The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bxe/bxe.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  *
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
   17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
   20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   26  * THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #define BXE_DRIVER_VERSION "1.78.91"
   33 
   34 #include "bxe.h"
   35 #include "ecore_sp.h"
   36 #include "ecore_init.h"
   37 #include "ecore_init_ops.h"
   38 
   39 #include "57710_int_offsets.h"
   40 #include "57711_int_offsets.h"
   41 #include "57712_int_offsets.h"
   42 
   43 /*
   44  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
   45  * explicitly here for older kernels that don't include this changeset.
   46  */
   47 #ifndef CTLTYPE_U64
   48 #define CTLTYPE_U64      CTLTYPE_QUAD
   49 #define sysctl_handle_64 sysctl_handle_quad
   50 #endif
   51 
   52 /*
   53  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
   54  * here as zero(0) for older kernels that don't include this changeset
   55  * thereby masking the functionality.
   56  */
   57 #ifndef CSUM_TCP_IPV6
   58 #define CSUM_TCP_IPV6 0
   59 #define CSUM_UDP_IPV6 0
   60 #endif
   61 
   62 #define BXE_DEF_SB_ATT_IDX 0x0001
   63 #define BXE_DEF_SB_IDX     0x0002
   64 
   65 /*
   66  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
   67  * function HW initialization.
   68  */
   69 #define FLR_WAIT_USEC     10000 /* 10 msecs */
   70 #define FLR_WAIT_INTERVAL 50    /* usecs */
   71 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
   72 
   73 struct pbf_pN_buf_regs {
   74     int pN;
   75     uint32_t init_crd;
   76     uint32_t crd;
   77     uint32_t crd_freed;
   78 };
   79 
   80 struct pbf_pN_cmd_regs {
   81     int pN;
   82     uint32_t lines_occup;
   83     uint32_t lines_freed;
   84 };
   85 
   86 /*
   87  * PCI Device ID Table used by bxe_probe().
   88  */
   89 #define BXE_DEVDESC_MAX 64
   90 static struct bxe_device_type bxe_devs[] = {
   91     {
   92         BRCM_VENDORID,
   93         CHIP_NUM_57710,
   94         PCI_ANY_ID, PCI_ANY_ID,
   95         "QLogic NetXtreme II BCM57710 10GbE"
   96     },
   97     {
   98         BRCM_VENDORID,
   99         CHIP_NUM_57711,
  100         PCI_ANY_ID, PCI_ANY_ID,
  101         "QLogic NetXtreme II BCM57711 10GbE"
  102     },
  103     {
  104         BRCM_VENDORID,
  105         CHIP_NUM_57711E,
  106         PCI_ANY_ID, PCI_ANY_ID,
  107         "QLogic NetXtreme II BCM57711E 10GbE"
  108     },
  109     {
  110         BRCM_VENDORID,
  111         CHIP_NUM_57712,
  112         PCI_ANY_ID, PCI_ANY_ID,
  113         "QLogic NetXtreme II BCM57712 10GbE"
  114     },
  115     {
  116         BRCM_VENDORID,
  117         CHIP_NUM_57712_MF,
  118         PCI_ANY_ID, PCI_ANY_ID,
  119         "QLogic NetXtreme II BCM57712 MF 10GbE"
  120     },
  121     {
  122         BRCM_VENDORID,
  123         CHIP_NUM_57800,
  124         PCI_ANY_ID, PCI_ANY_ID,
  125         "QLogic NetXtreme II BCM57800 10GbE"
  126     },
  127     {
  128         BRCM_VENDORID,
  129         CHIP_NUM_57800_MF,
  130         PCI_ANY_ID, PCI_ANY_ID,
  131         "QLogic NetXtreme II BCM57800 MF 10GbE"
  132     },
  133     {
  134         BRCM_VENDORID,
  135         CHIP_NUM_57810,
  136         PCI_ANY_ID, PCI_ANY_ID,
  137         "QLogic NetXtreme II BCM57810 10GbE"
  138     },
  139     {
  140         BRCM_VENDORID,
  141         CHIP_NUM_57810_MF,
  142         PCI_ANY_ID, PCI_ANY_ID,
  143         "QLogic NetXtreme II BCM57810 MF 10GbE"
  144     },
  145     {
  146         BRCM_VENDORID,
  147         CHIP_NUM_57811,
  148         PCI_ANY_ID, PCI_ANY_ID,
  149         "QLogic NetXtreme II BCM57811 10GbE"
  150     },
  151     {
  152         BRCM_VENDORID,
  153         CHIP_NUM_57811_MF,
  154         PCI_ANY_ID, PCI_ANY_ID,
  155         "QLogic NetXtreme II BCM57811 MF 10GbE"
  156     },
  157     {
  158         BRCM_VENDORID,
  159         CHIP_NUM_57840_4_10,
  160         PCI_ANY_ID, PCI_ANY_ID,
  161         "QLogic NetXtreme II BCM57840 4x10GbE"
  162     },
  163     {
  164         QLOGIC_VENDORID,
  165         CHIP_NUM_57840_4_10,
  166         PCI_ANY_ID, PCI_ANY_ID,
  167         "QLogic NetXtreme II BCM57840 4x10GbE"
  168     },
  169     {
  170         BRCM_VENDORID,
  171         CHIP_NUM_57840_2_20,
  172         PCI_ANY_ID, PCI_ANY_ID,
  173         "QLogic NetXtreme II BCM57840 2x20GbE"
  174     },
  175     {
  176         BRCM_VENDORID,
  177         CHIP_NUM_57840_MF,
  178         PCI_ANY_ID, PCI_ANY_ID,
  179         "QLogic NetXtreme II BCM57840 MF 10GbE"
  180     },
  181     {
  182         0, 0, 0, 0, NULL
  183     }
  184 };
  185 
  186 MALLOC_DECLARE(M_BXE_ILT);
  187 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
  188 
  189 /*
  190  * FreeBSD device entry points.
  191  */
  192 static int bxe_probe(device_t);
  193 static int bxe_attach(device_t);
  194 static int bxe_detach(device_t);
  195 static int bxe_shutdown(device_t);
  196 
  197 
  198 /*
  199  * FreeBSD KLD module/device interface event handler method.
  200  */
  201 static device_method_t bxe_methods[] = {
  202     /* Device interface (device_if.h) */
  203     DEVMETHOD(device_probe,     bxe_probe),
  204     DEVMETHOD(device_attach,    bxe_attach),
  205     DEVMETHOD(device_detach,    bxe_detach),
  206     DEVMETHOD(device_shutdown,  bxe_shutdown),
  207     /* Bus interface (bus_if.h) */
  208     DEVMETHOD(bus_print_child,  bus_generic_print_child),
  209     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
  210     KOBJMETHOD_END
  211 };
  212 
  213 /*
  214  * FreeBSD KLD Module data declaration
  215  */
  216 static driver_t bxe_driver = {
  217     "bxe",                   /* module name */
  218     bxe_methods,             /* event handler */
  219     sizeof(struct bxe_softc) /* extra data */
  220 };
  221 
  222 MODULE_DEPEND(bxe, pci, 1, 1, 1);
  223 MODULE_DEPEND(bxe, ether, 1, 1, 1);
  224 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0);
  225 
  226 DEBUGNET_DEFINE(bxe);
  227 
  228 /* resources needed for unloading a previously loaded device */
  229 
  230 #define BXE_PREV_WAIT_NEEDED 1
  231 struct mtx bxe_prev_mtx;
  232 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
  233 struct bxe_prev_list_node {
  234     LIST_ENTRY(bxe_prev_list_node) node;
  235     uint8_t bus;
  236     uint8_t slot;
  237     uint8_t path;
  238     uint8_t aer; /* XXX automatic error recovery */
  239     uint8_t undi;
  240 };
  241 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
  242 
  243 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
  244 
  245 /* Tunable device values... */
  246 
  247 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  248     "bxe driver parameters");
  249 
  250 /* Debug */
  251 unsigned long bxe_debug = 0;
  252 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
  253              &bxe_debug, 0, "Debug logging mode");
  254 
  255 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
  256 static int bxe_interrupt_mode = INTR_MODE_MSIX;
  257 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
  258            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
  259 
  260 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
  261 static int bxe_queue_count = 4;
  262 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
  263            &bxe_queue_count, 0, "Multi-Queue queue count");
  264 
  265 /* max number of buffers per queue (default RX_BD_USABLE) */
  266 static int bxe_max_rx_bufs = 0;
  267 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
  268            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
  269 
  270 /* Host interrupt coalescing RX tick timer (usecs) */
  271 static int bxe_hc_rx_ticks = 25;
  272 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
  273            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
  274 
  275 /* Host interrupt coalescing TX tick timer (usecs) */
  276 static int bxe_hc_tx_ticks = 50;
  277 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
  278            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
  279 
  280 /* Maximum number of Rx packets to process at a time */
  281 static int bxe_rx_budget = 0xffffffff;
  282 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
  283            &bxe_rx_budget, 0, "Rx processing budget");
  284 
  285 /* Maximum LRO aggregation size */
  286 static int bxe_max_aggregation_size = 0;
  287 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
  288            &bxe_max_aggregation_size, 0, "max aggregation size");
  289 
  290 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
  291 static int bxe_mrrs = -1;
  292 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
  293            &bxe_mrrs, 0, "PCIe maximum read request size");
  294 
  295 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
  296 static int bxe_autogreeen = 0;
  297 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
  298            &bxe_autogreeen, 0, "AutoGrEEEn support");
  299 
  300 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
  301 static int bxe_udp_rss = 0;
  302 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
  303            &bxe_udp_rss, 0, "UDP RSS support");
  304 
  305 
  306 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
  307 
  308 #define STATS_OFFSET32(stat_name)                   \
  309     (offsetof(struct bxe_eth_stats, stat_name) / 4)
  310 
  311 #define Q_STATS_OFFSET32(stat_name)                   \
  312     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
  313 
  314 static const struct {
  315     uint32_t offset;
  316     uint32_t size;
  317     uint32_t flags;
  318 #define STATS_FLAGS_PORT  1
  319 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
  320 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
  321     char string[STAT_NAME_LEN];
  322 } bxe_eth_stats_arr[] = {
  323     { STATS_OFFSET32(total_bytes_received_hi),
  324                 8, STATS_FLAGS_BOTH, "rx_bytes" },
  325     { STATS_OFFSET32(error_bytes_received_hi),
  326                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
  327     { STATS_OFFSET32(total_unicast_packets_received_hi),
  328                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
  329     { STATS_OFFSET32(total_multicast_packets_received_hi),
  330                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
  331     { STATS_OFFSET32(total_broadcast_packets_received_hi),
  332                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
  333     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
  334                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
  335     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
  336                 8, STATS_FLAGS_PORT, "rx_align_errors" },
  337     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
  338                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
  339     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
  340                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
  341     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
  342                 8, STATS_FLAGS_PORT, "rx_fragments" },
  343     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
  344                 8, STATS_FLAGS_PORT, "rx_jabbers" },
  345     { STATS_OFFSET32(no_buff_discard_hi),
  346                 8, STATS_FLAGS_BOTH, "rx_discards" },
  347     { STATS_OFFSET32(mac_filter_discard),
  348                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
  349     { STATS_OFFSET32(mf_tag_discard),
  350                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
  351     { STATS_OFFSET32(pfc_frames_received_hi),
  352                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
  353     { STATS_OFFSET32(pfc_frames_sent_hi),
  354                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
  355     { STATS_OFFSET32(brb_drop_hi),
  356                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
  357     { STATS_OFFSET32(brb_truncate_hi),
  358                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
  359     { STATS_OFFSET32(pause_frames_received_hi),
  360                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
  361     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
  362                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
  363     { STATS_OFFSET32(nig_timer_max),
  364                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
  365     { STATS_OFFSET32(total_bytes_transmitted_hi),
  366                 8, STATS_FLAGS_BOTH, "tx_bytes" },
  367     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
  368                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
  369     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
  370                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
  371     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
  372                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
  373     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
  374                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
  375     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
  376                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
  377     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
  378                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
  379     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
  380                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
  381     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
  382                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
  383     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
  384                 8, STATS_FLAGS_PORT, "tx_deferred" },
  385     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
  386                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
  387     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
  388                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
  389     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
  390                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
  391     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
  392                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
  393     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
  394                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
  395     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
  396                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
  397     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
  398                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
  399     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
  400                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
  401     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
  402                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
  403     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
  404                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
  405     { STATS_OFFSET32(pause_frames_sent_hi),
  406                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
  407     { STATS_OFFSET32(total_tpa_aggregations_hi),
  408                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
  409     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
  410                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
  411     { STATS_OFFSET32(total_tpa_bytes_hi),
  412                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
  413     { STATS_OFFSET32(eee_tx_lpi),
  414                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
  415     { STATS_OFFSET32(rx_calls),
  416                 4, STATS_FLAGS_FUNC, "rx_calls"},
  417     { STATS_OFFSET32(rx_pkts),
  418                 4, STATS_FLAGS_FUNC, "rx_pkts"},
  419     { STATS_OFFSET32(rx_tpa_pkts),
  420                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
  421     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
  422                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
  423     { STATS_OFFSET32(rx_bxe_service_rxsgl),
  424                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
  425     { STATS_OFFSET32(rx_jumbo_sge_pkts),
  426                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
  427     { STATS_OFFSET32(rx_soft_errors),
  428                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
  429     { STATS_OFFSET32(rx_hw_csum_errors),
  430                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
  431     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
  432                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
  433     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
  434                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
  435     { STATS_OFFSET32(rx_budget_reached),
  436                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
  437     { STATS_OFFSET32(tx_pkts),
  438                 4, STATS_FLAGS_FUNC, "tx_pkts"},
  439     { STATS_OFFSET32(tx_soft_errors),
  440                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
  441     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
  442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
  443     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
  444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
  445     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
  446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
  447     { STATS_OFFSET32(tx_ofld_frames_lso),
  448                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
  449     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
  450                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
  451     { STATS_OFFSET32(tx_encap_failures),
  452                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
  453     { STATS_OFFSET32(tx_hw_queue_full),
  454                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
  455     { STATS_OFFSET32(tx_hw_max_queue_depth),
  456                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
  457     { STATS_OFFSET32(tx_dma_mapping_failure),
  458                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
  459     { STATS_OFFSET32(tx_max_drbr_queue_depth),
  460                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
  461     { STATS_OFFSET32(tx_window_violation_std),
  462                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
  463     { STATS_OFFSET32(tx_window_violation_tso),
  464                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
  465     { STATS_OFFSET32(tx_chain_lost_mbuf),
  466                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
  467     { STATS_OFFSET32(tx_frames_deferred),
  468                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
  469     { STATS_OFFSET32(tx_queue_xoff),
  470                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
  471     { STATS_OFFSET32(mbuf_defrag_attempts),
  472                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
  473     { STATS_OFFSET32(mbuf_defrag_failures),
  474                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
  475     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
  476                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
  477     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
  478                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
  479     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
  480                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
  481     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
  482                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
  483     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
  484                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
  485     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
  486                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
  487     { STATS_OFFSET32(mbuf_alloc_tx),
  488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
  489     { STATS_OFFSET32(mbuf_alloc_rx),
  490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
  491     { STATS_OFFSET32(mbuf_alloc_sge),
  492                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
  493     { STATS_OFFSET32(mbuf_alloc_tpa),
  494                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
  495     { STATS_OFFSET32(tx_queue_full_return),
  496                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
  497     { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
  498                 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
  499     { STATS_OFFSET32(tx_request_link_down_failures),
  500                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
  501     { STATS_OFFSET32(bd_avail_too_less_failures),
  502                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
  503     { STATS_OFFSET32(tx_mq_not_empty),
  504                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
  505     { STATS_OFFSET32(nsegs_path1_errors),
  506                 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
  507     { STATS_OFFSET32(nsegs_path2_errors),
  508                 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
  509 
  510 
  511 };
  512 
  513 static const struct {
  514     uint32_t offset;
  515     uint32_t size;
  516     char string[STAT_NAME_LEN];
  517 } bxe_eth_q_stats_arr[] = {
  518     { Q_STATS_OFFSET32(total_bytes_received_hi),
  519                 8, "rx_bytes" },
  520     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
  521                 8, "rx_ucast_packets" },
  522     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
  523                 8, "rx_mcast_packets" },
  524     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
  525                 8, "rx_bcast_packets" },
  526     { Q_STATS_OFFSET32(no_buff_discard_hi),
  527                 8, "rx_discards" },
  528     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
  529                 8, "tx_bytes" },
  530     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
  531                 8, "tx_ucast_packets" },
  532     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
  533                 8, "tx_mcast_packets" },
  534     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
  535                 8, "tx_bcast_packets" },
  536     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
  537                 8, "tpa_aggregations" },
  538     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
  539                 8, "tpa_aggregated_frames"},
  540     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
  541                 8, "tpa_bytes"},
  542     { Q_STATS_OFFSET32(rx_calls),
  543                 4, "rx_calls"},
  544     { Q_STATS_OFFSET32(rx_pkts),
  545                 4, "rx_pkts"},
  546     { Q_STATS_OFFSET32(rx_tpa_pkts),
  547                 4, "rx_tpa_pkts"},
  548     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
  549                 4, "rx_erroneous_jumbo_sge_pkts"},
  550     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
  551                 4, "rx_bxe_service_rxsgl"},
  552     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
  553                 4, "rx_jumbo_sge_pkts"},
  554     { Q_STATS_OFFSET32(rx_soft_errors),
  555                 4, "rx_soft_errors"},
  556     { Q_STATS_OFFSET32(rx_hw_csum_errors),
  557                 4, "rx_hw_csum_errors"},
  558     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
  559                 4, "rx_ofld_frames_csum_ip"},
  560     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
  561                 4, "rx_ofld_frames_csum_tcp_udp"},
  562     { Q_STATS_OFFSET32(rx_budget_reached),
  563                 4, "rx_budget_reached"},
  564     { Q_STATS_OFFSET32(tx_pkts),
  565                 4, "tx_pkts"},
  566     { Q_STATS_OFFSET32(tx_soft_errors),
  567                 4, "tx_soft_errors"},
  568     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
  569                 4, "tx_ofld_frames_csum_ip"},
  570     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
  571                 4, "tx_ofld_frames_csum_tcp"},
  572     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
  573                 4, "tx_ofld_frames_csum_udp"},
  574     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
  575                 4, "tx_ofld_frames_lso"},
  576     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
  577                 4, "tx_ofld_frames_lso_hdr_splits"},
  578     { Q_STATS_OFFSET32(tx_encap_failures),
  579                 4, "tx_encap_failures"},
  580     { Q_STATS_OFFSET32(tx_hw_queue_full),
  581                 4, "tx_hw_queue_full"},
  582     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
  583                 4, "tx_hw_max_queue_depth"},
  584     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
  585                 4, "tx_dma_mapping_failure"},
  586     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
  587                 4, "tx_max_drbr_queue_depth"},
  588     { Q_STATS_OFFSET32(tx_window_violation_std),
  589                 4, "tx_window_violation_std"},
  590     { Q_STATS_OFFSET32(tx_window_violation_tso),
  591                 4, "tx_window_violation_tso"},
  592     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
  593                 4, "tx_chain_lost_mbuf"},
  594     { Q_STATS_OFFSET32(tx_frames_deferred),
  595                 4, "tx_frames_deferred"},
  596     { Q_STATS_OFFSET32(tx_queue_xoff),
  597                 4, "tx_queue_xoff"},
  598     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
  599                 4, "mbuf_defrag_attempts"},
  600     { Q_STATS_OFFSET32(mbuf_defrag_failures),
  601                 4, "mbuf_defrag_failures"},
  602     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
  603                 4, "mbuf_rx_bd_alloc_failed"},
  604     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
  605                 4, "mbuf_rx_bd_mapping_failed"},
  606     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
  607                 4, "mbuf_rx_tpa_alloc_failed"},
  608     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
  609                 4, "mbuf_rx_tpa_mapping_failed"},
  610     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
  611                 4, "mbuf_rx_sge_alloc_failed"},
  612     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
  613                 4, "mbuf_rx_sge_mapping_failed"},
  614     { Q_STATS_OFFSET32(mbuf_alloc_tx),
  615                 4, "mbuf_alloc_tx"},
  616     { Q_STATS_OFFSET32(mbuf_alloc_rx),
  617                 4, "mbuf_alloc_rx"},
  618     { Q_STATS_OFFSET32(mbuf_alloc_sge),
  619                 4, "mbuf_alloc_sge"},
  620     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
  621                 4, "mbuf_alloc_tpa"},
  622     { Q_STATS_OFFSET32(tx_queue_full_return),
  623                 4, "tx_queue_full_return"},
  624     { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
  625                 4, "bxe_tx_mq_sc_state_failures"},
  626     { Q_STATS_OFFSET32(tx_request_link_down_failures),
  627                 4, "tx_request_link_down_failures"},
  628     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
  629                 4, "bd_avail_too_less_failures"},
  630     { Q_STATS_OFFSET32(tx_mq_not_empty),
  631                 4, "tx_mq_not_empty"},
  632     { Q_STATS_OFFSET32(nsegs_path1_errors),
  633                 4, "nsegs_path1_errors"},
  634     { Q_STATS_OFFSET32(nsegs_path2_errors),
  635                 4, "nsegs_path2_errors"}
  636 
  637 
  638 };
  639 
  640 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
  641 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
  642 
  643 
  644 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
  645                                  uint8_t          read_cfg,
  646                                  uint8_t          cmng_type);
  647 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
  648 static void    storm_memset_cmng(struct bxe_softc *sc,
  649                                  struct cmng_init *cmng,
  650                                  uint8_t          port);
  651 static void    bxe_set_reset_global(struct bxe_softc *sc);
  652 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
  653 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
  654                                  int              engine);
  655 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
  656 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
  657                                    uint8_t          *global,
  658                                    uint8_t          print);
  659 static void    bxe_int_disable(struct bxe_softc *sc);
  660 static int     bxe_release_leader_lock(struct bxe_softc *sc);
  661 static void    bxe_pf_disable(struct bxe_softc *sc);
  662 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
  663 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
  664                                       struct bxe_fastpath *fp,
  665                                       uint16_t            rx_bd_prod,
  666                                       uint16_t            rx_cq_prod,
  667                                       uint16_t            rx_sge_prod);
  668 static void    bxe_link_report_locked(struct bxe_softc *sc);
  669 static void    bxe_link_report(struct bxe_softc *sc);
  670 static void    bxe_link_status_update(struct bxe_softc *sc);
  671 static void    bxe_periodic_callout_func(void *xsc);
  672 static void    bxe_periodic_start(struct bxe_softc *sc);
  673 static void    bxe_periodic_stop(struct bxe_softc *sc);
  674 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
  675                                     uint16_t prev_index,
  676                                     uint16_t index);
  677 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
  678                                      int                 queue);
  679 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
  680                                      uint16_t            index);
  681 static uint8_t bxe_txeof(struct bxe_softc *sc,
  682                          struct bxe_fastpath *fp);
  683 static void    bxe_task_fp(struct bxe_fastpath *fp);
  684 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
  685                                      struct mbuf      *m,
  686                                      uint8_t          contents);
  687 static int     bxe_alloc_mem(struct bxe_softc *sc);
  688 static void    bxe_free_mem(struct bxe_softc *sc);
  689 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
  690 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
  691 static int     bxe_interrupt_attach(struct bxe_softc *sc);
  692 static void    bxe_interrupt_detach(struct bxe_softc *sc);
  693 static void    bxe_set_rx_mode(struct bxe_softc *sc);
  694 static int     bxe_init_locked(struct bxe_softc *sc);
  695 static int     bxe_stop_locked(struct bxe_softc *sc);
  696 static void    bxe_sp_err_timeout_task(void *arg, int pending);
  697 void           bxe_parity_recover(struct bxe_softc *sc);
  698 void           bxe_handle_error(struct bxe_softc *sc);
  699 static __noinline int bxe_nic_load(struct bxe_softc *sc,
  700                                    int              load_mode);
  701 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
  702                                      uint32_t         unload_mode,
  703                                      uint8_t          keep_link);
  704 
  705 static void bxe_handle_sp_tq(void *context, int pending);
  706 static void bxe_handle_fp_tq(void *context, int pending);
  707 
  708 static int bxe_add_cdev(struct bxe_softc *sc);
  709 static void bxe_del_cdev(struct bxe_softc *sc);
  710 int bxe_grc_dump(struct bxe_softc *sc);
  711 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
  712 static void bxe_free_buf_rings(struct bxe_softc *sc);
  713 
  714 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
  715 uint32_t
  716 calc_crc32(uint8_t  *crc32_packet,
  717            uint32_t crc32_length,
  718            uint32_t crc32_seed,
  719            uint8_t  complement)
  720 {
  721    uint32_t byte         = 0;
  722    uint32_t bit          = 0;
  723    uint8_t  msb          = 0;
  724    uint32_t temp         = 0;
  725    uint32_t shft         = 0;
  726    uint8_t  current_byte = 0;
  727    uint32_t crc32_result = crc32_seed;
  728    const uint32_t CRC32_POLY = 0x1edc6f41;
  729 
  730    if ((crc32_packet == NULL) ||
  731        (crc32_length == 0) ||
  732        ((crc32_length % 8) != 0))
  733     {
  734         return (crc32_result);
  735     }
  736 
  737     for (byte = 0; byte < crc32_length; byte = byte + 1)
  738     {
  739         current_byte = crc32_packet[byte];
  740         for (bit = 0; bit < 8; bit = bit + 1)
  741         {
  742             /* msb = crc32_result[31]; */
  743             msb = (uint8_t)(crc32_result >> 31);
  744 
  745             crc32_result = crc32_result << 1;
  746 
  747             /* it (msb != current_byte[bit]) */
  748             if (msb != (0x1 & (current_byte >> bit)))
  749             {
  750                 crc32_result = crc32_result ^ CRC32_POLY;
  751                 /* crc32_result[0] = 1 */
  752                 crc32_result |= 1;
  753             }
  754         }
  755     }
  756 
  757     /* Last step is to:
  758      * 1. "mirror" every bit
  759      * 2. swap the 4 bytes
  760      * 3. complement each bit
  761      */
  762 
  763     /* Mirror */
  764     temp = crc32_result;
  765     shft = sizeof(crc32_result) * 8 - 1;
  766 
  767     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
  768     {
  769         temp <<= 1;
  770         temp |= crc32_result & 1;
  771         shft-- ;
  772     }
  773 
  774     /* temp[31-bit] = crc32_result[bit] */
  775     temp <<= shft;
  776 
  777     /* Swap */
  778     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
  779     {
  780         uint32_t t0, t1, t2, t3;
  781         t0 = (0x000000ff & (temp >> 24));
  782         t1 = (0x0000ff00 & (temp >> 8));
  783         t2 = (0x00ff0000 & (temp << 8));
  784         t3 = (0xff000000 & (temp << 24));
  785         crc32_result = t0 | t1 | t2 | t3;
  786     }
  787 
  788     /* Complement */
  789     if (complement)
  790     {
  791         crc32_result = ~crc32_result;
  792     }
  793 
  794     return (crc32_result);
  795 }
  796 
  797 int
  798 bxe_test_bit(int                    nr,
  799              volatile unsigned long *addr)
  800 {
  801     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
  802 }
  803 
  804 void
  805 bxe_set_bit(unsigned int           nr,
  806             volatile unsigned long *addr)
  807 {
  808     atomic_set_acq_long(addr, (1 << nr));
  809 }
  810 
  811 void
  812 bxe_clear_bit(int                    nr,
  813               volatile unsigned long *addr)
  814 {
  815     atomic_clear_acq_long(addr, (1 << nr));
  816 }
  817 
  818 int
  819 bxe_test_and_set_bit(int                    nr,
  820                        volatile unsigned long *addr)
  821 {
  822     unsigned long x;
  823     nr = (1 << nr);
  824     do {
  825         x = *addr;
  826     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
  827     // if (x & nr) bit_was_set; else bit_was_not_set;
  828     return (x & nr);
  829 }
  830 
  831 int
  832 bxe_test_and_clear_bit(int                    nr,
  833                        volatile unsigned long *addr)
  834 {
  835     unsigned long x;
  836     nr = (1 << nr);
  837     do {
  838         x = *addr;
  839     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
  840     // if (x & nr) bit_was_set; else bit_was_not_set;
  841     return (x & nr);
  842 }
  843 
  844 int
  845 bxe_cmpxchg(volatile int *addr,
  846             int          old,
  847             int          new)
  848 {
  849     int x;
  850     do {
  851         x = *addr;
  852     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
  853     return (x);
  854 }
  855 
  856 /*
  857  * Get DMA memory from the OS.
  858  *
  859  * Validates that the OS has provided DMA buffers in response to a
  860  * bus_dmamap_load call and saves the physical address of those buffers.
  861  * When the callback is used the OS will return 0 for the mapping function
  862  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
  863  * failures back to the caller.
  864  *
  865  * Returns:
  866  *   Nothing.
  867  */
  868 static void
  869 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
  870 {
  871     struct bxe_dma *dma = arg;
  872 
  873     if (error) {
  874         dma->paddr = 0;
  875         dma->nseg  = 0;
  876         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
  877     } else {
  878         dma->paddr = segs->ds_addr;
  879         dma->nseg  = nseg;
  880     }
  881 }
  882 
  883 /*
  884  * Allocate a block of memory and map it for DMA. No partial completions
  885  * allowed and release any resources acquired if we can't acquire all
  886  * resources.
  887  *
  888  * Returns:
  889  *   0 = Success, !0 = Failure
  890  */
  891 int
  892 bxe_dma_alloc(struct bxe_softc *sc,
  893               bus_size_t       size,
  894               struct bxe_dma   *dma,
  895               const char       *msg)
  896 {
  897     int rc;
  898 
  899     if (dma->size > 0) {
  900         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
  901               (unsigned long)dma->size);
  902         return (1);
  903     }
  904 
  905     memset(dma, 0, sizeof(*dma)); /* sanity */
  906     dma->sc   = sc;
  907     dma->size = size;
  908     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
  909 
  910     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
  911                             BCM_PAGE_SIZE,      /* alignment */
  912                             0,                  /* boundary limit */
  913                             BUS_SPACE_MAXADDR,  /* restricted low */
  914                             BUS_SPACE_MAXADDR,  /* restricted hi */
  915                             NULL,               /* addr filter() */
  916                             NULL,               /* addr filter() arg */
  917                             size,               /* max map size */
  918                             1,                  /* num discontinuous */
  919                             size,               /* max seg size */
  920                             BUS_DMA_ALLOCNOW,   /* flags */
  921                             NULL,               /* lock() */
  922                             NULL,               /* lock() arg */
  923                             &dma->tag);         /* returned dma tag */
  924     if (rc != 0) {
  925         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
  926         memset(dma, 0, sizeof(*dma));
  927         return (1);
  928     }
  929 
  930     rc = bus_dmamem_alloc(dma->tag,
  931                           (void **)&dma->vaddr,
  932                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
  933                           &dma->map);
  934     if (rc != 0) {
  935         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
  936         bus_dma_tag_destroy(dma->tag);
  937         memset(dma, 0, sizeof(*dma));
  938         return (1);
  939     }
  940 
  941     rc = bus_dmamap_load(dma->tag,
  942                          dma->map,
  943                          dma->vaddr,
  944                          size,
  945                          bxe_dma_map_addr, /* BLOGD in here */
  946                          dma,
  947                          BUS_DMA_NOWAIT);
  948     if (rc != 0) {
  949         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
  950         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
  951         bus_dma_tag_destroy(dma->tag);
  952         memset(dma, 0, sizeof(*dma));
  953         return (1);
  954     }
  955 
  956     return (0);
  957 }
  958 
  959 void
  960 bxe_dma_free(struct bxe_softc *sc,
  961              struct bxe_dma   *dma)
  962 {
  963     if (dma->size > 0) {
  964         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
  965 
  966         bus_dmamap_sync(dma->tag, dma->map,
  967                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
  968         bus_dmamap_unload(dma->tag, dma->map);
  969         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
  970         bus_dma_tag_destroy(dma->tag);
  971     }
  972 
  973     memset(dma, 0, sizeof(*dma));
  974 }
  975 
  976 /*
  977  * These indirect read and write routines are only during init.
  978  * The locking is handled by the MCP.
  979  */
  980 
  981 void
  982 bxe_reg_wr_ind(struct bxe_softc *sc,
  983                uint32_t         addr,
  984                uint32_t         val)
  985 {
  986     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
  987     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
  988     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
  989 }
  990 
  991 uint32_t
  992 bxe_reg_rd_ind(struct bxe_softc *sc,
  993                uint32_t         addr)
  994 {
  995     uint32_t val;
  996 
  997     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
  998     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
  999     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
 1000 
 1001     return (val);
 1002 }
 1003 
 1004 static int
 1005 bxe_acquire_hw_lock(struct bxe_softc *sc,
 1006                     uint32_t         resource)
 1007 {
 1008     uint32_t lock_status;
 1009     uint32_t resource_bit = (1 << resource);
 1010     int func = SC_FUNC(sc);
 1011     uint32_t hw_lock_control_reg;
 1012     int cnt;
 1013 
 1014     /* validate the resource is within range */
 1015     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
 1016         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
 1017             " resource_bit 0x%x\n", resource, resource_bit);
 1018         return (-1);
 1019     }
 1020 
 1021     if (func <= 5) {
 1022         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
 1023     } else {
 1024         hw_lock_control_reg =
 1025                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
 1026     }
 1027 
 1028     /* validate the resource is not already taken */
 1029     lock_status = REG_RD(sc, hw_lock_control_reg);
 1030     if (lock_status & resource_bit) {
 1031         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
 1032               resource, lock_status, resource_bit);
 1033         return (-1);
 1034     }
 1035 
 1036     /* try every 5ms for 5 seconds */
 1037     for (cnt = 0; cnt < 1000; cnt++) {
 1038         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
 1039         lock_status = REG_RD(sc, hw_lock_control_reg);
 1040         if (lock_status & resource_bit) {
 1041             return (0);
 1042         }
 1043         DELAY(5000);
 1044     }
 1045 
 1046     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
 1047         resource, resource_bit);
 1048     return (-1);
 1049 }
 1050 
 1051 static int
 1052 bxe_release_hw_lock(struct bxe_softc *sc,
 1053                     uint32_t         resource)
 1054 {
 1055     uint32_t lock_status;
 1056     uint32_t resource_bit = (1 << resource);
 1057     int func = SC_FUNC(sc);
 1058     uint32_t hw_lock_control_reg;
 1059 
 1060     /* validate the resource is within range */
 1061     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
 1062         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
 1063             " resource_bit 0x%x\n", resource, resource_bit);
 1064         return (-1);
 1065     }
 1066 
 1067     if (func <= 5) {
 1068         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
 1069     } else {
 1070         hw_lock_control_reg =
 1071                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
 1072     }
 1073 
 1074     /* validate the resource is currently taken */
 1075     lock_status = REG_RD(sc, hw_lock_control_reg);
 1076     if (!(lock_status & resource_bit)) {
 1077         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
 1078               resource, lock_status, resource_bit);
 1079         return (-1);
 1080     }
 1081 
 1082     REG_WR(sc, hw_lock_control_reg, resource_bit);
 1083     return (0);
 1084 }
 1085 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
 1086 {
 1087         BXE_PHY_LOCK(sc);
 1088         bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 
 1089 }
 1090 
 1091 static void bxe_release_phy_lock(struct bxe_softc *sc)
 1092 {
 1093         bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 
 1094         BXE_PHY_UNLOCK(sc);
 1095 }
 1096 /*
 1097  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
 1098  * had we done things the other way around, if two pfs from the same port
 1099  * would attempt to access nvram at the same time, we could run into a
 1100  * scenario such as:
 1101  * pf A takes the port lock.
 1102  * pf B succeeds in taking the same lock since they are from the same port.
 1103  * pf A takes the per pf misc lock. Performs eeprom access.
 1104  * pf A finishes. Unlocks the per pf misc lock.
 1105  * Pf B takes the lock and proceeds to perform it's own access.
 1106  * pf A unlocks the per port lock, while pf B is still working (!).
 1107  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
 1108  * access corrupted by pf B).*
 1109  */
 1110 static int
 1111 bxe_acquire_nvram_lock(struct bxe_softc *sc)
 1112 {
 1113     int port = SC_PORT(sc);
 1114     int count, i;
 1115     uint32_t val = 0;
 1116 
 1117     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
 1118     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
 1119 
 1120     /* adjust timeout for emulation/FPGA */
 1121     count = NVRAM_TIMEOUT_COUNT;
 1122     if (CHIP_REV_IS_SLOW(sc)) {
 1123         count *= 100;
 1124     }
 1125 
 1126     /* request access to nvram interface */
 1127     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
 1128            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
 1129 
 1130     for (i = 0; i < count*10; i++) {
 1131         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
 1132         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
 1133             break;
 1134         }
 1135 
 1136         DELAY(5);
 1137     }
 1138 
 1139     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
 1140         BLOGE(sc, "Cannot get access to nvram interface "
 1141             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
 1142             port, val);
 1143         return (-1);
 1144     }
 1145 
 1146     return (0);
 1147 }
 1148 
 1149 static int
 1150 bxe_release_nvram_lock(struct bxe_softc *sc)
 1151 {
 1152     int port = SC_PORT(sc);
 1153     int count, i;
 1154     uint32_t val = 0;
 1155 
 1156     /* adjust timeout for emulation/FPGA */
 1157     count = NVRAM_TIMEOUT_COUNT;
 1158     if (CHIP_REV_IS_SLOW(sc)) {
 1159         count *= 100;
 1160     }
 1161 
 1162     /* relinquish nvram interface */
 1163     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
 1164            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
 1165 
 1166     for (i = 0; i < count*10; i++) {
 1167         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
 1168         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
 1169             break;
 1170         }
 1171 
 1172         DELAY(5);
 1173     }
 1174 
 1175     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
 1176         BLOGE(sc, "Cannot free access to nvram interface "
 1177             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
 1178             port, val);
 1179         return (-1);
 1180     }
 1181 
 1182     /* release HW lock: protect against other PFs in PF Direct Assignment */
 1183     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
 1184 
 1185     return (0);
 1186 }
 1187 
 1188 static void
 1189 bxe_enable_nvram_access(struct bxe_softc *sc)
 1190 {
 1191     uint32_t val;
 1192 
 1193     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
 1194 
 1195     /* enable both bits, even on read */
 1196     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
 1197            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
 1198 }
 1199 
 1200 static void
 1201 bxe_disable_nvram_access(struct bxe_softc *sc)
 1202 {
 1203     uint32_t val;
 1204 
 1205     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
 1206 
 1207     /* disable both bits, even after read */
 1208     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
 1209            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
 1210                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
 1211 }
 1212 
 1213 static int
 1214 bxe_nvram_read_dword(struct bxe_softc *sc,
 1215                      uint32_t         offset,
 1216                      uint32_t         *ret_val,
 1217                      uint32_t         cmd_flags)
 1218 {
 1219     int count, i, rc;
 1220     uint32_t val;
 1221 
 1222     /* build the command word */
 1223     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
 1224 
 1225     /* need to clear DONE bit separately */
 1226     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
 1227 
 1228     /* address of the NVRAM to read from */
 1229     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
 1230            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
 1231 
 1232     /* issue a read command */
 1233     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
 1234 
 1235     /* adjust timeout for emulation/FPGA */
 1236     count = NVRAM_TIMEOUT_COUNT;
 1237     if (CHIP_REV_IS_SLOW(sc)) {
 1238         count *= 100;
 1239     }
 1240 
 1241     /* wait for completion */
 1242     *ret_val = 0;
 1243     rc = -1;
 1244     for (i = 0; i < count; i++) {
 1245         DELAY(5);
 1246         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
 1247 
 1248         if (val & MCPR_NVM_COMMAND_DONE) {
 1249             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
 1250             /* we read nvram data in cpu order
 1251              * but ethtool sees it as an array of bytes
 1252              * converting to big-endian will do the work
 1253              */
 1254             *ret_val = htobe32(val);
 1255             rc = 0;
 1256             break;
 1257         }
 1258     }
 1259 
 1260     if (rc == -1) {
 1261         BLOGE(sc, "nvram read timeout expired "
 1262             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
 1263             offset, cmd_flags, val);
 1264     }
 1265 
 1266     return (rc);
 1267 }
 1268 
 1269 static int
 1270 bxe_nvram_read(struct bxe_softc *sc,
 1271                uint32_t         offset,
 1272                uint8_t          *ret_buf,
 1273                int              buf_size)
 1274 {
 1275     uint32_t cmd_flags;
 1276     uint32_t val;
 1277     int rc;
 1278 
 1279     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
 1280         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
 1281               offset, buf_size);
 1282         return (-1);
 1283     }
 1284 
 1285     if ((offset + buf_size) > sc->devinfo.flash_size) {
 1286         BLOGE(sc, "Invalid parameter, "
 1287                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
 1288               offset, buf_size, sc->devinfo.flash_size);
 1289         return (-1);
 1290     }
 1291 
 1292     /* request access to nvram interface */
 1293     rc = bxe_acquire_nvram_lock(sc);
 1294     if (rc) {
 1295         return (rc);
 1296     }
 1297 
 1298     /* enable access to nvram interface */
 1299     bxe_enable_nvram_access(sc);
 1300 
 1301     /* read the first word(s) */
 1302     cmd_flags = MCPR_NVM_COMMAND_FIRST;
 1303     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
 1304         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
 1305         memcpy(ret_buf, &val, 4);
 1306 
 1307         /* advance to the next dword */
 1308         offset += sizeof(uint32_t);
 1309         ret_buf += sizeof(uint32_t);
 1310         buf_size -= sizeof(uint32_t);
 1311         cmd_flags = 0;
 1312     }
 1313 
 1314     if (rc == 0) {
 1315         cmd_flags |= MCPR_NVM_COMMAND_LAST;
 1316         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
 1317         memcpy(ret_buf, &val, 4);
 1318     }
 1319 
 1320     /* disable access to nvram interface */
 1321     bxe_disable_nvram_access(sc);
 1322     bxe_release_nvram_lock(sc);
 1323 
 1324     return (rc);
 1325 }
 1326 
 1327 static int
 1328 bxe_nvram_write_dword(struct bxe_softc *sc,
 1329                       uint32_t         offset,
 1330                       uint32_t         val,
 1331                       uint32_t         cmd_flags)
 1332 {
 1333     int count, i, rc;
 1334 
 1335     /* build the command word */
 1336     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
 1337 
 1338     /* need to clear DONE bit separately */
 1339     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
 1340 
 1341     /* write the data */
 1342     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
 1343 
 1344     /* address of the NVRAM to write to */
 1345     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
 1346            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
 1347 
 1348     /* issue the write command */
 1349     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
 1350 
 1351     /* adjust timeout for emulation/FPGA */
 1352     count = NVRAM_TIMEOUT_COUNT;
 1353     if (CHIP_REV_IS_SLOW(sc)) {
 1354         count *= 100;
 1355     }
 1356 
 1357     /* wait for completion */
 1358     rc = -1;
 1359     for (i = 0; i < count; i++) {
 1360         DELAY(5);
 1361         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
 1362         if (val & MCPR_NVM_COMMAND_DONE) {
 1363             rc = 0;
 1364             break;
 1365         }
 1366     }
 1367 
 1368     if (rc == -1) {
 1369         BLOGE(sc, "nvram write timeout expired "
 1370             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
 1371             offset, cmd_flags, val);
 1372     }
 1373 
 1374     return (rc);
 1375 }
 1376 
 1377 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
 1378 
 1379 static int
 1380 bxe_nvram_write1(struct bxe_softc *sc,
 1381                  uint32_t         offset,
 1382                  uint8_t          *data_buf,
 1383                  int              buf_size)
 1384 {
 1385     uint32_t cmd_flags;
 1386     uint32_t align_offset;
 1387     uint32_t val;
 1388     int rc;
 1389 
 1390     if ((offset + buf_size) > sc->devinfo.flash_size) {
 1391         BLOGE(sc, "Invalid parameter, "
 1392                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
 1393               offset, buf_size, sc->devinfo.flash_size);
 1394         return (-1);
 1395     }
 1396 
 1397     /* request access to nvram interface */
 1398     rc = bxe_acquire_nvram_lock(sc);
 1399     if (rc) {
 1400         return (rc);
 1401     }
 1402 
 1403     /* enable access to nvram interface */
 1404     bxe_enable_nvram_access(sc);
 1405 
 1406     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
 1407     align_offset = (offset & ~0x03);
 1408     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
 1409 
 1410     if (rc == 0) {
 1411         val &= ~(0xff << BYTE_OFFSET(offset));
 1412         val |= (*data_buf << BYTE_OFFSET(offset));
 1413 
 1414         /* nvram data is returned as an array of bytes
 1415          * convert it back to cpu order
 1416          */
 1417         val = be32toh(val);
 1418 
 1419         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
 1420     }
 1421 
 1422     /* disable access to nvram interface */
 1423     bxe_disable_nvram_access(sc);
 1424     bxe_release_nvram_lock(sc);
 1425 
 1426     return (rc);
 1427 }
 1428 
 1429 static int
 1430 bxe_nvram_write(struct bxe_softc *sc,
 1431                 uint32_t         offset,
 1432                 uint8_t          *data_buf,
 1433                 int              buf_size)
 1434 {
 1435     uint32_t cmd_flags;
 1436     uint32_t val;
 1437     uint32_t written_so_far;
 1438     int rc;
 1439 
 1440     if (buf_size == 1) {
 1441         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
 1442     }
 1443 
 1444     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
 1445         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
 1446               offset, buf_size);
 1447         return (-1);
 1448     }
 1449 
 1450     if (buf_size == 0) {
 1451         return (0); /* nothing to do */
 1452     }
 1453 
 1454     if ((offset + buf_size) > sc->devinfo.flash_size) {
 1455         BLOGE(sc, "Invalid parameter, "
 1456                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
 1457               offset, buf_size, sc->devinfo.flash_size);
 1458         return (-1);
 1459     }
 1460 
 1461     /* request access to nvram interface */
 1462     rc = bxe_acquire_nvram_lock(sc);
 1463     if (rc) {
 1464         return (rc);
 1465     }
 1466 
 1467     /* enable access to nvram interface */
 1468     bxe_enable_nvram_access(sc);
 1469 
 1470     written_so_far = 0;
 1471     cmd_flags = MCPR_NVM_COMMAND_FIRST;
 1472     while ((written_so_far < buf_size) && (rc == 0)) {
 1473         if (written_so_far == (buf_size - sizeof(uint32_t))) {
 1474             cmd_flags |= MCPR_NVM_COMMAND_LAST;
 1475         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
 1476             cmd_flags |= MCPR_NVM_COMMAND_LAST;
 1477         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
 1478             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
 1479         }
 1480 
 1481         memcpy(&val, data_buf, 4);
 1482 
 1483         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
 1484 
 1485         /* advance to the next dword */
 1486         offset += sizeof(uint32_t);
 1487         data_buf += sizeof(uint32_t);
 1488         written_so_far += sizeof(uint32_t);
 1489         cmd_flags = 0;
 1490     }
 1491 
 1492     /* disable access to nvram interface */
 1493     bxe_disable_nvram_access(sc);
 1494     bxe_release_nvram_lock(sc);
 1495 
 1496     return (rc);
 1497 }
 1498 
 1499 /* copy command into DMAE command memory and set DMAE command Go */
 1500 void
 1501 bxe_post_dmae(struct bxe_softc    *sc,
 1502               struct dmae_cmd *dmae,
 1503               int                 idx)
 1504 {
 1505     uint32_t cmd_offset;
 1506     int i;
 1507 
 1508     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
 1509     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
 1510         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
 1511     }
 1512 
 1513     REG_WR(sc, dmae_reg_go_c[idx], 1);
 1514 }
 1515 
 1516 uint32_t
 1517 bxe_dmae_opcode_add_comp(uint32_t opcode,
 1518                          uint8_t  comp_type)
 1519 {
 1520     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
 1521                       DMAE_CMD_C_TYPE_ENABLE));
 1522 }
 1523 
 1524 uint32_t
 1525 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
 1526 {
 1527     return (opcode & ~DMAE_CMD_SRC_RESET);
 1528 }
 1529 
 1530 uint32_t
 1531 bxe_dmae_opcode(struct bxe_softc *sc,
 1532                 uint8_t          src_type,
 1533                 uint8_t          dst_type,
 1534                 uint8_t          with_comp,
 1535                 uint8_t          comp_type)
 1536 {
 1537     uint32_t opcode = 0;
 1538 
 1539     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
 1540                (dst_type << DMAE_CMD_DST_SHIFT));
 1541 
 1542     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
 1543 
 1544     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
 1545 
 1546     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
 1547                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
 1548 
 1549     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
 1550 
 1551 #ifdef __BIG_ENDIAN
 1552     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
 1553 #else
 1554     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
 1555 #endif
 1556 
 1557     if (with_comp) {
 1558         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
 1559     }
 1560 
 1561     return (opcode);
 1562 }
 1563 
 1564 static void
 1565 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
 1566                         struct dmae_cmd *dmae,
 1567                         uint8_t             src_type,
 1568                         uint8_t             dst_type)
 1569 {
 1570     memset(dmae, 0, sizeof(struct dmae_cmd));
 1571 
 1572     /* set the opcode */
 1573     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
 1574                                    TRUE, DMAE_COMP_PCI);
 1575 
 1576     /* fill in the completion parameters */
 1577     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
 1578     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
 1579     dmae->comp_val     = DMAE_COMP_VAL;
 1580 }
 1581 
 1582 /* issue a DMAE command over the init channel and wait for completion */
 1583 static int
 1584 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
 1585                          struct dmae_cmd *dmae)
 1586 {
 1587     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
 1588     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
 1589 
 1590     BXE_DMAE_LOCK(sc);
 1591 
 1592     /* reset completion */
 1593     *wb_comp = 0;
 1594 
 1595     /* post the command on the channel used for initializations */
 1596     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
 1597 
 1598     /* wait for completion */
 1599     DELAY(5);
 1600 
 1601     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
 1602         if (!timeout ||
 1603             (sc->recovery_state != BXE_RECOVERY_DONE &&
 1604              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
 1605             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
 1606                 *wb_comp, sc->recovery_state);
 1607             BXE_DMAE_UNLOCK(sc);
 1608             return (DMAE_TIMEOUT);
 1609         }
 1610 
 1611         timeout--;
 1612         DELAY(50);
 1613     }
 1614 
 1615     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
 1616         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
 1617                 *wb_comp, sc->recovery_state);
 1618         BXE_DMAE_UNLOCK(sc);
 1619         return (DMAE_PCI_ERROR);
 1620     }
 1621 
 1622     BXE_DMAE_UNLOCK(sc);
 1623     return (0);
 1624 }
 1625 
 1626 void
 1627 bxe_read_dmae(struct bxe_softc *sc,
 1628               uint32_t         src_addr,
 1629               uint32_t         len32)
 1630 {
 1631     struct dmae_cmd dmae;
 1632     uint32_t *data;
 1633     int i, rc;
 1634 
 1635     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
 1636 
 1637     if (!sc->dmae_ready) {
 1638         data = BXE_SP(sc, wb_data[0]);
 1639 
 1640         for (i = 0; i < len32; i++) {
 1641             data[i] = (CHIP_IS_E1(sc)) ?
 1642                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
 1643                           REG_RD(sc, (src_addr + (i * 4)));
 1644         }
 1645 
 1646         return;
 1647     }
 1648 
 1649     /* set opcode and fixed command fields */
 1650     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
 1651 
 1652     /* fill in addresses and len */
 1653     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
 1654     dmae.src_addr_hi = 0;
 1655     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
 1656     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
 1657     dmae.len         = len32;
 1658 
 1659     /* issue the command and wait for completion */
 1660     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
 1661         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
 1662     }
 1663 }
 1664 
 1665 void
 1666 bxe_write_dmae(struct bxe_softc *sc,
 1667                bus_addr_t       dma_addr,
 1668                uint32_t         dst_addr,
 1669                uint32_t         len32)
 1670 {
 1671     struct dmae_cmd dmae;
 1672     int rc;
 1673 
 1674     if (!sc->dmae_ready) {
 1675         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
 1676 
 1677         if (CHIP_IS_E1(sc)) {
 1678             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
 1679         } else {
 1680             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
 1681         }
 1682 
 1683         return;
 1684     }
 1685 
 1686     /* set opcode and fixed command fields */
 1687     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
 1688 
 1689     /* fill in addresses and len */
 1690     dmae.src_addr_lo = U64_LO(dma_addr);
 1691     dmae.src_addr_hi = U64_HI(dma_addr);
 1692     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
 1693     dmae.dst_addr_hi = 0;
 1694     dmae.len         = len32;
 1695 
 1696     /* issue the command and wait for completion */
 1697     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
 1698         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
 1699     }
 1700 }
 1701 
 1702 void
 1703 bxe_write_dmae_phys_len(struct bxe_softc *sc,
 1704                         bus_addr_t       phys_addr,
 1705                         uint32_t         addr,
 1706                         uint32_t         len)
 1707 {
 1708     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
 1709     int offset = 0;
 1710 
 1711     while (len > dmae_wr_max) {
 1712         bxe_write_dmae(sc,
 1713                        (phys_addr + offset), /* src DMA address */
 1714                        (addr + offset),      /* dst GRC address */
 1715                        dmae_wr_max);
 1716         offset += (dmae_wr_max * 4);
 1717         len -= dmae_wr_max;
 1718     }
 1719 
 1720     bxe_write_dmae(sc,
 1721                    (phys_addr + offset), /* src DMA address */
 1722                    (addr + offset),      /* dst GRC address */
 1723                    len);
 1724 }
 1725 
 1726 void
 1727 bxe_set_ctx_validation(struct bxe_softc   *sc,
 1728                        struct eth_context *cxt,
 1729                        uint32_t           cid)
 1730 {
 1731     /* ustorm cxt validation */
 1732     cxt->ustorm_ag_context.cdu_usage =
 1733         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
 1734             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
 1735     /* xcontext validation */
 1736     cxt->xstorm_ag_context.cdu_reserved =
 1737         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
 1738             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
 1739 }
 1740 
 1741 static void
 1742 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
 1743                             uint8_t          port,
 1744                             uint8_t          fw_sb_id,
 1745                             uint8_t          sb_index,
 1746                             uint8_t          ticks)
 1747 {
 1748     uint32_t addr =
 1749         (BAR_CSTRORM_INTMEM +
 1750          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
 1751 
 1752     REG_WR8(sc, addr, ticks);
 1753 
 1754     BLOGD(sc, DBG_LOAD,
 1755           "port %d fw_sb_id %d sb_index %d ticks %d\n",
 1756           port, fw_sb_id, sb_index, ticks);
 1757 }
 1758 
 1759 static void
 1760 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
 1761                             uint8_t          port,
 1762                             uint16_t         fw_sb_id,
 1763                             uint8_t          sb_index,
 1764                             uint8_t          disable)
 1765 {
 1766     uint32_t enable_flag =
 1767         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
 1768     uint32_t addr =
 1769         (BAR_CSTRORM_INTMEM +
 1770          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
 1771     uint8_t flags;
 1772 
 1773     /* clear and set */
 1774     flags = REG_RD8(sc, addr);
 1775     flags &= ~HC_INDEX_DATA_HC_ENABLED;
 1776     flags |= enable_flag;
 1777     REG_WR8(sc, addr, flags);
 1778 
 1779     BLOGD(sc, DBG_LOAD,
 1780           "port %d fw_sb_id %d sb_index %d disable %d\n",
 1781           port, fw_sb_id, sb_index, disable);
 1782 }
 1783 
 1784 void
 1785 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
 1786                              uint8_t          fw_sb_id,
 1787                              uint8_t          sb_index,
 1788                              uint8_t          disable,
 1789                              uint16_t         usec)
 1790 {
 1791     int port = SC_PORT(sc);
 1792     uint8_t ticks = (usec / 4); /* XXX ??? */
 1793 
 1794     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
 1795 
 1796     disable = (disable) ? 1 : ((usec) ? 0 : 1);
 1797     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
 1798 }
 1799 
 1800 void
 1801 elink_cb_udelay(struct bxe_softc *sc,
 1802                 uint32_t         usecs)
 1803 {
 1804     DELAY(usecs);
 1805 }
 1806 
 1807 uint32_t
 1808 elink_cb_reg_read(struct bxe_softc *sc,
 1809                   uint32_t         reg_addr)
 1810 {
 1811     return (REG_RD(sc, reg_addr));
 1812 }
 1813 
 1814 void
 1815 elink_cb_reg_write(struct bxe_softc *sc,
 1816                    uint32_t         reg_addr,
 1817                    uint32_t         val)
 1818 {
 1819     REG_WR(sc, reg_addr, val);
 1820 }
 1821 
 1822 void
 1823 elink_cb_reg_wb_write(struct bxe_softc *sc,
 1824                       uint32_t         offset,
 1825                       uint32_t         *wb_write,
 1826                       uint16_t         len)
 1827 {
 1828     REG_WR_DMAE(sc, offset, wb_write, len);
 1829 }
 1830 
 1831 void
 1832 elink_cb_reg_wb_read(struct bxe_softc *sc,
 1833                      uint32_t         offset,
 1834                      uint32_t         *wb_write,
 1835                      uint16_t         len)
 1836 {
 1837     REG_RD_DMAE(sc, offset, wb_write, len);
 1838 }
 1839 
 1840 uint8_t
 1841 elink_cb_path_id(struct bxe_softc *sc)
 1842 {
 1843     return (SC_PATH(sc));
 1844 }
 1845 
 1846 void
 1847 elink_cb_event_log(struct bxe_softc     *sc,
 1848                    const elink_log_id_t elink_log_id,
 1849                    ...)
 1850 {
 1851     /* XXX */
 1852     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
 1853 }
 1854 
 1855 static int
 1856 bxe_set_spio(struct bxe_softc *sc,
 1857              int              spio,
 1858              uint32_t         mode)
 1859 {
 1860     uint32_t spio_reg;
 1861 
 1862     /* Only 2 SPIOs are configurable */
 1863     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
 1864         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
 1865         return (-1);
 1866     }
 1867 
 1868     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
 1869 
 1870     /* read SPIO and mask except the float bits */
 1871     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
 1872 
 1873     switch (mode) {
 1874     case MISC_SPIO_OUTPUT_LOW:
 1875         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
 1876         /* clear FLOAT and set CLR */
 1877         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
 1878         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
 1879         break;
 1880 
 1881     case MISC_SPIO_OUTPUT_HIGH:
 1882         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
 1883         /* clear FLOAT and set SET */
 1884         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
 1885         spio_reg |=  (spio << MISC_SPIO_SET_POS);
 1886         break;
 1887 
 1888     case MISC_SPIO_INPUT_HI_Z:
 1889         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
 1890         /* set FLOAT */
 1891         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
 1892         break;
 1893 
 1894     default:
 1895         break;
 1896     }
 1897 
 1898     REG_WR(sc, MISC_REG_SPIO, spio_reg);
 1899     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
 1900 
 1901     return (0);
 1902 }
 1903 
 1904 static int
 1905 bxe_gpio_read(struct bxe_softc *sc,
 1906               int              gpio_num,
 1907               uint8_t          port)
 1908 {
 1909     /* The GPIO should be swapped if swap register is set and active */
 1910     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
 1911                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
 1912     int gpio_shift = (gpio_num +
 1913                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
 1914     uint32_t gpio_mask = (1 << gpio_shift);
 1915     uint32_t gpio_reg;
 1916 
 1917     if (gpio_num > MISC_REGISTERS_GPIO_3) {
 1918         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
 1919             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
 1920             gpio_mask);
 1921         return (-1);
 1922     }
 1923 
 1924     /* read GPIO value */
 1925     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
 1926 
 1927     /* get the requested pin value */
 1928     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
 1929 }
 1930 
 1931 static int
 1932 bxe_gpio_write(struct bxe_softc *sc,
 1933                int              gpio_num,
 1934                uint32_t         mode,
 1935                uint8_t          port)
 1936 {
 1937     /* The GPIO should be swapped if swap register is set and active */
 1938     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
 1939                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
 1940     int gpio_shift = (gpio_num +
 1941                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
 1942     uint32_t gpio_mask = (1 << gpio_shift);
 1943     uint32_t gpio_reg;
 1944 
 1945     if (gpio_num > MISC_REGISTERS_GPIO_3) {
 1946         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
 1947             " gpio_shift %d gpio_mask 0x%x\n",
 1948             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
 1949         return (-1);
 1950     }
 1951 
 1952     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 1953 
 1954     /* read GPIO and mask except the float bits */
 1955     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
 1956 
 1957     switch (mode) {
 1958     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
 1959         BLOGD(sc, DBG_PHY,
 1960               "Set GPIO %d (shift %d) -> output low\n",
 1961               gpio_num, gpio_shift);
 1962         /* clear FLOAT and set CLR */
 1963         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
 1964         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
 1965         break;
 1966 
 1967     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
 1968         BLOGD(sc, DBG_PHY,
 1969               "Set GPIO %d (shift %d) -> output high\n",
 1970               gpio_num, gpio_shift);
 1971         /* clear FLOAT and set SET */
 1972         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
 1973         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
 1974         break;
 1975 
 1976     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
 1977         BLOGD(sc, DBG_PHY,
 1978               "Set GPIO %d (shift %d) -> input\n",
 1979               gpio_num, gpio_shift);
 1980         /* set FLOAT */
 1981         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
 1982         break;
 1983 
 1984     default:
 1985         break;
 1986     }
 1987 
 1988     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
 1989     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 1990 
 1991     return (0);
 1992 }
 1993 
 1994 static int
 1995 bxe_gpio_mult_write(struct bxe_softc *sc,
 1996                     uint8_t          pins,
 1997                     uint32_t         mode)
 1998 {
 1999     uint32_t gpio_reg;
 2000 
 2001     /* any port swapping should be handled by caller */
 2002 
 2003     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 2004 
 2005     /* read GPIO and mask except the float bits */
 2006     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
 2007     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
 2008     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
 2009     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
 2010 
 2011     switch (mode) {
 2012     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
 2013         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
 2014         /* set CLR */
 2015         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
 2016         break;
 2017 
 2018     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
 2019         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
 2020         /* set SET */
 2021         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
 2022         break;
 2023 
 2024     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
 2025         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
 2026         /* set FLOAT */
 2027         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
 2028         break;
 2029 
 2030     default:
 2031         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
 2032             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
 2033         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 2034         return (-1);
 2035     }
 2036 
 2037     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
 2038     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 2039 
 2040     return (0);
 2041 }
 2042 
 2043 static int
 2044 bxe_gpio_int_write(struct bxe_softc *sc,
 2045                    int              gpio_num,
 2046                    uint32_t         mode,
 2047                    uint8_t          port)
 2048 {
 2049     /* The GPIO should be swapped if swap register is set and active */
 2050     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
 2051                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
 2052     int gpio_shift = (gpio_num +
 2053                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
 2054     uint32_t gpio_mask = (1 << gpio_shift);
 2055     uint32_t gpio_reg;
 2056 
 2057     if (gpio_num > MISC_REGISTERS_GPIO_3) {
 2058         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
 2059             " gpio_shift %d gpio_mask 0x%x\n",
 2060             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
 2061         return (-1);
 2062     }
 2063 
 2064     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 2065 
 2066     /* read GPIO int */
 2067     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
 2068 
 2069     switch (mode) {
 2070     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
 2071         BLOGD(sc, DBG_PHY,
 2072               "Clear GPIO INT %d (shift %d) -> output low\n",
 2073               gpio_num, gpio_shift);
 2074         /* clear SET and set CLR */
 2075         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
 2076         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
 2077         break;
 2078 
 2079     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
 2080         BLOGD(sc, DBG_PHY,
 2081               "Set GPIO INT %d (shift %d) -> output high\n",
 2082               gpio_num, gpio_shift);
 2083         /* clear CLR and set SET */
 2084         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
 2085         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
 2086         break;
 2087 
 2088     default:
 2089         break;
 2090     }
 2091 
 2092     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
 2093     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
 2094 
 2095     return (0);
 2096 }
 2097 
 2098 uint32_t
 2099 elink_cb_gpio_read(struct bxe_softc *sc,
 2100                    uint16_t         gpio_num,
 2101                    uint8_t          port)
 2102 {
 2103     return (bxe_gpio_read(sc, gpio_num, port));
 2104 }
 2105 
 2106 uint8_t
 2107 elink_cb_gpio_write(struct bxe_softc *sc,
 2108                     uint16_t         gpio_num,
 2109                     uint8_t          mode, /* 0=low 1=high */
 2110                     uint8_t          port)
 2111 {
 2112     return (bxe_gpio_write(sc, gpio_num, mode, port));
 2113 }
 2114 
 2115 uint8_t
 2116 elink_cb_gpio_mult_write(struct bxe_softc *sc,
 2117                          uint8_t          pins,
 2118                          uint8_t          mode) /* 0=low 1=high */
 2119 {
 2120     return (bxe_gpio_mult_write(sc, pins, mode));
 2121 }
 2122 
 2123 uint8_t
 2124 elink_cb_gpio_int_write(struct bxe_softc *sc,
 2125                         uint16_t         gpio_num,
 2126                         uint8_t          mode, /* 0=low 1=high */
 2127                         uint8_t          port)
 2128 {
 2129     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
 2130 }
 2131 
 2132 void
 2133 elink_cb_notify_link_changed(struct bxe_softc *sc)
 2134 {
 2135     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
 2136                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
 2137 }
 2138 
 2139 /* send the MCP a request, block until there is a reply */
 2140 uint32_t
 2141 elink_cb_fw_command(struct bxe_softc *sc,
 2142                     uint32_t         command,
 2143                     uint32_t         param)
 2144 {
 2145     int mb_idx = SC_FW_MB_IDX(sc);
 2146     uint32_t seq;
 2147     uint32_t rc = 0;
 2148     uint32_t cnt = 1;
 2149     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
 2150 
 2151     BXE_FWMB_LOCK(sc);
 2152 
 2153     seq = ++sc->fw_seq;
 2154     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
 2155     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
 2156 
 2157     BLOGD(sc, DBG_PHY,
 2158           "wrote command 0x%08x to FW MB param 0x%08x\n",
 2159           (command | seq), param);
 2160 
 2161     /* Let the FW do it's magic. GIve it up to 5 seconds... */
 2162     do {
 2163         DELAY(delay * 1000);
 2164         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
 2165     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
 2166 
 2167     BLOGD(sc, DBG_PHY,
 2168           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
 2169           cnt*delay, rc, seq);
 2170 
 2171     /* is this a reply to our command? */
 2172     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
 2173         rc &= FW_MSG_CODE_MASK;
 2174     } else {
 2175         /* Ruh-roh! */
 2176         BLOGE(sc, "FW failed to respond!\n");
 2177         // XXX bxe_fw_dump(sc);
 2178         rc = 0;
 2179     }
 2180 
 2181     BXE_FWMB_UNLOCK(sc);
 2182     return (rc);
 2183 }
 2184 
 2185 static uint32_t
 2186 bxe_fw_command(struct bxe_softc *sc,
 2187                uint32_t         command,
 2188                uint32_t         param)
 2189 {
 2190     return (elink_cb_fw_command(sc, command, param));
 2191 }
 2192 
 2193 static void
 2194 __storm_memset_dma_mapping(struct bxe_softc *sc,
 2195                            uint32_t         addr,
 2196                            bus_addr_t       mapping)
 2197 {
 2198     REG_WR(sc, addr, U64_LO(mapping));
 2199     REG_WR(sc, (addr + 4), U64_HI(mapping));
 2200 }
 2201 
 2202 static void
 2203 storm_memset_spq_addr(struct bxe_softc *sc,
 2204                       bus_addr_t       mapping,
 2205                       uint16_t         abs_fid)
 2206 {
 2207     uint32_t addr = (XSEM_REG_FAST_MEMORY +
 2208                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
 2209     __storm_memset_dma_mapping(sc, addr, mapping);
 2210 }
 2211 
 2212 static void
 2213 storm_memset_vf_to_pf(struct bxe_softc *sc,
 2214                       uint16_t         abs_fid,
 2215                       uint16_t         pf_id)
 2216 {
 2217     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
 2218     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
 2219     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
 2220     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
 2221 }
 2222 
 2223 static void
 2224 storm_memset_func_en(struct bxe_softc *sc,
 2225                      uint16_t         abs_fid,
 2226                      uint8_t          enable)
 2227 {
 2228     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
 2229     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
 2230     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
 2231     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
 2232 }
 2233 
 2234 static void
 2235 storm_memset_eq_data(struct bxe_softc       *sc,
 2236                      struct event_ring_data *eq_data,
 2237                      uint16_t               pfid)
 2238 {
 2239     uint32_t addr;
 2240     size_t size;
 2241 
 2242     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
 2243     size = sizeof(struct event_ring_data);
 2244     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
 2245 }
 2246 
 2247 static void
 2248 storm_memset_eq_prod(struct bxe_softc *sc,
 2249                      uint16_t         eq_prod,
 2250                      uint16_t         pfid)
 2251 {
 2252     uint32_t addr = (BAR_CSTRORM_INTMEM +
 2253                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
 2254     REG_WR16(sc, addr, eq_prod);
 2255 }
 2256 
 2257 /*
 2258  * Post a slowpath command.
