, int val)
  604 {
  605         device_t dev;
  606 
  607         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
  608             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
  609                 return;
  610 
  611         dev = sc->bge_dev;
  612 
  613         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
  614         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
  615         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
  616 }
  617 
  618 #ifdef notdef
  619 static uint32_t
  620 bge_readreg_ind(struct bge_softc *sc, int off)
  621 {
  622         device_t dev;
  623 
  624         dev = sc->bge_dev;
  625 
  626         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  627         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
  628 }
  629 #endif
  630 
  631 static void
  632 bge_writereg_ind(struct bge_softc *sc, int off, int val)
  633 {
  634         device_t dev;
  635 
  636         dev = sc->bge_dev;
  637 
  638         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
  639         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
  640 }
  641 
  642 static void
  643 bge_writemem_direct(struct bge_softc *sc, int off, int val)
  644 {
  645         CSR_WRITE_4(sc, off, val);
  646 }
  647 
  648 static void
  649 bge_writembx(struct bge_softc *sc, int off, int val)
  650 {
  651         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
  652                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
  653 
  654         CSR_WRITE_4(sc, off, val);
  655         if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
  656                 CSR_READ_4(sc, off);
  657 }
  658 
  659 /*
  660  * Clear all stale locks and select the lock for this driver instance.
  661  */
  662 static void
  663 bge_ape_lock_init(struct bge_softc *sc)
  664 {
  665         uint32_t bit, regbase;
  666         int i;
  667 
  668         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  669                 regbase = BGE_APE_LOCK_GRANT;
  670         else
  671                 regbase = BGE_APE_PER_LOCK_GRANT;
  672 
  673         /* Clear any stale locks. */
  674         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
  675                 switch (i) {
  676                 case BGE_APE_LOCK_PHY0:
  677                 case BGE_APE_LOCK_PHY1:
  678                 case BGE_APE_LOCK_PHY2:
  679                 case BGE_APE_LOCK_PHY3:
  680                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  681                         break;
  682                 default:
  683                         if (sc->bge_func_addr == 0)
  684                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
  685                         else
  686                                 bit = (1 << sc->bge_func_addr);
  687                 }
  688                 APE_WRITE_4(sc, regbase + 4 * i, bit);
  689         }
  690 
  691         /* Select the PHY lock based on the device's function number. */
  692         switch (sc->bge_func_addr) {
  693         case 0:
  694                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
  695                 break;
  696         case 1:
  697                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
  698                 break;
  699         case 2:
  700                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
  701                 break;
  702         case 3:
  703                 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
  704                 break;
  705         default:
  706                 device_printf(sc->bge_dev,
  707                     "PHY lock not supported on this function\n");
  708         }
  709 }
  710 
  711 /*
  712  * Check for APE firmware, set flags, and print version info.
  713  */
  714 static void
  715 bge_ape_read_fw_ver(struct bge_softc *sc)
  716 {
  717         const char *fwtype;
  718         uint32_t apedata, features;
  719 
  720         /* Check for a valid APE signature in shared memory. */
  721         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
  722         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
  723                 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
  724                 return;
  725         }
  726 
  727         /* Check if APE firmware is running. */
  728         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
  729         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
  730                 device_printf(sc->bge_dev, "APE signature found "
  731                     "but FW status not ready! 0x%08x\n", apedata);
  732                 return;
  733         }
  734 
  735         sc->bge_mfw_flags |= BGE_MFW_ON_APE;
  736 
  737         /* Fetch the APE firwmare type and version. */
  738         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
  739         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
  740         if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
  741                 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
  742                 fwtype = "NCSI";
  743         } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
  744                 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
  745                 fwtype = "DASH";
  746         } else
  747                 fwtype = "UNKN";
  748 
  749         /* Print the APE firmware version. */
  750         device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
  751             fwtype,
  752             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
  753             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
  754             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
  755             (apedata & BGE_APE_FW_VERSION_BLDMSK));
  756 }
  757 
  758 static int
  759 bge_ape_lock(struct bge_softc *sc, int locknum)
  760 {
  761         uint32_t bit, gnt, req, status;
  762         int i, off;
  763 
  764         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  765                 return (0);
  766 
  767         /* Lock request/grant registers have different bases. */
  768         if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
  769                 req = BGE_APE_LOCK_REQ;
  770                 gnt = BGE_APE_LOCK_GRANT;
  771         } else {
  772                 req = BGE_APE_PER_LOCK_REQ;
  773                 gnt = BGE_APE_PER_LOCK_GRANT;
  774         }
  775 
  776         off = 4 * locknum;
  777 
  778         switch (locknum) {
  779         case BGE_APE_LOCK_GPIO:
  780                 /* Lock required when using GPIO. */
  781                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  782                         return (0);
  783                 if (sc->bge_func_addr == 0)
  784                         bit = BGE_APE_LOCK_REQ_DRIVER0;
  785                 else
  786                         bit = (1 << sc->bge_func_addr);
  787                 break;
  788         case BGE_APE_LOCK_GRC:
  789                 /* Lock required to reset the device. */
  790                 if (sc->bge_func_addr == 0)
  791                         bit = BGE_APE_LOCK_REQ_DRIVER0;
  792                 else
  793                         bit = (1 << sc->bge_func_addr);
  794                 break;
  795         case BGE_APE_LOCK_MEM:
  796                 /* Lock required when accessing certain APE memory. */
  797                 if (sc->bge_func_addr == 0)
  798                         bit = BGE_APE_LOCK_REQ_DRIVER0;
  799                 else
  800                         bit = (1 << sc->bge_func_addr);
  801                 break;
  802         case BGE_APE_LOCK_PHY0:
  803         case BGE_APE_LOCK_PHY1:
  804         case BGE_APE_LOCK_PHY2:
  805         case BGE_APE_LOCK_PHY3:
  806                 /* Lock required when accessing PHYs. */
  807                 bit = BGE_APE_LOCK_REQ_DRIVER0;
  808                 break;
  809         default:
  810                 return (EINVAL);
  811         }
  812 
  813         /* Request a lock. */
  814         APE_WRITE_4(sc, req + off, bit);
  815 
  816         /* Wait up to 1 second to acquire lock. */
  817         for (i = 0; i < 20000; i++) {
  818                 status = APE_READ_4(sc, gnt + off);
  819                 if (status == bit)
  820                         break;
  821                 DELAY(50);
  822         }
  823 
  824         /* Handle any errors. */
  825         if (status != bit) {
  826                 device_printf(sc->bge_dev, "APE lock %d request failed! "
  827                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
  828                     locknum, req + off, bit & 0xFFFF, gnt + off,
  829                     status & 0xFFFF);
  830                 /* Revoke the lock request. */
  831                 APE_WRITE_4(sc, gnt + off, bit);
  832                 return (EBUSY);
  833         }
  834 
  835         return (0);
  836 }
  837 
  838 static void
  839 bge_ape_unlock(struct bge_softc *sc, int locknum)
  840 {
  841         uint32_t bit, gnt;
  842         int off;
  843 
  844         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  845                 return;
  846 
  847         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  848                 gnt = BGE_APE_LOCK_GRANT;
  849         else
  850                 gnt = BGE_APE_PER_LOCK_GRANT;
  851 
  852         off = 4 * locknum;
  853 
  854         switch (locknum) {
  855         case BGE_APE_LOCK_GPIO:
  856                 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
  857                         return;
  858                 if (sc->bge_func_addr == 0)
  859                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  860                 else
  861                         bit = (1 << sc->bge_func_addr);
  862                 break;
  863         case BGE_APE_LOCK_GRC:
  864                 if (sc->bge_func_addr == 0)
  865                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  866                 else
  867                         bit = (1 << sc->bge_func_addr);
  868                 break;
  869         case BGE_APE_LOCK_MEM:
  870                 if (sc->bge_func_addr == 0)
  871                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
  872                 else
  873                         bit = (1 << sc->bge_func_addr);
  874                 break;
  875         case BGE_APE_LOCK_PHY0:
  876         case BGE_APE_LOCK_PHY1:
  877         case BGE_APE_LOCK_PHY2:
  878         case BGE_APE_LOCK_PHY3:
  879                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
  880                 break;
  881         default:
  882                 return;
  883         }
  884 
  885         APE_WRITE_4(sc, gnt + off, bit);
  886 }
  887 
  888 /*
  889  * Send an event to the APE firmware.
  890  */
  891 static void
  892 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
  893 {
  894         uint32_t apedata;
  895         int i;
  896 
  897         /* NCSI does not support APE events. */
  898         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  899                 return;
  900 
  901         /* Wait up to 1ms for APE to service previous event. */
  902         for (i = 10; i > 0; i--) {
  903                 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
  904                         break;
  905                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
  906                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
  907                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
  908                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
  909                         bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
  910                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
  911                         break;
  912                 }
  913                 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
  914                 DELAY(100);
  915         }
  916         if (i == 0)
  917                 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
  918                     event);
  919 }
  920 
  921 static void
  922 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
  923 {
  924         uint32_t apedata, event;
  925 
  926         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
  927                 return;
  928 
  929         switch (kind) {
  930         case BGE_RESET_START:
  931                 /* If this is the first load, clear the load counter. */
  932                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
  933                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
  934                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
  935                 else {
  936                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
  937                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
  938                 }
  939                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
  940                     BGE_APE_HOST_SEG_SIG_MAGIC);
  941                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
  942                     BGE_APE_HOST_SEG_LEN_MAGIC);
  943 
  944                 /* Add some version info if bge(4) supports it. */
  945                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
  946                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
  947                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
  948                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
  949                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
  950                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
  951                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
  952                     BGE_APE_HOST_DRVR_STATE_START);
  953                 event = BGE_APE_EVENT_STATUS_STATE_START;
  954                 break;
  955         case BGE_RESET_SHUTDOWN:
  956                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
  957                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
  958                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
  959                 break;
  960         case BGE_RESET_SUSPEND:
  961                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
  962                 break;
  963         default:
  964                 return;
  965         }
  966 
  967         bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
  968             BGE_APE_EVENT_STATUS_STATE_CHNGE);
  969 }
  970 
  971 /*
  972  * Map a single buffer address.
  973  */
  974 
  975 static void
  976 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  977 {
  978         struct bge_dmamap_arg *ctx;
  979 
  980         if (error)
  981                 return;
  982 
  983         KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
  984 
  985         ctx = arg;
  986         ctx->bge_busaddr = segs->ds_addr;
  987 }
  988 
  989 static uint8_t
  990 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
  991 {
  992         uint32_t access, byte = 0;
  993         int i;
  994 
  995         /* Lock. */
  996         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
  997         for (i = 0; i < 8000; i++) {
  998                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
  999                         break;
 1000                 DELAY(20);
 1001         }
 1002         if (i == 8000)
 1003                 return (1);
 1004 
 1005         /* Enable access. */
 1006         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
 1007         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
 1008 
 1009         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
 1010         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
 1011         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
 1012                 DELAY(10);
 1013                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
 1014                         DELAY(10);
 1015                         break;
 1016                 }
 1017         }
 1018 
 1019         if (i == BGE_TIMEOUT * 10) {
 1020                 if_printf(sc->bge_ifp, "nvram read timed out\n");
 1021                 return (1);
 1022         }
 1023 
 1024         /* Get result. */
 1025         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
 1026 
 1027         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
 1028 
 1029         /* Disable access. */
 1030         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
 1031 
 1032         /* Unlock. */
 1033         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
 1034         CSR_READ_4(sc, BGE_NVRAM_SWARB);
 1035 
 1036         return (0);
 1037 }
 1038 
 1039 /*
 1040  * Read a sequence of bytes from NVRAM.
 1041  */
 1042 static int
 1043 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
 1044 {
 1045         int err = 0, i;
 1046         uint8_t byte = 0;
 1047 
 1048         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 1049                 return (1);
 1050 
 1051         for (i = 0; i < cnt; i++) {
 1052                 err = bge_nvram_getbyte(sc, off + i, &byte);
 1053                 if (err)
 1054                         break;
 1055                 *(dest + i) = byte;
 1056         }
 1057 
 1058         return (err ? 1 : 0);
 1059 }
 1060 
 1061 /*
 1062  * Read a byte of data stored in the EEPROM at address 'addr.' The
 1063  * BCM570x supports both the traditional bitbang interface and an
 1064  * auto access interface for reading the EEPROM. We use the auto
 1065  * access method.
 1066  */
 1067 static uint8_t
 1068 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
 1069 {
 1070         int i;
 1071         uint32_t byte = 0;
 1072 
 1073         /*
 1074          * Enable use of auto EEPROM access so we can avoid
 1075          * having to use the bitbang method.
 1076          */
 1077         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
 1078 
 1079         /* Reset the EEPROM, load the clock period. */
 1080         CSR_WRITE_4(sc, BGE_EE_ADDR,
 1081             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
 1082         DELAY(20);
 1083 
 1084         /* Issue the read EEPROM command. */
 1085         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
 1086 
 1087         /* Wait for completion */
 1088         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
 1089                 DELAY(10);
 1090                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
 1091                         break;
 1092         }
 1093 
 1094         if (i == BGE_TIMEOUT * 10) {
 1095                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
 1096                 return (1);
 1097         }
 1098 
 1099         /* Get result. */
 1100         byte = CSR_READ_4(sc, BGE_EE_DATA);
 1101 
 1102         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
 1103 
 1104         return (0);
 1105 }
 1106 
 1107 /*
 1108  * Read a sequence of bytes from the EEPROM.
 1109  */
 1110 static int
 1111 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
 1112 {
 1113         int i, error = 0;
 1114         uint8_t byte = 0;
 1115 
 1116         for (i = 0; i < cnt; i++) {
 1117                 error = bge_eeprom_getbyte(sc, off + i, &byte);
 1118                 if (error)
 1119                         break;
 1120                 *(dest + i) = byte;
 1121         }
 1122 
 1123         return (error ? 1 : 0);
 1124 }
 1125 
 1126 static int
 1127 bge_miibus_readreg(device_t dev, int phy, int reg)
 1128 {
 1129         struct bge_softc *sc;
 1130         uint32_t val;
 1131         int i;
 1132 
 1133         sc = device_get_softc(dev);
 1134 
 1135         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
 1136                 return (0);
 1137 
 1138         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
 1139         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1140                 CSR_WRITE_4(sc, BGE_MI_MODE,
 1141                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
 1142                 DELAY(80);
 1143         }
 1144 
 1145         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
 1146             BGE_MIPHY(phy) | BGE_MIREG(reg));
 1147 
 1148         /* Poll for the PHY register access to complete. */
 1149         for (i = 0; i < BGE_TIMEOUT; i++) {
 1150                 DELAY(10);
 1151                 val = CSR_READ_4(sc, BGE_MI_COMM);
 1152                 if ((val & BGE_MICOMM_BUSY) == 0) {
 1153                         DELAY(5);
 1154                         val = CSR_READ_4(sc, BGE_MI_COMM);
 1155                         break;
 1156                 }
 1157         }
 1158 
 1159         if (i == BGE_TIMEOUT) {
 1160                 device_printf(sc->bge_dev,
 1161                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
 1162                     phy, reg, val);
 1163                 val = 0;
 1164         }
 1165 
 1166         /* Restore the autopoll bit if necessary. */
 1167         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1168                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 1169                 DELAY(80);
 1170         }
 1171 
 1172         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
 1173 
 1174         if (val & BGE_MICOMM_READFAIL)
 1175                 return (0);
 1176 
 1177         return (val & 0xFFFF);
 1178 }
 1179 
 1180 static int
 1181 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
 1182 {
 1183         struct bge_softc *sc;
 1184         int i;
 1185 
 1186         sc = device_get_softc(dev);
 1187 
 1188         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
 1189             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
 1190                 return (0);
 1191 
 1192         if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
 1193                 return (0);
 1194 
 1195         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
 1196         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1197                 CSR_WRITE_4(sc, BGE_MI_MODE,
 1198                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
 1199                 DELAY(80);
 1200         }
 1201 
 1202         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
 1203             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
 1204 
 1205         for (i = 0; i < BGE_TIMEOUT; i++) {
 1206                 DELAY(10);
 1207                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
 1208                         DELAY(5);
 1209                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
 1210                         break;
 1211                 }
 1212         }
 1213 
 1214         /* Restore the autopoll bit if necessary. */
 1215         if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 1216                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 1217                 DELAY(80);
 1218         }
 1219 
 1220         bge_ape_unlock(sc, sc->bge_phy_ape_lock);
 1221 
 1222         if (i == BGE_TIMEOUT)
 1223                 device_printf(sc->bge_dev,
 1224                     "PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
 1225                     phy, reg, val);
 1226 
 1227         return (0);
 1228 }
 1229 
 1230 static void
 1231 bge_miibus_statchg(device_t dev)
 1232 {
 1233         struct bge_softc *sc;
 1234         struct mii_data *mii;
 1235         uint32_t mac_mode, rx_mode, tx_mode;
 1236 
 1237         sc = device_get_softc(dev);
 1238         if ((sc->bge_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 1239                 return;
 1240         mii = device_get_softc(sc->bge_miibus);
 1241 
 1242         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
 1243             (IFM_ACTIVE | IFM_AVALID)) {
 1244                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
 1245                 case IFM_10_T:
 1246                 case IFM_100_TX:
 1247                         sc->bge_link = 1;
 1248                         break;
 1249                 case IFM_1000_T:
 1250                 case IFM_1000_SX:
 1251                 case IFM_2500_SX:
 1252                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
 1253                                 sc->bge_link = 1;
 1254                         else
 1255                                 sc->bge_link = 0;
 1256                         break;
 1257                 default:
 1258                         sc->bge_link = 0;
 1259                         break;
 1260                 }
 1261         } else
 1262                 sc->bge_link = 0;
 1263         if (sc->bge_link == 0)
 1264                 return;
 1265 
 1266         /*
 1267          * APE firmware touches these registers to keep the MAC
 1268          * connected to the outside world.  Try to keep the
 1269          * accesses atomic.
 1270          */
 1271 
 1272         /* Set the port mode (MII/GMII) to match the link speed. */
 1273         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
 1274             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
 1275         tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
 1276         rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
 1277 
 1278         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
 1279             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
 1280                 mac_mode |= BGE_PORTMODE_GMII;
 1281         else
 1282                 mac_mode |= BGE_PORTMODE_MII;
 1283 
 1284         /* Set MAC flow control behavior to match link flow control settings. */
 1285         tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
 1286         rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
 1287         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
 1288                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
 1289                         tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
 1290                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
 1291                         rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
 1292         } else
 1293                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
 1294 
 1295         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
 1296         DELAY(40);
 1297         CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
 1298         CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
 1299 }
 1300 
 1301 /*
 1302  * Intialize a standard receive ring descriptor.
 1303  */
 1304 static int
 1305 bge_newbuf_std(struct bge_softc *sc, int i)
 1306 {
 1307         struct mbuf *m;
 1308         struct bge_rx_bd *r;
 1309         bus_dma_segment_t segs[1];
 1310         bus_dmamap_t map;
 1311         int error, nsegs;
 1312 
 1313         if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
 1314             (sc->bge_ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
 1315             ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
 1316                 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
 1317                 if (m == NULL)
 1318                         return (ENOBUFS);
 1319                 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 1320         } else {
 1321                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1322                 if (m == NULL)
 1323                         return (ENOBUFS);
 1324                 m->m_len = m->m_pkthdr.len = MCLBYTES;
 1325         }
 1326         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
 1327                 m_adj(m, ETHER_ALIGN);
 1328 
 1329         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
 1330             sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
 1331         if (error != 0) {
 1332                 m_freem(m);
 1333                 return (error);
 1334         }
 1335         if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 1336                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 1337                     sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
 1338                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
 1339                     sc->bge_cdata.bge_rx_std_dmamap[i]);
 1340         }
 1341         map = sc->bge_cdata.bge_rx_std_dmamap[i];
 1342         sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
 1343         sc->bge_cdata.bge_rx_std_sparemap = map;
 1344         sc->bge_cdata.bge_rx_std_chain[i] = m;
 1345         sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
 1346         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
 1347         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
 1348         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
 1349         r->bge_flags = BGE_RXBDFLAG_END;
 1350         r->bge_len = segs[0].ds_len;
 1351         r->bge_idx = i;
 1352 
 1353         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 1354             sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
 1355 
 1356         return (0);
 1357 }
 1358 
 1359 /*
 1360  * Initialize a jumbo receive ring descriptor. This allocates
 1361  * a jumbo buffer from the pool managed internally by the driver.
 1362  */
 1363 static int
 1364 bge_newbuf_jumbo(struct bge_softc *sc, int i)
 1365 {
 1366         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
 1367         bus_dmamap_t map;
 1368         struct bge_extrx_bd *r;
 1369         struct mbuf *m;
 1370         int error, nsegs;
 1371 
 1372         MGETHDR(m, M_NOWAIT, MT_DATA);
 1373         if (m == NULL)
 1374                 return (ENOBUFS);
 1375 
 1376         m_cljget(m, M_NOWAIT, MJUM9BYTES);
 1377         if (!(m->m_flags & M_EXT)) {
 1378                 m_freem(m);
 1379                 return (ENOBUFS);
 1380         }
 1381         m->m_len = m->m_pkthdr.len = MJUM9BYTES;
 1382         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
 1383                 m_adj(m, ETHER_ALIGN);
 1384 
 1385         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
 1386             sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
 1387         if (error != 0) {
 1388                 m_freem(m);
 1389                 return (error);
 1390         }
 1391 
 1392         if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 1393                 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1394                     sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
 1395                 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 1396                     sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1397         }
 1398         map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
 1399         sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
 1400             sc->bge_cdata.bge_rx_jumbo_sparemap;
 1401         sc->bge_cdata.bge_rx_jumbo_sparemap = map;
 1402         sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
 1403         sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
 1404         sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
 1405         sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
 1406         sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
 1407 
 1408         /*
 1409          * Fill in the extended RX buffer descriptor.