 2259  *
 2260  * A slowpath command is used to propagate a configuration change through
 2261  * the controller in a controlled manner, allowing each STORM processor and
 2262  * other H/W blocks to phase in the change.  The commands sent on the
 2263  * slowpath are referred to as ramrods.  Depending on the ramrod used the
 2264  * completion of the ramrod will occur in different ways.  Here's a
 2265  * breakdown of ramrods and how they complete:
 2266  *
 2267  * RAMROD_CMD_ID_ETH_PORT_SETUP
 2268  *   Used to setup the leading connection on a port.  Completes on the
 2269  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
 2270  *
 2271  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
 2272  *   Used to setup an additional connection on a port.  Completes on the
 2273  *   RCQ of the multi-queue/RSS connection being initialized.
 2274  *
 2275  * RAMROD_CMD_ID_ETH_STAT_QUERY
 2276  *   Used to force the storm processors to update the statistics database
 2277  *   in host memory.  This ramrod is send on the leading connection CID and
 2278  *   completes as an index increment of the CSTORM on the default status
 2279  *   block.
 2280  *
 2281  * RAMROD_CMD_ID_ETH_UPDATE
 2282  *   Used to update the state of the leading connection, usually to udpate
 2283  *   the RSS indirection table.  Completes on the RCQ of the leading
 2284  *   connection. (Not currently used under FreeBSD until OS support becomes
 2285  *   available.)
 2286  *
 2287  * RAMROD_CMD_ID_ETH_HALT
 2288  *   Used when tearing down a connection prior to driver unload.  Completes
 2289  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
 2290  *   use this on the leading connection.
 2291  *
 2292  * RAMROD_CMD_ID_ETH_SET_MAC
 2293  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
 2294  *   the RCQ of the leading connection.
 2295  *
 2296  * RAMROD_CMD_ID_ETH_CFC_DEL
 2297  *   Used when tearing down a conneciton prior to driver unload.  Completes
 2298  *   on the RCQ of the leading connection (since the current connection
 2299  *   has been completely removed from controller memory).
 2300  *
 2301  * RAMROD_CMD_ID_ETH_PORT_DEL
 2302  *   Used to tear down the leading connection prior to driver unload,
 2303  *   typically fp[0].  Completes as an index increment of the CSTORM on the
 2304  *   default status block.
 2305  *
 2306  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
 2307  *   Used for connection offload.  Completes on the RCQ of the multi-queue
 2308  *   RSS connection that is being offloaded.  (Not currently used under
 2309  *   FreeBSD.)
 2310  *
 2311  * There can only be one command pending per function.
 2312  *
 2313  * Returns:
 2314  *   0 = Success, !0 = Failure.
 2315  */
 2316 
 2317 /* must be called under the spq lock */
 2318 static inline
 2319 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
 2320 {
 2321     struct eth_spe *next_spe = sc->spq_prod_bd;
 2322 
 2323     if (sc->spq_prod_bd == sc->spq_last_bd) {
 2324         /* wrap back to the first eth_spq */
 2325         sc->spq_prod_bd = sc->spq;
 2326         sc->spq_prod_idx = 0;
 2327     } else {
 2328         sc->spq_prod_bd++;
 2329         sc->spq_prod_idx++;
 2330     }
 2331 
 2332     return (next_spe);
 2333 }
 2334 
 2335 /* must be called under the spq lock */
 2336 static inline
 2337 void bxe_sp_prod_update(struct bxe_softc *sc)
 2338 {
 2339     int func = SC_FUNC(sc);
 2340 
 2341     /*
 2342      * Make sure that BD data is updated before writing the producer.
 2343      * BD data is written to the memory, the producer is read from the
 2344      * memory, thus we need a full memory barrier to ensure the ordering.
 2345      */
 2346     mb();
 2347 
 2348     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
 2349              sc->spq_prod_idx);
 2350 
 2351     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
 2352                       BUS_SPACE_BARRIER_WRITE);
 2353 }
 2354 
 2355 /**
 2356  * bxe_is_contextless_ramrod - check if the current command ends on EQ
 2357  *
 2358  * @cmd:      command to check
 2359  * @cmd_type: command type
 2360  */
 2361 static inline
 2362 int bxe_is_contextless_ramrod(int cmd,
 2363                               int cmd_type)
 2364 {
 2365     if ((cmd_type == NONE_CONNECTION_TYPE) ||
 2366         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
 2367         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
 2368         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
 2369         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
 2370         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
 2371         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
 2372         return (TRUE);
 2373     } else {
 2374         return (FALSE);
 2375     }
 2376 }
 2377 
 2378 /**
 2379  * bxe_sp_post - place a single command on an SP ring
 2380  *
 2381  * @sc:         driver handle
 2382  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
 2383  * @cid:        SW CID the command is related to
 2384  * @data_hi:    command private data address (high 32 bits)
 2385  * @data_lo:    command private data address (low 32 bits)
 2386  * @cmd_type:   command type (e.g. NONE, ETH)
 2387  *
 2388  * SP data is handled as if it's always an address pair, thus data fields are
 2389  * not swapped to little endian in upper functions. Instead this function swaps
 2390  * data as if it's two uint32 fields.
 2391  */
 2392 int
 2393 bxe_sp_post(struct bxe_softc *sc,
 2394             int              command,
 2395             int              cid,
 2396             uint32_t         data_hi,
 2397             uint32_t         data_lo,
 2398             int              cmd_type)
 2399 {
 2400     struct eth_spe *spe;
 2401     uint16_t type;
 2402     int common;
 2403 
 2404     common = bxe_is_contextless_ramrod(command, cmd_type);
 2405 
 2406     BXE_SP_LOCK(sc);
 2407 
 2408     if (common) {
 2409         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
 2410             BLOGE(sc, "EQ ring is full!\n");
 2411             BXE_SP_UNLOCK(sc);
 2412             return (-1);
 2413         }
 2414     } else {
 2415         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
 2416             BLOGE(sc, "SPQ ring is full!\n");
 2417             BXE_SP_UNLOCK(sc);
 2418             return (-1);
 2419         }
 2420     }
 2421 
 2422     spe = bxe_sp_get_next(sc);
 2423 
 2424     /* CID needs port number to be encoded int it */
 2425     spe->hdr.conn_and_cmd_data =
 2426         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
 2427 
 2428     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
 2429 
 2430     /* TBD: Check if it works for VFs */
 2431     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
 2432              SPE_HDR_T_FUNCTION_ID);
 2433 
 2434     spe->hdr.type = htole16(type);
 2435 
 2436     spe->data.update_data_addr.hi = htole32(data_hi);
 2437     spe->data.update_data_addr.lo = htole32(data_lo);
 2438 
 2439     /*
 2440      * It's ok if the actual decrement is issued towards the memory
 2441      * somewhere between the lock and unlock. Thus no more explict
 2442      * memory barrier is needed.
 2443      */
 2444     if (common) {
 2445         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
 2446     } else {
 2447         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
 2448     }
 2449 
 2450     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
 2451     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
 2452           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
 2453     BLOGD(sc, DBG_SP,
 2454           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
 2455           sc->spq_prod_idx,
 2456           (uint32_t)U64_HI(sc->spq_dma.paddr),
 2457           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
 2458           command,
 2459           common,
 2460           HW_CID(sc, cid),
 2461           data_hi,
 2462           data_lo,
 2463           type,
 2464           atomic_load_acq_long(&sc->cq_spq_left),
 2465           atomic_load_acq_long(&sc->eq_spq_left));
 2466 
 2467     bxe_sp_prod_update(sc);
 2468 
 2469     BXE_SP_UNLOCK(sc);
 2470     return (0);
 2471 }
 2472 
 2473 /**
 2474  * bxe_debug_print_ind_table - prints the indirection table configuration.
 2475  *
 2476  * @sc: driver hanlde
 2477  * @p:  pointer to rss configuration
 2478  */
 2479 
 2480 /*
 2481  * FreeBSD Device probe function.
 2482  *
 2483  * Compares the device found to the driver's list of supported devices and
 2484  * reports back to the bsd loader whether this is the right driver for the device.
 2485  * This is the driver entry function called from the "kldload" command.
 2486  *
 2487  * Returns:
 2488  *   BUS_PROBE_DEFAULT on success, positive value on failure.
 2489  */
 2490 static int
 2491 bxe_probe(device_t dev)
 2492 {
 2493     struct bxe_device_type *t;
 2494     char *descbuf;
 2495     uint16_t did, sdid, svid, vid;
 2496 
 2497     /* Find our device structure */
 2498     t = bxe_devs;
 2499 
 2500     /* Get the data for the device to be probed. */
 2501     vid  = pci_get_vendor(dev);
 2502     did  = pci_get_device(dev);
 2503     svid = pci_get_subvendor(dev);
 2504     sdid = pci_get_subdevice(dev);
 2505 
 2506     /* Look through the list of known devices for a match. */
 2507     while (t->bxe_name != NULL) {
 2508         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
 2509             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
 2510             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
 2511             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
 2512             if (descbuf == NULL)
 2513                 return (ENOMEM);
 2514 
 2515             /* Print out the device identity. */
 2516             snprintf(descbuf, BXE_DEVDESC_MAX,
 2517                      "%s (%c%d) BXE v:%s", t->bxe_name,
 2518                      (((pci_read_config(dev, PCIR_REVID, 4) &
 2519                         0xf0) >> 4) + 'A'),
 2520                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
 2521                      BXE_DRIVER_VERSION);
 2522 
 2523             device_set_desc_copy(dev, descbuf);
 2524             free(descbuf, M_TEMP);
 2525             return (BUS_PROBE_DEFAULT);
 2526         }
 2527         t++;
 2528     }
 2529 
 2530     return (ENXIO);
 2531 }
 2532 
 2533 static void
 2534 bxe_init_mutexes(struct bxe_softc *sc)
 2535 {
 2536 #ifdef BXE_CORE_LOCK_SX
 2537     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
 2538              "bxe%d_core_lock", sc->unit);
 2539     sx_init(&sc->core_sx, sc->core_sx_name);
 2540 #else
 2541     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
 2542              "bxe%d_core_lock", sc->unit);
 2543     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
 2544 #endif
 2545 
 2546     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
 2547              "bxe%d_sp_lock", sc->unit);
 2548     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
 2549 
 2550     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
 2551              "bxe%d_dmae_lock", sc->unit);
 2552     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
 2553 
 2554     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
 2555              "bxe%d_phy_lock", sc->unit);
 2556     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
 2557 
 2558     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
 2559              "bxe%d_fwmb_lock", sc->unit);
 2560     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
 2561 
 2562     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
 2563              "bxe%d_print_lock", sc->unit);
 2564     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
 2565 
 2566     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
 2567              "bxe%d_stats_lock", sc->unit);
 2568     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
 2569 
 2570     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
 2571              "bxe%d_mcast_lock", sc->unit);
 2572     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
 2573 }
 2574 
 2575 static void
 2576 bxe_release_mutexes(struct bxe_softc *sc)
 2577 {
 2578 #ifdef BXE_CORE_LOCK_SX
 2579     sx_destroy(&sc->core_sx);
 2580 #else
 2581     if (mtx_initialized(&sc->core_mtx)) {
 2582         mtx_destroy(&sc->core_mtx);
 2583     }
 2584 #endif
 2585 
 2586     if (mtx_initialized(&sc->sp_mtx)) {
 2587         mtx_destroy(&sc->sp_mtx);
 2588     }
 2589 
 2590     if (mtx_initialized(&sc->dmae_mtx)) {
 2591         mtx_destroy(&sc->dmae_mtx);
 2592     }
 2593 
 2594     if (mtx_initialized(&sc->port.phy_mtx)) {
 2595         mtx_destroy(&sc->port.phy_mtx);
 2596     }
 2597 
 2598     if (mtx_initialized(&sc->fwmb_mtx)) {
 2599         mtx_destroy(&sc->fwmb_mtx);
 2600     }
 2601 
 2602     if (mtx_initialized(&sc->print_mtx)) {
 2603         mtx_destroy(&sc->print_mtx);
 2604     }
 2605 
 2606     if (mtx_initialized(&sc->stats_mtx)) {
 2607         mtx_destroy(&sc->stats_mtx);
 2608     }
 2609 
 2610     if (mtx_initialized(&sc->mcast_mtx)) {
 2611         mtx_destroy(&sc->mcast_mtx);
 2612     }
 2613 }
 2614 
 2615 static void
 2616 bxe_tx_disable(struct bxe_softc* sc)
 2617 {
 2618     if_t ifp = sc->ifp;
 2619 
 2620     /* tell the stack the driver is stopped and TX queue is full */
 2621     if (ifp !=  NULL) {
 2622         if_setdrvflags(ifp, 0);
 2623     }
 2624 }
 2625 
 2626 static void
 2627 bxe_drv_pulse(struct bxe_softc *sc)
 2628 {
 2629     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
 2630              sc->fw_drv_pulse_wr_seq);
 2631 }
 2632 
 2633 static inline uint16_t
 2634 bxe_tx_avail(struct bxe_softc *sc,
 2635              struct bxe_fastpath *fp)
 2636 {
 2637     int16_t  used;
 2638     uint16_t prod;
 2639     uint16_t cons;
 2640 
 2641     prod = fp->tx_bd_prod;
 2642     cons = fp->tx_bd_cons;
 2643 
 2644     used = SUB_S16(prod, cons);
 2645 
 2646     return (int16_t)(sc->tx_ring_size) - used;
 2647 }
 2648 
 2649 static inline int
 2650 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
 2651 {
 2652     uint16_t hw_cons;
 2653 
 2654     mb(); /* status block fields can change */
 2655     hw_cons = le16toh(*fp->tx_cons_sb);
 2656     return (hw_cons != fp->tx_pkt_cons);
 2657 }
 2658 
 2659 static inline uint8_t
 2660 bxe_has_tx_work(struct bxe_fastpath *fp)
 2661 {
 2662     /* expand this for multi-cos if ever supported */
 2663     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
 2664 }
 2665 
 2666 static inline int
 2667 bxe_has_rx_work(struct bxe_fastpath *fp)
 2668 {
 2669     uint16_t rx_cq_cons_sb;
 2670 
 2671     mb(); /* status block fields can change */
 2672     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
 2673     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
 2674         rx_cq_cons_sb++;
 2675     return (fp->rx_cq_cons != rx_cq_cons_sb);
 2676 }
 2677 
 2678 static void
 2679 bxe_sp_event(struct bxe_softc    *sc,
 2680              struct bxe_fastpath *fp,
 2681              union eth_rx_cqe    *rr_cqe)
 2682 {
 2683     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
 2684     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
 2685     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
 2686     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
 2687 
 2688     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
 2689           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
 2690 
 2691     switch (command) {
 2692     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
 2693         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
 2694         drv_cmd = ECORE_Q_CMD_UPDATE;
 2695         break;
 2696 
 2697     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
 2698         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
 2699         drv_cmd = ECORE_Q_CMD_SETUP;
 2700         break;
 2701 
 2702     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
 2703         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
 2704         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
 2705         break;
 2706 
 2707     case (RAMROD_CMD_ID_ETH_HALT):
 2708         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
 2709         drv_cmd = ECORE_Q_CMD_HALT;
 2710         break;
 2711 
 2712     case (RAMROD_CMD_ID_ETH_TERMINATE):
 2713         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
 2714         drv_cmd = ECORE_Q_CMD_TERMINATE;
 2715         break;
 2716 
 2717     case (RAMROD_CMD_ID_ETH_EMPTY):
 2718         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
 2719         drv_cmd = ECORE_Q_CMD_EMPTY;
 2720         break;
 2721 
 2722     default:
 2723         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
 2724               command, fp->index);
 2725         return;
 2726     }
 2727 
 2728     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
 2729         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
 2730         /*
 2731          * q_obj->complete_cmd() failure means that this was
 2732          * an unexpected completion.
 2733          *
 2734          * In this case we don't want to increase the sc->spq_left
 2735          * because apparently we haven't sent this command the first
 2736          * place.
 2737          */
 2738         // bxe_panic(sc, ("Unexpected SP completion\n"));
 2739         return;
 2740     }
 2741 
 2742     atomic_add_acq_long(&sc->cq_spq_left, 1);
 2743 
 2744     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
 2745           atomic_load_acq_long(&sc->cq_spq_left));
 2746 }
 2747 
 2748 /*
 2749  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
 2750  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
 2751  * the current aggregation queue as in-progress.
 2752  */
 2753 static void
 2754 bxe_tpa_start(struct bxe_softc            *sc,
 2755               struct bxe_fastpath         *fp,
 2756               uint16_t                    queue,
 2757               uint16_t                    cons,
 2758               uint16_t                    prod,
 2759               struct eth_fast_path_rx_cqe *cqe)
 2760 {
 2761     struct bxe_sw_rx_bd tmp_bd;
 2762     struct bxe_sw_rx_bd *rx_buf;
 2763     struct eth_rx_bd *rx_bd;
 2764     int max_agg_queues __diagused;
 2765     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
 2766     uint16_t index;
 2767 
 2768     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
 2769                        "cons=%d prod=%d\n",
 2770           fp->index, queue, cons, prod);
 2771 
 2772     max_agg_queues = MAX_AGG_QS(sc);
 2773 
 2774     KASSERT((queue < max_agg_queues),
 2775             ("fp[%02d] invalid aggr queue (%d >= %d)!",
 2776              fp->index, queue, max_agg_queues));
 2777 
 2778     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
 2779             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
 2780              fp->index, queue));
 2781 
 2782     /* copy the existing mbuf and mapping from the TPA pool */
 2783     tmp_bd = tpa_info->bd;
 2784 
 2785     if (tmp_bd.m == NULL) {
 2786         uint32_t *tmp;
 2787 
 2788         tmp = (uint32_t *)cqe;
 2789 
 2790         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
 2791               fp->index, queue, cons, prod);
 2792         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
 2793             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 
 2794             
 2795         /* XXX Error handling? */
 2796         return;
 2797     }
 2798 
 2799     /* change the TPA queue to the start state */
 2800     tpa_info->state            = BXE_TPA_STATE_START;
 2801     tpa_info->placement_offset = cqe->placement_offset;
 2802     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
 2803     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
 2804     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
 2805 
 2806     fp->rx_tpa_queue_used |= (1 << queue);
 2807 
 2808     /*
 2809      * If all the buffer descriptors are filled with mbufs then fill in
 2810      * the current consumer index with a new BD. Else if a maximum Rx
 2811      * buffer limit is imposed then fill in the next producer index.
 2812      */
 2813     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
 2814                 prod : cons;
 2815 
 2816     /* move the received mbuf and mapping to TPA pool */
 2817     tpa_info->bd = fp->rx_mbuf_chain[cons];
 2818 
 2819     /* release any existing RX BD mbuf mappings */
 2820     if (cons != index) {
 2821         rx_buf = &fp->rx_mbuf_chain[cons];
 2822 
 2823         if (rx_buf->m_map != NULL) {
 2824             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
 2825                             BUS_DMASYNC_POSTREAD);
 2826             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
 2827         }
 2828 
 2829         /*
 2830          * We get here when the maximum number of rx buffers is less than
 2831          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
 2832          * it out here without concern of a memory leak.
 2833          */
 2834         fp->rx_mbuf_chain[cons].m = NULL;
 2835     }
 2836 
 2837     /* update the Rx SW BD with the mbuf info from the TPA pool */
 2838     fp->rx_mbuf_chain[index] = tmp_bd;
 2839 
 2840     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
 2841     rx_bd = &fp->rx_chain[index];
 2842     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
 2843     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
 2844 }
 2845 
 2846 /*
 2847  * When a TPA aggregation is completed, loop through the individual mbufs
 2848  * of the aggregation, combining them into a single mbuf which will be sent
 2849  * up the stack. Refill all freed SGEs with mbufs as we go along.
 2850  */
 2851 static int
 2852 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
 2853                    struct bxe_fastpath       *fp,
 2854                    struct bxe_sw_tpa_info    *tpa_info,
 2855                    uint16_t                  queue,
 2856                    uint16_t                  pages,
 2857                    struct mbuf               *m,
 2858                                struct eth_end_agg_rx_cqe *cqe,
 2859                    uint16_t                  cqe_idx)
 2860 {
 2861     struct mbuf *m_frag;
 2862     uint32_t frag_len, frag_size, i;
 2863     uint16_t sge_idx;
 2864     int rc = 0;
 2865     int j;
 2866 
 2867     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
 2868 
 2869     BLOGD(sc, DBG_LRO,
 2870           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
 2871           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
 2872 
 2873     /* make sure the aggregated frame is not too big to handle */
 2874     if (pages > 8 * PAGES_PER_SGE) {
 2875 
 2876         uint32_t *tmp = (uint32_t *)cqe;
 2877 
 2878         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
 2879                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
 2880               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
 2881               tpa_info->len_on_bd, frag_size);
 2882 
 2883         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
 2884             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 
 2885 
 2886         bxe_panic(sc, ("sge page count error\n"));
 2887         return (EINVAL);
 2888     }
 2889 
 2890     /*
 2891      * Scan through the scatter gather list pulling individual mbufs into a
 2892      * single mbuf for the host stack.
 2893      */
 2894     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
 2895         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
 2896 
 2897         /*
 2898          * Firmware gives the indices of the SGE as if the ring is an array
 2899          * (meaning that the "next" element will consume 2 indices).
 2900          */
 2901         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
 2902 
 2903         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
 2904                            "sge_idx=%d frag_size=%d frag_len=%d\n",
 2905               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
 2906 
 2907         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
 2908 
 2909         /* allocate a new mbuf for the SGE */
 2910         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
 2911         if (rc) {
 2912             /* Leave all remaining SGEs in the ring! */
 2913             return (rc);
 2914         }
 2915 
 2916         /* update the fragment length */
 2917         m_frag->m_len = frag_len;
 2918 
 2919         /* concatenate the fragment to the head mbuf */
 2920         m_cat(m, m_frag);
 2921         fp->eth_q_stats.mbuf_alloc_sge--;
 2922 
 2923         /* update the TPA mbuf size and remaining fragment size */
 2924         m->m_pkthdr.len += frag_len;
 2925         frag_size -= frag_len;
 2926     }
 2927 
 2928     BLOGD(sc, DBG_LRO,
 2929           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
 2930           fp->index, queue, frag_size);
 2931 
 2932     return (rc);
 2933 }
 2934 
 2935 static inline void
 2936 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
 2937 {
 2938     int i, j;
 2939 
 2940     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
 2941         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
 2942 
 2943         for (j = 0; j < 2; j++) {
 2944             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
 2945             idx--;
 2946         }
 2947     }
 2948 }
 2949 
 2950 static inline void
 2951 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
 2952 {
 2953     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
 2954     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
 2955 
 2956     /*
 2957      * Clear the two last indices in the page to 1. These are the indices that
 2958      * correspond to the "next" element, hence will never be indicated and
 2959      * should be removed from the calculations.
 2960      */
 2961     bxe_clear_sge_mask_next_elems(fp);
 2962 }
 2963 
 2964 static inline void
 2965 bxe_update_last_max_sge(struct bxe_fastpath *fp,
 2966                         uint16_t            idx)
 2967 {
 2968     uint16_t last_max = fp->last_max_sge;
 2969 
 2970     if (SUB_S16(idx, last_max) > 0) {
 2971         fp->last_max_sge = idx;
 2972     }
 2973 }
 2974 
 2975 static inline void
 2976 bxe_update_sge_prod(struct bxe_softc          *sc,
 2977                     struct bxe_fastpath       *fp,
 2978                     uint16_t                  sge_len,
 2979                     union eth_sgl_or_raw_data *cqe)
 2980 {
 2981     uint16_t last_max, last_elem, first_elem;
 2982     uint16_t delta = 0;
 2983     uint16_t i;
 2984 
 2985     if (!sge_len) {
 2986         return;
 2987     }
 2988 
 2989     /* first mark all used pages */
 2990     for (i = 0; i < sge_len; i++) {
 2991         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
 2992                             RX_SGE(le16toh(cqe->sgl[i])));
 2993     }
 2994 
 2995     BLOGD(sc, DBG_LRO,
 2996           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
 2997           fp->index, sge_len - 1,
 2998           le16toh(cqe->sgl[sge_len - 1]));
 2999 
 3000     /* assume that the last SGE index is the biggest */
 3001     bxe_update_last_max_sge(fp,
 3002                             le16toh(cqe->sgl[sge_len - 1]));
 3003 
 3004     last_max = RX_SGE(fp->last_max_sge);
 3005     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
 3006     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
 3007 
 3008     /* if ring is not full */
 3009     if (last_elem + 1 != first_elem) {
 3010         last_elem++;
 3011     }
 3012 
 3013     /* now update the prod */
 3014     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
 3015         if (__predict_true(fp->sge_mask[i])) {
 3016             break;
 3017         }
 3018 
 3019         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
 3020         delta += BIT_VEC64_ELEM_SZ;
 3021     }
 3022 
 3023     if (delta > 0) {
 3024         fp->rx_sge_prod += delta;
 3025         /* clear page-end entries */
 3026         bxe_clear_sge_mask_next_elems(fp);
 3027     }
 3028 
 3029     BLOGD(sc, DBG_LRO,
 3030           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
 3031           fp->index, fp->last_max_sge, fp->rx_sge_prod);
 3032 }
 3033 
 3034 /*
 3035  * The aggregation on the current TPA queue has completed. Pull the individual
 3036  * mbuf fragments together into a single mbuf, perform all necessary checksum
 3037  * calculations, and send the resuting mbuf to the stack.
 3038  */
 3039 static void
 3040 bxe_tpa_stop(struct bxe_softc          *sc,
 3041              struct bxe_fastpath       *fp,
 3042              struct bxe_sw_tpa_info    *tpa_info,
 3043              uint16_t                  queue,
 3044              uint16_t                  pages,
 3045                          struct eth_end_agg_rx_cqe *cqe,
 3046              uint16_t                  cqe_idx)
 3047 {
 3048     if_t ifp = sc->ifp;
 3049     struct mbuf *m;
 3050     int rc = 0;
 3051 
 3052     BLOGD(sc, DBG_LRO,
 3053           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
 3054           fp->index, queue, tpa_info->placement_offset,
 3055           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
 3056 
 3057     m = tpa_info->bd.m;
 3058 
 3059     /* allocate a replacement before modifying existing mbuf */
 3060     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
 3061     if (rc) {
 3062         /* drop the frame and log an error */
 3063         fp->eth_q_stats.rx_soft_errors++;
 3064         goto bxe_tpa_stop_exit;
 3065     }
 3066 
 3067     /* we have a replacement, fixup the current mbuf */
 3068     m_adj(m, tpa_info->placement_offset);
 3069     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
 3070 
 3071     /* mark the checksums valid (taken care of by the firmware) */
 3072     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
 3073     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
 3074     m->m_pkthdr.csum_data = 0xffff;
 3075     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
 3076                                CSUM_IP_VALID   |
 3077                                CSUM_DATA_VALID |
 3078                                CSUM_PSEUDO_HDR);
 3079 
 3080     /* aggregate all of the SGEs into a single mbuf */
 3081     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
 3082     if (rc) {
 3083         /* drop the packet and log an error */
 3084         fp->eth_q_stats.rx_soft_errors++;
 3085         m_freem(m);
 3086     } else {
 3087         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
 3088             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
 3089             m->m_flags |= M_VLANTAG;
 3090         }
 3091 
 3092         /* assign packet to this interface interface */
 3093         if_setrcvif(m, ifp);
 3094 
 3095         /* specify what RSS queue was used for this flow */
 3096         m->m_pkthdr.flowid = fp->index;
 3097         BXE_SET_FLOWID(m);
 3098 
 3099         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 3100         fp->eth_q_stats.rx_tpa_pkts++;
 3101 
 3102         /* pass the frame to the stack */
 3103         if_input(ifp, m);
 3104     }
 3105 
 3106     /* we passed an mbuf up the stack or dropped the frame */
 3107     fp->eth_q_stats.mbuf_alloc_tpa--;
 3108 
 3109 bxe_tpa_stop_exit:
 3110 
 3111     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
 3112     fp->rx_tpa_queue_used &= ~(1 << queue);
 3113 }
 3114 
 3115 static uint8_t
 3116 bxe_service_rxsgl(
 3117                  struct bxe_fastpath *fp,
 3118                  uint16_t len,
 3119                  uint16_t lenonbd,
 3120                  struct mbuf *m,
 3121                  struct eth_fast_path_rx_cqe *cqe_fp)
 3122 {
 3123     struct mbuf *m_frag;
 3124     uint16_t frags, frag_len;
 3125     uint16_t sge_idx = 0;
 3126     uint16_t j;
 3127     uint8_t i, rc = 0;
 3128     uint32_t frag_size;
 3129 
 3130     /* adjust the mbuf */
 3131     m->m_len = lenonbd;
 3132 
 3133     frag_size =  len - lenonbd;
 3134     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
 3135 
 3136     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
 3137         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
 3138 
 3139         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
 3140         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
 3141         m_frag->m_len = frag_len;
 3142 
 3143        /* allocate a new mbuf for the SGE */
 3144         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
 3145         if (rc) {
 3146             /* Leave all remaining SGEs in the ring! */
 3147             return (rc);
 3148         }
 3149         fp->eth_q_stats.mbuf_alloc_sge--;
 3150 
 3151         /* concatenate the fragment to the head mbuf */
 3152         m_cat(m, m_frag);
 3153 
 3154         frag_size -= frag_len;
 3155     }
 3156 
 3157     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
 3158 
 3159     return rc;
 3160 }
 3161 
 3162 static uint8_t
 3163 bxe_rxeof(struct bxe_softc    *sc,
 3164           struct bxe_fastpath *fp)
 3165 {
 3166     if_t ifp = sc->ifp;
 3167     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
 3168     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
 3169     int rx_pkts = 0;
 3170     int rc = 0;
 3171 
 3172     BXE_FP_RX_LOCK(fp);
 3173 
 3174     /* CQ "next element" is of the size of the regular element */
 3175     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
 3176     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
 3177         hw_cq_cons++;
 3178     }
 3179 
 3180     bd_cons = fp->rx_bd_cons;
 3181     bd_prod = fp->rx_bd_prod;
 3182     bd_prod_fw = bd_prod;
 3183     sw_cq_cons = fp->rx_cq_cons;
 3184     sw_cq_prod = fp->rx_cq_prod;
 3185 
 3186     /*
 3187      * Memory barrier necessary as speculative reads of the rx
 3188      * buffer can be ahead of the index in the status block
 3189      */
 3190     rmb();
 3191 
 3192     BLOGD(sc, DBG_RX,
 3193           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
 3194           fp->index, hw_cq_cons, sw_cq_cons);
 3195 
 3196     while (sw_cq_cons != hw_cq_cons) {
 3197         struct bxe_sw_rx_bd *rx_buf = NULL;
 3198         union eth_rx_cqe *cqe;
 3199         struct eth_fast_path_rx_cqe *cqe_fp;
 3200         uint8_t cqe_fp_flags;
 3201         enum eth_rx_cqe_type cqe_fp_type;
 3202         uint16_t len, lenonbd,  pad;
 3203         struct mbuf *m = NULL;
 3204 
 3205         comp_ring_cons = RCQ(sw_cq_cons);
 3206         bd_prod = RX_BD(bd_prod);
 3207         bd_cons = RX_BD(bd_cons);
 3208 
 3209         cqe          = &fp->rcq_chain[comp_ring_cons];
 3210         cqe_fp       = &cqe->fast_path_cqe;
 3211         cqe_fp_flags = cqe_fp->type_error_flags;
 3212         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
 3213 
 3214         BLOGD(sc, DBG_RX,
 3215               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
 3216               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
 3217               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
 3218               fp->index,
 3219               hw_cq_cons,
 3220               sw_cq_cons,
 3221               bd_prod,
 3222               bd_cons,
 3223               CQE_TYPE(cqe_fp_flags),
 3224               cqe_fp_flags,
 3225               cqe_fp->status_flags,
 3226               le32toh(cqe_fp->rss_hash_result),
 3227               le16toh(cqe_fp->vlan_tag),
 3228               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
 3229               le16toh(cqe_fp->len_on_bd));
 3230 
 3231         /* is this a slowpath msg? */
 3232         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
 3233             bxe_sp_event(sc, fp, cqe);
 3234             goto next_cqe;
 3235         }
 3236 
 3237         rx_buf = &fp->rx_mbuf_chain[bd_cons];
 3238 
 3239         if (!CQE_TYPE_FAST(cqe_fp_type)) {
 3240             struct bxe_sw_tpa_info *tpa_info;
 3241             uint16_t frag_size, pages;
 3242             uint8_t queue;
 3243 
 3244             if (CQE_TYPE_START(cqe_fp_type)) {
 3245                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
 3246                               bd_cons, bd_prod, cqe_fp);
 3247                 m = NULL; /* packet not ready yet */
 3248                 goto next_rx;
 3249             }
 3250 
 3251             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
 3252                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
 3253 
 3254             queue = cqe->end_agg_cqe.queue_index;
 3255             tpa_info = &fp->rx_tpa_info[queue];
 3256 
 3257             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
 3258                   fp->index, queue);
 3259 
 3260             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
 3261                          tpa_info->len_on_bd);
 3262             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
 3263 
 3264             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
 3265                          &cqe->end_agg_cqe, comp_ring_cons);
 3266 
 3267             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
 3268 
 3269             goto next_cqe;
 3270         }
 3271 
 3272         /* non TPA */
 3273 
 3274         /* is this an error packet? */
 3275         if (__predict_false(cqe_fp_flags &
 3276                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
 3277             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
 3278             fp->eth_q_stats.rx_soft_errors++;
 3279             goto next_rx;
 3280         }
 3281 
 3282         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
 3283         lenonbd = le16toh(cqe_fp->len_on_bd);
 3284         pad = cqe_fp->placement_offset;
 3285 
 3286         m = rx_buf->m;
 3287 
 3288         if (__predict_false(m == NULL)) {
 3289             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
 3290                   bd_cons, fp->index);
 3291             goto next_rx;
 3292         }
 3293 
 3294         /* XXX double copy if packet length under a threshold */
 3295 
 3296         /*
 3297          * If all the buffer descriptors are filled with mbufs then fill in
 3298          * the current consumer index with a new BD. Else if a maximum Rx
 3299          * buffer limit is imposed then fill in the next producer index.
 3300          */
 3301         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
 3302                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
 3303                                       bd_prod : bd_cons);
 3304         if (rc != 0) {
 3305 
 3306             /* we simply reuse the received mbuf and don't post it to the stack */
 3307             m = NULL;
 3308 
 3309             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
 3310                   fp->index, rc);
 3311             fp->eth_q_stats.rx_soft_errors++;
 3312 
 3313             if (sc->max_rx_bufs != RX_BD_USABLE) {
 3314                 /* copy this consumer index to the producer index */
 3315                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
 3316                        sizeof(struct bxe_sw_rx_bd));
 3317                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
 3318             }
 3319 
 3320             goto next_rx;
 3321         }
 3322 
 3323         /* current mbuf was detached from the bd */
 3324         fp->eth_q_stats.mbuf_alloc_rx--;
 3325 
 3326         /* we allocated a replacement mbuf, fixup the current one */
 3327         m_adj(m, pad);
 3328         m->m_pkthdr.len = m->m_len = len;
 3329 
 3330         if ((len > 60) && (len > lenonbd)) {
 3331             fp->eth_q_stats.rx_bxe_service_rxsgl++;
 3332             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
 3333             if (rc)
 3334                 break;
 3335             fp->eth_q_stats.rx_jumbo_sge_pkts++;
 3336         } else if (lenonbd < len) {
 3337             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
 3338         }
 3339 
 3340         /* assign packet to this interface interface */
 3341         if_setrcvif(m, ifp);
 3342 
 3343         /* assume no hardware checksum has complated */
 3344         m->m_pkthdr.csum_flags = 0;
 3345 
 3346         /* validate checksum if offload enabled */
 3347         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
 3348             /* check for a valid IP frame */
 3349             if (!(cqe->fast_path_cqe.status_flags &
 3350                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
 3351                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
 3352                 if (__predict_false(cqe_fp_flags &
 3353                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
 3354                     fp->eth_q_stats.rx_hw_csum_errors++;
 3355                 } else {
 3356                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
 3357                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 3358                 }
 3359             }
 3360 
 3361             /* check for a valid TCP/UDP frame */
 3362             if (!(cqe->fast_path_cqe.status_flags &
 3363                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
 3364                 if (__predict_false(cqe_fp_flags &
 3365                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
 3366                     fp->eth_q_stats.rx_hw_csum_errors++;
 3367                 } else {
 3368                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
 3369                     m->m_pkthdr.csum_data = 0xFFFF;
 3370                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
 3371                                                CSUM_PSEUDO_HDR);
 3372                 }
 3373             }
 3374         }
 3375 
 3376         /* if there is a VLAN tag then flag that info */
 3377         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
 3378             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
 3379             m->m_flags |= M_VLANTAG;
 3380         }
 3381 
 3382         /* specify what RSS queue was used for this flow */
 3383         m->m_pkthdr.flowid = fp->index;
 3384         BXE_SET_FLOWID(m);
 3385 
 3386 next_rx:
 3387 
 3388         bd_cons    = RX_BD_NEXT(bd_cons);
 3389         bd_prod    = RX_BD_NEXT(bd_prod);
 3390         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
 3391 
 3392         /* pass the frame to the stack */
 3393         if (__predict_true(m != NULL)) {
 3394             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 3395             rx_pkts++;
 3396             if_input(ifp, m);
 3397         }
 3398 
 3399 next_cqe:
 3400 
 3401         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
 3402         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
 3403 
 3404         /* limit spinning on the queue */
 3405         if (rc != 0)
 3406             break;
 3407 
 3408         if (rx_pkts == sc->rx_budget) {
 3409             fp->eth_q_stats.rx_budget_reached++;
 3410             break;
 3411         }
 3412     } /* while work to do */
 3413 
 3414     fp->rx_bd_cons = bd_cons;
 3415     fp->rx_bd_prod = bd_prod_fw;
 3416     fp->rx_cq_cons = sw_cq_cons;
 3417     fp->rx_cq_prod = sw_cq_prod;
 3418 
 3419     /* Update producers */
 3420     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
 3421 
 3422     fp->eth_q_stats.rx_pkts += rx_pkts;
 3423     fp->eth_q_stats.rx_calls++;
 3424 
 3425     BXE_FP_RX_UNLOCK(fp);
 3426 
 3427     return (sw_cq_cons != hw_cq_cons);
 3428 }
 3429 
 3430 static uint16_t
 3431 bxe_free_tx_pkt(struct bxe_softc    *sc,
 3432                 struct bxe_fastpath *fp,
 3433                 uint16_t            idx)
 3434 {
 3435     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
 3436     struct eth_tx_start_bd *tx_start_bd;
 3437     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
 3438     uint16_t new_cons;
 3439     int nbd;
 3440 
 3441     /* unmap the mbuf from non-paged memory */
 3442     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
 3443 
 3444     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
 3445     nbd = le16toh(tx_start_bd->nbd) - 1;
 3446 
 3447     new_cons = (tx_buf->first_bd + nbd);
 3448 
 3449     /* free the mbuf */
 3450     if (__predict_true(tx_buf->m != NULL)) {
 3451         m_freem(tx_buf->m);
 3452         fp->eth_q_stats.mbuf_alloc_tx--;
 3453     } else {
 3454         fp->eth_q_stats.tx_chain_lost_mbuf++;
 3455     }
 3456 
 3457     tx_buf->m = NULL;
 3458     tx_buf->first_bd = 0;
 3459 
 3460     return (new_cons);
 3461 }
 3462 
 3463 /* transmit timeout watchdog */
 3464 static int
 3465 bxe_watchdog(struct bxe_softc    *sc,
 3466              struct bxe_fastpath *fp)
 3467 {
 3468     BXE_FP_TX_LOCK(fp);
 3469 
 3470     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
 3471         BXE_FP_TX_UNLOCK(fp);
 3472         return (0);
 3473     }
 3474 
 3475     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
 3476 
 3477     BXE_FP_TX_UNLOCK(fp);
 3478     BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
 3479     taskqueue_enqueue_timeout(taskqueue_thread,
 3480         &sc->sp_err_timeout_task, hz/10);
 3481 
 3482     return (-1);
 3483 }
 3484 
 3485 /* processes transmit completions */
 3486 static uint8_t
 3487 bxe_txeof(struct bxe_softc    *sc,
 3488           struct bxe_fastpath *fp)
 3489 {
 3490     if_t ifp = sc->ifp;
 3491     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
 3492     uint16_t tx_bd_avail;
 3493 
 3494     BXE_FP_TX_LOCK_ASSERT(fp);
 3495 
 3496     bd_cons = fp->tx_bd_cons;
 3497     hw_cons = le16toh(*fp->tx_cons_sb);
 3498     sw_cons = fp->tx_pkt_cons;
 3499 
 3500     while (sw_cons != hw_cons) {
 3501         pkt_cons = TX_BD(sw_cons);
 3502 
 3503         BLOGD(sc, DBG_TX,
 3504               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
 3505               fp->index, hw_cons, sw_cons, pkt_cons);
 3506 
 3507         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
 3508 
 3509         sw_cons++;
 3510     }
 3511 
 3512     fp->tx_pkt_cons = sw_cons;
 3513     fp->tx_bd_cons  = bd_cons;
 3514 
 3515     BLOGD(sc, DBG_TX,
 3516           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
 3517           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
 3518 
 3519     mb();
 3520 
 3521     tx_bd_avail = bxe_tx_avail(sc, fp);
 3522 
 3523     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
 3524         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 3525     } else {
 3526         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
 3527     }
 3528 
 3529     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
 3530         /* reset the watchdog timer if there are pending transmits */
 3531         fp->watchdog_timer = BXE_TX_TIMEOUT;
 3532         return (TRUE);
 3533     } else {
 3534         /* clear watchdog when there are no pending transmits */
 3535         fp->watchdog_timer = 0;
 3536         return (FALSE);
 3537     }
 3538 }
 3539 
 3540 static void
 3541 bxe_drain_tx_queues(struct bxe_softc *sc)
 3542 {
 3543     struct bxe_fastpath *fp;
 3544     int i, count;
 3545 
 3546     /* wait until all TX fastpath tasks have completed */
 3547     for (i = 0; i < sc->num_queues; i++) {
 3548         fp = &sc->fp[i];
 3549 
 3550         count = 1000;
 3551 
 3552         while (bxe_has_tx_work(fp)) {
 3553 
 3554             BXE_FP_TX_LOCK(fp);
 3555             bxe_txeof(sc, fp);
 3556             BXE_FP_TX_UNLOCK(fp);
 3557 
 3558             if (count == 0) {
 3559                 BLOGE(sc, "Timeout waiting for fp[%d] "
 3560                           "transmits to complete!\n", i);
 3561                 bxe_panic(sc, ("tx drain failure\n"));
 3562                 return;
 3563             }
 3564 
 3565             count--;
 3566             DELAY(1000);
 3567             rmb();
 3568         }
 3569     }
 3570 
 3571     return;
 3572 }
 3573 
 3574 static int
 3575 bxe_del_all_macs(struct bxe_softc          *sc,
 3576                  struct ecore_vlan_mac_obj *mac_obj,
 3577                  int                       mac_type,
 3578                  uint8_t                   wait_for_comp)
 3579 {
 3580     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
 3581     int rc;
 3582 
 3583     /* wait for completion of requested */
 3584     if (wait_for_comp) {
 3585         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
 3586     }
 3587 
 3588     /* Set the mac type of addresses we want to clear */
 3589     bxe_set_bit(mac_type, &vlan_mac_flags);
 3590 
 3591     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
 3592     if (rc < 0) {
 3593         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
 3594             rc, mac_type, wait_for_comp);
 3595     }
 3596 
 3597     return (rc);
 3598 }
 3599 
 3600 static int
 3601 bxe_fill_accept_flags(struct bxe_softc *sc,
 3602                       uint32_t         rx_mode,
 3603                       unsigned long    *rx_accept_flags,
 3604                       unsigned long    *tx_accept_flags)
 3605 {
 3606     /* Clear the flags first */
 3607     *rx_accept_flags = 0;
 3608     *tx_accept_flags = 0;
 3609 
 3610     switch (rx_mode) {
 3611     case BXE_RX_MODE_NONE:
 3612         /*
 3613          * 'drop all' supersedes any accept flags that may have been
 3614          * passed to the function.
 3615          */
 3616         break;
 3617 
 3618     case BXE_RX_MODE_NORMAL:
 3619         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
 3620         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
 3621         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
 3622 
 3623         /* internal switching mode */
 3624         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
 3625         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
 3626         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
 3627 
 3628         break;
 3629 
 3630     case BXE_RX_MODE_ALLMULTI:
 3631         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
 3632         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
 3633         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
 3634 
 3635         /* internal switching mode */
 3636         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
 3637         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
 3638         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
 3639 
 3640         break;
 3641 
 3642     case BXE_RX_MODE_PROMISC:
 3643         /*
 3644          * According to deffinition of SI mode, iface in promisc mode
 3645          * should receive matched and unmatched (in resolution of port)
 3646          * unicast packets.
 3647          */
 3648         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
 3649         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
 3650         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
 3651         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
 3652 
 3653         /* internal switching mode */
 3654         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
 3655         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
 3656 
 3657         if (IS_MF_SI(sc)) {
 3658             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
 3659         } else {
 3660             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
 3661         }
 3662 
 3663         break;
 3664 
 3665     default:
 3666         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
 3667         return (-1);
 3668     }
 3669 
 3670     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
 3671     if (rx_mode != BXE_RX_MODE_NONE) {
 3672         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
 3673         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
 3674     }
 3675 
 3676     return (0);
 3677 }
 3678 
 3679 static int
 3680 bxe_set_q_rx_mode(struct bxe_softc *sc,
 3681                   uint8_t          cl_id,
 3682                   unsigned long    rx_mode_flags,
 3683                   unsigned long    rx_accept_flags,
 3684                   unsigned long    tx_accept_flags,
 3685                   unsigned long    ramrod_flags)
 3686 {
 3687     struct ecore_rx_mode_ramrod_params ramrod_param;
 3688     int rc;
 3689 
 3690     memset(&ramrod_param, 0, sizeof(ramrod_param));
 3691 
 3692     /* Prepare ramrod parameters */
 3693     ramrod_param.cid = 0;
 3694     ramrod_param.cl_id = cl_id;
 3695     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
 3696     ramrod_param.func_id = SC_FUNC(sc);
 3697 
 3698     ramrod_param.pstate = &sc->sp_state;
 3699     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
 3700 
 3701     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
 3702     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
 3703 
 3704     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
 3705 
 3706     ramrod_param.ramrod_flags = ramrod_flags;
 3707     ramrod_param.rx_mode_flags = rx_mode_flags;
 3708 
 3709     ramrod_param.rx_accept_flags = rx_accept_flags;
 3710     ramrod_param.tx_accept_flags = tx_accept_flags;
 3711 
 3712     rc = ecore_config_rx_mode(sc, &ramrod_param);
 3713     if (rc < 0) {
 3714         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
 3715             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
 3716             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
 3717             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
 3718             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
 3719         return (rc);
 3720     }
 3721 
 3722     return (0);
 3723 }
 3724 
 3725 static int
 3726 bxe_set_storm_rx_mode(struct bxe_softc *sc)
 3727 {
 3728     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
 3729     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
 3730     int rc;
 3731 
 3732     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
 3733                                &tx_accept_flags);
 3734     if (rc) {
 3735         return (rc);
 3736     }
 3737 
 3738     bxe_set_bit(RAMROD_RX, &ramrod_flags);
 3739     bxe_set_bit(RAMROD_TX, &ramrod_flags);
 3740 
 3741     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
 3742     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
 3743                               rx_accept_flags, tx_accept_flags,
 3744                               ramrod_flags));
 3745 }
 3746 
 3747 /* returns the "mcp load_code" according to global load_count array */
 3748 static int
 3749 bxe_nic_load_no_mcp(struct bxe_softc *sc)
 3750 {
 3751     int path = SC_PATH(sc);
 3752     int port = SC_PORT(sc);
 3753 
 3754     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
 3755           path, load_count[path][0], load_count[path][1],
 3756           load_count[path][2]);
 3757     load_count[path][0]++;
 3758     load_count[path][1 + port]++;
 3759     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
 3760           path, load_count[path][0], load_count[path][1],
 3761           load_count[path][2]);
 3762     if (load_count[path][0] == 1) {
 3763         return (FW_MSG_CODE_DRV_LOAD_COMMON);
 3764     } else if (load_count[path][1 + port] == 1) {
 3765         return (FW_MSG_CODE_DRV_LOAD_PORT);
 3766     } else {
 3767         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
 3768     }
 3769 }
 3770 
 3771 /* returns the "mcp load_code" according to global load_count array */
 3772 static int
 3773 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
 3774 {
 3775     int port = SC_PORT(sc);
 3776     int path = SC_PATH(sc);
 3777 
 3778     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
 3779           path, load_count[path][0], load_count[path][1],
 3780           load_count[path][2]);
 3781     load_count[path][0]--;
 3782     load_count[path][1 + port]--;
 3783     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
 3784           path, load_count[path][0], load_count[path][1],
 3785           load_count[path][2]);
 3786     if (load_count[path][0] == 0) {
 3787         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
 3788     } else if (load_count[path][1 + port] == 0) {
 3789         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
 3790     } else {
 3791         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
 3792     }
 3793 }
 3794 
 3795 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
 3796 static uint32_t
 3797 bxe_send_unload_req(struct bxe_softc *sc,
 3798                     int              unload_mode)
 3799 {
 3800     uint32_t reset_code = 0;
 3801 
 3802     /* Select the UNLOAD request mode */
 3803     if (unload_mode == UNLOAD_NORMAL) {
 3804         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
 3805     } else {
 3806         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
 3807     }
 3808 
 3809     /* Send the request to the MCP */
 3810     if (!BXE_NOMCP(sc)) {
 3811         reset_code = bxe_fw_command(sc, reset_code, 0);
 3812     } else {
 3813         reset_code = bxe_nic_unload_no_mcp(sc);
 3814     }
 3815 
 3816     return (reset_code);
 3817 }
 3818 
 3819 /* send UNLOAD_DONE command to the MCP */
 3820 static void
 3821 bxe_send_unload_done(struct bxe_softc *sc,
 3822                      uint8_t          keep_link)
 3823 {
 3824     uint32_t reset_param =
 3825         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
 3826 
 3827     /* Report UNLOAD_DONE to MCP */
 3828     if (!BXE_NOMCP(sc)) {
 3829         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
 3830     }
 3831 }
 3832 
 3833 static int
 3834 bxe_func_wait_started(struct bxe_softc *sc)
 3835 {
 3836     int tout = 50;
 3837 
 3838     if (!sc->port.pmf) {
 3839         return (0);
 3840     }
 3841 
 3842     /*
 3843      * (assumption: No Attention from MCP at this stage)
 3844      * PMF probably in the middle of TX disable/enable transaction
 3845      * 1. Sync IRS for default SB
 3846      * 2. Sync SP queue - this guarantees us that attention handling started
 3847      * 3. Wait, that TX disable/enable transaction completes
 3848      *
 3849      * 1+2 guarantee that if DCBX attention was scheduled it already changed
 3850      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
 3851      * received completion for the transaction the state is TX_STOPPED.
 3852      * State will return to STARTED after completion of TX_STOPPED-->STARTED
 3853      * transaction.
 3854      */
 3855 
 3856     /* XXX make sure default SB ISR is done */
 3857     /* need a way to synchronize an irq (intr_mtx?) */
 3858 
 3859     /* XXX flush any work queues */
 3860 
 3861     while (ecore_func_get_state(sc, &sc->func_obj) !=
 3862            ECORE_F_STATE_STARTED && tout--) {
 3863         DELAY(20000);
 3864     }
 3865 
 3866     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
 3867         /*
 3868          * Failed to complete the transaction in a "good way"
 3869          * Force both transactions with CLR bit.
 3870          */
 3871         struct ecore_func_state_params func_params = { NULL };
 3872 
 3873         BLOGE(sc, "Unexpected function state! "
 3874                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
 3875 
 3876         func_params.f_obj = &sc->func_obj;
 3877         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
 3878 
 3879         /* STARTED-->TX_STOPPED */
 3880         func_params.cmd = ECORE_F_CMD_TX_STOP;
 3881         ecore_func_state_change(sc, &func_params);
 3882 
 3883         /* TX_STOPPED-->STARTED */
 3884         func_params.cmd = ECORE_F_CMD_TX_START;
 3885         return (ecore_func_state_change(sc, &func_params));
 3886     }
 3887 
 3888     return (0);
 3889 }
 3890 
 3891 static int
 3892 bxe_stop_queue(struct bxe_softc *sc,
 3893                int              index)
 3894 {
 3895     struct bxe_fastpath *fp = &sc->fp[index];
 3896     struct ecore_queue_state_params q_params = { NULL };
 3897     int rc;
 3898 
 3899     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
 3900 
 3901     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
 3902     /* We want to wait for completion in this context */
 3903     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
 3904 
 3905     /* Stop the primary connection: */
 3906 
 3907     /* ...halt the connection */
 3908     q_params.cmd = ECORE_Q_CMD_HALT;
 3909     rc = ecore_queue_state_change(sc, &q_params);
 3910     if (rc) {
 3911         return (rc);
 3912     }
 3913 
 3914     /* ...terminate the connection */
 3915     q_params.cmd = ECORE_Q_CMD_TERMINATE;
 3916     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
 3917     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
 3918     rc = ecore_queue_state_change(sc, &q_params);
 3919     if (rc) {
 3920         return (rc);
 3921     }
 3922 
 3923     /* ...delete cfc entry */
 3924     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
 3925     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
 3926     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
 3927     return (ecore_queue_state_change(sc, &q_params));
 3928 }
 3929 
 3930 /* wait for the outstanding SP commands */
 3931 static inline uint8_t
 3932 bxe_wait_sp_comp(struct bxe_softc *sc,
 3933                  unsigned long    mask)
 3934 {
 3935     unsigned long tmp;
 3936     int tout = 5000; /* wait for 5 secs tops */
 3937 
 3938     while (tout--) {
 3939         mb();
 3940         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
 3941             return (TRUE);
 3942         }
 3943 
 3944         DELAY(1000);
 3945     }
 3946 
 3947     mb();
 3948 
 3949     tmp = atomic_load_acq_long(&sc->sp_state);
 3950     if (tmp & mask) {
 3951         BLOGE(sc, "Filtering completion timed out: "
 3952                   "sp_state 0x%lx, mask 0x%lx\n",
 3953               tmp, mask);
 3954         return (FALSE);
 3955     }
 3956 
 3957     return (FALSE);
 3958 }
 3959 
 3960 static int
 3961 bxe_func_stop(struct bxe_softc *sc)
 3962 {
 3963     struct ecore_func_state_params func_params = { NULL };
 3964     int rc;
 3965 
 3966     /* prepare parameters for function state transitions */
 3967     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
 3968     func_params.f_obj = &sc->func_obj;
 3969     func_params.cmd = ECORE_F_CMD_STOP;
 3970 
 3971     /*
 3972      * Try to stop the function the 'good way'. If it fails (in case
 3973      * of a parity error during bxe_chip_cleanup()) and we are
 3974      * not in a debug mode, perform a state transaction in order to
 3975      * enable further HW_RESET transaction.
 3976      */
 3977     rc = ecore_func_state_change(sc, &func_params);
 3978     if (rc) {
 3979         BLOGE(sc, "FUNC_STOP ramrod failed. "
 3980                   "Running a dry transaction (%d)\n", rc);
 3981         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
 3982         return (ecore_func_state_change(sc, &func_params));
 3983     }
 3984 
 3985     return (0);
 3986 }
 3987 
 3988 static int
 3989 bxe_reset_hw(struct bxe_softc *sc,
 3990              uint32_t         load_code)
 3991 {
 3992     struct ecore_func_state_params func_params = { NULL };
 3993 
 3994     /* Prepare parameters for function state transitions */
 3995     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
 3996 
 3997     func_params.f_obj = &sc->func_obj;
 3998     func_params.cmd = ECORE_F_CMD_HW_RESET;
 3999 
 4000     func_params.params.hw_init.load_phase = load_code;
 4001 
 4002     return (ecore_func_state_change(sc, &func_params));
 4003 }
 4004 
 4005 static void
 4006 bxe_int_disable_sync(struct bxe_softc *sc,
 4007                      int              disable_hw)
 4008 {
 4009     if (disable_hw) {
 4010         /* prevent the HW from sending interrupts */
 4011         bxe_int_disable(sc);
 4012     }
 4013 
 4014     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
 4015     /* make sure all ISRs are done */
 4016 
 4017     /* XXX make sure sp_task is not running */
 4018     /* cancel and flush work queues */
 4019 }
 4020 
 4021 static void
 4022 bxe_chip_cleanup(struct bxe_softc *sc,
 4023                  uint32_t         unload_mode,
 4024                  uint8_t          keep_link)
 4025 {
 4026     int port = SC_PORT(sc);
 4027     struct ecore_mcast_ramrod_params rparam = { NULL };
 4028     uint32_t reset_code;
 4029     int i, rc = 0;
 4030 
 4031     bxe_drain_tx_queues(sc);
 4032 
 4033     /* give HW time to discard old tx messages */
 4034     DELAY(1000);
 4035 
 4036     /* Clean all ETH MACs */
 4037     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
 4038     if (rc < 0) {
 4039         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
 4040     }
 4041 
 4042     /* Clean up UC list  */
 4043     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
 4044     if (rc < 0) {
 4045         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
 4046     }
 4047 
 4048     /* Disable LLH */
 4049     if (!CHIP_IS_E1(sc)) {
 4050         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
 4051     }
 4052 
 4053     /* Set "drop all" to stop Rx */
 4054 
 4055     /*
 4056      * We need to take the BXE_MCAST_LOCK() here in order to prevent
 4057      * a race between the completion code and this code.