 1410          */
 1411         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
 1412         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
 1413         r->bge_idx = i;
 1414         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
 1415         switch (nsegs) {
 1416         case 4:
 1417                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
 1418                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
 1419                 r->bge_len3 = segs[3].ds_len;
 1420                 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
 1421         case 3:
 1422                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
 1423                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
 1424                 r->bge_len2 = segs[2].ds_len;
 1425                 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
 1426         case 2:
 1427                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
 1428                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
 1429                 r->bge_len1 = segs[1].ds_len;
 1430                 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
 1431         case 1:
 1432                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
 1433                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
 1434                 r->bge_len0 = segs[0].ds_len;
 1435                 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
 1436                 break;
 1437         default:
 1438                 panic("%s: %d segments\n", __func__, nsegs);
 1439         }
 1440 
 1441         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1442             sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
 1443 
 1444         return (0);
 1445 }
 1446 
 1447 static int
 1448 bge_init_rx_ring_std(struct bge_softc *sc)
 1449 {
 1450         int error, i;
 1451 
 1452         bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
 1453         sc->bge_std = 0;
 1454         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1455                 if ((error = bge_newbuf_std(sc, i)) != 0)
 1456                         return (error);
 1457                 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 1458         }
 1459 
 1460         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 1461             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 1462 
 1463         sc->bge_std = 0;
 1464         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
 1465 
 1466         return (0);
 1467 }
 1468 
 1469 static void
 1470 bge_free_rx_ring_std(struct bge_softc *sc)
 1471 {
 1472         int i;
 1473 
 1474         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 1475                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
 1476                         bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
 1477                             sc->bge_cdata.bge_rx_std_dmamap[i],
 1478                             BUS_DMASYNC_POSTREAD);
 1479                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
 1480                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 1481                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
 1482                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
 1483                 }
 1484                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
 1485                     sizeof(struct bge_rx_bd));
 1486         }
 1487 }
 1488 
 1489 static int
 1490 bge_init_rx_ring_jumbo(struct bge_softc *sc)
 1491 {
 1492         struct bge_rcb *rcb;
 1493         int error, i;
 1494 
 1495         bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
 1496         sc->bge_jumbo = 0;
 1497         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1498                 if ((error = bge_newbuf_jumbo(sc, i)) != 0)
 1499                         return (error);
 1500                 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 1501         }
 1502 
 1503         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 1504             sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 1505 
 1506         sc->bge_jumbo = 0;
 1507 
 1508         /* Enable the jumbo receive producer ring. */
 1509         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 1510         rcb->bge_maxlen_flags =
 1511             BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
 1512         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 1513 
 1514         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
 1515 
 1516         return (0);
 1517 }
 1518 
 1519 static void
 1520 bge_free_rx_ring_jumbo(struct bge_softc *sc)
 1521 {
 1522         int i;
 1523 
 1524         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 1525                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
 1526                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
 1527                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
 1528                             BUS_DMASYNC_POSTREAD);
 1529                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
 1530                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 1531                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
 1532                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
 1533                 }
 1534                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
 1535                     sizeof(struct bge_extrx_bd));
 1536         }
 1537 }
 1538 
 1539 static void
 1540 bge_free_tx_ring(struct bge_softc *sc)
 1541 {
 1542         int i;
 1543 
 1544         if (sc->bge_ldata.bge_tx_ring == NULL)
 1545                 return;
 1546 
 1547         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 1548                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
 1549                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
 1550                             sc->bge_cdata.bge_tx_dmamap[i],
 1551                             BUS_DMASYNC_POSTWRITE);
 1552                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
 1553                             sc->bge_cdata.bge_tx_dmamap[i]);
 1554                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
 1555                         sc->bge_cdata.bge_tx_chain[i] = NULL;
 1556                 }
 1557                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
 1558                     sizeof(struct bge_tx_bd));
 1559         }
 1560 }
 1561 
 1562 static int
 1563 bge_init_tx_ring(struct bge_softc *sc)
 1564 {
 1565         sc->bge_txcnt = 0;
 1566         sc->bge_tx_saved_considx = 0;
 1567 
 1568         bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
 1569         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 1570             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
 1571 
 1572         /* Initialize transmit producer index for host-memory send ring. */
 1573         sc->bge_tx_prodidx = 0;
 1574         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1575 
 1576         /* 5700 b2 errata */
 1577         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1578                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
 1579 
 1580         /* NIC-memory send ring not used; initialize to zero. */
 1581         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1582         /* 5700 b2 errata */
 1583         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 1584                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
 1585 
 1586         return (0);
 1587 }
 1588 
 1589 static void
 1590 bge_setpromisc(struct bge_softc *sc)
 1591 {
 1592         struct ifnet *ifp;
 1593 
 1594         BGE_LOCK_ASSERT(sc);
 1595 
 1596         ifp = sc->bge_ifp;
 1597 
 1598         /* Enable or disable promiscuous mode as needed. */
 1599         if (ifp->if_flags & IFF_PROMISC)
 1600                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1601         else
 1602                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
 1603 }
 1604 
 1605 static void
 1606 bge_setmulti(struct bge_softc *sc)
 1607 {
 1608         struct ifnet *ifp;
 1609         struct ifmultiaddr *ifma;
 1610         uint32_t hashes[4] = { 0, 0, 0, 0 };
 1611         int h, i;
 1612 
 1613         BGE_LOCK_ASSERT(sc);
 1614 
 1615         ifp = sc->bge_ifp;
 1616 
 1617         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
 1618                 for (i = 0; i < 4; i++)
 1619                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
 1620                 return;
 1621         }
 1622 
 1623         /* First, zot all the existing filters. */
 1624         for (i = 0; i < 4; i++)
 1625                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
 1626 
 1627         /* Now program new ones. */
 1628         if_maddr_rlock(ifp);
 1629         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 1630                 if (ifma->ifma_addr->sa_family != AF_LINK)
 1631                         continue;
 1632                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
 1633                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
 1634                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
 1635         }
 1636         if_maddr_runlock(ifp);
 1637 
 1638         for (i = 0; i < 4; i++)
 1639                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
 1640 }
 1641 
 1642 static void
 1643 bge_setvlan(struct bge_softc *sc)
 1644 {
 1645         struct ifnet *ifp;
 1646 
 1647         BGE_LOCK_ASSERT(sc);
 1648 
 1649         ifp = sc->bge_ifp;
 1650 
 1651         /* Enable or disable VLAN tag stripping as needed. */
 1652         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
 1653                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1654         else
 1655                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
 1656 }
 1657 
 1658 static void
 1659 bge_sig_pre_reset(struct bge_softc *sc, int type)
 1660 {
 1661 
 1662         /*
 1663          * Some chips don't like this so only do this if ASF is enabled
 1664          */
 1665         if (sc->bge_asf_mode)
 1666                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
 1667 
 1668         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1669                 switch (type) {
 1670                 case BGE_RESET_START:
 1671                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1672                             BGE_FW_DRV_STATE_START);
 1673                         break;
 1674                 case BGE_RESET_SHUTDOWN:
 1675                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1676                             BGE_FW_DRV_STATE_UNLOAD);
 1677                         break;
 1678                 case BGE_RESET_SUSPEND:
 1679                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1680                             BGE_FW_DRV_STATE_SUSPEND);
 1681                         break;
 1682                 }
 1683         }
 1684 
 1685         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
 1686                 bge_ape_driver_state_change(sc, type);
 1687 }
 1688 
 1689 static void
 1690 bge_sig_post_reset(struct bge_softc *sc, int type)
 1691 {
 1692 
 1693         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
 1694                 switch (type) {
 1695                 case BGE_RESET_START:
 1696                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1697                             BGE_FW_DRV_STATE_START_DONE);
 1698                         /* START DONE */
 1699                         break;
 1700                 case BGE_RESET_SHUTDOWN:
 1701                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1702                             BGE_FW_DRV_STATE_UNLOAD_DONE);
 1703                         break;
 1704                 }
 1705         }
 1706         if (type == BGE_RESET_SHUTDOWN)
 1707                 bge_ape_driver_state_change(sc, type);
 1708 }
 1709 
 1710 static void
 1711 bge_sig_legacy(struct bge_softc *sc, int type)
 1712 {
 1713 
 1714         if (sc->bge_asf_mode) {
 1715                 switch (type) {
 1716                 case BGE_RESET_START:
 1717                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1718                             BGE_FW_DRV_STATE_START);
 1719                         break;
 1720                 case BGE_RESET_SHUTDOWN:
 1721                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
 1722                             BGE_FW_DRV_STATE_UNLOAD);
 1723                         break;
 1724                 }
 1725         }
 1726 }
 1727 
 1728 static void
 1729 bge_stop_fw(struct bge_softc *sc)
 1730 {
 1731         int i;
 1732 
 1733         if (sc->bge_asf_mode) {
 1734                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
 1735                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
 1736                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
 1737 
 1738                 for (i = 0; i < 100; i++ ) {
 1739                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
 1740                             BGE_RX_CPU_DRV_EVENT))
 1741                                 break;
 1742                         DELAY(10);
 1743                 }
 1744         }
 1745 }
 1746 
 1747 static uint32_t
 1748 bge_dma_swap_options(struct bge_softc *sc)
 1749 {
 1750         uint32_t dma_options;
 1751 
 1752         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
 1753             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
 1754 #if BYTE_ORDER == BIG_ENDIAN
 1755         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
 1756 #endif
 1757         return (dma_options);
 1758 }
 1759 
 1760 /*
 1761  * Do endian, PCI and DMA initialization.
 1762  */
 1763 static int
 1764 bge_chipinit(struct bge_softc *sc)
 1765 {
 1766         uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
 1767         uint16_t val;
 1768         int i;
 1769 
 1770         /* Set endianness before we access any non-PCI registers. */
 1771         misc_ctl = BGE_INIT;
 1772         if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
 1773                 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
 1774         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
 1775 
 1776         /*
 1777          * Clear the MAC statistics block in the NIC's
 1778          * internal memory.
 1779          */
 1780         for (i = BGE_STATS_BLOCK;
 1781             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
 1782                 BGE_MEMWIN_WRITE(sc, i, 0);
 1783 
 1784         for (i = BGE_STATUS_BLOCK;
 1785             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
 1786                 BGE_MEMWIN_WRITE(sc, i, 0);
 1787 
 1788         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
 1789                 /*
 1790                  *  Fix data corruption caused by non-qword write with WB.
 1791                  *  Fix master abort in PCI mode.
 1792                  *  Fix PCI latency timer.
 1793                  */
 1794                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
 1795                 val |= (1 << 10) | (1 << 12) | (1 << 13);
 1796                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
 1797         }
 1798 
 1799         /*
 1800          * Set up the PCI DMA control register.
 1801          */
 1802         dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
 1803             BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
 1804         if (sc->bge_flags & BGE_FLAG_PCIE) {
 1805                 if (sc->bge_mps >= 256)
 1806                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 1807                 else
 1808                         dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1809         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
 1810                 if (BGE_IS_5714_FAMILY(sc)) {
 1811                         /* 256 bytes for read and write. */
 1812                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
 1813                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
 1814                         dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
 1815                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
 1816                             BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
 1817                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
 1818                         /*
 1819                          * In the BCM5703, the DMA read watermark should
 1820                          * be set to less than or equal to the maximum
 1821                          * memory read byte count of the PCI-X command
 1822                          * register.
 1823                          */
 1824                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
 1825                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1826                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1827                         /* 1536 bytes for read, 384 bytes for write. */
 1828                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1829                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
 1830                 } else {
 1831                         /* 384 bytes for read and write. */
 1832                         dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
 1833                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
 1834                             0x0F;
 1835                 }
 1836                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1837                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 1838                         uint32_t tmp;
 1839 
 1840                         /* Set ONE_DMA_AT_ONCE for hardware workaround. */
 1841                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 1842                         if (tmp == 6 || tmp == 7)
 1843                                 dma_rw_ctl |=
 1844                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
 1845 
 1846                         /* Set PCI-X DMA write workaround. */
 1847                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1848                 }
 1849         } else {
 1850                 /* Conventional PCI bus: 256 bytes for read and write. */
 1851                 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
 1852                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
 1853 
 1854                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
 1855                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
 1856                         dma_rw_ctl |= 0x0F;
 1857         }
 1858         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 1859             sc->bge_asicrev == BGE_ASICREV_BCM5701)
 1860                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
 1861                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
 1862         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
 1863             sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1864                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
 1865         if (BGE_IS_5717_PLUS(sc)) {
 1866                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
 1867                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
 1868                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
 1869                 /*
 1870                  * Enable HW workaround for controllers that misinterpret
 1871                  * a status tag update and leave interrupts permanently
 1872                  * disabled.
 1873                  */
 1874                 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
 1875                     sc->bge_asicrev != BGE_ASICREV_BCM57765)
 1876                         dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
 1877         }
 1878         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
 1879 
 1880         /*
 1881          * Set up general mode register.
 1882          */
 1883         mode_ctl = bge_dma_swap_options(sc);
 1884         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 1885                 /* Retain Host-2-BMC settings written by APE firmware. */
 1886                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
 1887                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
 1888                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
 1889                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
 1890         }
 1891         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
 1892             BGE_MODECTL_TX_NO_PHDR_CSUM;
 1893 
 1894         /*
 1895          * BCM5701 B5 have a bug causing data corruption when using
 1896          * 64-bit DMA reads, which can be terminated early and then
 1897          * completed later as 32-bit accesses, in combination with
 1898          * certain bridges.
 1899          */
 1900         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 1901             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
 1902                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
 1903 
 1904         /*
 1905          * Tell the firmware the driver is running
 1906          */
 1907         if (sc->bge_asf_mode & ASF_STACKUP)
 1908                 mode_ctl |= BGE_MODECTL_STACKUP;
 1909 
 1910         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
 1911 
 1912         /*
 1913          * Disable memory write invalidate.  Apparently it is not supported
 1914          * properly by these devices.  Also ensure that INTx isn't disabled,
 1915          * as these chips need it even when using MSI.
 1916          */
 1917         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
 1918             PCIM_CMD_INTxDIS | PCIM_CMD_MWIEN, 4);
 1919 
 1920         /* Set the timer prescaler (always 66 MHz). */
 1921         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
 1922 
 1923         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
 1924         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1925                 DELAY(40);      /* XXX */
 1926 
 1927                 /* Put PHY into ready state */
 1928                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
 1929                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
 1930                 DELAY(40);
 1931         }
 1932 
 1933         return (0);
 1934 }
 1935 
 1936 static int
 1937 bge_blockinit(struct bge_softc *sc)
 1938 {
 1939         struct bge_rcb *rcb;
 1940         bus_size_t vrcb;
 1941         bge_hostaddr taddr;
 1942         uint32_t dmactl, val;
 1943         int i, limit;
 1944 
 1945         /*
 1946          * Initialize the memory window pointer register so that
 1947          * we can access the first 32K of internal NIC RAM. This will
 1948          * allow us to set up the TX send ring RCBs and the RX return
 1949          * ring RCBs, plus other things which live in NIC memory.
 1950          */
 1951         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
 1952 
 1953         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
 1954 
 1955         if (!(BGE_IS_5705_PLUS(sc))) {
 1956                 /* Configure mbuf memory pool */
 1957                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
 1958                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
 1959                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
 1960                 else
 1961                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
 1962 
 1963                 /* Configure DMA resource pool */
 1964                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
 1965                     BGE_DMA_DESCRIPTORS);
 1966                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
 1967         }
 1968 
 1969         /* Configure mbuf pool watermarks */
 1970         if (BGE_IS_5717_PLUS(sc)) {
 1971                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1972                 if (sc->bge_ifp->if_mtu > ETHERMTU) {
 1973                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
 1974                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
 1975                 } else {
 1976                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
 1977                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
 1978                 }
 1979         } else if (!BGE_IS_5705_PLUS(sc)) {
 1980                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
 1981                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
 1982                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1983         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 1984                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1985                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
 1986                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
 1987         } else {
 1988                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
 1989                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
 1990                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
 1991         }
 1992 
 1993         /* Configure DMA resource watermarks */
 1994         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
 1995         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
 1996 
 1997         /* Enable buffer manager */
 1998         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
 1999         /*
 2000          * Change the arbitration algorithm of TXMBUF read request to
 2001          * round-robin instead of priority based for BCM5719.  When
 2002          * TXFIFO is almost empty, RDMA will hold its request until
 2003          * TXFIFO is not almost empty.
 2004          */
 2005         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 2006                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
 2007         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
 2008 
 2009         /* Poll for buffer manager start indication */
 2010         for (i = 0; i < BGE_TIMEOUT; i++) {
 2011                 DELAY(10);
 2012                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
 2013                         break;
 2014         }
 2015 
 2016         if (i == BGE_TIMEOUT) {
 2017                 device_printf(sc->bge_dev, "buffer manager failed to start\n");
 2018                 return (ENXIO);
 2019         }
 2020 
 2021         /* Enable flow-through queues */
 2022         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 2023         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 2024 
 2025         /* Wait until queue initialization is complete */
 2026         for (i = 0; i < BGE_TIMEOUT; i++) {
 2027                 DELAY(10);
 2028                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
 2029                         break;
 2030         }
 2031 
 2032         if (i == BGE_TIMEOUT) {
 2033                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
 2034                 return (ENXIO);
 2035         }
 2036 
 2037         /*
 2038          * Summary of rings supported by the controller:
 2039          *
 2040          * Standard Receive Producer Ring
 2041          * - This ring is used to feed receive buffers for "standard"
 2042          *   sized frames (typically 1536 bytes) to the controller.
 2043          *
 2044          * Jumbo Receive Producer Ring
 2045          * - This ring is used to feed receive buffers for jumbo sized
 2046          *   frames (i.e. anything bigger than the "standard" frames)
 2047          *   to the controller.
 2048          *
 2049          * Mini Receive Producer Ring
 2050          * - This ring is used to feed receive buffers for "mini"
 2051          *   sized frames to the controller.
 2052          * - This feature required external memory for the controller
 2053          *   but was never used in a production system.  Should always
 2054          *   be disabled.
 2055          *
 2056          * Receive Return Ring
 2057          * - After the controller has placed an incoming frame into a
 2058          *   receive buffer that buffer is moved into a receive return
 2059          *   ring.  The driver is then responsible to passing the
 2060          *   buffer up to the stack.  Many versions of the controller
 2061          *   support multiple RR rings.
 2062          *
 2063          * Send Ring
 2064          * - This ring is used for outgoing frames.  Many versions of
 2065          *   the controller support multiple send rings.
 2066          */
 2067 
 2068         /* Initialize the standard receive producer ring control block. */
 2069         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
 2070         rcb->bge_hostaddr.bge_addr_lo =
 2071             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
 2072         rcb->bge_hostaddr.bge_addr_hi =
 2073             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
 2074         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 2075             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
 2076         if (BGE_IS_5717_PLUS(sc)) {
 2077                 /*
 2078                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
 2079                  * Bits 15-2 : Maximum RX frame size
 2080                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
 2081                  * Bit 0     : Reserved
 2082                  */
 2083                 rcb->bge_maxlen_flags =
 2084                     BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
 2085         } else if (BGE_IS_5705_PLUS(sc)) {
 2086                 /*
 2087                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
 2088                  * Bits 15-2 : Reserved (should be 0)
 2089                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
 2090                  * Bit 0     : Reserved
 2091                  */
 2092                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
 2093         } else {
 2094                 /*
 2095                  * Ring size is always XXX entries
 2096                  * Bits 31-16: Maximum RX frame size
 2097                  * Bits 15-2 : Reserved (should be 0)
 2098                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
 2099                  * Bit 0     : Reserved
 2100                  */
 2101                 rcb->bge_maxlen_flags =
 2102                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
 2103         }
 2104         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2105             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2106             sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2107                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
 2108         else
 2109                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
 2110         /* Write the standard receive producer ring control block. */
 2111         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
 2112         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
 2113         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
 2114         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
 2115 
 2116         /* Reset the standard receive producer ring producer index. */
 2117         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
 2118 
 2119         /*
 2120          * Initialize the jumbo RX producer ring control
 2121          * block.  We set the 'ring disabled' bit in the
 2122          * flags field until we're actually ready to start
 2123          * using this ring (i.e. once we set the MTU
 2124          * high enough to require it).
 2125          */
 2126         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 2127                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
 2128                 /* Get the jumbo receive producer ring RCB parameters. */
 2129                 rcb->bge_hostaddr.bge_addr_lo =
 2130                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 2131                 rcb->bge_hostaddr.bge_addr_hi =
 2132                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
 2133                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2134                     sc->bge_cdata.bge_rx_jumbo_ring_map,
 2135                     BUS_DMASYNC_PREREAD);
 2136                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
 2137                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
 2138                 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2139                     sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2140                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2141                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
 2142                 else
 2143                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
 2144                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
 2145                     rcb->bge_hostaddr.bge_addr_hi);
 2146                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
 2147                     rcb->bge_hostaddr.bge_addr_lo);
 2148                 /* Program the jumbo receive producer ring RCB parameters. */
 2149                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
 2150                     rcb->bge_maxlen_flags);
 2151                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
 2152                 /* Reset the jumbo receive producer ring producer index. */
 2153                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
 2154         }
 2155 
 2156         /* Disable the mini receive producer ring RCB. */
 2157         if (BGE_IS_5700_FAMILY(sc)) {
 2158                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
 2159                 rcb->bge_maxlen_flags =
 2160                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
 2161                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
 2162                     rcb->bge_maxlen_flags);
 2163                 /* Reset the mini receive producer ring producer index. */
 2164                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
 2165         }
 2166 
 2167         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
 2168         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 2169                 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
 2170                     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
 2171                     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
 2172                         CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
 2173                             (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
 2174         }
 2175         /*
 2176          * The BD ring replenish thresholds control how often the
 2177          * hardware fetches new BD's from the producer rings in host
 2178          * memory.  Setting the value too low on a busy system can
 2179          * starve the hardware and recue the throughpout.
 2180          *
 2181          * Set the BD ring replentish thresholds. The recommended
 2182          * values are 1/8th the number of descriptors allocated to
 2183          * each ring.
 2184          * XXX The 5754 requires a lower threshold, so it might be a
 2185          * requirement of all 575x family chips.  The Linux driver sets
 2186          * the lower threshold for all 5705 family chips as well, but there
 2187          * are reports that it might not need to be so strict.
 2188          *
 2189          * XXX Linux does some extra fiddling here for the 5906 parts as
 2190          * well.
 2191          */
 2192         if (BGE_IS_5705_PLUS(sc))
 2193                 val = 8;
 2194         else
 2195                 val = BGE_STD_RX_RING_CNT / 8;
 2196         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
 2197         if (BGE_IS_JUMBO_CAPABLE(sc))
 2198                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
 2199                     BGE_JUMBO_RX_RING_CNT/8);
 2200         if (BGE_IS_5717_PLUS(sc)) {
 2201                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
 2202                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
 2203         }
 2204 
 2205         /*
 2206          * Disable all send rings by setting the 'ring disabled' bit
 2207          * in the flags field of all the TX send ring control blocks,
 2208          * located in NIC memory.
 2209          */
 2210         if (!BGE_IS_5705_PLUS(sc))
 2211                 /* 5700 to 5704 had 16 send rings. */
 2212                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
 2213         else
 2214                 limit = 1;
 2215         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 2216         for (i = 0; i < limit; i++) {
 2217                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2218                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
 2219                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 2220                 vrcb += sizeof(struct bge_rcb);
 2221         }
 2222 
 2223         /* Configure send ring RCB 0 (we use only the first ring) */
 2224         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
 2225         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
 2226         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 2227         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 2228         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2229             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2230             sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2231                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
 2232         else
 2233                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
 2234                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
 2235         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2236             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
 2237 
 2238         /*
 2239          * Disable all receive return rings by setting the
 2240          * 'ring diabled' bit in the flags field of all the receive
 2241          * return ring control blocks, located in NIC memory.
 2242          */
 2243         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 2244             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 2245             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 2246                 /* Should be 17, use 16 until we get an SRAM map. */
 2247                 limit = 16;
 2248         } else if (!BGE_IS_5705_PLUS(sc))
 2249                 limit = BGE_RX_RINGS_MAX;
 2250         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 2251             BGE_IS_57765_PLUS(sc))
 2252                 limit = 4;
 2253         else
 2254                 limit = 1;
 2255         /* Disable all receive return rings. */
 2256         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 2257         for (i = 0; i < limit; i++) {
 2258                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
 2259                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
 2260                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2261                     BGE_RCB_FLAG_RING_DISABLED);
 2262                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 2263                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
 2264                     (i * (sizeof(uint64_t))), 0);
 2265                 vrcb += sizeof(struct bge_rcb);
 2266         }
 2267 
 2268         /*
 2269          * Set up receive return ring 0.  Note that the NIC address
 2270          * for RX return rings is 0x0.  The return rings live entirely
 2271          * within the host, so the nicaddr field in the RCB isn't used.
 2272          */
 2273         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
 2274         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
 2275         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
 2276         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
 2277         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
 2278         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
 2279             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
 2280 
 2281         /* Set random backoff seed for TX */
 2282         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
 2283             (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
 2284             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
 2285             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) &
 2286             BGE_TX_BACKOFF_SEED_MASK);
 2287 
 2288         /* Set inter-packet gap */
 2289         val = 0x2620;
 2290         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
 2291                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
 2292                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
 2293         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
 2294 
 2295         /*
 2296          * Specify which ring to use for packets that don't match
 2297          * any RX rules.
 2298          */
 2299         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
 2300 
 2301         /*
 2302          * Configure number of RX lists. One interrupt distribution
 2303          * list, sixteen active lists, one bad frames class.