 4058      */
 4059     BXE_MCAST_LOCK(sc);
 4060 
 4061     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
 4062         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
 4063     } else {
 4064         bxe_set_storm_rx_mode(sc);
 4065     }
 4066 
 4067     /* Clean up multicast configuration */
 4068     rparam.mcast_obj = &sc->mcast_obj;
 4069     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
 4070     if (rc < 0) {
 4071         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
 4072     }
 4073 
 4074     BXE_MCAST_UNLOCK(sc);
 4075 
 4076     // XXX bxe_iov_chip_cleanup(sc);
 4077 
 4078     /*
 4079      * Send the UNLOAD_REQUEST to the MCP. This will return if
 4080      * this function should perform FUNCTION, PORT, or COMMON HW
 4081      * reset.
 4082      */
 4083     reset_code = bxe_send_unload_req(sc, unload_mode);
 4084 
 4085     /*
 4086      * (assumption: No Attention from MCP at this stage)
 4087      * PMF probably in the middle of TX disable/enable transaction
 4088      */
 4089     rc = bxe_func_wait_started(sc);
 4090     if (rc) {
 4091         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
 4092     }
 4093 
 4094     /*
 4095      * Close multi and leading connections
 4096      * Completions for ramrods are collected in a synchronous way
 4097      */
 4098     for (i = 0; i < sc->num_queues; i++) {
 4099         if (bxe_stop_queue(sc, i)) {
 4100             goto unload_error;
 4101         }
 4102     }
 4103 
 4104     /*
 4105      * If SP settings didn't get completed so far - something
 4106      * very wrong has happen.
 4107      */
 4108     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
 4109         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
 4110     }
 4111 
 4112 unload_error:
 4113 
 4114     rc = bxe_func_stop(sc);
 4115     if (rc) {
 4116         BLOGE(sc, "Function stop failed!(%d)\n", rc);
 4117     }
 4118 
 4119     /* disable HW interrupts */
 4120     bxe_int_disable_sync(sc, TRUE);
 4121 
 4122     /* detach interrupts */
 4123     bxe_interrupt_detach(sc);
 4124 
 4125     /* Reset the chip */
 4126     rc = bxe_reset_hw(sc, reset_code);
 4127     if (rc) {
 4128         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
 4129     }
 4130 
 4131     /* Report UNLOAD_DONE to MCP */
 4132     bxe_send_unload_done(sc, keep_link);
 4133 }
 4134 
 4135 static void
 4136 bxe_disable_close_the_gate(struct bxe_softc *sc)
 4137 {
 4138     uint32_t val;
 4139     int port = SC_PORT(sc);
 4140 
 4141     BLOGD(sc, DBG_LOAD,
 4142           "Disabling 'close the gates'\n");
 4143 
 4144     if (CHIP_IS_E1(sc)) {
 4145         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
 4146                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
 4147         val = REG_RD(sc, addr);
 4148         val &= ~(0x300);
 4149         REG_WR(sc, addr, val);
 4150     } else {
 4151         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
 4152         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
 4153                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
 4154         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
 4155     }
 4156 }
 4157 
 4158 /*
 4159  * Cleans the object that have internal lists without sending
 4160  * ramrods. Should be run when interrupts are disabled.
 4161  */
 4162 static void
 4163 bxe_squeeze_objects(struct bxe_softc *sc)
 4164 {
 4165     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
 4166     struct ecore_mcast_ramrod_params rparam = { NULL };
 4167     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
 4168     int rc;
 4169 
 4170     /* Cleanup MACs' object first... */
 4171 
 4172     /* Wait for completion of requested */
 4173     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
 4174     /* Perform a dry cleanup */
 4175     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
 4176 
 4177     /* Clean ETH primary MAC */
 4178     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
 4179     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
 4180                              &ramrod_flags);
 4181     if (rc != 0) {
 4182         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
 4183     }
 4184 
 4185     /* Cleanup UC list */
 4186     vlan_mac_flags = 0;
 4187     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
 4188     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
 4189                              &ramrod_flags);
 4190     if (rc != 0) {
 4191         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
 4192     }
 4193 
 4194     /* Now clean mcast object... */
 4195 
 4196     rparam.mcast_obj = &sc->mcast_obj;
 4197     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
 4198 
 4199     /* Add a DEL command... */
 4200     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
 4201     if (rc < 0) {
 4202         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
 4203     }
 4204 
 4205     /* now wait until all pending commands are cleared */
 4206 
 4207     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
 4208     while (rc != 0) {
 4209         if (rc < 0) {
 4210             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
 4211             return;
 4212         }
 4213 
 4214         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
 4215     }
 4216 }
 4217 
 4218 /* stop the controller */
 4219 static __noinline int
 4220 bxe_nic_unload(struct bxe_softc *sc,
 4221                uint32_t         unload_mode,
 4222                uint8_t          keep_link)
 4223 {
 4224     uint8_t global = FALSE;
 4225     uint32_t val;
 4226     int i;
 4227 
 4228     BXE_CORE_LOCK_ASSERT(sc);
 4229 
 4230     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
 4231 
 4232     for (i = 0; i < sc->num_queues; i++) {
 4233         struct bxe_fastpath *fp;
 4234 
 4235         fp = &sc->fp[i];
 4236         fp->watchdog_timer = 0;
 4237         BXE_FP_TX_LOCK(fp);
 4238         BXE_FP_TX_UNLOCK(fp);
 4239     }
 4240 
 4241     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
 4242 
 4243     /* mark driver as unloaded in shmem2 */
 4244     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
 4245         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
 4246         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
 4247                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
 4248     }
 4249 
 4250     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
 4251         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
 4252 
 4253         if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
 4254             /*
 4255              * We can get here if the driver has been unloaded
 4256              * during parity error recovery and is either waiting for a
 4257              * leader to complete or for other functions to unload and
 4258              * then ifconfig down has been issued. In this case we want to
 4259              * unload and let other functions to complete a recovery
 4260              * process.
 4261              */
 4262             sc->recovery_state = BXE_RECOVERY_DONE;
 4263             sc->is_leader = 0;
 4264             bxe_release_leader_lock(sc);
 4265             mb();
 4266             BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
 4267         }
 4268         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
 4269             " state = 0x%x\n", sc->recovery_state, sc->state);
 4270         return (-1);
 4271     }
 4272 
 4273     /*
 4274      * Nothing to do during unload if previous bxe_nic_load()
 4275      * did not completed successfully - all resourses are released.
 4276      */
 4277     if ((sc->state == BXE_STATE_CLOSED) ||
 4278         (sc->state == BXE_STATE_ERROR)) {
 4279         return (0);
 4280     }
 4281 
 4282     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
 4283     mb();
 4284 
 4285     /* stop tx */
 4286     bxe_tx_disable(sc);
 4287 
 4288     sc->rx_mode = BXE_RX_MODE_NONE;
 4289     /* XXX set rx mode ??? */
 4290 
 4291     if (IS_PF(sc) && !sc->grcdump_done) {
 4292         /* set ALWAYS_ALIVE bit in shmem */
 4293         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
 4294 
 4295         bxe_drv_pulse(sc);
 4296 
 4297         bxe_stats_handle(sc, STATS_EVENT_STOP);
 4298         bxe_save_statistics(sc);
 4299     }
 4300 
 4301     /* wait till consumers catch up with producers in all queues */
 4302     bxe_drain_tx_queues(sc);
 4303 
 4304     /* if VF indicate to PF this function is going down (PF will delete sp
 4305      * elements and clear initializations
 4306      */
 4307     if (IS_VF(sc)) {
 4308         ; /* bxe_vfpf_close_vf(sc); */
 4309     } else if (unload_mode != UNLOAD_RECOVERY) {
 4310         /* if this is a normal/close unload need to clean up chip */
 4311         if (!sc->grcdump_done)
 4312             bxe_chip_cleanup(sc, unload_mode, keep_link);
 4313     } else {
 4314         /* Send the UNLOAD_REQUEST to the MCP */
 4315         bxe_send_unload_req(sc, unload_mode);
 4316 
 4317         /*
 4318          * Prevent transactions to host from the functions on the
 4319          * engine that doesn't reset global blocks in case of global
 4320          * attention once gloabl blocks are reset and gates are opened
 4321          * (the engine which leader will perform the recovery
 4322          * last).
 4323          */
 4324         if (!CHIP_IS_E1x(sc)) {
 4325             bxe_pf_disable(sc);
 4326         }
 4327 
 4328         /* disable HW interrupts */
 4329         bxe_int_disable_sync(sc, TRUE);
 4330 
 4331         /* detach interrupts */
 4332         bxe_interrupt_detach(sc);
 4333 
 4334         /* Report UNLOAD_DONE to MCP */
 4335         bxe_send_unload_done(sc, FALSE);
 4336     }
 4337 
 4338     /*
 4339      * At this stage no more interrupts will arrive so we may safely clean
 4340      * the queue'able objects here in case they failed to get cleaned so far.
 4341      */
 4342     if (IS_PF(sc)) {
 4343         bxe_squeeze_objects(sc);
 4344     }
 4345 
 4346     /* There should be no more pending SP commands at this stage */
 4347     sc->sp_state = 0;
 4348 
 4349     sc->port.pmf = 0;
 4350 
 4351     bxe_free_fp_buffers(sc);
 4352 
 4353     if (IS_PF(sc)) {
 4354         bxe_free_mem(sc);
 4355     }
 4356 
 4357     bxe_free_fw_stats_mem(sc);
 4358 
 4359     sc->state = BXE_STATE_CLOSED;
 4360 
 4361     /*
 4362      * Check if there are pending parity attentions. If there are - set
 4363      * RECOVERY_IN_PROGRESS.
 4364      */
 4365     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
 4366         bxe_set_reset_in_progress(sc);
 4367 
 4368         /* Set RESET_IS_GLOBAL if needed */
 4369         if (global) {
 4370             bxe_set_reset_global(sc);
 4371         }
 4372     }
 4373 
 4374     /*
 4375      * The last driver must disable a "close the gate" if there is no
 4376      * parity attention or "process kill" pending.
 4377      */
 4378     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
 4379         bxe_reset_is_done(sc, SC_PATH(sc))) {
 4380         bxe_disable_close_the_gate(sc);
 4381     }
 4382 
 4383     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
 4384 
 4385     bxe_link_report(sc);
 4386 
 4387     return (0);
 4388 }
 4389 
 4390 /*
 4391  * Called by the OS to set various media options (i.e. link, speed, etc.) when
 4392  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
 4393  */
 4394 static int
 4395 bxe_ifmedia_update(if_t ifp)
 4396 {
 4397     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
 4398     struct ifmedia *ifm;
 4399 
 4400     ifm = &sc->ifmedia;
 4401 
 4402     /* We only support Ethernet media type. */
 4403     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
 4404         return (EINVAL);
 4405     }
 4406 
 4407     switch (IFM_SUBTYPE(ifm->ifm_media)) {
 4408     case IFM_AUTO:
 4409          break;
 4410     case IFM_10G_CX4:
 4411     case IFM_10G_SR:
 4412     case IFM_10G_T:
 4413     case IFM_10G_TWINAX:
 4414     default:
 4415         /* We don't support changing the media type. */
 4416         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
 4417               IFM_SUBTYPE(ifm->ifm_media));
 4418         return (EINVAL);
 4419     }
 4420 
 4421     return (0);
 4422 }
 4423 
 4424 /*
 4425  * Called by the OS to get the current media status (i.e. link, speed, etc.).
 4426  */
 4427 static void
 4428 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr)
 4429 {
 4430     struct bxe_softc *sc = if_getsoftc(ifp);
 4431 
 4432     /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
 4433        line if the IFM_AVALID flag is *NOT* set. So we need to set this
 4434        flag unconditionally (irrespective of the admininistrative
 4435        'up/down' state of the interface) to ensure that the line is always
 4436        displayed.
 4437     */
 4438     ifmr->ifm_status = IFM_AVALID;
 4439 
 4440     /* Setup the default interface info. */
 4441     ifmr->ifm_active = IFM_ETHER;
 4442 
 4443     /* Report link down if the driver isn't running. */
 4444     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
 4445         ifmr->ifm_active |= IFM_NONE;
 4446         BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
 4447         BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
 4448                 __func__, sc->link_vars.link_up);
 4449         return;
 4450     }
 4451 
 4452 
 4453     if (sc->link_vars.link_up) {
 4454         ifmr->ifm_status |= IFM_ACTIVE;
 4455         ifmr->ifm_active |= IFM_FDX;
 4456     } else {
 4457         ifmr->ifm_active |= IFM_NONE;
 4458         BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
 4459                 __func__);
 4460         return;
 4461     }
 4462 
 4463     ifmr->ifm_active |= sc->media;
 4464     return;
 4465 }
 4466 
 4467 static void
 4468 bxe_handle_chip_tq(void *context,
 4469                    int  pending)
 4470 {
 4471     struct bxe_softc *sc = (struct bxe_softc *)context;
 4472     long work = atomic_load_acq_long(&sc->chip_tq_flags);
 4473 
 4474     switch (work)
 4475     {
 4476 
 4477     case CHIP_TQ_REINIT:
 4478         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
 4479             /* restart the interface */
 4480             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
 4481             bxe_periodic_stop(sc);
 4482             BXE_CORE_LOCK(sc);
 4483             bxe_stop_locked(sc);
 4484             bxe_init_locked(sc);
 4485             BXE_CORE_UNLOCK(sc);
 4486         }
 4487         break;
 4488 
 4489     default:
 4490         break;
 4491     }
 4492 }
 4493 
 4494 /*
 4495  * Handles any IOCTL calls from the operating system.
 4496  *
 4497  * Returns:
 4498  *   0 = Success, >0 Failure
 4499  */
 4500 static int
 4501 bxe_ioctl(if_t ifp,
 4502           u_long       command,
 4503           caddr_t      data)
 4504 {
 4505     struct bxe_softc *sc = if_getsoftc(ifp);
 4506     struct ifreq *ifr = (struct ifreq *)data;
 4507     int mask = 0;
 4508     int reinit = 0;
 4509     int error = 0;
 4510 
 4511     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
 4512     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
 4513 
 4514     switch (command)
 4515     {
 4516     case SIOCSIFMTU:
 4517         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
 4518               ifr->ifr_mtu);
 4519 
 4520         if (sc->mtu == ifr->ifr_mtu) {
 4521             /* nothing to change */
 4522             break;
 4523         }
 4524 
 4525         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
 4526             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
 4527                   ifr->ifr_mtu, mtu_min, mtu_max);
 4528             error = EINVAL;
 4529             break;
 4530         }
 4531 
 4532         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
 4533                              (unsigned long)ifr->ifr_mtu);
 4534         /* 
 4535         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
 4536                               (unsigned long)ifr->ifr_mtu);
 4537         XXX - Not sure why it needs to be atomic
 4538         */
 4539         if_setmtu(ifp, ifr->ifr_mtu);
 4540         reinit = 1;
 4541         break;
 4542 
 4543     case SIOCSIFFLAGS:
 4544         /* toggle the interface state up or down */
 4545         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
 4546 
 4547         BXE_CORE_LOCK(sc);
 4548         /* check if the interface is up */
 4549         if (if_getflags(ifp) & IFF_UP) {
 4550             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 4551                 /* set the receive mode flags */
 4552                 bxe_set_rx_mode(sc);
 4553             } else if(sc->state != BXE_STATE_DISABLED) {
 4554                 bxe_init_locked(sc);
 4555             }
 4556         } else {
 4557             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 4558                 bxe_periodic_stop(sc);
 4559                 bxe_stop_locked(sc);
 4560             }
 4561         }
 4562         BXE_CORE_UNLOCK(sc);
 4563 
 4564         break;
 4565 
 4566     case SIOCADDMULTI:
 4567     case SIOCDELMULTI:
 4568         /* add/delete multicast addresses */
 4569         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
 4570 
 4571         /* check if the interface is up */
 4572         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
 4573             /* set the receive mode flags */
 4574             BXE_CORE_LOCK(sc);
 4575             bxe_set_rx_mode(sc);
 4576             BXE_CORE_UNLOCK(sc); 
 4577         }
 4578 
 4579         break;
 4580 
 4581     case SIOCSIFCAP:
 4582         /* find out which capabilities have changed */
 4583         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
 4584 
 4585         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
 4586               mask);
 4587 
 4588         /* toggle the LRO capabilites enable flag */
 4589         if (mask & IFCAP_LRO) {
 4590             if_togglecapenable(ifp, IFCAP_LRO);
 4591             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
 4592                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
 4593             reinit = 1;
 4594         }
 4595 
 4596         /* toggle the TXCSUM checksum capabilites enable flag */
 4597         if (mask & IFCAP_TXCSUM) {
 4598             if_togglecapenable(ifp, IFCAP_TXCSUM);
 4599             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
 4600                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
 4601             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
 4602                 if_sethwassistbits(ifp, (CSUM_IP      | 
 4603                                     CSUM_TCP      |
 4604                                     CSUM_UDP      |
 4605                                     CSUM_TSO      |
 4606                                     CSUM_TCP_IPV6 |
 4607                                     CSUM_UDP_IPV6), 0);
 4608             } else {
 4609                 if_clearhwassist(ifp); /* XXX */
 4610             }
 4611         }
 4612 
 4613         /* toggle the RXCSUM checksum capabilities enable flag */
 4614         if (mask & IFCAP_RXCSUM) {
 4615             if_togglecapenable(ifp, IFCAP_RXCSUM);
 4616             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
 4617                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
 4618             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
 4619                 if_sethwassistbits(ifp, (CSUM_IP      |
 4620                                     CSUM_TCP      |
 4621                                     CSUM_UDP      |
 4622                                     CSUM_TSO      |
 4623                                     CSUM_TCP_IPV6 |
 4624                                     CSUM_UDP_IPV6), 0);
 4625             } else {
 4626                 if_clearhwassist(ifp); /* XXX */
 4627             }
 4628         }
 4629 
 4630         /* toggle TSO4 capabilities enabled flag */
 4631         if (mask & IFCAP_TSO4) {
 4632             if_togglecapenable(ifp, IFCAP_TSO4);
 4633             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
 4634                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
 4635         }
 4636 
 4637         /* toggle TSO6 capabilities enabled flag */
 4638         if (mask & IFCAP_TSO6) {
 4639             if_togglecapenable(ifp, IFCAP_TSO6);
 4640             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
 4641                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
 4642         }
 4643 
 4644         /* toggle VLAN_HWTSO capabilities enabled flag */
 4645         if (mask & IFCAP_VLAN_HWTSO) {
 4646 
 4647             if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
 4648             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
 4649                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
 4650         }
 4651 
 4652         /* toggle VLAN_HWCSUM capabilities enabled flag */
 4653         if (mask & IFCAP_VLAN_HWCSUM) {
 4654             /* XXX investigate this... */
 4655             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
 4656             error = EINVAL;
 4657         }
 4658 
 4659         /* toggle VLAN_MTU capabilities enable flag */
 4660         if (mask & IFCAP_VLAN_MTU) {
 4661             /* XXX investigate this... */
 4662             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
 4663             error = EINVAL;
 4664         }
 4665 
 4666         /* toggle VLAN_HWTAGGING capabilities enabled flag */
 4667         if (mask & IFCAP_VLAN_HWTAGGING) {
 4668             /* XXX investigate this... */
 4669             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
 4670             error = EINVAL;
 4671         }
 4672 
 4673         /* toggle VLAN_HWFILTER capabilities enabled flag */
 4674         if (mask & IFCAP_VLAN_HWFILTER) {
 4675             /* XXX investigate this... */
 4676             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
 4677             error = EINVAL;
 4678         }
 4679 
 4680         /* XXX not yet...
 4681          * IFCAP_WOL_MAGIC
 4682          */
 4683 
 4684         break;
 4685 
 4686     case SIOCSIFMEDIA:
 4687     case SIOCGIFMEDIA:
 4688         /* set/get interface media */
 4689         BLOGD(sc, DBG_IOCTL,
 4690               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
 4691               (command & 0xff));
 4692         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
 4693         break;
 4694 
 4695     default:
 4696         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
 4697               (command & 0xff));
 4698         error = ether_ioctl(ifp, command, data);
 4699         break;
 4700     }
 4701 
 4702     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
 4703         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
 4704               "Re-initializing hardware from IOCTL change\n");
 4705         bxe_periodic_stop(sc);
 4706         BXE_CORE_LOCK(sc);
 4707         bxe_stop_locked(sc);
 4708         bxe_init_locked(sc);
 4709         BXE_CORE_UNLOCK(sc);
 4710     }
 4711 
 4712     return (error);
 4713 }
 4714 
 4715 static __noinline void
 4716 bxe_dump_mbuf(struct bxe_softc *sc,
 4717               struct mbuf      *m,
 4718               uint8_t          contents)
 4719 {
 4720     char * type;
 4721     int i = 0;
 4722 
 4723     if (!(sc->debug & DBG_MBUF)) {
 4724         return;
 4725     }
 4726 
 4727     if (m == NULL) {
 4728         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
 4729         return;
 4730     }
 4731 
 4732     while (m) {
 4733 
 4734         BLOGD(sc, DBG_MBUF,
 4735               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
 4736               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
 4737 
 4738         if (m->m_flags & M_PKTHDR) {
 4739              BLOGD(sc, DBG_MBUF,
 4740                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
 4741                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
 4742                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
 4743         }
 4744 
 4745         if (m->m_flags & M_EXT) {
 4746             switch (m->m_ext.ext_type) {
 4747             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
 4748             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
 4749             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
 4750             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
 4751             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
 4752             case EXT_PACKET:     type = "EXT_PACKET";     break;
 4753             case EXT_MBUF:       type = "EXT_MBUF";       break;
 4754             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
 4755             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
 4756             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
 4757             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
 4758             default:             type = "UNKNOWN";        break;
 4759             }
 4760 
 4761             BLOGD(sc, DBG_MBUF,
 4762                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
 4763                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
 4764         }
 4765 
 4766         if (contents) {
 4767             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
 4768         }
 4769 
 4770         m = m->m_next;
 4771         i++;
 4772     }
 4773 }
 4774 
 4775 /*
 4776  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
 4777  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
 4778  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
 4779  * The headers comes in a separate bd in FreeBSD so 13-3=10.
 4780  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
 4781  */
 4782 static int
 4783 bxe_chktso_window(struct bxe_softc  *sc,
 4784                   int               nsegs,
 4785                   bus_dma_segment_t *segs,
 4786                   struct mbuf       *m)
 4787 {
 4788     uint32_t num_wnds, wnd_size, wnd_sum;
 4789     int32_t frag_idx, wnd_idx;
 4790     unsigned short lso_mss;
 4791 
 4792     wnd_sum = 0;
 4793     wnd_size = 10;
 4794     num_wnds = nsegs - wnd_size;
 4795     lso_mss = htole16(m->m_pkthdr.tso_segsz);
 4796 
 4797     /*
 4798      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
 4799      * first window sum of data while skipping the first assuming it is the
 4800      * header in FreeBSD.
 4801      */
 4802     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
 4803         wnd_sum += htole16(segs[frag_idx].ds_len);
 4804     }
 4805 
 4806     /* check the first 10 bd window size */
 4807     if (wnd_sum < lso_mss) {
 4808         return (1);
 4809     }
 4810 
 4811     /* run through the windows */
 4812     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
 4813         /* subtract the first mbuf->m_len of the last wndw(-header) */
 4814         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
 4815         /* add the next mbuf len to the len of our new window */
 4816         wnd_sum += htole16(segs[frag_idx].ds_len);
 4817         if (wnd_sum < lso_mss) {
 4818             return (1);
 4819         }
 4820     }
 4821 
 4822     return (0);
 4823 }
 4824 
 4825 static uint8_t
 4826 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
 4827                     struct mbuf         *m,
 4828                     uint32_t            *parsing_data)
 4829 {
 4830     struct ether_vlan_header *eh = NULL;
 4831     struct ip *ip4 = NULL;
 4832     struct ip6_hdr *ip6 = NULL;
 4833     caddr_t ip = NULL;
 4834     struct tcphdr *th = NULL;
 4835     int e_hlen, ip_hlen, l4_off;
 4836     uint16_t proto;
 4837 
 4838     if (m->m_pkthdr.csum_flags == CSUM_IP) {
 4839         /* no L4 checksum offload needed */
 4840         return (0);
 4841     }
 4842 
 4843     /* get the Ethernet header */
 4844     eh = mtod(m, struct ether_vlan_header *);
 4845 
 4846     /* handle VLAN encapsulation if present */
 4847     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
 4848         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
 4849         proto  = ntohs(eh->evl_proto);
 4850     } else {
 4851         e_hlen = ETHER_HDR_LEN;
 4852         proto  = ntohs(eh->evl_encap_proto);
 4853     }
 4854 
 4855     switch (proto) {
 4856     case ETHERTYPE_IP:
 4857         /* get the IP header, if mbuf len < 20 then header in next mbuf */
 4858         ip4 = (m->m_len < sizeof(struct ip)) ?
 4859                   (struct ip *)m->m_next->m_data :
 4860                   (struct ip *)(m->m_data + e_hlen);
 4861         /* ip_hl is number of 32-bit words */
 4862         ip_hlen = (ip4->ip_hl << 2);
 4863         ip = (caddr_t)ip4;
 4864         break;
 4865     case ETHERTYPE_IPV6:
 4866         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
 4867         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
 4868                   (struct ip6_hdr *)m->m_next->m_data :
 4869                   (struct ip6_hdr *)(m->m_data + e_hlen);
 4870         /* XXX cannot support offload with IPv6 extensions */
 4871         ip_hlen = sizeof(struct ip6_hdr);
 4872         ip = (caddr_t)ip6;
 4873         break;
 4874     default:
 4875         /* We can't offload in this case... */
 4876         /* XXX error stat ??? */
 4877         return (0);
 4878     }
 4879 
 4880     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
 4881     l4_off = (e_hlen + ip_hlen);
 4882 
 4883     *parsing_data |=
 4884         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
 4885          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
 4886 
 4887     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
 4888                                   CSUM_TSO |
 4889                                   CSUM_TCP_IPV6)) {
 4890         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
 4891         th = (struct tcphdr *)(ip + ip_hlen);
 4892         /* th_off is number of 32-bit words */
 4893         *parsing_data |= ((th->th_off <<
 4894                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
 4895                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
 4896         return (l4_off + (th->th_off << 2)); /* entire header length */
 4897     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
 4898                                          CSUM_UDP_IPV6)) {
 4899         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
 4900         return (l4_off + sizeof(struct udphdr)); /* entire header length */
 4901     } else {
 4902         /* XXX error stat ??? */
 4903         return (0);
 4904     }
 4905 }
 4906 
 4907 static uint8_t
 4908 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
 4909                  struct mbuf                *m,
 4910                  struct eth_tx_parse_bd_e1x *pbd)
 4911 {
 4912     struct ether_vlan_header *eh = NULL;
 4913     struct ip *ip4 = NULL;
 4914     struct ip6_hdr *ip6 = NULL;
 4915     caddr_t ip = NULL;
 4916     struct tcphdr *th = NULL;
 4917     struct udphdr *uh = NULL;
 4918     int e_hlen, ip_hlen;
 4919     uint16_t proto;
 4920     uint8_t hlen;
 4921     uint16_t tmp_csum;
 4922     uint32_t *tmp_uh;
 4923 
 4924     /* get the Ethernet header */
 4925     eh = mtod(m, struct ether_vlan_header *);
 4926 
 4927     /* handle VLAN encapsulation if present */
 4928     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
 4929         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
 4930         proto  = ntohs(eh->evl_proto);
 4931     } else {
 4932         e_hlen = ETHER_HDR_LEN;
 4933         proto  = ntohs(eh->evl_encap_proto);
 4934     }
 4935 
 4936     switch (proto) {
 4937     case ETHERTYPE_IP:
 4938         /* get the IP header, if mbuf len < 20 then header in next mbuf */
 4939         ip4 = (m->m_len < sizeof(struct ip)) ?
 4940                   (struct ip *)m->m_next->m_data :
 4941                   (struct ip *)(m->m_data + e_hlen);
 4942         /* ip_hl is number of 32-bit words */
 4943         ip_hlen = (ip4->ip_hl << 1);
 4944         ip = (caddr_t)ip4;
 4945         break;
 4946     case ETHERTYPE_IPV6:
 4947         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
 4948         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
 4949                   (struct ip6_hdr *)m->m_next->m_data :
 4950                   (struct ip6_hdr *)(m->m_data + e_hlen);
 4951         /* XXX cannot support offload with IPv6 extensions */
 4952         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
 4953         ip = (caddr_t)ip6;
 4954         break;
 4955     default:
 4956         /* We can't offload in this case... */
 4957         /* XXX error stat ??? */
 4958         return (0);
 4959     }
 4960 
 4961     hlen = (e_hlen >> 1);
 4962 
 4963     /* note that rest of global_data is indirectly zeroed here */
 4964     if (m->m_flags & M_VLANTAG) {
 4965         pbd->global_data =
 4966             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
 4967     } else {
 4968         pbd->global_data = htole16(hlen);
 4969     }
 4970 
 4971     pbd->ip_hlen_w = ip_hlen;
 4972 
 4973     hlen += pbd->ip_hlen_w;
 4974 
 4975     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
 4976 
 4977     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
 4978                                   CSUM_TSO |
 4979                                   CSUM_TCP_IPV6)) {
 4980         th = (struct tcphdr *)(ip + (ip_hlen << 1));
 4981         /* th_off is number of 32-bit words */
 4982         hlen += (uint16_t)(th->th_off << 1);
 4983     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
 4984                                          CSUM_UDP_IPV6)) {
 4985         uh = (struct udphdr *)(ip + (ip_hlen << 1));
 4986         hlen += (sizeof(struct udphdr) / 2);
 4987     } else {
 4988         /* valid case as only CSUM_IP was set */
 4989         return (0);
 4990     }
 4991 
 4992     pbd->total_hlen_w = htole16(hlen);
 4993 
 4994     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
 4995                                   CSUM_TSO |
 4996                                   CSUM_TCP_IPV6)) {
 4997         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
 4998         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
 4999     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
 5000                                          CSUM_UDP_IPV6)) {
 5001         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
 5002 
 5003         /*
 5004          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
 5005          * checksums and does not know anything about the UDP header and where
 5006          * the checksum field is located. It only knows about TCP. Therefore
 5007          * we "lie" to the hardware for outgoing UDP packets w/ checksum
 5008          * offload. Since the checksum field offset for TCP is 16 bytes and
 5009          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
 5010          * bytes less than the start of the UDP header. This allows the
 5011          * hardware to write the checksum in the correct spot. But the
 5012          * hardware will compute a checksum which includes the last 10 bytes
 5013          * of the IP header. To correct this we tweak the stack computed
 5014          * pseudo checksum by folding in the calculation of the inverse
 5015          * checksum for those final 10 bytes of the IP header. This allows
 5016          * the correct checksum to be computed by the hardware.
 5017          */
 5018 
 5019         /* set pointer 10 bytes before UDP header */
 5020         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
 5021 
 5022         /* calculate a pseudo header checksum over the first 10 bytes */
 5023         tmp_csum = in_pseudo(*tmp_uh,
 5024                              *(tmp_uh + 1),
 5025                              *(uint16_t *)(tmp_uh + 2));
 5026 
 5027         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
 5028     }
 5029 
 5030     return (hlen * 2); /* entire header length, number of bytes */
 5031 }
 5032 
 5033 static void
 5034 bxe_set_pbd_lso_e2(struct mbuf *m,
 5035                    uint32_t    *parsing_data)
 5036 {
 5037     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
 5038                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
 5039                       ETH_TX_PARSE_BD_E2_LSO_MSS);
 5040 
 5041     /* XXX test for IPv6 with extension header... */
 5042 }
 5043 
 5044 static void
 5045 bxe_set_pbd_lso(struct mbuf                *m,
 5046                 struct eth_tx_parse_bd_e1x *pbd)
 5047 {
 5048     struct ether_vlan_header *eh = NULL;
 5049     struct ip *ip = NULL;
 5050     struct tcphdr *th = NULL;
 5051     int e_hlen;
 5052 
 5053     /* get the Ethernet header */
 5054     eh = mtod(m, struct ether_vlan_header *);
 5055 
 5056     /* handle VLAN encapsulation if present */
 5057     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
 5058                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
 5059 
 5060     /* get the IP and TCP header, with LSO entire header in first mbuf */
 5061     /* XXX assuming IPv4 */
 5062     ip = (struct ip *)(m->m_data + e_hlen);
 5063     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
 5064 
 5065     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
 5066     pbd->tcp_send_seq = ntohl(th->th_seq);
 5067     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
 5068 
 5069 #if 1
 5070         /* XXX IPv4 */
 5071         pbd->ip_id = ntohs(ip->ip_id);
 5072         pbd->tcp_pseudo_csum =
 5073             ntohs(in_pseudo(ip->ip_src.s_addr,
 5074                             ip->ip_dst.s_addr,
 5075                             htons(IPPROTO_TCP)));
 5076 #else
 5077         /* XXX IPv6 */
 5078         pbd->tcp_pseudo_csum =
 5079             ntohs(in_pseudo(&ip6->ip6_src,
 5080                             &ip6->ip6_dst,
 5081                             htons(IPPROTO_TCP)));
 5082 #endif
 5083 
 5084     pbd->global_data |=
 5085         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
 5086 }
 5087 
 5088 /*
 5089  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
 5090  * visible to the controller.
 5091  *
 5092  * If an mbuf is submitted to this routine and cannot be given to the
 5093  * controller (e.g. it has too many fragments) then the function may free
 5094  * the mbuf and return to the caller.
 5095  *
 5096  * Returns:
 5097  *   0 = Success, !0 = Failure
 5098  *   Note the side effect that an mbuf may be freed if it causes a problem.
 5099  */
 5100 static int
 5101 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
 5102 {
 5103     bus_dma_segment_t segs[32];
 5104     struct mbuf *m0;
 5105     struct bxe_sw_tx_bd *tx_buf;
 5106     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
 5107     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
 5108     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
 5109     struct eth_tx_bd *tx_data_bd;
 5110     struct eth_tx_bd *tx_total_pkt_size_bd;
 5111     struct eth_tx_start_bd *tx_start_bd;
 5112     uint16_t bd_prod, pkt_prod, total_pkt_size;
 5113     uint8_t mac_type;
 5114     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
 5115     struct bxe_softc *sc;
 5116     uint16_t tx_bd_avail;
 5117     struct ether_vlan_header *eh;
 5118     uint32_t pbd_e2_parsing_data = 0;
 5119     uint8_t hlen = 0;
 5120     int tmp_bd;
 5121     int i;
 5122 
 5123     sc = fp->sc;
 5124 
 5125     M_ASSERTPKTHDR(*m_head);
 5126 
 5127     m0 = *m_head;
 5128     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
 5129     tx_start_bd = NULL;
 5130     tx_data_bd = NULL;
 5131     tx_total_pkt_size_bd = NULL;
 5132 
 5133     /* get the H/W pointer for packets and BDs */
 5134     pkt_prod = fp->tx_pkt_prod;
 5135     bd_prod = fp->tx_bd_prod;
 5136 
 5137     mac_type = UNICAST_ADDRESS;
 5138 
 5139     /* map the mbuf into the next open DMAable memory */
 5140     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
 5141     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
 5142                                     tx_buf->m_map, m0,
 5143                                     segs, &nsegs, BUS_DMA_NOWAIT);
 5144 
 5145     /* mapping errors */
 5146     if(__predict_false(error != 0)) {
 5147         fp->eth_q_stats.tx_dma_mapping_failure++;
 5148         if (error == ENOMEM) {
 5149             /* resource issue, try again later */
 5150             rc = ENOMEM;
 5151         } else if (error == EFBIG) {
 5152             /* possibly recoverable with defragmentation */
 5153             fp->eth_q_stats.mbuf_defrag_attempts++;
 5154             m0 = m_defrag(*m_head, M_NOWAIT);
 5155             if (m0 == NULL) {
 5156                 fp->eth_q_stats.mbuf_defrag_failures++;
 5157                 rc = ENOBUFS;
 5158             } else {
 5159                 /* defrag successful, try mapping again */
 5160                 *m_head = m0;
 5161                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
 5162                                                 tx_buf->m_map, m0,
 5163                                                 segs, &nsegs, BUS_DMA_NOWAIT);
 5164                 if (error) {
 5165                     fp->eth_q_stats.tx_dma_mapping_failure++;
 5166                     rc = error;
 5167                 }
 5168             }
 5169         } else {
 5170             /* unknown, unrecoverable mapping error */
 5171             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
 5172             bxe_dump_mbuf(sc, m0, FALSE);
 5173             rc = error;
 5174         }
 5175 
 5176         goto bxe_tx_encap_continue;
 5177     }
 5178 
 5179     tx_bd_avail = bxe_tx_avail(sc, fp);
 5180 
 5181     /* make sure there is enough room in the send queue */
 5182     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
 5183         /* Recoverable, try again later. */
 5184         fp->eth_q_stats.tx_hw_queue_full++;
 5185         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
 5186         rc = ENOMEM;
 5187         goto bxe_tx_encap_continue;
 5188     }
 5189 
 5190     /* capture the current H/W TX chain high watermark */
 5191     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
 5192                         (TX_BD_USABLE - tx_bd_avail))) {
 5193         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
 5194     }
 5195 
 5196     /* make sure it fits in the packet window */
 5197     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
 5198         /*
 5199          * The mbuf may be to big for the controller to handle. If the frame
 5200          * is a TSO frame we'll need to do an additional check.
 5201          */
 5202         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
 5203             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
 5204                 goto bxe_tx_encap_continue; /* OK to send */
 5205             } else {
 5206                 fp->eth_q_stats.tx_window_violation_tso++;
 5207             }
 5208         } else {
 5209             fp->eth_q_stats.tx_window_violation_std++;
 5210         }
 5211 
 5212         /* lets try to defragment this mbuf and remap it */
 5213         fp->eth_q_stats.mbuf_defrag_attempts++;
 5214         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
 5215 
 5216         m0 = m_defrag(*m_head, M_NOWAIT);
 5217         if (m0 == NULL) {
 5218             fp->eth_q_stats.mbuf_defrag_failures++;
 5219             /* Ugh, just drop the frame... :( */
 5220             rc = ENOBUFS;
 5221         } else {
 5222             /* defrag successful, try mapping again */
 5223             *m_head = m0;
 5224             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
 5225                                             tx_buf->m_map, m0,
 5226                                             segs, &nsegs, BUS_DMA_NOWAIT);
 5227             if (error) {
 5228                 fp->eth_q_stats.tx_dma_mapping_failure++;
 5229                 /* No sense in trying to defrag/copy chain, drop it. :( */
 5230                 rc = error;
 5231             } else {
 5232                /* if the chain is still too long then drop it */
 5233                 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
 5234                     /*
 5235                      * in case TSO is enabled nsegs should be checked against
 5236                      * BXE_TSO_MAX_SEGMENTS
 5237                      */
 5238                     if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
 5239                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
 5240                         fp->eth_q_stats.nsegs_path1_errors++;
 5241                         rc = ENODEV;
 5242                     }
 5243                 } else {
 5244                     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
 5245                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
 5246                         fp->eth_q_stats.nsegs_path2_errors++;
 5247                         rc = ENODEV;
 5248                     }
 5249                 }
 5250             }
 5251         }
 5252     }
 5253 
 5254 bxe_tx_encap_continue:
 5255 
 5256     /* Check for errors */
 5257     if (rc) {
 5258         if (rc == ENOMEM) {
 5259             /* recoverable try again later  */
 5260         } else {
 5261             fp->eth_q_stats.tx_soft_errors++;
 5262             fp->eth_q_stats.mbuf_alloc_tx--;
 5263             m_freem(*m_head);
 5264             *m_head = NULL;
 5265         }
 5266 
 5267         return (rc);
 5268     }
 5269 
 5270     /* set flag according to packet type (UNICAST_ADDRESS is default) */
 5271     if (m0->m_flags & M_BCAST) {
 5272         mac_type = BROADCAST_ADDRESS;
 5273     } else if (m0->m_flags & M_MCAST) {
 5274         mac_type = MULTICAST_ADDRESS;
 5275     }
 5276 
 5277     /* store the mbuf into the mbuf ring */
 5278     tx_buf->m        = m0;
 5279     tx_buf->first_bd = fp->tx_bd_prod;
 5280     tx_buf->flags    = 0;
 5281 
 5282     /* prepare the first transmit (start) BD for the mbuf */
 5283     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
 5284 
 5285     BLOGD(sc, DBG_TX,
 5286           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
 5287           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
 5288 
 5289     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
 5290     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
 5291     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
 5292     total_pkt_size += tx_start_bd->nbytes;
 5293     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
 5294 
 5295     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
 5296 
 5297     /* all frames have at least Start BD + Parsing BD */
 5298     nbds = nsegs + 1;
 5299     tx_start_bd->nbd = htole16(nbds);
 5300 
 5301     if (m0->m_flags & M_VLANTAG) {
 5302         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
 5303         tx_start_bd->bd_flags.as_bitfield |=
 5304             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
 5305     } else {
 5306         /* vf tx, start bd must hold the ethertype for fw to enforce it */
 5307         if (IS_VF(sc)) {
 5308             /* map ethernet header to find type and header length */
 5309             eh = mtod(m0, struct ether_vlan_header *);
 5310             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
 5311         } else {
 5312             /* used by FW for packet accounting */
 5313             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
 5314         }
 5315     }
 5316 
 5317     /*
 5318      * add a parsing BD from the chain. The parsing BD is always added
 5319      * though it is only used for TSO and chksum
 5320      */
 5321     bd_prod = TX_BD_NEXT(bd_prod);
 5322 
 5323     if (m0->m_pkthdr.csum_flags) {
 5324         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
 5325             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
 5326             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
 5327         }
 5328 
 5329         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
 5330             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
 5331                                                   ETH_TX_BD_FLAGS_L4_CSUM);
 5332         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
 5333             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
 5334                                                   ETH_TX_BD_FLAGS_IS_UDP |
 5335                                                   ETH_TX_BD_FLAGS_L4_CSUM);
 5336         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
 5337                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
 5338             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
 5339         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
 5340             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
 5341                                                   ETH_TX_BD_FLAGS_IS_UDP);
 5342         }
 5343     }
 5344 
 5345     if (!CHIP_IS_E1x(sc)) {
 5346         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
 5347         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
 5348 
 5349         if (m0->m_pkthdr.csum_flags) {
 5350             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
 5351         }
 5352 
 5353         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
 5354                  mac_type);
 5355     } else {
 5356         uint16_t global_data = 0;
 5357 
 5358         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
 5359         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
 5360 
 5361         if (m0->m_pkthdr.csum_flags) {
 5362             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
 5363         }
 5364 
 5365         SET_FLAG(global_data,
 5366                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
 5367         pbd_e1x->global_data |= htole16(global_data);
 5368     }
 5369 
 5370     /* setup the parsing BD with TSO specific info */
 5371     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
 5372         fp->eth_q_stats.tx_ofld_frames_lso++;
 5373         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
 5374 
 5375         if (__predict_false(tx_start_bd->nbytes > hlen)) {
 5376             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
 5377 
 5378             /* split the first BD into header/data making the fw job easy */
 5379             nbds++;
 5380             tx_start_bd->nbd = htole16(nbds);
 5381             tx_start_bd->nbytes = htole16(hlen);
 5382 
 5383             bd_prod = TX_BD_NEXT(bd_prod);
 5384 
 5385             /* new transmit BD after the tx_parse_bd */
 5386             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
 5387             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
 5388             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
 5389             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
 5390             if (tx_total_pkt_size_bd == NULL) {
 5391                 tx_total_pkt_size_bd = tx_data_bd;
 5392             }
 5393 
 5394             BLOGD(sc, DBG_TX,
 5395                   "TSO split header size is %d (%x:%x) nbds %d\n",
 5396                   le16toh(tx_start_bd->nbytes),
 5397                   le32toh(tx_start_bd->addr_hi),
 5398                   le32toh(tx_start_bd->addr_lo),
 5399                   nbds);
 5400         }
 5401 
 5402         if (!CHIP_IS_E1x(sc)) {
 5403             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
 5404         } else {
 5405             bxe_set_pbd_lso(m0, pbd_e1x);
 5406         }
 5407     }
 5408 
 5409     if (pbd_e2_parsing_data) {
 5410         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
 5411     }
 5412 
 5413     /* prepare remaining BDs, start tx bd contains first seg/frag */
 5414     for (i = 1; i < nsegs ; i++) {
 5415         bd_prod = TX_BD_NEXT(bd_prod);
 5416         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
 5417         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
 5418         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
 5419         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
 5420         if (tx_total_pkt_size_bd == NULL) {
 5421             tx_total_pkt_size_bd = tx_data_bd;
 5422         }
 5423         total_pkt_size += tx_data_bd->nbytes;
 5424     }
 5425 
 5426     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
 5427 
 5428     if (tx_total_pkt_size_bd != NULL) {
 5429         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
 5430     }
 5431 
 5432     if (__predict_false(sc->debug & DBG_TX)) {
 5433         tmp_bd = tx_buf->first_bd;
 5434         for (i = 0; i < nbds; i++)
 5435         {
 5436             if (i == 0) {
 5437                 BLOGD(sc, DBG_TX,
 5438                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
 5439                       "bd_flags=0x%x hdr_nbds=%d\n",
 5440                       tx_start_bd,
 5441                       tmp_bd,
 5442                       le16toh(tx_start_bd->nbd),
 5443                       le16toh(tx_start_bd->vlan_or_ethertype),
 5444                       tx_start_bd->bd_flags.as_bitfield,
 5445                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
 5446             } else if (i == 1) {
 5447                 if (pbd_e1x) {
 5448                     BLOGD(sc, DBG_TX,
 5449                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
 5450                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
 5451                           "tcp_seq=%u total_hlen_w=%u\n",
 5452                           pbd_e1x,
 5453                           tmp_bd,
 5454                           pbd_e1x->global_data,
 5455                           pbd_e1x->ip_hlen_w,
 5456                           pbd_e1x->ip_id,
 5457                           pbd_e1x->lso_mss,
 5458                           pbd_e1x->tcp_flags,
 5459                           pbd_e1x->tcp_pseudo_csum,
 5460                           pbd_e1x->tcp_send_seq,
 5461                           le16toh(pbd_e1x->total_hlen_w));
 5462                 } else { /* if (pbd_e2) */
 5463                     BLOGD(sc, DBG_TX,
 5464                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
 5465                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
 5466                           pbd_e2,
 5467                           tmp_bd,
 5468                           pbd_e2->data.mac_addr.dst_hi,
 5469                           pbd_e2->data.mac_addr.dst_mid,
 5470                           pbd_e2->data.mac_addr.dst_lo,
 5471                           pbd_e2->data.mac_addr.src_hi,
 5472                           pbd_e2->data.mac_addr.src_mid,
 5473                           pbd_e2->data.mac_addr.src_lo,
 5474                           pbd_e2->parsing_data);
 5475                 }
 5476             }
 5477 
 5478             if (i != 1) { /* skip parse db as it doesn't hold data */
 5479                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
 5480                 BLOGD(sc, DBG_TX,
 5481                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
 5482                       tx_data_bd,
 5483                       tmp_bd,
 5484                       le16toh(tx_data_bd->nbytes),
 5485                       le32toh(tx_data_bd->addr_hi),
 5486                       le32toh(tx_data_bd->addr_lo));
 5487             }
 5488 
 5489             tmp_bd = TX_BD_NEXT(tmp_bd);
 5490         }
 5491     }
 5492 
 5493     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
 5494 
 5495     /* update TX BD producer index value for next TX */
 5496     bd_prod = TX_BD_NEXT(bd_prod);
 5497 
 5498     /*
 5499      * If the chain of tx_bd's describing this frame is adjacent to or spans
 5500      * an eth_tx_next_bd element then we need to increment the nbds value.
 5501      */
 5502     if (TX_BD_IDX(bd_prod) < nbds) {
 5503         nbds++;
 5504     }
 5505 
 5506     /* don't allow reordering of writes for nbd and packets */
 5507     mb();
 5508 
 5509     fp->tx_db.data.prod += nbds;
 5510 
 5511     /* producer points to the next free tx_bd at this point */
 5512     fp->tx_pkt_prod++;
 5513     fp->tx_bd_prod = bd_prod;
 5514 
 5515     DOORBELL(sc, fp->index, fp->tx_db.raw);
 5516 
 5517     fp->eth_q_stats.tx_pkts++;
 5518 
 5519     /* Prevent speculative reads from getting ahead of the status block. */
 5520     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
 5521                       0, 0, BUS_SPACE_BARRIER_READ);
 5522 
 5523     /* Prevent speculative reads from getting ahead of the doorbell. */
 5524     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
 5525                       0, 0, BUS_SPACE_BARRIER_READ);
 5526 
 5527     return (0);
 5528 }
 5529 
 5530 static void
 5531 bxe_tx_start_locked(struct bxe_softc *sc,
 5532                     if_t ifp,
 5533                     struct bxe_fastpath *fp)
 5534 {
 5535     struct mbuf *m = NULL;
 5536     int tx_count = 0;
 5537     uint16_t tx_bd_avail;
 5538 
 5539     BXE_FP_TX_LOCK_ASSERT(fp);
 5540 
 5541     /* keep adding entries while there are frames to send */
 5542     while (!if_sendq_empty(ifp)) {
 5543 
 5544         /*
 5545          * check for any frames to send
 5546          * dequeue can still be NULL even if queue is not empty
 5547          */
 5548         m = if_dequeue(ifp);
 5549         if (__predict_false(m == NULL)) {
 5550             break;
 5551         }
 5552 
 5553         /* the mbuf now belongs to us */
 5554         fp->eth_q_stats.mbuf_alloc_tx++;
 5555 
 5556         /*
 5557          * Put the frame into the transmit ring. If we don't have room,
 5558          * place the mbuf back at the head of the TX queue, set the
 5559          * OACTIVE flag, and wait for the NIC to drain the chain.
 5560          */
 5561         if (__predict_false(bxe_tx_encap(fp, &m))) {
 5562             fp->eth_q_stats.tx_encap_failures++;
 5563             if (m != NULL) {
 5564                 /* mark the TX queue as full and return the frame */
 5565                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 5566                 if_sendq_prepend(ifp, m);
 5567                 fp->eth_q_stats.mbuf_alloc_tx--;
 5568                 fp->eth_q_stats.tx_queue_xoff++;
 5569             }
 5570 
 5571             /* stop looking for more work */
 5572             break;
 5573         }
 5574 
 5575         /* the frame was enqueued successfully */
 5576         tx_count++;
 5577 
 5578         /* send a copy of the frame to any BPF listeners. */
 5579         if_etherbpfmtap(ifp, m);
 5580 
 5581         tx_bd_avail = bxe_tx_avail(sc, fp);
 5582 
 5583         /* handle any completions if we're running low */
 5584         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
 5585             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
 5586             bxe_txeof(sc, fp);
 5587             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
 5588                 break;
 5589             }
 5590         }
 5591     }
 5592 
 5593     /* all TX packets were dequeued and/or the tx ring is full */
 5594     if (tx_count > 0) {
 5595         /* reset the TX watchdog timeout timer */
 5596         fp->watchdog_timer = BXE_TX_TIMEOUT;
 5597     }
 5598 }
 5599 
 5600 /* Legacy (non-RSS) dispatch routine */
 5601 static void
 5602 bxe_tx_start(if_t ifp)
 5603 {
 5604     struct bxe_softc *sc;
 5605     struct bxe_fastpath *fp;
 5606 
 5607     sc = if_getsoftc(ifp);
 5608 
 5609     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
 5610         BLOGW(sc, "Interface not running, ignoring transmit request\n");
 5611         return;
 5612     }
 5613 
 5614     if (!sc->link_vars.link_up) {
 5615         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
 5616         return;
 5617     }
 5618 
 5619     fp = &sc->fp[0];
 5620 
 5621     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
 5622         fp->eth_q_stats.tx_queue_full_return++;
 5623         return;
 5624     }
 5625 
 5626     BXE_FP_TX_LOCK(fp);
 5627     bxe_tx_start_locked(sc, ifp, fp);
 5628     BXE_FP_TX_UNLOCK(fp);
 5629 }
 5630 
 5631 static int
 5632 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
 5633                        if_t                ifp,
 5634                        struct bxe_fastpath *fp,
 5635                        struct mbuf         *m)
 5636 {
 5637     struct buf_ring *tx_br = fp->tx_br;
 5638     struct mbuf *next;
 5639     int depth, rc, tx_count;
 5640     uint16_t tx_bd_avail;
 5641 
 5642     rc = tx_count = 0;
 5643 
 5644     BXE_FP_TX_LOCK_ASSERT(fp);
 5645 
 5646     if (sc->state != BXE_STATE_OPEN)  {
 5647         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
 5648         return ENETDOWN;
 5649     }
 5650 
 5651     if (!tx_br) {
 5652         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
 5653         return (EINVAL);
 5654     }
 5655 
 5656     if (m != NULL) {
 5657         rc = drbr_enqueue(ifp, tx_br, m);
 5658         if (rc != 0) {
 5659             fp->eth_q_stats.tx_soft_errors++;
 5660             goto bxe_tx_mq_start_locked_exit;
 5661         }
 5662     }
 5663 
 5664     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
 5665         fp->eth_q_stats.tx_request_link_down_failures++;
 5666         goto bxe_tx_mq_start_locked_exit;
 5667     }
 5668 
 5669     /* fetch the depth of the driver queue */
 5670     depth = drbr_inuse(ifp, tx_br);
 5671     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
 5672         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
 5673     }
 5674 
 5675     /* keep adding entries while there are frames to send */
 5676     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
 5677         /* handle any completions if we're running low */
 5678         tx_bd_avail = bxe_tx_avail(sc, fp);
 5679         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
 5680             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
 5681             bxe_txeof(sc, fp);
 5682             tx_bd_avail = bxe_tx_avail(sc, fp);
 5683             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
 5684                 fp->eth_q_stats.bd_avail_too_less_failures++;
 5685                 m_freem(next);
 5686                 drbr_advance(ifp, tx_br);
 5687                 rc = ENOBUFS;
 5688                 break;
 5689             }
 5690         }
 5691 
 5692         /* the mbuf now belongs to us */
 5693         fp->eth_q_stats.mbuf_alloc_tx++;
 5694 
 5695         /*
 5696          * Put the frame into the transmit ring. If we don't have room,
 5697          * place the mbuf back at the head of the TX queue, set the
 5698          * OACTIVE flag, and wait for the NIC to drain the chain.
 5699          */
 5700         rc = bxe_tx_encap(fp, &next);
 5701         if (__predict_false(rc != 0)) {
 5702             fp->eth_q_stats.tx_encap_failures++;
 5703             if (next != NULL) {
 5704                 /* mark the TX queue as full and save the frame */
 5705                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
 5706                 drbr_putback(ifp, tx_br, next);
 5707                 fp->eth_q_stats.mbuf_alloc_tx--;
 5708                 fp->eth_q_stats.tx_frames_deferred++;
 5709             } else
 5710                 drbr_advance(ifp, tx_br);
 5711 
 5712             /* stop looking for more work */
 5713             break;
 5714         }
 5715 
 5716         /* the transmit frame was enqueued successfully */
 5717         tx_count++;
 5718 
 5719         /* send a copy of the frame to any BPF listeners */
 5720         if_etherbpfmtap(ifp, next);
 5721 
 5722         drbr_advance(ifp, tx_br);
 5723     }
 5724 
 5725     /* all TX packets were dequeued and/or the tx ring is full */
 5726     if (tx_count > 0) {
 5727         /* reset the TX watchdog timeout timer */
 5728         fp->watchdog_timer = BXE_TX_TIMEOUT;
 5729     }
 5730 
 5731 bxe_tx_mq_start_locked_exit:
 5732     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
 5733     if (!drbr_empty(ifp, tx_br)) {
 5734         fp->eth_q_stats.tx_mq_not_empty++;
 5735         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
 5736     }
 5737 
 5738     return (rc);
 5739 }
 5740 
 5741 static void
 5742 bxe_tx_mq_start_deferred(void *arg,
 5743                          int pending)
 5744 {
 5745     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
 5746     struct bxe_softc *sc = fp->sc;
 5747     if_t ifp = sc->ifp;
 5748 
 5749     BXE_FP_TX_LOCK(fp);
 5750     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
 5751     BXE_FP_TX_UNLOCK(fp);
 5752 }
 5753 
 5754 /* Multiqueue (TSS) dispatch routine. */
 5755 static int
 5756 bxe_tx_mq_start(if_t ifp,
 5757                 struct mbuf  *m)
 5758 {
 5759     struct bxe_softc *sc = if_getsoftc(ifp);
 5760     struct bxe_fastpath *fp;
 5761     int fp_index, rc;
 5762 
 5763     fp_index = 0; /* default is the first queue */
 5764 
 5765     /* check if flowid is set */
 5766 
 5767     if (BXE_VALID_FLOWID(m))
 5768         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
 5769 
 5770     fp = &sc->fp[fp_index];
 5771 
 5772     if (sc->state != BXE_STATE_OPEN)  {
 5773         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
 5774         return ENETDOWN;
 5775     }
 5776 
 5777     if (BXE_FP_TX_TRYLOCK(fp)) {
 5778         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
 5779         BXE_FP_TX_UNLOCK(fp);
 5780     } else {
 5781         rc = drbr_enqueue(ifp, fp->tx_br, m);
 5782         taskqueue_enqueue(fp->tq, &fp->tx_task);
 5783     }
 5784 
 5785     return (rc);
 5786 }
 5787 
 5788 static void
 5789 bxe_mq_flush(if_t ifp)
 5790 {
 5791     struct bxe_softc *sc = if_getsoftc(ifp);
 5792     struct bxe_fastpath *fp;
 5793     struct mbuf *m;
 5794     int i;
 5795 
 5796     for (i = 0; i < sc->num_queues; i++) {
 5797         fp = &sc->fp[i];
 5798 
 5799         if (fp->state != BXE_FP_STATE_IRQ) {
 5800             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
 5801                   fp->index, fp->state);
 5802             continue;
 5803         }
 5804 
 5805         if (fp->tx_br != NULL) {
 5806             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
 5807             BXE_FP_TX_LOCK(fp);
 5808             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
 5809                 m_freem(m);
 5810             }
 5811             BXE_FP_TX_UNLOCK(fp);
 5812         }
 5813     }
 5814 
 5815     if_qflush(ifp);
 5816 }
 5817 
 5818 static uint16_t
 5819 bxe_cid_ilt_lines(struct bxe_softc *sc)
 5820 {
 5821     if (IS_SRIOV(sc)) {
 5822         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
 5823     }
 5824     return (L2_ILT_LINES(sc));
 5825 }
 5826 
 5827 static void
 5828 bxe_ilt_set_info(struct bxe_softc *sc)
 5829 {
 5830     struct ilt_client_info *ilt_client;
 5831     struct ecore_ilt *ilt = sc->ilt;
 5832     uint16_t line = 0;
 5833 
 5834     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
 5835     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
 5836 
 5837     /* CDU */
 5838     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
 5839     ilt_client->client_num = ILT_CLIENT_CDU;
 5840     ilt_client->page_size = CDU_ILT_PAGE_SZ;
 5841     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
 5842     ilt_client->start = line;
 5843     line += bxe_cid_ilt_lines(sc);
 5844 
 5845     if (CNIC_SUPPORT(sc)) {
 5846         line += CNIC_ILT_LINES;
 5847     }
 5848 
 5849     ilt_client->end = (line - 1);
 5850 
 5851     BLOGD(sc, DBG_LOAD,
 5852           "ilt client[CDU]: start %d, end %d, "
 5853           "psz 0x%x, flags 0x%x, hw psz %d\n",
 5854           ilt_client->start, ilt_client->end,
 5855           ilt_client->page_size,
 5856           ilt_client->flags,
 5857           ilog2(ilt_client->page_size >> 12));
 5858 
 5859     /* QM */
 5860     if (QM_INIT(sc->qm_cid_count)) {
 5861         ilt_client = &ilt->clients[ILT_CLIENT_QM];
 5862         ilt_client->client_num = ILT_CLIENT_QM;
 5863         ilt_client->page_size = QM_ILT_PAGE_SZ;
 5864         ilt_client->flags = 0;
 5865         ilt_client->start = line;
 5866 
 5867         /* 4 bytes for each cid */
 5868         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
 5869                              QM_ILT_PAGE_SZ);
 5870 
 5871         ilt_client->end = (line - 1);
 5872 
 5873         BLOGD(sc, DBG_LOAD,
 5874               "ilt client[QM]: start %d, end %d, "
 5875               "psz 0x%x, flags 0x%x, hw psz %d\n",
 5876               ilt_client->start, ilt_client->end,
 5877               ilt_client->page_size, ilt_client->flags,
 5878               ilog2(ilt_client->page_size >> 12));
 5879     }
 5880 
 5881     if (CNIC_SUPPORT(sc)) {
 5882         /* SRC */
 5883         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
 5884         ilt_client->client_num = ILT_CLIENT_SRC;
 5885         ilt_client->page_size = SRC_ILT_PAGE_SZ;
 5886         ilt_client->flags = 0;
 5887         ilt_client->start = line;
 5888         line += SRC_ILT_LINES;
 5889         ilt_client->end = (line - 1);
 5890 
 5891         BLOGD(sc, DBG_LOAD,
 5892               "ilt client[SRC]: start %d, end %d, "
 5893               "psz 0x%x, flags 0x%x, hw psz %d\n",
 5894               ilt_client->start, ilt_client->end,
 5895               ilt_client->page_size, ilt_client->flags,
 5896               ilog2(ilt_client->page_size >> 12));
 5897 
 5898         /* TM */
 5899         ilt_client = &ilt->clients[ILT_CLIENT_TM];
 5900         ilt_client->client_num = ILT_CLIENT_TM;
 5901         ilt_client->page_size = TM_ILT_PAGE_SZ;
 5902         ilt_client->flags = 0;
 5903         ilt_client->start = line;
 5904         line += TM_ILT_LINES;
 5905         ilt_client->end = (line - 1);
 5906 
 5907         BLOGD(sc, DBG_LOAD,
 5908               "ilt client[TM]: start %d, end %d, "
 5909               "psz 0x%x, flags 0x%x, hw psz %d\n",
 5910               ilt_client->start, ilt_client->end,
 5911               ilt_client->page_size, ilt_client->flags,
 5912               ilog2(ilt_client->page_size >> 12));
 5913     }
 5914 
 5915     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
 5916 }
 5917 
 5918 static void
 5919 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
 5920 {
 5921     int i;
 5922     uint32_t rx_buf_size;
 5923 
 5924     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
 5925 
 5926     for (i = 0; i < sc->num_queues; i++) {
 5927         if(rx_buf_size <= MCLBYTES){
 5928             sc->fp[i].rx_buf_size = rx_buf_size;
 5929             sc->fp[i].mbuf_alloc_size = MCLBYTES;
 5930         }else if (rx_buf_size <= MJUMPAGESIZE){
 5931             sc->fp[i].rx_buf_size = rx_buf_size;
 5932             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
 5933         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
 5934             sc->fp[i].rx_buf_size = MCLBYTES;
 5935             sc->fp[i].mbuf_alloc_size = MCLBYTES;
 5936         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
 5937             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
 5938             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
 5939         }else {
 5940             sc->fp[i].rx_buf_size = MCLBYTES;
 5941             sc->fp[i].mbuf_alloc_size = MCLBYTES;
 5942         }
 5943     }
 5944 }
 5945 
 5946 static int
 5947 bxe_alloc_ilt_mem(struct bxe_softc *sc)
 5948 {
 5949     int rc = 0;
 5950 
 5951     if ((sc->ilt =
 5952          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
 5953                                     M_BXE_ILT,
 5954                                     (M_NOWAIT | M_ZERO))) == NULL) {
 5955         rc = 1;
 5956     }
 5957 
 5958     return (rc);
 5959 }
 5960 
 5961 static int
 5962 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
 5963 {
 5964     int rc = 0;
 5965 
 5966     if ((sc->ilt->lines =
 5967          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
 5968                                     M_BXE_ILT,
 5969                                     (M_NOWAIT | M_ZERO))) == NULL) {
 5970         rc = 1;
 5971     }
 5972 
 5973     return (rc);
 5974 }
 5975 
 5976 static void
 5977 bxe_free_ilt_mem(struct bxe_softc *sc)
 5978 {
 5979     if (sc->ilt != NULL) {
 5980         free(sc->ilt, M_BXE_ILT);
 5981         sc->ilt = NULL;
 5982     }
 5983 }
 5984 
 5985 static void
 5986 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
 5987 {
 5988     if (sc->ilt->lines != NULL) {
 5989         free(sc->ilt->lines, M_BXE_ILT);
 5990         sc->ilt->lines = NULL;
 5991     }
 5992 }
 5993 
 5994 static void
 5995 bxe_free_mem(struct bxe_softc *sc)
 5996 {
 5997     int i;
 5998 
 5999     for (i = 0; i < L2_ILT_LINES(sc); i++) {
 6000         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
 6001         sc->context[i].vcxt = NULL;
 6002         sc->context[i].size = 0;
 6003     }
 6004 
 6005     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
 6006 
 6007     bxe_free_ilt_lines_mem(sc);
 6008 
 6009 }
 6010 
 6011 static int
 6012 bxe_alloc_mem(struct bxe_softc *sc)
 6013 {
 6014 
 6015     int context_size;
 6016     int allocated;
 6017     int i;
 6018 
 6019     /*
 6020      * Allocate memory for CDU context:
 6021      * This memory is allocated separately and not in the generic ILT
 6022      * functions because CDU differs in few aspects:
 6023      * 1. There can be multiple entities allocating memory for context -
 6024      * regular L2, CNIC, and SRIOV drivers. Each separately controls
 6025      * its own ILT lines.
 6026      * 2. Since CDU page-size is not a single 4KB page (which is the case
 6027      * for the other ILT clients), to be efficient we want to support
 6028      * allocation of sub-page-size in the last entry.
 6029      * 3. Context pointers are used by the driver to pass to FW / update
 6030      * the context (for the other ILT clients the pointers are used just to
 6031      * free the memory during unload).
 6032      */
 6033     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
 6034     for (i = 0, allocated = 0; allocated < context_size; i++) {
 6035         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
 6036                                   (context_size - allocated));
 6037 
 6038         if (bxe_dma_alloc(sc, sc->context[i].size,
 6039                           &sc->context[i].vcxt_dma,
 6040                           "cdu context") != 0) {
 6041             bxe_free_mem(sc);
 6042             return (-1);
 6043         }
 6044 
 6045         sc->context[i].vcxt =
 6046             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
 6047 
 6048         allocated += sc->context[i].size;
 6049     }
 6050 
 6051     bxe_alloc_ilt_lines_mem(sc);
 6052 
 6053     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
 6054           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
 6055     {
 6056         for (i = 0; i < 4; i++) {
 6057             BLOGD(sc, DBG_LOAD,
 6058                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
 6059                   i,
 6060                   sc->ilt->clients[i].page_size,
 6061                   sc->ilt->clients[i].start,
 6062                   sc->ilt->clients[i].end,
 6063                   sc->ilt->clients[i].client_num,
 6064                   sc->ilt->clients[i].flags);
 6065         }
 6066     }
 6067     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
 6068         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
 6069         bxe_free_mem(sc);
 6070         return (-1);
 6071     }
 6072 
 6073     return (0);
 6074 }
 6075 
 6076 static void
 6077 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
 6078 {
 6079     int i;
 6080 
 6081     if (fp->rx_mbuf_tag == NULL) {
 6082         return;
 6083     }
 6084 
 6085     /* free all mbufs and unload all maps */
 6086     for (i = 0; i < RX_BD_TOTAL; i++) {
 6087         if (fp->rx_mbuf_chain[i].m_map != NULL) {
 6088             bus_dmamap_sync(fp->rx_mbuf_tag,
 6089                             fp->rx_mbuf_chain[i].m_map,
 6090                             BUS_DMASYNC_POSTREAD);
 6091             bus_dmamap_unload(fp->rx_mbuf_tag,
 6092                               fp->rx_mbuf_chain[i].m_map);
 6093         }
 6094 
 6095         if (fp->rx_mbuf_chain[i].m != NULL) {
 6096             m_freem(fp->rx_mbuf_chain[i].m);
 6097             fp->rx_mbuf_chain[i].m = NULL;
 6098             fp->eth_q_stats.mbuf_alloc_rx--;
 6099         }
 6100     }
 6101 }
 6102 
 6103 static void
 6104 bxe_free_tpa_pool(struct bxe_fastpath *fp)
 6105 {
 6106     struct bxe_softc *sc;
 6107     int i, max_agg_queues;
 6108 
 6109     sc = fp->sc;
 6110 
 6111     if (fp->rx_mbuf_tag == NULL) {
 6112         return;
 6113     }
 6114 
 6115     max_agg_queues = MAX_AGG_QS(sc);
 6116 
 6117     /* release all mbufs and unload all DMA maps in the TPA pool */
 6118     for (i = 0; i < max_agg_queues; i++) {
 6119         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
 6120             bus_dmamap_sync(fp->rx_mbuf_tag,
 6121                             fp->rx_tpa_info[i].bd.m_map,
 6122                             BUS_DMASYNC_POSTREAD);
 6123             bus_dmamap_unload(fp->rx_mbuf_tag,
 6124                               fp->rx_tpa_info[i].bd.m_map);
 6125         }
 6126 
 6127         if (fp->rx_tpa_info[i].bd.m != NULL) {
 6128             m_freem(fp->rx_tpa_info[i].bd.m);
 6129             fp->rx_tpa_info[i].bd.m = NULL;
 6130             fp->eth_q_stats.mbuf_alloc_tpa--;
 6131         }
 6132     }
 6133 }
 6134 
 6135 static void
 6136 bxe_free_sge_chain(struct bxe_fastpath *fp)
 6137 {
 6138     int i;
 6139 
 6140     if (fp->rx_sge_mbuf_tag == NULL) {
 6141         return;
 6142     }
 6143 
 6144     /* rree all mbufs and unload all maps */
 6145     for (i = 0; i < RX_SGE_TOTAL; i++) {
 6146         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
 6147             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
 6148                             fp->rx_sge_mbuf_chain[i].m_map,
 6149                             BUS_DMASYNC_POSTREAD);
 6150             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
 6151                               fp->rx_sge_mbuf_chain[i].m_map);
 6152         }
 6153 
 6154         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
 6155             m_freem(fp->rx_sge_mbuf_chain[i].m);
 6156             fp->rx_sge_mbuf_chain[i].m = NULL;
 6157             fp->eth_q_stats.mbuf_alloc_sge--;
 6158         }
 6159     }
 6160 }
 6161 
 6162 static void
 6163 bxe_free_fp_buffers(struct bxe_softc *sc)
 6164 {
 6165     struct bxe_fastpath *fp;
 6166     int i;
 6167 
 6168     for (i = 0; i < sc->num_queues; i++) {
 6169         fp = &sc->fp[i];
 6170 
 6171         if (fp->tx_br != NULL) {
 6172             /* just in case bxe_mq_flush() wasn't called */
 6173             if (mtx_initialized(&fp->tx_mtx)) {
 6174                 struct mbuf *m;
 6175 
 6176                 BXE_FP_TX_LOCK(fp);
 6177                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
 6178                     m_freem(m);
 6179                 BXE_FP_TX_UNLOCK(fp);
 6180             }
 6181         }
 6182 
 6183         /* free all RX buffers */
 6184         bxe_free_rx_bd_chain(fp);
 6185         bxe_free_tpa_pool(fp);
 6186         bxe_free_sge_chain(fp);
 6187 
 6188         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
 6189             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
 6190                   fp->eth_q_stats.mbuf_alloc_rx);
 6191         }
 6192 
 6193         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
 6194             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
 6195                   fp->eth_q_stats.mbuf_alloc_sge);
 6196         }
 6197 
 6198         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
 6199             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
 6200                   fp->eth_q_stats.mbuf_alloc_tpa);
 6201         }
 6202 
 6203         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
 6204             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
 6205                   fp->eth_q_stats.mbuf_alloc_tx);
 6206         }
 6207 
 6208         /* XXX verify all mbufs were reclaimed */
 6209     }
 6210 }
 6211 
 6212 static int
 6213 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
 6214                      uint16_t            prev_index,
 6215                      uint16_t            index)
 6216 {
 6217     struct bxe_sw_rx_bd *rx_buf;
 6218     struct eth_rx_bd *rx_bd;
 6219     bus_dma_segment_t segs[1];
 6220     bus_dmamap_t map;
 6221     struct mbuf *m;
 6222     int nsegs, rc;
 6223 
 6224     rc = 0;
 6225 
 6226     /* allocate the new RX BD mbuf */
 6227     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
 6228     if (__predict_false(m == NULL)) {
 6229         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
 6230         return (ENOBUFS);
 6231     }
 6232 
 6233     fp->eth_q_stats.mbuf_alloc_rx++;
 6234 
 6235     /* initialize the mbuf buffer length */
 6236     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
 6237 
 6238     /* map the mbuf into non-paged pool */
 6239     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
 6240                                  fp->rx_mbuf_spare_map,
 6241                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
 6242     if (__predict_false(rc != 0)) {
 6243         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
 6244         m_freem(m);
 6245         fp->eth_q_stats.mbuf_alloc_rx--;
 6246         return (rc);
 6247     }
 6248 
 6249     /* all mbufs must map to a single segment */
 6250     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
 6251 
 6252     /* release any existing RX BD mbuf mappings */
 6253 
 6254     if (prev_index != index) {
 6255         rx_buf = &fp->rx_mbuf_chain[prev_index];
 6256 
 6257         if (rx_buf->m_map != NULL) {
 6258             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
 6259                             BUS_DMASYNC_POSTREAD);
 6260             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
 6261         }
 6262 
 6263         /*
 6264          * We only get here from bxe_rxeof() when the maximum number
 6265          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
 6266          * holds the mbuf in the prev_index so it's OK to NULL it out
 6267          * here without concern of a memory leak.
 6268          */
 6269         fp->rx_mbuf_chain[prev_index].m = NULL;
 6270     }
 6271 
 6272     rx_buf = &fp->rx_mbuf_chain[index];
 6273 
 6274     if (rx_buf->m_map != NULL) {
 6275         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
 6276                         BUS_DMASYNC_POSTREAD);
 6277         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
 6278     }
 6279 
 6280     /* save the mbuf and mapping info for a future packet */
 6281     map = (prev_index != index) ?
 6282               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
 6283     rx_buf->m_map = fp->rx_mbuf_spare_map;
 6284     fp->rx_mbuf_spare_map = map;
 6285     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
 6286                     BUS_DMASYNC_PREREAD);
 6287     rx_buf->m = m;
 6288 
 6289     rx_bd = &fp->rx_chain[index];
 6290     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
 6291     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
 6292 
 6293     return (rc);
 6294 }
 6295 
 6296 static int
 6297 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
 6298                       int                 queue)
 6299 {
 6300     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
 6301     bus_dma_segment_t segs[1];
 6302     bus_dmamap_t map;
 6303     struct mbuf *m;
 6304     int nsegs;
 6305     int rc = 0;
 6306 
 6307     /* allocate the new TPA mbuf */
 6308     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
 6309     if (__predict_false(m == NULL)) {
 6310         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
 6311         return (ENOBUFS);
 6312     }
 6313 
 6314     fp->eth_q_stats.mbuf_alloc_tpa++;
 6315 
 6316     /* initialize the mbuf buffer length */
 6317     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
 6318 
 6319     /* map the mbuf into non-paged pool */
 6320     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
 6321                                  fp->rx_tpa_info_mbuf_spare_map,
 6322                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
 6323     if (__predict_false(rc != 0)) {
 6324         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
 6325         m_free(m);
 6326         fp->eth_q_stats.mbuf_alloc_tpa--;
 6327         return (rc);
 6328     }
 6329 
 6330     /* all mbufs must map to a single segment */
 6331     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
 6332 
 6333     /* release any existing TPA mbuf mapping */
 6334     if (tpa_info->bd.m_map != NULL) {
 6335         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
 6336                         BUS_DMASYNC_POSTREAD);
 6337         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
 6338     }
 6339 
 6340     /* save the mbuf and mapping info for the TPA mbuf */
 6341     map = tpa_info->bd.m_map;
 6342     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
 6343     fp->rx_tpa_info_mbuf_spare_map = map;
 6344     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
 6345                     BUS_DMASYNC_PREREAD);
 6346     tpa_info->bd.m = m;
 6347     tpa_info->seg = segs[0];
 6348 
 6349     return (rc);
 6350 }
 6351 
 6352 /*
 6353  * Allocate an mbuf and assign it to the receive scatter gather chain. The
 6354  * caller must take care to save a copy of the existing mbuf in the SG mbuf
 6355  * chain.
 6356  */
 6357 static int
 6358 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
 6359                       uint16_t            index)
 6360 {
 6361     struct bxe_sw_rx_bd *sge_buf;
 6362     struct eth_rx_sge *sge;
 6363     bus_dma_segment_t segs[1];
 6364     bus_dmamap_t map;
 6365     struct mbuf *m;
 6366     int nsegs;
 6367     int rc = 0;
 6368 
 6369     /* allocate a new SGE mbuf */
 6370     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
 6371     if (__predict_false(m == NULL)) {
 6372         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
 6373         return (ENOMEM);
 6374     }
 6375 
 6376     fp->eth_q_stats.mbuf_alloc_sge++;
 6377 
 6378     /* initialize the mbuf buffer length */
 6379     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
 6380 
 6381     /* map the SGE mbuf into non-paged pool */
 6382     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
 6383                                  fp->rx_sge_mbuf_spare_map,
 6384                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
 6385     if (__predict_false(rc != 0)) {
 6386         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
 6387         m_freem(m);
 6388         fp->eth_q_stats.mbuf_alloc_sge--;
 6389         return (rc);
 6390     }
 6391 
 6392     /* all mbufs must map to a single segment */
 6393     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
 6394 
 6395     sge_buf = &fp->rx_sge_mbuf_chain[index];
 6396 
 6397     /* release any existing SGE mbuf mapping */
 6398     if (sge_buf->m_map != NULL) {
 6399         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
 6400                         BUS_DMASYNC_POSTREAD);
 6401         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
 6402     }
 6403 
 6404     /* save the mbuf and mapping info for a future packet */
 6405     map = sge_buf->m_map;
 6406     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
 6407     fp->rx_sge_mbuf_spare_map = map;
 6408     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
 6409                     BUS_DMASYNC_PREREAD);
 6410     sge_buf->m = m;
 6411 
 6412     sge = &fp->rx_sge_chain[index];
 6413     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
 6414     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
 6415 
 6416     return (rc);
 6417 }
 6418 
 6419 static __noinline int
 6420 bxe_alloc_fp_buffers(struct bxe_softc *sc)
 6421 {
 6422     struct bxe_fastpath *fp;
 6423     int i, j, rc = 0;
 6424     int ring_prod, cqe_ring_prod;
 6425     int max_agg_queues;
 6426 
 6427     for (i = 0; i < sc->num_queues; i++) {
 6428         fp = &sc->fp[i];
 6429 
 6430         ring_prod = cqe_ring_prod = 0;
 6431         fp->rx_bd_cons = 0;
 6432         fp->rx_cq_cons = 0;
 6433 
 6434         /* allocate buffers for the RX BDs in RX BD chain */
 6435         for (j = 0; j < sc->max_rx_bufs; j++) {
 6436             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
 6437             if (rc != 0) {
 6438                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
 6439                       i, rc);
 6440                 goto bxe_alloc_fp_buffers_error;
 6441             }
 6442 
 6443             ring_prod     = RX_BD_NEXT(ring_prod);
 6444             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
 6445         }
 6446 
 6447         fp->rx_bd_prod = ring_prod;
 6448         fp->rx_cq_prod = cqe_ring_prod;
 6449         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
 6450 
 6451         max_agg_queues = MAX_AGG_QS(sc);
 6452 
 6453         fp->tpa_enable = TRUE;
 6454 
 6455         /* fill the TPA pool */
 6456         for (j = 0; j < max_agg_queues; j++) {
 6457             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
 6458             if (rc != 0) {
 6459                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
 6460                           i, j);
 6461                 fp->tpa_enable = FALSE;
 6462                 goto bxe_alloc_fp_buffers_error;
 6463             }
 6464 
 6465             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
 6466         }
 6467 
 6468         if (fp->tpa_enable) {
 6469             /* fill the RX SGE chain */
 6470             ring_prod = 0;
 6471             for (j = 0; j < RX_SGE_USABLE; j++) {
 6472                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
 6473                 if (rc != 0) {
 6474                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
 6475                               i, ring_prod);
 6476                     fp->tpa_enable = FALSE;
 6477                     ring_prod = 0;
 6478                     goto bxe_alloc_fp_buffers_error;
 6479                 }
 6480 
 6481                 ring_prod = RX_SGE_NEXT(ring_prod);
 6482             }
 6483 
 6484             fp->rx_sge_prod = ring_prod;
 6485         }
 6486     }
 6487 
 6488     return (0);
 6489 
 6490 bxe_alloc_fp_buffers_error:
 6491 
 6492     /* unwind what was already allocated */
 6493     bxe_free_rx_bd_chain(fp);
 6494     bxe_free_tpa_pool(fp);
 6495     bxe_free_sge_chain(fp);
 6496 
 6497     return (ENOBUFS);
 6498 }
 6499 
 6500 static void
 6501 bxe_free_fw_stats_mem(struct bxe_softc *sc)
 6502 {
 6503     bxe_dma_free(sc, &sc->fw_stats_dma);
 6504 
 6505     sc->fw_stats_num = 0;
 6506 
 6507     sc->fw_stats_req_size = 0;
 6508     sc->fw_stats_req = NULL;
 6509     sc->fw_stats_req_mapping = 0;
 6510 
 6511     sc->fw_stats_data_size = 0;
 6512     sc->fw_stats_data = NULL;
 6513     sc->fw_stats_data_mapping = 0;
 6514 }
 6515 
 6516 static int
 6517 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
 6518 {
 6519     uint8_t num_queue_stats;
 6520     int num_groups;
 6521 
 6522     /* number of queues for statistics is number of eth queues */
 6523     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
 6524 
 6525     /*
 6526      * Total number of FW statistics requests =
 6527      *   1 for port stats + 1 for PF stats + num of queues
 6528      */
 6529     sc->fw_stats_num = (2 + num_queue_stats);
 6530 
 6531     /*
 6532      * Request is built from stats_query_header and an array of
 6533      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
 6534      * rules. The real number or requests is configured in the
 6535      * stats_query_header.
 6536      */
 6537     num_groups =
 6538         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
 6539          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
 6540 
 6541     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
 6542           sc->fw_stats_num, num_groups);
 6543 
 6544     sc->fw_stats_req_size =
 6545         (sizeof(struct stats_query_header) +
 6546          (num_groups * sizeof(struct stats_query_cmd_group)));
 6547 
 6548     /*
 6549      * Data for statistics requests + stats_counter.
 6550      * stats_counter holds per-STORM counters that are incremented when
 6551      * STORM has finished with the current request. Memory for FCoE
 6552      * offloaded statistics are counted anyway, even if they will not be sent.
 6553      * VF stats are not accounted for here as the data of VF stats is stored
 6554      * in memory allocated by the VF, not here.
 6555      */
 6556     sc->fw_stats_data_size =
 6557         (sizeof(struct stats_counter) +
 6558          sizeof(struct per_port_stats) +
 6559          sizeof(struct per_pf_stats) +
 6560          /* sizeof(struct fcoe_statistics_params) + */
 6561          (sizeof(struct per_queue_stats) * num_queue_stats));
 6562 
 6563     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
 6564                       &sc->fw_stats_dma, "fw stats") != 0) {
 6565         bxe_free_fw_stats_mem(sc);
 6566         return (-1);
 6567     }
 6568 
 6569     /* set up the shortcuts */
 6570 
 6571     sc->fw_stats_req =
 6572         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
 6573     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
 6574 
 6575     sc->fw_stats_data =
 6576         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
 6577                                      sc->fw_stats_req_size);
 6578     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
 6579                                  sc->fw_stats_req_size);
 6580 
 6581     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
 6582           (uintmax_t)sc->fw_stats_req_mapping);
 6583 
 6584     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
 6585           (uintmax_t)sc->fw_stats_data_mapping);
 6586 
 6587     return (0);
 6588 }
 6589 
 6590 /*
 6591  * Bits map:
 6592  * 0-7  - Engine0 load counter.
 6593  * 8-15 - Engine1 load counter.
 6594  * 16   - Engine0 RESET_IN_PROGRESS bit.
 6595  * 17   - Engine1 RESET_IN_PROGRESS bit.
 6596  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
 6597  *        function on the engine
 6598  * 19   - Engine1 ONE_IS_LOADED.
 6599  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
 6600  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
 6601  *        for just the one belonging to its engine).
 6602  */
 6603 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
 6604 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
 6605 #define BXE_PATH0_LOAD_CNT_SHIFT  0
 6606 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
 6607 #define BXE_PATH1_LOAD_CNT_SHIFT  8
 6608 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
 6609 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
 6610 #define BXE_GLOBAL_RESET_BIT      0x00040000
 6611 
 6612 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
 6613 static void
 6614 bxe_set_reset_global(struct bxe_softc *sc)
 6615 {
 6616     uint32_t val;
 6617     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6618     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6619     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
 6620     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6621 }
 6622 
 6623 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
 6624 static void
 6625 bxe_clear_reset_global(struct bxe_softc *sc)
 6626 {
 6627     uint32_t val;
 6628     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6629     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6630     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
 6631     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6632 }
 6633 
 6634 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
 6635 static uint8_t
 6636 bxe_reset_is_global(struct bxe_softc *sc)
 6637 {
 6638     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6639     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
 6640     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
 6641 }
 6642 
 6643 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
 6644 static void
 6645 bxe_set_reset_done(struct bxe_softc *sc)
 6646 {
 6647     uint32_t val;
 6648     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
 6649                                  BXE_PATH0_RST_IN_PROG_BIT;
 6650 
 6651     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6652 
 6653     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6654     /* Clear the bit */
 6655     val &= ~bit;
 6656     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
 6657 
 6658     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6659 }
 6660 
 6661 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
 6662 static void
 6663 bxe_set_reset_in_progress(struct bxe_softc *sc)
 6664 {
 6665     uint32_t val;
 6666     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
 6667                                  BXE_PATH0_RST_IN_PROG_BIT;
 6668 
 6669     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6670 
 6671     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6672     /* Set the bit */
 6673     val |= bit;
 6674     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
 6675 
 6676     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6677 }
 6678 
 6679 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
 6680 static uint8_t
 6681 bxe_reset_is_done(struct bxe_softc *sc,
 6682                   int              engine)
 6683 {
 6684     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6685     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
 6686                             BXE_PATH0_RST_IN_PROG_BIT;
 6687 
 6688     /* return false if bit is set */
 6689     return (val & bit) ? FALSE : TRUE;
 6690 }
 6691 
 6692 /* get the load status for an engine, should be run under rtnl lock */
 6693 static uint8_t
 6694 bxe_get_load_status(struct bxe_softc *sc,
 6695                     int              engine)
 6696 {
 6697     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
 6698                              BXE_PATH0_LOAD_CNT_MASK;
 6699     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
 6700                               BXE_PATH0_LOAD_CNT_SHIFT;
 6701     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6702 
 6703     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
 6704 
 6705     val = ((val & mask) >> shift);
 6706 
 6707     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
 6708 
 6709     return (val != 0);
 6710 }
 6711 
 6712 /* set pf load mark */
 6713 /* XXX needs to be under rtnl lock */
 6714 static void
 6715 bxe_set_pf_load(struct bxe_softc *sc)
 6716 {
 6717     uint32_t val;
 6718     uint32_t val1;
 6719     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
 6720                                   BXE_PATH0_LOAD_CNT_MASK;
 6721     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
 6722                                    BXE_PATH0_LOAD_CNT_SHIFT;
 6723 
 6724     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6725 
 6726     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6727     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
 6728 
 6729     /* get the current counter value */
 6730     val1 = ((val & mask) >> shift);
 6731 
 6732     /* set bit of this PF */
 6733     val1 |= (1 << SC_ABS_FUNC(sc));
 6734 
 6735     /* clear the old value */
 6736     val &= ~mask;
 6737 
 6738     /* set the new one */
 6739     val |= ((val1 << shift) & mask);
 6740 
 6741     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
 6742 
 6743     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6744 }
 6745 
 6746 /* clear pf load mark */
 6747 /* XXX needs to be under rtnl lock */
 6748 static uint8_t
 6749 bxe_clear_pf_load(struct bxe_softc *sc)
 6750 {
 6751     uint32_t val1, val;
 6752     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
 6753                                   BXE_PATH0_LOAD_CNT_MASK;
 6754     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
 6755                                    BXE_PATH0_LOAD_CNT_SHIFT;
 6756 
 6757     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6758     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
 6759     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
 6760 
 6761     /* get the current counter value */
 6762     val1 = (val & mask) >> shift;
 6763 
 6764     /* clear bit of that PF */
 6765     val1 &= ~(1 << SC_ABS_FUNC(sc));
 6766 
 6767     /* clear the old value */
 6768     val &= ~mask;
 6769 
 6770     /* set the new one */
 6771     val |= ((val1 << shift) & mask);
 6772 
 6773     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
 6774     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
 6775     return (val1 != 0);
 6776 }
 6777 
 6778 /* send load requrest to mcp and analyze response */
 6779 static int
 6780 bxe_nic_load_request(struct bxe_softc *sc,
 6781                      uint32_t         *load_code)
 6782 {
 6783     /* init fw_seq */
 6784     sc->fw_seq =
 6785         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
 6786          DRV_MSG_SEQ_NUMBER_MASK);
 6787 
 6788     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
 6789 
 6790     /* get the current FW pulse sequence */
 6791     sc->fw_drv_pulse_wr_seq =
 6792         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
 6793          DRV_PULSE_SEQ_MASK);
 6794 
 6795     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
 6796           sc->fw_drv_pulse_wr_seq);
 6797 
 6798     /* load request */
 6799     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
 6800                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
 6801 
 6802     /* if the MCP fails to respond we must abort */
 6803     if (!(*load_code)) {
 6804         BLOGE(sc, "MCP response failure!\n");
 6805         return (-1);
 6806     }
 6807 
 6808     /* if MCP refused then must abort */
 6809     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
 6810         BLOGE(sc, "MCP refused load request\n");
 6811         return (-1);
 6812     }
 6813 
 6814     return (0);
 6815 }
 6816 
 6817 /*
 6818  * Check whether another PF has already loaded FW to chip. In virtualized
 6819  * environments a pf from anoth VM may have already initialized the device
 6820  * including loading FW.
 6821  */
 6822 static int
 6823 bxe_nic_load_analyze_req(struct bxe_softc *sc,
 6824                          uint32_t         load_code)
 6825 {
 6826     uint32_t my_fw, loaded_fw;
 6827 
 6828     /* is another pf loaded on this engine? */
 6829     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
 6830         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
 6831         /* build my FW version dword */
 6832         my_fw = (BCM_5710_FW_MAJOR_VERSION +
 6833                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
 6834                  (BCM_5710_FW_REVISION_VERSION << 16) +
 6835                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
 6836 
 6837         /* read loaded FW from chip */
 6838         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
 6839         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
 6840               loaded_fw, my_fw);
 6841 
 6842         /* abort nic load if version mismatch */
 6843         if (my_fw != loaded_fw) {
 6844             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
 6845                   loaded_fw, my_fw);
 6846             return (-1);
 6847         }
 6848     }
 6849 
 6850     return (0);
 6851 }
 6852 
 6853 /* mark PMF if applicable */
 6854 static void
 6855 bxe_nic_load_pmf(struct bxe_softc *sc,
 6856                  uint32_t         load_code)
 6857 {
 6858     uint32_t ncsi_oem_data_addr;
 6859 
 6860     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
 6861         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
 6862         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
 6863         /*
 6864          * Barrier here for ordering between the writing to sc->port.pmf here
 6865          * and reading it from the periodic task.
 6866          */
 6867         sc->port.pmf = 1;
 6868         mb();
 6869     } else {
 6870         sc->port.pmf = 0;
 6871     }
 6872 
 6873     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
 6874 
 6875     /* XXX needed? */
 6876     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
 6877         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
 6878             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
 6879             if (ncsi_oem_data_addr) {
 6880                 REG_WR(sc,
 6881                        (ncsi_oem_data_addr +
 6882                         offsetof(struct glob_ncsi_oem_data, driver_version)),
 6883                        0);
 6884             }
 6885         }
 6886     }
 6887 }
 6888 
 6889 static void
 6890 bxe_read_mf_cfg(struct bxe_softc *sc)
 6891 {
 6892     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
 6893     int abs_func;
 6894     int vn;
 6895 
 6896     if (BXE_NOMCP(sc)) {
 6897         return; /* what should be the default bvalue in this case */
 6898     }
 6899 
 6900     /*
 6901      * The formula for computing the absolute function number is...
 6902      * For 2 port configuration (4 functions per port):
 6903      *   abs_func = 2 * vn + SC_PORT + SC_PATH
 6904      * For 4 port configuration (2 functions per port):
 6905      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
 6906      */
 6907     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
 6908         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
 6909         if (abs_func >= E1H_FUNC_MAX) {
 6910             break;
 6911         }
 6912         sc->devinfo.mf_info.mf_config[vn] =
 6913             MFCFG_RD(sc, func_mf_config[abs_func].config);
 6914     }
 6915 
 6916     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
 6917         FUNC_MF_CFG_FUNC_DISABLED) {
 6918         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
 6919         sc->flags |= BXE_MF_FUNC_DIS;
 6920     } else {
 6921         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
 6922         sc->flags &= ~BXE_MF_FUNC_DIS;
 6923     }
 6924 }
 6925 
 6926 /* acquire split MCP access lock register */
 6927 static int bxe_acquire_alr(struct bxe_softc *sc)
 6928 {
 6929     uint32_t j, val;
 6930 
 6931     for (j = 0; j < 1000; j++) {
 6932         val = (1UL << 31);
 6933         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
 6934         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
 6935         if (val & (1L << 31))
 6936             break;
 6937 
 6938         DELAY(5000);
 6939     }
 6940 
 6941     if (!(val & (1L << 31))) {
 6942         BLOGE(sc, "Cannot acquire MCP access lock register\n");
 6943         return (-1);
 6944     }
 6945 
 6946     return (0);
 6947 }
 6948 
 6949 /* release split MCP access lock register */
 6950 static void bxe_release_alr(struct bxe_softc *sc)
 6951 {
 6952     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
 6953 }
 6954 
 6955 static void
 6956 bxe_fan_failure(struct bxe_softc *sc)
 6957 {
 6958     int port = SC_PORT(sc);
 6959     uint32_t ext_phy_config;
 6960 
 6961     /* mark the failure */
 6962     ext_phy_config =
 6963         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
 6964 
 6965     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
 6966     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
 6967     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
 6968              ext_phy_config);
 6969 
 6970     /* log the failure */
 6971     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
 6972               "the card to prevent permanent damage. "
 6973               "Please contact OEM Support for assistance\n");
 6974 
 6975     /* XXX */
 6976 #if 1
 6977     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
 6978 #else
 6979     /*
 6980      * Schedule device reset (unload)
 6981      * This is due to some boards consuming sufficient power when driver is
 6982      * up to overheat if fan fails.
 6983      */
 6984     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
 6985     schedule_delayed_work(&sc->sp_rtnl_task, 0);
 6986 #endif
 6987 }
 6988 
 6989 /* this function is called upon a link interrupt */
 6990 static void
 6991 bxe_link_attn(struct bxe_softc *sc)
 6992 {
 6993     uint32_t pause_enabled = 0;
 6994     struct host_port_stats *pstats;
 6995     int cmng_fns;
 6996     struct bxe_fastpath *fp;
 6997     int i;
 6998 
 6999     /* Make sure that we are synced with the current statistics */
 7000     bxe_stats_handle(sc, STATS_EVENT_STOP);
 7001     BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
 7002     elink_link_update(&sc->link_params, &sc->link_vars);
 7003 
 7004     if (sc->link_vars.link_up) {
 7005 
 7006         /* dropless flow control */
 7007         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
 7008             pause_enabled = 0;
 7009 
 7010             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
 7011                 pause_enabled = 1;
 7012             }
 7013 
 7014             REG_WR(sc,
 7015                    (BAR_USTRORM_INTMEM +
 7016                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
 7017                    pause_enabled);
 7018         }
 7019 
 7020         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
 7021             pstats = BXE_SP(sc, port_stats);
 7022             /* reset old mac stats */
 7023             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
 7024         }
 7025 
 7026         if (sc->state == BXE_STATE_OPEN) {
 7027             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
 7028             /* Restart tx when the link comes back. */
 7029             FOR_EACH_ETH_QUEUE(sc, i) {
 7030                 fp = &sc->fp[i];
 7031                 taskqueue_enqueue(fp->tq, &fp->tx_task);
 7032             }
 7033         }
 7034 
 7035     }
 7036 
 7037     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
 7038         cmng_fns = bxe_get_cmng_fns_mode(sc);
 7039 
 7040         if (cmng_fns != CMNG_FNS_NONE) {
 7041             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
 7042             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
 7043         } else {
 7044             /* rate shaping and fairness are disabled */
 7045             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
 7046         }
 7047     }
 7048 
 7049     bxe_link_report_locked(sc);
 7050 
 7051     if (IS_MF(sc)) {
 7052         ; // XXX bxe_link_sync_notify(sc);
 7053     }
 7054 }
 7055 
 7056 static void
 7057 bxe_attn_int_asserted(struct bxe_softc *sc,
 7058                       uint32_t         asserted)
 7059 {
 7060     int port = SC_PORT(sc);
 7061     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
 7062                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
 7063     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
 7064                                         NIG_REG_MASK_INTERRUPT_PORT0;
 7065     uint32_t aeu_mask;
 7066     uint32_t nig_mask = 0;
 7067     uint32_t reg_addr;
 7068     uint32_t igu_acked;
 7069     uint32_t cnt;
 7070 
 7071     if (sc->attn_state & asserted) {
 7072         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
 7073     }
 7074 
 7075     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 7076 
 7077     aeu_mask = REG_RD(sc, aeu_addr);
 7078 
 7079     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
 7080           aeu_mask, asserted);
 7081 
 7082     aeu_mask &= ~(asserted & 0x3ff);
 7083 
 7084     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
 7085 
 7086     REG_WR(sc, aeu_addr, aeu_mask);
 7087 
 7088     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 7089 
 7090     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
 7091     sc->attn_state |= asserted;
 7092     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
 7093 
 7094     if (asserted & ATTN_HARD_WIRED_MASK) {
 7095         if (asserted & ATTN_NIG_FOR_FUNC) {
 7096 
 7097             bxe_acquire_phy_lock(sc);
 7098             /* save nig interrupt mask */
 7099             nig_mask = REG_RD(sc, nig_int_mask_addr);
 7100 
 7101             /* If nig_mask is not set, no need to call the update function */
 7102             if (nig_mask) {
 7103                 REG_WR(sc, nig_int_mask_addr, 0);
 7104 
 7105                 bxe_link_attn(sc);
 7106             }
 7107 
 7108             /* handle unicore attn? */
 7109         }
 7110 
 7111         if (asserted & ATTN_SW_TIMER_4_FUNC) {
 7112             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
 7113         }
 7114 
 7115         if (asserted & GPIO_2_FUNC) {
 7116             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
 7117         }
 7118 
 7119         if (asserted & GPIO_3_FUNC) {
 7120             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
 7121         }
 7122 
 7123         if (asserted & GPIO_4_FUNC) {
 7124             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
 7125         }
 7126 
 7127         if (port == 0) {
 7128             if (asserted & ATTN_GENERAL_ATTN_1) {
 7129                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
 7130                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
 7131             }
 7132             if (asserted & ATTN_GENERAL_ATTN_2) {
 7133                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
 7134                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
 7135             }
 7136             if (asserted & ATTN_GENERAL_ATTN_3) {
 7137                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
 7138                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
 7139             }
 7140         } else {
 7141             if (asserted & ATTN_GENERAL_ATTN_4) {
 7142                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
 7143                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
 7144             }
 7145             if (asserted & ATTN_GENERAL_ATTN_5) {
 7146                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
 7147                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
 7148             }
 7149             if (asserted & ATTN_GENERAL_ATTN_6) {
 7150                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
 7151                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
 7152             }
 7153         }
 7154     } /* hardwired */
 7155 
 7156     if (sc->devinfo.int_block == INT_BLOCK_HC) {
 7157         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
 7158     } else {
 7159         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
 7160     }
 7161 
 7162     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
 7163           asserted,
 7164           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
 7165     REG_WR(sc, reg_addr, asserted);
 7166 
 7167     /* now set back the mask */
 7168     if (asserted & ATTN_NIG_FOR_FUNC) {
 7169         /*
 7170          * Verify that IGU ack through BAR was written before restoring
 7171          * NIG mask. This loop should exit after 2-3 iterations max.
 7172          */
 7173         if (sc->devinfo.int_block != INT_BLOCK_HC) {
 7174             cnt = 0;
 7175 
 7176             do {
 7177                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
 7178             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
 7179                      (++cnt < MAX_IGU_ATTN_ACK_TO));
 7180 
 7181             if (!igu_acked) {
 7182                 BLOGE(sc, "Failed to verify IGU ack on time\n");
 7183             }
 7184 
 7185             mb();
 7186         }
 7187 
 7188         REG_WR(sc, nig_int_mask_addr, nig_mask);
 7189 
 7190         bxe_release_phy_lock(sc);
 7191     }
 7192 }
 7193 
 7194 static void
 7195 bxe_print_next_block(struct bxe_softc *sc,
 7196                      int              idx,
 7197                      const char       *blk)
 7198 {
 7199     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
 7200 }
 7201 
 7202 static int
 7203 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
 7204                               uint32_t         sig,
 7205                               int              par_num,
 7206                               uint8_t          print)
 7207 {
 7208     uint32_t cur_bit = 0;
 7209     int i = 0;
 7210 
 7211     for (i = 0; sig; i++) {
 7212         cur_bit = ((uint32_t)0x1 << i);
 7213         if (sig & cur_bit) {
 7214             switch (cur_bit) {
 7215             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
 7216                 if (print)
 7217                     bxe_print_next_block(sc, par_num++, "BRB");
 7218                 break;
 7219             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
 7220                 if (print)
 7221                     bxe_print_next_block(sc, par_num++, "PARSER");
 7222                 break;
 7223             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
 7224                 if (print)
 7225                     bxe_print_next_block(sc, par_num++, "TSDM");
 7226                 break;
 7227             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
 7228                 if (print)
 7229                     bxe_print_next_block(sc, par_num++, "SEARCHER");
 7230                 break;
 7231             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
 7232                 if (print)
 7233                     bxe_print_next_block(sc, par_num++, "TCM");
 7234                 break;
 7235             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
 7236                 if (print)
 7237                     bxe_print_next_block(sc, par_num++, "TSEMI");
 7238                 break;
 7239             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
 7240                 if (print)
 7241                     bxe_print_next_block(sc, par_num++, "XPB");
 7242                 break;
 7243             }
 7244 
 7245             /* Clear the bit */
 7246             sig &= ~cur_bit;
 7247         }
 7248     }
 7249 
 7250     return (par_num);
 7251 }
 7252 
 7253 static int
 7254 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
 7255                               uint32_t         sig,
 7256                               int              par_num,
 7257                               uint8_t          *global,
 7258                               uint8_t          print)
 7259 {
 7260     int i = 0;
 7261     uint32_t cur_bit = 0;
 7262     for (i = 0; sig; i++) {
 7263         cur_bit = ((uint32_t)0x1 << i);
 7264         if (sig & cur_bit) {
 7265             switch (cur_bit) {
 7266             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
 7267                 if (print)
 7268                     bxe_print_next_block(sc, par_num++, "PBF");
 7269                 break;
 7270             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
 7271                 if (print)
 7272                     bxe_print_next_block(sc, par_num++, "QM");
 7273                 break;
 7274             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
 7275                 if (print)
 7276                     bxe_print_next_block(sc, par_num++, "TM");
 7277                 break;
 7278             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
 7279                 if (print)
 7280                     bxe_print_next_block(sc, par_num++, "XSDM");
 7281                 break;
 7282             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
 7283                 if (print)
 7284                     bxe_print_next_block(sc, par_num++, "XCM");
 7285                 break;
 7286             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
 7287                 if (print)
 7288                     bxe_print_next_block(sc, par_num++, "XSEMI");
 7289                 break;
 7290             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
 7291                 if (print)
 7292                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
 7293                 break;
 7294             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
 7295                 if (print)
 7296                     bxe_print_next_block(sc, par_num++, "NIG");
 7297                 break;
 7298             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
 7299                 if (print)
 7300                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
 7301                 *global = TRUE;
 7302                 break;
 7303             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
 7304                 if (print)
 7305                     bxe_print_next_block(sc, par_num++, "DEBUG");
 7306                 break;
 7307             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
 7308                 if (print)
 7309                     bxe_print_next_block(sc, par_num++, "USDM");
 7310                 break;
 7311             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
 7312                 if (print)
 7313                     bxe_print_next_block(sc, par_num++, "UCM");
 7314                 break;
 7315             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
 7316                 if (print)
 7317                     bxe_print_next_block(sc, par_num++, "USEMI");
 7318                 break;
 7319             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
 7320                 if (print)
 7321                     bxe_print_next_block(sc, par_num++, "UPB");
 7322                 break;
 7323             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
 7324                 if (print)
 7325                     bxe_print_next_block(sc, par_num++, "CSDM");
 7326                 break;
 7327             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
 7328                 if (print)
 7329                     bxe_print_next_block(sc, par_num++, "CCM");
 7330                 break;
 7331             }
 7332 
 7333             /* Clear the bit */
 7334             sig &= ~cur_bit;
 7335         }
 7336     }
 7337 
 7338     return (par_num);
 7339 }
 7340 
 7341 static int
 7342 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
 7343                               uint32_t         sig,
 7344                               int              par_num,
 7345                               uint8_t          print)
 7346 {
 7347     uint32_t cur_bit = 0;
 7348     int i = 0;
 7349 
 7350     for (i = 0; sig; i++) {
 7351         cur_bit = ((uint32_t)0x1 << i);
 7352         if (sig & cur_bit) {
 7353             switch (cur_bit) {
 7354             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
 7355                 if (print)
 7356                     bxe_print_next_block(sc, par_num++, "CSEMI");
 7357                 break;
 7358             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
 7359                 if (print)
 7360                     bxe_print_next_block(sc, par_num++, "PXP");
 7361                 break;
 7362             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
 7363                 if (print)
 7364                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
 7365                 break;
 7366             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
 7367                 if (print)
 7368                     bxe_print_next_block(sc, par_num++, "CFC");
 7369                 break;
 7370             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
 7371                 if (print)
 7372                     bxe_print_next_block(sc, par_num++, "CDU");
 7373                 break;
 7374             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
 7375                 if (print)
 7376                     bxe_print_next_block(sc, par_num++, "DMAE");
 7377                 break;
 7378             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
 7379                 if (print)
 7380                     bxe_print_next_block(sc, par_num++, "IGU");
 7381                 break;
 7382             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
 7383                 if (print)
 7384                     bxe_print_next_block(sc, par_num++, "MISC");
 7385                 break;
 7386             }
 7387 
 7388             /* Clear the bit */
 7389             sig &= ~cur_bit;
 7390         }
 7391     }
 7392 
 7393     return (par_num);
 7394 }
 7395 
 7396 static int
 7397 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
 7398                               uint32_t         sig,
 7399                               int              par_num,
 7400                               uint8_t          *global,
 7401                               uint8_t          print)
 7402 {
 7403     uint32_t cur_bit = 0;
 7404     int i = 0;
 7405 
 7406     for (i = 0; sig; i++) {
 7407         cur_bit = ((uint32_t)0x1 << i);
 7408         if (sig & cur_bit) {
 7409             switch (cur_bit) {
 7410             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
 7411                 if (print)
 7412                     bxe_print_next_block(sc, par_num++, "MCP ROM");
 7413                 *global = TRUE;
 7414                 break;
 7415             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
 7416                 if (print)
 7417                     bxe_print_next_block(sc, par_num++,
 7418                               "MCP UMP RX");
 7419                 *global = TRUE;
 7420                 break;
 7421             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
 7422                 if (print)
 7423                     bxe_print_next_block(sc, par_num++,
 7424                               "MCP UMP TX");
 7425                 *global = TRUE;
 7426                 break;
 7427             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
 7428                 if (print)
 7429                     bxe_print_next_block(sc, par_num++,
 7430                               "MCP SCPAD");
 7431                 *global = TRUE;
 7432                 break;
 7433             }
 7434 
 7435             /* Clear the bit */
 7436             sig &= ~cur_bit;
 7437         }
 7438     }
 7439 
 7440     return (par_num);
 7441 }
 7442 
 7443 static int
 7444 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
 7445                               uint32_t         sig,
 7446                               int              par_num,
 7447                               uint8_t          print)
 7448 {
 7449     uint32_t cur_bit = 0;
 7450     int i = 0;
 7451 
 7452     for (i = 0; sig; i++) {
 7453         cur_bit = ((uint32_t)0x1 << i);
 7454         if (sig & cur_bit) {
 7455             switch (cur_bit) {
 7456             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
 7457                 if (print)
 7458                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
 7459                 break;
 7460             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
 7461                 if (print)
 7462                     bxe_print_next_block(sc, par_num++, "ATC");
 7463                 break;
 7464             }
 7465 
 7466             /* Clear the bit */
 7467             sig &= ~cur_bit;
 7468         }
 7469     }
 7470 
 7471     return (par_num);
 7472 }
 7473 
 7474 static uint8_t
 7475 bxe_parity_attn(struct bxe_softc *sc,
 7476                 uint8_t          *global,
 7477                 uint8_t          print,
 7478                 uint32_t         *sig)
 7479 {
 7480     int par_num = 0;
 7481 
 7482     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
 7483         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
 7484         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
 7485         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
 7486         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
 7487         BLOGE(sc, "Parity error: HW block parity attention:\n"
 7488                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
 7489               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
 7490               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
 7491               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
 7492               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
 7493               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
 7494 
 7495         if (print)
 7496             BLOGI(sc, "Parity errors detected in blocks: ");
 7497 
 7498         par_num =
 7499             bxe_check_blocks_with_parity0(sc, sig[0] &
 7500                                           HW_PRTY_ASSERT_SET_0,
 7501                                           par_num, print);
 7502         par_num =
 7503             bxe_check_blocks_with_parity1(sc, sig[1] &
 7504                                           HW_PRTY_ASSERT_SET_1,
 7505                                           par_num, global, print);
 7506         par_num =
 7507             bxe_check_blocks_with_parity2(sc, sig[2] &
 7508                                           HW_PRTY_ASSERT_SET_2,
 7509                                           par_num, print);
 7510         par_num =
 7511             bxe_check_blocks_with_parity3(sc, sig[3] &
 7512                                           HW_PRTY_ASSERT_SET_3,
 7513                                           par_num, global, print);
 7514         par_num =
 7515             bxe_check_blocks_with_parity4(sc, sig[4] &
 7516                                           HW_PRTY_ASSERT_SET_4,
 7517                                           par_num, print);
 7518 
 7519         if (print)
 7520             BLOGI(sc, "\n");
 7521 
 7522         if( *global == TRUE ) {
 7523                 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
 7524         }
 7525 
 7526         return (TRUE);
 7527     }
 7528 
 7529     return (FALSE);
 7530 }
 7531 
 7532 static uint8_t
 7533 bxe_chk_parity_attn(struct bxe_softc *sc,
 7534                     uint8_t          *global,
 7535                     uint8_t          print)
 7536 {
 7537     struct attn_route attn = { {0} };
 7538     int port = SC_PORT(sc);
 7539 
 7540     if(sc->state != BXE_STATE_OPEN)
 7541         return FALSE;
 7542 
 7543     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
 7544     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
 7545     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
 7546     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
 7547 
 7548     /*
 7549      * Since MCP attentions can't be disabled inside the block, we need to
 7550      * read AEU registers to see whether they're currently disabled
 7551      */
 7552     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
 7553                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
 7554                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
 7555                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
 7556 
 7557 
 7558     if (!CHIP_IS_E1x(sc))
 7559         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
 7560 
 7561     return (bxe_parity_attn(sc, global, print, attn.sig));
 7562 }
 7563 
 7564 static void
 7565 bxe_attn_int_deasserted4(struct bxe_softc *sc,
 7566                          uint32_t         attn)
 7567 {
 7568     uint32_t val;
 7569     boolean_t err_flg = FALSE;
 7570 
 7571     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
 7572         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
 7573         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
 7574         err_flg = TRUE;
 7575         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
 7576             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
 7577         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
 7578             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
 7579         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
 7580             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
 7581         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
 7582             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
 7583         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
 7584             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
 7585         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
 7586             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
 7587         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
 7588             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
 7589         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
 7590             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
 7591         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
 7592             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
 7593     }
 7594 
 7595     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
 7596         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
 7597         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
 7598         err_flg = TRUE;
 7599         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
 7600             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
 7601         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
 7602             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
 7603         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
 7604             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
 7605         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
 7606             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
 7607         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
 7608             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
 7609         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
 7610             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
 7611     }
 7612 
 7613     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
 7614                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
 7615         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
 7616               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
 7617                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
 7618         err_flg = TRUE;
 7619     }
 7620     if (err_flg) {
 7621         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
 7622         taskqueue_enqueue_timeout(taskqueue_thread,
 7623             &sc->sp_err_timeout_task, hz/10);
 7624     }
 7625 
 7626 }
 7627 
 7628 static void
 7629 bxe_e1h_disable(struct bxe_softc *sc)
 7630 {
 7631     int port = SC_PORT(sc);
 7632 
 7633     bxe_tx_disable(sc);
 7634 
 7635     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
 7636 }
 7637 
 7638 static void
 7639 bxe_e1h_enable(struct bxe_softc *sc)
 7640 {
 7641     int port = SC_PORT(sc);
 7642 
 7643     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
 7644 
 7645     // XXX bxe_tx_enable(sc);
 7646 }
 7647 
 7648 /*
 7649  * called due to MCP event (on pmf):
 7650  *   reread new bandwidth configuration
 7651  *   configure FW
 7652  *   notify others function about the change
 7653  */
 7654 static void
 7655 bxe_config_mf_bw(struct bxe_softc *sc)
 7656 {
 7657     if (sc->link_vars.link_up) {
 7658         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
 7659         // XXX bxe_link_sync_notify(sc);
 7660     }
 7661 
 7662     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
 7663 }
 7664 
 7665 static void
 7666 bxe_set_mf_bw(struct bxe_softc *sc)
 7667 {
 7668     bxe_config_mf_bw(sc);
 7669     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
 7670 }
 7671 
 7672 static void
 7673 bxe_handle_eee_event(struct bxe_softc *sc)
 7674 {
 7675     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
 7676     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
 7677 }
 7678 
 7679 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
 7680 
 7681 static void
 7682 bxe_drv_info_ether_stat(struct bxe_softc *sc)
 7683 {
 7684     struct eth_stats_info *ether_stat =
 7685         &sc->sp->drv_info_to_mcp.ether_stat;
 7686 
 7687     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
 7688             ETH_STAT_INFO_VERSION_LEN);
 7689 
 7690     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
 7691     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
 7692                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
 7693                                           ether_stat->mac_local + MAC_PAD,
 7694                                           MAC_PAD, ETH_ALEN);
 7695 
 7696     ether_stat->mtu_size = sc->mtu;
 7697 
 7698     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
 7699     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
 7700         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
 7701     }
 7702 
 7703     // XXX ether_stat->feature_flags |= ???;
 7704 
 7705     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
 7706 
 7707     ether_stat->txq_size = sc->tx_ring_size;
 7708     ether_stat->rxq_size = sc->rx_ring_size;
 7709 }
 7710 
 7711 static void
 7712 bxe_handle_drv_info_req(struct bxe_softc *sc)
 7713 {
 7714     enum drv_info_opcode op_code;
 7715     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
 7716 
 7717     /* if drv_info version supported by MFW doesn't match - send NACK */
 7718     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
 7719         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
 7720         return;
 7721     }
 7722 
 7723     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
 7724                DRV_INFO_CONTROL_OP_CODE_SHIFT);
 7725 
 7726     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
 7727 
 7728     switch (op_code) {
 7729     case ETH_STATS_OPCODE:
 7730         bxe_drv_info_ether_stat(sc);
 7731         break;
 7732     case FCOE_STATS_OPCODE:
 7733     case ISCSI_STATS_OPCODE:
 7734     default:
 7735         /* if op code isn't supported - send NACK */
 7736         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
 7737         return;
 7738     }
 7739 
 7740     /*
 7741      * If we got drv_info attn from MFW then these fields are defined in
 7742      * shmem2 for sure
 7743      */
 7744     SHMEM2_WR(sc, drv_info_host_addr_lo,
 7745               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
 7746     SHMEM2_WR(sc, drv_info_host_addr_hi,
 7747               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
 7748 
 7749     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
 7750 }
 7751 
 7752 static void
 7753 bxe_dcc_event(struct bxe_softc *sc,
 7754               uint32_t         dcc_event)
 7755 {
 7756     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
 7757 
 7758     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
 7759         /*
 7760          * This is the only place besides the function initialization
 7761          * where the sc->flags can change so it is done without any
 7762          * locks
 7763          */
 7764         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
 7765             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
 7766             sc->flags |= BXE_MF_FUNC_DIS;
 7767             bxe_e1h_disable(sc);
 7768         } else {
 7769             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
 7770             sc->flags &= ~BXE_MF_FUNC_DIS;
 7771             bxe_e1h_enable(sc);
 7772         }
 7773         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
 7774     }
 7775 
 7776     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
 7777         bxe_config_mf_bw(sc);
 7778         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
 7779     }
 7780 
 7781     /* Report results to MCP */
 7782     if (dcc_event)
 7783         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
 7784     else
 7785         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
 7786 }
 7787 
 7788 static void
 7789 bxe_pmf_update(struct bxe_softc *sc)
 7790 {
 7791     int port = SC_PORT(sc);
 7792     uint32_t val;
 7793 
 7794     sc->port.pmf = 1;
 7795     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
 7796 
 7797     /*
 7798      * We need the mb() to ensure the ordering between the writing to
 7799      * sc->port.pmf here and reading it from the bxe_periodic_task().
 7800      */
 7801     mb();
 7802 
 7803     /* queue a periodic task */
 7804     // XXX schedule task...
 7805 
 7806     // XXX bxe_dcbx_pmf_update(sc);
 7807 
 7808     /* enable nig attention */
 7809     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
 7810     if (sc->devinfo.int_block == INT_BLOCK_HC) {
 7811         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
 7812         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
 7813     } else if (!CHIP_IS_E1x(sc)) {
 7814         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
 7815         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
 7816     }
 7817 
 7818     bxe_stats_handle(sc, STATS_EVENT_PMF);
 7819 }
 7820 
 7821 static int
 7822 bxe_mc_assert(struct bxe_softc *sc)
 7823 {
 7824     char last_idx;
 7825     int i, rc = 0;
 7826     uint32_t row0, row1, row2, row3;
 7827 
 7828     /* XSTORM */
 7829     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
 7830     if (last_idx)
 7831         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 7832 
 7833     /* print the asserts */
 7834     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
 7835 
 7836         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
 7837         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
 7838         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
 7839         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
 7840 
 7841         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 7842             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 7843                   i, row3, row2, row1, row0);
 7844             rc++;
 7845         } else {
 7846             break;
 7847         }
 7848     }
 7849 
 7850     /* TSTORM */
 7851     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
 7852     if (last_idx) {
 7853         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 7854     }
 7855 
 7856     /* print the asserts */
 7857     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
 7858 
 7859         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
 7860         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
 7861         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
 7862         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
 7863 
 7864         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 7865             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 7866                   i, row3, row2, row1, row0);
 7867             rc++;
 7868         } else {
 7869             break;
 7870         }
 7871     }
 7872 
 7873     /* CSTORM */
 7874     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
 7875     if (last_idx) {
 7876         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 7877     }
 7878 
 7879     /* print the asserts */
 7880     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
 7881 
 7882         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
 7883         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
 7884         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
 7885         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
 7886 
 7887         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 7888             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 7889                   i, row3, row2, row1, row0);
 7890             rc++;
 7891         } else {
 7892             break;
 7893         }
 7894     }
 7895 
 7896     /* USTORM */
 7897     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
 7898     if (last_idx) {
 7899         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
 7900     }
 7901 
 7902     /* print the asserts */
 7903     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
 7904 
 7905         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
 7906         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
 7907         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
 7908         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
 7909 
 7910         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
 7911             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
 7912                   i, row3, row2, row1, row0);
 7913             rc++;
 7914         } else {
 7915             break;
 7916         }
 7917     }
 7918 
 7919     return (rc);
 7920 }
 7921 
 7922 static void
 7923 bxe_attn_int_deasserted3(struct bxe_softc *sc,
 7924                          uint32_t         attn)
 7925 {
 7926     int func = SC_FUNC(sc);
 7927     uint32_t val;
 7928 
 7929     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
 7930 
 7931         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
 7932 
 7933             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
 7934             bxe_read_mf_cfg(sc);
 7935             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
 7936                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
 7937             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
 7938 
 7939             if (val & DRV_STATUS_DCC_EVENT_MASK)
 7940                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
 7941 
 7942             if (val & DRV_STATUS_SET_MF_BW)
 7943                 bxe_set_mf_bw(sc);
 7944 
 7945             if (val & DRV_STATUS_DRV_INFO_REQ)
 7946                 bxe_handle_drv_info_req(sc);
 7947 
 7948             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
 7949                 bxe_pmf_update(sc);
 7950 
 7951             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
 7952                 bxe_handle_eee_event(sc);
 7953 
 7954             if (sc->link_vars.periodic_flags &
 7955                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
 7956                 /* sync with link */
 7957                 bxe_acquire_phy_lock(sc);
 7958                 sc->link_vars.periodic_flags &=
 7959                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
 7960                 bxe_release_phy_lock(sc);
 7961                 if (IS_MF(sc))
 7962                     ; // XXX bxe_link_sync_notify(sc);
 7963                 bxe_link_report(sc);
 7964             }
 7965 
 7966             /*
 7967              * Always call it here: bxe_link_report() will
 7968              * prevent the link indication duplication.
 7969              */
 7970             bxe_link_status_update(sc);
 7971 
 7972         } else if (attn & BXE_MC_ASSERT_BITS) {
 7973 
 7974             BLOGE(sc, "MC assert!\n");
 7975             bxe_mc_assert(sc);
 7976             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
 7977             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
 7978             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
 7979             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
 7980             bxe_int_disable(sc);
 7981             BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
 7982             taskqueue_enqueue_timeout(taskqueue_thread,
 7983                 &sc->sp_err_timeout_task, hz/10);
 7984         
 7985         } else if (attn & BXE_MCP_ASSERT) {
 7986 
 7987             BLOGE(sc, "MCP assert!\n");
 7988             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
 7989             BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
 7990             taskqueue_enqueue_timeout(taskqueue_thread,
 7991                 &sc->sp_err_timeout_task, hz/10);
 7992             bxe_int_disable(sc);  /*avoid repetive assert alert */
 7993 
 7994 
 7995         } else {
 7996             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
 7997         }
 7998     }
 7999 
 8000     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
 8001         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
 8002         if (attn & BXE_GRC_TIMEOUT) {
 8003             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
 8004             BLOGE(sc, "GRC time-out 0x%08x\n", val);
 8005         }
 8006         if (attn & BXE_GRC_RSV) {
 8007             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
 8008             BLOGE(sc, "GRC reserved 0x%08x\n", val);
 8009         }
 8010         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
 8011     }
 8012 }
 8013 
 8014 static void
 8015 bxe_attn_int_deasserted2(struct bxe_softc *sc,
 8016                          uint32_t         attn)
 8017 {
 8018     int port = SC_PORT(sc);
 8019     int reg_offset;
 8020     uint32_t val0, mask0, val1, mask1;
 8021     uint32_t val;
 8022     boolean_t err_flg = FALSE;
 8023 
 8024     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
 8025         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
 8026         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
 8027         /* CFC error attention */
 8028         if (val & 0x2) {
 8029             BLOGE(sc, "FATAL error from CFC\n");
 8030             err_flg = TRUE;
 8031         }
 8032     }
 8033 
 8034     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
 8035         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
 8036         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
 8037         /* RQ_USDMDP_FIFO_OVERFLOW */
 8038         if (val & 0x18000) {
 8039             BLOGE(sc, "FATAL error from PXP\n");
 8040             err_flg = TRUE;
 8041         }
 8042 
 8043         if (!CHIP_IS_E1x(sc)) {
 8044             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
 8045             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
 8046             err_flg = TRUE;
 8047         }
 8048     }
 8049 
 8050 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
 8051 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
 8052 
 8053     if (attn & AEU_PXP2_HW_INT_BIT) {
 8054         /*  CQ47854 workaround do not panic on
 8055          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
 8056          */
 8057         if (!CHIP_IS_E1x(sc)) {
 8058             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
 8059             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
 8060             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
 8061             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
 8062             /*
 8063              * If the only PXP2_EOP_ERROR_BIT is set in
 8064              * STS0 and STS1 - clear it
 8065              *
 8066              * probably we lose additional attentions between
 8067              * STS0 and STS_CLR0, in this case user will not
 8068              * be notified about them
 8069              */
 8070             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
 8071                 !(val1 & mask1))
 8072                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
 8073 
 8074             /* print the register, since no one can restore it */
 8075             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
 8076 
 8077             /*
 8078              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
 8079              * then notify
 8080              */
 8081             if (val0 & PXP2_EOP_ERROR_BIT) {
 8082                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
 8083                 err_flg = TRUE;
 8084 
 8085                 /*
 8086                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
 8087                  * set then clear attention from PXP2 block without panic
 8088                  */
 8089                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
 8090                     ((val1 & mask1) == 0))
 8091                     attn &= ~AEU_PXP2_HW_INT_BIT;
 8092             }
 8093         }
 8094     }
 8095 
 8096     if (attn & HW_INTERRUT_ASSERT_SET_2) {
 8097         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
 8098                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
 8099 
 8100         val = REG_RD(sc, reg_offset);
 8101         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
 8102         REG_WR(sc, reg_offset, val);
 8103 
 8104         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
 8105               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
 8106         err_flg = TRUE;
 8107         bxe_panic(sc, ("HW block attention set2\n"));
 8108     }
 8109     if(err_flg) {
 8110         BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
 8111         taskqueue_enqueue_timeout(taskqueue_thread,
 8112            &sc->sp_err_timeout_task, hz/10);
 8113     }
 8114 
 8115 }
 8116 
 8117 static void
 8118 bxe_attn_int_deasserted1(struct bxe_softc *sc,
 8119                          uint32_t         attn)
 8120 {
 8121     int port = SC_PORT(sc);
 8122     int reg_offset;
 8123     uint32_t val;
 8124     boolean_t err_flg = FALSE;
 8125 
 8126     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
 8127         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
 8128         BLOGE(sc, "DB hw attention 0x%08x\n", val);
 8129         /* DORQ discard attention */
 8130         if (val & 0x2) {
 8131             BLOGE(sc, "FATAL error from DORQ\n");
 8132             err_flg = TRUE;
 8133         }
 8134     }
 8135 
 8136     if (attn & HW_INTERRUT_ASSERT_SET_1) {
 8137         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
 8138                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
 8139 
 8140         val = REG_RD(sc, reg_offset);
 8141         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
 8142         REG_WR(sc, reg_offset, val);
 8143 
 8144         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
 8145               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
 8146         err_flg = TRUE;
 8147         bxe_panic(sc, ("HW block attention set1\n"));
 8148     }
 8149     if(err_flg) {
 8150         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
 8151         taskqueue_enqueue_timeout(taskqueue_thread,
 8152            &sc->sp_err_timeout_task, hz/10);
 8153     }
 8154 
 8155 }
 8156 
 8157 static void
 8158 bxe_attn_int_deasserted0(struct bxe_softc *sc,
 8159                          uint32_t         attn)
 8160 {
 8161     int port = SC_PORT(sc);
 8162     int reg_offset;
 8163     uint32_t val;
 8164 
 8165     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
 8166                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
 8167 
 8168     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
 8169         val = REG_RD(sc, reg_offset);
 8170         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
 8171         REG_WR(sc, reg_offset, val);
 8172 
 8173         BLOGW(sc, "SPIO5 hw attention\n");
 8174 
 8175         /* Fan failure attention */
 8176         elink_hw_reset_phy(&sc->link_params);
 8177         bxe_fan_failure(sc);
 8178     }
 8179 
 8180     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
 8181         bxe_acquire_phy_lock(sc);
 8182         elink_handle_module_detect_int(&sc->link_params);
 8183         bxe_release_phy_lock(sc);
 8184     }
 8185 
 8186     if (attn & HW_INTERRUT_ASSERT_SET_0) {
 8187         val = REG_RD(sc, reg_offset);
 8188         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
 8189         REG_WR(sc, reg_offset, val);
 8190 
 8191 
 8192         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
 8193         taskqueue_enqueue_timeout(taskqueue_thread,
 8194            &sc->sp_err_timeout_task, hz/10);
 8195 
 8196         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
 8197                        (attn & HW_INTERRUT_ASSERT_SET_0)));
 8198     }
 8199 }
 8200 
 8201 static void
 8202 bxe_attn_int_deasserted(struct bxe_softc *sc,
 8203                         uint32_t         deasserted)
 8204 {
 8205     struct attn_route attn;
 8206     struct attn_route *group_mask;
 8207     int port = SC_PORT(sc);
 8208     int index;
 8209     uint32_t reg_addr;
 8210     uint32_t val;
 8211     uint32_t aeu_mask;
 8212     uint8_t global = FALSE;
 8213 
 8214     /*
 8215      * Need to take HW lock because MCP or other port might also
 8216      * try to handle this event.