 2304          */
 2305         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
 2306 
 2307         /* Inialize RX list placement stats mask. */
 2308         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
 2309         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
 2310 
 2311         /* Disable host coalescing until we get it set up */
 2312         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
 2313 
 2314         /* Poll to make sure it's shut down. */
 2315         for (i = 0; i < BGE_TIMEOUT; i++) {
 2316                 DELAY(10);
 2317                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
 2318                         break;
 2319         }
 2320 
 2321         if (i == BGE_TIMEOUT) {
 2322                 device_printf(sc->bge_dev,
 2323                     "host coalescing engine failed to idle\n");
 2324                 return (ENXIO);
 2325         }
 2326 
 2327         /* Set up host coalescing defaults */
 2328         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
 2329         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
 2330         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
 2331         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
 2332         if (!(BGE_IS_5705_PLUS(sc))) {
 2333                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
 2334                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
 2335         }
 2336         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
 2337         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
 2338 
 2339         /* Set up address of statistics block */
 2340         if (!(BGE_IS_5705_PLUS(sc))) {
 2341                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
 2342                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
 2343                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
 2344                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
 2345                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
 2346                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
 2347                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
 2348         }
 2349 
 2350         /* Set up address of status block */
 2351         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
 2352             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
 2353         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
 2354             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
 2355 
 2356         /* Set up status block size. */
 2357         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 2358             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
 2359                 val = BGE_STATBLKSZ_FULL;
 2360                 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
 2361         } else {
 2362                 val = BGE_STATBLKSZ_32BYTE;
 2363                 bzero(sc->bge_ldata.bge_status_block, 32);
 2364         }
 2365         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 2366             sc->bge_cdata.bge_status_map,
 2367             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 2368 
 2369         /* Turn on host coalescing state machine */
 2370         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
 2371 
 2372         /* Turn on RX BD completion state machine and enable attentions */
 2373         CSR_WRITE_4(sc, BGE_RBDC_MODE,
 2374             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
 2375 
 2376         /* Turn on RX list placement state machine */
 2377         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 2378 
 2379         /* Turn on RX list selector state machine. */
 2380         if (!(BGE_IS_5705_PLUS(sc)))
 2381                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 2382 
 2383         /* Turn on DMA, clear stats. */
 2384         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
 2385             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
 2386             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
 2387             BGE_MACMODE_FRMHDR_DMA_ENB;
 2388 
 2389         if (sc->bge_flags & BGE_FLAG_TBI)
 2390                 val |= BGE_PORTMODE_TBI;
 2391         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
 2392                 val |= BGE_PORTMODE_GMII;
 2393         else
 2394                 val |= BGE_PORTMODE_MII;
 2395 
 2396         /* Allow APE to send/receive frames. */
 2397         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 2398                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
 2399 
 2400         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
 2401         DELAY(40);
 2402 
 2403         /* Set misc. local control, enable interrupts on attentions */
 2404         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
 2405 
 2406 #ifdef notdef
 2407         /* Assert GPIO pins for PHY reset */
 2408         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
 2409             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
 2410         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
 2411             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
 2412 #endif
 2413 
 2414         /* Turn on DMA completion state machine */
 2415         if (!(BGE_IS_5705_PLUS(sc)))
 2416                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 2417 
 2418         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
 2419 
 2420         /* Enable host coalescing bug fix. */
 2421         if (BGE_IS_5755_PLUS(sc))
 2422                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
 2423 
 2424         /* Request larger DMA burst size to get better performance. */
 2425         if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
 2426                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
 2427 
 2428         /* Turn on write DMA state machine */
 2429         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
 2430         DELAY(40);
 2431 
 2432         /* Turn on read DMA state machine */
 2433         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
 2434 
 2435         if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
 2436                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
 2437 
 2438         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 2439             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 2440             sc->bge_asicrev == BGE_ASICREV_BCM57780)
 2441                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
 2442                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
 2443                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
 2444         if (sc->bge_flags & BGE_FLAG_PCIE)
 2445                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
 2446         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
 2447                 val |= BGE_RDMAMODE_TSO4_ENABLE;
 2448                 if (sc->bge_flags & BGE_FLAG_TSO3 ||
 2449                     sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 2450                     sc->bge_asicrev == BGE_ASICREV_BCM57780)
 2451                         val |= BGE_RDMAMODE_TSO6_ENABLE;
 2452         }
 2453 
 2454         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 2455                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
 2456                         BGE_RDMAMODE_H2BNC_VLAN_DET;
 2457                 /*
 2458                  * Allow multiple outstanding read requests from
 2459                  * non-LSO read DMA engine.
 2460                  */
 2461                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
 2462         }
 2463 
 2464         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 2465             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 2466             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 2467             sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
 2468             BGE_IS_5717_PLUS(sc)) {
 2469                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
 2470                 /*
 2471                  * Adjust tx margin to prevent TX data corruption and
 2472                  * fix internal FIFO overflow.
 2473                  */
 2474                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 2475                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 2476                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
 2477                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
 2478                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
 2479                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
 2480                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
 2481                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
 2482                 }
 2483                 /*
 2484                  * Enable fix for read DMA FIFO overruns.
 2485                  * The fix is to limit the number of RX BDs
 2486                  * the hardware would fetch at a fime.
 2487                  */
 2488                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
 2489                     BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
 2490         }
 2491 
 2492         if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
 2493                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
 2494                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
 2495                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
 2496                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 2497         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 2498                 /*
 2499                  * Allow 4KB burst length reads for non-LSO frames.
 2500                  * Enable 512B burst length reads for buffer descriptors.
 2501                  */
 2502                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
 2503                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
 2504                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
 2505                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
 2506         }
 2507 
 2508         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
 2509         DELAY(40);
 2510 
 2511         /* Turn on RX data completion state machine */
 2512         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 2513 
 2514         /* Turn on RX BD initiator state machine */
 2515         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 2516 
 2517         /* Turn on RX data and RX BD initiator state machine */
 2518         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
 2519 
 2520         /* Turn on Mbuf cluster free state machine */
 2521         if (!(BGE_IS_5705_PLUS(sc)))
 2522                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 2523 
 2524         /* Turn on send BD completion state machine */
 2525         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 2526 
 2527         /* Turn on send data completion state machine */
 2528         val = BGE_SDCMODE_ENABLE;
 2529         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
 2530                 val |= BGE_SDCMODE_CDELAY;
 2531         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
 2532 
 2533         /* Turn on send data initiator state machine */
 2534         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
 2535                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
 2536                     BGE_SDIMODE_HW_LSO_PRE_DMA);
 2537         else
 2538                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 2539 
 2540         /* Turn on send BD initiator state machine */
 2541         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 2542 
 2543         /* Turn on send BD selector state machine */
 2544         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 2545 
 2546         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
 2547         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
 2548             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
 2549 
 2550         /* ack/clear link change events */
 2551         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 2552             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 2553             BGE_MACSTAT_LINK_CHANGED);
 2554         CSR_WRITE_4(sc, BGE_MI_STS, 0);
 2555 
 2556         /*
 2557          * Enable attention when the link has changed state for
 2558          * devices that use auto polling.
 2559          */
 2560         if (sc->bge_flags & BGE_FLAG_TBI) {
 2561                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
 2562         } else {
 2563                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
 2564                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
 2565                         DELAY(80);
 2566                 }
 2567                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 2568                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
 2569                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 2570                             BGE_EVTENB_MI_INTERRUPT);
 2571         }
 2572 
 2573         /*
 2574          * Clear any pending link state attention.
 2575          * Otherwise some link state change events may be lost until attention
 2576          * is cleared by bge_intr() -> bge_link_upd() sequence.
 2577          * It's not necessary on newer BCM chips - perhaps enabling link
 2578          * state change attentions implies clearing pending attention.
 2579          */
 2580         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 2581             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 2582             BGE_MACSTAT_LINK_CHANGED);
 2583 
 2584         /* Enable link state change attentions. */
 2585         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
 2586 
 2587         return (0);
 2588 }
 2589 
 2590 static const struct bge_revision *
 2591 bge_lookup_rev(uint32_t chipid)
 2592 {
 2593         const struct bge_revision *br;
 2594 
 2595         for (br = bge_revisions; br->br_name != NULL; br++) {
 2596                 if (br->br_chipid == chipid)
 2597                         return (br);
 2598         }
 2599 
 2600         for (br = bge_majorrevs; br->br_name != NULL; br++) {
 2601                 if (br->br_chipid == BGE_ASICREV(chipid))
 2602                         return (br);
 2603         }
 2604 
 2605         return (NULL);
 2606 }
 2607 
 2608 static const struct bge_vendor *
 2609 bge_lookup_vendor(uint16_t vid)
 2610 {
 2611         const struct bge_vendor *v;
 2612 
 2613         for (v = bge_vendors; v->v_name != NULL; v++)
 2614                 if (v->v_id == vid)
 2615                         return (v);
 2616 
 2617         return (NULL);
 2618 }
 2619 
 2620 static uint32_t
 2621 bge_chipid(device_t dev)
 2622 {
 2623         uint32_t id;
 2624 
 2625         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
 2626             BGE_PCIMISCCTL_ASICREV_SHIFT;
 2627         if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
 2628                 /*
 2629                  * Find the ASCI revision.  Different chips use different
 2630                  * registers.
 2631                  */
 2632                 switch (pci_get_device(dev)) {
 2633                 case BCOM_DEVICEID_BCM5717:
 2634                 case BCOM_DEVICEID_BCM5718:
 2635                 case BCOM_DEVICEID_BCM5719:
 2636                 case BCOM_DEVICEID_BCM5720:
 2637                         id = pci_read_config(dev,
 2638                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
 2639                         break;
 2640                 case BCOM_DEVICEID_BCM57761:
 2641                 case BCOM_DEVICEID_BCM57762:
 2642                 case BCOM_DEVICEID_BCM57765:
 2643                 case BCOM_DEVICEID_BCM57766:
 2644                 case BCOM_DEVICEID_BCM57781:
 2645                 case BCOM_DEVICEID_BCM57785:
 2646                 case BCOM_DEVICEID_BCM57791:
 2647                 case BCOM_DEVICEID_BCM57795:
 2648                         id = pci_read_config(dev,
 2649                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
 2650                         break;
 2651                 default:
 2652                         id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
 2653                 }
 2654         }
 2655         return (id);
 2656 }
 2657 
 2658 /*
 2659  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
 2660  * against our list and return its name if we find a match.
 2661  *
 2662  * Note that since the Broadcom controller contains VPD support, we
 2663  * try to get the device name string from the controller itself instead
 2664  * of the compiled-in string. It guarantees we'll always announce the
 2665  * right product name. We fall back to the compiled-in string when
 2666  * VPD is unavailable or corrupt.
 2667  */
 2668 static int
 2669 bge_probe(device_t dev)
 2670 {
 2671         char buf[96];
 2672         char model[64];
 2673         const struct bge_revision *br;
 2674         const char *pname;
 2675         struct bge_softc *sc;
 2676         const struct bge_type *t = bge_devs;
 2677         const struct bge_vendor *v;
 2678         uint32_t id;
 2679         uint16_t did, vid;
 2680 
 2681         sc = device_get_softc(dev);
 2682         sc->bge_dev = dev;
 2683         vid = pci_get_vendor(dev);
 2684         did = pci_get_device(dev);
 2685         while(t->bge_vid != 0) {
 2686                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
 2687                         id = bge_chipid(dev);
 2688                         br = bge_lookup_rev(id);
 2689                         if (bge_has_eaddr(sc) &&
 2690                             pci_get_vpd_ident(dev, &pname) == 0)
 2691                                 snprintf(model, sizeof(model), "%s", pname);
 2692                         else {
 2693                                 v = bge_lookup_vendor(vid);
 2694                                 snprintf(model, sizeof(model), "%s %s",
 2695                                     v != NULL ? v->v_name : "Unknown",
 2696                                     br != NULL ? br->br_name :
 2697                                     "NetXtreme/NetLink Ethernet Controller");
 2698                         }
 2699                         snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x",
 2700                             model, br != NULL ? "" : "unknown ", id);
 2701                         device_set_desc_copy(dev, buf);
 2702                         return (BUS_PROBE_DEFAULT);
 2703                 }
 2704                 t++;
 2705         }
 2706 
 2707         return (ENXIO);
 2708 }
 2709 
 2710 static void
 2711 bge_dma_free(struct bge_softc *sc)
 2712 {
 2713         int i;
 2714 
 2715         /* Destroy DMA maps for RX buffers. */
 2716         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 2717                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
 2718                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
 2719                             sc->bge_cdata.bge_rx_std_dmamap[i]);
 2720         }
 2721         if (sc->bge_cdata.bge_rx_std_sparemap)
 2722                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
 2723                     sc->bge_cdata.bge_rx_std_sparemap);
 2724 
 2725         /* Destroy DMA maps for jumbo RX buffers. */
 2726         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 2727                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
 2728                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 2729                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 2730         }
 2731         if (sc->bge_cdata.bge_rx_jumbo_sparemap)
 2732                 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
 2733                     sc->bge_cdata.bge_rx_jumbo_sparemap);
 2734 
 2735         /* Destroy DMA maps for TX buffers. */
 2736         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 2737                 if (sc->bge_cdata.bge_tx_dmamap[i])
 2738                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
 2739                             sc->bge_cdata.bge_tx_dmamap[i]);
 2740         }
 2741 
 2742         if (sc->bge_cdata.bge_rx_mtag)
 2743                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
 2744         if (sc->bge_cdata.bge_mtag_jumbo)
 2745                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
 2746         if (sc->bge_cdata.bge_tx_mtag)
 2747                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
 2748 
 2749         /* Destroy standard RX ring. */
 2750         if (sc->bge_cdata.bge_rx_std_ring_map)
 2751                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
 2752                     sc->bge_cdata.bge_rx_std_ring_map);
 2753         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
 2754                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
 2755                     sc->bge_ldata.bge_rx_std_ring,
 2756                     sc->bge_cdata.bge_rx_std_ring_map);
 2757 
 2758         if (sc->bge_cdata.bge_rx_std_ring_tag)
 2759                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
 2760 
 2761         /* Destroy jumbo RX ring. */
 2762         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
 2763                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2764                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 2765 
 2766         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
 2767             sc->bge_ldata.bge_rx_jumbo_ring)
 2768                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2769                     sc->bge_ldata.bge_rx_jumbo_ring,
 2770                     sc->bge_cdata.bge_rx_jumbo_ring_map);
 2771 
 2772         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
 2773                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
 2774 
 2775         /* Destroy RX return ring. */
 2776         if (sc->bge_cdata.bge_rx_return_ring_map)
 2777                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
 2778                     sc->bge_cdata.bge_rx_return_ring_map);
 2779 
 2780         if (sc->bge_cdata.bge_rx_return_ring_map &&
 2781             sc->bge_ldata.bge_rx_return_ring)
 2782                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
 2783                     sc->bge_ldata.bge_rx_return_ring,
 2784                     sc->bge_cdata.bge_rx_return_ring_map);
 2785 
 2786         if (sc->bge_cdata.bge_rx_return_ring_tag)
 2787                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
 2788 
 2789         /* Destroy TX ring. */
 2790         if (sc->bge_cdata.bge_tx_ring_map)
 2791                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
 2792                     sc->bge_cdata.bge_tx_ring_map);
 2793 
 2794         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
 2795                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
 2796                     sc->bge_ldata.bge_tx_ring,
 2797                     sc->bge_cdata.bge_tx_ring_map);
 2798 
 2799         if (sc->bge_cdata.bge_tx_ring_tag)
 2800                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
 2801 
 2802         /* Destroy status block. */
 2803         if (sc->bge_cdata.bge_status_map)
 2804                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
 2805                     sc->bge_cdata.bge_status_map);
 2806 
 2807         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
 2808                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
 2809                     sc->bge_ldata.bge_status_block,
 2810                     sc->bge_cdata.bge_status_map);
 2811 
 2812         if (sc->bge_cdata.bge_status_tag)
 2813                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
 2814 
 2815         /* Destroy statistics block. */
 2816         if (sc->bge_cdata.bge_stats_map)
 2817                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
 2818                     sc->bge_cdata.bge_stats_map);
 2819 
 2820         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
 2821                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
 2822                     sc->bge_ldata.bge_stats,
 2823                     sc->bge_cdata.bge_stats_map);
 2824 
 2825         if (sc->bge_cdata.bge_stats_tag)
 2826                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
 2827 
 2828         if (sc->bge_cdata.bge_buffer_tag)
 2829                 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
 2830 
 2831         /* Destroy the parent tag. */
 2832         if (sc->bge_cdata.bge_parent_tag)
 2833                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
 2834 }
 2835 
 2836 static int
 2837 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
 2838     bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
 2839     bus_addr_t *paddr, const char *msg)
 2840 {
 2841         struct bge_dmamap_arg ctx;
 2842         bus_addr_t lowaddr;
 2843         bus_size_t ring_end;
 2844         int error;
 2845 
 2846         lowaddr = BUS_SPACE_MAXADDR;
 2847 again:
 2848         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
 2849             alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
 2850             NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
 2851         if (error != 0) {
 2852                 device_printf(sc->bge_dev,
 2853                     "could not create %s dma tag\n", msg);
 2854                 return (ENOMEM);
 2855         }
 2856         /* Allocate DMA'able memory for ring. */
 2857         error = bus_dmamem_alloc(*tag, (void **)ring,
 2858             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
 2859         if (error != 0) {
 2860                 device_printf(sc->bge_dev,
 2861                     "could not allocate DMA'able memory for %s\n", msg);
 2862                 return (ENOMEM);
 2863         }
 2864         /* Load the address of the ring. */
 2865         ctx.bge_busaddr = 0;
 2866         error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
 2867             &ctx, BUS_DMA_NOWAIT);
 2868         if (error != 0) {
 2869                 device_printf(sc->bge_dev,
 2870                     "could not load DMA'able memory for %s\n", msg);
 2871                 return (ENOMEM);
 2872         }
 2873         *paddr = ctx.bge_busaddr;
 2874         ring_end = *paddr + maxsize;
 2875         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
 2876             BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
 2877                 /*
 2878                  * 4GB boundary crossed.  Limit maximum allowable DMA
 2879                  * address space to 32bit and try again.
 2880                  */
 2881                 bus_dmamap_unload(*tag, *map);
 2882                 bus_dmamem_free(*tag, *ring, *map);
 2883                 bus_dma_tag_destroy(*tag);
 2884                 if (bootverbose)
 2885                         device_printf(sc->bge_dev, "4GB boundary crossed, "
 2886                             "limit DMA address space to 32bit for %s\n", msg);
 2887                 *ring = NULL;
 2888                 *tag = NULL;
 2889                 *map = NULL;
 2890                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
 2891                 goto again;
 2892         }
 2893         return (0);
 2894 }
 2895 
 2896 static int
 2897 bge_dma_alloc(struct bge_softc *sc)
 2898 {
 2899         bus_addr_t lowaddr;
 2900         bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
 2901         int i, error;
 2902 
 2903         lowaddr = BUS_SPACE_MAXADDR;
 2904         if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
 2905                 lowaddr = BGE_DMA_MAXADDR;
 2906         /*
 2907          * Allocate the parent bus DMA tag appropriate for PCI.
 2908          */
 2909         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 2910             1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
 2911             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 2912             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
 2913         if (error != 0) {
 2914                 device_printf(sc->bge_dev,
 2915                     "could not allocate parent dma tag\n");
 2916                 return (ENOMEM);
 2917         }
 2918 
 2919         /* Create tag for standard RX ring. */
 2920         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
 2921             &sc->bge_cdata.bge_rx_std_ring_tag,
 2922             (uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
 2923             &sc->bge_cdata.bge_rx_std_ring_map,
 2924             &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
 2925         if (error)
 2926                 return (error);
 2927 
 2928         /* Create tag for RX return ring. */
 2929         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
 2930             &sc->bge_cdata.bge_rx_return_ring_tag,
 2931             (uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
 2932             &sc->bge_cdata.bge_rx_return_ring_map,
 2933             &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
 2934         if (error)
 2935                 return (error);
 2936 
 2937         /* Create tag for TX ring. */
 2938         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
 2939             &sc->bge_cdata.bge_tx_ring_tag,
 2940             (uint8_t **)&sc->bge_ldata.bge_tx_ring,
 2941             &sc->bge_cdata.bge_tx_ring_map,
 2942             &sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
 2943         if (error)
 2944                 return (error);
 2945 
 2946         /*
 2947          * Create tag for status block.
 2948          * Because we only use single Tx/Rx/Rx return ring, use
 2949          * minimum status block size except BCM5700 AX/BX which
 2950          * seems to want to see full status block size regardless
 2951          * of configured number of ring.
 2952          */
 2953         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 2954             sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
 2955                 sbsz = BGE_STATUS_BLK_SZ;
 2956         else
 2957                 sbsz = 32;
 2958         error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
 2959             &sc->bge_cdata.bge_status_tag,
 2960             (uint8_t **)&sc->bge_ldata.bge_status_block,
 2961             &sc->bge_cdata.bge_status_map,
 2962             &sc->bge_ldata.bge_status_block_paddr, "status block");
 2963         if (error)
 2964                 return (error);
 2965 
 2966         /* Create tag for statistics block. */
 2967         error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
 2968             &sc->bge_cdata.bge_stats_tag,
 2969             (uint8_t **)&sc->bge_ldata.bge_stats,
 2970             &sc->bge_cdata.bge_stats_map,
 2971             &sc->bge_ldata.bge_stats_paddr, "statistics block");
 2972         if (error)
 2973                 return (error);
 2974 
 2975         /* Create tag for jumbo RX ring. */
 2976         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 2977                 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
 2978                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
 2979                     (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
 2980                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
 2981                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
 2982                 if (error)
 2983                         return (error);
 2984         }
 2985 
 2986         /* Create parent tag for buffers. */
 2987         boundary = 0;
 2988         if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
 2989                 boundary = BGE_DMA_BNDRY;
 2990                 /*
 2991                  * XXX
 2992                  * watchdog timeout issue was observed on BCM5704 which
 2993                  * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
 2994                  * Both limiting DMA address space to 32bits and flushing
 2995                  * mailbox write seem to address the issue.
 2996                  */
 2997                 if (sc->bge_pcixcap != 0)
 2998                         lowaddr = BUS_SPACE_MAXADDR_32BIT;
 2999         }
 3000         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
 3001             1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
 3002             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
 3003             0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
 3004         if (error != 0) {
 3005                 device_printf(sc->bge_dev,
 3006                     "could not allocate buffer dma tag\n");
 3007                 return (ENOMEM);
 3008         }
 3009         /* Create tag for Tx mbufs. */
 3010         if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
 3011                 txsegsz = BGE_TSOSEG_SZ;
 3012                 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
 3013         } else {
 3014                 txsegsz = MCLBYTES;
 3015                 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
 3016         }
 3017         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
 3018             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 3019             txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
 3020             &sc->bge_cdata.bge_tx_mtag);
 3021 
 3022         if (error) {
 3023                 device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
 3024                 return (ENOMEM);
 3025         }
 3026 
 3027         /* Create tag for Rx mbufs. */
 3028         if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
 3029                 rxmaxsegsz = MJUM9BYTES;
 3030         else
 3031                 rxmaxsegsz = MCLBYTES;
 3032         error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
 3033             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
 3034             rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
 3035 
 3036         if (error) {
 3037                 device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
 3038                 return (ENOMEM);
 3039         }
 3040 
 3041         /* Create DMA maps for RX buffers. */
 3042         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
 3043             &sc->bge_cdata.bge_rx_std_sparemap);
 3044         if (error) {
 3045                 device_printf(sc->bge_dev,
 3046                     "can't create spare DMA map for RX\n");
 3047                 return (ENOMEM);
 3048         }
 3049         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
 3050                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
 3051                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
 3052                 if (error) {
 3053                         device_printf(sc->bge_dev,
 3054                             "can't create DMA map for RX\n");
 3055                         return (ENOMEM);
 3056                 }
 3057         }
 3058 
 3059         /* Create DMA maps for TX buffers. */
 3060         for (i = 0; i < BGE_TX_RING_CNT; i++) {
 3061                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
 3062                             &sc->bge_cdata.bge_tx_dmamap[i]);
 3063                 if (error) {
 3064                         device_printf(sc->bge_dev,
 3065                             "can't create DMA map for TX\n");
 3066                         return (ENOMEM);
 3067                 }
 3068         }
 3069 
 3070         /* Create tags for jumbo RX buffers. */
 3071         if (BGE_IS_JUMBO_CAPABLE(sc)) {
 3072                 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
 3073                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
 3074                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
 3075                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
 3076                 if (error) {
 3077                         device_printf(sc->bge_dev,
 3078                             "could not allocate jumbo dma tag\n");
 3079                         return (ENOMEM);
 3080                 }
 3081                 /* Create DMA maps for jumbo RX buffers. */
 3082                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 3083                     0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
 3084                 if (error) {
 3085                         device_printf(sc->bge_dev,
 3086                             "can't create spare DMA map for jumbo RX\n");
 3087                         return (ENOMEM);
 3088                 }
 3089                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
 3090                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
 3091                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
 3092                         if (error) {
 3093                                 device_printf(sc->bge_dev,
 3094                                     "can't create DMA map for jumbo RX\n");
 3095                                 return (ENOMEM);
 3096                         }
 3097                 }
 3098         }
 3099 
 3100         return (0);
 3101 }
 3102 
 3103 /*
 3104  * Return true if this device has more than one port.