 8217      */
 8218     bxe_acquire_alr(sc);
 8219 
 8220     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
 8221         /* XXX
 8222          * In case of parity errors don't handle attentions so that
 8223          * other function would "see" parity errors.
 8224          */
 8225         // XXX schedule a recovery task...
 8226         /* disable HW interrupts */
 8227         bxe_int_disable(sc);
 8228         BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
 8229         taskqueue_enqueue_timeout(taskqueue_thread,
 8230            &sc->sp_err_timeout_task, hz/10);
 8231         bxe_release_alr(sc);
 8232         return;
 8233     }
 8234 
 8235     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
 8236     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
 8237     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
 8238     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
 8239     if (!CHIP_IS_E1x(sc)) {
 8240         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
 8241     } else {
 8242         attn.sig[4] = 0;
 8243     }
 8244 
 8245     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 8246           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
 8247 
 8248     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
 8249         if (deasserted & (1 << index)) {
 8250             group_mask = &sc->attn_group[index];
 8251 
 8252             BLOGD(sc, DBG_INTR,
 8253                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
 8254                   group_mask->sig[0], group_mask->sig[1],
 8255                   group_mask->sig[2], group_mask->sig[3],
 8256                   group_mask->sig[4]);
 8257 
 8258             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
 8259             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
 8260             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
 8261             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
 8262             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
 8263         }
 8264     }
 8265 
 8266     bxe_release_alr(sc);
 8267 
 8268     if (sc->devinfo.int_block == INT_BLOCK_HC) {
 8269         reg_addr = (HC_REG_COMMAND_REG + port*32 +
 8270                     COMMAND_REG_ATTN_BITS_CLR);
 8271     } else {
 8272         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
 8273     }
 8274 
 8275     val = ~deasserted;
 8276     BLOGD(sc, DBG_INTR,
 8277           "about to mask 0x%08x at %s addr 0x%08x\n", val,
 8278           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
 8279     REG_WR(sc, reg_addr, val);
 8280 
 8281     if (~sc->attn_state & deasserted) {
 8282         BLOGE(sc, "IGU error\n");
 8283     }
 8284 
 8285     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
 8286                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
 8287 
 8288     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 8289 
 8290     aeu_mask = REG_RD(sc, reg_addr);
 8291 
 8292     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
 8293           aeu_mask, deasserted);
 8294     aeu_mask |= (deasserted & 0x3ff);
 8295     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
 8296 
 8297     REG_WR(sc, reg_addr, aeu_mask);
 8298     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
 8299 
 8300     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
 8301     sc->attn_state &= ~deasserted;
 8302     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
 8303 }
 8304 
 8305 static void
 8306 bxe_attn_int(struct bxe_softc *sc)
 8307 {
 8308     /* read local copy of bits */
 8309     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
 8310     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
 8311     uint32_t attn_state = sc->attn_state;
 8312 
 8313     /* look for changed bits */
 8314     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
 8315     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
 8316 
 8317     BLOGD(sc, DBG_INTR,
 8318           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
 8319           attn_bits, attn_ack, asserted, deasserted);
 8320 
 8321     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
 8322         BLOGE(sc, "BAD attention state\n");
 8323     }
 8324 
 8325     /* handle bits that were raised */
 8326     if (asserted) {
 8327         bxe_attn_int_asserted(sc, asserted);
 8328     }
 8329 
 8330     if (deasserted) {
 8331         bxe_attn_int_deasserted(sc, deasserted);
 8332     }
 8333 }
 8334 
 8335 static uint16_t
 8336 bxe_update_dsb_idx(struct bxe_softc *sc)
 8337 {
 8338     struct host_sp_status_block *def_sb = sc->def_sb;
 8339     uint16_t rc = 0;
 8340 
 8341     mb(); /* status block is written to by the chip */
 8342 
 8343     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
 8344         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
 8345         rc |= BXE_DEF_SB_ATT_IDX;
 8346     }
 8347 
 8348     if (sc->def_idx != def_sb->sp_sb.running_index) {
 8349         sc->def_idx = def_sb->sp_sb.running_index;
 8350         rc |= BXE_DEF_SB_IDX;
 8351     }
 8352 
 8353     mb();
 8354 
 8355     return (rc);
 8356 }
 8357 
 8358 static inline struct ecore_queue_sp_obj *
 8359 bxe_cid_to_q_obj(struct bxe_softc *sc,
 8360                  uint32_t         cid)
 8361 {
 8362     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
 8363     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
 8364 }
 8365 
 8366 static void
 8367 bxe_handle_mcast_eqe(struct bxe_softc *sc)
 8368 {
 8369     struct ecore_mcast_ramrod_params rparam;
 8370     int rc;
 8371 
 8372     memset(&rparam, 0, sizeof(rparam));
 8373 
 8374     rparam.mcast_obj = &sc->mcast_obj;
 8375 
 8376     BXE_MCAST_LOCK(sc);
 8377 
 8378     /* clear pending state for the last command */
 8379     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
 8380 
 8381     /* if there are pending mcast commands - send them */
 8382     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
 8383         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
 8384         if (rc < 0) {
 8385             BLOGD(sc, DBG_SP,
 8386                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
 8387         }
 8388     }
 8389 
 8390     BXE_MCAST_UNLOCK(sc);
 8391 }
 8392 
 8393 static void
 8394 bxe_handle_classification_eqe(struct bxe_softc      *sc,
 8395                               union event_ring_elem *elem)
 8396 {
 8397     unsigned long ramrod_flags = 0;
 8398     int rc = 0;
 8399     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
 8400     struct ecore_vlan_mac_obj *vlan_mac_obj;
 8401 
 8402     /* always push next commands out, don't wait here */
 8403     bit_set(&ramrod_flags, RAMROD_CONT);
 8404 
 8405     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
 8406     case ECORE_FILTER_MAC_PENDING:
 8407         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
 8408         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
 8409         break;
 8410 
 8411     case ECORE_FILTER_MCAST_PENDING:
 8412         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
 8413         /*
 8414          * This is only relevant for 57710 where multicast MACs are
 8415          * configured as unicast MACs using the same ramrod.
 8416          */
 8417         bxe_handle_mcast_eqe(sc);
 8418         return;
 8419 
 8420     default:
 8421         BLOGE(sc, "Unsupported classification command: %d\n",
 8422               elem->message.data.eth_event.echo);
 8423         return;
 8424     }
 8425 
 8426     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
 8427 
 8428     if (rc < 0) {
 8429         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
 8430     } else if (rc > 0) {
 8431         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
 8432     }
 8433 }
 8434 
 8435 static void
 8436 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
 8437                        union event_ring_elem *elem)
 8438 {
 8439     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
 8440 
 8441     /* send rx_mode command again if was requested */
 8442     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
 8443                                &sc->sp_state)) {
 8444         bxe_set_storm_rx_mode(sc);
 8445     }
 8446 }
 8447 
 8448 static void
 8449 bxe_update_eq_prod(struct bxe_softc *sc,
 8450                    uint16_t         prod)
 8451 {
 8452     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
 8453     wmb(); /* keep prod updates ordered */
 8454 }
 8455 
 8456 static void
 8457 bxe_eq_int(struct bxe_softc *sc)
 8458 {
 8459     uint16_t hw_cons, sw_cons, sw_prod;
 8460     union event_ring_elem *elem;
 8461     uint8_t echo;
 8462     uint32_t cid;
 8463     uint8_t opcode;
 8464     int spqe_cnt = 0;
 8465     struct ecore_queue_sp_obj *q_obj;
 8466     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
 8467     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
 8468 
 8469     hw_cons = le16toh(*sc->eq_cons_sb);
 8470 
 8471     /*
 8472      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
 8473      * when we get to the next-page we need to adjust so the loop
 8474      * condition below will be met. The next element is the size of a
 8475      * regular element and hence incrementing by 1
 8476      */
 8477     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
 8478         hw_cons++;
 8479     }
 8480 
 8481     /*
 8482      * This function may never run in parallel with itself for a
 8483      * specific sc and no need for a read memory barrier here.
 8484      */
 8485     sw_cons = sc->eq_cons;
 8486     sw_prod = sc->eq_prod;
 8487 
 8488     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
 8489           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
 8490 
 8491     for (;
 8492          sw_cons != hw_cons;
 8493          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
 8494 
 8495         elem = &sc->eq[EQ_DESC(sw_cons)];
 8496 
 8497         /* elem CID originates from FW, actually LE */
 8498         cid = SW_CID(elem->message.data.cfc_del_event.cid);
 8499         opcode = elem->message.opcode;
 8500 
 8501         /* handle eq element */
 8502         switch (opcode) {
 8503 
 8504         case EVENT_RING_OPCODE_STAT_QUERY:
 8505             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
 8506                   sc->stats_comp++);
 8507             /* nothing to do with stats comp */
 8508             goto next_spqe;
 8509 
 8510         case EVENT_RING_OPCODE_CFC_DEL:
 8511             /* handle according to cid range */
 8512             /* we may want to verify here that the sc state is HALTING */
 8513             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
 8514             q_obj = bxe_cid_to_q_obj(sc, cid);
 8515             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
 8516                 break;
 8517             }
 8518             goto next_spqe;
 8519 
 8520         case EVENT_RING_OPCODE_STOP_TRAFFIC:
 8521             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
 8522             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
 8523                 break;
 8524             }
 8525             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
 8526             goto next_spqe;
 8527 
 8528         case EVENT_RING_OPCODE_START_TRAFFIC:
 8529             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
 8530             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
 8531                 break;
 8532             }
 8533             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
 8534             goto next_spqe;
 8535 
 8536         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
 8537             echo = elem->message.data.function_update_event.echo;
 8538             if (echo == SWITCH_UPDATE) {
 8539                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
 8540                 if (f_obj->complete_cmd(sc, f_obj,
 8541                                         ECORE_F_CMD_SWITCH_UPDATE)) {
 8542                     break;
 8543                 }
 8544             }
 8545             else {
 8546                 BLOGD(sc, DBG_SP,
 8547                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
 8548             }
 8549             goto next_spqe;
 8550 
 8551         case EVENT_RING_OPCODE_FORWARD_SETUP:
 8552             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
 8553             if (q_obj->complete_cmd(sc, q_obj,
 8554                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
 8555                 break;
 8556             }
 8557             goto next_spqe;
 8558 
 8559         case EVENT_RING_OPCODE_FUNCTION_START:
 8560             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
 8561             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
 8562                 break;
 8563             }
 8564             goto next_spqe;
 8565 
 8566         case EVENT_RING_OPCODE_FUNCTION_STOP:
 8567             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
 8568             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
 8569                 break;
 8570             }
 8571             goto next_spqe;
 8572         }
 8573 
 8574         switch (opcode | sc->state) {
 8575         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
 8576         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
 8577             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
 8578             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
 8579             rss_raw->clear_pending(rss_raw);
 8580             break;
 8581 
 8582         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
 8583         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
 8584         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
 8585         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
 8586         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
 8587         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
 8588             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
 8589             bxe_handle_classification_eqe(sc, elem);
 8590             break;
 8591 
 8592         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
 8593         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
 8594         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
 8595             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
 8596             bxe_handle_mcast_eqe(sc);
 8597             break;
 8598 
 8599         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
 8600         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
 8601         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
 8602             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
 8603             bxe_handle_rx_mode_eqe(sc, elem);
 8604             break;
 8605 
 8606         default:
 8607             /* unknown event log error and continue */
 8608             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
 8609                   elem->message.opcode, sc->state);
 8610         }
 8611 
 8612 next_spqe:
 8613         spqe_cnt++;
 8614     } /* for */
 8615 
 8616     mb();
 8617     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
 8618 
 8619     sc->eq_cons = sw_cons;
 8620     sc->eq_prod = sw_prod;
 8621 
 8622     /* make sure that above mem writes were issued towards the memory */
 8623     wmb();
 8624 
 8625     /* update producer */
 8626     bxe_update_eq_prod(sc, sc->eq_prod);
 8627 }
 8628 
 8629 static void
 8630 bxe_handle_sp_tq(void *context,
 8631                  int  pending)
 8632 {
 8633     struct bxe_softc *sc = (struct bxe_softc *)context;
 8634     uint16_t status;
 8635 
 8636     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
 8637 
 8638     /* what work needs to be performed? */
 8639     status = bxe_update_dsb_idx(sc);
 8640 
 8641     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
 8642 
 8643     /* HW attentions */
 8644     if (status & BXE_DEF_SB_ATT_IDX) {
 8645         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
 8646         bxe_attn_int(sc);
 8647         status &= ~BXE_DEF_SB_ATT_IDX;
 8648     }
 8649 
 8650     /* SP events: STAT_QUERY and others */
 8651     if (status & BXE_DEF_SB_IDX) {
 8652         /* handle EQ completions */
 8653         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
 8654         bxe_eq_int(sc);
 8655         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
 8656                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
 8657         status &= ~BXE_DEF_SB_IDX;
 8658     }
 8659 
 8660     /* if status is non zero then something went wrong */
 8661     if (__predict_false(status)) {
 8662         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
 8663     }
 8664 
 8665     /* ack status block only if something was actually handled */
 8666     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
 8667                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
 8668 
 8669     /*
 8670      * Must be called after the EQ processing (since eq leads to sriov
 8671      * ramrod completion flows).
 8672      * This flow may have been scheduled by the arrival of a ramrod
 8673      * completion, or by the sriov code rescheduling itself.
 8674      */
 8675     // XXX bxe_iov_sp_task(sc);
 8676 
 8677 }
 8678 
 8679 static void
 8680 bxe_handle_fp_tq(void *context,
 8681                  int  pending)
 8682 {
 8683     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
 8684     struct bxe_softc *sc = fp->sc;
 8685     /* uint8_t more_tx = FALSE; */
 8686     uint8_t more_rx = FALSE;
 8687 
 8688     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
 8689 
 8690     /* XXX
 8691      * IFF_DRV_RUNNING state can't be checked here since we process
 8692      * slowpath events on a client queue during setup. Instead
 8693      * we need to add a "process/continue" flag here that the driver
 8694      * can use to tell the task here not to do anything.
 8695      */
 8696 #if 0
 8697     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
 8698         return;
 8699     }
 8700 #endif
 8701 
 8702     /* update the fastpath index */
 8703     bxe_update_fp_sb_idx(fp);
 8704 
 8705     /* XXX add loop here if ever support multiple tx CoS */
 8706     /* fp->txdata[cos] */
 8707     if (bxe_has_tx_work(fp)) {
 8708         BXE_FP_TX_LOCK(fp);
 8709         /* more_tx = */ bxe_txeof(sc, fp);
 8710         BXE_FP_TX_UNLOCK(fp);
 8711     }
 8712 
 8713     if (bxe_has_rx_work(fp)) {
 8714         more_rx = bxe_rxeof(sc, fp);
 8715     }
 8716 
 8717     if (more_rx /*|| more_tx*/) {
 8718         /* still more work to do */
 8719         taskqueue_enqueue(fp->tq, &fp->tq_task);
 8720         return;
 8721     }
 8722 
 8723     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
 8724                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
 8725 }
 8726 
 8727 static void
 8728 bxe_task_fp(struct bxe_fastpath *fp)
 8729 {
 8730     struct bxe_softc *sc = fp->sc;
 8731     /* uint8_t more_tx = FALSE; */
 8732     uint8_t more_rx = FALSE;
 8733 
 8734     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
 8735 
 8736     /* update the fastpath index */
 8737     bxe_update_fp_sb_idx(fp);
 8738 
 8739     /* XXX add loop here if ever support multiple tx CoS */
 8740     /* fp->txdata[cos] */
 8741     if (bxe_has_tx_work(fp)) {
 8742         BXE_FP_TX_LOCK(fp);
 8743         /* more_tx = */ bxe_txeof(sc, fp);
 8744         BXE_FP_TX_UNLOCK(fp);
 8745     }
 8746 
 8747     if (bxe_has_rx_work(fp)) {
 8748         more_rx = bxe_rxeof(sc, fp);
 8749     }
 8750 
 8751     if (more_rx /*|| more_tx*/) {
 8752         /* still more work to do, bail out if this ISR and process later */
 8753         taskqueue_enqueue(fp->tq, &fp->tq_task);
 8754         return;
 8755     }
 8756 
 8757     /*
 8758      * Here we write the fastpath index taken before doing any tx or rx work.
 8759      * It is very well possible other hw events occurred up to this point and
 8760      * they were actually processed accordingly above. Since we're going to
 8761      * write an older fastpath index, an interrupt is coming which we might
 8762      * not do any work in.
 8763      */
 8764     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
 8765                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
 8766 }
 8767 
 8768 /*
 8769  * Legacy interrupt entry point.
 8770  *
 8771  * Verifies that the controller generated the interrupt and
 8772  * then calls a separate routine to handle the various
 8773  * interrupt causes: link, RX, and TX.
 8774  */
 8775 static void
 8776 bxe_intr_legacy(void *xsc)
 8777 {
 8778     struct bxe_softc *sc = (struct bxe_softc *)xsc;
 8779     struct bxe_fastpath *fp;
 8780     uint16_t status, mask;
 8781     int i;
 8782 
 8783     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
 8784 
 8785     /*
 8786      * 0 for ustorm, 1 for cstorm
 8787      * the bits returned from ack_int() are 0-15
 8788      * bit 0 = attention status block
 8789      * bit 1 = fast path status block
 8790      * a mask of 0x2 or more = tx/rx event
 8791      * a mask of 1 = slow path event
 8792      */
 8793 
 8794     status = bxe_ack_int(sc);
 8795 
 8796     /* the interrupt is not for us */
 8797     if (__predict_false(status == 0)) {
 8798         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
 8799         return;
 8800     }
 8801 
 8802     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
 8803 
 8804     FOR_EACH_ETH_QUEUE(sc, i) {
 8805         fp = &sc->fp[i];
 8806         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
 8807         if (status & mask) {
 8808             /* acknowledge and disable further fastpath interrupts */
 8809             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
 8810             bxe_task_fp(fp);
 8811             status &= ~mask;
 8812         }
 8813     }
 8814 
 8815     if (__predict_false(status & 0x1)) {
 8816         /* acknowledge and disable further slowpath interrupts */
 8817         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
 8818 
 8819         /* schedule slowpath handler */
 8820         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
 8821 
 8822         status &= ~0x1;
 8823     }
 8824 
 8825     if (__predict_false(status)) {
 8826         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
 8827     }
 8828 }
 8829 
 8830 /* slowpath interrupt entry point */
 8831 static void
 8832 bxe_intr_sp(void *xsc)
 8833 {
 8834     struct bxe_softc *sc = (struct bxe_softc *)xsc;
 8835 
 8836     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
 8837 
 8838     /* acknowledge and disable further slowpath interrupts */
 8839     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
 8840 
 8841     /* schedule slowpath handler */
 8842     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
 8843 }
 8844 
 8845 /* fastpath interrupt entry point */
 8846 static void
 8847 bxe_intr_fp(void *xfp)
 8848 {
 8849     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
 8850     struct bxe_softc *sc = fp->sc;
 8851 
 8852     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
 8853 
 8854     BLOGD(sc, DBG_INTR,
 8855           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
 8856           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
 8857 
 8858     /* acknowledge and disable further fastpath interrupts */
 8859     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
 8860 
 8861     bxe_task_fp(fp);
 8862 }
 8863 
 8864 /* Release all interrupts allocated by the driver. */
 8865 static void
 8866 bxe_interrupt_free(struct bxe_softc *sc)
 8867 {
 8868     int i;
 8869 
 8870     switch (sc->interrupt_mode) {
 8871     case INTR_MODE_INTX:
 8872         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
 8873         if (sc->intr[0].resource != NULL) {
 8874             bus_release_resource(sc->dev,
 8875                                  SYS_RES_IRQ,
 8876                                  sc->intr[0].rid,
 8877                                  sc->intr[0].resource);
 8878         }
 8879         break;
 8880     case INTR_MODE_MSI:
 8881         for (i = 0; i < sc->intr_count; i++) {
 8882             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
 8883             if (sc->intr[i].resource && sc->intr[i].rid) {
 8884                 bus_release_resource(sc->dev,
 8885                                      SYS_RES_IRQ,
 8886                                      sc->intr[i].rid,
 8887                                      sc->intr[i].resource);
 8888             }
 8889         }
 8890         pci_release_msi(sc->dev);
 8891         break;
 8892     case INTR_MODE_MSIX:
 8893         for (i = 0; i < sc->intr_count; i++) {
 8894             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
 8895             if (sc->intr[i].resource && sc->intr[i].rid) {
 8896                 bus_release_resource(sc->dev,
 8897                                      SYS_RES_IRQ,
 8898                                      sc->intr[i].rid,
 8899                                      sc->intr[i].resource);
 8900             }
 8901         }
 8902         pci_release_msi(sc->dev);
 8903         break;
 8904     default:
 8905         /* nothing to do as initial allocation failed */
 8906         break;
 8907     }
 8908 }
 8909 
 8910 /*
 8911  * This function determines and allocates the appropriate
 8912  * interrupt based on system capabilites and user request.
 8913  *
 8914  * The user may force a particular interrupt mode, specify
 8915  * the number of receive queues, specify the method for
 8916  * distribuitng received frames to receive queues, or use
 8917  * the default settings which will automatically select the
 8918  * best supported combination.  In addition, the OS may or
 8919  * may not support certain combinations of these settings.
 8920  * This routine attempts to reconcile the settings requested
 8921  * by the user with the capabilites available from the system
 8922  * to select the optimal combination of features.
 8923  *
 8924  * Returns:
 8925  *   0 = Success, !0 = Failure.
 8926  */
 8927 static int
 8928 bxe_interrupt_alloc(struct bxe_softc *sc)
 8929 {
 8930     int msix_count = 0;
 8931     int msi_count = 0;
 8932     int num_requested = 0;
 8933     int num_allocated = 0;
 8934     int rid, i, j;
 8935     int rc;
 8936 
 8937     /* get the number of available MSI/MSI-X interrupts from the OS */
 8938     if (sc->interrupt_mode > 0) {
 8939         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
 8940             msix_count = pci_msix_count(sc->dev);
 8941         }
 8942 
 8943         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
 8944             msi_count = pci_msi_count(sc->dev);
 8945         }
 8946 
 8947         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
 8948               msi_count, msix_count);
 8949     }
 8950 
 8951     do { /* try allocating MSI-X interrupt resources (at least 2) */
 8952         if (sc->interrupt_mode != INTR_MODE_MSIX) {
 8953             break;
 8954         }
 8955 
 8956         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
 8957             (msix_count < 2)) {
 8958             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
 8959             break;
 8960         }
 8961 
 8962         /* ask for the necessary number of MSI-X vectors */
 8963         num_requested = min((sc->num_queues + 1), msix_count);
 8964 
 8965         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
 8966 
 8967         num_allocated = num_requested;
 8968         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
 8969             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
 8970             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
 8971             break;
 8972         }
 8973 
 8974         if (num_allocated < 2) { /* possible? */
 8975             BLOGE(sc, "MSI-X allocation less than 2!\n");
 8976             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
 8977             pci_release_msi(sc->dev);
 8978             break;
 8979         }
 8980 
 8981         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
 8982               num_requested, num_allocated);
 8983 
 8984         /* best effort so use the number of vectors allocated to us */
 8985         sc->intr_count = num_allocated;
 8986         sc->num_queues = num_allocated - 1;
 8987 
 8988         rid = 1; /* initial resource identifier */
 8989 
 8990         /* allocate the MSI-X vectors */
 8991         for (i = 0; i < num_allocated; i++) {
 8992             sc->intr[i].rid = (rid + i);
 8993 
 8994             if ((sc->intr[i].resource =
 8995                  bus_alloc_resource_any(sc->dev,
 8996                                         SYS_RES_IRQ,
 8997                                         &sc->intr[i].rid,
 8998                                         RF_ACTIVE)) == NULL) {
 8999                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
 9000                       i, (rid + i));
 9001 
 9002                 for (j = (i - 1); j >= 0; j--) {
 9003                     bus_release_resource(sc->dev,
 9004                                          SYS_RES_IRQ,
 9005                                          sc->intr[j].rid,
 9006                                          sc->intr[j].resource);
 9007                 }
 9008 
 9009                 sc->intr_count = 0;
 9010                 sc->num_queues = 0;
 9011                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
 9012                 pci_release_msi(sc->dev);
 9013                 break;
 9014             }
 9015 
 9016             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
 9017         }
 9018     } while (0);
 9019 
 9020     do { /* try allocating MSI vector resources (at least 2) */
 9021         if (sc->interrupt_mode != INTR_MODE_MSI) {
 9022             break;
 9023         }
 9024 
 9025         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
 9026             (msi_count < 1)) {
 9027             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
 9028             break;
 9029         }
 9030 
 9031         /* ask for a single MSI vector */
 9032         num_requested = 1;
 9033 
 9034         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
 9035 
 9036         num_allocated = num_requested;
 9037         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
 9038             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
 9039             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
 9040             break;
 9041         }
 9042 
 9043         if (num_allocated != 1) { /* possible? */
 9044             BLOGE(sc, "MSI allocation is not 1!\n");
 9045             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
 9046             pci_release_msi(sc->dev);
 9047             break;
 9048         }
 9049 
 9050         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
 9051               num_requested, num_allocated);
 9052 
 9053         /* best effort so use the number of vectors allocated to us */
 9054         sc->intr_count = num_allocated;
 9055         sc->num_queues = num_allocated;
 9056 
 9057         rid = 1; /* initial resource identifier */
 9058 
 9059         sc->intr[0].rid = rid;
 9060 
 9061         if ((sc->intr[0].resource =
 9062              bus_alloc_resource_any(sc->dev,
 9063                                     SYS_RES_IRQ,
 9064                                     &sc->intr[0].rid,
 9065                                     RF_ACTIVE)) == NULL) {
 9066             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
 9067             sc->intr_count = 0;
 9068             sc->num_queues = 0;
 9069             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
 9070             pci_release_msi(sc->dev);
 9071             break;
 9072         }
 9073 
 9074         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
 9075     } while (0);
 9076 
 9077     do { /* try allocating INTx vector resources */
 9078         if (sc->interrupt_mode != INTR_MODE_INTX) {
 9079             break;
 9080         }
 9081 
 9082         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
 9083 
 9084         /* only one vector for INTx */
 9085         sc->intr_count = 1;
 9086         sc->num_queues = 1;
 9087 
 9088         rid = 0; /* initial resource identifier */
 9089 
 9090         sc->intr[0].rid = rid;
 9091 
 9092         if ((sc->intr[0].resource =
 9093              bus_alloc_resource_any(sc->dev,
 9094                                     SYS_RES_IRQ,
 9095                                     &sc->intr[0].rid,
 9096                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
 9097             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
 9098             sc->intr_count = 0;
 9099             sc->num_queues = 0;
 9100             sc->interrupt_mode = -1; /* Failed! */
 9101             break;
 9102         }
 9103 
 9104         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
 9105     } while (0);
 9106 
 9107     if (sc->interrupt_mode == -1) {
 9108         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
 9109         rc = 1;
 9110     } else {
 9111         BLOGD(sc, DBG_LOAD,
 9112               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
 9113               sc->interrupt_mode, sc->num_queues);
 9114         rc = 0;
 9115     }
 9116 
 9117     return (rc);
 9118 }
 9119 
 9120 static void
 9121 bxe_interrupt_detach(struct bxe_softc *sc)
 9122 {
 9123     struct bxe_fastpath *fp;
 9124     int i;
 9125 
 9126     /* release interrupt resources */
 9127     for (i = 0; i < sc->intr_count; i++) {
 9128         if (sc->intr[i].resource && sc->intr[i].tag) {
 9129             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
 9130             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
 9131         }
 9132     }
 9133 
 9134     for (i = 0; i < sc->num_queues; i++) {
 9135         fp = &sc->fp[i];
 9136         if (fp->tq) {
 9137             taskqueue_drain(fp->tq, &fp->tq_task);
 9138             taskqueue_drain(fp->tq, &fp->tx_task);
 9139             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
 9140                 NULL))
 9141                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
 9142         }
 9143 
 9144         for (i = 0; i < sc->num_queues; i++) {
 9145             fp = &sc->fp[i];
 9146             if (fp->tq != NULL) {
 9147                 taskqueue_free(fp->tq);
 9148                 fp->tq = NULL;
 9149             }
 9150         }
 9151     }
 9152 
 9153     if (sc->sp_tq) {
 9154         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
 9155         taskqueue_free(sc->sp_tq);
 9156         sc->sp_tq = NULL;
 9157     }
 9158 }
 9159 
 9160 /*
 9161  * Enables interrupts and attach to the ISR.
 9162  *
 9163  * When using multiple MSI/MSI-X vectors the first vector
 9164  * is used for slowpath operations while all remaining
 9165  * vectors are used for fastpath operations.  If only a
 9166  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
 9167  * ISR must look for both slowpath and fastpath completions.
 9168  */
 9169 static int
 9170 bxe_interrupt_attach(struct bxe_softc *sc)
 9171 {
 9172     struct bxe_fastpath *fp;
 9173     int rc = 0;
 9174     int i;
 9175 
 9176     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
 9177              "bxe%d_sp_tq", sc->unit);
 9178     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
 9179     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
 9180                                  taskqueue_thread_enqueue,
 9181                                  &sc->sp_tq);
 9182     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
 9183                             "%s", sc->sp_tq_name);
 9184 
 9185 
 9186     for (i = 0; i < sc->num_queues; i++) {
 9187         fp = &sc->fp[i];
 9188         snprintf(fp->tq_name, sizeof(fp->tq_name),
 9189                  "bxe%d_fp%d_tq", sc->unit, i);
 9190         NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
 9191         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
 9192         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
 9193                                   taskqueue_thread_enqueue,
 9194                                   &fp->tq);
 9195         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
 9196                           bxe_tx_mq_start_deferred, fp);
 9197         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
 9198                                 "%s", fp->tq_name);
 9199     }
 9200 
 9201     /* setup interrupt handlers */
 9202     if (sc->interrupt_mode == INTR_MODE_MSIX) {
 9203         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
 9204 
 9205         /*
 9206          * Setup the interrupt handler. Note that we pass the driver instance
 9207          * to the interrupt handler for the slowpath.
 9208          */
 9209         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
 9210                                  (INTR_TYPE_NET | INTR_MPSAFE),
 9211                                  NULL, bxe_intr_sp, sc,
 9212                                  &sc->intr[0].tag)) != 0) {
 9213             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
 9214             goto bxe_interrupt_attach_exit;
 9215         }
 9216 
 9217         bus_describe_intr(sc->dev, sc->intr[0].resource,
 9218                           sc->intr[0].tag, "sp");
 9219 
 9220         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
 9221 
 9222         /* initialize the fastpath vectors (note the first was used for sp) */
 9223         for (i = 0; i < sc->num_queues; i++) {
 9224             fp = &sc->fp[i];
 9225             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
 9226 
 9227             /*
 9228              * Setup the interrupt handler. Note that we pass the
 9229              * fastpath context to the interrupt handler in this
 9230              * case.
 9231              */
 9232             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
 9233                                      (INTR_TYPE_NET | INTR_MPSAFE),
 9234                                      NULL, bxe_intr_fp, fp,
 9235                                      &sc->intr[i + 1].tag)) != 0) {
 9236                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
 9237                       (i + 1), rc);
 9238                 goto bxe_interrupt_attach_exit;
 9239             }
 9240 
 9241             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
 9242                               sc->intr[i + 1].tag, "fp%02d", i);
 9243 
 9244             /* bind the fastpath instance to a cpu */
 9245             if (sc->num_queues > 1) {
 9246                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
 9247             }
 9248 
 9249             fp->state = BXE_FP_STATE_IRQ;
 9250         }
 9251     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
 9252         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
 9253 
 9254         /*
 9255          * Setup the interrupt handler. Note that we pass the
 9256          * driver instance to the interrupt handler which
 9257          * will handle both the slowpath and fastpath.
 9258          */
 9259         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
 9260                                  (INTR_TYPE_NET | INTR_MPSAFE),
 9261                                  NULL, bxe_intr_legacy, sc,
 9262                                  &sc->intr[0].tag)) != 0) {
 9263             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
 9264             goto bxe_interrupt_attach_exit;
 9265         }
 9266 
 9267     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
 9268         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
 9269 
 9270         /*
 9271          * Setup the interrupt handler. Note that we pass the
 9272          * driver instance to the interrupt handler which
 9273          * will handle both the slowpath and fastpath.
 9274          */
 9275         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
 9276                                  (INTR_TYPE_NET | INTR_MPSAFE),
 9277                                  NULL, bxe_intr_legacy, sc,
 9278                                  &sc->intr[0].tag)) != 0) {
 9279             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
 9280             goto bxe_interrupt_attach_exit;
 9281         }
 9282     }
 9283 
 9284 bxe_interrupt_attach_exit:
 9285 
 9286     return (rc);
 9287 }
 9288 
 9289 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
 9290 static int  bxe_init_hw_common(struct bxe_softc *sc);
 9291 static int  bxe_init_hw_port(struct bxe_softc *sc);
 9292 static int  bxe_init_hw_func(struct bxe_softc *sc);
 9293 static void bxe_reset_common(struct bxe_softc *sc);
 9294 static void bxe_reset_port(struct bxe_softc *sc);
 9295 static void bxe_reset_func(struct bxe_softc *sc);
 9296 static int  bxe_gunzip_init(struct bxe_softc *sc);
 9297 static void bxe_gunzip_end(struct bxe_softc *sc);
 9298 static int  bxe_init_firmware(struct bxe_softc *sc);
 9299 static void bxe_release_firmware(struct bxe_softc *sc);
 9300 
 9301 static struct
 9302 ecore_func_sp_drv_ops bxe_func_sp_drv = {
 9303     .init_hw_cmn_chip = bxe_init_hw_common_chip,
 9304     .init_hw_cmn      = bxe_init_hw_common,
 9305     .init_hw_port     = bxe_init_hw_port,
 9306     .init_hw_func     = bxe_init_hw_func,
 9307 
 9308     .reset_hw_cmn     = bxe_reset_common,
 9309     .reset_hw_port    = bxe_reset_port,
 9310     .reset_hw_func    = bxe_reset_func,
 9311 
 9312     .gunzip_init      = bxe_gunzip_init,
 9313     .gunzip_end       = bxe_gunzip_end,
 9314 
 9315     .init_fw          = bxe_init_firmware,
 9316     .release_fw       = bxe_release_firmware,
 9317 };
 9318 
 9319 static void
 9320 bxe_init_func_obj(struct bxe_softc *sc)
 9321 {
 9322     sc->dmae_ready = 0;
 9323 
 9324     ecore_init_func_obj(sc,
 9325                         &sc->func_obj,
 9326                         BXE_SP(sc, func_rdata),
 9327                         BXE_SP_MAPPING(sc, func_rdata),
 9328                         BXE_SP(sc, func_afex_rdata),
 9329                         BXE_SP_MAPPING(sc, func_afex_rdata),
 9330                         &bxe_func_sp_drv);
 9331 }
 9332 
 9333 static int
 9334 bxe_init_hw(struct bxe_softc *sc,
 9335             uint32_t         load_code)
 9336 {
 9337     struct ecore_func_state_params func_params = { NULL };
 9338     int rc;
 9339 
 9340     /* prepare the parameters for function state transitions */
 9341     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
 9342 
 9343     func_params.f_obj = &sc->func_obj;
 9344     func_params.cmd = ECORE_F_CMD_HW_INIT;
 9345 
 9346     func_params.params.hw_init.load_phase = load_code;
 9347 
 9348     /*
 9349      * Via a plethora of function pointers, we will eventually reach
 9350      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
 9351      */
 9352     rc = ecore_func_state_change(sc, &func_params);
 9353 
 9354     return (rc);
 9355 }
 9356 
 9357 static void
 9358 bxe_fill(struct bxe_softc *sc,
 9359          uint32_t         addr,
 9360          int              fill,
 9361          uint32_t         len)
 9362 {
 9363     uint32_t i;
 9364 
 9365     if (!(len % 4) && !(addr % 4)) {
 9366         for (i = 0; i < len; i += 4) {
 9367             REG_WR(sc, (addr + i), fill);
 9368         }
 9369     } else {
 9370         for (i = 0; i < len; i++) {
 9371             REG_WR8(sc, (addr + i), fill);
 9372         }
 9373     }
 9374 }
 9375 
 9376 /* writes FP SP data to FW - data_size in dwords */
 9377 static void
 9378 bxe_wr_fp_sb_data(struct bxe_softc *sc,
 9379                   int              fw_sb_id,
 9380                   uint32_t         *sb_data_p,
 9381                   uint32_t         data_size)
 9382 {
 9383     int index;
 9384 
 9385     for (index = 0; index < data_size; index++) {
 9386         REG_WR(sc,
 9387                (BAR_CSTRORM_INTMEM +
 9388                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
 9389                 (sizeof(uint32_t) * index)),
 9390                *(sb_data_p + index));
 9391     }
 9392 }
 9393 
 9394 static void
 9395 bxe_zero_fp_sb(struct bxe_softc *sc,
 9396                int              fw_sb_id)
 9397 {
 9398     struct hc_status_block_data_e2 sb_data_e2;
 9399     struct hc_status_block_data_e1x sb_data_e1x;
 9400     uint32_t *sb_data_p;
 9401     uint32_t data_size = 0;
 9402 
 9403     if (!CHIP_IS_E1x(sc)) {
 9404         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
 9405         sb_data_e2.common.state = SB_DISABLED;
 9406         sb_data_e2.common.p_func.vf_valid = FALSE;
 9407         sb_data_p = (uint32_t *)&sb_data_e2;
 9408         data_size = (sizeof(struct hc_status_block_data_e2) /
 9409                      sizeof(uint32_t));
 9410     } else {
 9411         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
 9412         sb_data_e1x.common.state = SB_DISABLED;
 9413         sb_data_e1x.common.p_func.vf_valid = FALSE;
 9414         sb_data_p = (uint32_t *)&sb_data_e1x;
 9415         data_size = (sizeof(struct hc_status_block_data_e1x) /
 9416                      sizeof(uint32_t));
 9417     }
 9418 
 9419     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
 9420 
 9421     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
 9422              0, CSTORM_STATUS_BLOCK_SIZE);
 9423     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
 9424              0, CSTORM_SYNC_BLOCK_SIZE);
 9425 }
 9426 
 9427 static void
 9428 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
 9429                   struct hc_sp_status_block_data *sp_sb_data)
 9430 {
 9431     int i;
 9432 
 9433     for (i = 0;
 9434          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
 9435          i++) {
 9436         REG_WR(sc,
 9437                (BAR_CSTRORM_INTMEM +
 9438                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
 9439                 (i * sizeof(uint32_t))),
 9440                *((uint32_t *)sp_sb_data + i));
 9441     }
 9442 }
 9443 
 9444 static void
 9445 bxe_zero_sp_sb(struct bxe_softc *sc)
 9446 {
 9447     struct hc_sp_status_block_data sp_sb_data;
 9448 
 9449     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
 9450 
 9451     sp_sb_data.state           = SB_DISABLED;
 9452     sp_sb_data.p_func.vf_valid = FALSE;
 9453 
 9454     bxe_wr_sp_sb_data(sc, &sp_sb_data);
 9455 
 9456     bxe_fill(sc,
 9457              (BAR_CSTRORM_INTMEM +
 9458               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
 9459               0, CSTORM_SP_STATUS_BLOCK_SIZE);
 9460     bxe_fill(sc,
 9461              (BAR_CSTRORM_INTMEM +
 9462               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
 9463               0, CSTORM_SP_SYNC_BLOCK_SIZE);
 9464 }
 9465 
 9466 static void
 9467 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
 9468                              int                       igu_sb_id,
 9469                              int                       igu_seg_id)
 9470 {
 9471     hc_sm->igu_sb_id      = igu_sb_id;
 9472     hc_sm->igu_seg_id     = igu_seg_id;
 9473     hc_sm->timer_value    = 0xFF;
 9474     hc_sm->time_to_expire = 0xFFFFFFFF;
 9475 }
 9476 
 9477 static void
 9478 bxe_map_sb_state_machines(struct hc_index_data *index_data)
 9479 {
 9480     /* zero out state machine indices */
 9481 
 9482     /* rx indices */
 9483     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
 9484 
 9485     /* tx indices */
 9486     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
 9487     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
 9488     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
 9489     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
 9490 
 9491     /* map indices */
 9492 
 9493     /* rx indices */
 9494     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
 9495         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
 9496 
 9497     /* tx indices */
 9498     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
 9499         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
 9500     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
 9501         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
 9502     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
 9503         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
 9504     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
 9505         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
 9506 }
 9507 
 9508 static void
 9509 bxe_init_sb(struct bxe_softc *sc,
 9510             bus_addr_t       busaddr,
 9511             int              vfid,
 9512             uint8_t          vf_valid,
 9513             int              fw_sb_id,
 9514             int              igu_sb_id)
 9515 {
 9516     struct hc_status_block_data_e2  sb_data_e2;
 9517     struct hc_status_block_data_e1x sb_data_e1x;
 9518     struct hc_status_block_sm       *hc_sm_p;
 9519     uint32_t *sb_data_p;
 9520     int igu_seg_id;
 9521     int data_size;
 9522 
 9523     if (CHIP_INT_MODE_IS_BC(sc)) {
 9524         igu_seg_id = HC_SEG_ACCESS_NORM;
 9525     } else {
 9526         igu_seg_id = IGU_SEG_ACCESS_NORM;
 9527     }
 9528 
 9529     bxe_zero_fp_sb(sc, fw_sb_id);
 9530 
 9531     if (!CHIP_IS_E1x(sc)) {
 9532         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
 9533         sb_data_e2.common.state = SB_ENABLED;
 9534         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
 9535         sb_data_e2.common.p_func.vf_id = vfid;
 9536         sb_data_e2.common.p_func.vf_valid = vf_valid;
 9537         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
 9538         sb_data_e2.common.same_igu_sb_1b = TRUE;
 9539         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
 9540         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
 9541         hc_sm_p = sb_data_e2.common.state_machine;
 9542         sb_data_p = (uint32_t *)&sb_data_e2;
 9543         data_size = (sizeof(struct hc_status_block_data_e2) /
 9544                      sizeof(uint32_t));
 9545         bxe_map_sb_state_machines(sb_data_e2.index_data);
 9546     } else {
 9547         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
 9548         sb_data_e1x.common.state = SB_ENABLED;
 9549         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
 9550         sb_data_e1x.common.p_func.vf_id = 0xff;
 9551         sb_data_e1x.common.p_func.vf_valid = FALSE;
 9552         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
 9553         sb_data_e1x.common.same_igu_sb_1b = TRUE;
 9554         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
 9555         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
 9556         hc_sm_p = sb_data_e1x.common.state_machine;
 9557         sb_data_p = (uint32_t *)&sb_data_e1x;
 9558         data_size = (sizeof(struct hc_status_block_data_e1x) /
 9559                      sizeof(uint32_t));
 9560         bxe_map_sb_state_machines(sb_data_e1x.index_data);
 9561     }
 9562 
 9563     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
 9564     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
 9565 
 9566     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
 9567 
 9568     /* write indices to HW - PCI guarantees endianity of regpairs */
 9569     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
 9570 }
 9571 
 9572 static inline uint8_t
 9573 bxe_fp_qzone_id(struct bxe_fastpath *fp)
 9574 {
 9575     if (CHIP_IS_E1x(fp->sc)) {
 9576         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
 9577     } else {
 9578         return (fp->cl_id);
 9579     }
 9580 }
 9581 
 9582 static inline uint32_t
 9583 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
 9584                            struct bxe_fastpath *fp)
 9585 {
 9586     uint32_t offset = BAR_USTRORM_INTMEM;
 9587 
 9588     if (!CHIP_IS_E1x(sc)) {
 9589         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
 9590     } else {
 9591         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
 9592     }
 9593 
 9594     return (offset);
 9595 }
 9596 
 9597 static void
 9598 bxe_init_eth_fp(struct bxe_softc *sc,
 9599                 int              idx)
 9600 {
 9601     struct bxe_fastpath *fp = &sc->fp[idx];
 9602     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
 9603     unsigned long q_type = 0;
 9604     int cos;
 9605 
 9606     fp->sc    = sc;
 9607     fp->index = idx;
 9608 
 9609     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
 9610     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
 9611 
 9612     fp->cl_id = (CHIP_IS_E1x(sc)) ?
 9613                     (SC_L_ID(sc) + idx) :
 9614                     /* want client ID same as IGU SB ID for non-E1 */
 9615                     fp->igu_sb_id;
 9616     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
 9617 
 9618     /* setup sb indices */
 9619     if (!CHIP_IS_E1x(sc)) {
 9620         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
 9621         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
 9622     } else {
 9623         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
 9624         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
 9625     }
 9626 
 9627     /* init shortcut */
 9628     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
 9629 
 9630     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
 9631 
 9632     /*
 9633      * XXX If multiple CoS is ever supported then each fastpath structure
 9634      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
 9635      */
 9636     for (cos = 0; cos < sc->max_cos; cos++) {
 9637         cids[cos] = idx;
 9638     }
 9639     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
 9640 
 9641     /* nothing more for a VF to do */
 9642     if (IS_VF(sc)) {
 9643         return;
 9644     }
 9645 
 9646     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
 9647                 fp->fw_sb_id, fp->igu_sb_id);
 9648 
 9649     bxe_update_fp_sb_idx(fp);
 9650 
 9651     /* Configure Queue State object */
 9652     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
 9653     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
 9654 
 9655     ecore_init_queue_obj(sc,
 9656                          &sc->sp_objs[idx].q_obj,
 9657                          fp->cl_id,
 9658                          cids,
 9659                          sc->max_cos,
 9660                          SC_FUNC(sc),
 9661                          BXE_SP(sc, q_rdata),
 9662                          BXE_SP_MAPPING(sc, q_rdata),
 9663                          q_type);
 9664 
 9665     /* configure classification DBs */
 9666     ecore_init_mac_obj(sc,
 9667                        &sc->sp_objs[idx].mac_obj,
 9668                        fp->cl_id,
 9669                        idx,
 9670                        SC_FUNC(sc),
 9671                        BXE_SP(sc, mac_rdata),
 9672                        BXE_SP_MAPPING(sc, mac_rdata),
 9673                        ECORE_FILTER_MAC_PENDING,
 9674                        &sc->sp_state,
 9675                        ECORE_OBJ_TYPE_RX_TX,
 9676                        &sc->macs_pool);
 9677 
 9678     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
 9679           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
 9680 }
 9681 
 9682 static inline void
 9683 bxe_update_rx_prod(struct bxe_softc    *sc,
 9684                    struct bxe_fastpath *fp,
 9685                    uint16_t            rx_bd_prod,
 9686                    uint16_t            rx_cq_prod,
 9687                    uint16_t            rx_sge_prod)
 9688 {
 9689     struct ustorm_eth_rx_producers rx_prods = { 0 };
 9690     uint32_t i;
 9691 
 9692     /* update producers */
 9693     rx_prods.bd_prod  = rx_bd_prod;
 9694     rx_prods.cqe_prod = rx_cq_prod;
 9695     rx_prods.sge_prod = rx_sge_prod;
 9696 
 9697     /*
 9698      * Make sure that the BD and SGE data is updated before updating the
 9699      * producers since FW might read the BD/SGE right after the producer
 9700      * is updated.
 9701      * This is only applicable for weak-ordered memory model archs such
 9702      * as IA-64. The following barrier is also mandatory since FW will
 9703      * assumes BDs must have buffers.
 9704      */
 9705     wmb();
 9706 
 9707     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
 9708         REG_WR(sc,
 9709                (fp->ustorm_rx_prods_offset + (i * 4)),
 9710                ((uint32_t *)&rx_prods)[i]);
 9711     }
 9712 
 9713     wmb(); /* keep prod updates ordered */
 9714 
 9715     BLOGD(sc, DBG_RX,
 9716           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
 9717           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
 9718 }
 9719 
 9720 static void
 9721 bxe_init_rx_rings(struct bxe_softc *sc)
 9722 {
 9723     struct bxe_fastpath *fp;
 9724     int i;
 9725 
 9726     for (i = 0; i < sc->num_queues; i++) {
 9727         fp = &sc->fp[i];
 9728 
 9729         fp->rx_bd_cons = 0;
 9730 
 9731         /*
 9732          * Activate the BD ring...
 9733          * Warning, this will generate an interrupt (to the TSTORM)
 9734          * so this can only be done after the chip is initialized
 9735          */
 9736         bxe_update_rx_prod(sc, fp,
 9737                            fp->rx_bd_prod,
 9738                            fp->rx_cq_prod,
 9739                            fp->rx_sge_prod);
 9740 
 9741         if (i != 0) {
 9742             continue;
 9743         }
 9744 
 9745         if (CHIP_IS_E1(sc)) {
 9746             REG_WR(sc,
 9747                    (BAR_USTRORM_INTMEM +
 9748                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
 9749                    U64_LO(fp->rcq_dma.paddr));
 9750             REG_WR(sc,
 9751                    (BAR_USTRORM_INTMEM +
 9752                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
 9753                    U64_HI(fp->rcq_dma.paddr));
 9754         }
 9755     }
 9756 }
 9757 
 9758 static void
 9759 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
 9760 {
 9761     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
 9762     fp->tx_db.data.zero_fill1 = 0;
 9763     fp->tx_db.data.prod = 0;
 9764 
 9765     fp->tx_pkt_prod = 0;
 9766     fp->tx_pkt_cons = 0;
 9767     fp->tx_bd_prod = 0;
 9768     fp->tx_bd_cons = 0;
 9769     fp->eth_q_stats.tx_pkts = 0;
 9770 }
 9771 
 9772 static inline void
 9773 bxe_init_tx_rings(struct bxe_softc *sc)
 9774 {
 9775     int i;
 9776 
 9777     for (i = 0; i < sc->num_queues; i++) {
 9778         bxe_init_tx_ring_one(&sc->fp[i]);
 9779     }
 9780 }
 9781 
 9782 static void
 9783 bxe_init_def_sb(struct bxe_softc *sc)
 9784 {
 9785     struct host_sp_status_block *def_sb = sc->def_sb;
 9786     bus_addr_t mapping = sc->def_sb_dma.paddr;
 9787     int igu_sp_sb_index;
 9788     int igu_seg_id;
 9789     int port = SC_PORT(sc);
 9790     int func = SC_FUNC(sc);
 9791     int reg_offset, reg_offset_en5;
 9792     uint64_t section;
 9793     int index, sindex;
 9794     struct hc_sp_status_block_data sp_sb_data;
 9795 
 9796     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
 9797 
 9798     if (CHIP_INT_MODE_IS_BC(sc)) {
 9799         igu_sp_sb_index = DEF_SB_IGU_ID;
 9800         igu_seg_id = HC_SEG_ACCESS_DEF;
 9801     } else {
 9802         igu_sp_sb_index = sc->igu_dsb_id;
 9803         igu_seg_id = IGU_SEG_ACCESS_DEF;
 9804     }
 9805 
 9806     /* attentions */
 9807     section = ((uint64_t)mapping +
 9808                offsetof(struct host_sp_status_block, atten_status_block));
 9809     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
 9810     sc->attn_state = 0;
 9811 
 9812     reg_offset = (port) ?
 9813                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
 9814                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
 9815     reg_offset_en5 = (port) ?
 9816                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
 9817                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
 9818 
 9819     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
 9820         /* take care of sig[0]..sig[4] */
 9821         for (sindex = 0; sindex < 4; sindex++) {
 9822             sc->attn_group[index].sig[sindex] =
 9823                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
 9824         }
 9825 
 9826         if (!CHIP_IS_E1x(sc)) {
 9827             /*
 9828              * enable5 is separate from the rest of the registers,
 9829              * and the address skip is 4 and not 16 between the
 9830              * different groups
 9831              */
 9832             sc->attn_group[index].sig[4] =
 9833                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
 9834         } else {
 9835             sc->attn_group[index].sig[4] = 0;
 9836         }
 9837     }
 9838 
 9839     if (sc->devinfo.int_block == INT_BLOCK_HC) {
 9840         reg_offset = (port) ?
 9841                          HC_REG_ATTN_MSG1_ADDR_L :
 9842                          HC_REG_ATTN_MSG0_ADDR_L;
 9843         REG_WR(sc, reg_offset, U64_LO(section));
 9844         REG_WR(sc, (reg_offset + 4), U64_HI(section));
 9845     } else if (!CHIP_IS_E1x(sc)) {
 9846         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
 9847         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
 9848     }
 9849 
 9850     section = ((uint64_t)mapping +
 9851                offsetof(struct host_sp_status_block, sp_sb));
 9852 
 9853     bxe_zero_sp_sb(sc);
 9854 
 9855     /* PCI guarantees endianity of regpair */
 9856     sp_sb_data.state           = SB_ENABLED;
 9857     sp_sb_data.host_sb_addr.lo = U64_LO(section);
 9858     sp_sb_data.host_sb_addr.hi = U64_HI(section);
 9859     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
 9860     sp_sb_data.igu_seg_id      = igu_seg_id;
 9861     sp_sb_data.p_func.pf_id    = func;
 9862     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
 9863     sp_sb_data.p_func.vf_id    = 0xff;
 9864 
 9865     bxe_wr_sp_sb_data(sc, &sp_sb_data);
 9866 
 9867     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
 9868 }
 9869 
 9870 static void
 9871 bxe_init_sp_ring(struct bxe_softc *sc)
 9872 {
 9873     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
 9874     sc->spq_prod_idx = 0;
 9875     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
 9876     sc->spq_prod_bd = sc->spq;
 9877     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
 9878 }
 9879 
 9880 static void
 9881 bxe_init_eq_ring(struct bxe_softc *sc)
 9882 {
 9883     union event_ring_elem *elem;
 9884     int i;
 9885 
 9886     for (i = 1; i <= NUM_EQ_PAGES; i++) {
 9887         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
 9888 
 9889         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
 9890                                                  BCM_PAGE_SIZE *
 9891                                                  (i % NUM_EQ_PAGES)));
 9892         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
 9893                                                  BCM_PAGE_SIZE *
 9894                                                  (i % NUM_EQ_PAGES)));
 9895     }
 9896 
 9897     sc->eq_cons    = 0;
 9898     sc->eq_prod    = NUM_EQ_DESC;
 9899     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
 9900 
 9901     atomic_store_rel_long(&sc->eq_spq_left,
 9902                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
 9903                                NUM_EQ_DESC) - 1));
 9904 }
 9905 
 9906 static void
 9907 bxe_init_internal_common(struct bxe_softc *sc)
 9908 {
 9909     int i;
 9910 
 9911     /*
 9912      * Zero this manually as its initialization is currently missing
 9913      * in the initTool.
 9914      */
 9915     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
 9916         REG_WR(sc,
 9917                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
 9918                0);
 9919     }
 9920 
 9921     if (!CHIP_IS_E1x(sc)) {
 9922         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
 9923                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
 9924     }
 9925 }
 9926 
 9927 static void
 9928 bxe_init_internal(struct bxe_softc *sc,
 9929                   uint32_t         load_code)
 9930 {
 9931     switch (load_code) {
 9932     case FW_MSG_CODE_DRV_LOAD_COMMON:
 9933     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
 9934         bxe_init_internal_common(sc);
 9935         /* no break */
 9936 
 9937     case FW_MSG_CODE_DRV_LOAD_PORT:
 9938         /* nothing to do */
 9939         /* no break */
 9940 
 9941     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
 9942         /* internal memory per function is initialized inside bxe_pf_init */
 9943         break;
 9944 
 9945     default:
 9946         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
 9947         break;
 9948     }
 9949 }
 9950 
 9951 static void
 9952 storm_memset_func_cfg(struct bxe_softc                         *sc,
 9953                       struct tstorm_eth_function_common_config *tcfg,
 9954                       uint16_t                                  abs_fid)
 9955 {
 9956     uint32_t addr;
 9957     size_t size;
 9958 
 9959     addr = (BAR_TSTRORM_INTMEM +
 9960             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
 9961     size = sizeof(struct tstorm_eth_function_common_config);
 9962     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
 9963 }
 9964 
 9965 static void
 9966 bxe_func_init(struct bxe_softc            *sc,
 9967               struct bxe_func_init_params *p)
 9968 {
 9969     struct tstorm_eth_function_common_config tcfg = { 0 };
 9970 
 9971     if (CHIP_IS_E1x(sc)) {
 9972         storm_memset_func_cfg(sc, &tcfg, p->func_id);
 9973     }
 9974 
 9975     /* Enable the function in the FW */
 9976     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
 9977     storm_memset_func_en(sc, p->func_id, 1);
 9978 
 9979     /* spq */
 9980     if (p->func_flgs & FUNC_FLG_SPQ) {
 9981         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
 9982         REG_WR(sc,
 9983                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
 9984                p->spq_prod);
 9985     }
 9986 }
 9987 
 9988 /*
 9989  * Calculates the sum of vn_min_rates.
 9990  * It's needed for further normalizing of the min_rates.
 9991  * Returns:
 9992  *   sum of vn_min_rates.
 9993  *     or
 9994  *   0 - if all the min_rates are 0.
 9995  * In the later case fainess algorithm should be deactivated.
 9996  * If all min rates are not zero then those that are zeroes will be set to 1.
 9997  */
 9998 static void
 9999 bxe_calc_vn_min(struct bxe_softc       *sc,
10000                 struct cmng_init_input *input)
10001 {
10002     uint32_t vn_cfg;
10003     uint32_t vn_min_rate;
10004     int all_zero = 1;
10005     int vn;
10006 
10007     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10008         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10009         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10010                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10011 
10012         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10013             /* skip hidden VNs */
10014             vn_min_rate = 0;
10015         } else if (!vn_min_rate) {
10016             /* If min rate is zero - set it to 100 */
10017             vn_min_rate = DEF_MIN_RATE;
10018         } else {
10019             all_zero = 0;
10020         }
10021 
10022         input->vnic_min_rate[vn] = vn_min_rate;
10023     }
10024 
10025     /* if ETS or all min rates are zeros - disable fairness */
10026     if (BXE_IS_ETS_ENABLED(sc)) {
10027         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10028         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10029     } else if (all_zero) {
10030         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10031         BLOGD(sc, DBG_LOAD,
10032               "Fariness disabled (all MIN values are zeroes)\n");
10033     } else {
10034         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10035     }
10036 }
10037 
10038 static inline uint16_t
10039 bxe_extract_max_cfg(struct bxe_softc *sc,
10040                     uint32_t         mf_cfg)
10041 {
10042     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10043                         FUNC_MF_CFG_MAX_BW_SHIFT);
10044 
10045     if (!max_cfg) {
10046         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10047         max_cfg = 100;
10048     }
10049 
10050     return (max_cfg);
10051 }
10052 
10053 static void
10054 bxe_calc_vn_max(struct bxe_softc       *sc,
10055                 int                    vn,
10056                 struct cmng_init_input *input)
10057 {
10058     uint16_t vn_max_rate;
10059     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10060     uint32_t max_cfg;
10061 
10062     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10063         vn_max_rate = 0;
10064     } else {
10065         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10066 
10067         if (IS_MF_SI(sc)) {
10068             /* max_cfg in percents of linkspeed */
10069             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10070         } else { /* SD modes */
10071             /* max_cfg is absolute in 100Mb units */
10072             vn_max_rate = (max_cfg * 100);
10073         }
10074     }
10075 
10076     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10077 
10078     input->vnic_max_rate[vn] = vn_max_rate;
10079 }
10080 
10081 static void
10082 bxe_cmng_fns_init(struct bxe_softc *sc,
10083                   uint8_t          read_cfg,
10084                   uint8_t          cmng_type)
10085 {
10086     struct cmng_init_input input;
10087     int vn;
10088 
10089     memset(&input, 0, sizeof(struct cmng_init_input));
10090 
10091     input.port_rate = sc->link_vars.line_speed;
10092 
10093     if (cmng_type == CMNG_FNS_MINMAX) {
10094         /* read mf conf from shmem */
10095         if (read_cfg) {
10096             bxe_read_mf_cfg(sc);
10097         }
10098 
10099         /* get VN min rate and enable fairness if not 0 */
10100         bxe_calc_vn_min(sc, &input);
10101 
10102         /* get VN max rate */
10103         if (sc->port.pmf) {
10104             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10105                 bxe_calc_vn_max(sc, vn, &input);
10106             }
10107         }
10108 
10109         /* always enable rate shaping and fairness */
10110         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10111 
10112         ecore_init_cmng(&input, &sc->cmng);
10113         return;
10114     }
10115 
10116     /* rate shaping and fairness are disabled */
10117     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10118 }
10119 
10120 static int
10121 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10122 {
10123     if (CHIP_REV_IS_SLOW(sc)) {
10124         return (CMNG_FNS_NONE);
10125     }
10126 
10127     if (IS_MF(sc)) {
10128         return (CMNG_FNS_MINMAX);
10129     }
10130 
10131     return (CMNG_FNS_NONE);
10132 }
10133 
10134 static void
10135 storm_memset_cmng(struct bxe_softc *sc,
10136                   struct cmng_init *cmng,
10137                   uint8_t          port)
10138 {
10139     int vn;
10140     int func;
10141     uint32_t addr;
10142     size_t size;
10143 
10144     addr = (BAR_XSTRORM_INTMEM +
10145             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10146     size = sizeof(struct cmng_struct_per_port);
10147     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10148 
10149     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10150         func = func_by_vn(sc, vn);
10151 
10152         addr = (BAR_XSTRORM_INTMEM +
10153                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10154         size = sizeof(struct rate_shaping_vars_per_vn);
10155         ecore_storm_memset_struct(sc, addr, size,
10156                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10157 
10158         addr = (BAR_XSTRORM_INTMEM +
10159                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10160         size = sizeof(struct fairness_vars_per_vn);
10161         ecore_storm_memset_struct(sc, addr, size,
10162                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10163     }
10164 }
10165 
10166 static void
10167 bxe_pf_init(struct bxe_softc *sc)
10168 {
10169     struct bxe_func_init_params func_init = { 0 };
10170     struct event_ring_data eq_data = { { 0 } };
10171     uint16_t flags;
10172 
10173     if (!CHIP_IS_E1x(sc)) {
10174         /* reset IGU PF statistics: MSIX + ATTN */
10175         /* PF */
10176         REG_WR(sc,
10177                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10178                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10179                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10180                0);
10181         /* ATTN */
10182         REG_WR(sc,
10183                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10184                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10185                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10186                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10187                0);
10188     }
10189 
10190     /* function setup flags */
10191     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10192 
10193     /*
10194      * This flag is relevant for E1x only.
10195      * E2 doesn't have a TPA configuration in a function level.
10196      */
10197     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10198 
10199     func_init.func_flgs = flags;
10200     func_init.pf_id     = SC_FUNC(sc);
10201     func_init.func_id   = SC_FUNC(sc);
10202     func_init.spq_map   = sc->spq_dma.paddr;
10203     func_init.spq_prod  = sc->spq_prod_idx;
10204 
10205     bxe_func_init(sc, &func_init);
10206 
10207     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10208 
10209     /*
10210      * Congestion management values depend on the link rate.
10211      * There is no active link so initial link rate is set to 10Gbps.
10212      * When the link comes up the congestion management values are
10213      * re-calculated according to the actual link rate.
10214      */
10215     sc->link_vars.line_speed = SPEED_10000;
10216     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10217 
10218     /* Only the PMF sets the HW */
10219     if (sc->port.pmf) {
10220         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10221     }
10222 
10223     /* init Event Queue - PCI bus guarantees correct endainity */
10224     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10225     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10226     eq_data.producer     = sc->eq_prod;
10227     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10228     eq_data.sb_id        = DEF_SB_ID;
10229     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10230 }
10231 
10232 static void
10233 bxe_hc_int_enable(struct bxe_softc *sc)
10234 {
10235     int port = SC_PORT(sc);
10236     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10237     uint32_t val = REG_RD(sc, addr);
10238     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10239     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10240                            (sc->intr_count == 1)) ? TRUE : FALSE;
10241     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10242 
10243     if (msix) {
10244         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10245                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10246         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10247                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10248         if (single_msix) {
10249             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10250         }
10251     } else if (msi) {
10252         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10253         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10254                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10255                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10256     } else {
10257         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10258                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10259                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10260                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10261 
10262         if (!CHIP_IS_E1(sc)) {
10263             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10264                   val, port, addr);
10265 
10266             REG_WR(sc, addr, val);
10267 
10268             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10269         }
10270     }
10271 
10272     if (CHIP_IS_E1(sc)) {
10273         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10274     }
10275 
10276     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10277           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10278 
10279     REG_WR(sc, addr, val);
10280 
10281     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10282     mb();
10283 
10284     if (!CHIP_IS_E1(sc)) {
10285         /* init leading/trailing edge */
10286         if (IS_MF(sc)) {
10287             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10288             if (sc->port.pmf) {
10289                 /* enable nig and gpio3 attention */
10290                 val |= 0x1100;
10291             }
10292         } else {
10293             val = 0xffff;
10294         }
10295 
10296         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10297         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10298     }
10299 
10300     /* make sure that interrupts are indeed enabled from here on */
10301     mb();
10302 }
10303 
10304 static void
10305 bxe_igu_int_enable(struct bxe_softc *sc)
10306 {
10307     uint32_t val;
10308     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10309     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10310                            (sc->intr_count == 1)) ? TRUE : FALSE;
10311     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10312 
10313     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10314 
10315     if (msix) {
10316         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10317                  IGU_PF_CONF_SINGLE_ISR_EN);
10318         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10319                 IGU_PF_CONF_ATTN_BIT_EN);
10320         if (single_msix) {
10321             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10322         }
10323     } else if (msi) {
10324         val &= ~IGU_PF_CONF_INT_LINE_EN;
10325         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10326                 IGU_PF_CONF_ATTN_BIT_EN |
10327                 IGU_PF_CONF_SINGLE_ISR_EN);
10328     } else {
10329         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10330         val |= (IGU_PF_CONF_INT_LINE_EN |
10331                 IGU_PF_CONF_ATTN_BIT_EN |
10332                 IGU_PF_CONF_SINGLE_ISR_EN);
10333     }
10334 
10335     /* clean previous status - need to configure igu prior to ack*/
10336     if ((!msix) || single_msix) {
10337         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10338         bxe_ack_int(sc);
10339     }
10340 
10341     val |= IGU_PF_CONF_FUNC_EN;
10342 
10343     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10344           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10345 
10346     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10347 
10348     mb();
10349 
10350     /* init leading/trailing edge */
10351     if (IS_MF(sc)) {
10352         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10353         if (sc->port.pmf) {
10354             /* enable nig and gpio3 attention */
10355             val |= 0x1100;
10356         }
10357     } else {
10358         val = 0xffff;
10359     }
10360 
10361     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10362     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10363 
10364     /* make sure that interrupts are indeed enabled from here on */
10365     mb();
10366 }
10367 
10368 static void
10369 bxe_int_enable(struct bxe_softc *sc)
10370 {
10371     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10372         bxe_hc_int_enable(sc);
10373     } else {
10374         bxe_igu_int_enable(sc);
10375     }
10376 }
10377 
10378 static void
10379 bxe_hc_int_disable(struct bxe_softc *sc)
10380 {
10381     int port = SC_PORT(sc);
10382     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10383     uint32_t val = REG_RD(sc, addr);
10384 
10385     /*
10386      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10387      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10388      * block
10389      */
10390     if (CHIP_IS_E1(sc)) {
10391         /*
10392          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10393          * to prevent from HC sending interrupts after we exit the function
10394          */
10395         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10396 
10397         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10398                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10399                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10400     } else {
10401         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10402                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10403                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10404                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10405     }
10406 
10407     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10408 
10409     /* flush all outstanding writes */
10410     mb();
10411 
10412     REG_WR(sc, addr, val);
10413     if (REG_RD(sc, addr) != val) {
10414         BLOGE(sc, "proper val not read from HC IGU!\n");
10415     }
10416 }
10417 
10418 static void
10419 bxe_igu_int_disable(struct bxe_softc *sc)
10420 {
10421     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10422 
10423     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10424              IGU_PF_CONF_INT_LINE_EN |
10425              IGU_PF_CONF_ATTN_BIT_EN);
10426 
10427     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10428 
10429     /* flush all outstanding writes */
10430     mb();
10431 
10432     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10433     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10434         BLOGE(sc, "proper val not read from IGU!\n");
10435     }
10436 }
10437 
10438 static void
10439 bxe_int_disable(struct bxe_softc *sc)
10440 {
10441     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10442         bxe_hc_int_disable(sc);
10443     } else {
10444         bxe_igu_int_disable(sc);
10445     }
10446 }
10447 
10448 static void
10449 bxe_nic_init(struct bxe_softc *sc,
10450              int              load_code)
10451 {
10452     int i;
10453 
10454     for (i = 0; i < sc->num_queues; i++) {
10455         bxe_init_eth_fp(sc, i);
10456     }
10457 
10458     rmb(); /* ensure status block indices were read */
10459 
10460     bxe_init_rx_rings(sc);
10461     bxe_init_tx_rings(sc);
10462 
10463     if (IS_VF(sc)) {
10464         return;
10465     }
10466 
10467     /* initialize MOD_ABS interrupts */
10468     elink_init_mod_abs_int(sc, &sc->link_vars,
10469                            sc->devinfo.chip_id,
10470                            sc->devinfo.shmem_base,
10471                            sc->devinfo.shmem2_base,
10472                            SC_PORT(sc));
10473 
10474     bxe_init_def_sb(sc);
10475     bxe_update_dsb_idx(sc);
10476     bxe_init_sp_ring(sc);
10477     bxe_init_eq_ring(sc);
10478     bxe_init_internal(sc, load_code);
10479     bxe_pf_init(sc);
10480     bxe_stats_init(sc);
10481 
10482     /* flush all before enabling interrupts */
10483     mb();
10484 
10485     bxe_int_enable(sc);
10486 
10487     /* check for SPIO5 */
10488     bxe_attn_int_deasserted0(sc,
10489                              REG_RD(sc,
10490                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10491                                      SC_PORT(sc)*4)) &
10492                              AEU_INPUTS_ATTN_BITS_SPIO5);
10493 }
10494 
10495 static inline void
10496 bxe_init_objs(struct bxe_softc *sc)
10497 {
10498     /* mcast rules must be added to tx if tx switching is enabled */
10499     ecore_obj_type o_type =
10500         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10501                                          ECORE_OBJ_TYPE_RX;
10502 
10503     /* RX_MODE controlling object */
10504     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10505 
10506     /* multicast configuration controlling object */
10507     ecore_init_mcast_obj(sc,
10508                          &sc->mcast_obj,
10509                          sc->fp[0].cl_id,
10510                          sc->fp[0].index,
10511                          SC_FUNC(sc),
10512                          SC_FUNC(sc),
10513                          BXE_SP(sc, mcast_rdata),
10514                          BXE_SP_MAPPING(sc, mcast_rdata),
10515                          ECORE_FILTER_MCAST_PENDING,
10516                          &sc->sp_state,
10517                          o_type);
10518 
10519     /* Setup CAM credit pools */
10520     ecore_init_mac_credit_pool(sc,
10521                                &sc->macs_pool,
10522                                SC_FUNC(sc),
10523                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10524                                                  VNICS_PER_PATH(sc));
10525 
10526     ecore_init_vlan_credit_pool(sc,
10527                                 &sc->vlans_pool,
10528                                 SC_ABS_FUNC(sc) >> 1,
10529                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10530                                                   VNICS_PER_PATH(sc));
10531 
10532     /* RSS configuration object */
10533     ecore_init_rss_config_obj(sc,
10534                               &sc->rss_conf_obj,
10535                               sc->fp[0].cl_id,
10536                               sc->fp[0].index,
10537                               SC_FUNC(sc),
10538                               SC_FUNC(sc),
10539                               BXE_SP(sc, rss_rdata),
10540                               BXE_SP_MAPPING(sc, rss_rdata),
10541                               ECORE_FILTER_RSS_CONF_PENDING,
10542                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10543 }
10544 
10545 /*
10546  * Initialize the function. This must be called before sending CLIENT_SETUP
10547  * for the first client.
10548  */
10549 static inline int
10550 bxe_func_start(struct bxe_softc *sc)
10551 {
10552     struct ecore_func_state_params func_params = { NULL };
10553     struct ecore_func_start_params *start_params = &func_params.params.start;
10554 
10555     /* Prepare parameters for function state transitions */
10556     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10557 
10558     func_params.f_obj = &sc->func_obj;
10559     func_params.cmd = ECORE_F_CMD_START;
10560 
10561     /* Function parameters */
10562     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10563     start_params->sd_vlan_tag = OVLAN(sc);
10564 
10565     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10566         start_params->network_cos_mode = STATIC_COS;
10567     } else { /* CHIP_IS_E1X */
10568         start_params->network_cos_mode = FW_WRR;
10569     }
10570 
10571     //start_params->gre_tunnel_mode = 0;
10572     //start_params->gre_tunnel_rss  = 0;
10573 
10574     return (ecore_func_state_change(sc, &func_params));
10575 }
10576 
10577 static int
10578 bxe_set_power_state(struct bxe_softc *sc,
10579                     uint8_t          state)
10580 {
10581     uint16_t pmcsr;
10582 
10583     /* If there is no power capability, silently succeed */
10584     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10585         BLOGW(sc, "No power capability\n");
10586         return (0);
10587     }
10588 
10589     pmcsr = pci_read_config(sc->dev,
10590                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10591                             2);
10592 
10593     switch (state) {
10594     case PCI_PM_D0:
10595         pci_write_config(sc->dev,
10596                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10597                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10598 
10599         if (pmcsr & PCIM_PSTAT_DMASK) {
10600             /* delay required during transition out of D3hot */
10601             DELAY(20000);
10602         }
10603 
10604         break;
10605 
10606     case PCI_PM_D3hot:
10607         /* XXX if there are other clients above don't shut down the power */
10608 
10609         /* don't shut down the power for emulation and FPGA */
10610         if (CHIP_REV_IS_SLOW(sc)) {
10611             return (0);
10612         }
10613 
10614         pmcsr &= ~PCIM_PSTAT_DMASK;
10615         pmcsr |= PCIM_PSTAT_D3;
10616 
10617         if (sc->wol) {
10618             pmcsr |= PCIM_PSTAT_PMEENABLE;
10619         }
10620 
10621         pci_write_config(sc->dev,
10622                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10623                          pmcsr, 4);
10624 
10625         /*
10626          * No more memory access after this point until device is brought back
10627          * to D0 state.
10628          */
10629         break;
10630 
10631     default:
10632         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10633             state, pmcsr);
10634         return (-1);
10635     }
10636 
10637     return (0);
10638 }
10639 
10640 
10641 /* return true if succeeded to acquire the lock */
10642 static uint8_t
10643 bxe_trylock_hw_lock(struct bxe_softc *sc,
10644                     uint32_t         resource)
10645 {
10646     uint32_t lock_status;
10647     uint32_t resource_bit = (1 << resource);
10648     int func = SC_FUNC(sc);
10649     uint32_t hw_lock_control_reg;
10650 
10651     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10652 
10653     /* Validating that the resource is within range */
10654     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10655         BLOGD(sc, DBG_LOAD,
10656               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10657               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10658         return (FALSE);
10659     }
10660 
10661     if (func <= 5) {
10662         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10663     } else {
10664         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10665     }
10666 
10667     /* try to acquire the lock */
10668     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10669     lock_status = REG_RD(sc, hw_lock_control_reg);
10670     if (lock_status & resource_bit) {
10671         return (TRUE);
10672     }
10673 
10674     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10675         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10676         lock_status, resource_bit);
10677 
10678     return (FALSE);
10679 }
10680 
10681 /*
10682  * Get the recovery leader resource id according to the engine this function
10683  * belongs to. Currently only only 2 engines is supported.
10684  */
10685 static int
10686 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10687 {
10688     if (SC_PATH(sc)) {
10689         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10690     } else {
10691         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10692     }
10693 }
10694 
10695 /* try to acquire a leader lock for current engine */
10696 static uint8_t
10697 bxe_trylock_leader_lock(struct bxe_softc *sc)
10698 {
10699     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10700 }
10701 
10702 static int
10703 bxe_release_leader_lock(struct bxe_softc *sc)
10704 {
10705     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10706 }
10707 
10708 /* close gates #2, #3 and #4 */
10709 static void
10710 bxe_set_234_gates(struct bxe_softc *sc,
10711                   uint8_t          close)
10712 {
10713     uint32_t val;
10714 
10715     /* gates #2 and #4a are closed/opened for "not E1" only */
10716     if (!CHIP_IS_E1(sc)) {
10717         /* #4 */
10718         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10719         /* #2 */
10720         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10721     }
10722 
10723     /* #3 */
10724     if (CHIP_IS_E1x(sc)) {
10725         /* prevent interrupts from HC on both ports */
10726         val = REG_RD(sc, HC_REG_CONFIG_1);
10727         REG_WR(sc, HC_REG_CONFIG_1,
10728                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10729                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10730 
10731         val = REG_RD(sc, HC_REG_CONFIG_0);
10732         REG_WR(sc, HC_REG_CONFIG_0,
10733                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10734                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10735     } else {
10736         /* Prevent incoming interrupts in IGU */
10737         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10738 
10739         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10740                (!close) ?
10741                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10742                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10743     }
10744 
10745     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10746           close ? "closing" : "opening");
10747 
10748     wmb();
10749 }
10750 
10751 /* poll for pending writes bit, it should get cleared in no more than 1s */
10752 static int
10753 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10754 {
10755     uint32_t cnt = 1000;
10756     uint32_t pend_bits = 0;
10757 
10758     do {
10759         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10760 
10761         if (pend_bits == 0) {
10762             break;
10763         }
10764 
10765         DELAY(1000);
10766     } while (--cnt > 0);
10767 
10768     if (cnt == 0) {
10769         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10770         return (-1);
10771     }
10772 
10773     return (0);
10774 }
10775 
10776 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10777 
10778 static void
10779 bxe_clp_reset_prep(struct bxe_softc *sc,
10780                    uint32_t         *magic_val)
10781 {
10782     /* Do some magic... */
10783     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10784     *magic_val = val & SHARED_MF_CLP_MAGIC;
10785     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10786 }
10787 
10788 /* restore the value of the 'magic' bit */
10789 static void
10790 bxe_clp_reset_done(struct bxe_softc *sc,
10791                    uint32_t         magic_val)
10792 {
10793     /* Restore the 'magic' bit value... */
10794     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10795     MFCFG_WR(sc, shared_mf_config.clp_mb,
10796               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10797 }
10798 
10799 /* prepare for MCP reset, takes care of CLP configurations */
10800 static void
10801 bxe_reset_mcp_prep(struct bxe_softc *sc,
10802                    uint32_t         *magic_val)
10803 {
10804     uint32_t shmem;
10805     uint32_t validity_offset;
10806 
10807     /* set `magic' bit in order to save MF config */
10808     if (!CHIP_IS_E1(sc)) {
10809         bxe_clp_reset_prep(sc, magic_val);
10810     }
10811 
10812     /* get shmem offset */
10813     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10814     validity_offset =
10815         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10816 
10817     /* Clear validity map flags */
10818     if (shmem > 0) {
10819         REG_WR(sc, shmem + validity_offset, 0);
10820     }
10821 }
10822 
10823 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10824 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10825 
10826 static void
10827 bxe_mcp_wait_one(struct bxe_softc *sc)
10828 {
10829     /* special handling for emulation and FPGA (10 times longer) */
10830     if (CHIP_REV_IS_SLOW(sc)) {
10831         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10832     } else {
10833         DELAY((MCP_ONE_TIMEOUT) * 1000);
10834     }
10835 }
10836 
10837 /* initialize shmem_base and waits for validity signature to appear */
10838 static int
10839 bxe_init_shmem(struct bxe_softc *sc)
10840 {
10841     int cnt = 0;
10842     uint32_t val = 0;
10843 
10844     do {
10845         sc->devinfo.shmem_base     =
10846         sc->link_params.shmem_base =
10847             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10848 
10849         if (sc->devinfo.shmem_base) {
10850             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10851             if (val & SHR_MEM_VALIDITY_MB)
10852                 return (0);
10853         }
10854 
10855         bxe_mcp_wait_one(sc);
10856 
10857     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10858 
10859     BLOGE(sc, "BAD MCP validity signature\n");
10860 
10861     return (-1);
10862 }
10863 
10864 static int
10865 bxe_reset_mcp_comp(struct bxe_softc *sc,
10866                    uint32_t         magic_val)
10867 {
10868     int rc = bxe_init_shmem(sc);
10869 
10870     /* Restore the `magic' bit value */
10871     if (!CHIP_IS_E1(sc)) {
10872         bxe_clp_reset_done(sc, magic_val);
10873     }
10874 
10875     return (rc);
10876 }
10877 
10878 static void
10879 bxe_pxp_prep(struct bxe_softc *sc)
10880 {
10881     if (!CHIP_IS_E1(sc)) {
10882         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10883         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10884         wmb();
10885     }
10886 }
10887 
10888 /*
10889  * Reset the whole chip except for:
10890  *      - PCIE core
10891  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10892  *      - IGU
10893  *      - MISC (including AEU)
10894  *      - GRC
10895  *      - RBCN, RBCP
10896  */
10897 static void
10898 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10899                             uint8_t          global)
10900 {
10901     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10902     uint32_t global_bits2, stay_reset2;
10903 
10904     /*
10905      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10906      * (per chip) blocks.
10907      */
10908     global_bits2 =
10909         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10910         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10911 
10912     /*
10913      * Don't reset the following blocks.
10914      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10915      *            reset, as in 4 port device they might still be owned
10916      *            by the MCP (there is only one leader per path).
10917      */
10918     not_reset_mask1 =
10919         MISC_REGISTERS_RESET_REG_1_RST_HC |
10920         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10921         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10922 
10923     not_reset_mask2 =
10924         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10925         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10926         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10927         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10928         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10929         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10930         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10931         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10932         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10933         MISC_REGISTERS_RESET_REG_2_PGLC |
10934         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10935         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10936         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10937         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10938         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10939         MISC_REGISTERS_RESET_REG_2_UMAC1;
10940 
10941     /*
10942      * Keep the following blocks in reset:
10943      *  - all xxMACs are handled by the elink code.
10944      */
10945     stay_reset2 =
10946         MISC_REGISTERS_RESET_REG_2_XMAC |
10947         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10948 
10949     /* Full reset masks according to the chip */
10950     reset_mask1 = 0xffffffff;
10951 
10952     if (CHIP_IS_E1(sc))
10953         reset_mask2 = 0xffff;
10954     else if (CHIP_IS_E1H(sc))
10955         reset_mask2 = 0x1ffff;
10956     else if (CHIP_IS_E2(sc))
10957         reset_mask2 = 0xfffff;
10958     else /* CHIP_IS_E3 */
10959         reset_mask2 = 0x3ffffff;
10960 
10961     /* Don't reset global blocks unless we need to */
10962     if (!global)
10963         reset_mask2 &= ~global_bits2;
10964 
10965     /*
10966      * In case of attention in the QM, we need to reset PXP
10967      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10968      * because otherwise QM reset would release 'close the gates' shortly
10969      * before resetting the PXP, then the PSWRQ would send a write
10970      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10971      * read the payload data from PSWWR, but PSWWR would not
10972      * respond. The write queue in PGLUE would stuck, dmae commands
10973      * would not return. Therefore it's important to reset the second
10974      * reset register (containing the
10975      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10976      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10977      * bit).
10978      */
10979     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10980            reset_mask2 & (~not_reset_mask2));
10981 
10982     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10983            reset_mask1 & (~not_reset_mask1));
10984 
10985     mb();
10986     wmb();
10987 
10988     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10989            reset_mask2 & (~stay_reset2));
10990 
10991     mb();
10992     wmb();
10993 
10994     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10995     wmb();
10996 }
10997 
10998 static int
10999 bxe_process_kill(struct bxe_softc *sc,
11000                  uint8_t          global)
11001 {
11002     int cnt = 1000;
11003     uint32_t val = 0;
11004     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11005     uint32_t tags_63_32 = 0;
11006 
11007     /* Empty the Tetris buffer, wait for 1s */
11008     do {
11009         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11010         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11011         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11012         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11013         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11014         if (CHIP_IS_E3(sc)) {
11015             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11016         }
11017 
11018         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11019             ((port_is_idle_0 & 0x1) == 0x1) &&
11020             ((port_is_idle_1 & 0x1) == 0x1) &&
11021             (pgl_exp_rom2 == 0xffffffff) &&
11022             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11023             break;
11024         DELAY(1000);
11025     } while (cnt-- > 0);
11026 
11027     if (cnt <= 0) {
11028         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11029                   "are still outstanding read requests after 1s! "
11030                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11031                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11032               sr_cnt, blk_cnt, port_is_idle_0,
11033               port_is_idle_1, pgl_exp_rom2);
11034         return (-1);
11035     }
11036 
11037     mb();
11038 
11039     /* Close gates #2, #3 and #4 */
11040     bxe_set_234_gates(sc, TRUE);
11041 
11042     /* Poll for IGU VQs for 57712 and newer chips */
11043     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11044         return (-1);
11045     }
11046 
11047     /* XXX indicate that "process kill" is in progress to MCP */
11048 
11049     /* clear "unprepared" bit */
11050     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11051     mb();
11052 
11053     /* Make sure all is written to the chip before the reset */
11054     wmb();
11055 
11056     /*
11057      * Wait for 1ms to empty GLUE and PCI-E core queues,
11058      * PSWHST, GRC and PSWRD Tetris buffer.
11059      */
11060     DELAY(1000);
11061 
11062     /* Prepare to chip reset: */
11063     /* MCP */
11064     if (global) {
11065         bxe_reset_mcp_prep(sc, &val);
11066     }
11067 
11068     /* PXP */
11069     bxe_pxp_prep(sc);
11070     mb();
11071 
11072     /* reset the chip */
11073     bxe_process_kill_chip_reset(sc, global);
11074     mb();
11075 
11076     /* clear errors in PGB */
11077     if (!CHIP_IS_E1(sc))
11078         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11079 
11080     /* Recover after reset: */
11081     /* MCP */
11082     if (global && bxe_reset_mcp_comp(sc, val)) {
11083         return (-1);
11084     }
11085 
11086     /* XXX add resetting the NO_MCP mode DB here */
11087 
11088     /* Open the gates #2, #3 and #4 */
11089     bxe_set_234_gates(sc, FALSE);
11090 
11091     /* XXX
11092      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11093      * re-enable attentions
11094      */
11095 
11096     return (0);
11097 }
11098 
11099 static int
11100 bxe_leader_reset(struct bxe_softc *sc)
11101 {
11102     int rc = 0;
11103     uint8_t global = bxe_reset_is_global(sc);
11104     uint32_t load_code;
11105 
11106     /*
11107      * If not going to reset MCP, load "fake" driver to reset HW while
11108      * driver is owner of the HW.
11109      */
11110     if (!global && !BXE_NOMCP(sc)) {
11111         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11112                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11113         if (!load_code) {
11114             BLOGE(sc, "MCP response failure, aborting\n");
11115             rc = -1;
11116             goto exit_leader_reset;
11117         }
11118 
11119         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11120             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11121             BLOGE(sc, "MCP unexpected response, aborting\n");
11122             rc = -1;
11123             goto exit_leader_reset2;
11124         }
11125 
11126         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11127         if (!load_code) {
11128             BLOGE(sc, "MCP response failure, aborting\n");
11129             rc = -1;
11130             goto exit_leader_reset2;
11131         }
11132     }
11133 
11134     /* try to recover after the failure */
11135     if (bxe_process_kill(sc, global)) {
11136         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11137         rc = -1;
11138         goto exit_leader_reset2;
11139     }
11140 
11141     /*
11142      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11143      * state.
11144      */
11145     bxe_set_reset_done(sc);
11146     if (global) {
11147         bxe_clear_reset_global(sc);
11148     }
11149 
11150 exit_leader_reset2:
11151 
11152     /* unload "fake driver" if it was loaded */
11153     if (!global && !BXE_NOMCP(sc)) {
11154         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11155         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11156     }
11157 
11158 exit_leader_reset:
11159 
11160     sc->is_leader = 0;
11161     bxe_release_leader_lock(sc);
11162 
11163     mb();
11164     return (rc);
11165 }
11166 
11167 /*
11168  * prepare INIT transition, parameters configured:
11169  *   - HC configuration
11170  *   - Queue's CDU context
11171  */
11172 static void
11173 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11174                    struct bxe_fastpath            *fp,
11175                    struct ecore_queue_init_params *init_params)
11176 {
11177     uint8_t cos;
11178     int cxt_index, cxt_offset;
11179 
11180     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11181     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11182 
11183     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11184     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11185 
11186     /* HC rate */
11187     init_params->rx.hc_rate =
11188         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11189     init_params->tx.hc_rate =
11190         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11191 
11192     /* FW SB ID */
11193     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11194 
11195     /* CQ index among the SB indices */
11196     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11197     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11198 
11199     /* set maximum number of COSs supported by this queue */
11200     init_params->max_cos = sc->max_cos;
11201 
11202     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11203           fp->index, init_params->max_cos);
11204 
11205     /* set the context pointers queue object */
11206     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11207         /* XXX change index/cid here if ever support multiple tx CoS */
11208         /* fp->txdata[cos]->cid */
11209         cxt_index = fp->index / ILT_PAGE_CIDS;
11210         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11211         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11212     }
11213 }
11214 
11215 /* set flags that are common for the Tx-only and not normal connections */
11216 static unsigned long
11217 bxe_get_common_flags(struct bxe_softc    *sc,
11218                      struct bxe_fastpath *fp,
11219                      uint8_t             zero_stats)
11220 {
11221     unsigned long flags = 0;
11222 
11223     /* PF driver will always initialize the Queue to an ACTIVE state */
11224     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11225 
11226     /*
11227      * tx only connections collect statistics (on the same index as the
11228      * parent connection). The statistics are zeroed when the parent
11229      * connection is initialized.
11230      */
11231 
11232     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11233     if (zero_stats) {
11234         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11235     }
11236 
11237     /*
11238      * tx only connections can support tx-switching, though their
11239      * CoS-ness doesn't survive the loopback
11240      */
11241     if (sc->flags & BXE_TX_SWITCHING) {
11242         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11243     }
11244 
11245     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11246 
11247     return (flags);
11248 }
11249 
11250 static unsigned long
11251 bxe_get_q_flags(struct bxe_softc    *sc,
11252                 struct bxe_fastpath *fp,
11253                 uint8_t             leading)
11254 {
11255     unsigned long flags = 0;
11256 
11257     if (IS_MF_SD(sc)) {
11258         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11259     }
11260 
11261     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11262         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11263         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11264     }
11265 
11266     if (leading) {
11267         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11268         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11269     }
11270 
11271     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11272 
11273     /* merge with common flags */
11274     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11275 }
11276 
11277 static void
11278 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11279                       struct bxe_fastpath               *fp,
11280                       struct ecore_general_setup_params *gen_init,
11281                       uint8_t                           cos)
11282 {
11283     gen_init->stat_id = bxe_stats_id(fp);
11284     gen_init->spcl_id = fp->cl_id;
11285     gen_init->mtu = sc->mtu;
11286     gen_init->cos = cos;
11287 }
11288 
11289 static void
11290 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11291                  struct bxe_fastpath           *fp,
11292                  struct rxq_pause_params       *pause,
11293                  struct ecore_rxq_setup_params *rxq_init)
11294 {
11295     uint8_t max_sge = 0;
11296     uint16_t sge_sz = 0;
11297     uint16_t tpa_agg_size = 0;
11298 
11299     pause->sge_th_lo = SGE_TH_LO(sc);
11300     pause->sge_th_hi = SGE_TH_HI(sc);
11301 
11302     /* validate SGE ring has enough to cross high threshold */
11303     if (sc->dropless_fc &&
11304             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11305             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11306         BLOGW(sc, "sge ring threshold limit\n");
11307     }
11308 
11309     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11310     tpa_agg_size = (2 * sc->mtu);
11311     if (tpa_agg_size < sc->max_aggregation_size) {
11312         tpa_agg_size = sc->max_aggregation_size;
11313     }
11314 
11315     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11316     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11317                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11318     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11319 
11320     /* pause - not for e1 */
11321     if (!CHIP_IS_E1(sc)) {
11322         pause->bd_th_lo = BD_TH_LO(sc);
11323         pause->bd_th_hi = BD_TH_HI(sc);
11324 
11325         pause->rcq_th_lo = RCQ_TH_LO(sc);
11326         pause->rcq_th_hi = RCQ_TH_HI(sc);
11327 
11328         /* validate rings have enough entries to cross high thresholds */
11329         if (sc->dropless_fc &&
11330             pause->bd_th_hi + FW_PREFETCH_CNT >
11331             sc->rx_ring_size) {
11332             BLOGW(sc, "rx bd ring threshold limit\n");
11333         }
11334 
11335         if (sc->dropless_fc &&
11336             pause->rcq_th_hi + FW_PREFETCH_CNT >
11337             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11338             BLOGW(sc, "rcq ring threshold limit\n");
11339         }
11340 
11341         pause->pri_map = 1;
11342     }
11343 
11344     /* rxq setup */
11345     rxq_init->dscr_map   = fp->rx_dma.paddr;
11346     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11347     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11348     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11349 
11350     /*
11351      * This should be a maximum number of data bytes that may be
11352      * placed on the BD (not including paddings).
11353      */
11354     rxq_init->buf_sz = (fp->rx_buf_size -
11355                         IP_HEADER_ALIGNMENT_PADDING);
11356 
11357     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11358     rxq_init->tpa_agg_sz      = tpa_agg_size;
11359     rxq_init->sge_buf_sz      = sge_sz;
11360     rxq_init->max_sges_pkt    = max_sge;
11361     rxq_init->rss_engine_id   = SC_FUNC(sc);
11362     rxq_init->mcast_engine_id = SC_FUNC(sc);
11363 
11364     /*
11365      * Maximum number or simultaneous TPA aggregation for this Queue.
11366      * For PF Clients it should be the maximum available number.
11367      * VF driver(s) may want to define it to a smaller value.
11368      */
11369     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11370 
11371     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11372     rxq_init->fw_sb_id = fp->fw_sb_id;
11373 
11374     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11375 
11376     /*
11377      * configure silent vlan removal
11378      * if multi function mode is afex, then mask default vlan
11379      */
11380     if (IS_MF_AFEX(sc)) {
11381         rxq_init->silent_removal_value =
11382             sc->devinfo.mf_info.afex_def_vlan_tag;
11383         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11384     }
11385 }
11386 
11387 static void
11388 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11389                  struct bxe_fastpath           *fp,
11390                  struct ecore_txq_setup_params *txq_init,
11391                  uint8_t                       cos)
11392 {
11393     /*
11394      * XXX If multiple CoS is ever supported then each fastpath structure
11395      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11396      * fp->txdata[cos]->tx_dma.paddr;
11397      */
11398     txq_init->dscr_map     = fp->tx_dma.paddr;
11399     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11400     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11401     txq_init->fw_sb_id     = fp->fw_sb_id;
11402 
11403     /*
11404      * set the TSS leading client id for TX classfication to the
11405      * leading RSS client id
11406      */
11407     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11408 }
11409 
11410 /*
11411  * This function performs 2 steps in a queue state machine:
11412  *   1) RESET->INIT
11413  *   2) INIT->SETUP
11414  */
11415 static int
11416 bxe_setup_queue(struct bxe_softc    *sc,
11417                 struct bxe_fastpath *fp,
11418                 uint8_t             leading)
11419 {
11420     struct ecore_queue_state_params q_params = { NULL };
11421     struct ecore_queue_setup_params *setup_params =
11422                         &q_params.params.setup;
11423     int rc;
11424 
11425     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11426 
11427     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11428 
11429     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11430 
11431     /* we want to wait for completion in this context */
11432     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11433 
11434     /* prepare the INIT parameters */
11435     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11436 
11437     /* Set the command */
11438     q_params.cmd = ECORE_Q_CMD_INIT;
11439 
11440     /* Change the state to INIT */
11441     rc = ecore_queue_state_change(sc, &q_params);
11442     if (rc) {
11443         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11444         return (rc);
11445     }
11446 
11447     BLOGD(sc, DBG_LOAD, "init complete\n");
11448 
11449     /* now move the Queue to the SETUP state */
11450     memset(setup_params, 0, sizeof(*setup_params));
11451 
11452     /* set Queue flags */
11453     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11454 
11455     /* set general SETUP parameters */
11456     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11457                           FIRST_TX_COS_INDEX);
11458 
11459     bxe_pf_rx_q_prep(sc, fp,
11460                      &setup_params->pause_params,
11461                      &setup_params->rxq_params);
11462 
11463     bxe_pf_tx_q_prep(sc, fp,
11464                      &setup_params->txq_params,
11465                      FIRST_TX_COS_INDEX);
11466 
11467     /* Set the command */
11468     q_params.cmd = ECORE_Q_CMD_SETUP;
11469 
11470     /* change the state to SETUP */
11471     rc = ecore_queue_state_change(sc, &q_params);
11472     if (rc) {
11473         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11474         return (rc);
11475     }
11476 
11477     return (rc);
11478 }
11479 
11480 static int
11481 bxe_setup_leading(struct bxe_softc *sc)
11482 {
11483     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11484 }
11485 
11486 static int
11487 bxe_config_rss_pf(struct bxe_softc            *sc,
11488                   struct ecore_rss_config_obj *rss_obj,
11489                   uint8_t                     config_hash)
11490 {
11491     struct ecore_config_rss_params params = { NULL };
11492     int i;
11493 
11494     /*
11495      * Although RSS is meaningless when there is a single HW queue we
11496      * still need it enabled in order to have HW Rx hash generated.
11497      */
11498 
11499     params.rss_obj = rss_obj;
11500 
11501     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11502 
11503     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11504 
11505     /* RSS configuration */
11506     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11507     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11508     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11509     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11510     if (rss_obj->udp_rss_v4) {
11511         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11512     }
11513     if (rss_obj->udp_rss_v6) {
11514         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11515     }
11516 
11517     /* Hash bits */
11518     params.rss_result_mask = MULTI_MASK;
11519 
11520     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11521 
11522     if (config_hash) {
11523         /* RSS keys */
11524         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11525             params.rss_key[i] = arc4random();
11526         }
11527 
11528         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11529     }
11530 
11531     return (ecore_config_rss(sc, &params));
11532 }
11533 
11534 static int
11535 bxe_config_rss_eth(struct bxe_softc *sc,
11536                    uint8_t          config_hash)
11537 {
11538     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11539 }
11540 
11541 static int
11542 bxe_init_rss_pf(struct bxe_softc *sc)
11543 {
11544     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11545     int i;
11546 
11547     /*
11548      * Prepare the initial contents of the indirection table if
11549      * RSS is enabled
11550      */
11551     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11552         sc->rss_conf_obj.ind_table[i] =
11553             (sc->fp->cl_id + (i % num_eth_queues));
11554     }
11555 
11556     if (sc->udp_rss) {
11557         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11558     }
11559 
11560     /*
11561      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11562      * per-port, so if explicit configuration is needed, do it only
11563      * for a PMF.
11564      *
11565      * For 57712 and newer it's a per-function configuration.
11566      */
11567     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11568 }
11569 
11570 static int
11571 bxe_set_mac_one(struct bxe_softc          *sc,
11572                 uint8_t                   *mac,
11573                 struct ecore_vlan_mac_obj *obj,
11574                 uint8_t                   set,
11575                 int                       mac_type,
11576                 unsigned long             *ramrod_flags)
11577 {
11578     struct ecore_vlan_mac_ramrod_params ramrod_param;
11579     int rc;
11580 
11581     memset(&ramrod_param, 0, sizeof(ramrod_param));
11582 
11583     /* fill in general parameters */
11584     ramrod_param.vlan_mac_obj = obj;
11585     ramrod_param.ramrod_flags = *ramrod_flags;
11586 
11587     /* fill a user request section if needed */
11588     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11589         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11590 
11591         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11592 
11593         /* Set the command: ADD or DEL */
11594         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11595                                             ECORE_VLAN_MAC_DEL;
11596     }
11597 
11598     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11599 
11600     if (rc == ECORE_EXISTS) {
11601         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11602         /* do not treat adding same MAC as error */
11603         rc = 0;
11604     } else if (rc < 0) {
11605         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11606     }
11607 
11608     return (rc);
11609 }
11610 
11611 static int
11612 bxe_set_eth_mac(struct bxe_softc *sc,
11613                 uint8_t          set)
11614 {
11615     unsigned long ramrod_flags = 0;
11616 
11617     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11618 
11619     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11620 
11621     /* Eth MAC is set on RSS leading client (fp[0]) */
11622     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11623                             &sc->sp_objs->mac_obj,
11624                             set, ECORE_ETH_MAC, &ramrod_flags));
11625 }
11626 
11627 static int
11628 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11629 {
11630     uint32_t sel_phy_idx = 0;
11631 
11632     if (sc->link_params.num_phys <= 1) {
11633         return (ELINK_INT_PHY);
11634     }
11635 
11636     if (sc->link_vars.link_up) {
11637         sel_phy_idx = ELINK_EXT_PHY1;
11638         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11639         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11640             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11641              ELINK_SUPPORTED_FIBRE))
11642             sel_phy_idx = ELINK_EXT_PHY2;
11643     } else {
11644         switch (elink_phy_selection(&sc->link_params)) {
11645         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11646         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11647         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11648                sel_phy_idx = ELINK_EXT_PHY1;
11649                break;
11650         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11651         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11652                sel_phy_idx = ELINK_EXT_PHY2;
11653                break;
11654         }
11655     }
11656 
11657     return (sel_phy_idx);
11658 }
11659 
11660 static int
11661 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11662 {
11663     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11664 
11665     /*
11666      * The selected activated PHY is always after swapping (in case PHY
11667      * swapping is enabled). So when swapping is enabled, we need to reverse
11668      * the configuration
11669      */
11670 
11671     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11672         if (sel_phy_idx == ELINK_EXT_PHY1)
11673             sel_phy_idx = ELINK_EXT_PHY2;
11674         else if (sel_phy_idx == ELINK_EXT_PHY2)
11675             sel_phy_idx = ELINK_EXT_PHY1;
11676     }
11677 
11678     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11679 }
11680 
11681 static void
11682 bxe_set_requested_fc(struct bxe_softc *sc)
11683 {
11684     /*
11685      * Initialize link parameters structure variables
11686      * It is recommended to turn off RX FC for jumbo frames
11687      * for better performance
11688      */
11689     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11690         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11691     } else {
11692         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11693     }
11694 }
11695 
11696 static void
11697 bxe_calc_fc_adv(struct bxe_softc *sc)
11698 {
11699     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11700 
11701 
11702     sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11703                                            ADVERTISED_Pause);
11704 
11705     switch (sc->link_vars.ieee_fc &
11706             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11707 
11708     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11709         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11710                                           ADVERTISED_Pause);
11711         break;
11712 
11713     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11714         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11715         break;
11716 
11717     default:
11718         break;
11719 
11720     }
11721 }
11722 
11723 static uint16_t
11724 bxe_get_mf_speed(struct bxe_softc *sc)
11725 {
11726     uint16_t line_speed = sc->link_vars.line_speed;
11727     if (IS_MF(sc)) {
11728         uint16_t maxCfg =
11729             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11730 
11731         /* calculate the current MAX line speed limit for the MF devices */
11732         if (IS_MF_SI(sc)) {
11733             line_speed = (line_speed * maxCfg) / 100;
11734         } else { /* SD mode */
11735             uint16_t vn_max_rate = maxCfg * 100;
11736 
11737             if (vn_max_rate < line_speed) {
11738                 line_speed = vn_max_rate;
11739             }
11740         }
11741     }
11742 
11743     return (line_speed);
11744 }
11745 
11746 static void
11747 bxe_fill_report_data(struct bxe_softc            *sc,
11748                      struct bxe_link_report_data *data)
11749 {
11750     uint16_t line_speed = bxe_get_mf_speed(sc);
11751 
11752     memset(data, 0, sizeof(*data));
11753 
11754     /* fill the report data with the effective line speed */
11755     data->line_speed = line_speed;
11756 
11757     /* Link is down */
11758     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11759         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11760     }
11761 
11762     /* Full DUPLEX */
11763     if (sc->link_vars.duplex == DUPLEX_FULL) {
11764         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11765     }
11766 
11767     /* Rx Flow Control is ON */
11768     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11769         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11770     }
11771 
11772     /* Tx Flow Control is ON */
11773     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11774         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11775     }
11776 }
11777 
11778 /* report link status to OS, should be called under phy_lock */
11779 static void
11780 bxe_link_report_locked(struct bxe_softc *sc)
11781 {
11782     struct bxe_link_report_data cur_data;
11783 
11784     /* reread mf_cfg */
11785     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11786         bxe_read_mf_cfg(sc);
11787     }
11788 
11789     /* Read the current link report info */
11790     bxe_fill_report_data(sc, &cur_data);
11791 
11792     /* Don't report link down or exactly the same link status twice */
11793     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11794         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11795                       &sc->last_reported_link.link_report_flags) &&
11796          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11797                       &cur_data.link_report_flags))) {
11798         return;
11799     }
11800 
11801         ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11802                                         cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11803     sc->link_cnt++;
11804 
11805         ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11806     /* report new link params and remember the state for the next time */
11807     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11808 
11809     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11810                      &cur_data.link_report_flags)) {
11811         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11812     } else {
11813         const char *duplex;
11814         const char *flow;
11815 
11816         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11817                                    &cur_data.link_report_flags)) {
11818             duplex = "full";
11819                         ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11820         } else {
11821             duplex = "half";
11822                         ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11823         }
11824 
11825         /*
11826          * Handle the FC at the end so that only these flags would be
11827          * possibly set. This way we may easily check if there is no FC
11828          * enabled.
11829          */
11830         if (cur_data.link_report_flags) {
11831             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11832                              &cur_data.link_report_flags) &&
11833                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11834                              &cur_data.link_report_flags)) {
11835                 flow = "ON - receive & transmit";
11836             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11837                                     &cur_data.link_report_flags) &&
11838                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11839                                      &cur_data.link_report_flags)) {
11840                 flow = "ON - receive";
11841             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11842                                      &cur_data.link_report_flags) &&
11843                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11844                                     &cur_data.link_report_flags)) {
11845                 flow = "ON - transmit";
11846             } else {
11847                 flow = "none"; /* possible? */
11848             }
11849         } else {
11850             flow = "none";
11851         }
11852 
11853         if_link_state_change(sc->ifp, LINK_STATE_UP);
11854         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11855               cur_data.line_speed, duplex, flow);
11856     }
11857 }
11858 
11859 static void
11860 bxe_link_report(struct bxe_softc *sc)
11861 {
11862     bxe_acquire_phy_lock(sc);
11863     bxe_link_report_locked(sc);
11864     bxe_release_phy_lock(sc);
11865 }
11866 
11867 static void
11868 bxe_link_status_update(struct bxe_softc *sc)
11869 {
11870     if (sc->state != BXE_STATE_OPEN) {
11871         return;
11872     }
11873 
11874     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11875         elink_link_status_update(&sc->link_params, &sc->link_vars);
11876     } else {
11877         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11878                                   ELINK_SUPPORTED_10baseT_Full |
11879                                   ELINK_SUPPORTED_100baseT_Half |
11880                                   ELINK_SUPPORTED_100baseT_Full |
11881                                   ELINK_SUPPORTED_1000baseT_Full |
11882                                   ELINK_SUPPORTED_2500baseX_Full |
11883                                   ELINK_SUPPORTED_10000baseT_Full |
11884                                   ELINK_SUPPORTED_TP |
11885                                   ELINK_SUPPORTED_FIBRE |
11886                                   ELINK_SUPPORTED_Autoneg |
11887                                   ELINK_SUPPORTED_Pause |
11888                                   ELINK_SUPPORTED_Asym_Pause);
11889         sc->port.advertising[0] = sc->port.supported[0];
11890 
11891         sc->link_params.sc                = sc;
11892         sc->link_params.port              = SC_PORT(sc);
11893         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11894         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11895         sc->link_params.req_line_speed[0] = SPEED_10000;
11896         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11897         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11898 
11899         if (CHIP_REV_IS_FPGA(sc)) {
11900             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11901             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11902             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11903                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11904         } else {
11905             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11906             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11907             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11908                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11909         }
11910 
11911         sc->link_vars.link_up = 1;
11912 
11913         sc->link_vars.duplex    = DUPLEX_FULL;
11914         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11915 
11916         if (IS_PF(sc)) {
11917             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11918             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11919             bxe_link_report(sc);
11920         }
11921     }
11922 
11923     if (IS_PF(sc)) {
11924         if (sc->link_vars.link_up) {
11925             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11926         } else {
11927             bxe_stats_handle(sc, STATS_EVENT_STOP);
11928         }
11929         bxe_link_report(sc);
11930     } else {
11931         bxe_link_report(sc);
11932         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11933     }
11934 }
11935 
11936 static int
11937 bxe_initial_phy_init(struct bxe_softc *sc,
11938                      int              load_mode)
11939 {
11940     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11941     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11942     struct elink_params *lp = &sc->link_params;
11943 
11944     bxe_set_requested_fc(sc);
11945 
11946     if (CHIP_REV_IS_SLOW(sc)) {
11947         uint32_t bond = CHIP_BOND_ID(sc);
11948         uint32_t feat = 0;
11949 
11950         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11951             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11952         } else if (bond & 0x4) {
11953             if (CHIP_IS_E3(sc)) {
11954                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11955             } else {
11956                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11957             }
11958         } else if (bond & 0x8) {
11959             if (CHIP_IS_E3(sc)) {
11960                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11961             } else {
11962                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11963             }
11964         }
11965 
11966         /* disable EMAC for E3 and above */
11967         if (bond & 0x2) {
11968             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11969         }
11970 
11971         sc->link_params.feature_config_flags |= feat;
11972     }
11973 
11974     bxe_acquire_phy_lock(sc);
11975 
11976     if (load_mode == LOAD_DIAG) {
11977         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11978         /* Prefer doing PHY loopback at 10G speed, if possible */
11979         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11980             if (lp->speed_cap_mask[cfg_idx] &
11981                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11982                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11983             } else {
11984                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11985             }
11986         }
11987     }
11988 
11989     if (load_mode == LOAD_LOOPBACK_EXT) {
11990         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11991     }
11992 
11993     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11994 
11995     bxe_release_phy_lock(sc);
11996 
11997     bxe_calc_fc_adv(sc);
11998 
11999     if (sc->link_vars.link_up) {
12000         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12001         bxe_link_report(sc);
12002     }
12003 
12004     if (!CHIP_REV_IS_SLOW(sc)) {
12005         bxe_periodic_start(sc);
12006     }
12007 
12008     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12009     return (rc);
12010 }
12011 
12012 static u_int
12013 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12014 {
12015     struct ecore_mcast_list_elem *mc_mac = arg;
12016 
12017     mc_mac += cnt;
12018     mc_mac->mac = (uint8_t *)LLADDR(sdl);
12019 
12020     return (1);
12021 }
12022 
12023 static int
12024 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12025                          struct ecore_mcast_ramrod_params *p)
12026 {
12027     if_t ifp = sc->ifp;
12028     int mc_count;
12029     struct ecore_mcast_list_elem *mc_mac;
12030 
12031     ECORE_LIST_INIT(&p->mcast_list);
12032     p->mcast_list_len = 0;
12033 
12034     /* XXXGL: multicast count may change later */
12035     mc_count = if_llmaddr_count(ifp);
12036 
12037     if (!mc_count) {
12038         return (0);
12039     }
12040 
12041     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12042                     (M_NOWAIT | M_ZERO));
12043     if (!mc_mac) {
12044         BLOGE(sc, "Failed to allocate temp mcast list\n");
12045         return (-1);
12046     }
12047     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12048     if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12049 
12050     for (int i = 0; i < mc_count; i ++) {
12051         ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12052         BLOGD(sc, DBG_LOAD,
12053               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12054               mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12055               mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12056               mc_count);
12057     }
12058 
12059     p->mcast_list_len = mc_count;
12060 
12061     return (0);
12062 }
12063 
12064 static void
12065 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12066 {
12067     struct ecore_mcast_list_elem *mc_mac =
12068         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12069                                struct ecore_mcast_list_elem,
12070                                link);
12071 
12072     if (mc_mac) {
12073         /* only a single free as all mc_macs are in the same heap array */
12074         free(mc_mac, M_DEVBUF);
12075     }
12076 }
12077 static int
12078 bxe_set_mc_list(struct bxe_softc *sc)
12079 {
12080     struct ecore_mcast_ramrod_params rparam = { NULL };
12081     int rc = 0;
12082 
12083     rparam.mcast_obj = &sc->mcast_obj;
12084 
12085     BXE_MCAST_LOCK(sc);
12086 
12087     /* first, clear all configured multicast MACs */
12088     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12089     if (rc < 0) {
12090         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12091         /* Manual backport parts of FreeBSD upstream r284470. */
12092         BXE_MCAST_UNLOCK(sc);
12093         return (rc);
12094     }
12095 
12096     /* configure a new MACs list */
12097     rc = bxe_init_mcast_macs_list(sc, &rparam);
12098     if (rc) {
12099         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12100         BXE_MCAST_UNLOCK(sc);
12101         return (rc);
12102     }
12103 
12104     /* Now add the new MACs */
12105     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12106     if (rc < 0) {
12107         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12108     }
12109 
12110     bxe_free_mcast_macs_list(&rparam);
12111 
12112     BXE_MCAST_UNLOCK(sc);
12113 
12114     return (rc);
12115 }
12116 
12117 struct bxe_set_addr_ctx {
12118    struct bxe_softc *sc;
12119    unsigned long ramrod_flags;
12120    int rc;
12121 };
12122 
12123 static u_int
12124 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12125 {
12126     struct bxe_set_addr_ctx *ctx = arg;
12127     struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12128     int rc;
12129 
12130     if (ctx->rc < 0)
12131         return (0);
12132 
12133     rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12134                          ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12135 
12136     /* do not treat adding same MAC as an error */
12137     if (rc == -EEXIST)
12138         BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12139     else if (rc < 0) {
12140             BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12141             ctx->rc = rc;
12142     }
12143 
12144     return (1);
12145 }
12146 
12147 static int
12148 bxe_set_uc_list(struct bxe_softc *sc)
12149 {
12150     if_t ifp = sc->ifp;
12151     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12152     struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12153     int rc;
12154 
12155     /* first schedule a cleanup up of old configuration */
12156     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12157     if (rc < 0) {
12158         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12159         return (rc);
12160     }
12161 
12162     if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12163     if (ctx.rc < 0)
12164         return (ctx.rc);
12165 
12166     /* Execute the pending commands */
12167     bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12168     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12169                             ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12170 }
12171 
12172 static void
12173 bxe_set_rx_mode(struct bxe_softc *sc)
12174 {
12175     if_t ifp = sc->ifp;
12176     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12177 
12178     if (sc->state != BXE_STATE_OPEN) {
12179         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12180         return;
12181     }
12182 
12183     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12184 
12185     if (if_getflags(ifp) & IFF_PROMISC) {
12186         rx_mode = BXE_RX_MODE_PROMISC;
12187     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12188                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12189                 CHIP_IS_E1(sc))) {
12190         rx_mode = BXE_RX_MODE_ALLMULTI;
12191     } else {
12192         if (IS_PF(sc)) {
12193             /* some multicasts */
12194             if (bxe_set_mc_list(sc) < 0) {
12195                 rx_mode = BXE_RX_MODE_ALLMULTI;
12196             }
12197             if (bxe_set_uc_list(sc) < 0) {
12198                 rx_mode = BXE_RX_MODE_PROMISC;
12199             }
12200         }
12201     }
12202 
12203     sc->rx_mode = rx_mode;
12204 
12205     /* schedule the rx_mode command */
12206     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12207         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12208         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12209         return;
12210     }
12211 
12212     if (IS_PF(sc)) {
12213         bxe_set_storm_rx_mode(sc);
12214     }
12215 }
12216 
12217 
12218 /* update flags in shmem */
12219 static void
12220 bxe_update_drv_flags(struct bxe_softc *sc,
12221                      uint32_t         flags,
12222                      uint32_t         set)
12223 {
12224     uint32_t drv_flags;
12225 
12226     if (SHMEM2_HAS(sc, drv_flags)) {
12227         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12228         drv_flags = SHMEM2_RD(sc, drv_flags);
12229 
12230         if (set) {
12231             SET_FLAGS(drv_flags, flags);
12232         } else {
12233             RESET_FLAGS(drv_flags, flags);
12234         }
12235 
12236         SHMEM2_WR(sc, drv_flags, drv_flags);
12237         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12238 
12239         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12240     }
12241 }
12242 
12243 /* periodic timer callout routine, only runs when the interface is up */
12244 
12245 static void
12246 bxe_periodic_callout_func(void *xsc)
12247 {
12248     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12249     int i;
12250 
12251     if (!BXE_CORE_TRYLOCK(sc)) {
12252         /* just bail and try again next time */
12253 
12254         if ((sc->state == BXE_STATE_OPEN) &&
12255             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12256             /* schedule the next periodic callout */
12257             callout_reset(&sc->periodic_callout, hz,
12258                           bxe_periodic_callout_func, sc);
12259         }
12260 
12261         return;
12262     }
12263 
12264     if ((sc->state != BXE_STATE_OPEN) ||
12265         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12266         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12267         BXE_CORE_UNLOCK(sc);
12268         return;
12269         }
12270 
12271 
12272     /* Check for TX timeouts on any fastpath. */
12273     FOR_EACH_QUEUE(sc, i) {
12274         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12275             /* Ruh-Roh, chip was reset! */
12276             break;
12277         }
12278     }
12279 
12280     if (!CHIP_REV_IS_SLOW(sc)) {
12281         /*
12282          * This barrier is needed to ensure the ordering between the writing
12283          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12284          * the reading here.
12285          */
12286         mb();
12287         if (sc->port.pmf) {
12288             bxe_acquire_phy_lock(sc);
12289             elink_period_func(&sc->link_params, &sc->link_vars);
12290             bxe_release_phy_lock(sc);
12291         }
12292     }
12293 
12294     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12295         int mb_idx = SC_FW_MB_IDX(sc);
12296         uint32_t drv_pulse;
12297         uint32_t mcp_pulse;
12298 
12299         ++sc->fw_drv_pulse_wr_seq;
12300         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12301 
12302         drv_pulse = sc->fw_drv_pulse_wr_seq;
12303         bxe_drv_pulse(sc);
12304 
12305         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12306                      MCP_PULSE_SEQ_MASK);
12307 
12308         /*
12309          * The delta between driver pulse and mcp response should
12310          * be 1 (before mcp response) or 0 (after mcp response).
12311          */
12312         if ((drv_pulse != mcp_pulse) &&
12313             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12314             /* someone lost a heartbeat... */
12315             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12316                   drv_pulse, mcp_pulse);
12317         }
12318     }
12319 
12320     /* state is BXE_STATE_OPEN */
12321     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12322 
12323     BXE_CORE_UNLOCK(sc);
12324 
12325     if ((sc->state == BXE_STATE_OPEN) &&
12326         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12327         /* schedule the next periodic callout */
12328         callout_reset(&sc->periodic_callout, hz,
12329                       bxe_periodic_callout_func, sc);
12330     }
12331 }
12332 
12333 static void
12334 bxe_periodic_start(struct bxe_softc *sc)
12335 {
12336     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12337     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12338 }
12339 
12340 static void
12341 bxe_periodic_stop(struct bxe_softc *sc)
12342 {
12343     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12344     callout_drain(&sc->periodic_callout);
12345 }
12346 
12347 void
12348 bxe_parity_recover(struct bxe_softc *sc)
12349 {
12350     uint8_t global = FALSE;
12351     uint32_t error_recovered, error_unrecovered;
12352 
12353 
12354     if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12355         (sc->state == BXE_STATE_ERROR)) {
12356         BLOGE(sc, "RECOVERY failed, "
12357             "stack notified driver is NOT running! "
12358             "Please reboot/power cycle the system.\n");
12359         return;
12360     }
12361 
12362     while (1) {
12363         BLOGD(sc, DBG_SP,
12364            "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12365             __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12366 
12367         switch(sc->recovery_state) {
12368 
12369         case BXE_RECOVERY_INIT:
12370             bxe_chk_parity_attn(sc, &global, FALSE);
12371 
12372             if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12373                 (sc->error_status & BXE_ERR_MCP_ASSERT) ||
12374                 (sc->error_status & BXE_ERR_GLOBAL)) {
12375 
12376                 BXE_CORE_LOCK(sc);
12377                 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12378                     bxe_periodic_stop(sc);
12379                 }
12380                 bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12381                 sc->state = BXE_STATE_ERROR;
12382                 sc->recovery_state = BXE_RECOVERY_FAILED;
12383                 BLOGE(sc, " No Recovery tried for error 0x%x"
12384                     " stack notified driver is NOT running!"
12385                     " Please reboot/power cycle the system.\n",
12386                     sc->error_status);
12387                 BXE_CORE_UNLOCK(sc);
12388                 return;
12389             }
12390 
12391 
12392            /* Try to get a LEADER_LOCK HW lock */
12393             if (bxe_trylock_leader_lock(sc)) {
12394 
12395                 bxe_set_reset_in_progress(sc);
12396                 /*
12397                  * Check if there is a global attention and if
12398                  * there was a global attention, set the global
12399                  * reset bit.
12400                  */
12401                 if (global) {
12402                     bxe_set_reset_global(sc);
12403                 }
12404                 sc->is_leader = 1;
12405             }
12406 
12407             /* If interface has been removed - break */
12408 
12409             if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12410                 bxe_periodic_stop(sc);
12411             }
12412 
12413             BXE_CORE_LOCK(sc);
12414             bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12415             sc->recovery_state = BXE_RECOVERY_WAIT;
12416             BXE_CORE_UNLOCK(sc);
12417 
12418             /*
12419              * Ensure "is_leader", MCP command sequence and
12420              * "recovery_state" update values are seen on other
12421              * CPUs.
12422              */
12423             mb();
12424             break;
12425         case BXE_RECOVERY_WAIT:
12426 
12427             if (sc->is_leader) {
12428                 int other_engine = SC_PATH(sc) ? 0 : 1;
12429                 bool other_load_status =
12430                     bxe_get_load_status(sc, other_engine);
12431                 bool load_status =
12432                     bxe_get_load_status(sc, SC_PATH(sc));
12433                 global = bxe_reset_is_global(sc);
12434 
12435                 /*
12436                  * In case of a parity in a global block, let
12437                  * the first leader that performs a
12438                  * leader_reset() reset the global blocks in
12439                  * order to clear global attentions. Otherwise
12440                  * the gates will remain closed for that
12441                  * engine.
12442                  */
12443                 if (load_status ||
12444                     (global && other_load_status)) {
12445                     /*
12446                      * Wait until all other functions get
12447                      * down.
12448                      */
12449                     taskqueue_enqueue_timeout(taskqueue_thread,
12450                         &sc->sp_err_timeout_task, hz/10);
12451                     return;
12452                 } else {
12453                     /*
12454                      * If all other functions got down
12455                      * try to bring the chip back to
12456                      * normal. In any case it's an exit
12457                      * point for a leader.
12458                      */
12459                     if (bxe_leader_reset(sc)) {
12460                         BLOGE(sc, "RECOVERY failed, "
12461                             "stack notified driver is NOT running!\n");
12462                         sc->recovery_state = BXE_RECOVERY_FAILED;
12463                         sc->state = BXE_STATE_ERROR;
12464                         mb();
12465                         return;
12466                     }
12467 
12468                     /*
12469                      * If we are here, means that the
12470                      * leader has succeeded and doesn't
12471                      * want to be a leader any more. Try
12472                      * to continue as a none-leader.
12473                      */
12474                 break;
12475                 }
12476 
12477             } else { /* non-leader */
12478                 if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12479                     /*
12480                      * Try to get a LEADER_LOCK HW lock as
12481                      * long as a former leader may have
12482                      * been unloaded by the user or
12483                      * released a leadership by another
12484                      * reason.
12485                      */
12486                     if (bxe_trylock_leader_lock(sc)) {
12487                         /*
12488                          * I'm a leader now! Restart a
12489                          * switch case.
12490                          */
12491                         sc->is_leader = 1;
12492                         break;
12493                     }
12494 
12495                     taskqueue_enqueue_timeout(taskqueue_thread,
12496                         &sc->sp_err_timeout_task, hz/10);
12497                     return;
12498 
12499                 } else {
12500                     /*
12501                      * If there was a global attention, wait
12502                      * for it to be cleared.