 3105  */
 3106 static int
 3107 bge_has_multiple_ports(struct bge_softc *sc)
 3108 {
 3109         device_t dev = sc->bge_dev;
 3110         u_int b, d, f, fscan, s;
 3111 
 3112         d = pci_get_domain(dev);
 3113         b = pci_get_bus(dev);
 3114         s = pci_get_slot(dev);
 3115         f = pci_get_function(dev);
 3116         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
 3117                 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
 3118                         return (1);
 3119         return (0);
 3120 }
 3121 
 3122 /*
 3123  * Return true if MSI can be used with this device.
 3124  */
 3125 static int
 3126 bge_can_use_msi(struct bge_softc *sc)
 3127 {
 3128         int can_use_msi = 0;
 3129 
 3130         if (sc->bge_msi == 0)
 3131                 return (0);
 3132 
 3133         /* Disable MSI for polling(4). */
 3134 #ifdef DEVICE_POLLING
 3135         return (0);
 3136 #endif
 3137         switch (sc->bge_asicrev) {
 3138         case BGE_ASICREV_BCM5714_A0:
 3139         case BGE_ASICREV_BCM5714:
 3140                 /*
 3141                  * Apparently, MSI doesn't work when these chips are
 3142                  * configured in single-port mode.
 3143                  */
 3144                 if (bge_has_multiple_ports(sc))
 3145                         can_use_msi = 1;
 3146                 break;
 3147         case BGE_ASICREV_BCM5750:
 3148                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
 3149                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
 3150                         can_use_msi = 1;
 3151                 break;
 3152         default:
 3153                 if (BGE_IS_575X_PLUS(sc))
 3154                         can_use_msi = 1;
 3155         }
 3156         return (can_use_msi);
 3157 }
 3158 
 3159 static int
 3160 bge_mbox_reorder(struct bge_softc *sc)
 3161 {
 3162         /* Lists of PCI bridges that are known to reorder mailbox writes. */
 3163         static const struct mbox_reorder {
 3164                 const uint16_t vendor;
 3165                 const uint16_t device;
 3166                 const char *desc;
 3167         } mbox_reorder_lists[] = {
 3168                 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
 3169         };
 3170         devclass_t pci, pcib;
 3171         device_t bus, dev;
 3172         int i;
 3173 
 3174         pci = devclass_find("pci");
 3175         pcib = devclass_find("pcib");
 3176         dev = sc->bge_dev;
 3177         bus = device_get_parent(dev);
 3178         for (;;) {
 3179                 dev = device_get_parent(bus);
 3180                 bus = device_get_parent(dev);
 3181                 if (device_get_devclass(dev) != pcib)
 3182                         break;
 3183                 for (i = 0; i < nitems(mbox_reorder_lists); i++) {
 3184                         if (pci_get_vendor(dev) ==
 3185                             mbox_reorder_lists[i].vendor &&
 3186                             pci_get_device(dev) ==
 3187                             mbox_reorder_lists[i].device) {
 3188                                 device_printf(sc->bge_dev,
 3189                                     "enabling MBOX workaround for %s\n",
 3190                                     mbox_reorder_lists[i].desc);
 3191                                 return (1);
 3192                         }
 3193                 }
 3194                 if (device_get_devclass(bus) != pci)
 3195                         break;
 3196         }
 3197         return (0);
 3198 }
 3199 
 3200 static void
 3201 bge_devinfo(struct bge_softc *sc)
 3202 {
 3203         uint32_t cfg, clk;
 3204 
 3205         device_printf(sc->bge_dev,
 3206             "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
 3207             sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
 3208         if (sc->bge_flags & BGE_FLAG_PCIE)
 3209                 printf("PCI-E\n");
 3210         else if (sc->bge_flags & BGE_FLAG_PCIX) {
 3211                 printf("PCI-X ");
 3212                 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
 3213                 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
 3214                         clk = 133;
 3215                 else {
 3216                         clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
 3217                         switch (clk) {
 3218                         case 0:
 3219                                 clk = 33;
 3220                                 break;
 3221                         case 2:
 3222                                 clk = 50;
 3223                                 break;
 3224                         case 4:
 3225                                 clk = 66;
 3226                                 break;
 3227                         case 6:
 3228                                 clk = 100;
 3229                                 break;
 3230                         case 7:
 3231                                 clk = 133;
 3232                                 break;
 3233                         }
 3234                 }
 3235                 printf("%u MHz\n", clk);
 3236         } else {
 3237                 if (sc->bge_pcixcap != 0)
 3238                         printf("PCI on PCI-X ");
 3239                 else
 3240                         printf("PCI ");
 3241                 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
 3242                 if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
 3243                         clk = 66;
 3244                 else
 3245                         clk = 33;
 3246                 if (cfg & BGE_PCISTATE_32BIT_BUS)
 3247                         printf("%u MHz; 32bit\n", clk);
 3248                 else
 3249                         printf("%u MHz; 64bit\n", clk);
 3250         }
 3251 }
 3252 
 3253 static int
 3254 bge_attach(device_t dev)
 3255 {
 3256         struct ifnet *ifp;
 3257         struct bge_softc *sc;
 3258         uint32_t hwcfg = 0, misccfg, pcistate;
 3259         u_char eaddr[ETHER_ADDR_LEN];
 3260         int capmask, error, msicount, reg, rid, trys;
 3261 
 3262         sc = device_get_softc(dev);
 3263         sc->bge_dev = dev;
 3264 
 3265         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
 3266         TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
 3267         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
 3268 
 3269         /*
 3270          * Map control/status registers.
 3271          */
 3272         pci_enable_busmaster(dev);
 3273 
 3274         rid = PCIR_BAR(0);
 3275         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 3276             RF_ACTIVE);
 3277 
 3278         if (sc->bge_res == NULL) {
 3279                 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
 3280                 error = ENXIO;
 3281                 goto fail;
 3282         }
 3283 
 3284         /* Save various chip information. */
 3285         sc->bge_func_addr = pci_get_function(dev);
 3286         sc->bge_chipid = bge_chipid(dev);
 3287         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
 3288         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
 3289 
 3290         /* Set default PHY address. */
 3291         sc->bge_phy_addr = 1;
 3292          /*
 3293           * PHY address mapping for various devices.
 3294           *
 3295           *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
 3296           * ---------+-------+-------+-------+-------+
 3297           * BCM57XX  |   1   |   X   |   X   |   X   |
 3298           * BCM5704  |   1   |   X   |   1   |   X   |
 3299           * BCM5717  |   1   |   8   |   2   |   9   |
 3300           * BCM5719  |   1   |   8   |   2   |   9   |
 3301           * BCM5720  |   1   |   8   |   2   |   9   |
 3302           *
 3303           *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
 3304           * ---------+-------+-------+-------+-------+
 3305           * BCM57XX  |   X   |   X   |   X   |   X   |
 3306           * BCM5704  |   X   |   X   |   X   |   X   |
 3307           * BCM5717  |   X   |   X   |   X   |   X   |
 3308           * BCM5719  |   3   |   10  |   4   |   11  |
 3309           * BCM5720  |   X   |   X   |   X   |   X   |
 3310           *
 3311           * Other addresses may respond but they are not
 3312           * IEEE compliant PHYs and should be ignored.
 3313           */
 3314         if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
 3315             sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 3316             sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 3317                 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
 3318                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
 3319                             BGE_SGDIGSTS_IS_SERDES)
 3320                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
 3321                         else
 3322                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
 3323                 } else {
 3324                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
 3325                             BGE_CPMU_PHY_STRAP_IS_SERDES)
 3326                                 sc->bge_phy_addr = sc->bge_func_addr + 8;
 3327                         else
 3328                                 sc->bge_phy_addr = sc->bge_func_addr + 1;
 3329                 }
 3330         }
 3331 
 3332         if (bge_has_eaddr(sc))
 3333                 sc->bge_flags |= BGE_FLAG_EADDR;
 3334 
 3335         /* Save chipset family. */
 3336         switch (sc->bge_asicrev) {
 3337         case BGE_ASICREV_BCM57765:
 3338         case BGE_ASICREV_BCM57766:
 3339                 sc->bge_flags |= BGE_FLAG_57765_PLUS;
 3340                 /* FALLTHROUGH */
 3341         case BGE_ASICREV_BCM5717:
 3342         case BGE_ASICREV_BCM5719:
 3343         case BGE_ASICREV_BCM5720:
 3344                 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
 3345                     BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
 3346                     BGE_FLAG_JUMBO_FRAME;
 3347                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 3348                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 3349                         /* Jumbo frame on BCM5719 A0 does not work. */
 3350                         sc->bge_flags &= ~BGE_FLAG_JUMBO;
 3351                 }
 3352                 break;
 3353         case BGE_ASICREV_BCM5755:
 3354         case BGE_ASICREV_BCM5761:
 3355         case BGE_ASICREV_BCM5784:
 3356         case BGE_ASICREV_BCM5785:
 3357         case BGE_ASICREV_BCM5787:
 3358         case BGE_ASICREV_BCM57780:
 3359                 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
 3360                     BGE_FLAG_5705_PLUS;
 3361                 break;
 3362         case BGE_ASICREV_BCM5700:
 3363         case BGE_ASICREV_BCM5701:
 3364         case BGE_ASICREV_BCM5703:
 3365         case BGE_ASICREV_BCM5704:
 3366                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
 3367                 break;
 3368         case BGE_ASICREV_BCM5714_A0:
 3369         case BGE_ASICREV_BCM5780:
 3370         case BGE_ASICREV_BCM5714:
 3371                 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
 3372                 /* FALLTHROUGH */
 3373         case BGE_ASICREV_BCM5750:
 3374         case BGE_ASICREV_BCM5752:
 3375         case BGE_ASICREV_BCM5906:
 3376                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
 3377                 /* FALLTHROUGH */
 3378         case BGE_ASICREV_BCM5705:
 3379                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
 3380                 break;
 3381         }
 3382 
 3383         /* Identify chips with APE processor. */
 3384         switch (sc->bge_asicrev) {
 3385         case BGE_ASICREV_BCM5717:
 3386         case BGE_ASICREV_BCM5719:
 3387         case BGE_ASICREV_BCM5720:
 3388         case BGE_ASICREV_BCM5761:
 3389                 sc->bge_flags |= BGE_FLAG_APE;
 3390                 break;
 3391         }
 3392 
 3393         /* Chips with APE need BAR2 access for APE registers/memory. */
 3394         if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
 3395                 rid = PCIR_BAR(2);
 3396                 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
 3397                     RF_ACTIVE);
 3398                 if (sc->bge_res2 == NULL) {
 3399                         device_printf (sc->bge_dev,
 3400                             "couldn't map BAR2 memory\n");
 3401                         error = ENXIO;
 3402                         goto fail;
 3403                 }
 3404 
 3405                 /* Enable APE register/memory access by host driver. */
 3406                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
 3407                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
 3408                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
 3409                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
 3410                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
 3411 
 3412                 bge_ape_lock_init(sc);
 3413                 bge_ape_read_fw_ver(sc);
 3414         }
 3415 
 3416         /* Add SYSCTLs, requires the chipset family to be set. */
 3417         bge_add_sysctls(sc);
 3418 
 3419         /* Identify the chips that use an CPMU. */
 3420         if (BGE_IS_5717_PLUS(sc) ||
 3421             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 3422             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 3423             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
 3424             sc->bge_asicrev == BGE_ASICREV_BCM57780)
 3425                 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
 3426         if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
 3427                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
 3428         else
 3429                 sc->bge_mi_mode = BGE_MIMODE_BASE;
 3430         /* Enable auto polling for BCM570[0-5]. */
 3431         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
 3432                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
 3433 
 3434         /*
 3435          * All Broadcom controllers have 4GB boundary DMA bug.
 3436          * Whenever an address crosses a multiple of the 4GB boundary
 3437          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
 3438          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
 3439          * state machine will lockup and cause the device to hang.
 3440          */
 3441         sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
 3442 
 3443         /* BCM5755 or higher and BCM5906 have short DMA bug. */
 3444         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
 3445                 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
 3446 
 3447         /*
 3448          * BCM5719 cannot handle DMA requests for DMA segments that
 3449          * have larger than 4KB in size.  However the maximum DMA
 3450          * segment size created in DMA tag is 4KB for TSO, so we
 3451          * wouldn't encounter the issue here.
 3452          */
 3453         if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
 3454                 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
 3455 
 3456         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
 3457         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
 3458                 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
 3459                     misccfg == BGE_MISCCFG_BOARD_ID_5788M)
 3460                         sc->bge_flags |= BGE_FLAG_5788;
 3461         }
 3462 
 3463         capmask = BMSR_DEFCAPMASK;
 3464         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
 3465             (misccfg == 0x4000 || misccfg == 0x8000)) ||
 3466             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
 3467             pci_get_vendor(dev) == BCOM_VENDORID &&
 3468             (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
 3469             pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
 3470             pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
 3471             (pci_get_vendor(dev) == BCOM_VENDORID &&
 3472             (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
 3473             pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
 3474             pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
 3475             pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
 3476             pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
 3477             pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
 3478             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 3479                 /* These chips are 10/100 only. */
 3480                 capmask &= ~BMSR_EXTSTAT;
 3481                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 3482         }
 3483 
 3484         /*
 3485          * Some controllers seem to require a special firmware to use
 3486          * TSO. But the firmware is not available to FreeBSD and Linux
 3487          * claims that the TSO performed by the firmware is slower than
 3488          * hardware based TSO. Moreover the firmware based TSO has one
 3489          * known bug which can't handle TSO if Ethernet header + IP/TCP
 3490          * header is greater than 80 bytes. A workaround for the TSO
 3491          * bug exist but it seems it's too expensive than not using
 3492          * TSO at all. Some hardwares also have the TSO bug so limit
 3493          * the TSO to the controllers that are not affected TSO issues
 3494          * (e.g. 5755 or higher).
 3495          */
 3496         if (BGE_IS_5717_PLUS(sc)) {
 3497                 /* BCM5717 requires different TSO configuration. */
 3498                 sc->bge_flags |= BGE_FLAG_TSO3;
 3499                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
 3500                     sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
 3501                         /* TSO on BCM5719 A0 does not work. */
 3502                         sc->bge_flags &= ~BGE_FLAG_TSO3;
 3503                 }
 3504         } else if (BGE_IS_5755_PLUS(sc)) {
 3505                 /*
 3506                  * BCM5754 and BCM5787 shares the same ASIC id so
 3507                  * explicit device id check is required.
 3508                  * Due to unknown reason TSO does not work on BCM5755M.
 3509                  */
 3510                 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
 3511                     pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
 3512                     pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
 3513                         sc->bge_flags |= BGE_FLAG_TSO;
 3514         }
 3515 
 3516         /*
 3517          * Check if this is a PCI-X or PCI Express device.
 3518          */
 3519         if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
 3520                 /*
 3521                  * Found a PCI Express capabilities register, this
 3522                  * must be a PCI Express device.
 3523                  */
 3524                 sc->bge_flags |= BGE_FLAG_PCIE;
 3525                 sc->bge_expcap = reg;
 3526                 /* Extract supported maximum payload size. */
 3527                 sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
 3528                     PCIER_DEVICE_CAP, 2);
 3529                 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
 3530                 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
 3531                     sc->bge_asicrev == BGE_ASICREV_BCM5720)
 3532                         sc->bge_expmrq = 2048;
 3533                 else
 3534                         sc->bge_expmrq = 4096;
 3535                 pci_set_max_read_req(dev, sc->bge_expmrq);
 3536         } else {
 3537                 /*
 3538                  * Check if the device is in PCI-X Mode.
 3539                  * (This bit is not valid on PCI Express controllers.)
 3540                  */
 3541                 if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
 3542                         sc->bge_pcixcap = reg;
 3543                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
 3544                     BGE_PCISTATE_PCI_BUSMODE) == 0)
 3545                         sc->bge_flags |= BGE_FLAG_PCIX;
 3546         }
 3547 
 3548         /*
 3549          * The 40bit DMA bug applies to the 5714/5715 controllers and is
 3550          * not actually a MAC controller bug but an issue with the embedded
 3551          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
 3552          */
 3553         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
 3554                 sc->bge_flags |= BGE_FLAG_40BIT_BUG;
 3555         /*
 3556          * Some PCI-X bridges are known to trigger write reordering to
 3557          * the mailbox registers. Typical phenomena is watchdog timeouts
 3558          * caused by out-of-order TX completions.  Enable workaround for
 3559          * PCI-X devices that live behind these bridges.
 3560          * Note, PCI-X controllers can run in PCI mode so we can't use
 3561          * BGE_FLAG_PCIX flag to detect PCI-X controllers.
 3562          */
 3563         if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
 3564                 sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
 3565         /*
 3566          * Allocate the interrupt, using MSI if possible.  These devices
 3567          * support 8 MSI messages, but only the first one is used in
 3568          * normal operation.
 3569          */
 3570         rid = 0;
 3571         if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
 3572                 sc->bge_msicap = reg;
 3573                 if (bge_can_use_msi(sc)) {
 3574                         msicount = pci_msi_count(dev);
 3575                         if (msicount > 1)
 3576                                 msicount = 1;
 3577                 } else
 3578                         msicount = 0;
 3579                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
 3580                         rid = 1;
 3581                         sc->bge_flags |= BGE_FLAG_MSI;
 3582                 }
 3583         }
 3584 
 3585         /*
 3586          * All controllers except BCM5700 supports tagged status but
 3587          * we use tagged status only for MSI case on BCM5717. Otherwise
 3588          * MSI on BCM5717 does not work.
 3589          */
 3590 #ifndef DEVICE_POLLING
 3591         if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
 3592                 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
 3593 #endif
 3594 
 3595         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 3596             RF_SHAREABLE | RF_ACTIVE);
 3597 
 3598         if (sc->bge_irq == NULL) {
 3599                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
 3600                 error = ENXIO;
 3601                 goto fail;
 3602         }
 3603 
 3604         bge_devinfo(sc);
 3605 
 3606         sc->bge_asf_mode = 0;
 3607         /* No ASF if APE present. */
 3608         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
 3609                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
 3610                     BGE_SRAM_DATA_SIG_MAGIC)) {
 3611                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
 3612                             BGE_HWCFG_ASF) {
 3613                                 sc->bge_asf_mode |= ASF_ENABLE;
 3614                                 sc->bge_asf_mode |= ASF_STACKUP;
 3615                                 if (BGE_IS_575X_PLUS(sc))
 3616                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
 3617                         }
 3618                 }
 3619         }
 3620 
 3621         bge_stop_fw(sc);
 3622         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
 3623         if (bge_reset(sc)) {
 3624                 device_printf(sc->bge_dev, "chip reset failed\n");
 3625                 error = ENXIO;
 3626                 goto fail;
 3627         }
 3628 
 3629         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
 3630         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
 3631 
 3632         if (bge_chipinit(sc)) {
 3633                 device_printf(sc->bge_dev, "chip initialization failed\n");
 3634                 error = ENXIO;
 3635                 goto fail;
 3636         }
 3637 
 3638         error = bge_get_eaddr(sc, eaddr);
 3639         if (error) {
 3640                 device_printf(sc->bge_dev,
 3641                     "failed to read station address\n");
 3642                 error = ENXIO;
 3643                 goto fail;
 3644         }
 3645 
 3646         /* 5705 limits RX return ring to 512 entries. */
 3647         if (BGE_IS_5717_PLUS(sc))
 3648                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 3649         else if (BGE_IS_5705_PLUS(sc))
 3650                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
 3651         else
 3652                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
 3653 
 3654         if (bge_dma_alloc(sc)) {
 3655                 device_printf(sc->bge_dev,
 3656                     "failed to allocate DMA resources\n");
 3657                 error = ENXIO;
 3658                 goto fail;
 3659         }
 3660 
 3661         /* Set default tuneable values. */
 3662         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
 3663         sc->bge_rx_coal_ticks = 150;
 3664         sc->bge_tx_coal_ticks = 150;
 3665         sc->bge_rx_max_coal_bds = 10;
 3666         sc->bge_tx_max_coal_bds = 10;
 3667 
 3668         /* Initialize checksum features to use. */
 3669         sc->bge_csum_features = BGE_CSUM_FEATURES;
 3670         if (sc->bge_forced_udpcsum != 0)
 3671                 sc->bge_csum_features |= CSUM_UDP;
 3672 
 3673         /* Set up ifnet structure */
 3674         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
 3675         if (ifp == NULL) {
 3676                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
 3677                 error = ENXIO;
 3678                 goto fail;
 3679         }
 3680         ifp->if_softc = sc;
 3681         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 3682         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 3683         ifp->if_ioctl = bge_ioctl;
 3684         ifp->if_start = bge_start;
 3685         ifp->if_init = bge_init;
 3686         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
 3687         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
 3688         IFQ_SET_READY(&ifp->if_snd);
 3689         ifp->if_hwassist = sc->bge_csum_features;
 3690         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
 3691             IFCAP_VLAN_MTU;
 3692         if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
 3693                 ifp->if_hwassist |= CSUM_TSO;
 3694                 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
 3695         }
 3696 #ifdef IFCAP_VLAN_HWCSUM
 3697         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
 3698 #endif
 3699         ifp->if_capenable = ifp->if_capabilities;
 3700 #ifdef DEVICE_POLLING
 3701         ifp->if_capabilities |= IFCAP_POLLING;
 3702 #endif
 3703 
 3704         /*
 3705          * 5700 B0 chips do not support checksumming correctly due
 3706          * to hardware bugs.
 3707          */
 3708         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
 3709                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
 3710                 ifp->if_capenable &= ~IFCAP_HWCSUM;
 3711                 ifp->if_hwassist = 0;
 3712         }
 3713 
 3714         /*
 3715          * Figure out what sort of media we have by checking the
 3716          * hardware config word in the first 32k of NIC internal memory,
 3717          * or fall back to examining the EEPROM if necessary.
 3718          * Note: on some BCM5700 cards, this value appears to be unset.
 3719          * If that's the case, we have to rely on identifying the NIC
 3720          * by its PCI subsystem ID, as we do below for the SysKonnect
 3721          * SK-9D41.
 3722          */
 3723         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
 3724                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
 3725         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
 3726             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 3727                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
 3728                     sizeof(hwcfg))) {
 3729                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
 3730                         error = ENXIO;
 3731                         goto fail;
 3732                 }
 3733                 hwcfg = ntohl(hwcfg);
 3734         }
 3735 
 3736         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
 3737         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
 3738             SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
 3739                 if (BGE_IS_5705_PLUS(sc)) {
 3740                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
 3741                         sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 3742                 } else
 3743                         sc->bge_flags |= BGE_FLAG_TBI;
 3744         }
 3745 
 3746         /* Set various PHY bug flags. */
 3747         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
 3748             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
 3749                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
 3750         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
 3751             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
 3752                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
 3753         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
 3754                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
 3755         if (pci_get_subvendor(dev) == DELL_VENDORID)
 3756                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
 3757         if ((BGE_IS_5705_PLUS(sc)) &&
 3758             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
 3759             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
 3760             sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
 3761             !BGE_IS_5717_PLUS(sc)) {
 3762                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
 3763                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
 3764                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
 3765                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
 3766                         if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
 3767                             pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
 3768                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
 3769                         if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
 3770                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
 3771                 } else
 3772                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
 3773         }
 3774 
 3775         /*
 3776          * Don't enable Ethernet@WireSpeed for the 5700 or the
 3777          * 5705 A0 and A1 chips.
 3778          */
 3779         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 3780             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
 3781             (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
 3782             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
 3783                 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
 3784 
 3785         if (sc->bge_flags & BGE_FLAG_TBI) {
 3786                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
 3787                     bge_ifmedia_sts);
 3788                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
 3789                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
 3790                     0, NULL);
 3791                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
 3792                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
 3793                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
 3794         } else {
 3795                 /*
 3796                  * Do transceiver setup and tell the firmware the
 3797                  * driver is down so we can try to get access the
 3798                  * probe if ASF is running.  Retry a couple of times
 3799                  * if we get a conflict with the ASF firmware accessing
 3800                  * the PHY.
 3801                  */
 3802                 trys = 0;
 3803                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3804 again:
 3805                 bge_asf_driver_up(sc);
 3806 
 3807                 error = mii_attach(dev, &sc->bge_miibus, ifp, bge_ifmedia_upd,
 3808                     bge_ifmedia_sts, capmask, sc->bge_phy_addr, MII_OFFSET_ANY,
 3809                     MIIF_DOPAUSE);
 3810                 if (error != 0) {
 3811                         if (trys++ < 4) {
 3812                                 device_printf(sc->bge_dev, "Try again\n");
 3813                                 bge_miibus_writereg(sc->bge_dev,
 3814                                     sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
 3815                                 goto again;
 3816                         }
 3817                         device_printf(sc->bge_dev, "attaching PHYs failed\n");
 3818                         goto fail;
 3819                 }
 3820 
 3821                 /*
 3822                  * Now tell the firmware we are going up after probing the PHY
 3823                  */
 3824                 if (sc->bge_asf_mode & ASF_STACKUP)
 3825                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 3826         }
 3827 
 3828         /*
 3829          * When using the BCM5701 in PCI-X mode, data corruption has
 3830          * been observed in the first few bytes of some received packets.
 3831          * Aligning the packet buffer in memory eliminates the corruption.
 3832          * Unfortunately, this misaligns the packet payloads.  On platforms
 3833          * which do not support unaligned accesses, we will realign the
 3834          * payloads by copying the received packets.
 3835          */
 3836         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
 3837             sc->bge_flags & BGE_FLAG_PCIX)
 3838                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
 3839 
 3840         /*
 3841          * Call MI attach routine.
 3842          */
 3843         ether_ifattach(ifp, eaddr);
 3844 
 3845         /* Tell upper layer we support long frames. */
 3846         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
 3847 
 3848         /*
 3849          * Hookup IRQ last.
 3850          */
 3851         if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
 3852                 /* Take advantage of single-shot MSI. */
 3853                 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
 3854                     ~BGE_MSIMODE_ONE_SHOT_DISABLE);
 3855                 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
 3856                     taskqueue_thread_enqueue, &sc->bge_tq);
 3857                 if (sc->bge_tq == NULL) {
 3858                         device_printf(dev, "could not create taskqueue.\n");
 3859                         ether_ifdetach(ifp);
 3860                         error = ENOMEM;
 3861                         goto fail;
 3862                 }
 3863                 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
 3864                     "%s taskq", device_get_nameunit(sc->bge_dev));
 3865                 if (error != 0) {
 3866                         device_printf(dev, "could not start threads.\n");
 3867                         ether_ifdetach(ifp);
 3868                         goto fail;
 3869                 }
 3870                 error = bus_setup_intr(dev, sc->bge_irq,
 3871                     INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
 3872                     &sc->bge_intrhand);
 3873         } else
 3874                 error = bus_setup_intr(dev, sc->bge_irq,
 3875                     INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
 3876                     &sc->bge_intrhand);
 3877 
 3878         if (error) {
 3879                 ether_ifdetach(ifp);
 3880                 device_printf(sc->bge_dev, "couldn't set up irq\n");
 3881         }
 3882 
 3883 fail:
 3884         if (error)
 3885                 bge_detach(dev);
 3886         return (error);
 3887 }
 3888 
 3889 static int
 3890 bge_detach(device_t dev)
 3891 {
 3892         struct bge_softc *sc;
 3893         struct ifnet *ifp;
 3894 
 3895         sc = device_get_softc(dev);
 3896         ifp = sc->bge_ifp;
 3897 
 3898 #ifdef DEVICE_POLLING
 3899         if (ifp->if_capenable & IFCAP_POLLING)
 3900                 ether_poll_deregister(ifp);
 3901 #endif
 3902 
 3903         if (device_is_attached(dev)) {
 3904                 ether_ifdetach(ifp);
 3905                 BGE_LOCK(sc);
 3906                 bge_stop(sc);
 3907                 BGE_UNLOCK(sc);
 3908                 callout_drain(&sc->bge_stat_ch);
 3909         }
 3910 
 3911         if (sc->bge_tq)
 3912                 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
 3913 
 3914         if (sc->bge_flags & BGE_FLAG_TBI)
 3915                 ifmedia_removeall(&sc->bge_ifmedia);
 3916         else if (sc->bge_miibus != NULL) {
 3917                 bus_generic_detach(dev);
 3918                 device_delete_child(dev, sc->bge_miibus);
 3919         }
 3920 
 3921         bge_release_resources(sc);
 3922 
 3923         return (0);
 3924 }
 3925 
 3926 static void
 3927 bge_release_resources(struct bge_softc *sc)
 3928 {
 3929         device_t dev;
 3930 
 3931         dev = sc->bge_dev;
 3932 
 3933         if (sc->bge_tq != NULL)
 3934                 taskqueue_free(sc->bge_tq);
 3935 
 3936         if (sc->bge_intrhand != NULL)
 3937                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
 3938 
 3939         if (sc->bge_irq != NULL)
 3940                 bus_release_resource(dev, SYS_RES_IRQ,
 3941                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
 3942 
 3943         if (sc->bge_flags & BGE_FLAG_MSI)
 3944                 pci_release_msi(dev);
 3945 
 3946         if (sc->bge_res != NULL)
 3947                 bus_release_resource(dev, SYS_RES_MEMORY,
 3948                     PCIR_BAR(0), sc->bge_res);
 3949 
 3950         if (sc->bge_res2 != NULL)
 3951                 bus_release_resource(dev, SYS_RES_MEMORY,
 3952                     PCIR_BAR(2), sc->bge_res2);
 3953 
 3954         if (sc->bge_ifp != NULL)
 3955                 if_free(sc->bge_ifp);
 3956 
 3957         bge_dma_free(sc);
 3958 
 3959         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
 3960                 BGE_LOCK_DESTROY(sc);
 3961 }
 3962 
 3963 static int
 3964 bge_reset(struct bge_softc *sc)
 3965 {
 3966         device_t dev;
 3967         uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
 3968         void (*write_op)(struct bge_softc *, int, int);
 3969         uint16_t devctl;
 3970         int i;
 3971 
 3972         dev = sc->bge_dev;
 3973 
 3974         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
 3975         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 3976                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
 3977         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
 3978 
 3979         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
 3980             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
 3981                 if (sc->bge_flags & BGE_FLAG_PCIE)
 3982                         write_op = bge_writemem_direct;
 3983                 else
 3984                         write_op = bge_writemem_ind;
 3985         } else
 3986                 write_op = bge_writereg_ind;
 3987 
 3988         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
 3989             sc->bge_asicrev != BGE_ASICREV_BCM5701) {
 3990                 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
 3991                 for (i = 0; i < 8000; i++) {
 3992                         if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
 3993                             BGE_NVRAMSWARB_GNT1)
 3994                                 break;
 3995                         DELAY(20);
 3996                 }
 3997                 if (i == 8000) {
 3998                         if (bootverbose)
 3999                                 device_printf(dev, "NVRAM lock timedout!\n");
 4000                 }
 4001         }
 4002         /* Take APE lock when performing reset. */
 4003         bge_ape_lock(sc, BGE_APE_LOCK_GRC);
 4004 
 4005         /* Save some important PCI state. */
 4006         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
 4007         command = pci_read_config(dev, BGE_PCI_CMD, 4);
 4008 
 4009         pci_write_config(dev, BGE_PCI_MISC_CTL,
 4010             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 4011             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 4012 
 4013         /* Disable fastboot on controllers that support it. */
 4014         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
 4015             BGE_IS_5755_PLUS(sc)) {
 4016                 if (bootverbose)
 4017                         device_printf(dev, "Disabling fastboot\n");
 4018                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
 4019         }
 4020 
 4021         /*
 4022          * Write the magic number to SRAM at offset 0xB50.
 4023          * When firmware finishes its initialization it will
 4024          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
 4025          */
 4026         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
 4027 
 4028         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
 4029 
 4030         /* XXX: Broadcom Linux driver. */
 4031         if (sc->bge_flags & BGE_FLAG_PCIE) {
 4032                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
 4033                     (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
 4034                         if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
 4035                                 CSR_WRITE_4(sc, 0x7E2C, 0x20);
 4036                 }
 4037                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
 4038                         /* Prevent PCIE link training during global reset */
 4039                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
 4040                         reset |= 1 << 29;
 4041                 }
 4042         }
 4043 
 4044         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 4045                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 4046                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
 4047                     val | BGE_VCPU_STATUS_DRV_RESET);
 4048                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
 4049                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
 4050                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
 4051         }
 4052 
 4053         /*
 4054          * Set GPHY Power Down Override to leave GPHY
 4055          * powered up in D0 uninitialized.
 4056          */
 4057         if (BGE_IS_5705_PLUS(sc) &&
 4058             (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
 4059                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
 4060 
 4061         /* Issue global reset */
 4062         write_op(sc, BGE_MISC_CFG, reset);
 4063 
 4064         if (sc->bge_flags & BGE_FLAG_PCIE)
 4065                 DELAY(100 * 1000);
 4066         else
 4067                 DELAY(1000);
 4068 
 4069         /* XXX: Broadcom Linux driver. */
 4070         if (sc->bge_flags & BGE_FLAG_PCIE) {
 4071                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
 4072                         DELAY(500000); /* wait for link training to complete */
 4073                         val = pci_read_config(dev, 0xC4, 4);
 4074                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
 4075                 }
 4076                 devctl = pci_read_config(dev,
 4077                     sc->bge_expcap + PCIER_DEVICE_CTL, 2);
 4078                 /* Clear enable no snoop and disable relaxed ordering. */
 4079                 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
 4080                     PCIEM_CTL_NOSNOOP_ENABLE);
 4081                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
 4082                     devctl, 2);
 4083                 pci_set_max_read_req(dev, sc->bge_expmrq);
 4084                 /* Clear error status. */
 4085                 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
 4086                     PCIEM_STA_CORRECTABLE_ERROR |
 4087                     PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
 4088                     PCIEM_STA_UNSUPPORTED_REQ, 2);
 4089         }
 4090 
 4091         /* Reset some of the PCI state that got zapped by reset. */
 4092         pci_write_config(dev, BGE_PCI_MISC_CTL,
 4093             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
 4094             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
 4095         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
 4096         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
 4097             (sc->bge_flags & BGE_FLAG_PCIX) != 0)
 4098                 val |= BGE_PCISTATE_RETRY_SAME_DMA;
 4099         if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
 4100                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
 4101                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
 4102                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
 4103         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
 4104         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
 4105         pci_write_config(dev, BGE_PCI_CMD, command, 4);
 4106         /*
 4107          * Disable PCI-X relaxed ordering to ensure status block update
 4108          * comes first then packet buffer DMA. Otherwise driver may
 4109          * read stale status block.
 4110          */
 4111         if (sc->bge_flags & BGE_FLAG_PCIX) {
 4112                 devctl = pci_read_config(dev,
 4113                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
 4114                 devctl &= ~PCIXM_COMMAND_ERO;
 4115                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
 4116                         devctl &= ~PCIXM_COMMAND_MAX_READ;
 4117                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
 4118                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 4119                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
 4120                             PCIXM_COMMAND_MAX_READ);
 4121                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
 4122                 }
 4123                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
 4124                     devctl, 2);
 4125         }
 4126         /* Re-enable MSI, if necessary, and enable the memory arbiter. */
 4127         if (BGE_IS_5714_FAMILY(sc)) {
 4128                 /* This chip disables MSI on reset. */
 4129                 if (sc->bge_flags & BGE_FLAG_MSI) {
 4130                         val = pci_read_config(dev,
 4131                             sc->bge_msicap + PCIR_MSI_CTRL, 2);
 4132                         pci_write_config(dev,
 4133                             sc->bge_msicap + PCIR_MSI_CTRL,
 4134                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
 4135                         val = CSR_READ_4(sc, BGE_MSI_MODE);
 4136                         CSR_WRITE_4(sc, BGE_MSI_MODE,
 4137                             val | BGE_MSIMODE_ENABLE);
 4138                 }
 4139                 val = CSR_READ_4(sc, BGE_MARB_MODE);
 4140                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
 4141         } else
 4142                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 4143 
 4144         /* Fix up byte swapping. */
 4145         CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
 4146 
 4147         val = CSR_READ_4(sc, BGE_MAC_MODE);
 4148         val = (val & ~mac_mode_mask) | mac_mode;
 4149         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
 4150         DELAY(40);
 4151 
 4152         bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
 4153 
 4154         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
 4155                 for (i = 0; i < BGE_TIMEOUT; i++) {
 4156                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
 4157                         if (val & BGE_VCPU_STATUS_INIT_DONE)
 4158                                 break;
 4159                         DELAY(100);
 4160                 }
 4161                 if (i == BGE_TIMEOUT) {
 4162                         device_printf(dev, "reset timed out\n");
 4163                         return (1);
 4164                 }
 4165         } else {
 4166                 /*
 4167                  * Poll until we see the 1's complement of the magic number.
 4168                  * This indicates that the firmware initialization is complete.
 4169                  * We expect this to fail if no chip containing the Ethernet
 4170                  * address is fitted though.
 4171                  */
 4172                 for (i = 0; i < BGE_TIMEOUT; i++) {
 4173                         DELAY(10);
 4174                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
 4175                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
 4176                                 break;
 4177                 }
 4178 
 4179                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
 4180                         device_printf(dev,
 4181                             "firmware handshake timed out, found 0x%08x\n",
 4182                             val);
 4183                 /* BCM57765 A0 needs additional time before accessing. */
 4184                 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
 4185                         DELAY(10 * 1000);       /* XXX */
 4186         }
 4187 
 4188         /*
 4189          * The 5704 in TBI mode apparently needs some special
 4190          * adjustment to insure the SERDES drive level is set
 4191          * to 1.2V.
 4192          */
 4193         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
 4194             sc->bge_flags & BGE_FLAG_TBI) {
 4195                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
 4196                 val = (val & ~0xFFF) | 0x880;
 4197                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
 4198         }
 4199 
 4200         /* XXX: Broadcom Linux driver. */
 4201         if (sc->bge_flags & BGE_FLAG_PCIE &&
 4202             !BGE_IS_5717_PLUS(sc) &&
 4203             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
 4204             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
 4205                 /* Enable Data FIFO protection. */
 4206                 val = CSR_READ_4(sc, 0x7C00);
 4207                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
 4208         }
 4209 
 4210         if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
 4211                 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
 4212                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
 4213 
 4214         return (0);
 4215 }
 4216 
 4217 static __inline void
 4218 bge_rxreuse_std(struct bge_softc *sc, int i)
 4219 {
 4220         struct bge_rx_bd *r;
 4221 
 4222         r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
 4223         r->bge_flags = BGE_RXBDFLAG_END;
 4224         r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
 4225         r->bge_idx = i;
 4226         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 4227 }
 4228 
 4229 static __inline void
 4230 bge_rxreuse_jumbo(struct bge_softc *sc, int i)
 4231 {
 4232         struct bge_extrx_bd *r;
 4233 
 4234         r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
 4235         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
 4236         r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
 4237         r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
 4238         r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
 4239         r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
 4240         r->bge_idx = i;
 4241         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 4242 }
 4243 
 4244 /*
 4245  * Frame reception handling. This is called if there's a frame
 4246  * on the receive return list.
 4247  *
 4248  * Note: we have to be able to handle two possibilities here:
 4249  * 1) the frame is from the jumbo receive ring
 4250  * 2) the frame is from the standard receive ring
 4251  */
 4252 
 4253 static int
 4254 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
 4255 {
 4256         struct ifnet *ifp;
 4257         int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
 4258         uint16_t rx_cons;
 4259 
 4260         rx_cons = sc->bge_rx_saved_considx;
 4261 
 4262         /* Nothing to do. */
 4263         if (rx_cons == rx_prod)
 4264                 return (rx_npkts);
 4265 
 4266         ifp = sc->bge_ifp;
 4267 
 4268         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 4269             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
 4270         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 4271             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
 4272         if (BGE_IS_JUMBO_CAPABLE(sc) &&
 4273             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
 4274             (MCLBYTES - ETHER_ALIGN))
 4275                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 4276                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
 4277 
 4278         while (rx_cons != rx_prod) {
 4279                 struct bge_rx_bd        *cur_rx;
 4280                 uint32_t                rxidx;
 4281                 struct mbuf             *m = NULL;
 4282                 uint16_t                vlan_tag = 0;
 4283                 int                     have_tag = 0;
 4284 
 4285 #ifdef DEVICE_POLLING
 4286                 if (ifp->if_capenable & IFCAP_POLLING) {
 4287                         if (sc->rxcycles <= 0)
 4288                                 break;
 4289                         sc->rxcycles--;
 4290                 }
 4291 #endif
 4292 
 4293                 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
 4294 
 4295                 rxidx = cur_rx->bge_idx;
 4296                 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
 4297 
 4298                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING &&
 4299                     cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
 4300                         have_tag = 1;
 4301                         vlan_tag = cur_rx->bge_vlan_tag;
 4302                 }
 4303 
 4304                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
 4305                         jumbocnt++;
 4306                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
 4307                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 4308                                 bge_rxreuse_jumbo(sc, rxidx);
 4309                                 continue;
 4310                         }
 4311                         if (bge_newbuf_jumbo(sc, rxidx) != 0) {
 4312                                 bge_rxreuse_jumbo(sc, rxidx);
 4313                                 ifp->if_iqdrops++;
 4314                                 continue;
 4315                         }
 4316                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
 4317                 } else {
 4318                         stdcnt++;
 4319                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
 4320                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
 4321                                 bge_rxreuse_std(sc, rxidx);
 4322                                 continue;
 4323                         }
 4324                         if (bge_newbuf_std(sc, rxidx) != 0) {
 4325                                 bge_rxreuse_std(sc, rxidx);
 4326                                 ifp->if_iqdrops++;
 4327                                 continue;
 4328                         }
 4329                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
 4330                 }
 4331 
 4332                 ifp->if_ipackets++;
 4333 #ifndef __NO_STRICT_ALIGNMENT
 4334                 /*
 4335                  * For architectures with strict alignment we must make sure
 4336                  * the payload is aligned.
 4337                  */
 4338                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
 4339                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
 4340                             cur_rx->bge_len);
 4341                         m->m_data += ETHER_ALIGN;
 4342                 }
 4343 #endif
 4344                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
 4345                 m->m_pkthdr.rcvif = ifp;
 4346 
 4347                 if (ifp->if_capenable & IFCAP_RXCSUM)
 4348                         bge_rxcsum(sc, cur_rx, m);
 4349 
 4350                 /*
 4351                  * If we received a packet with a vlan tag,
 4352                  * attach that information to the packet.
 4353                  */
 4354                 if (have_tag) {
 4355                         m->m_pkthdr.ether_vtag = vlan_tag;
 4356                         m->m_flags |= M_VLANTAG;
 4357                 }
 4358 
 4359                 if (holdlck != 0) {
 4360                         BGE_UNLOCK(sc);
 4361                         (*ifp->if_input)(ifp, m);
 4362                         BGE_LOCK(sc);
 4363                 } else
 4364                         (*ifp->if_input)(ifp, m);
 4365                 rx_npkts++;
 4366 
 4367                 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
 4368                         return (rx_npkts);
 4369         }
 4370 
 4371         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
 4372             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
 4373         if (stdcnt > 0)
 4374                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
 4375                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
 4376 
 4377         if (jumbocnt > 0)
 4378                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
 4379                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
 4380 
 4381         sc->bge_rx_saved_considx = rx_cons;
 4382         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
 4383         if (stdcnt)
 4384                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
 4385                     BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
 4386         if (jumbocnt)
 4387                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
 4388                     BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
 4389 #ifdef notyet
 4390         /*
 4391          * This register wraps very quickly under heavy packet drops.
 4392          * If you need correct statistics, you can enable this check.
 4393          */
 4394         if (BGE_IS_5705_PLUS(sc))
 4395                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 4396 #endif
 4397         return (rx_npkts);
 4398 }
 4399 
 4400 static void
 4401 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
 4402 {
 4403 
 4404         if (BGE_IS_5717_PLUS(sc)) {
 4405                 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
 4406                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 4407                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 4408                                 if ((cur_rx->bge_error_flag &
 4409                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
 4410                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 4411                         }
 4412                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
 4413                                 m->m_pkthdr.csum_data =
 4414                                     cur_rx->bge_tcp_udp_csum;
 4415                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 4416                                     CSUM_PSEUDO_HDR;
 4417                         }
 4418                 }
 4419         } else {
 4420                 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
 4421                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 4422                         if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
 4423                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 4424                 }
 4425                 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
 4426                     m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
 4427                         m->m_pkthdr.csum_data =
 4428                             cur_rx->bge_tcp_udp_csum;
 4429                         m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
 4430                             CSUM_PSEUDO_HDR;
 4431                 }
 4432         }
 4433 }
 4434 
 4435 static void
 4436 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
 4437 {
 4438         struct bge_tx_bd *cur_tx;
 4439         struct ifnet *ifp;
 4440 
 4441         BGE_LOCK_ASSERT(sc);
 4442 
 4443         /* Nothing to do. */
 4444         if (sc->bge_tx_saved_considx == tx_cons)
 4445                 return;
 4446 
 4447         ifp = sc->bge_ifp;
 4448 
 4449         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 4450             sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
 4451         /*
 4452          * Go through our tx ring and free mbufs for those
 4453          * frames that have been sent.
 4454          */
 4455         while (sc->bge_tx_saved_considx != tx_cons) {
 4456                 uint32_t                idx;
 4457 
 4458                 idx = sc->bge_tx_saved_considx;
 4459                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
 4460                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
 4461                         ifp->if_opackets++;
 4462                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
 4463                         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
 4464                             sc->bge_cdata.bge_tx_dmamap[idx],
 4465                             BUS_DMASYNC_POSTWRITE);
 4466                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
 4467                             sc->bge_cdata.bge_tx_dmamap[idx]);
 4468                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
 4469                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
 4470                 }
 4471                 sc->bge_txcnt--;
 4472                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
 4473         }
 4474 
 4475         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 4476         if (sc->bge_txcnt == 0)
 4477                 sc->bge_timer = 0;
 4478 }
 4479 
 4480 #ifdef DEVICE_POLLING
 4481 static int
 4482 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 4483 {
 4484         struct bge_softc *sc = ifp->if_softc;
 4485         uint16_t rx_prod, tx_cons;
 4486         uint32_t statusword;
 4487         int rx_npkts = 0;
 4488 
 4489         BGE_LOCK(sc);
 4490         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 4491                 BGE_UNLOCK(sc);
 4492                 return (rx_npkts);
 4493         }
 4494 
 4495         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4496             sc->bge_cdata.bge_status_map,
 4497             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 4498         /* Fetch updates from the status block. */
 4499         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 4500         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 4501 
 4502         statusword = sc->bge_ldata.bge_status_block->bge_status;
 4503         /* Clear the status so the next pass only sees the changes. */
 4504         sc->bge_ldata.bge_status_block->bge_status = 0;
 4505 
 4506         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4507             sc->bge_cdata.bge_status_map,
 4508             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4509 
 4510         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
 4511         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
 4512                 sc->bge_link_evt++;
 4513 
 4514         if (cmd == POLL_AND_CHECK_STATUS)
 4515                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4516                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 4517                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
 4518                         bge_link_upd(sc);
 4519 
 4520         sc->rxcycles = count;
 4521         rx_npkts = bge_rxeof(sc, rx_prod, 1);
 4522         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 4523                 BGE_UNLOCK(sc);
 4524                 return (rx_npkts);
 4525         }
 4526         bge_txeof(sc, tx_cons);
 4527         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 4528                 bge_start_locked(ifp);
 4529 
 4530         BGE_UNLOCK(sc);
 4531         return (rx_npkts);
 4532 }
 4533 #endif /* DEVICE_POLLING */
 4534 
 4535 static int
 4536 bge_msi_intr(void *arg)
 4537 {
 4538         struct bge_softc *sc;
 4539 
 4540         sc = (struct bge_softc *)arg;
 4541         /*
 4542          * This interrupt is not shared and controller already
 4543          * disabled further interrupt.