12503                      */
12504                     if (bxe_reset_is_global(sc)) {
12505                         taskqueue_enqueue_timeout(taskqueue_thread,
12506                             &sc->sp_err_timeout_task, hz/10);
12507                         return;
12508                      }
12509 
12510                      error_recovered =
12511                          sc->eth_stats.recoverable_error;
12512                      error_unrecovered =
12513                          sc->eth_stats.unrecoverable_error;
12514                      BXE_CORE_LOCK(sc);
12515                      sc->recovery_state =
12516                          BXE_RECOVERY_NIC_LOADING;
12517                      if (bxe_nic_load(sc, LOAD_NORMAL)) {
12518                          error_unrecovered++;
12519                          sc->recovery_state = BXE_RECOVERY_FAILED;
12520                          sc->state = BXE_STATE_ERROR;
12521                          BLOGE(sc, "Recovery is NOT successfull, "
12522                             " state=0x%x recovery_state=0x%x error=%x\n",
12523                             sc->state, sc->recovery_state, sc->error_status);
12524                          sc->error_status = 0;
12525                      } else {
12526                          sc->recovery_state =
12527                              BXE_RECOVERY_DONE;
12528                          error_recovered++;
12529                          BLOGI(sc, "Recovery is successfull from errors %x,"
12530                             " state=0x%x"
12531                             " recovery_state=0x%x \n", sc->error_status,
12532                             sc->state, sc->recovery_state);
12533                          mb();
12534                      }
12535                      sc->error_status = 0;
12536                      BXE_CORE_UNLOCK(sc);
12537                      sc->eth_stats.recoverable_error =
12538                          error_recovered;
12539                      sc->eth_stats.unrecoverable_error =
12540                          error_unrecovered;
12541 
12542                      return;
12543                  }
12544              }
12545          default:
12546              return;
12547          }
12548     }
12549 }
12550 void
12551 bxe_handle_error(struct bxe_softc * sc)
12552 {
12553 
12554     if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12555         return;
12556     }
12557     if(sc->error_status) {
12558         if (sc->state == BXE_STATE_OPEN)  {
12559             bxe_int_disable(sc);
12560         }
12561         if (sc->link_vars.link_up) {
12562             if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12563         }
12564         sc->recovery_state = BXE_RECOVERY_INIT;
12565         BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12566             sc->unit, sc->error_status, sc->recovery_state);
12567         bxe_parity_recover(sc);
12568    }
12569 }
12570 
12571 static void
12572 bxe_sp_err_timeout_task(void *arg, int pending)
12573 {
12574 
12575     struct bxe_softc *sc = (struct bxe_softc *)arg;
12576 
12577     BLOGD(sc, DBG_SP,
12578         "%s state = 0x%x rec state=0x%x error_status=%x\n",
12579         __func__, sc->state, sc->recovery_state, sc->error_status);
12580 
12581     if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12582        (sc->state == BXE_STATE_ERROR)) {
12583         return;
12584     }
12585     /* if can be taken */
12586     if ((sc->error_status) && (sc->trigger_grcdump)) {
12587         bxe_grc_dump(sc);
12588     }
12589     if (sc->recovery_state != BXE_RECOVERY_DONE) {
12590         bxe_handle_error(sc);
12591         bxe_parity_recover(sc);
12592     } else if (sc->error_status) {
12593         bxe_handle_error(sc);
12594     }
12595 
12596     return;
12597 }
12598 
12599 /* start the controller */
12600 static __noinline int
12601 bxe_nic_load(struct bxe_softc *sc,
12602              int              load_mode)
12603 {
12604     uint32_t val;
12605     int load_code = 0;
12606     int i, rc = 0;
12607 
12608     BXE_CORE_LOCK_ASSERT(sc);
12609 
12610     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12611 
12612     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12613 
12614     if (IS_PF(sc)) {
12615         /* must be called before memory allocation and HW init */
12616         bxe_ilt_set_info(sc);
12617     }
12618 
12619     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12620 
12621     bxe_set_fp_rx_buf_size(sc);
12622 
12623     if (bxe_alloc_fp_buffers(sc) != 0) {
12624         BLOGE(sc, "Failed to allocate fastpath memory\n");
12625         sc->state = BXE_STATE_CLOSED;
12626         rc = ENOMEM;
12627         goto bxe_nic_load_error0;
12628     }
12629 
12630     if (bxe_alloc_mem(sc) != 0) {
12631         sc->state = BXE_STATE_CLOSED;
12632         rc = ENOMEM;
12633         goto bxe_nic_load_error0;
12634     }
12635 
12636     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12637         sc->state = BXE_STATE_CLOSED;
12638         rc = ENOMEM;
12639         goto bxe_nic_load_error0;
12640     }
12641 
12642     if (IS_PF(sc)) {
12643         /* set pf load just before approaching the MCP */
12644         bxe_set_pf_load(sc);
12645 
12646         /* if MCP exists send load request and analyze response */
12647         if (!BXE_NOMCP(sc)) {
12648             /* attempt to load pf */
12649             if (bxe_nic_load_request(sc, &load_code) != 0) {
12650                 sc->state = BXE_STATE_CLOSED;
12651                 rc = ENXIO;
12652                 goto bxe_nic_load_error1;
12653             }
12654 
12655             /* what did the MCP say? */
12656             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12657                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12658                 sc->state = BXE_STATE_CLOSED;
12659                 rc = ENXIO;
12660                 goto bxe_nic_load_error2;
12661             }
12662         } else {
12663             BLOGI(sc, "Device has no MCP!\n");
12664             load_code = bxe_nic_load_no_mcp(sc);
12665         }
12666 
12667         /* mark PMF if applicable */
12668         bxe_nic_load_pmf(sc, load_code);
12669 
12670         /* Init Function state controlling object */
12671         bxe_init_func_obj(sc);
12672 
12673         /* Initialize HW */
12674         if (bxe_init_hw(sc, load_code) != 0) {
12675             BLOGE(sc, "HW init failed\n");
12676             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12677             sc->state = BXE_STATE_CLOSED;
12678             rc = ENXIO;
12679             goto bxe_nic_load_error2;
12680         }
12681     }
12682 
12683     /* set ALWAYS_ALIVE bit in shmem */
12684     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12685     bxe_drv_pulse(sc);
12686     sc->flags |= BXE_NO_PULSE;
12687 
12688     /* attach interrupts */
12689     if (bxe_interrupt_attach(sc) != 0) {
12690         sc->state = BXE_STATE_CLOSED;
12691         rc = ENXIO;
12692         goto bxe_nic_load_error2;
12693     }
12694 
12695     bxe_nic_init(sc, load_code);
12696 
12697     /* Init per-function objects */
12698     if (IS_PF(sc)) {
12699         bxe_init_objs(sc);
12700         // XXX bxe_iov_nic_init(sc);
12701 
12702         /* set AFEX default VLAN tag to an invalid value */
12703         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12704         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12705 
12706         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12707         rc = bxe_func_start(sc);
12708         if (rc) {
12709             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12710             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12711             sc->state = BXE_STATE_ERROR;
12712             goto bxe_nic_load_error3;
12713         }
12714 
12715         /* send LOAD_DONE command to MCP */
12716         if (!BXE_NOMCP(sc)) {
12717             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12718             if (!load_code) {
12719                 BLOGE(sc, "MCP response failure, aborting\n");
12720                 sc->state = BXE_STATE_ERROR;
12721                 rc = ENXIO;
12722                 goto bxe_nic_load_error3;
12723             }
12724         }
12725 
12726         rc = bxe_setup_leading(sc);
12727         if (rc) {
12728             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12729             sc->state = BXE_STATE_ERROR;
12730             goto bxe_nic_load_error3;
12731         }
12732 
12733         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12734             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12735             if (rc) {
12736                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12737                 sc->state = BXE_STATE_ERROR;
12738                 goto bxe_nic_load_error3;
12739             }
12740         }
12741 
12742         rc = bxe_init_rss_pf(sc);
12743         if (rc) {
12744             BLOGE(sc, "PF RSS init failed\n");
12745             sc->state = BXE_STATE_ERROR;
12746             goto bxe_nic_load_error3;
12747         }
12748     }
12749     /* XXX VF */
12750 
12751     /* now when Clients are configured we are ready to work */
12752     sc->state = BXE_STATE_OPEN;
12753 
12754     /* Configure a ucast MAC */
12755     if (IS_PF(sc)) {
12756         rc = bxe_set_eth_mac(sc, TRUE);
12757     }
12758     if (rc) {
12759         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12760         sc->state = BXE_STATE_ERROR;
12761         goto bxe_nic_load_error3;
12762     }
12763 
12764     if (sc->port.pmf) {
12765         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12766         if (rc) {
12767             sc->state = BXE_STATE_ERROR;
12768             goto bxe_nic_load_error3;
12769         }
12770     }
12771 
12772     sc->link_params.feature_config_flags &=
12773         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12774 
12775     /* start fast path */
12776 
12777     /* Initialize Rx filter */
12778     bxe_set_rx_mode(sc);
12779 
12780     /* start the Tx */
12781     switch (/* XXX load_mode */LOAD_OPEN) {
12782     case LOAD_NORMAL:
12783     case LOAD_OPEN:
12784         break;
12785 
12786     case LOAD_DIAG:
12787     case LOAD_LOOPBACK_EXT:
12788         sc->state = BXE_STATE_DIAG;
12789         break;
12790 
12791     default:
12792         break;
12793     }
12794 
12795     if (sc->port.pmf) {
12796         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12797     } else {
12798         bxe_link_status_update(sc);
12799     }
12800 
12801     /* start the periodic timer callout */
12802     bxe_periodic_start(sc);
12803 
12804     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12805         /* mark driver is loaded in shmem2 */
12806         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12807         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12808                   (val |
12809                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12810                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12811     }
12812 
12813     /* wait for all pending SP commands to complete */
12814     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12815         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12816         bxe_periodic_stop(sc);
12817         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12818         return (ENXIO);
12819     }
12820 
12821     /* Tell the stack the driver is running! */
12822     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12823 
12824     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12825 
12826     return (0);
12827 
12828 bxe_nic_load_error3:
12829 
12830     if (IS_PF(sc)) {
12831         bxe_int_disable_sync(sc, 1);
12832 
12833         /* clean out queued objects */
12834         bxe_squeeze_objects(sc);
12835     }
12836 
12837     bxe_interrupt_detach(sc);
12838 
12839 bxe_nic_load_error2:
12840 
12841     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12842         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12843         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12844     }
12845 
12846     sc->port.pmf = 0;
12847 
12848 bxe_nic_load_error1:
12849 
12850     /* clear pf_load status, as it was already set */
12851     if (IS_PF(sc)) {
12852         bxe_clear_pf_load(sc);
12853     }
12854 
12855 bxe_nic_load_error0:
12856 
12857     bxe_free_fw_stats_mem(sc);
12858     bxe_free_fp_buffers(sc);
12859     bxe_free_mem(sc);
12860 
12861     return (rc);
12862 }
12863 
12864 static int
12865 bxe_init_locked(struct bxe_softc *sc)
12866 {
12867     int other_engine = SC_PATH(sc) ? 0 : 1;
12868     uint8_t other_load_status, load_status;
12869     uint8_t global = FALSE;
12870     int rc;
12871 
12872     BXE_CORE_LOCK_ASSERT(sc);
12873 
12874     /* check if the driver is already running */
12875     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12876         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12877         return (0);
12878     }
12879 
12880     if((sc->state == BXE_STATE_ERROR) &&
12881         (sc->recovery_state == BXE_RECOVERY_FAILED)) {
12882         BLOGE(sc, "Initialization not done, "
12883                   "as previous recovery failed."
12884                   "Reboot/Power-cycle the system\n" );
12885         return (ENXIO);
12886     }
12887 
12888 
12889     bxe_set_power_state(sc, PCI_PM_D0);
12890 
12891     /*
12892      * If parity occurred during the unload, then attentions and/or
12893      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12894      * loaded on the current engine to complete the recovery. Parity recovery
12895      * is only relevant for PF driver.
12896      */
12897     if (IS_PF(sc)) {
12898         other_load_status = bxe_get_load_status(sc, other_engine);
12899         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12900 
12901         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12902             bxe_chk_parity_attn(sc, &global, TRUE)) {
12903             do {
12904                 /*
12905                  * If there are attentions and they are in global blocks, set
12906                  * the GLOBAL_RESET bit regardless whether it will be this
12907                  * function that will complete the recovery or not.
12908                  */
12909                 if (global) {
12910                     bxe_set_reset_global(sc);
12911                 }
12912 
12913                 /*
12914                  * Only the first function on the current engine should try
12915                  * to recover in open. In case of attentions in global blocks
12916                  * only the first in the chip should try to recover.
12917                  */
12918                 if ((!load_status && (!global || !other_load_status)) &&
12919                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12920                     BLOGI(sc, "Recovered during init\n");
12921                     break;
12922                 }
12923 
12924                 /* recovery has failed... */
12925                 bxe_set_power_state(sc, PCI_PM_D3hot);
12926                 sc->recovery_state = BXE_RECOVERY_FAILED;
12927 
12928                 BLOGE(sc, "Recovery flow hasn't properly "
12929                           "completed yet, try again later. "
12930                           "If you still see this message after a "
12931                           "few retries then power cycle is required.\n");
12932 
12933                 rc = ENXIO;
12934                 goto bxe_init_locked_done;
12935             } while (0);
12936         }
12937     }
12938 
12939     sc->recovery_state = BXE_RECOVERY_DONE;
12940 
12941     rc = bxe_nic_load(sc, LOAD_OPEN);
12942 
12943 bxe_init_locked_done:
12944 
12945     if (rc) {
12946         /* Tell the stack the driver is NOT running! */
12947         BLOGE(sc, "Initialization failed, "
12948                   "stack notified driver is NOT running!\n");
12949         if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12950     }
12951 
12952     return (rc);
12953 }
12954 
12955 static int
12956 bxe_stop_locked(struct bxe_softc *sc)
12957 {
12958     BXE_CORE_LOCK_ASSERT(sc);
12959     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12960 }
12961 
12962 /*
12963  * Handles controller initialization when called from an unlocked routine.
12964  * ifconfig calls this function.
12965  *
12966  * Returns:
12967  *   void
12968  */
12969 static void
12970 bxe_init(void *xsc)
12971 {
12972     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12973 
12974     BXE_CORE_LOCK(sc);
12975     bxe_init_locked(sc);
12976     BXE_CORE_UNLOCK(sc);
12977 }
12978 
12979 static int
12980 bxe_init_ifnet(struct bxe_softc *sc)
12981 {
12982     if_t ifp;
12983     int capabilities;
12984 
12985     /* ifconfig entrypoint for media type/status reporting */
12986     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12987                  bxe_ifmedia_update,
12988                  bxe_ifmedia_status);
12989 
12990     /* set the default interface values */
12991     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12992     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12993     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12994 
12995     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12996         BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12997 
12998     /* allocate the ifnet structure */
12999     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
13000         BLOGE(sc, "Interface allocation failed!\n");
13001         return (ENXIO);
13002     }
13003 
13004     if_setsoftc(ifp, sc);
13005     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13006     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13007     if_setioctlfn(ifp, bxe_ioctl);
13008     if_setstartfn(ifp, bxe_tx_start);
13009     if_setgetcounterfn(ifp, bxe_get_counter);
13010     if_settransmitfn(ifp, bxe_tx_mq_start);
13011     if_setqflushfn(ifp, bxe_mq_flush);
13012     if_setinitfn(ifp, bxe_init);
13013     if_setmtu(ifp, sc->mtu);
13014     if_sethwassist(ifp, (CSUM_IP      |
13015                         CSUM_TCP      |
13016                         CSUM_UDP      |
13017                         CSUM_TSO      |
13018                         CSUM_TCP_IPV6 |
13019                         CSUM_UDP_IPV6));
13020 
13021     capabilities =
13022         (IFCAP_VLAN_MTU       |
13023          IFCAP_VLAN_HWTAGGING |
13024          IFCAP_VLAN_HWTSO     |
13025          IFCAP_VLAN_HWFILTER  |
13026          IFCAP_VLAN_HWCSUM    |
13027          IFCAP_HWCSUM         |
13028          IFCAP_JUMBO_MTU      |
13029          IFCAP_LRO            |
13030          IFCAP_TSO4           |
13031          IFCAP_TSO6           |
13032          IFCAP_WOL_MAGIC);
13033     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13034     if_setcapenable(ifp, if_getcapabilities(ifp));
13035     if_setbaudrate(ifp, IF_Gbps(10));
13036 /* XXX */
13037     if_setsendqlen(ifp, sc->tx_ring_size);
13038     if_setsendqready(ifp);
13039 /* XXX */
13040 
13041     sc->ifp = ifp;
13042 
13043     /* attach to the Ethernet interface list */
13044     ether_ifattach(ifp, sc->link_params.mac_addr);
13045 
13046     /* Attach driver debugnet methods. */
13047     DEBUGNET_SET(ifp, bxe);
13048 
13049     return (0);
13050 }
13051 
13052 static void
13053 bxe_deallocate_bars(struct bxe_softc *sc)
13054 {
13055     int i;
13056 
13057     for (i = 0; i < MAX_BARS; i++) {
13058         if (sc->bar[i].resource != NULL) {
13059             bus_release_resource(sc->dev,
13060                                  SYS_RES_MEMORY,
13061                                  sc->bar[i].rid,
13062                                  sc->bar[i].resource);
13063             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13064                   i, PCIR_BAR(i));
13065         }
13066     }
13067 }
13068 
13069 static int
13070 bxe_allocate_bars(struct bxe_softc *sc)
13071 {
13072     u_int flags;
13073     int i;
13074 
13075     memset(sc->bar, 0, sizeof(sc->bar));
13076 
13077     for (i = 0; i < MAX_BARS; i++) {
13078 
13079         /* memory resources reside at BARs 0, 2, 4 */
13080         /* Run `pciconf -lb` to see mappings */
13081         if ((i != 0) && (i != 2) && (i != 4)) {
13082             continue;
13083         }
13084 
13085         sc->bar[i].rid = PCIR_BAR(i);
13086 
13087         flags = RF_ACTIVE;
13088         if (i == 0) {
13089             flags |= RF_SHAREABLE;
13090         }
13091 
13092         if ((sc->bar[i].resource =
13093              bus_alloc_resource_any(sc->dev,
13094                                     SYS_RES_MEMORY,
13095                                     &sc->bar[i].rid,
13096                                     flags)) == NULL) {
13097             return (0);
13098         }
13099 
13100         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13101         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13102         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13103 
13104         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13105               i, PCIR_BAR(i),
13106               rman_get_start(sc->bar[i].resource),
13107               rman_get_end(sc->bar[i].resource),
13108               rman_get_size(sc->bar[i].resource),
13109               (uintmax_t)sc->bar[i].kva);
13110     }
13111 
13112     return (0);
13113 }
13114 
13115 static void
13116 bxe_get_function_num(struct bxe_softc *sc)
13117 {
13118     uint32_t val = 0;
13119 
13120     /*
13121      * Read the ME register to get the function number. The ME register
13122      * holds the relative-function number and absolute-function number. The
13123      * absolute-function number appears only in E2 and above. Before that
13124      * these bits always contained zero, therefore we cannot blindly use them.
13125      */
13126 
13127     val = REG_RD(sc, BAR_ME_REGISTER);
13128 
13129     sc->pfunc_rel =
13130         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13131     sc->path_id =
13132         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13133 
13134     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13135         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13136     } else {
13137         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13138     }
13139 
13140     BLOGD(sc, DBG_LOAD,
13141           "Relative function %d, Absolute function %d, Path %d\n",
13142           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13143 }
13144 
13145 static uint32_t
13146 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13147 {
13148     uint32_t shmem2_size;
13149     uint32_t offset;
13150     uint32_t mf_cfg_offset_value;
13151 
13152     /* Non 57712 */
13153     offset = (SHMEM_RD(sc, func_mb) +
13154               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13155 
13156     /* 57712 plus */
13157     if (sc->devinfo.shmem2_base != 0) {
13158         shmem2_size = SHMEM2_RD(sc, size);
13159         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13160             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13161             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13162                 offset = mf_cfg_offset_value;
13163             }
13164         }
13165     }
13166 
13167     return (offset);
13168 }
13169 
13170 static uint32_t
13171 bxe_pcie_capability_read(struct bxe_softc *sc,
13172                          int    reg,
13173                          int    width)
13174 {
13175     int pcie_reg;
13176 
13177     /* ensure PCIe capability is enabled */
13178     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13179         if (pcie_reg != 0) {
13180             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13181             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13182         }
13183     }
13184 
13185     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13186 
13187     return (0);
13188 }
13189 
13190 static uint8_t
13191 bxe_is_pcie_pending(struct bxe_softc *sc)
13192 {
13193     return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13194             PCIEM_STA_TRANSACTION_PND);
13195 }
13196 
13197 /*
13198  * Walk the PCI capabiites list for the device to find what features are
13199  * supported. These capabilites may be enabled/disabled by firmware so it's
13200  * best to walk the list rather than make assumptions.
13201  */
13202 static void
13203 bxe_probe_pci_caps(struct bxe_softc *sc)
13204 {
13205     uint16_t link_status;
13206     int reg;
13207 
13208     /* check if PCI Power Management is enabled */
13209     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13210         if (reg != 0) {
13211             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13212 
13213             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13214             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13215         }
13216     }
13217 
13218     link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13219 
13220     /* handle PCIe 2.0 workarounds for 57710 */
13221     if (CHIP_IS_E1(sc)) {
13222         /* workaround for 57710 errata E4_57710_27462 */
13223         sc->devinfo.pcie_link_speed =
13224             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13225 
13226         /* workaround for 57710 errata E4_57710_27488 */
13227         sc->devinfo.pcie_link_width =
13228             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13229         if (sc->devinfo.pcie_link_speed > 1) {
13230             sc->devinfo.pcie_link_width =
13231                 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13232         }
13233     } else {
13234         sc->devinfo.pcie_link_speed =
13235             (link_status & PCIEM_LINK_STA_SPEED);
13236         sc->devinfo.pcie_link_width =
13237             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13238     }
13239 
13240     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13241           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13242 
13243     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13244     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13245 
13246     /* check if MSI capability is enabled */
13247     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13248         if (reg != 0) {
13249             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13250 
13251             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13252             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13253         }
13254     }
13255 
13256     /* check if MSI-X capability is enabled */
13257     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13258         if (reg != 0) {
13259             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13260 
13261             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13262             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13263         }
13264     }
13265 }
13266 
13267 static int
13268 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13269 {
13270     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13271     uint32_t val;
13272 
13273     /* get the outer vlan if we're in switch-dependent mode */
13274 
13275     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13276     mf_info->ext_id = (uint16_t)val;
13277 
13278     mf_info->multi_vnics_mode = 1;
13279 
13280     if (!VALID_OVLAN(mf_info->ext_id)) {
13281         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13282         return (1);
13283     }
13284 
13285     /* get the capabilities */
13286     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13287         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13288         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13289     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13290                FUNC_MF_CFG_PROTOCOL_FCOE) {
13291         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13292     } else {
13293         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13294     }
13295 
13296     mf_info->vnics_per_port =
13297         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13298 
13299     return (0);
13300 }
13301 
13302 static uint32_t
13303 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13304 {
13305     uint32_t retval = 0;
13306     uint32_t val;
13307 
13308     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13309 
13310     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13311         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13312             retval |= MF_PROTO_SUPPORT_ETHERNET;
13313         }
13314         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13315             retval |= MF_PROTO_SUPPORT_ISCSI;
13316         }
13317         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13318             retval |= MF_PROTO_SUPPORT_FCOE;
13319         }
13320     }
13321 
13322     return (retval);
13323 }
13324 
13325 static int
13326 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13327 {
13328     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13329     uint32_t val;
13330 
13331     /*
13332      * There is no outer vlan if we're in switch-independent mode.
13333      * If the mac is valid then assume multi-function.
13334      */
13335 
13336     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13337 
13338     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13339 
13340     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13341 
13342     mf_info->vnics_per_port =
13343         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13344 
13345     return (0);
13346 }
13347 
13348 static int
13349 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13350 {
13351     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13352     uint32_t e1hov_tag;
13353     uint32_t func_config;
13354     uint32_t niv_config;
13355 
13356     mf_info->multi_vnics_mode = 1;
13357 
13358     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13359     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13360     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13361 
13362     mf_info->ext_id =
13363         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13364                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13365 
13366     mf_info->default_vlan =
13367         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13368                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13369 
13370     mf_info->niv_allowed_priorities =
13371         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13372                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13373 
13374     mf_info->niv_default_cos =
13375         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13376                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13377 
13378     mf_info->afex_vlan_mode =
13379         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13380          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13381 
13382     mf_info->niv_mba_enabled =
13383         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13384          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13385 
13386     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13387 
13388     mf_info->vnics_per_port =
13389         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13390 
13391     return (0);
13392 }
13393 
13394 static int
13395 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13396 {
13397     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13398     uint32_t mf_cfg1;
13399     uint32_t mf_cfg2;
13400     uint32_t ovlan1;
13401     uint32_t ovlan2;
13402     uint8_t i, j;
13403 
13404     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13405           SC_PORT(sc));
13406     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13407           mf_info->mf_config[SC_VN(sc)]);
13408     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13409           mf_info->multi_vnics_mode);
13410     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13411           mf_info->vnics_per_port);
13412     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13413           mf_info->ext_id);
13414     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13415           mf_info->min_bw[0], mf_info->min_bw[1],
13416           mf_info->min_bw[2], mf_info->min_bw[3]);
13417     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13418           mf_info->max_bw[0], mf_info->max_bw[1],
13419           mf_info->max_bw[2], mf_info->max_bw[3]);
13420     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13421           sc->mac_addr_str);
13422 
13423     /* various MF mode sanity checks... */
13424 
13425     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13426         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13427               SC_PORT(sc));
13428         return (1);
13429     }
13430 
13431     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13432         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13433               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13434         return (1);
13435     }
13436 
13437     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13438         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13439         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13440             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13441                   SC_VN(sc), OVLAN(sc));
13442             return (1);
13443         }
13444 
13445         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13446             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13447                   mf_info->multi_vnics_mode, OVLAN(sc));
13448             return (1);
13449         }
13450 
13451         /*
13452          * Verify all functions are either MF or SF mode. If MF, make sure
13453          * sure that all non-hidden functions have a valid ovlan. If SF,
13454          * make sure that all non-hidden functions have an invalid ovlan.
13455          */
13456         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13457             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13458             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13459             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13460                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13461                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13462                 BLOGE(sc, "mf_mode=SD function %d MF config "
13463                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13464                       i, mf_info->multi_vnics_mode, ovlan1);
13465                 return (1);
13466             }
13467         }
13468 
13469         /* Verify all funcs on the same port each have a different ovlan. */
13470         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13471             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13472             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13473             /* iterate from the next function on the port to the max func */
13474             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13475                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13476                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13477                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13478                     VALID_OVLAN(ovlan1) &&
13479                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13480                     VALID_OVLAN(ovlan2) &&
13481                     (ovlan1 == ovlan2)) {
13482                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13483                               "have the same ovlan (%d)\n",
13484                           i, j, ovlan1);
13485                     return (1);
13486                 }
13487             }
13488         }
13489     } /* MULTI_FUNCTION_SD */
13490 
13491     return (0);
13492 }
13493 
13494 static int
13495 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13496 {
13497     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13498     uint32_t val, mac_upper;
13499     uint8_t i, vnic;
13500 
13501     /* initialize mf_info defaults */
13502     mf_info->vnics_per_port   = 1;
13503     mf_info->multi_vnics_mode = FALSE;
13504     mf_info->path_has_ovlan   = FALSE;
13505     mf_info->mf_mode          = SINGLE_FUNCTION;
13506 
13507     if (!CHIP_IS_MF_CAP(sc)) {
13508         return (0);
13509     }
13510 
13511     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13512         BLOGE(sc, "Invalid mf_cfg_base!\n");
13513         return (1);
13514     }
13515 
13516     /* get the MF mode (switch dependent / independent / single-function) */
13517 
13518     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13519 
13520     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13521     {
13522     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13523 
13524         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13525 
13526         /* check for legal upper mac bytes */
13527         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13528             mf_info->mf_mode = MULTI_FUNCTION_SI;
13529         } else {
13530             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13531         }
13532 
13533         break;
13534 
13535     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13536     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13537 
13538         /* get outer vlan configuration */
13539         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13540 
13541         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13542             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13543             mf_info->mf_mode = MULTI_FUNCTION_SD;
13544         } else {
13545             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13546         }
13547 
13548         break;
13549 
13550     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13551 
13552         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13553         return (0);
13554 
13555     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13556 
13557         /*
13558          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13559          * and the MAC address is valid.
13560          */
13561         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13562 
13563         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13564             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13565             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13566         } else {
13567             BLOGE(sc, "Invalid config for AFEX mode\n");
13568         }
13569 
13570         break;
13571 
13572     default:
13573 
13574         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13575               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13576 
13577         return (1);
13578     }
13579 
13580     /* set path mf_mode (which could be different than function mf_mode) */
13581     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13582         mf_info->path_has_ovlan = TRUE;
13583     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13584         /*
13585          * Decide on path multi vnics mode. If we're not in MF mode and in
13586          * 4-port mode, this is good enough to check vnic-0 of the other port
13587          * on the same path
13588          */
13589         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13590             uint8_t other_port = !(PORT_ID(sc) & 1);
13591             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13592 
13593             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13594 
13595             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13596         }
13597     }
13598 
13599     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13600         /* invalid MF config */
13601         if (SC_VN(sc) >= 1) {
13602             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13603             return (1);
13604         }
13605 
13606         return (0);
13607     }
13608 
13609     /* get the MF configuration */
13610     mf_info->mf_config[SC_VN(sc)] =
13611         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13612 
13613     switch(mf_info->mf_mode)
13614     {
13615     case MULTI_FUNCTION_SD:
13616 
13617         bxe_get_shmem_mf_cfg_info_sd(sc);
13618         break;
13619 
13620     case MULTI_FUNCTION_SI:
13621 
13622         bxe_get_shmem_mf_cfg_info_si(sc);
13623         break;
13624 
13625     case MULTI_FUNCTION_AFEX:
13626 
13627         bxe_get_shmem_mf_cfg_info_niv(sc);
13628         break;
13629 
13630     default:
13631 
13632         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13633               mf_info->mf_mode);
13634         return (1);
13635     }
13636 
13637     /* get the congestion management parameters */
13638 
13639     vnic = 0;
13640     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13641         /* get min/max bw */
13642         val = MFCFG_RD(sc, func_mf_config[i].config);
13643         mf_info->min_bw[vnic] =
13644             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13645         mf_info->max_bw[vnic] =
13646             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13647         vnic++;
13648     }
13649 
13650     return (bxe_check_valid_mf_cfg(sc));
13651 }
13652 
13653 static int
13654 bxe_get_shmem_info(struct bxe_softc *sc)
13655 {
13656     int port;
13657     uint32_t mac_hi, mac_lo, val;
13658 
13659     port = SC_PORT(sc);
13660     mac_hi = mac_lo = 0;
13661 
13662     sc->link_params.sc   = sc;
13663     sc->link_params.port = port;
13664 
13665     /* get the hardware config info */
13666     sc->devinfo.hw_config =
13667         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13668     sc->devinfo.hw_config2 =
13669         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13670 
13671     sc->link_params.hw_led_mode =
13672         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13673          SHARED_HW_CFG_LED_MODE_SHIFT);
13674 
13675     /* get the port feature config */
13676     sc->port.config =
13677         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13678 
13679     /* get the link params */
13680     sc->link_params.speed_cap_mask[0] =
13681         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13682     sc->link_params.speed_cap_mask[1] =
13683         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13684 
13685     /* get the lane config */
13686     sc->link_params.lane_config =
13687         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13688 
13689     /* get the link config */
13690     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13691     sc->port.link_config[ELINK_INT_PHY] = val;
13692     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13693     sc->port.link_config[ELINK_EXT_PHY1] =
13694         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13695 
13696     /* get the override preemphasis flag and enable it or turn it off */
13697     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13698     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13699         sc->link_params.feature_config_flags |=
13700             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13701     } else {
13702         sc->link_params.feature_config_flags &=
13703             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13704     }
13705 
13706     /* get the initial value of the link params */
13707     sc->link_params.multi_phy_config =
13708         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13709 
13710     /* get external phy info */
13711     sc->port.ext_phy_config =
13712         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13713 
13714     /* get the multifunction configuration */
13715     bxe_get_mf_cfg_info(sc);
13716 
13717     /* get the mac address */
13718     if (IS_MF(sc)) {
13719         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13720         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13721     } else {
13722         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13723         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13724     }
13725 
13726     if ((mac_lo == 0) && (mac_hi == 0)) {
13727         *sc->mac_addr_str = 0;
13728         BLOGE(sc, "No Ethernet address programmed!\n");
13729     } else {
13730         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13731         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13732         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13733         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13734         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13735         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13736         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13737                  "%02x:%02x:%02x:%02x:%02x:%02x",
13738                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13739                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13740                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13741         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13742     }
13743 
13744     return (0);
13745 }
13746 
13747 static void
13748 bxe_get_tunable_params(struct bxe_softc *sc)
13749 {
13750     /* sanity checks */
13751 
13752     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13753         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13754         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13755         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13756         bxe_interrupt_mode = INTR_MODE_MSIX;
13757     }
13758 
13759     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13760         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13761         bxe_queue_count = 0;
13762     }
13763 
13764     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13765         if (bxe_max_rx_bufs == 0) {
13766             bxe_max_rx_bufs = RX_BD_USABLE;
13767         } else {
13768             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13769             bxe_max_rx_bufs = 2048;
13770         }
13771     }
13772 
13773     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13774         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13775         bxe_hc_rx_ticks = 25;
13776     }
13777 
13778     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13779         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13780         bxe_hc_tx_ticks = 50;
13781     }
13782 
13783     if (bxe_max_aggregation_size == 0) {
13784         bxe_max_aggregation_size = TPA_AGG_SIZE;
13785     }
13786 
13787     if (bxe_max_aggregation_size > 0xffff) {
13788         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13789               bxe_max_aggregation_size);
13790         bxe_max_aggregation_size = TPA_AGG_SIZE;
13791     }
13792 
13793     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13794         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13795         bxe_mrrs = -1;
13796     }
13797 
13798     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13799         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13800         bxe_autogreeen = 0;
13801     }
13802 
13803     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13804         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13805         bxe_udp_rss = 0;
13806     }
13807 
13808     /* pull in user settings */
13809 
13810     sc->interrupt_mode       = bxe_interrupt_mode;
13811     sc->max_rx_bufs          = bxe_max_rx_bufs;
13812     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13813     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13814     sc->max_aggregation_size = bxe_max_aggregation_size;
13815     sc->mrrs                 = bxe_mrrs;
13816     sc->autogreeen           = bxe_autogreeen;
13817     sc->udp_rss              = bxe_udp_rss;
13818 
13819     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13820         sc->num_queues = 1;
13821     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13822         sc->num_queues =
13823             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13824                 MAX_RSS_CHAINS);
13825         if (sc->num_queues > mp_ncpus) {
13826             sc->num_queues = mp_ncpus;
13827         }
13828     }
13829 
13830     BLOGD(sc, DBG_LOAD,
13831           "User Config: "
13832           "debug=0x%lx "
13833           "interrupt_mode=%d "
13834           "queue_count=%d "
13835           "hc_rx_ticks=%d "
13836           "hc_tx_ticks=%d "
13837           "rx_budget=%d "
13838           "max_aggregation_size=%d "
13839           "mrrs=%d "
13840           "autogreeen=%d "
13841           "udp_rss=%d\n",
13842           bxe_debug,
13843           sc->interrupt_mode,
13844           sc->num_queues,
13845           sc->hc_rx_ticks,
13846           sc->hc_tx_ticks,
13847           bxe_rx_budget,
13848           sc->max_aggregation_size,
13849           sc->mrrs,
13850           sc->autogreeen,
13851           sc->udp_rss);
13852 }
13853 
13854 static int
13855 bxe_media_detect(struct bxe_softc *sc)
13856 {
13857     int port_type;
13858     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13859 
13860     switch (sc->link_params.phy[phy_idx].media_type) {
13861     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13862     case ELINK_ETH_PHY_XFP_FIBER:
13863         BLOGI(sc, "Found 10Gb Fiber media.\n");
13864         sc->media = IFM_10G_SR;
13865         port_type = PORT_FIBRE;
13866         break;
13867     case ELINK_ETH_PHY_SFP_1G_FIBER:
13868         BLOGI(sc, "Found 1Gb Fiber media.\n");
13869         sc->media = IFM_1000_SX;
13870         port_type = PORT_FIBRE;
13871         break;
13872     case ELINK_ETH_PHY_KR:
13873     case ELINK_ETH_PHY_CX4:
13874         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13875         sc->media = IFM_10G_CX4;
13876         port_type = PORT_FIBRE;
13877         break;
13878     case ELINK_ETH_PHY_DA_TWINAX:
13879         BLOGI(sc, "Found 10Gb Twinax media.\n");
13880         sc->media = IFM_10G_TWINAX;
13881         port_type = PORT_DA;
13882         break;
13883     case ELINK_ETH_PHY_BASE_T:
13884         if (sc->link_params.speed_cap_mask[0] &
13885             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13886             BLOGI(sc, "Found 10GBase-T media.\n");
13887             sc->media = IFM_10G_T;
13888             port_type = PORT_TP;
13889         } else {
13890             BLOGI(sc, "Found 1000Base-T media.\n");
13891             sc->media = IFM_1000_T;
13892             port_type = PORT_TP;
13893         }
13894         break;
13895     case ELINK_ETH_PHY_NOT_PRESENT:
13896         BLOGI(sc, "Media not present.\n");
13897         sc->media = 0;
13898         port_type = PORT_OTHER;
13899         break;
13900     case ELINK_ETH_PHY_UNSPECIFIED:
13901     default:
13902         BLOGI(sc, "Unknown media!\n");
13903         sc->media = 0;
13904         port_type = PORT_OTHER;
13905         break;
13906     }
13907     return port_type;
13908 }
13909 
13910 #define GET_FIELD(value, fname)                     \
13911     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13912 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13913 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13914 
13915 static int
13916 bxe_get_igu_cam_info(struct bxe_softc *sc)
13917 {
13918     int pfid = SC_FUNC(sc);
13919     int igu_sb_id;
13920     uint32_t val;
13921     uint8_t fid, igu_sb_cnt = 0;
13922 
13923     sc->igu_base_sb = 0xff;
13924 
13925     if (CHIP_INT_MODE_IS_BC(sc)) {
13926         int vn = SC_VN(sc);
13927         igu_sb_cnt = sc->igu_sb_cnt;
13928         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13929                            FP_SB_MAX_E1x);
13930         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13931                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13932         return (0);
13933     }
13934 
13935     /* IGU in normal mode - read CAM */
13936     for (igu_sb_id = 0;
13937          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13938          igu_sb_id++) {
13939         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13940         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13941             continue;
13942         }
13943         fid = IGU_FID(val);
13944         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13945             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13946                 continue;
13947             }
13948             if (IGU_VEC(val) == 0) {
13949                 /* default status block */
13950                 sc->igu_dsb_id = igu_sb_id;
13951             } else {
13952                 if (sc->igu_base_sb == 0xff) {
13953                     sc->igu_base_sb = igu_sb_id;
13954                 }
13955                 igu_sb_cnt++;
13956             }
13957         }
13958     }
13959 
13960     /*
13961      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13962      * that number of CAM entries will not be equal to the value advertised in
13963      * PCI. Driver should use the minimal value of both as the actual status
13964      * block count
13965      */
13966     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13967 
13968     if (igu_sb_cnt == 0) {
13969         BLOGE(sc, "CAM configuration error\n");
13970         return (-1);
13971     }
13972 
13973     return (0);
13974 }
13975 
13976 /*
13977  * Gather various information from the device config space, the device itself,
13978  * shmem, and the user input.
13979  */
13980 static int
13981 bxe_get_device_info(struct bxe_softc *sc)
13982 {
13983     uint32_t val;
13984     int rc;
13985 
13986     /* Get the data for the device */
13987     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13988     sc->devinfo.device_id    = pci_get_device(sc->dev);
13989     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13990     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13991 
13992     /* get the chip revision (chip metal comes from pci config space) */
13993     sc->devinfo.chip_id     =
13994     sc->link_params.chip_id =
13995         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13996          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13997          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13998          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13999 
14000     /* force 57811 according to MISC register */
14001     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14002         if (CHIP_IS_57810(sc)) {
14003             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14004                                    (sc->devinfo.chip_id & 0x0000ffff));
14005         } else if (CHIP_IS_57810_MF(sc)) {
14006             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14007                                    (sc->devinfo.chip_id & 0x0000ffff));
14008         }
14009         sc->devinfo.chip_id |= 0x1;
14010     }
14011 
14012     BLOGD(sc, DBG_LOAD,
14013           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14014           sc->devinfo.chip_id,
14015           ((sc->devinfo.chip_id >> 16) & 0xffff),
14016           ((sc->devinfo.chip_id >> 12) & 0xf),
14017           ((sc->devinfo.chip_id >>  4) & 0xff),
14018           ((sc->devinfo.chip_id >>  0) & 0xf));
14019 
14020     val = (REG_RD(sc, 0x2874) & 0x55);
14021     if ((sc->devinfo.chip_id & 0x1) ||
14022         (CHIP_IS_E1(sc) && val) ||
14023         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14024         sc->flags |= BXE_ONE_PORT_FLAG;
14025         BLOGD(sc, DBG_LOAD, "single port device\n");
14026     }
14027 
14028     /* set the doorbell size */
14029     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14030 
14031     /* determine whether the device is in 2 port or 4 port mode */
14032     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14033     if (CHIP_IS_E2E3(sc)) {
14034         /*
14035          * Read port4mode_en_ovwr[0]:
14036          *   If 1, four port mode is in port4mode_en_ovwr[1].
14037          *   If 0, four port mode is in port4mode_en[0].
14038          */
14039         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14040         if (val & 1) {
14041             val = ((val >> 1) & 1);
14042         } else {
14043             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14044         }
14045 
14046         sc->devinfo.chip_port_mode =
14047             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14048 
14049         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14050     }
14051 
14052     /* get the function and path info for the device */
14053     bxe_get_function_num(sc);
14054 
14055     /* get the shared memory base address */
14056     sc->devinfo.shmem_base     =
14057     sc->link_params.shmem_base =
14058         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14059     sc->devinfo.shmem2_base =
14060         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14061                                   MISC_REG_GENERIC_CR_0));
14062 
14063     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14064           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14065 
14066     if (!sc->devinfo.shmem_base) {
14067         /* this should ONLY prevent upcoming shmem reads */
14068         BLOGI(sc, "MCP not active\n");
14069         sc->flags |= BXE_NO_MCP_FLAG;
14070         return (0);
14071     }
14072 
14073     /* make sure the shared memory contents are valid */
14074     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14075     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14076         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14077         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14078         return (0);
14079     }
14080     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14081 
14082     /* get the bootcode version */
14083     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14084     snprintf(sc->devinfo.bc_ver_str,
14085              sizeof(sc->devinfo.bc_ver_str),
14086              "%d.%d.%d",
14087              ((sc->devinfo.bc_ver >> 24) & 0xff),
14088              ((sc->devinfo.bc_ver >> 16) & 0xff),
14089              ((sc->devinfo.bc_ver >>  8) & 0xff));
14090     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14091 
14092     /* get the bootcode shmem address */
14093     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14094     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14095 
14096     /* clean indirect addresses as they're not used */
14097     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14098     if (IS_PF(sc)) {
14099         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14100         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14101         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14102         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14103         if (CHIP_IS_E1x(sc)) {
14104             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14105             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14106             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14107             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14108         }
14109 
14110         /*
14111          * Enable internal target-read (in case we are probed after PF
14112          * FLR). Must be done prior to any BAR read access. Only for
14113          * 57712 and up
14114          */
14115         if (!CHIP_IS_E1x(sc)) {
14116             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14117         }
14118     }
14119 
14120     /* get the nvram size */
14121     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14122     sc->devinfo.flash_size =
14123         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14124     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14125 
14126     /* get PCI capabilites */
14127     bxe_probe_pci_caps(sc);
14128 
14129     bxe_set_power_state(sc, PCI_PM_D0);
14130 
14131     /* get various configuration parameters from shmem */
14132     bxe_get_shmem_info(sc);
14133 
14134     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14135         val = pci_read_config(sc->dev,
14136                               (sc->devinfo.pcie_msix_cap_reg +
14137                                PCIR_MSIX_CTRL),
14138                               2);
14139         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14140     } else {
14141         sc->igu_sb_cnt = 1;
14142     }
14143 
14144     sc->igu_base_addr = BAR_IGU_INTMEM;
14145 
14146     /* initialize IGU parameters */
14147     if (CHIP_IS_E1x(sc)) {
14148         sc->devinfo.int_block = INT_BLOCK_HC;
14149         sc->igu_dsb_id = DEF_SB_IGU_ID;
14150         sc->igu_base_sb = 0;
14151     } else {
14152         sc->devinfo.int_block = INT_BLOCK_IGU;
14153 
14154         /* do not allow device reset during IGU info preocessing */
14155         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14156 
14157         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14158 
14159         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14160             int tout = 5000;
14161 
14162             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14163 
14164             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14165             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14166             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14167 
14168             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14169                 tout--;
14170                 DELAY(1000);
14171             }
14172 
14173             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14174                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14175                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14176                 return (-1);
14177             }
14178         }
14179 
14180         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14181             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14182             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14183         } else {
14184             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14185         }
14186 
14187         rc = bxe_get_igu_cam_info(sc);
14188 
14189         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14190 
14191         if (rc) {
14192             return (rc);
14193         }
14194     }
14195 
14196     /*
14197      * Get base FW non-default (fast path) status block ID. This value is
14198      * used to initialize the fw_sb_id saved on the fp/queue structure to
14199      * determine the id used by the FW.
14200      */
14201     if (CHIP_IS_E1x(sc)) {
14202         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14203     } else {
14204         /*
14205          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14206          * the same queue are indicated on the same IGU SB). So we prefer
14207          * FW and IGU SBs to be the same value.