 4544          */
 4545         taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
 4546         return (FILTER_HANDLED);
 4547 }
 4548 
 4549 static void
 4550 bge_intr_task(void *arg, int pending)
 4551 {
 4552         struct bge_softc *sc;
 4553         struct ifnet *ifp;
 4554         uint32_t status, status_tag;
 4555         uint16_t rx_prod, tx_cons;
 4556 
 4557         sc = (struct bge_softc *)arg;
 4558         ifp = sc->bge_ifp;
 4559 
 4560         BGE_LOCK(sc);
 4561         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
 4562                 BGE_UNLOCK(sc);
 4563                 return;
 4564         }
 4565 
 4566         /* Get updated status block. */
 4567         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4568             sc->bge_cdata.bge_status_map,
 4569             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 4570 
 4571         /* Save producer/consumer indices. */
 4572         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 4573         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 4574         status = sc->bge_ldata.bge_status_block->bge_status;
 4575         status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
 4576         /* Dirty the status flag. */
 4577         sc->bge_ldata.bge_status_block->bge_status = 0;
 4578         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4579             sc->bge_cdata.bge_status_map,
 4580             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4581         if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
 4582                 status_tag = 0;
 4583 
 4584         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
 4585                 bge_link_upd(sc);
 4586 
 4587         /* Let controller work. */
 4588         bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
 4589 
 4590         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 4591             sc->bge_rx_saved_considx != rx_prod) {
 4592                 /* Check RX return ring producer/consumer. */
 4593                 BGE_UNLOCK(sc);
 4594                 bge_rxeof(sc, rx_prod, 0);
 4595                 BGE_LOCK(sc);
 4596         }
 4597         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4598                 /* Check TX ring producer/consumer. */
 4599                 bge_txeof(sc, tx_cons);
 4600                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 4601                         bge_start_locked(ifp);
 4602         }
 4603         BGE_UNLOCK(sc);
 4604 }
 4605 
 4606 static void
 4607 bge_intr(void *xsc)
 4608 {
 4609         struct bge_softc *sc;
 4610         struct ifnet *ifp;
 4611         uint32_t statusword;
 4612         uint16_t rx_prod, tx_cons;
 4613 
 4614         sc = xsc;
 4615 
 4616         BGE_LOCK(sc);
 4617 
 4618         ifp = sc->bge_ifp;
 4619 
 4620 #ifdef DEVICE_POLLING
 4621         if (ifp->if_capenable & IFCAP_POLLING) {
 4622                 BGE_UNLOCK(sc);
 4623                 return;
 4624         }
 4625 #endif
 4626 
 4627         /*
 4628          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
 4629          * disable interrupts by writing nonzero like we used to, since with
 4630          * our current organization this just gives complications and
 4631          * pessimizations for re-enabling interrupts.  We used to have races
 4632          * instead of the necessary complications.  Disabling interrupts
 4633          * would just reduce the chance of a status update while we are
 4634          * running (by switching to the interrupt-mode coalescence
 4635          * parameters), but this chance is already very low so it is more
 4636          * efficient to get another interrupt than prevent it.
 4637          *
 4638          * We do the ack first to ensure another interrupt if there is a
 4639          * status update after the ack.  We don't check for the status
 4640          * changing later because it is more efficient to get another
 4641          * interrupt than prevent it, not quite as above (not checking is
 4642          * a smaller optimization than not toggling the interrupt enable,
 4643          * since checking doesn't involve PCI accesses and toggling require
 4644          * the status check).  So toggling would probably be a pessimization
 4645          * even with MSI.  It would only be needed for using a task queue.
 4646          */
 4647         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 4648 
 4649         /*
 4650          * Do the mandatory PCI flush as well as get the link status.
 4651          */
 4652         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
 4653 
 4654         /* Make sure the descriptor ring indexes are coherent. */
 4655         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4656             sc->bge_cdata.bge_status_map,
 4657             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 4658         rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
 4659         tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
 4660         sc->bge_ldata.bge_status_block->bge_status = 0;
 4661         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 4662             sc->bge_cdata.bge_status_map,
 4663             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4664 
 4665         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 4666             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
 4667             statusword || sc->bge_link_evt)
 4668                 bge_link_upd(sc);
 4669 
 4670         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4671                 /* Check RX return ring producer/consumer. */
 4672                 bge_rxeof(sc, rx_prod, 1);
 4673         }
 4674 
 4675         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 4676                 /* Check TX ring producer/consumer. */
 4677                 bge_txeof(sc, tx_cons);
 4678         }
 4679 
 4680         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
 4681             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 4682                 bge_start_locked(ifp);
 4683 
 4684         BGE_UNLOCK(sc);
 4685 }
 4686 
 4687 static void
 4688 bge_asf_driver_up(struct bge_softc *sc)
 4689 {
 4690         if (sc->bge_asf_mode & ASF_STACKUP) {
 4691                 /* Send ASF heartbeat aprox. every 2s */
 4692                 if (sc->bge_asf_count)
 4693                         sc->bge_asf_count --;
 4694                 else {
 4695                         sc->bge_asf_count = 2;
 4696                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
 4697                             BGE_FW_CMD_DRV_ALIVE);
 4698                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
 4699                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
 4700                             BGE_FW_HB_TIMEOUT_SEC);
 4701                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
 4702                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
 4703                             BGE_RX_CPU_DRV_EVENT);
 4704                 }
 4705         }
 4706 }
 4707 
 4708 static void
 4709 bge_tick(void *xsc)
 4710 {
 4711         struct bge_softc *sc = xsc;
 4712         struct mii_data *mii = NULL;
 4713 
 4714         BGE_LOCK_ASSERT(sc);
 4715 
 4716         /* Synchronize with possible callout reset/stop. */
 4717         if (callout_pending(&sc->bge_stat_ch) ||
 4718             !callout_active(&sc->bge_stat_ch))
 4719                 return;
 4720 
 4721         if (BGE_IS_5705_PLUS(sc))
 4722                 bge_stats_update_regs(sc);
 4723         else
 4724                 bge_stats_update(sc);
 4725 
 4726         /* XXX Add APE heartbeat check here? */
 4727 
 4728         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
 4729                 mii = device_get_softc(sc->bge_miibus);
 4730                 /*
 4731                  * Do not touch PHY if we have link up. This could break
 4732                  * IPMI/ASF mode or produce extra input errors
 4733                  * (extra errors was reported for bcm5701 & bcm5704).
 4734                  */
 4735                 if (!sc->bge_link)
 4736                         mii_tick(mii);
 4737         } else {
 4738                 /*
 4739                  * Since in TBI mode auto-polling can't be used we should poll
 4740                  * link status manually. Here we register pending link event
 4741                  * and trigger interrupt.
 4742                  */
 4743 #ifdef DEVICE_POLLING
 4744                 /* In polling mode we poll link state in bge_poll(). */
 4745                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
 4746 #endif
 4747                 {
 4748                 sc->bge_link_evt++;
 4749                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 4750                     sc->bge_flags & BGE_FLAG_5788)
 4751                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 4752                 else
 4753                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 4754                 }
 4755         }
 4756 
 4757         bge_asf_driver_up(sc);
 4758         bge_watchdog(sc);
 4759 
 4760         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 4761 }
 4762 
 4763 static void
 4764 bge_stats_update_regs(struct bge_softc *sc)
 4765 {
 4766         struct ifnet *ifp;
 4767         struct bge_mac_stats *stats;
 4768 
 4769         ifp = sc->bge_ifp;
 4770         stats = &sc->bge_mac_stats;
 4771 
 4772         stats->ifHCOutOctets +=
 4773             CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
 4774         stats->etherStatsCollisions +=
 4775             CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
 4776         stats->outXonSent +=
 4777             CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
 4778         stats->outXoffSent +=
 4779             CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
 4780         stats->dot3StatsInternalMacTransmitErrors +=
 4781             CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
 4782         stats->dot3StatsSingleCollisionFrames +=
 4783             CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
 4784         stats->dot3StatsMultipleCollisionFrames +=
 4785             CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
 4786         stats->dot3StatsDeferredTransmissions +=
 4787             CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
 4788         stats->dot3StatsExcessiveCollisions +=
 4789             CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
 4790         stats->dot3StatsLateCollisions +=
 4791             CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
 4792         stats->ifHCOutUcastPkts +=
 4793             CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
 4794         stats->ifHCOutMulticastPkts +=
 4795             CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
 4796         stats->ifHCOutBroadcastPkts +=
 4797             CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
 4798 
 4799         stats->ifHCInOctets +=
 4800             CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
 4801         stats->etherStatsFragments +=
 4802             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
 4803         stats->ifHCInUcastPkts +=
 4804             CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
 4805         stats->ifHCInMulticastPkts +=
 4806             CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
 4807         stats->ifHCInBroadcastPkts +=
 4808             CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
 4809         stats->dot3StatsFCSErrors +=
 4810             CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
 4811         stats->dot3StatsAlignmentErrors +=
 4812             CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
 4813         stats->xonPauseFramesReceived +=
 4814             CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
 4815         stats->xoffPauseFramesReceived +=
 4816             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
 4817         stats->macControlFramesReceived +=
 4818             CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
 4819         stats->xoffStateEntered +=
 4820             CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
 4821         stats->dot3StatsFramesTooLong +=
 4822             CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
 4823         stats->etherStatsJabbers +=
 4824             CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
 4825         stats->etherStatsUndersizePkts +=
 4826             CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
 4827 
 4828         stats->FramesDroppedDueToFilters +=
 4829             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
 4830         stats->DmaWriteQueueFull +=
 4831             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
 4832         stats->DmaWriteHighPriQueueFull +=
 4833             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
 4834         stats->NoMoreRxBDs +=
 4835             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
 4836         /*
 4837          * XXX
 4838          * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
 4839          * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
 4840          * includes number of unwanted multicast frames.  This comes
 4841          * from silicon bug and known workaround to get rough(not
 4842          * exact) counter is to enable interrupt on MBUF low water
 4843          * attention.  This can be accomplished by setting
 4844          * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
 4845          * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
 4846          * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
 4847          * However that change would generate more interrupts and
 4848          * there are still possibilities of losing multiple frames
 4849          * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
 4850          * Given that the workaround still would not get correct
 4851          * counter I don't think it's worth to implement it.  So
 4852          * ignore reading the counter on controllers that have the
 4853          * silicon bug.
 4854          */
 4855         if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
 4856             sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
 4857             sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
 4858                 stats->InputDiscards +=
 4859                     CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 4860         stats->InputErrors +=
 4861             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
 4862         stats->RecvThresholdHit +=
 4863             CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
 4864 
 4865         ifp->if_collisions = (u_long)stats->etherStatsCollisions;
 4866         ifp->if_ierrors = (u_long)(stats->NoMoreRxBDs + stats->InputDiscards +
 4867             stats->InputErrors);
 4868 }
 4869 
 4870 static void
 4871 bge_stats_clear_regs(struct bge_softc *sc)
 4872 {
 4873 
 4874         CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
 4875         CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
 4876         CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
 4877         CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
 4878         CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
 4879         CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
 4880         CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
 4881         CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
 4882         CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
 4883         CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
 4884         CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
 4885         CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
 4886         CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
 4887 
 4888         CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
 4889         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
 4890         CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
 4891         CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
 4892         CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
 4893         CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
 4894         CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
 4895         CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
 4896         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
 4897         CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
 4898         CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
 4899         CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
 4900         CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
 4901         CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
 4902 
 4903         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
 4904         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
 4905         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
 4906         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
 4907         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
 4908         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
 4909         CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
 4910 }
 4911 
 4912 static void
 4913 bge_stats_update(struct bge_softc *sc)
 4914 {
 4915         struct ifnet *ifp;
 4916         bus_size_t stats;
 4917         uint32_t cnt;   /* current register value */
 4918 
 4919         ifp = sc->bge_ifp;
 4920 
 4921         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
 4922 
 4923 #define READ_STAT(sc, stats, stat) \
 4924         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
 4925 
 4926         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
 4927         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
 4928         sc->bge_tx_collisions = cnt;
 4929 
 4930         cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
 4931         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_nobds);
 4932         sc->bge_rx_nobds = cnt;
 4933         cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
 4934         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrs);
 4935         sc->bge_rx_inerrs = cnt;
 4936         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
 4937         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
 4938         sc->bge_rx_discards = cnt;
 4939 
 4940         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
 4941         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
 4942         sc->bge_tx_discards = cnt;
 4943 
 4944 #undef  READ_STAT
 4945 }
 4946 
 4947 /*
 4948  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
 4949  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
 4950  * but when such padded frames employ the bge IP/TCP checksum offload,
 4951  * the hardware checksum assist gives incorrect results (possibly
 4952  * from incorporating its own padding into the UDP/TCP checksum; who knows).
 4953  * If we pad such runts with zeros, the onboard checksum comes out correct.
 4954  */
 4955 static __inline int
 4956 bge_cksum_pad(struct mbuf *m)
 4957 {
 4958         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
 4959         struct mbuf *last;
 4960 
 4961         /* If there's only the packet-header and we can pad there, use it. */
 4962         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
 4963             M_TRAILINGSPACE(m) >= padlen) {
 4964                 last = m;
 4965         } else {
 4966                 /*
 4967                  * Walk packet chain to find last mbuf. We will either
 4968                  * pad there, or append a new mbuf and pad it.
 4969                  */
 4970                 for (last = m; last->m_next != NULL; last = last->m_next);
 4971                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
 4972                         /* Allocate new empty mbuf, pad it. Compact later. */
 4973                         struct mbuf *n;
 4974 
 4975                         MGET(n, M_NOWAIT, MT_DATA);
 4976                         if (n == NULL)
 4977                                 return (ENOBUFS);
 4978                         n->m_len = 0;
 4979                         last->m_next = n;
 4980                         last = n;
 4981                 }
 4982         }
 4983 
 4984         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
 4985         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
 4986         last->m_len += padlen;
 4987         m->m_pkthdr.len += padlen;
 4988 
 4989         return (0);
 4990 }
 4991 
 4992 static struct mbuf *
 4993 bge_check_short_dma(struct mbuf *m)
 4994 {
 4995         struct mbuf *n;
 4996         int found;
 4997 
 4998         /*
 4999          * If device receive two back-to-back send BDs with less than
 5000          * or equal to 8 total bytes then the device may hang.  The two
 5001          * back-to-back send BDs must in the same frame for this failure
 5002          * to occur.  Scan mbuf chains and see whether two back-to-back
 5003          * send BDs are there. If this is the case, allocate new mbuf
 5004          * and copy the frame to workaround the silicon bug.
 5005          */
 5006         for (n = m, found = 0; n != NULL; n = n->m_next) {
 5007                 if (n->m_len < 8) {
 5008                         found++;
 5009                         if (found > 1)
 5010                                 break;
 5011                         continue;
 5012                 }
 5013                 found = 0;
 5014         }
 5015 
 5016         if (found > 1) {
 5017                 n = m_defrag(m, M_NOWAIT);
 5018                 if (n == NULL)
 5019                         m_freem(m);
 5020         } else
 5021                 n = m;
 5022         return (n);
 5023 }
 5024 
 5025 static struct mbuf *
 5026 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
 5027     uint16_t *flags)
 5028 {
 5029         struct ip *ip;
 5030         struct tcphdr *tcp;
 5031         struct mbuf *n;
 5032         uint16_t hlen;
 5033         uint32_t poff;
 5034 
 5035         if (M_WRITABLE(m) == 0) {
 5036                 /* Get a writable copy. */
 5037                 n = m_dup(m, M_NOWAIT);
 5038                 m_freem(m);
 5039                 if (n == NULL)
 5040                         return (NULL);
 5041                 m = n;
 5042         }
 5043         m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
 5044         if (m == NULL)
 5045                 return (NULL);
 5046         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
 5047         poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
 5048         m = m_pullup(m, poff + sizeof(struct tcphdr));
 5049         if (m == NULL)
 5050                 return (NULL);
 5051         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 5052         m = m_pullup(m, poff + (tcp->th_off << 2));
 5053         if (m == NULL)
 5054                 return (NULL);
 5055         /*
 5056          * It seems controller doesn't modify IP length and TCP pseudo
 5057          * checksum. These checksum computed by upper stack should be 0.
 5058          */
 5059         *mss = m->m_pkthdr.tso_segsz;
 5060         ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
 5061         ip->ip_sum = 0;
 5062         ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
 5063         /* Clear pseudo checksum computed by TCP stack. */
 5064         tcp = (struct tcphdr *)(mtod(m, char *) + poff);
 5065         tcp->th_sum = 0;
 5066         /*
 5067          * Broadcom controllers uses different descriptor format for
 5068          * TSO depending on ASIC revision. Due to TSO-capable firmware
 5069          * license issue and lower performance of firmware based TSO
 5070          * we only support hardware based TSO.
 5071          */
 5072         /* Calculate header length, incl. TCP/IP options, in 32 bit units. */
 5073         hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
 5074         if (sc->bge_flags & BGE_FLAG_TSO3) {
 5075                 /*
 5076                  * For BCM5717 and newer controllers, hardware based TSO
 5077                  * uses the 14 lower bits of the bge_mss field to store the
 5078                  * MSS and the upper 2 bits to store the lowest 2 bits of
 5079                  * the IP/TCP header length.  The upper 6 bits of the header
 5080                  * length are stored in the bge_flags[14:10,4] field.  Jumbo
 5081                  * frames are supported.
 5082                  */
 5083                 *mss |= ((hlen & 0x3) << 14);
 5084                 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
 5085         } else {
 5086                 /*
 5087                  * For BCM5755 and newer controllers, hardware based TSO uses
 5088                  * the lower 11 bits to store the MSS and the upper 5 bits to
 5089                  * store the IP/TCP header length. Jumbo frames are not
 5090                  * supported.
 5091                  */
 5092                 *mss |= (hlen << 11);
 5093         }
 5094         return (m);
 5095 }
 5096 
 5097 /*
 5098  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
 5099  * pointers to descriptors.
 5100  */
 5101 static int
 5102 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
 5103 {
 5104         bus_dma_segment_t       segs[BGE_NSEG_NEW];
 5105         bus_dmamap_t            map;
 5106         struct bge_tx_bd        *d;
 5107         struct mbuf             *m = *m_head;
 5108         uint32_t                idx = *txidx;
 5109         uint16_t                csum_flags, mss, vlan_tag;
 5110         int                     nsegs, i, error;
 5111 
 5112         csum_flags = 0;
 5113         mss = 0;
 5114         vlan_tag = 0;
 5115         if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
 5116             m->m_next != NULL) {
 5117                 *m_head = bge_check_short_dma(m);
 5118                 if (*m_head == NULL)
 5119                         return (ENOBUFS);
 5120                 m = *m_head;
 5121         }
 5122         if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 5123                 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
 5124                 if (*m_head == NULL)
 5125                         return (ENOBUFS);
 5126                 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
 5127                     BGE_TXBDFLAG_CPU_POST_DMA;
 5128         } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
 5129                 if (m->m_pkthdr.csum_flags & CSUM_IP)
 5130                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
 5131                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
 5132                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
 5133                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
 5134                             (error = bge_cksum_pad(m)) != 0) {
 5135                                 m_freem(m);
 5136                                 *m_head = NULL;
 5137                                 return (error);
 5138                         }
 5139                 }
 5140         }
 5141 
 5142         if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
 5143                 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
 5144                     m->m_pkthdr.len > ETHER_MAX_LEN)
 5145                         csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
 5146                 if (sc->bge_forced_collapse > 0 &&
 5147                     (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
 5148                         /*
 5149                          * Forcedly collapse mbuf chains to overcome hardware
 5150                          * limitation which only support a single outstanding
 5151                          * DMA read operation.
 5152                          */
 5153                         if (sc->bge_forced_collapse == 1)
 5154                                 m = m_defrag(m, M_NOWAIT);
 5155                         else
 5156                                 m = m_collapse(m, M_NOWAIT,
 5157                                     sc->bge_forced_collapse);
 5158                         if (m == NULL)
 5159                                 m = *m_head;
 5160                         *m_head = m;
 5161                 }
 5162         }
 5163 
 5164         map = sc->bge_cdata.bge_tx_dmamap[idx];
 5165         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
 5166             &nsegs, BUS_DMA_NOWAIT);
 5167         if (error == EFBIG) {
 5168                 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
 5169                 if (m == NULL) {
 5170                         m_freem(*m_head);
 5171                         *m_head = NULL;
 5172                         return (ENOBUFS);
 5173                 }
 5174                 *m_head = m;
 5175                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
 5176                     m, segs, &nsegs, BUS_DMA_NOWAIT);
 5177                 if (error) {
 5178                         m_freem(m);
 5179                         *m_head = NULL;
 5180                         return (error);
 5181                 }
 5182         } else if (error != 0)
 5183                 return (error);
 5184 
 5185         /* Check if we have enough free send BDs. */
 5186         if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
 5187                 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
 5188                 return (ENOBUFS);
 5189         }
 5190 
 5191         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
 5192 
 5193         if (m->m_flags & M_VLANTAG) {
 5194                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
 5195                 vlan_tag = m->m_pkthdr.ether_vtag;
 5196         }
 5197         for (i = 0; ; i++) {
 5198                 d = &sc->bge_ldata.bge_tx_ring[idx];
 5199                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
 5200                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
 5201                 d->bge_len = segs[i].ds_len;
 5202                 d->bge_flags = csum_flags;
 5203                 d->bge_vlan_tag = vlan_tag;
 5204                 d->bge_mss = mss;
 5205                 if (i == nsegs - 1)
 5206                         break;
 5207                 BGE_INC(idx, BGE_TX_RING_CNT);
 5208         }
 5209 
 5210         /* Mark the last segment as end of packet... */
 5211         d->bge_flags |= BGE_TXBDFLAG_END;
 5212 
 5213         /*
 5214          * Insure that the map for this transmission
 5215          * is placed at the array index of the last descriptor
 5216          * in this chain.
 5217          */
 5218         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
 5219         sc->bge_cdata.bge_tx_dmamap[idx] = map;
 5220         sc->bge_cdata.bge_tx_chain[idx] = m;
 5221         sc->bge_txcnt += nsegs;
 5222 
 5223         BGE_INC(idx, BGE_TX_RING_CNT);
 5224         *txidx = idx;
 5225 
 5226         return (0);
 5227 }
 5228 
 5229 /*
 5230  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 5231  * to the mbuf data regions directly in the transmit descriptors.
 5232  */
 5233 static void
 5234 bge_start_locked(struct ifnet *ifp)
 5235 {
 5236         struct bge_softc *sc;
 5237         struct mbuf *m_head;
 5238         uint32_t prodidx;
 5239         int count;
 5240 
 5241         sc = ifp->if_softc;
 5242         BGE_LOCK_ASSERT(sc);
 5243 
 5244         if (!sc->bge_link ||
 5245             (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 5246             IFF_DRV_RUNNING)
 5247                 return;
 5248 
 5249         prodidx = sc->bge_tx_prodidx;
 5250 
 5251         for (count = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
 5252                 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
 5253                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 5254                         break;
 5255                 }
 5256                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 5257                 if (m_head == NULL)
 5258                         break;
 5259 
 5260                 /*
 5261                  * Pack the data into the transmit ring. If we
 5262                  * don't have room, set the OACTIVE flag and wait
 5263                  * for the NIC to drain the ring.
 5264                  */
 5265                 if (bge_encap(sc, &m_head, &prodidx)) {
 5266                         if (m_head == NULL)
 5267                                 break;
 5268                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 5269                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 5270                         break;
 5271                 }
 5272                 ++count;
 5273 
 5274                 /*
 5275                  * If there's a BPF listener, bounce a copy of this frame
 5276                  * to him.
 5277                  */
 5278 #ifdef ETHER_BPF_MTAP
 5279                 ETHER_BPF_MTAP(ifp, m_head);
 5280 #else
 5281                 BPF_MTAP(ifp, m_head);
 5282 #endif
 5283         }
 5284 
 5285         if (count > 0) {
 5286                 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
 5287                     sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
 5288                 /* Transmit. */
 5289                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 5290                 /* 5700 b2 errata */
 5291                 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
 5292                         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
 5293 
 5294                 sc->bge_tx_prodidx = prodidx;
 5295 
 5296                 /*
 5297                  * Set a timeout in case the chip goes out to lunch.
 5298                  */
 5299                 sc->bge_timer = BGE_TX_TIMEOUT;
 5300         }
 5301 }
 5302 
 5303 /*
 5304  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 5305  * to the mbuf data regions directly in the transmit descriptors.
 5306  */
 5307 static void
 5308 bge_start(struct ifnet *ifp)
 5309 {
 5310         struct bge_softc *sc;
 5311 
 5312         sc = ifp->if_softc;
 5313         BGE_LOCK(sc);
 5314         bge_start_locked(ifp);
 5315         BGE_UNLOCK(sc);
 5316 }
 5317 
 5318 static void
 5319 bge_init_locked(struct bge_softc *sc)
 5320 {
 5321         struct ifnet *ifp;
 5322         uint16_t *m;
 5323         uint32_t mode;
 5324 
 5325         BGE_LOCK_ASSERT(sc);
 5326 
 5327         ifp = sc->bge_ifp;
 5328 
 5329         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 5330                 return;
 5331 
 5332         /* Cancel pending I/O and flush buffers. */
 5333         bge_stop(sc);
 5334 
 5335         bge_stop_fw(sc);
 5336         bge_sig_pre_reset(sc, BGE_RESET_START);
 5337         bge_reset(sc);
 5338         bge_sig_legacy(sc, BGE_RESET_START);
 5339         bge_sig_post_reset(sc, BGE_RESET_START);
 5340 
 5341         bge_chipinit(sc);
 5342 
 5343         /*
 5344          * Init the various state machines, ring
 5345          * control blocks and firmware.
 5346          */
 5347         if (bge_blockinit(sc)) {
 5348                 device_printf(sc->bge_dev, "initialization failure\n");
 5349                 return;
 5350         }
 5351 
 5352         ifp = sc->bge_ifp;
 5353 
 5354         /* Specify MTU. */
 5355         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
 5356             ETHER_HDR_LEN + ETHER_CRC_LEN +
 5357             (ifp->if_capenable & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
 5358 
 5359         /* Load our MAC address. */
 5360         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
 5361         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
 5362         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
 5363 
 5364         /* Program promiscuous mode. */
 5365         bge_setpromisc(sc);
 5366 
 5367         /* Program multicast filter. */
 5368         bge_setmulti(sc);
 5369 
 5370         /* Program VLAN tag stripping. */
 5371         bge_setvlan(sc);
 5372 
 5373         /* Override UDP checksum offloading. */
 5374         if (sc->bge_forced_udpcsum == 0)
 5375                 sc->bge_csum_features &= ~CSUM_UDP;
 5376         else
 5377                 sc->bge_csum_features |= CSUM_UDP;
 5378         if (ifp->if_capabilities & IFCAP_TXCSUM &&
 5379             ifp->if_capenable & IFCAP_TXCSUM) {
 5380                 ifp->if_hwassist &= ~(BGE_CSUM_FEATURES | CSUM_UDP);
 5381                 ifp->if_hwassist |= sc->bge_csum_features;
 5382         }
 5383 
 5384         /* Init RX ring. */
 5385         if (bge_init_rx_ring_std(sc) != 0) {
 5386                 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
 5387                 bge_stop(sc);
 5388                 return;
 5389         }
 5390 
 5391         /*
 5392          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
 5393          * memory to insure that the chip has in fact read the first
 5394          * entry of the ring.
 5395          */
 5396         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
 5397                 uint32_t                v, i;
 5398                 for (i = 0; i < 10; i++) {
 5399                         DELAY(20);
 5400                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
 5401                         if (v == (MCLBYTES - ETHER_ALIGN))
 5402                                 break;
 5403                 }
 5404                 if (i == 10)
 5405                         device_printf (sc->bge_dev,
 5406                             "5705 A0 chip failed to load RX ring\n");
 5407         }
 5408 
 5409         /* Init jumbo RX ring. */
 5410         if (BGE_IS_JUMBO_CAPABLE(sc) &&
 5411             ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN >
 5412             (MCLBYTES - ETHER_ALIGN)) {
 5413                 if (bge_init_rx_ring_jumbo(sc) != 0) {
 5414                         device_printf(sc->bge_dev,
 5415                             "no memory for jumbo Rx buffers.\n");
 5416                         bge_stop(sc);
 5417                         return;
 5418                 }
 5419         }
 5420 
 5421         /* Init our RX return ring index. */
 5422         sc->bge_rx_saved_considx = 0;
 5423 
 5424         /* Init our RX/TX stat counters. */
 5425         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
 5426 
 5427         /* Init TX ring. */
 5428         bge_init_tx_ring(sc);
 5429 
 5430         /* Enable TX MAC state machine lockup fix. */
 5431         mode = CSR_READ_4(sc, BGE_TX_MODE);
 5432         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
 5433                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
 5434         if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
 5435                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
 5436                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
 5437                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
 5438         }
 5439         /* Turn on transmitter. */
 5440         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
 5441         DELAY(100);
 5442 
 5443         /* Turn on receiver. */
 5444         mode = CSR_READ_4(sc, BGE_RX_MODE);
 5445         if (BGE_IS_5755_PLUS(sc))
 5446                 mode |= BGE_RXMODE_IPV6_ENABLE;
 5447         CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
 5448         DELAY(10);
 5449 
 5450         /*
 5451          * Set the number of good frames to receive after RX MBUF
 5452          * Low Watermark has been reached. After the RX MAC receives
 5453          * this number of frames, it will drop subsequent incoming
 5454          * frames until the MBUF High Watermark is reached.
 5455          */
 5456         if (BGE_IS_57765_PLUS(sc))
 5457                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
 5458         else
 5459                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
 5460 
 5461         /* Clear MAC statistics. */
 5462         if (BGE_IS_5705_PLUS(sc))
 5463                 bge_stats_clear_regs(sc);
 5464 
 5465         /* Tell firmware we're alive. */
 5466         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 5467 
 5468 #ifdef DEVICE_POLLING
 5469         /* Disable interrupts if we are polling. */
 5470         if (ifp->if_capenable & IFCAP_POLLING) {
 5471                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 5472                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 5473                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 5474         } else
 5475 #endif
 5476 
 5477         /* Enable host interrupts. */
 5478         {
 5479         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
 5480         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 5481         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 5482         }
 5483 
 5484         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 5485         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 5486 
 5487         bge_ifmedia_upd_locked(ifp);
 5488 
 5489         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
 5490 }
 5491 
 5492 static void
 5493 bge_init(void *xsc)
 5494 {
 5495         struct bge_softc *sc = xsc;
 5496 
 5497         BGE_LOCK(sc);
 5498         bge_init_locked(sc);
 5499         BGE_UNLOCK(sc);
 5500 }
 5501 
 5502 /*
 5503  * Set media options.
 5504  */
 5505 static int
 5506 bge_ifmedia_upd(struct ifnet *ifp)
 5507 {
 5508         struct bge_softc *sc = ifp->if_softc;
 5509         int res;
 5510 
 5511         BGE_LOCK(sc);
 5512         res = bge_ifmedia_upd_locked(ifp);
 5513         BGE_UNLOCK(sc);
 5514 
 5515         return (res);
 5516 }
 5517 
 5518 static int
 5519 bge_ifmedia_upd_locked(struct ifnet *ifp)
 5520 {
 5521         struct bge_softc *sc = ifp->if_softc;
 5522         struct mii_data *mii;
 5523         struct mii_softc *miisc;
 5524         struct ifmedia *ifm;
 5525 
 5526         BGE_LOCK_ASSERT(sc);
 5527 
 5528         ifm = &sc->bge_ifmedia;
 5529 
 5530         /* If this is a 1000baseX NIC, enable the TBI port. */
 5531         if (sc->bge_flags & BGE_FLAG_TBI) {
 5532                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
 5533                         return (EINVAL);
 5534                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
 5535                 case IFM_AUTO:
 5536                         /*
 5537                          * The BCM5704 ASIC appears to have a special
 5538                          * mechanism for programming the autoneg
 5539                          * advertisement registers in TBI mode.
 5540                          */
 5541                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 5542                                 uint32_t sgdig;
 5543                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
 5544                                 if (sgdig & BGE_SGDIGSTS_DONE) {
 5545                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
 5546                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
 5547                                         sgdig |= BGE_SGDIGCFG_AUTO |
 5548                                             BGE_SGDIGCFG_PAUSE_CAP |
 5549                                             BGE_SGDIGCFG_ASYM_PAUSE;
 5550                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
 5551                                             sgdig | BGE_SGDIGCFG_SEND);
 5552                                         DELAY(5);
 5553                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
 5554                                 }
 5555                         }
 5556                         break;
 5557                 case IFM_1000_SX:
 5558                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
 5559                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
 5560                                     BGE_MACMODE_HALF_DUPLEX);
 5561                         } else {
 5562                                 BGE_SETBIT(sc, BGE_MAC_MODE,
 5563                                     BGE_MACMODE_HALF_DUPLEX);
 5564                         }
 5565                         DELAY(40);
 5566                         break;
 5567                 default:
 5568                         return (EINVAL);
 5569                 }
 5570                 return (0);
 5571         }
 5572 
 5573         sc->bge_link_evt++;
 5574         mii = device_get_softc(sc->bge_miibus);
 5575         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
 5576                 PHY_RESET(miisc);
 5577         mii_mediachg(mii);
 5578 
 5579         /*
 5580          * Force an interrupt so that we will call bge_link_upd
 5581          * if needed and clear any pending link state attention.
 5582          * Without this we are not getting any further interrupts
 5583          * for link state changes and thus will not UP the link and
 5584          * not be able to send in bge_start_locked. The only
 5585          * way to get things working was to receive a packet and
 5586          * get an RX intr.
 5587          * bge_tick should help for fiber cards and we might not
 5588          * need to do this here if BGE_FLAG_TBI is set but as
 5589          * we poll for fiber anyway it should not harm.
 5590          */
 5591         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
 5592             sc->bge_flags & BGE_FLAG_5788)
 5593                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
 5594         else
 5595                 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
 5596 
 5597         return (0);
 5598 }
 5599 
 5600 /*
 5601  * Report current media status.
 5602  */
 5603 static void
 5604 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 5605 {
 5606         struct bge_softc *sc = ifp->if_softc;
 5607         struct mii_data *mii;
 5608 
 5609         BGE_LOCK(sc);
 5610 
 5611         if ((ifp->if_flags & IFF_UP) == 0) {
 5612                 BGE_UNLOCK(sc);
 5613                 return;
 5614         }
 5615         if (sc->bge_flags & BGE_FLAG_TBI) {
 5616                 ifmr->ifm_status = IFM_AVALID;
 5617                 ifmr->ifm_active = IFM_ETHER;
 5618                 if (CSR_READ_4(sc, BGE_MAC_STS) &
 5619                     BGE_MACSTAT_TBI_PCS_SYNCHED)
 5620                         ifmr->ifm_status |= IFM_ACTIVE;
 5621                 else {
 5622                         ifmr->ifm_active |= IFM_NONE;
 5623                         BGE_UNLOCK(sc);
 5624                         return;
 5625                 }
 5626                 ifmr->ifm_active |= IFM_1000_SX;
 5627                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
 5628                         ifmr->ifm_active |= IFM_HDX;
 5629                 else
 5630                         ifmr->ifm_active |= IFM_FDX;
 5631                 BGE_UNLOCK(sc);
 5632                 return;
 5633         }
 5634 
 5635         mii = device_get_softc(sc->bge_miibus);
 5636         mii_pollstat(mii);
 5637         ifmr->ifm_active = mii->mii_media_active;
 5638         ifmr->ifm_status = mii->mii_media_status;
 5639 
 5640         BGE_UNLOCK(sc);
 5641 }
 5642 
 5643 static int
 5644 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 5645 {
 5646         struct bge_softc *sc = ifp->if_softc;
 5647         struct ifreq *ifr = (struct ifreq *) data;
 5648         struct mii_data *mii;
 5649         int flags, mask, error = 0;
 5650 
 5651         switch (command) {
 5652         case SIOCSIFMTU:
 5653                 if (BGE_IS_JUMBO_CAPABLE(sc) ||
 5654                     (sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
 5655                         if (ifr->ifr_mtu < ETHERMIN ||
 5656                             ifr->ifr_mtu > BGE_JUMBO_MTU) {
 5657                                 error = EINVAL;
 5658                                 break;
 5659                         }
 5660                 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
 5661                         error = EINVAL;
 5662                         break;
 5663                 }
 5664                 BGE_LOCK(sc);
 5665                 if (ifp->if_mtu != ifr->ifr_mtu) {
 5666                         ifp->if_mtu = ifr->ifr_mtu;
 5667                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 5668                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 5669                                 bge_init_locked(sc);
 5670                         }
 5671                 }
 5672                 BGE_UNLOCK(sc);
 5673                 break;
 5674         case SIOCSIFFLAGS:
 5675                 BGE_LOCK(sc);
 5676                 if (ifp->if_flags & IFF_UP) {
 5677                         /*
 5678                          * If only the state of the PROMISC flag changed,
 5679                          * then just use the 'set promisc mode' command
 5680                          * instead of reinitializing the entire NIC. Doing
 5681                          * a full re-init means reloading the firmware and
 5682                          * waiting for it to start up, which may take a
 5683                          * second or two.  Similarly for ALLMULTI.
 5684                          */
 5685                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 5686                                 flags = ifp->if_flags ^ sc->bge_if_flags;
 5687                                 if (flags & IFF_PROMISC)
 5688                                         bge_setpromisc(sc);
 5689                                 if (flags & IFF_ALLMULTI)
 5690                                         bge_setmulti(sc);
 5691                         } else
 5692                                 bge_init_locked(sc);
 5693                 } else {
 5694                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 5695                                 bge_stop(sc);
 5696                         }
 5697                 }
 5698                 sc->bge_if_flags = ifp->if_flags;
 5699                 BGE_UNLOCK(sc);
 5700                 error = 0;
 5701                 break;
 5702         case SIOCADDMULTI:
 5703         case SIOCDELMULTI:
 5704                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 5705                         BGE_LOCK(sc);
 5706                         bge_setmulti(sc);
 5707                         BGE_UNLOCK(sc);
 5708                         error = 0;
 5709                 }
 5710                 break;
 5711         case SIOCSIFMEDIA:
 5712         case SIOCGIFMEDIA:
 5713                 if (sc->bge_flags & BGE_FLAG_TBI) {
 5714                         error = ifmedia_ioctl(ifp, ifr,
 5715                             &sc->bge_ifmedia, command);
 5716                 } else {
 5717                         mii = device_get_softc(sc->bge_miibus);
 5718                         error = ifmedia_ioctl(ifp, ifr,
 5719                             &mii->mii_media, command);
 5720                 }
 5721                 break;
 5722         case SIOCSIFCAP:
 5723                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
 5724 #ifdef DEVICE_POLLING
 5725                 if (mask & IFCAP_POLLING) {
 5726                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
 5727                                 error = ether_poll_register(bge_poll, ifp);
 5728                                 if (error)
 5729                                         return (error);
 5730                                 BGE_LOCK(sc);
 5731                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
 5732                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 5733                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 5734                                 ifp->if_capenable |= IFCAP_POLLING;
 5735                                 BGE_UNLOCK(sc);
 5736                         } else {
 5737                                 error = ether_poll_deregister(ifp);
 5738                                 /* Enable interrupt even in error case */
 5739                                 BGE_LOCK(sc);
 5740                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
 5741                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
 5742                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
 5743                                 ifp->if_capenable &= ~IFCAP_POLLING;
 5744                                 BGE_UNLOCK(sc);
 5745                         }
 5746                 }
 5747 #endif
 5748                 if ((mask & IFCAP_TXCSUM) != 0 &&
 5749                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
 5750                         ifp->if_capenable ^= IFCAP_TXCSUM;
 5751                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
 5752                                 ifp->if_hwassist |= sc->bge_csum_features;
 5753                         else
 5754                                 ifp->if_hwassist &= ~sc->bge_csum_features;
 5755                 }
 5756 
 5757                 if ((mask & IFCAP_RXCSUM) != 0 &&
 5758                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
 5759                         ifp->if_capenable ^= IFCAP_RXCSUM;
 5760 
 5761                 if ((mask & IFCAP_TSO4) != 0 &&
 5762                     (ifp->if_capabilities & IFCAP_TSO4) != 0) {
 5763                         ifp->if_capenable ^= IFCAP_TSO4;
 5764                         if ((ifp->if_capenable & IFCAP_TSO4) != 0)
 5765                                 ifp->if_hwassist |= CSUM_TSO;
 5766                         else
 5767                                 ifp->if_hwassist &= ~CSUM_TSO;
 5768                 }
 5769 
 5770                 if (mask & IFCAP_VLAN_MTU) {
 5771                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
 5772                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 5773                         bge_init(sc);
 5774                 }
 5775 
 5776                 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
 5777                     (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
 5778                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
 5779                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
 5780                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
 5781                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
 5782                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 5783                                 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
 5784                         BGE_LOCK(sc);
 5785                         bge_setvlan(sc);
 5786                         BGE_UNLOCK(sc);
 5787                 }
 5788 #ifdef VLAN_CAPABILITIES
 5789                 VLAN_CAPABILITIES(ifp);
 5790 #endif
 5791                 break;
 5792         default:
 5793                 error = ether_ioctl(ifp, command, data);
 5794                 break;
 5795         }
 5796 
 5797         return (error);
 5798 }
 5799 
 5800 static void
 5801 bge_watchdog(struct bge_softc *sc)
 5802 {
 5803         struct ifnet *ifp;
 5804         uint32_t status;
 5805 
 5806         BGE_LOCK_ASSERT(sc);
 5807 
 5808         if (sc->bge_timer == 0 || --sc->bge_timer)
 5809                 return;
 5810 
 5811         /* If pause frames are active then don't reset the hardware. */
 5812         if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
 5813                 status = CSR_READ_4(sc, BGE_RX_STS);
 5814                 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
 5815                         /*
 5816                          * If link partner has us in XOFF state then wait for
 5817                          * the condition to clear.
 5818                          */
 5819                         CSR_WRITE_4(sc, BGE_RX_STS, status);
 5820                         sc->bge_timer = BGE_TX_TIMEOUT;
 5821                         return;
 5822                 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
 5823                     (status & BGE_RXSTAT_RCVD_XON) != 0) {
 5824                         /*
 5825                          * If link partner has us in XOFF state then wait for
 5826                          * the condition to clear.
 5827                          */
 5828                         CSR_WRITE_4(sc, BGE_RX_STS, status);
 5829                         sc->bge_timer = BGE_TX_TIMEOUT;
 5830                         return;
 5831                 }
 5832                 /*
 5833                  * Any other condition is unexpected and the controller
 5834                  * should be reset.
 5835                  */
 5836         }
 5837 
 5838         ifp = sc->bge_ifp;
 5839 
 5840         if_printf(ifp, "watchdog timeout -- resetting\n");
 5841 
 5842         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 5843         bge_init_locked(sc);
 5844 
 5845         ifp->if_oerrors++;
 5846 }
 5847 
 5848 static void
 5849 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
 5850 {
 5851         int i;
 5852 
 5853         BGE_CLRBIT(sc, reg, bit);
 5854 
 5855         for (i = 0; i < BGE_TIMEOUT; i++) {
 5856                 if ((CSR_READ_4(sc, reg) & bit) == 0)
 5857                         return;
 5858                 DELAY(100);
 5859         }
 5860 }
 5861 
 5862 /*
 5863  * Stop the adapter and free any mbufs allocated to the
 5864  * RX and TX lists.
 5865  */
 5866 static void
 5867 bge_stop(struct bge_softc *sc)
 5868 {
 5869         struct ifnet *ifp;
 5870 
 5871         BGE_LOCK_ASSERT(sc);
 5872 
 5873         ifp = sc->bge_ifp;
 5874 
 5875         callout_stop(&sc->bge_stat_ch);
 5876 
 5877         /* Disable host interrupts. */
 5878         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
 5879         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
 5880 
 5881         /*
 5882          * Tell firmware we're shutting down.
 5883          */
 5884         bge_stop_fw(sc);
 5885         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
 5886 
 5887         /*
 5888          * Disable all of the receiver blocks.
 5889          */
 5890         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
 5891         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
 5892         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
 5893         if (BGE_IS_5700_FAMILY(sc))
 5894                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
 5895         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
 5896         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
 5897         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
 5898 
 5899         /*
 5900          * Disable all of the transmit blocks.
 5901          */
 5902         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
 5903         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
 5904         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
 5905         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
 5906         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
 5907         if (BGE_IS_5700_FAMILY(sc))
 5908                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
 5909         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
 5910 
 5911         /*
 5912          * Shut down all of the memory managers and related
 5913          * state machines.
 5914          */
 5915         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
 5916         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
 5917         if (BGE_IS_5700_FAMILY(sc))
 5918                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
 5919 
 5920         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
 5921         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
 5922         if (!(BGE_IS_5705_PLUS(sc))) {
 5923                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
 5924                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
 5925         }
 5926         /* Update MAC statistics. */
 5927         if (BGE_IS_5705_PLUS(sc))
 5928                 bge_stats_update_regs(sc);
 5929 
 5930         bge_reset(sc);
 5931         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
 5932         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
 5933 
 5934         /*
 5935          * Keep the ASF firmware running if up.
 5936          */
 5937         if (sc->bge_asf_mode & ASF_STACKUP)
 5938                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 5939         else
 5940                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
 5941 
 5942         /* Free the RX lists. */
 5943         bge_free_rx_ring_std(sc);
 5944 
 5945         /* Free jumbo RX list. */
 5946         if (BGE_IS_JUMBO_CAPABLE(sc))
 5947                 bge_free_rx_ring_jumbo(sc);
 5948 
 5949         /* Free TX buffers. */
 5950         bge_free_tx_ring(sc);
 5951 
 5952         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
 5953 
 5954         /* Clear MAC's link state (PHY may still have link UP). */
 5955         if (bootverbose && sc->bge_link)
 5956                 if_printf(sc->bge_ifp, "link DOWN\n");
 5957         sc->bge_link = 0;
 5958 
 5959         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 5960 }
 5961 
 5962 /*
 5963  * Stop all chip I/O so that the kernel's probe routines don't
 5964  * get confused by errant DMAs when rebooting.
 5965  */
 5966 static int
 5967 bge_shutdown(device_t dev)
 5968 {
 5969         struct bge_softc *sc;
 5970 
 5971         sc = device_get_softc(dev);
 5972         BGE_LOCK(sc);
 5973         bge_stop(sc);
 5974         BGE_UNLOCK(sc);
 5975 
 5976         return (0);
 5977 }
 5978 
 5979 static int
 5980 bge_suspend(device_t dev)
 5981 {
 5982         struct bge_softc *sc;
 5983 
 5984         sc = device_get_softc(dev);
 5985         BGE_LOCK(sc);
 5986         bge_stop(sc);
 5987         BGE_UNLOCK(sc);
 5988 
 5989         return (0);
 5990 }
 5991 
 5992 static int
 5993 bge_resume(device_t dev)
 5994 {
 5995         struct bge_softc *sc;
 5996         struct ifnet *ifp;
 5997 
 5998         sc = device_get_softc(dev);
 5999         BGE_LOCK(sc);
 6000         ifp = sc->bge_ifp;
 6001         if (ifp->if_flags & IFF_UP) {
 6002                 bge_init_locked(sc);
 6003                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 6004                         bge_start_locked(ifp);
 6005         }
 6006         BGE_UNLOCK(sc);
 6007 
 6008         return (0);
 6009 }
 6010 
 6011 static void
 6012 bge_link_upd(struct bge_softc *sc)
 6013 {
 6014         struct mii_data *mii;
 6015         uint32_t link, status;
 6016 
 6017         BGE_LOCK_ASSERT(sc);
 6018 
 6019         /* Clear 'pending link event' flag. */
 6020         sc->bge_link_evt = 0;
 6021 
 6022         /*
 6023          * Process link state changes.
 6024          * Grrr. The link status word in the status block does
 6025          * not work correctly on the BCM5700 rev AX and BX chips,
 6026          * according to all available information. Hence, we have
 6027          * to enable MII interrupts in order to properly obtain
 6028          * async link changes. Unfortunately, this also means that
 6029          * we have to read the MAC status register to detect link
 6030          * changes, thereby adding an additional register access to
 6031          * the interrupt handler.
 6032          *
 6033          * XXX: perhaps link state detection procedure used for
 6034          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
 6035          */
 6036 
 6037         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 6038             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
 6039                 status = CSR_READ_4(sc, BGE_MAC_STS);
 6040                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
 6041                         mii = device_get_softc(sc->bge_miibus);
 6042                         mii_pollstat(mii);
 6043                         if (!sc->bge_link &&
 6044                             mii->mii_media_status & IFM_ACTIVE &&
 6045                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 6046                                 sc->bge_link++;
 6047                                 if (bootverbose)
 6048                                         if_printf(sc->bge_ifp, "link UP\n");
 6049                         } else if (sc->bge_link &&
 6050                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 6051                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 6052                                 sc->bge_link = 0;
 6053                                 if (bootverbose)
 6054                                         if_printf(sc->bge_ifp, "link DOWN\n");
 6055                         }
 6056 
 6057                         /* Clear the interrupt. */
 6058                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
 6059                             BGE_EVTENB_MI_INTERRUPT);
 6060                         bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
 6061                             BRGPHY_MII_ISR);
 6062                         bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
 6063                             BRGPHY_MII_IMR, BRGPHY_INTRS);
 6064                 }
 6065                 return;
 6066         }
 6067 
 6068         if (sc->bge_flags & BGE_FLAG_TBI) {
 6069                 status = CSR_READ_4(sc, BGE_MAC_STS);
 6070                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
 6071                         if (!sc->bge_link) {
 6072                                 sc->bge_link++;
 6073                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
 6074                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
 6075                                             BGE_MACMODE_TBI_SEND_CFGS);
 6076                                         DELAY(40);
 6077                                 }
 6078                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
 6079                                 if (bootverbose)
 6080                                         if_printf(sc->bge_ifp, "link UP\n");
 6081                                 if_link_state_change(sc->bge_ifp,
 6082                                     LINK_STATE_UP);
 6083                         }
 6084                 } else if (sc->bge_link) {
 6085                         sc->bge_link = 0;
 6086                         if (bootverbose)
 6087                                 if_printf(sc->bge_ifp, "link DOWN\n");
 6088                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
 6089                 }
 6090         } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
 6091                 /*
 6092                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
 6093                  * in status word always set. Workaround this bug by reading
 6094                  * PHY link status directly.
 6095                  */
 6096                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
 6097 
 6098                 if (link != sc->bge_link ||
 6099                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
 6100                         mii = device_get_softc(sc->bge_miibus);
 6101                         mii_pollstat(mii);
 6102                         if (!sc->bge_link &&
 6103                             mii->mii_media_status & IFM_ACTIVE &&
 6104                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
 6105                                 sc->bge_link++;
 6106                                 if (bootverbose)
 6107                                         if_printf(sc->bge_ifp, "link UP\n");
 6108                         } else if (sc->bge_link &&
 6109                             (!(mii->mii_media_status & IFM_ACTIVE) ||
 6110                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
 6111                                 sc->bge_link = 0;
 6112                                 if (bootverbose)
 6113                                         if_printf(sc->bge_ifp, "link DOWN\n");
 6114                         }
 6115                 }
 6116         } else {
 6117                 /*
 6118                  * For controllers that call mii_tick, we have to poll
 6119                  * link status.
 6120                  */
 6121                 mii = device_get_softc(sc->bge_miibus);
 6122                 mii_pollstat(mii);
 6123                 bge_miibus_statchg(sc->bge_dev);
 6124         }
 6125 
 6126         /* Disable MAC attention when link is up. */
 6127         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
 6128             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
 6129             BGE_MACSTAT_LINK_CHANGED);
 6130 }
 6131 
 6132 static void
 6133 bge_add_sysctls(struct bge_softc *sc)
 6134 {
 6135         struct sysctl_ctx_list *ctx;
 6136         struct sysctl_oid_list *children;
 6137         char tn[32];
 6138         int unit;
 6139 
 6140         ctx = device_get_sysctl_ctx(sc->bge_dev);
 6141         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
 6142 
 6143 #ifdef BGE_REGISTER_DEBUG
 6144         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
 6145             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
 6146             "Debug Information");
 6147 
 6148         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
 6149             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
 6150             "MAC Register Read");
 6151 
 6152         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
 6153             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_ape_read, "I",
 6154             "APE Register Read");
 6155 
 6156         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
 6157             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
 6158             "Memory Read");
 6159 
 6160 #endif
 6161 
 6162         unit = device_get_unit(sc->bge_dev);
 6163         /*
 6164          * A common design characteristic for many Broadcom client controllers
 6165          * is that they only support a single outstanding DMA read operation
 6166          * on the PCIe bus. This means that it will take twice as long to fetch
 6167          * a TX frame that is split into header and payload buffers as it does
 6168          * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
 6169          * these controllers, coalescing buffers to reduce the number of memory
 6170          * reads is effective way to get maximum performance(about 940Mbps).
 6171          * Without collapsing TX buffers the maximum TCP bulk transfer
 6172          * performance is about 850Mbps. However forcing coalescing mbufs
 6173          * consumes a lot of CPU cycles, so leave it off by default.
 6174          */
 6175         sc->bge_forced_collapse = 0;
 6176         snprintf(tn, sizeof(tn), "dev.bge.%d.forced_collapse", unit);
 6177         TUNABLE_INT_FETCH(tn, &sc->bge_forced_collapse);
 6178         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
 6179             CTLFLAG_RW, &sc->bge_forced_collapse, 0,
 6180             "Number of fragmented TX buffers of a frame allowed before "
 6181             "forced collapsing");
 6182 
 6183         sc->bge_msi = 1;
 6184         snprintf(tn, sizeof(tn), "dev.bge.%d.msi", unit);
 6185         TUNABLE_INT_FETCH(tn, &sc->bge_msi);
 6186         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
 6187             CTLFLAG_RD, &sc->bge_msi, 0, "Enable MSI");
 6188 
 6189         /*
 6190          * It seems all Broadcom controllers have a bug that can generate UDP
 6191          * datagrams with checksum value 0 when TX UDP checksum offloading is
 6192          * enabled.  Generating UDP checksum value 0 is RFC 768 violation.
 6193          * Even though the probability of generating such UDP datagrams is
 6194          * low, I don't want to see FreeBSD boxes to inject such datagrams
 6195          * into network so disable UDP checksum offloading by default.  Users
 6196          * still override this behavior by setting a sysctl variable,
 6197          * dev.bge.0.forced_udpcsum.
 6198          */
 6199         sc->bge_forced_udpcsum = 0;
 6200         snprintf(tn, sizeof(tn), "dev.bge.%d.bge_forced_udpcsum", unit);
 6201         TUNABLE_INT_FETCH(tn, &sc->bge_forced_udpcsum);
 6202         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
 6203             CTLFLAG_RW, &sc->bge_forced_udpcsum, 0,
 6204             "Enable UDP checksum offloading even if controller can "
 6205             "generate UDP checksum value 0");
 6206 
 6207         if (BGE_IS_5705_PLUS(sc))
 6208                 bge_add_sysctl_stats_regs(sc, ctx, children);
 6209         else
 6210                 bge_add_sysctl_stats(sc, ctx, children);
 6211 }
 6212 
 6213 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
 6214         SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, CTLTYPE_UINT|CTLFLAG_RD, \
 6215             sc, offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", \
 6216             desc)
 6217 
 6218 static void
 6219 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
 6220     struct sysctl_oid_list *parent)
 6221 {
 6222         struct sysctl_oid *tree;
 6223         struct sysctl_oid_list *children, *schildren;
 6224 
 6225         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
 6226             NULL, "BGE Statistics");
 6227         schildren = children = SYSCTL_CHILDREN(tree);
 6228         BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
 6229             children, COSFramesDroppedDueToFilters,
 6230             "FramesDroppedDueToFilters");
 6231         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
 6232             children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
 6233         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
 6234             children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
 6235         BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
 6236             children, nicNoMoreRxBDs, "NoMoreRxBDs");
 6237         BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
 6238             children, ifInDiscards, "InputDiscards");
 6239         BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
 6240             children, ifInErrors, "InputErrors");
 6241         BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
 6242             children, nicRecvThresholdHit, "RecvThresholdHit");
 6243         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
 6244             children, nicDmaReadQueueFull, "DmaReadQueueFull");
 6245         BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
 6246             children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
 6247         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
 6248             children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
 6249         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
 6250             children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
 6251         BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
 6252             children, nicRingStatusUpdate, "RingStatusUpdate");
 6253         BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
 6254             children, nicInterrupts, "Interrupts");
 6255         BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
 6256             children, nicAvoidedInterrupts, "AvoidedInterrupts");
 6257         BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
 6258             children, nicSendThresholdHit, "SendThresholdHit");
 6259 
 6260         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", CTLFLAG_RD,
 6261             NULL, "BGE RX Statistics");
 6262         children = SYSCTL_CHILDREN(tree);
 6263         BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
 6264             children, rxstats.ifHCInOctets, "ifHCInOctets");
 6265         BGE_SYSCTL_STAT(sc, ctx, "Fragments",
 6266             children, rxstats.etherStatsFragments, "Fragments");
 6267         BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
 6268             children, rxstats.ifHCInUcastPkts, "UnicastPkts");
 6269         BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
 6270             children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
 6271         BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
 6272             children, rxstats.dot3StatsFCSErrors, "FCSErrors");
 6273         BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
 6274             children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
 6275         BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
 6276             children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
 6277         BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
 6278             children, rxstats.xoffPauseFramesReceived,
 6279             "xoffPauseFramesReceived");
 6280         BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
 6281             children, rxstats.macControlFramesReceived,
 6282             "ControlFramesReceived");
 6283         BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
 6284             children, rxstats.xoffStateEntered, "xoffStateEntered");
 6285         BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
 6286             children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
 6287         BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
 6288             children, rxstats.etherStatsJabbers, "Jabbers");
 6289         BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
 6290             children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
 6291         BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
 6292             children, rxstats.inRangeLengthError, "inRangeLengthError");
 6293         BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
 6294             children, rxstats.outRangeLengthError, "outRangeLengthError");
 6295 
 6296         tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", CTLFLAG_RD,
 6297             NULL, "BGE TX Statistics");
 6298         children = SYSCTL_CHILDREN(tree);
 6299         BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
 6300             children, txstats.ifHCOutOctets, "ifHCOutOctets");
 6301         BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
 6302             children, txstats.etherStatsCollisions, "Collisions");
 6303         BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
 6304             children, txstats.outXonSent, "XonSent");
 6305         BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
 6306             children, txstats.outXoffSent, "XoffSent");
 6307         BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
 6308             children, txstats.flowControlDone, "flowControlDone");
 6309         BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
 6310             children, txstats.dot3StatsInternalMacTransmitErrors,
 6311             "InternalMacTransmitErrors");
 6312         BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
 6313             children, txstats.dot3StatsSingleCollisionFrames,
 6314             "SingleCollisionFrames");
 6315         BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
 6316             children, txstats.dot3StatsMultipleCollisionFrames,
 6317             "MultipleCollisionFrames");
 6318         BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
 6319             children, txstats.dot3StatsDeferredTransmissions,
 6320             "DeferredTransmissions");
 6321         BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
 6322             children, txstats.dot3StatsExcessiveCollisions,
 6323             "ExcessiveCollisions");
 6324         BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
 6325             children, txstats.dot3StatsLateCollisions,
 6326             "LateCollisions");
 6327         BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
 6328             children, txstats.ifHCOutUcastPkts, "UnicastPkts");
 6329         BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
 6330             children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
 6331         BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
 6332             children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
 6333         BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
 6334             children, txstats.dot3StatsCarrierSenseErrors,
 6335             "CarrierSenseErrors");
 6336         BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
 6337             children, txstats.ifOutDiscards, "Discards");
 6338         BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
 6339             children, txstats.ifOutErrors, "Errors");
 6340 }
 6341 
 6342 #undef BGE_SYSCTL_STAT
 6343 
 6344 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d)    \
 6345             SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
 6346 
 6347 static void
 6348 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
 6349     struct sysctl_oid_list *parent)
 6350 {
 6351         struct sysctl_oid *tree;
 6352         struct sysctl_oid_list *child, *schild;
 6353         struct bge_mac_stats *stats;
 6354 
 6355         stats = &sc->bge_mac_stats;
 6356         tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", CTLFLAG_RD,
 6357             NULL, "BGE Statistics");
 6358         schild = child = SYSCTL_CHILDREN(tree);
 6359         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
 6360             &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
 6361         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
 6362             &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
 6363         BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
 6364             &stats->DmaWriteHighPriQueueFull,
 6365             "NIC DMA Write High Priority Queue Full");
 6366         BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
 6367             &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
 6368         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
 6369             &stats->InputDiscards, "Discarded Input Frames");
 6370         BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
 6371             &stats->InputErrors, "Input Errors");
 6372         BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
 6373             &stats->RecvThresholdHit, "NIC Recv Threshold Hit");
 6374 
 6375         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD,
 6376             NULL, "BGE RX Statistics");
 6377         child = SYSCTL_CHILDREN(tree);
 6378         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
 6379             &stats->ifHCInOctets, "Inbound Octets");
 6380         BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
 6381             &stats->etherStatsFragments, "Fragments");
 6382         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
 6383             &stats->ifHCInUcastPkts, "Inbound Unicast Packets");
 6384         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
 6385             &stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
 6386         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
 6387             &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
 6388         BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
 6389             &stats->dot3StatsFCSErrors, "FCS Errors");
 6390         BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
 6391             &stats->dot3StatsAlignmentErrors, "Alignment Errors");
 6392         BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
 6393             &stats->xonPauseFramesReceived, "XON Pause Frames Received");
 6394         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
 6395             &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
 6396         BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
 6397             &stats->macControlFramesReceived, "MAC Control Frames Received");
 6398         BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
 6399             &stats->xoffStateEntered, "XOFF State Entered");
 6400         BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
 6401             &stats->dot3StatsFramesTooLong, "Frames Too Long");
 6402         BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
 6403             &stats->etherStatsJabbers, "Jabbers");
 6404         BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
 6405             &stats->etherStatsUndersizePkts, "Undersized Packets");
 6406 
 6407         tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD,
 6408             NULL, "BGE TX Statistics");
 6409         child = SYSCTL_CHILDREN(tree);
 6410         BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
 6411             &stats->ifHCOutOctets, "Outbound Octets");
 6412         BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
 6413             &stats->etherStatsCollisions, "TX Collisions");
 6414         BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
 6415             &stats->outXonSent, "XON Sent");
 6416         BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
 6417             &stats->outXoffSent, "XOFF Sent");
 6418         BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
 6419             &stats->dot3StatsInternalMacTransmitErrors,
 6420             "Internal MAC TX Errors");
 6421         BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
 6422             &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
 6423         BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
 6424             &stats->dot3StatsMultipleCollisionFrames,
 6425             "Multiple Collision Frames");
 6426         BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
 6427             &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
 6428         BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
 6429             &stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
 6430         BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
 6431             &stats->dot3StatsLateCollisions, "Late Collisions");
 6432         BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
 6433             &stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
 6434         BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
 6435             &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
 6436         BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
 6437             &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
 6438 }
 6439 
 6440 #undef  BGE_SYSCTL_STAT_ADD64
 6441 
 6442 static int
 6443 bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
 6444 {
 6445         struct bge_softc *sc;
 6446         uint32_t result;
 6447         int offset;
 6448 
 6449         sc = (struct bge_softc *)arg1;
 6450         offset = arg2;
 6451         result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
 6452             offsetof(bge_hostaddr, bge_addr_lo));
 6453         return (sysctl_handle_int(oidp, &result, 0, req));
 6454 }
 6455 
 6456 #ifdef BGE_REGISTER_DEBUG
 6457 static int
 6458 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
 6459 {
 6460         struct bge_softc *sc;
 6461         uint16_t *sbdata;
 6462         int error, result, sbsz;
 6463         int i, j;
 6464 
 6465         result = -1;
 6466         error = sysctl_handle_int(oidp, &result, 0, req);
 6467         if (error || (req->newptr == NULL))
 6468                 return (error);
 6469 
 6470         if (result == 1) {
 6471                 sc = (struct bge_softc *)arg1;
 6472 
 6473                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
 6474                     sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
 6475                         sbsz = BGE_STATUS_BLK_SZ;
 6476                 else
 6477                         sbsz = 32;
 6478                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
 6479                 printf("Status Block:\n");
 6480                 BGE_LOCK(sc);
 6481                 bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
 6482                     sc->bge_cdata.bge_status_map,
 6483                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 6484                 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
 6485                         printf("%06x:", i);
 6486                         for (j = 0; j < 8; j++)
 6487                                 printf(" %04x", sbdata[i++]);
 6488                         printf("\n");
 6489                 }
 6490 
 6491                 printf("Registers:\n");
 6492                 for (i = 0x800; i < 0xA00; ) {
 6493                         printf("%06x:", i);
 6494                         for (j = 0; j < 8; j++) {
 6495                                 printf(" %08x", CSR_READ_4(sc, i));
 6496                                 i += 4;
 6497                         }
 6498                         printf("\n");
 6499                 }
 6500                 BGE_UNLOCK(sc);
 6501 
 6502                 printf("Hardware Flags:\n");
 6503                 if (BGE_IS_5717_PLUS(sc))
 6504                         printf(" - 5717 Plus\n");
 6505                 if (BGE_IS_5755_PLUS(sc))
 6506                         printf(" - 5755 Plus\n");
 6507                 if (BGE_IS_575X_PLUS(sc))
 6508                         printf(" - 575X Plus\n");
 6509                 if (BGE_IS_5705_PLUS(sc))
 6510                         printf(" - 5705 Plus\n");
 6511                 if (BGE_IS_5714_FAMILY(sc))
 6512                         printf(" - 5714 Family\n");
 6513                 if (BGE_IS_5700_FAMILY(sc))
 6514                         printf(" - 5700 Family\n");
 6515                 if (sc->bge_flags & BGE_FLAG_JUMBO)
 6516                         printf(" - Supports Jumbo Frames\n");
 6517                 if (sc->bge_flags & BGE_FLAG_PCIX)
 6518                         printf(" - PCI-X Bus\n");
 6519                 if (sc->bge_flags & BGE_FLAG_PCIE)
 6520                         printf(" - PCI Express Bus\n");
 6521                 if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
 6522                         printf(" - No 3 LEDs\n");
 6523                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
 6524                         printf(" - RX Alignment Bug\n");
 6525         }
 6526 
 6527         return (error);
 6528 }
 6529 
 6530 static int
 6531 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
 6532 {
 6533         struct bge_softc *sc;
 6534         int error;
 6535         uint16_t result;
 6536         uint32_t val;
 6537 
 6538         result = -1;
 6539         error = sysctl_handle_int(oidp, &result, 0, req);
 6540         if (error || (req->newptr == NULL))
 6541                 return (error);
 6542 
 6543         if (result < 0x8000) {
 6544                 sc = (struct bge_softc *)arg1;
 6545                 val = CSR_READ_4(sc, result);
 6546                 printf("reg 0x%06X = 0x%08X\n", result, val);
 6547         }
 6548 
 6549         return (error);
 6550 }
 6551 
 6552 static int
 6553 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
 6554 {
 6555         struct bge_softc *sc;
 6556         int error;
 6557         uint16_t result;
 6558         uint32_t val;
 6559 
 6560         result = -1;
 6561         error = sysctl_handle_int(oidp, &result, 0, req);
 6562         if (error || (req->newptr == NULL))
 6563                 return (error);
 6564 
 6565         if (result < 0x8000) {
 6566                 sc = (struct bge_softc *)arg1;
 6567                 val = APE_READ_4(sc, result);
 6568                 printf("reg 0x%06X = 0x%08X\n", result, val);
 6569         }
 6570 
 6571         return (error);
 6572 }
 6573 
 6574 static int
 6575 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
 6576 {
 6577         struct bge_softc *sc;
 6578         int error;
 6579         uint16_t result;
 6580         uint32_t val;
 6581 
 6582         result = -1;
 6583         error = sysctl_handle_int(oidp, &result, 0, req);
 6584         if (error || (req->newptr == NULL))
 6585                 return (error);
 6586 
 6587         if (result < 0x8000) {
 6588                 sc = (struct bge_softc *)arg1;
 6589                 val = bge_readmem_ind(sc, result);
 6590                 printf("mem 0x%06X = 0x%08X\n", result, val);
 6591         }
 6592 
 6593         return (error);
 6594 }
 6595 #endif
 6596 
 6597 static int
 6598 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
 6599 {
 6600 
 6601         if (sc->bge_flags & BGE_FLAG_EADDR)
 6602                 return (1);
 6603 
 6604 #ifdef __sparc64__
 6605         OF_getetheraddr(sc->bge_dev, ether_addr);
 6606         return (0);
 6607 #endif
 6608         return (1);
 6609 }
 6610 
 6611 static int
 6612 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
 6613 {
 6614         uint32_t mac_addr;
 6615 
 6616         mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
 6617         if ((mac_addr >> 16) == 0x484b) {
 6618                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
 6619                 ether_addr[1] = (uint8_t)mac_addr;
 6620                 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
 6621                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
 6622                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
 6623                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
 6624                 ether_addr[5] = (uint8_t)mac_addr;
 6625                 return (0);
 6626         }
 6627         return (1);
 6628 }
 6629 
 6630 static int
 6631 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
 6632 {
 6633         int mac_offset = BGE_EE_MAC_OFFSET;
 6634 
 6635         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 6636                 mac_offset = BGE_EE_MAC_OFFSET_5906;
 6637 
 6638         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
 6639             ETHER_ADDR_LEN));
 6640 }
 6641 
 6642 static int
 6643 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
 6644 {
 6645 
 6646         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
 6647                 return (1);
 6648 
 6649         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
 6650            ETHER_ADDR_LEN));
 6651 }
 6652 
 6653 static int
 6654 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
 6655 {
 6656         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
 6657                 /* NOTE: Order is critical */
 6658                 bge_get_eaddr_fw,
 6659                 bge_get_eaddr_mem,
 6660                 bge_get_eaddr_nvram,
 6661                 bge_get_eaddr_eeprom,
 6662                 NULL
 6663         };
 6664         const bge_eaddr_fcn_t *func;
 6665 
 6666         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
 6667                 if ((*func)(sc, eaddr) == 0)
 6668                         break;
 6669         }
 6670         return (*func == NULL ? ENXIO : 0);
 6671 }

Cache object: d9104ae5b080b3113d985428c68edaf9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.