14208          */
14209         sc->base_fw_ndsb = sc->igu_base_sb;
14210     }
14211 
14212     BLOGD(sc, DBG_LOAD,
14213           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14214           sc->igu_dsb_id, sc->igu_base_sb,
14215           sc->igu_sb_cnt, sc->base_fw_ndsb);
14216 
14217     elink_phy_probe(&sc->link_params);
14218 
14219     return (0);
14220 }
14221 
14222 static void
14223 bxe_link_settings_supported(struct bxe_softc *sc,
14224                             uint32_t         switch_cfg)
14225 {
14226     uint32_t cfg_size = 0;
14227     uint32_t idx;
14228     uint8_t port = SC_PORT(sc);
14229 
14230     /* aggregation of supported attributes of all external phys */
14231     sc->port.supported[0] = 0;
14232     sc->port.supported[1] = 0;
14233 
14234     switch (sc->link_params.num_phys) {
14235     case 1:
14236         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14237         cfg_size = 1;
14238         break;
14239     case 2:
14240         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14241         cfg_size = 1;
14242         break;
14243     case 3:
14244         if (sc->link_params.multi_phy_config &
14245             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14246             sc->port.supported[1] =
14247                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14248             sc->port.supported[0] =
14249                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14250         } else {
14251             sc->port.supported[0] =
14252                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14253             sc->port.supported[1] =
14254                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14255         }
14256         cfg_size = 2;
14257         break;
14258     }
14259 
14260     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14261         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14262               SHMEM_RD(sc,
14263                        dev_info.port_hw_config[port].external_phy_config),
14264               SHMEM_RD(sc,
14265                        dev_info.port_hw_config[port].external_phy_config2));
14266         return;
14267     }
14268 
14269     if (CHIP_IS_E3(sc))
14270         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14271     else {
14272         switch (switch_cfg) {
14273         case ELINK_SWITCH_CFG_1G:
14274             sc->port.phy_addr =
14275                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14276             break;
14277         case ELINK_SWITCH_CFG_10G:
14278             sc->port.phy_addr =
14279                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14280             break;
14281         default:
14282             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14283                   sc->port.link_config[0]);
14284             return;
14285         }
14286     }
14287 
14288     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14289 
14290     /* mask what we support according to speed_cap_mask per configuration */
14291     for (idx = 0; idx < cfg_size; idx++) {
14292         if (!(sc->link_params.speed_cap_mask[idx] &
14293               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14294             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14295         }
14296 
14297         if (!(sc->link_params.speed_cap_mask[idx] &
14298               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14299             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14300         }
14301 
14302         if (!(sc->link_params.speed_cap_mask[idx] &
14303               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14304             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14305         }
14306 
14307         if (!(sc->link_params.speed_cap_mask[idx] &
14308               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14309             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14310         }
14311 
14312         if (!(sc->link_params.speed_cap_mask[idx] &
14313               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14314             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14315         }
14316 
14317         if (!(sc->link_params.speed_cap_mask[idx] &
14318               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14319             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14320         }
14321 
14322         if (!(sc->link_params.speed_cap_mask[idx] &
14323               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14324             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14325         }
14326 
14327         if (!(sc->link_params.speed_cap_mask[idx] &
14328               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14329             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14330         }
14331     }
14332 
14333     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14334           sc->port.supported[0], sc->port.supported[1]);
14335         ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14336                                         sc->port.supported[0], sc->port.supported[1]);
14337 }
14338 
14339 static void
14340 bxe_link_settings_requested(struct bxe_softc *sc)
14341 {
14342     uint32_t link_config;
14343     uint32_t idx;
14344     uint32_t cfg_size = 0;
14345 
14346     sc->port.advertising[0] = 0;
14347     sc->port.advertising[1] = 0;
14348 
14349     switch (sc->link_params.num_phys) {
14350     case 1:
14351     case 2:
14352         cfg_size = 1;
14353         break;
14354     case 3:
14355         cfg_size = 2;
14356         break;
14357     }
14358 
14359     for (idx = 0; idx < cfg_size; idx++) {
14360         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14361         link_config = sc->port.link_config[idx];
14362 
14363         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14364         case PORT_FEATURE_LINK_SPEED_AUTO:
14365             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14366                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14367                 sc->port.advertising[idx] |= sc->port.supported[idx];
14368                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14369                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14370                     sc->port.advertising[idx] |=
14371                         (ELINK_SUPPORTED_100baseT_Half |
14372                          ELINK_SUPPORTED_100baseT_Full);
14373             } else {
14374                 /* force 10G, no AN */
14375                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14376                 sc->port.advertising[idx] |=
14377                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14378                 continue;
14379             }
14380             break;
14381 
14382         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14383             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14384                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14385                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14386                                               ADVERTISED_TP);
14387             } else {
14388                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14389                           "speed_cap_mask=0x%08x\n",
14390                       link_config, sc->link_params.speed_cap_mask[idx]);
14391                 return;
14392             }
14393             break;
14394 
14395         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14396             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14397                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14398                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14399                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14400                                               ADVERTISED_TP);
14401                                 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14402                                                                 sc->link_params.req_duplex[idx]);
14403             } else {
14404                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14405                           "speed_cap_mask=0x%08x\n",
14406                       link_config, sc->link_params.speed_cap_mask[idx]);
14407                 return;
14408             }
14409             break;
14410 
14411         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14412             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14413                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14414                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14415                                               ADVERTISED_TP);
14416             } else {
14417                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14418                           "speed_cap_mask=0x%08x\n",
14419                       link_config, sc->link_params.speed_cap_mask[idx]);
14420                 return;
14421             }
14422             break;
14423 
14424         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14425             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14426                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14427                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14428                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14429                                               ADVERTISED_TP);
14430             } else {
14431                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14432                           "speed_cap_mask=0x%08x\n",
14433                       link_config, sc->link_params.speed_cap_mask[idx]);
14434                 return;
14435             }
14436             break;
14437 
14438         case PORT_FEATURE_LINK_SPEED_1G:
14439             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14440                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14441                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14442                                               ADVERTISED_TP);
14443             } else {
14444                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14445                           "speed_cap_mask=0x%08x\n",
14446                       link_config, sc->link_params.speed_cap_mask[idx]);
14447                 return;
14448             }
14449             break;
14450 
14451         case PORT_FEATURE_LINK_SPEED_2_5G:
14452             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14453                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14454                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14455                                               ADVERTISED_TP);
14456             } else {
14457                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14458                           "speed_cap_mask=0x%08x\n",
14459                       link_config, sc->link_params.speed_cap_mask[idx]);
14460                 return;
14461             }
14462             break;
14463 
14464         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14465             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14466                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14467                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14468                                               ADVERTISED_FIBRE);
14469             } else {
14470                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14471                           "speed_cap_mask=0x%08x\n",
14472                       link_config, sc->link_params.speed_cap_mask[idx]);
14473                 return;
14474             }
14475             break;
14476 
14477         case PORT_FEATURE_LINK_SPEED_20G:
14478             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14479             break;
14480 
14481         default:
14482             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14483                       "speed_cap_mask=0x%08x\n",
14484                   link_config, sc->link_params.speed_cap_mask[idx]);
14485             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14486             sc->port.advertising[idx] = sc->port.supported[idx];
14487             break;
14488         }
14489 
14490         sc->link_params.req_flow_ctrl[idx] =
14491             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14492 
14493         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14494             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14495                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14496             } else {
14497                 bxe_set_requested_fc(sc);
14498             }
14499         }
14500 
14501         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14502                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14503               sc->link_params.req_line_speed[idx],
14504               sc->link_params.req_duplex[idx],
14505               sc->link_params.req_flow_ctrl[idx],
14506               sc->port.advertising[idx]);
14507                 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14508                                                 "advertising=0x%x\n",
14509                                                 sc->link_params.req_line_speed[idx],
14510                                                 sc->link_params.req_duplex[idx],
14511                                                 sc->port.advertising[idx]);
14512     }
14513 }
14514 
14515 static void
14516 bxe_get_phy_info(struct bxe_softc *sc)
14517 {
14518     uint8_t port = SC_PORT(sc);
14519     uint32_t config = sc->port.config;
14520     uint32_t eee_mode;
14521 
14522     /* shmem data already read in bxe_get_shmem_info() */
14523 
14524     ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14525                         "link_config0=0x%08x\n",
14526                sc->link_params.lane_config,
14527                sc->link_params.speed_cap_mask[0],
14528                sc->port.link_config[0]);
14529      
14530 
14531     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14532     bxe_link_settings_requested(sc);
14533 
14534     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14535         sc->link_params.feature_config_flags |=
14536             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14537     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14538         sc->link_params.feature_config_flags &=
14539             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14540     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14541         sc->link_params.feature_config_flags |=
14542             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14543     }
14544 
14545     /* configure link feature according to nvram value */
14546     eee_mode =
14547         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14548           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14549          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14550     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14551         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14552                                     ELINK_EEE_MODE_ENABLE_LPI |
14553                                     ELINK_EEE_MODE_OUTPUT_TIME);
14554     } else {
14555         sc->link_params.eee_mode = 0;
14556     }
14557 
14558     /* get the media type */
14559     bxe_media_detect(sc);
14560         ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14561 }
14562 
14563 static void
14564 bxe_get_params(struct bxe_softc *sc)
14565 {
14566     /* get user tunable params */
14567     bxe_get_tunable_params(sc);
14568 
14569     /* select the RX and TX ring sizes */
14570     sc->tx_ring_size = TX_BD_USABLE;
14571     sc->rx_ring_size = RX_BD_USABLE;
14572 
14573     /* XXX disable WoL */
14574     sc->wol = 0;
14575 }
14576 
14577 static void
14578 bxe_set_modes_bitmap(struct bxe_softc *sc)
14579 {
14580     uint32_t flags = 0;
14581 
14582     if (CHIP_REV_IS_FPGA(sc)) {
14583         SET_FLAGS(flags, MODE_FPGA);
14584     } else if (CHIP_REV_IS_EMUL(sc)) {
14585         SET_FLAGS(flags, MODE_EMUL);
14586     } else {
14587         SET_FLAGS(flags, MODE_ASIC);
14588     }
14589 
14590     if (CHIP_IS_MODE_4_PORT(sc)) {
14591         SET_FLAGS(flags, MODE_PORT4);
14592     } else {
14593         SET_FLAGS(flags, MODE_PORT2);
14594     }
14595 
14596     if (CHIP_IS_E2(sc)) {
14597         SET_FLAGS(flags, MODE_E2);
14598     } else if (CHIP_IS_E3(sc)) {
14599         SET_FLAGS(flags, MODE_E3);
14600         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14601             SET_FLAGS(flags, MODE_E3_A0);
14602         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14603             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14604         }
14605     }
14606 
14607     if (IS_MF(sc)) {
14608         SET_FLAGS(flags, MODE_MF);
14609         switch (sc->devinfo.mf_info.mf_mode) {
14610         case MULTI_FUNCTION_SD:
14611             SET_FLAGS(flags, MODE_MF_SD);
14612             break;
14613         case MULTI_FUNCTION_SI:
14614             SET_FLAGS(flags, MODE_MF_SI);
14615             break;
14616         case MULTI_FUNCTION_AFEX:
14617             SET_FLAGS(flags, MODE_MF_AFEX);
14618             break;
14619         }
14620     } else {
14621         SET_FLAGS(flags, MODE_SF);
14622     }
14623 
14624 #if defined(__LITTLE_ENDIAN)
14625     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14626 #else /* __BIG_ENDIAN */
14627     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14628 #endif
14629 
14630     INIT_MODE_FLAGS(sc) = flags;
14631 }
14632 
14633 static int
14634 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14635 {
14636     struct bxe_fastpath *fp;
14637     bus_addr_t busaddr;
14638     int max_agg_queues;
14639     int max_segments;
14640     bus_size_t max_size;
14641     bus_size_t max_seg_size;
14642     char buf[32];
14643     int rc;
14644     int i, j;
14645 
14646     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14647 
14648     /* allocate the parent bus DMA tag */
14649     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14650                             1,                        /* alignment */
14651                             0,                        /* boundary limit */
14652                             BUS_SPACE_MAXADDR,        /* restricted low */
14653                             BUS_SPACE_MAXADDR,        /* restricted hi */
14654                             NULL,                     /* addr filter() */
14655                             NULL,                     /* addr filter() arg */
14656                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14657                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14658                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14659                             0,                        /* flags */
14660                             NULL,                     /* lock() */
14661                             NULL,                     /* lock() arg */
14662                             &sc->parent_dma_tag);     /* returned dma tag */
14663     if (rc != 0) {
14664         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14665         return (1);
14666     }
14667 
14668     /************************/
14669     /* DEFAULT STATUS BLOCK */
14670     /************************/
14671 
14672     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14673                       &sc->def_sb_dma, "default status block") != 0) {
14674         /* XXX */
14675         bus_dma_tag_destroy(sc->parent_dma_tag);
14676         return (1);
14677     }
14678 
14679     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14680 
14681     /***************/
14682     /* EVENT QUEUE */
14683     /***************/
14684 
14685     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14686                       &sc->eq_dma, "event queue") != 0) {
14687         /* XXX */
14688         bxe_dma_free(sc, &sc->def_sb_dma);
14689         sc->def_sb = NULL;
14690         bus_dma_tag_destroy(sc->parent_dma_tag);
14691         return (1);
14692     }
14693 
14694     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14695 
14696     /*************/
14697     /* SLOW PATH */
14698     /*************/
14699 
14700     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14701                       &sc->sp_dma, "slow path") != 0) {
14702         /* XXX */
14703         bxe_dma_free(sc, &sc->eq_dma);
14704         sc->eq = NULL;
14705         bxe_dma_free(sc, &sc->def_sb_dma);
14706         sc->def_sb = NULL;
14707         bus_dma_tag_destroy(sc->parent_dma_tag);
14708         return (1);
14709     }
14710 
14711     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14712 
14713     /*******************/
14714     /* SLOW PATH QUEUE */
14715     /*******************/
14716 
14717     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14718                       &sc->spq_dma, "slow path queue") != 0) {
14719         /* XXX */
14720         bxe_dma_free(sc, &sc->sp_dma);
14721         sc->sp = NULL;
14722         bxe_dma_free(sc, &sc->eq_dma);
14723         sc->eq = NULL;
14724         bxe_dma_free(sc, &sc->def_sb_dma);
14725         sc->def_sb = NULL;
14726         bus_dma_tag_destroy(sc->parent_dma_tag);
14727         return (1);
14728     }
14729 
14730     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14731 
14732     /***************************/
14733     /* FW DECOMPRESSION BUFFER */
14734     /***************************/
14735 
14736     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14737                       "fw decompression buffer") != 0) {
14738         /* XXX */
14739         bxe_dma_free(sc, &sc->spq_dma);
14740         sc->spq = NULL;
14741         bxe_dma_free(sc, &sc->sp_dma);
14742         sc->sp = NULL;
14743         bxe_dma_free(sc, &sc->eq_dma);
14744         sc->eq = NULL;
14745         bxe_dma_free(sc, &sc->def_sb_dma);
14746         sc->def_sb = NULL;
14747         bus_dma_tag_destroy(sc->parent_dma_tag);
14748         return (1);
14749     }
14750 
14751     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14752 
14753     if ((sc->gz_strm =
14754          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14755         /* XXX */
14756         bxe_dma_free(sc, &sc->gz_buf_dma);
14757         sc->gz_buf = NULL;
14758         bxe_dma_free(sc, &sc->spq_dma);
14759         sc->spq = NULL;
14760         bxe_dma_free(sc, &sc->sp_dma);
14761         sc->sp = NULL;
14762         bxe_dma_free(sc, &sc->eq_dma);
14763         sc->eq = NULL;
14764         bxe_dma_free(sc, &sc->def_sb_dma);
14765         sc->def_sb = NULL;
14766         bus_dma_tag_destroy(sc->parent_dma_tag);
14767         return (1);
14768     }
14769 
14770     /*************/
14771     /* FASTPATHS */
14772     /*************/
14773 
14774     /* allocate DMA memory for each fastpath structure */
14775     for (i = 0; i < sc->num_queues; i++) {
14776         fp = &sc->fp[i];
14777         fp->sc    = sc;
14778         fp->index = i;
14779 
14780         /*******************/
14781         /* FP STATUS BLOCK */
14782         /*******************/
14783 
14784         snprintf(buf, sizeof(buf), "fp %d status block", i);
14785         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14786                           &fp->sb_dma, buf) != 0) {
14787             /* XXX unwind and free previous fastpath allocations */
14788             BLOGE(sc, "Failed to alloc %s\n", buf);
14789             return (1);
14790         } else {
14791             if (CHIP_IS_E2E3(sc)) {
14792                 fp->status_block.e2_sb =
14793                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14794             } else {
14795                 fp->status_block.e1x_sb =
14796                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14797             }
14798         }
14799 
14800         /******************/
14801         /* FP TX BD CHAIN */
14802         /******************/
14803 
14804         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14805         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14806                           &fp->tx_dma, buf) != 0) {
14807             /* XXX unwind and free previous fastpath allocations */
14808             BLOGE(sc, "Failed to alloc %s\n", buf);
14809             return (1);
14810         } else {
14811             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14812         }
14813 
14814         /* link together the tx bd chain pages */
14815         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14816             /* index into the tx bd chain array to last entry per page */
14817             struct eth_tx_next_bd *tx_next_bd =
14818                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14819             /* point to the next page and wrap from last page */
14820             busaddr = (fp->tx_dma.paddr +
14821                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14822             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14823             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14824         }
14825 
14826         /******************/
14827         /* FP RX BD CHAIN */
14828         /******************/
14829 
14830         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14831         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14832                           &fp->rx_dma, buf) != 0) {
14833             /* XXX unwind and free previous fastpath allocations */
14834             BLOGE(sc, "Failed to alloc %s\n", buf);
14835             return (1);
14836         } else {
14837             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14838         }
14839 
14840         /* link together the rx bd chain pages */
14841         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14842             /* index into the rx bd chain array to last entry per page */
14843             struct eth_rx_bd *rx_bd =
14844                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14845             /* point to the next page and wrap from last page */
14846             busaddr = (fp->rx_dma.paddr +
14847                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14848             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14849             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14850         }
14851 
14852         /*******************/
14853         /* FP RX RCQ CHAIN */
14854         /*******************/
14855 
14856         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14857         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14858                           &fp->rcq_dma, buf) != 0) {
14859             /* XXX unwind and free previous fastpath allocations */
14860             BLOGE(sc, "Failed to alloc %s\n", buf);
14861             return (1);
14862         } else {
14863             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14864         }
14865 
14866         /* link together the rcq chain pages */
14867         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14868             /* index into the rcq chain array to last entry per page */
14869             struct eth_rx_cqe_next_page *rx_cqe_next =
14870                 (struct eth_rx_cqe_next_page *)
14871                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14872             /* point to the next page and wrap from last page */
14873             busaddr = (fp->rcq_dma.paddr +
14874                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14875             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14876             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14877         }
14878 
14879         /*******************/
14880         /* FP RX SGE CHAIN */
14881         /*******************/
14882 
14883         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14884         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14885                           &fp->rx_sge_dma, buf) != 0) {
14886             /* XXX unwind and free previous fastpath allocations */
14887             BLOGE(sc, "Failed to alloc %s\n", buf);
14888             return (1);
14889         } else {
14890             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14891         }
14892 
14893         /* link together the sge chain pages */
14894         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14895             /* index into the rcq chain array to last entry per page */
14896             struct eth_rx_sge *rx_sge =
14897                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14898             /* point to the next page and wrap from last page */
14899             busaddr = (fp->rx_sge_dma.paddr +
14900                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14901             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14902             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14903         }
14904 
14905         /***********************/
14906         /* FP TX MBUF DMA MAPS */
14907         /***********************/
14908 
14909         /* set required sizes before mapping to conserve resources */
14910         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14911             max_size     = BXE_TSO_MAX_SIZE;
14912             max_segments = BXE_TSO_MAX_SEGMENTS;
14913             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14914         } else {
14915             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14916             max_segments = BXE_MAX_SEGMENTS;
14917             max_seg_size = MCLBYTES;
14918         }
14919 
14920         /* create a dma tag for the tx mbufs */
14921         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14922                                 1,                  /* alignment */
14923                                 0,                  /* boundary limit */
14924                                 BUS_SPACE_MAXADDR,  /* restricted low */
14925                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14926                                 NULL,               /* addr filter() */
14927                                 NULL,               /* addr filter() arg */
14928                                 max_size,           /* max map size */
14929                                 max_segments,       /* num discontinuous */
14930                                 max_seg_size,       /* max seg size */
14931                                 0,                  /* flags */
14932                                 NULL,               /* lock() */
14933                                 NULL,               /* lock() arg */
14934                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14935         if (rc != 0) {
14936             /* XXX unwind and free previous fastpath allocations */
14937             BLOGE(sc, "Failed to create dma tag for "
14938                       "'fp %d tx mbufs' (%d)\n", i, rc);
14939             return (1);
14940         }
14941 
14942         /* create dma maps for each of the tx mbuf clusters */
14943         for (j = 0; j < TX_BD_TOTAL; j++) {
14944             if (bus_dmamap_create(fp->tx_mbuf_tag,
14945                                   BUS_DMA_NOWAIT,
14946                                   &fp->tx_mbuf_chain[j].m_map)) {
14947                 /* XXX unwind and free previous fastpath allocations */
14948                 BLOGE(sc, "Failed to create dma map for "
14949                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14950                 return (1);
14951             }
14952         }
14953 
14954         /***********************/
14955         /* FP RX MBUF DMA MAPS */
14956         /***********************/
14957 
14958         /* create a dma tag for the rx mbufs */
14959         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14960                                 1,                  /* alignment */
14961                                 0,                  /* boundary limit */
14962                                 BUS_SPACE_MAXADDR,  /* restricted low */
14963                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14964                                 NULL,               /* addr filter() */
14965                                 NULL,               /* addr filter() arg */
14966                                 MJUM9BYTES,         /* max map size */
14967                                 1,                  /* num discontinuous */
14968                                 MJUM9BYTES,         /* max seg size */
14969                                 0,                  /* flags */
14970                                 NULL,               /* lock() */
14971                                 NULL,               /* lock() arg */
14972                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14973         if (rc != 0) {
14974             /* XXX unwind and free previous fastpath allocations */
14975             BLOGE(sc, "Failed to create dma tag for "
14976                       "'fp %d rx mbufs' (%d)\n", i, rc);
14977             return (1);
14978         }
14979 
14980         /* create dma maps for each of the rx mbuf clusters */
14981         for (j = 0; j < RX_BD_TOTAL; j++) {
14982             if (bus_dmamap_create(fp->rx_mbuf_tag,
14983                                   BUS_DMA_NOWAIT,
14984                                   &fp->rx_mbuf_chain[j].m_map)) {
14985                 /* XXX unwind and free previous fastpath allocations */
14986                 BLOGE(sc, "Failed to create dma map for "
14987                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14988                 return (1);
14989             }
14990         }
14991 
14992         /* create dma map for the spare rx mbuf cluster */
14993         if (bus_dmamap_create(fp->rx_mbuf_tag,
14994                               BUS_DMA_NOWAIT,
14995                               &fp->rx_mbuf_spare_map)) {
14996             /* XXX unwind and free previous fastpath allocations */
14997             BLOGE(sc, "Failed to create dma map for "
14998                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14999             return (1);
15000         }
15001 
15002         /***************************/
15003         /* FP RX SGE MBUF DMA MAPS */
15004         /***************************/
15005 
15006         /* create a dma tag for the rx sge mbufs */
15007         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15008                                 1,                  /* alignment */
15009                                 0,                  /* boundary limit */
15010                                 BUS_SPACE_MAXADDR,  /* restricted low */
15011                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15012                                 NULL,               /* addr filter() */
15013                                 NULL,               /* addr filter() arg */
15014                                 BCM_PAGE_SIZE,      /* max map size */
15015                                 1,                  /* num discontinuous */
15016                                 BCM_PAGE_SIZE,      /* max seg size */
15017                                 0,                  /* flags */
15018                                 NULL,               /* lock() */
15019                                 NULL,               /* lock() arg */
15020                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15021         if (rc != 0) {
15022             /* XXX unwind and free previous fastpath allocations */
15023             BLOGE(sc, "Failed to create dma tag for "
15024                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
15025             return (1);
15026         }
15027 
15028         /* create dma maps for the rx sge mbuf clusters */
15029         for (j = 0; j < RX_SGE_TOTAL; j++) {
15030             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15031                                   BUS_DMA_NOWAIT,
15032                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15033                 /* XXX unwind and free previous fastpath allocations */
15034                 BLOGE(sc, "Failed to create dma map for "
15035                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15036                 return (1);
15037             }
15038         }
15039 
15040         /* create dma map for the spare rx sge mbuf cluster */
15041         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15042                               BUS_DMA_NOWAIT,
15043                               &fp->rx_sge_mbuf_spare_map)) {
15044             /* XXX unwind and free previous fastpath allocations */
15045             BLOGE(sc, "Failed to create dma map for "
15046                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15047             return (1);
15048         }
15049 
15050         /***************************/
15051         /* FP RX TPA MBUF DMA MAPS */
15052         /***************************/
15053 
15054         /* create dma maps for the rx tpa mbuf clusters */
15055         max_agg_queues = MAX_AGG_QS(sc);
15056 
15057         for (j = 0; j < max_agg_queues; j++) {
15058             if (bus_dmamap_create(fp->rx_mbuf_tag,
15059                                   BUS_DMA_NOWAIT,
15060                                   &fp->rx_tpa_info[j].bd.m_map)) {
15061                 /* XXX unwind and free previous fastpath allocations */
15062                 BLOGE(sc, "Failed to create dma map for "
15063                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15064                 return (1);
15065             }
15066         }
15067 
15068         /* create dma map for the spare rx tpa mbuf cluster */
15069         if (bus_dmamap_create(fp->rx_mbuf_tag,
15070                               BUS_DMA_NOWAIT,
15071                               &fp->rx_tpa_info_mbuf_spare_map)) {
15072             /* XXX unwind and free previous fastpath allocations */
15073             BLOGE(sc, "Failed to create dma map for "
15074                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15075             return (1);
15076         }
15077 
15078         bxe_init_sge_ring_bit_mask(fp);
15079     }
15080 
15081     return (0);
15082 }
15083 
15084 static void
15085 bxe_free_hsi_mem(struct bxe_softc *sc)
15086 {
15087     struct bxe_fastpath *fp;
15088     int max_agg_queues;
15089     int i, j;
15090 
15091     if (sc->parent_dma_tag == NULL) {
15092         return; /* assume nothing was allocated */
15093     }
15094 
15095     for (i = 0; i < sc->num_queues; i++) {
15096         fp = &sc->fp[i];
15097 
15098         /*******************/
15099         /* FP STATUS BLOCK */
15100         /*******************/
15101 
15102         bxe_dma_free(sc, &fp->sb_dma);
15103         memset(&fp->status_block, 0, sizeof(fp->status_block));
15104 
15105         /******************/
15106         /* FP TX BD CHAIN */
15107         /******************/
15108 
15109         bxe_dma_free(sc, &fp->tx_dma);
15110         fp->tx_chain = NULL;
15111 
15112         /******************/
15113         /* FP RX BD CHAIN */
15114         /******************/
15115 
15116         bxe_dma_free(sc, &fp->rx_dma);
15117         fp->rx_chain = NULL;
15118 
15119         /*******************/
15120         /* FP RX RCQ CHAIN */
15121         /*******************/
15122 
15123         bxe_dma_free(sc, &fp->rcq_dma);
15124         fp->rcq_chain = NULL;
15125 
15126         /*******************/
15127         /* FP RX SGE CHAIN */
15128         /*******************/
15129 
15130         bxe_dma_free(sc, &fp->rx_sge_dma);
15131         fp->rx_sge_chain = NULL;
15132 
15133         /***********************/
15134         /* FP TX MBUF DMA MAPS */
15135         /***********************/
15136 
15137         if (fp->tx_mbuf_tag != NULL) {
15138             for (j = 0; j < TX_BD_TOTAL; j++) {
15139                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15140                     bus_dmamap_unload(fp->tx_mbuf_tag,
15141                                       fp->tx_mbuf_chain[j].m_map);
15142                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15143                                        fp->tx_mbuf_chain[j].m_map);
15144                 }
15145             }
15146 
15147             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15148             fp->tx_mbuf_tag = NULL;
15149         }
15150 
15151         /***********************/
15152         /* FP RX MBUF DMA MAPS */
15153         /***********************/
15154 
15155         if (fp->rx_mbuf_tag != NULL) {
15156             for (j = 0; j < RX_BD_TOTAL; j++) {
15157                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15158                     bus_dmamap_unload(fp->rx_mbuf_tag,
15159                                       fp->rx_mbuf_chain[j].m_map);
15160                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15161                                        fp->rx_mbuf_chain[j].m_map);
15162                 }
15163             }
15164 
15165             if (fp->rx_mbuf_spare_map != NULL) {
15166                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15167                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15168             }
15169 
15170             /***************************/
15171             /* FP RX TPA MBUF DMA MAPS */
15172             /***************************/
15173 
15174             max_agg_queues = MAX_AGG_QS(sc);
15175 
15176             for (j = 0; j < max_agg_queues; j++) {
15177                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15178                     bus_dmamap_unload(fp->rx_mbuf_tag,
15179                                       fp->rx_tpa_info[j].bd.m_map);
15180                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15181                                        fp->rx_tpa_info[j].bd.m_map);
15182                 }
15183             }
15184 
15185             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15186                 bus_dmamap_unload(fp->rx_mbuf_tag,
15187                                   fp->rx_tpa_info_mbuf_spare_map);
15188                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15189                                    fp->rx_tpa_info_mbuf_spare_map);
15190             }
15191 
15192             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15193             fp->rx_mbuf_tag = NULL;
15194         }
15195 
15196         /***************************/
15197         /* FP RX SGE MBUF DMA MAPS */
15198         /***************************/
15199 
15200         if (fp->rx_sge_mbuf_tag != NULL) {
15201             for (j = 0; j < RX_SGE_TOTAL; j++) {
15202                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15203                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15204                                       fp->rx_sge_mbuf_chain[j].m_map);
15205                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15206                                        fp->rx_sge_mbuf_chain[j].m_map);
15207                 }
15208             }
15209 
15210             if (fp->rx_sge_mbuf_spare_map != NULL) {
15211                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15212                                   fp->rx_sge_mbuf_spare_map);
15213                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15214                                    fp->rx_sge_mbuf_spare_map);
15215             }
15216 
15217             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15218             fp->rx_sge_mbuf_tag = NULL;
15219         }
15220     }
15221 
15222     /***************************/
15223     /* FW DECOMPRESSION BUFFER */
15224     /***************************/
15225 
15226     bxe_dma_free(sc, &sc->gz_buf_dma);
15227     sc->gz_buf = NULL;
15228     free(sc->gz_strm, M_DEVBUF);
15229     sc->gz_strm = NULL;
15230 
15231     /*******************/
15232     /* SLOW PATH QUEUE */
15233     /*******************/
15234 
15235     bxe_dma_free(sc, &sc->spq_dma);
15236     sc->spq = NULL;
15237 
15238     /*************/
15239     /* SLOW PATH */
15240     /*************/
15241 
15242     bxe_dma_free(sc, &sc->sp_dma);
15243     sc->sp = NULL;
15244 
15245     /***************/
15246     /* EVENT QUEUE */
15247     /***************/
15248 
15249     bxe_dma_free(sc, &sc->eq_dma);
15250     sc->eq = NULL;
15251 
15252     /************************/
15253     /* DEFAULT STATUS BLOCK */
15254     /************************/
15255 
15256     bxe_dma_free(sc, &sc->def_sb_dma);
15257     sc->def_sb = NULL;
15258 
15259     bus_dma_tag_destroy(sc->parent_dma_tag);
15260     sc->parent_dma_tag = NULL;
15261 }
15262 
15263 /*
15264  * Previous driver DMAE transaction may have occurred when pre-boot stage
15265  * ended and boot began. This would invalidate the addresses of the
15266  * transaction, resulting in was-error bit set in the PCI causing all
15267  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15268  * the interrupt which detected this from the pglueb and the was-done bit
15269  */
15270 static void
15271 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15272 {
15273     uint32_t val;
15274 
15275     if (!CHIP_IS_E1x(sc)) {
15276         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15277         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15278             BLOGD(sc, DBG_LOAD,
15279                   "Clearing 'was-error' bit that was set in pglueb");
15280             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15281         }
15282     }
15283 }
15284 
15285 static int
15286 bxe_prev_mcp_done(struct bxe_softc *sc)
15287 {
15288     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15289                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15290     if (!rc) {
15291         BLOGE(sc, "MCP response failure, aborting\n");
15292         return (-1);
15293     }
15294 
15295     return (0);
15296 }
15297 
15298 static struct bxe_prev_list_node *
15299 bxe_prev_path_get_entry(struct bxe_softc *sc)
15300 {
15301     struct bxe_prev_list_node *tmp;
15302 
15303     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15304         if ((sc->pcie_bus == tmp->bus) &&
15305             (sc->pcie_device == tmp->slot) &&
15306             (SC_PATH(sc) == tmp->path)) {
15307             return (tmp);
15308         }
15309     }
15310 
15311     return (NULL);
15312 }
15313 
15314 static uint8_t
15315 bxe_prev_is_path_marked(struct bxe_softc *sc)
15316 {
15317     struct bxe_prev_list_node *tmp;
15318     int rc = FALSE;
15319 
15320     mtx_lock(&bxe_prev_mtx);
15321 
15322     tmp = bxe_prev_path_get_entry(sc);
15323     if (tmp) {
15324         if (tmp->aer) {
15325             BLOGD(sc, DBG_LOAD,
15326                   "Path %d/%d/%d was marked by AER\n",
15327                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15328         } else {
15329             rc = TRUE;
15330             BLOGD(sc, DBG_LOAD,
15331                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15332                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15333         }
15334     }
15335 
15336     mtx_unlock(&bxe_prev_mtx);
15337 
15338     return (rc);
15339 }
15340 
15341 static int
15342 bxe_prev_mark_path(struct bxe_softc *sc,
15343                    uint8_t          after_undi)
15344 {
15345     struct bxe_prev_list_node *tmp;
15346 
15347     mtx_lock(&bxe_prev_mtx);
15348 
15349     /* Check whether the entry for this path already exists */
15350     tmp = bxe_prev_path_get_entry(sc);
15351     if (tmp) {
15352         if (!tmp->aer) {
15353             BLOGD(sc, DBG_LOAD,
15354                   "Re-marking AER in path %d/%d/%d\n",
15355                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15356         } else {
15357             BLOGD(sc, DBG_LOAD,
15358                   "Removing AER indication from path %d/%d/%d\n",
15359                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15360             tmp->aer = 0;
15361         }
15362 
15363         mtx_unlock(&bxe_prev_mtx);
15364         return (0);
15365     }
15366 
15367     mtx_unlock(&bxe_prev_mtx);
15368 
15369     /* Create an entry for this path and add it */
15370     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15371                  (M_NOWAIT | M_ZERO));
15372     if (!tmp) {
15373         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15374         return (-1);
15375     }
15376 
15377     tmp->bus  = sc->pcie_bus;
15378     tmp->slot = sc->pcie_device;
15379     tmp->path = SC_PATH(sc);
15380     tmp->aer  = 0;
15381     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15382 
15383     mtx_lock(&bxe_prev_mtx);
15384 
15385     BLOGD(sc, DBG_LOAD,
15386           "Marked path %d/%d/%d - finished previous unload\n",
15387           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15388     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15389 
15390     mtx_unlock(&bxe_prev_mtx);
15391 
15392     return (0);
15393 }
15394 
15395 static int
15396 bxe_do_flr(struct bxe_softc *sc)
15397 {
15398     int i;
15399 
15400     /* only E2 and onwards support FLR */
15401     if (CHIP_IS_E1x(sc)) {
15402         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15403         return (-1);
15404     }
15405 
15406     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15407     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15408         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15409               sc->devinfo.bc_ver);
15410         return (-1);
15411     }
15412 
15413     /* Wait for Transaction Pending bit clean */
15414     for (i = 0; i < 4; i++) {
15415         if (i) {
15416             DELAY(((1 << (i - 1)) * 100) * 1000);
15417         }
15418 
15419         if (!bxe_is_pcie_pending(sc)) {
15420             goto clear;
15421         }
15422     }
15423 
15424     BLOGE(sc, "PCIE transaction is not cleared, "
15425               "proceeding with reset anyway\n");
15426 
15427 clear:
15428 
15429     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15430     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15431 
15432     return (0);
15433 }
15434 
15435 struct bxe_mac_vals {
15436     uint32_t xmac_addr;
15437     uint32_t xmac_val;
15438     uint32_t emac_addr;
15439     uint32_t emac_val;
15440     uint32_t umac_addr;
15441     uint32_t umac_val;
15442     uint32_t bmac_addr;
15443     uint32_t bmac_val[2];
15444 };
15445 
15446 static void
15447 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15448                           struct bxe_mac_vals *vals)
15449 {
15450     uint32_t val, base_addr, offset, mask, reset_reg;
15451     uint8_t mac_stopped = FALSE;
15452     uint8_t port = SC_PORT(sc);
15453     uint32_t wb_data[2];
15454 
15455     /* reset addresses as they also mark which values were changed */
15456     vals->bmac_addr = 0;
15457     vals->umac_addr = 0;
15458     vals->xmac_addr = 0;
15459     vals->emac_addr = 0;
15460 
15461     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15462 
15463     if (!CHIP_IS_E3(sc)) {
15464         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15465         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15466         if ((mask & reset_reg) && val) {
15467             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15468             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15469                                     : NIG_REG_INGRESS_BMAC0_MEM;
15470             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15471                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15472 
15473             /*
15474              * use rd/wr since we cannot use dmae. This is safe
15475              * since MCP won't access the bus due to the request
15476              * to unload, and no function on the path can be
15477              * loaded at this time.
15478              */
15479             wb_data[0] = REG_RD(sc, base_addr + offset);
15480             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15481             vals->bmac_addr = base_addr + offset;
15482             vals->bmac_val[0] = wb_data[0];
15483             vals->bmac_val[1] = wb_data[1];
15484             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15485             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15486             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15487         }
15488 
15489         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15490         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15491         vals->emac_val = REG_RD(sc, vals->emac_addr);
15492         REG_WR(sc, vals->emac_addr, 0);
15493         mac_stopped = TRUE;
15494     } else {
15495         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15496             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15497             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15498             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15499             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15500             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15501             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15502             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15503             REG_WR(sc, vals->xmac_addr, 0);
15504             mac_stopped = TRUE;
15505         }
15506 
15507         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15508         if (mask & reset_reg) {
15509             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15510             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15511             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15512             vals->umac_val = REG_RD(sc, vals->umac_addr);
15513             REG_WR(sc, vals->umac_addr, 0);
15514             mac_stopped = TRUE;
15515         }
15516     }
15517 
15518     if (mac_stopped) {
15519         DELAY(20000);
15520     }
15521 }
15522 
15523 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15524 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15525 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15526 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15527 
15528 static void
15529 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15530                          uint8_t          port,
15531                          uint8_t          inc)
15532 {
15533     uint16_t rcq, bd;
15534     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15535 
15536     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15537     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15538 
15539     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15540     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15541 
15542     BLOGD(sc, DBG_LOAD,
15543           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15544           port, bd, rcq);
15545 }
15546 
15547 static int
15548 bxe_prev_unload_common(struct bxe_softc *sc)
15549 {
15550     uint32_t reset_reg, tmp_reg = 0, rc;
15551     uint8_t prev_undi = FALSE;
15552     struct bxe_mac_vals mac_vals;
15553     uint32_t timer_count = 1000;
15554     uint32_t prev_brb;
15555 
15556     /*
15557      * It is possible a previous function received 'common' answer,
15558      * but hasn't loaded yet, therefore creating a scenario of
15559      * multiple functions receiving 'common' on the same path.
15560      */
15561     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15562 
15563     memset(&mac_vals, 0, sizeof(mac_vals));
15564 
15565     if (bxe_prev_is_path_marked(sc)) {
15566         return (bxe_prev_mcp_done(sc));
15567     }
15568 
15569     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15570 
15571     /* Reset should be performed after BRB is emptied */
15572     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15573         /* Close the MAC Rx to prevent BRB from filling up */
15574         bxe_prev_unload_close_mac(sc, &mac_vals);
15575 
15576         /* close LLH filters towards the BRB */
15577         elink_set_rx_filter(&sc->link_params, 0);
15578 
15579         /*
15580          * Check if the UNDI driver was previously loaded.
15581          * UNDI driver initializes CID offset for normal bell to 0x7
15582          */
15583         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15584             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15585             if (tmp_reg == 0x7) {
15586                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15587                 prev_undi = TRUE;
15588                 /* clear the UNDI indication */
15589                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15590                 /* clear possible idle check errors */
15591                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15592             }
15593         }
15594 
15595         /* wait until BRB is empty */
15596         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15597         while (timer_count) {
15598             prev_brb = tmp_reg;
15599 
15600             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15601             if (!tmp_reg) {
15602                 break;
15603             }
15604 
15605             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15606 
15607             /* reset timer as long as BRB actually gets emptied */
15608             if (prev_brb > tmp_reg) {
15609                 timer_count = 1000;
15610             } else {
15611                 timer_count--;
15612             }
15613 
15614             /* If UNDI resides in memory, manually increment it */
15615             if (prev_undi) {
15616                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15617             }
15618 
15619             DELAY(10);
15620         }
15621 
15622         if (!timer_count) {
15623             BLOGE(sc, "Failed to empty BRB\n");
15624         }
15625     }
15626 
15627     /* No packets are in the pipeline, path is ready for reset */
15628     bxe_reset_common(sc);
15629 
15630     if (mac_vals.xmac_addr) {
15631         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15632     }
15633     if (mac_vals.umac_addr) {
15634         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15635     }
15636     if (mac_vals.emac_addr) {
15637         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15638     }
15639     if (mac_vals.bmac_addr) {
15640         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15641         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15642     }
15643 
15644     rc = bxe_prev_mark_path(sc, prev_undi);
15645     if (rc) {
15646         bxe_prev_mcp_done(sc);
15647         return (rc);
15648     }
15649 
15650     return (bxe_prev_mcp_done(sc));
15651 }
15652 
15653 static int
15654 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15655 {
15656     int rc;
15657 
15658     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15659 
15660     /* Test if previous unload process was already finished for this path */
15661     if (bxe_prev_is_path_marked(sc)) {
15662         return (bxe_prev_mcp_done(sc));
15663     }
15664 
15665     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15666 
15667     /*
15668      * If function has FLR capabilities, and existing FW version matches
15669      * the one required, then FLR will be sufficient to clean any residue
15670      * left by previous driver
15671      */
15672     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15673     if (!rc) {
15674         /* fw version is good */
15675         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15676         rc = bxe_do_flr(sc);
15677     }
15678 
15679     if (!rc) {
15680         /* FLR was performed */
15681         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15682         return (0);
15683     }
15684 
15685     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15686 
15687     /* Close the MCP request, return failure*/
15688     rc = bxe_prev_mcp_done(sc);
15689     if (!rc) {
15690         rc = BXE_PREV_WAIT_NEEDED;
15691     }
15692 
15693     return (rc);
15694 }
15695 
15696 static int
15697 bxe_prev_unload(struct bxe_softc *sc)
15698 {
15699     int time_counter = 10;
15700     uint32_t fw, hw_lock_reg, hw_lock_val;
15701     uint32_t rc = 0;
15702 
15703     /*
15704      * Clear HW from errors which may have resulted from an interrupted
15705      * DMAE transaction.
15706      */
15707     bxe_prev_interrupted_dmae(sc);
15708 
15709     /* Release previously held locks */
15710     hw_lock_reg =
15711         (SC_FUNC(sc) <= 5) ?
15712             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15713             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15714 
15715     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15716     if (hw_lock_val) {
15717         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15718             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15719             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15720                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15721         }
15722         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15723         REG_WR(sc, hw_lock_reg, 0xffffffff);
15724     } else {
15725         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15726     }
15727 
15728     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15729         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15730         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15731     }
15732 
15733     do {
15734         /* Lock MCP using an unload request */
15735         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15736         if (!fw) {
15737             BLOGE(sc, "MCP response failure, aborting\n");
15738             rc = -1;
15739             break;
15740         }
15741 
15742         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15743             rc = bxe_prev_unload_common(sc);
15744             break;
15745         }
15746 
15747         /* non-common reply from MCP night require looping */
15748         rc = bxe_prev_unload_uncommon(sc);
15749         if (rc != BXE_PREV_WAIT_NEEDED) {
15750             break;
15751         }
15752 
15753         DELAY(20000);
15754     } while (--time_counter);
15755 
15756     if (!time_counter || rc) {
15757         BLOGE(sc, "Failed to unload previous driver!"
15758             " time_counter %d rc %d\n", time_counter, rc);
15759         rc = -1;
15760     }
15761 
15762     return (rc);
15763 }
15764 
15765 void
15766 bxe_dcbx_set_state(struct bxe_softc *sc,
15767                    uint8_t          dcb_on,
15768                    uint32_t         dcbx_enabled)
15769 {
15770     if (!CHIP_IS_E1x(sc)) {
15771         sc->dcb_state = dcb_on;
15772         sc->dcbx_enabled = dcbx_enabled;
15773     } else {
15774         sc->dcb_state = FALSE;
15775         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15776     }
15777     BLOGD(sc, DBG_LOAD,
15778           "DCB state [%s:%s]\n",
15779           dcb_on ? "ON" : "OFF",
15780           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15781           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15782           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15783           "on-chip with negotiation" : "invalid");
15784 }
15785 
15786 /* must be called after sriov-enable */
15787 static int
15788 bxe_set_qm_cid_count(struct bxe_softc *sc)
15789 {
15790     int cid_count = BXE_L2_MAX_CID(sc);
15791 
15792     if (IS_SRIOV(sc)) {
15793         cid_count += BXE_VF_CIDS;
15794     }
15795 
15796     if (CNIC_SUPPORT(sc)) {
15797         cid_count += CNIC_CID_MAX;
15798     }
15799 
15800     return (roundup(cid_count, QM_CID_ROUND));
15801 }
15802 
15803 static void
15804 bxe_init_multi_cos(struct bxe_softc *sc)
15805 {
15806     int pri, cos;
15807 
15808     uint32_t pri_map = 0; /* XXX change to user config */
15809 
15810     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15811         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15812         if (cos < sc->max_cos) {
15813             sc->prio_to_cos[pri] = cos;
15814         } else {
15815             BLOGW(sc, "Invalid COS %d for priority %d "
15816                       "(max COS is %d), setting to 0\n",
15817                   cos, pri, (sc->max_cos - 1));
15818             sc->prio_to_cos[pri] = 0;
15819         }
15820     }
15821 }
15822 
15823 static int
15824 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15825 {
15826     struct bxe_softc *sc;
15827     int error, result;
15828 
15829     result = 0;
15830     error = sysctl_handle_int(oidp, &result, 0, req);
15831 
15832     if (error || !req->newptr) {
15833         return (error);
15834     }
15835 
15836     if (result == 1) {
15837         uint32_t  temp;
15838         sc = (struct bxe_softc *)arg1;
15839 
15840         BLOGI(sc, "... dumping driver state ...\n");
15841         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15842         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15843     }
15844 
15845     return (error);
15846 }
15847 
15848 static int
15849 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15850 {
15851     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15852     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15853     uint32_t *offset;
15854     uint64_t value = 0;
15855     int index = (int)arg2;
15856 
15857     if (index >= BXE_NUM_ETH_STATS) {
15858         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15859         return (-1);
15860     }
15861 
15862     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15863 
15864     switch (bxe_eth_stats_arr[index].size) {
15865     case 4:
15866         value = (uint64_t)*offset;
15867         break;
15868     case 8:
15869         value = HILO_U64(*offset, *(offset + 1));
15870         break;
15871     default:
15872         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15873               index, bxe_eth_stats_arr[index].size);
15874         return (-1);
15875     }
15876 
15877     return (sysctl_handle_64(oidp, &value, 0, req));
15878 }
15879 
15880 static int
15881 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15882 {
15883     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15884     uint32_t *eth_stats;
15885     uint32_t *offset;
15886     uint64_t value = 0;
15887     uint32_t q_stat = (uint32_t)arg2;
15888     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15889     uint32_t index = (q_stat & 0xffff);
15890 
15891     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15892 
15893     if (index >= BXE_NUM_ETH_Q_STATS) {
15894         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15895         return (-1);
15896     }
15897 
15898     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15899 
15900     switch (bxe_eth_q_stats_arr[index].size) {
15901     case 4:
15902         value = (uint64_t)*offset;
15903         break;
15904     case 8:
15905         value = HILO_U64(*offset, *(offset + 1));
15906         break;
15907     default:
15908         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15909               index, bxe_eth_q_stats_arr[index].size);
15910         return (-1);
15911     }
15912 
15913     return (sysctl_handle_64(oidp, &value, 0, req));
15914 }
15915 
15916 static void bxe_force_link_reset(struct bxe_softc *sc)
15917 {
15918 
15919         bxe_acquire_phy_lock(sc);
15920         elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15921         bxe_release_phy_lock(sc);
15922 }
15923 
15924 static int
15925 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15926 {
15927         struct bxe_softc *sc = (struct bxe_softc *)arg1;
15928         uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15929         int rc = 0;
15930         int error;
15931         int result;
15932 
15933 
15934         error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15935 
15936         if (error || !req->newptr) {
15937                 return (error);
15938         }
15939         if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15940                 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param);
15941                 sc->bxe_pause_param = 8;
15942         }
15943 
15944         result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15945 
15946 
15947         if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15948                         BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15949                         return -EINVAL;
15950         }
15951 
15952         if(IS_MF(sc))
15953                 return 0;
15954        sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15955         if(result & ELINK_FLOW_CTRL_RX)
15956                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15957 
15958         if(result & ELINK_FLOW_CTRL_TX)
15959                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15960         if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15961                 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15962 
15963         if(result & 0x400) {
15964                 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15965                         sc->link_params.req_flow_ctrl[cfg_idx] =
15966                                 ELINK_FLOW_CTRL_AUTO;
15967                 }
15968                 sc->link_params.req_fc_auto_adv = 0;
15969                 if (result & ELINK_FLOW_CTRL_RX)
15970                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15971 
15972                 if (result & ELINK_FLOW_CTRL_TX)
15973                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15974                 if (!sc->link_params.req_fc_auto_adv)
15975                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15976         }
15977          if (IS_PF(sc)) {
15978                         if (sc->link_vars.link_up) {
15979                                 bxe_stats_handle(sc, STATS_EVENT_STOP);
15980                         }
15981                         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15982                         bxe_force_link_reset(sc);
15983                         bxe_acquire_phy_lock(sc);
15984 
15985                         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15986 
15987                         bxe_release_phy_lock(sc);
15988 
15989                         bxe_calc_fc_adv(sc);
15990                         }
15991         }
15992         return rc;
15993 }
15994 
15995 
15996 static void
15997 bxe_add_sysctls(struct bxe_softc *sc)
15998 {
15999     struct sysctl_ctx_list *ctx;
16000     struct sysctl_oid_list *children;
16001     struct sysctl_oid *queue_top, *queue;
16002     struct sysctl_oid_list *queue_top_children, *queue_children;
16003     char queue_num_buf[32];
16004     uint32_t q_stat;
16005     int i, j;
16006 
16007     ctx = device_get_sysctl_ctx(sc->dev);
16008     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16009 
16010     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16011                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16012                       "version");
16013 
16014     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16015              BCM_5710_FW_MAJOR_VERSION,
16016              BCM_5710_FW_MINOR_VERSION,
16017              BCM_5710_FW_REVISION_VERSION,
16018              BCM_5710_FW_ENGINEERING_VERSION);
16019 
16020     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16021         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16022          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16023          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16024          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16025                                                                 "Unknown"));
16026     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16027                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16028                     "multifunction vnics per port");
16029 
16030     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16031         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16032          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16033          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16034                                               "???GT/s"),
16035         sc->devinfo.pcie_link_width);
16036 
16037     sc->debug = bxe_debug;
16038 
16039     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16040                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16041                       "bootcode version");
16042     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16043                       CTLFLAG_RD, sc->fw_ver_str, 0,
16044                       "firmware version");
16045     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16046                       CTLFLAG_RD, sc->mf_mode_str, 0,
16047                       "multifunction mode");
16048     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16049                       CTLFLAG_RD, sc->mac_addr_str, 0,
16050                       "mac address");
16051     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16052                       CTLFLAG_RD, sc->pci_link_str, 0,
16053                       "pci link status");
16054     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16055                     CTLFLAG_RW, &sc->debug,
16056                     "debug logging mode");
16057 
16058     sc->trigger_grcdump = 0;
16059     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16060                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
16061                    "trigger grcdump should be invoked"
16062                    "  before collecting grcdump");
16063 
16064     sc->grcdump_started = 0;
16065     sc->grcdump_done = 0;
16066     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16067                    CTLFLAG_RD, &sc->grcdump_done, 0,
16068                    "set by driver when grcdump is done");
16069 
16070     sc->rx_budget = bxe_rx_budget;
16071     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16072                     CTLFLAG_RW, &sc->rx_budget, 0,
16073                     "rx processing budget");
16074 
16075     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16076         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16077         bxe_sysctl_pauseparam, "IU",
16078         "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16079 
16080 
16081     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16082         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16083         bxe_sysctl_state, "IU", "dump driver state");
16084 
16085     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16086         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16087             bxe_eth_stats_arr[i].string,
16088             CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
16089             bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16090     }
16091 
16092     /* add a new parent node for all queues "dev.bxe.#.queue" */
16093     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16094         CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16095     queue_top_children = SYSCTL_CHILDREN(queue_top);
16096 
16097     for (i = 0; i < sc->num_queues; i++) {
16098         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16099         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16100         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16101             queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16102         queue_children = SYSCTL_CHILDREN(queue);
16103 
16104         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16105             q_stat = ((i << 16) | j);
16106             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16107                  bxe_eth_q_stats_arr[j].string,
16108                  CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat,
16109                  bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16110         }
16111     }
16112 }
16113 
16114 static int
16115 bxe_alloc_buf_rings(struct bxe_softc *sc)
16116 {
16117     int i;
16118     struct bxe_fastpath *fp;
16119 
16120     for (i = 0; i < sc->num_queues; i++) {
16121 
16122         fp = &sc->fp[i];
16123 
16124         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16125                                    M_NOWAIT, &fp->tx_mtx);
16126         if (fp->tx_br == NULL)
16127             return (-1);
16128     }
16129 
16130     return (0);
16131 }
16132 
16133 static void
16134 bxe_free_buf_rings(struct bxe_softc *sc)
16135 {
16136     int i;
16137     struct bxe_fastpath *fp;
16138 
16139     for (i = 0; i < sc->num_queues; i++) {
16140 
16141         fp = &sc->fp[i];
16142 
16143         if (fp->tx_br) {
16144             buf_ring_free(fp->tx_br, M_DEVBUF);
16145             fp->tx_br = NULL;
16146         }
16147     }
16148 }
16149 
16150 static void
16151 bxe_init_fp_mutexs(struct bxe_softc *sc)
16152 {
16153     int i;
16154     struct bxe_fastpath *fp;
16155 
16156     for (i = 0; i < sc->num_queues; i++) {
16157 
16158         fp = &sc->fp[i];
16159 
16160         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16161             "bxe%d_fp%d_tx_lock", sc->unit, i);
16162         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16163 
16164         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16165             "bxe%d_fp%d_rx_lock", sc->unit, i);
16166         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16167     }
16168 }
16169 
16170 static void
16171 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16172 {
16173     int i;
16174     struct bxe_fastpath *fp;
16175 
16176     for (i = 0; i < sc->num_queues; i++) {
16177 
16178         fp = &sc->fp[i];
16179 
16180         if (mtx_initialized(&fp->tx_mtx)) {
16181             mtx_destroy(&fp->tx_mtx);
16182         }
16183 
16184         if (mtx_initialized(&fp->rx_mtx)) {
16185             mtx_destroy(&fp->rx_mtx);
16186         }
16187     }
16188 }
16189 
16190 
16191 /*
16192  * Device attach function.
16193  *
16194  * Allocates device resources, performs secondary chip identification, and
16195  * initializes driver instance variables. This function is called from driver
16196  * load after a successful probe.
16197  *
16198  * Returns:
16199  *   0 = Success, >0 = Failure
16200  */
16201 static int
16202 bxe_attach(device_t dev)
16203 {
16204     struct bxe_softc *sc;
16205 
16206     sc = device_get_softc(dev);
16207 
16208     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16209 
16210     sc->state = BXE_STATE_CLOSED;
16211 
16212     sc->dev  = dev;
16213     sc->unit = device_get_unit(dev);
16214 
16215     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16216 
16217     sc->pcie_bus    = pci_get_bus(dev);
16218     sc->pcie_device = pci_get_slot(dev);
16219     sc->pcie_func   = pci_get_function(dev);
16220 
16221     /* enable bus master capability */
16222     pci_enable_busmaster(dev);
16223 
16224     /* get the BARs */
16225     if (bxe_allocate_bars(sc) != 0) {
16226         return (ENXIO);
16227     }
16228 
16229     /* initialize the mutexes */
16230     bxe_init_mutexes(sc);
16231 
16232     /* prepare the periodic callout */
16233     callout_init(&sc->periodic_callout, 1);
16234 
16235     /* prepare the chip taskqueue */
16236     sc->chip_tq_flags = CHIP_TQ_NONE;
16237     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16238              "bxe%d_chip_tq", sc->unit);
16239     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16240     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16241                                    taskqueue_thread_enqueue,
16242                                    &sc->chip_tq);
16243     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16244                             "%s", sc->chip_tq_name);
16245 
16246     TIMEOUT_TASK_INIT(taskqueue_thread,
16247         &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task,  sc);
16248 
16249 
16250     /* get device info and set params */
16251     if (bxe_get_device_info(sc) != 0) {
16252         BLOGE(sc, "getting device info\n");
16253         bxe_deallocate_bars(sc);
16254         pci_disable_busmaster(dev);
16255         return (ENXIO);
16256     }
16257 
16258     /* get final misc params */
16259     bxe_get_params(sc);
16260 
16261     /* set the default MTU (changed via ifconfig) */
16262     sc->mtu = ETHERMTU;
16263 
16264     bxe_set_modes_bitmap(sc);
16265 
16266     /* XXX
16267      * If in AFEX mode and the function is configured for FCoE
16268      * then bail... no L2 allowed.
16269      */
16270 
16271     /* get phy settings from shmem and 'and' against admin settings */
16272     bxe_get_phy_info(sc);
16273 
16274     /* initialize the FreeBSD ifnet interface */
16275     if (bxe_init_ifnet(sc) != 0) {
16276         bxe_release_mutexes(sc);
16277         bxe_deallocate_bars(sc);
16278         pci_disable_busmaster(dev);
16279         return (ENXIO);
16280     }
16281 
16282     if (bxe_add_cdev(sc) != 0) {
16283         if (sc->ifp != NULL) {
16284             ether_ifdetach(sc->ifp);
16285         }
16286         ifmedia_removeall(&sc->ifmedia);
16287         bxe_release_mutexes(sc);
16288         bxe_deallocate_bars(sc);
16289         pci_disable_busmaster(dev);
16290         return (ENXIO);
16291     }
16292 
16293     /* allocate device interrupts */
16294     if (bxe_interrupt_alloc(sc) != 0) {
16295         bxe_del_cdev(sc);
16296         if (sc->ifp != NULL) {
16297             ether_ifdetach(sc->ifp);
16298         }
16299         ifmedia_removeall(&sc->ifmedia);
16300         bxe_release_mutexes(sc);
16301         bxe_deallocate_bars(sc);
16302         pci_disable_busmaster(dev);
16303         return (ENXIO);
16304     }
16305 
16306     bxe_init_fp_mutexs(sc);
16307 
16308     if (bxe_alloc_buf_rings(sc) != 0) {
16309         bxe_free_buf_rings(sc);
16310         bxe_interrupt_free(sc);
16311         bxe_del_cdev(sc);
16312         if (sc->ifp != NULL) {
16313             ether_ifdetach(sc->ifp);
16314         }
16315         ifmedia_removeall(&sc->ifmedia);
16316         bxe_release_mutexes(sc);
16317         bxe_deallocate_bars(sc);
16318         pci_disable_busmaster(dev);
16319         return (ENXIO);
16320     }
16321 
16322     /* allocate ilt */
16323     if (bxe_alloc_ilt_mem(sc) != 0) {
16324         bxe_free_buf_rings(sc);
16325         bxe_interrupt_free(sc);
16326         bxe_del_cdev(sc);
16327         if (sc->ifp != NULL) {
16328             ether_ifdetach(sc->ifp);
16329         }
16330         ifmedia_removeall(&sc->ifmedia);
16331         bxe_release_mutexes(sc);
16332         bxe_deallocate_bars(sc);
16333         pci_disable_busmaster(dev);
16334         return (ENXIO);
16335     }
16336 
16337     /* allocate the host hardware/software hsi structures */
16338     if (bxe_alloc_hsi_mem(sc) != 0) {
16339         bxe_free_ilt_mem(sc);
16340         bxe_free_buf_rings(sc);
16341         bxe_interrupt_free(sc);
16342         bxe_del_cdev(sc);
16343         if (sc->ifp != NULL) {
16344             ether_ifdetach(sc->ifp);
16345         }
16346         ifmedia_removeall(&sc->ifmedia);
16347         bxe_release_mutexes(sc);
16348         bxe_deallocate_bars(sc);
16349         pci_disable_busmaster(dev);
16350         return (ENXIO);
16351     }
16352 
16353     /* need to reset chip if UNDI was active */
16354     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16355         /* init fw_seq */
16356         sc->fw_seq =
16357             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16358              DRV_MSG_SEQ_NUMBER_MASK);
16359         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16360         bxe_prev_unload(sc);
16361     }
16362 
16363 #if 1
16364     /* XXX */
16365     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16366 #else
16367     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16368         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16369         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16370         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16371         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16372         bxe_dcbx_init_params(sc);
16373     } else {
16374         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16375     }
16376 #endif
16377 
16378     /* calculate qm_cid_count */
16379     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16380     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16381 
16382     sc->max_cos = 1;
16383     bxe_init_multi_cos(sc);
16384 
16385     bxe_add_sysctls(sc);
16386 
16387     return (0);
16388 }
16389 
16390 /*
16391  * Device detach function.
16392  *
16393  * Stops the controller, resets the controller, and releases resources.
16394  *
16395  * Returns:
16396  *   0 = Success, >0 = Failure
16397  */
16398 static int
16399 bxe_detach(device_t dev)
16400 {
16401     struct bxe_softc *sc;
16402     if_t ifp;
16403 
16404     sc = device_get_softc(dev);
16405 
16406     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16407 
16408     ifp = sc->ifp;
16409     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16410         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16411         return(EBUSY);
16412     }
16413 
16414     bxe_del_cdev(sc);
16415 
16416     /* stop the periodic callout */
16417     bxe_periodic_stop(sc);
16418 
16419     /* stop the chip taskqueue */
16420     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16421     if (sc->chip_tq) {
16422         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16423         taskqueue_free(sc->chip_tq);
16424         sc->chip_tq = NULL;
16425         taskqueue_drain_timeout(taskqueue_thread,
16426             &sc->sp_err_timeout_task);
16427     }
16428 
16429     /* stop and reset the controller if it was open */
16430     if (sc->state != BXE_STATE_CLOSED) {
16431         BXE_CORE_LOCK(sc);
16432         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16433         sc->state = BXE_STATE_DISABLED;
16434         BXE_CORE_UNLOCK(sc);
16435     }
16436 
16437     /* release the network interface */
16438     if (ifp != NULL) {
16439         ether_ifdetach(ifp);
16440     }
16441     ifmedia_removeall(&sc->ifmedia);
16442 
16443     /* XXX do the following based on driver state... */
16444 
16445     /* free the host hardware/software hsi structures */
16446     bxe_free_hsi_mem(sc);
16447 
16448     /* free ilt */
16449     bxe_free_ilt_mem(sc);
16450 
16451     bxe_free_buf_rings(sc);
16452 
16453     /* release the interrupts */
16454     bxe_interrupt_free(sc);
16455 
16456     /* Release the mutexes*/
16457     bxe_destroy_fp_mutexs(sc);
16458     bxe_release_mutexes(sc);
16459 
16460 
16461     /* Release the PCIe BAR mapped memory */
16462     bxe_deallocate_bars(sc);
16463 
16464     /* Release the FreeBSD interface. */
16465     if (sc->ifp != NULL) {
16466         if_free(sc->ifp);
16467     }
16468 
16469     pci_disable_busmaster(dev);
16470 
16471     return (0);
16472 }
16473 
16474 /*
16475  * Device shutdown function.
16476  *
16477  * Stops and resets the controller.
16478  *
16479  * Returns:
16480  *   Nothing
16481  */
16482 static int
16483 bxe_shutdown(device_t dev)
16484 {
16485     struct bxe_softc *sc;
16486 
16487     sc = device_get_softc(dev);
16488 
16489     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16490 
16491     /* stop the periodic callout */
16492     bxe_periodic_stop(sc);
16493 
16494     if (sc->state != BXE_STATE_CLOSED) {
16495         BXE_CORE_LOCK(sc);
16496         bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16497         BXE_CORE_UNLOCK(sc);
16498     }
16499 
16500     return (0);
16501 }
16502 
16503 void
16504 bxe_igu_ack_sb(struct bxe_softc *sc,
16505                uint8_t          igu_sb_id,
16506                uint8_t          segment,
16507                uint16_t         index,
16508                uint8_t          op,
16509                uint8_t          update)
16510 {
16511     uint32_t igu_addr = sc->igu_base_addr;
16512     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16513     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16514 }
16515 
16516 static void
16517 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16518                      uint8_t          func,
16519                      uint8_t          idu_sb_id,
16520                      uint8_t          is_pf)
16521 {
16522     uint32_t data, ctl, cnt = 100;
16523     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16524     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16525     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16526     uint32_t sb_bit =  1 << (idu_sb_id%32);
16527     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16528     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16529 
16530     /* Not supported in BC mode */
16531     if (CHIP_INT_MODE_IS_BC(sc)) {
16532         return;
16533     }
16534 
16535     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16536              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16537             IGU_REGULAR_CLEANUP_SET |
16538             IGU_REGULAR_BCLEANUP);
16539 
16540     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16541            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16542            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16543 
16544     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16545             data, igu_addr_data);
16546     REG_WR(sc, igu_addr_data, data);
16547 
16548     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16549                       BUS_SPACE_BARRIER_WRITE);
16550     mb();
16551 
16552     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16553             ctl, igu_addr_ctl);
16554     REG_WR(sc, igu_addr_ctl, ctl);
16555 
16556     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16557                       BUS_SPACE_BARRIER_WRITE);
16558     mb();
16559 
16560     /* wait for clean up to finish */
16561     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16562         DELAY(20000);
16563     }
16564 
16565     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16566         BLOGD(sc, DBG_LOAD,
16567               "Unable to finish IGU cleanup: "
16568               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16569               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16570     }
16571 }
16572 
16573 static void
16574 bxe_igu_clear_sb(struct bxe_softc *sc,
16575                  uint8_t          idu_sb_id)
16576 {
16577     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16578 }
16579 
16580 
16581 
16582 
16583 
16584 
16585 
16586 /*******************/
16587 /* ECORE CALLBACKS */
16588 /*******************/
16589 
16590 static void
16591 bxe_reset_common(struct bxe_softc *sc)
16592 {
16593     uint32_t val = 0x1400;
16594 
16595     /* reset_common */
16596     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16597 
16598     if (CHIP_IS_E3(sc)) {
16599         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16600         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16601     }
16602 
16603     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16604 }
16605 
16606 static void
16607 bxe_common_init_phy(struct bxe_softc *sc)
16608 {
16609     uint32_t shmem_base[2];
16610     uint32_t shmem2_base[2];
16611 
16612     /* Avoid common init in case MFW supports LFA */
16613     if (SHMEM2_RD(sc, size) >
16614         (uint32_t)offsetof(struct shmem2_region,
16615                            lfa_host_addr[SC_PORT(sc)])) {
16616         return;
16617     }
16618 
16619     shmem_base[0]  = sc->devinfo.shmem_base;
16620     shmem2_base[0] = sc->devinfo.shmem2_base;
16621 
16622     if (!CHIP_IS_E1x(sc)) {
16623         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16624         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16625     }
16626 
16627     bxe_acquire_phy_lock(sc);
16628     elink_common_init_phy(sc, shmem_base, shmem2_base,
16629                           sc->devinfo.chip_id, 0);
16630     bxe_release_phy_lock(sc);
16631 }
16632 
16633 static void
16634 bxe_pf_disable(struct bxe_softc *sc)
16635 {
16636     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16637 
16638     val &= ~IGU_PF_CONF_FUNC_EN;
16639 
16640     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16641     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16642     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16643 }
16644 
16645 static void
16646 bxe_init_pxp(struct bxe_softc *sc)
16647 {
16648     uint16_t devctl;
16649     int r_order, w_order;
16650 
16651     devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16652 
16653     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16654 
16655     w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16656 
16657     if (sc->mrrs == -1) {
16658         r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16659     } else {
16660         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16661         r_order = sc->mrrs;
16662     }
16663 
16664     ecore_init_pxp_arb(sc, r_order, w_order);
16665 }
16666 
16667 static uint32_t
16668 bxe_get_pretend_reg(struct bxe_softc *sc)
16669 {
16670     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16671     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16672     return (base + (SC_ABS_FUNC(sc)) * stride);
16673 }
16674 
16675 /*
16676  * Called only on E1H or E2.
16677  * When pretending to be PF, the pretend value is the function number 0..7.
16678  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16679  * combination.
16680  */
16681 static int
16682 bxe_pretend_func(struct bxe_softc *sc,
16683                  uint16_t         pretend_func_val)
16684 {
16685     uint32_t pretend_reg;
16686 
16687     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16688         return (-1);
16689     }
16690 
16691     /* get my own pretend register */
16692     pretend_reg = bxe_get_pretend_reg(sc);
16693     REG_WR(sc, pretend_reg, pretend_func_val);
16694     REG_RD(sc, pretend_reg);
16695     return (0);
16696 }
16697 
16698 static void
16699 bxe_iov_init_dmae(struct bxe_softc *sc)
16700 {
16701     return;
16702 }
16703 
16704 static void
16705 bxe_iov_init_dq(struct bxe_softc *sc)
16706 {
16707     return;
16708 }
16709 
16710 /* send a NIG loopback debug packet */
16711 static void
16712 bxe_lb_pckt(struct bxe_softc *sc)
16713 {
16714     uint32_t wb_write[3];
16715 
16716     /* Ethernet source and destination addresses */
16717     wb_write[0] = 0x55555555;
16718     wb_write[1] = 0x55555555;
16719     wb_write[2] = 0x20;     /* SOP */
16720     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16721 
16722     /* NON-IP protocol */
16723     wb_write[0] = 0x09000000;
16724     wb_write[1] = 0x55555555;
16725     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16726     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16727 }
16728 
16729 /*
16730  * Some of the internal memories are not directly readable from the driver.
16731  * To test them we send debug packets.
16732  */
16733 static int
16734 bxe_int_mem_test(struct bxe_softc *sc)
16735 {
16736     int factor;
16737     int count, i;
16738     uint32_t val = 0;
16739 
16740     if (CHIP_REV_IS_FPGA(sc)) {
16741         factor = 120;
16742     } else if (CHIP_REV_IS_EMUL(sc)) {
16743         factor = 200;
16744     } else {
16745         factor = 1;
16746     }
16747 
16748     /* disable inputs of parser neighbor blocks */
16749     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16750     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16751     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16752     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16753 
16754     /*  write 0 to parser credits for CFC search request */
16755     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16756 
16757     /* send Ethernet packet */
16758     bxe_lb_pckt(sc);
16759 
16760     /* TODO do i reset NIG statistic? */
16761     /* Wait until NIG register shows 1 packet of size 0x10 */
16762     count = 1000 * factor;
16763     while (count) {
16764         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16765         val = *BXE_SP(sc, wb_data[0]);
16766         if (val == 0x10) {
16767             break;
16768         }
16769 
16770         DELAY(10000);
16771         count--;
16772     }
16773 
16774     if (val != 0x10) {
16775         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16776         return (-1);
16777     }
16778 
16779     /* wait until PRS register shows 1 packet */
16780     count = (1000 * factor);
16781     while (count) {
16782         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16783         if (val == 1) {
16784             break;
16785         }
16786 
16787         DELAY(10000);
16788         count--;
16789     }
16790 
16791     if (val != 0x1) {
16792         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16793         return (-2);
16794     }
16795 
16796     /* Reset and init BRB, PRS */
16797     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16798     DELAY(50000);
16799     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16800     DELAY(50000);
16801     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16802     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16803 
16804     /* Disable inputs of parser neighbor blocks */
16805     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16806     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16807     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16808     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16809 
16810     /* Write 0 to parser credits for CFC search request */
16811     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16812 
16813     /* send 10 Ethernet packets */
16814     for (i = 0; i < 10; i++) {
16815         bxe_lb_pckt(sc);
16816     }
16817 
16818     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16819     count = (1000 * factor);
16820     while (count) {
16821         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16822         val = *BXE_SP(sc, wb_data[0]);
16823         if (val == 0xb0) {
16824             break;
16825         }
16826 
16827         DELAY(10000);
16828         count--;
16829     }
16830 
16831     if (val != 0xb0) {
16832         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16833         return (-3);
16834     }
16835 
16836     /* Wait until PRS register shows 2 packets */
16837     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16838     if (val != 2) {
16839         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16840     }
16841 
16842     /* Write 1 to parser credits for CFC search request */
16843     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16844 
16845     /* Wait until PRS register shows 3 packets */
16846     DELAY(10000 * factor);
16847 
16848     /* Wait until NIG register shows 1 packet of size 0x10 */
16849     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16850     if (val != 3) {
16851         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16852     }
16853 
16854     /* clear NIG EOP FIFO */
16855     for (i = 0; i < 11; i++) {
16856         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16857     }
16858 
16859     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16860     if (val != 1) {
16861         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16862         return (-4);
16863     }
16864 
16865     /* Reset and init BRB, PRS, NIG */
16866     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16867     DELAY(50000);
16868     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16869     DELAY(50000);
16870     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16871     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16872     if (!CNIC_SUPPORT(sc)) {
16873         /* set NIC mode */
16874         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16875     }
16876 
16877     /* Enable inputs of parser neighbor blocks */
16878     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16879     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16880     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16881     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16882 
16883     return (0);
16884 }
16885 
16886 static void
16887 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16888 {
16889     int is_required;
16890     uint32_t val;
16891     int port;
16892 
16893     is_required = 0;
16894     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16895            SHARED_HW_CFG_FAN_FAILURE_MASK);
16896 
16897     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16898         is_required = 1;
16899     }
16900     /*
16901      * The fan failure mechanism is usually related to the PHY type since
16902      * the power consumption of the board is affected by the PHY. Currently,
16903      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16904      */
16905     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16906         for (port = PORT_0; port < PORT_MAX; port++) {
16907             is_required |= elink_fan_failure_det_req(sc,
16908                                                      sc->devinfo.shmem_base,
16909                                                      sc->devinfo.shmem2_base,
16910                                                      port);
16911         }
16912     }
16913 
16914     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16915 
16916     if (is_required == 0) {
16917         return;
16918     }
16919 
16920     /* Fan failure is indicated by SPIO 5 */
16921     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16922 
16923     /* set to active low mode */
16924     val = REG_RD(sc, MISC_REG_SPIO_INT);
16925     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16926     REG_WR(sc, MISC_REG_SPIO_INT, val);
16927 
16928     /* enable interrupt to signal the IGU */
16929     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16930     val |= MISC_SPIO_SPIO5;
16931     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16932 }
16933 
16934 static void
16935 bxe_enable_blocks_attention(struct bxe_softc *sc)
16936 {
16937     uint32_t val;
16938 
16939     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16940     if (!CHIP_IS_E1x(sc)) {
16941         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16942     } else {
16943         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16944     }
16945     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16946     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16947     /*
16948      * mask read length error interrupts in brb for parser
16949      * (parsing unit and 'checksum and crc' unit)
16950      * these errors are legal (PU reads fixed length and CAC can cause
16951      * read length error on truncated packets)
16952      */
16953     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16954     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16955     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16956     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16957     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16958     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16959 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16960 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16961     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16962     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16963     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16964 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16965 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16966     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16967     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16968     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16969     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16970 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16971 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16972 
16973     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16974            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16975            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16976     if (!CHIP_IS_E1x(sc)) {
16977         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16978                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16979     }
16980     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16981 
16982     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16983     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16984     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16985 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16986 
16987     if (!CHIP_IS_E1x(sc)) {
16988         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16989         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16990     }
16991 
16992     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16993     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16994 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16995     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16996 }
16997 
16998 /**
16999  * bxe_init_hw_common - initialize the HW at the COMMON phase.
17000  *
17001  * @sc:     driver handle
17002  */
17003 static int
17004 bxe_init_hw_common(struct bxe_softc *sc)
17005 {
17006     uint8_t abs_func_id;
17007     uint32_t val;
17008 
17009     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17010           SC_ABS_FUNC(sc));
17011 
17012     /*
17013      * take the RESET lock to protect undi_unload flow from accessing
17014      * registers while we are resetting the chip
17015      */
17016     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17017 
17018     bxe_reset_common(sc);
17019 
17020     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17021 
17022     val = 0xfffc;
17023     if (CHIP_IS_E3(sc)) {
17024         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17025         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17026     }
17027 
17028     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17029 
17030     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17031 
17032     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17033     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17034 
17035     if (!CHIP_IS_E1x(sc)) {
17036         /*
17037          * 4-port mode or 2-port mode we need to turn off master-enable for
17038          * everyone. After that we turn it back on for self. So, we disregard
17039          * multi-function, and always disable all functions on the given path,
17040          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17041          */
17042         for (abs_func_id = SC_PATH(sc);
17043              abs_func_id < (E2_FUNC_MAX * 2);
17044              abs_func_id += 2) {
17045             if (abs_func_id == SC_ABS_FUNC(sc)) {
17046                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17047                 continue;
17048             }
17049 
17050             bxe_pretend_func(sc, abs_func_id);
17051 
17052             /* clear pf enable */
17053             bxe_pf_disable(sc);
17054 
17055             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17056         }
17057     }
17058 
17059     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17060 
17061     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17062 
17063     if (CHIP_IS_E1(sc)) {
17064         /*
17065          * enable HW interrupt from PXP on USDM overflow
17066          * bit 16 on INT_MASK_0
17067          */
17068         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17069     }
17070 
17071     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17072     bxe_init_pxp(sc);
17073 
17074 #ifdef __BIG_ENDIAN
17075     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17076     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17077     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17078     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17079     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17080     /* make sure this value is 0 */
17081     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17082 
17083     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17084     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17085     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17086     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17087     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17088 #endif
17089 
17090     ecore_ilt_init_page_size(sc, INITOP_SET);
17091 
17092     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17093         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17094     }
17095 
17096     /* let the HW do it's magic... */
17097     DELAY(100000);
17098 
17099     /* finish PXP init */
17100     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17101     if (val != 1) {
17102         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17103             val);
17104         return (-1);
17105     }
17106     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17107     if (val != 1) {
17108         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17109         return (-1);
17110     }
17111 
17112     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17113 
17114     /*
17115      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17116      * entries with value "" and valid bit on. This needs to be done by the
17117      * first PF that is loaded in a path (i.e. common phase)
17118      */
17119     if (!CHIP_IS_E1x(sc)) {
17120 /*
17121  * In E2 there is a bug in the timers block that can cause function 6 / 7
17122  * (i.e. vnic3) to start even if it is marked as "scan-off".
17123  * This occurs when a different function (func2,3) is being marked
17124  * as "scan-off". Real-life scenario for example: if a driver is being
17125  * load-unloaded while func6,7 are down. This will cause the timer to access
17126  * the ilt, translate to a logical address and send a request to read/write.
17127  * Since the ilt for the function that is down is not valid, this will cause
17128  * a translation error which is unrecoverable.
17129  * The Workaround is intended to make sure that when this happens nothing
17130  * fatal will occur. The workaround:
17131  *  1.  First PF driver which loads on a path will:
17132  *      a.  After taking the chip out of reset, by using pretend,
17133  *          it will write "" to the following registers of
17134  *          the other vnics.
17135  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17136  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17137  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17138  *          And for itself it will write '1' to
17139  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17140  *          dmae-operations (writing to pram for example.)
17141  *          note: can be done for only function 6,7 but cleaner this
17142  *            way.
17143  *      b.  Write zero+valid to the entire ILT.
17144  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17145  *          VNIC3 (of that port). The range allocated will be the
17146  *          entire ILT. This is needed to prevent  ILT range error.
17147  *  2.  Any PF driver load flow:
17148  *      a.  ILT update with the physical addresses of the allocated
17149  *          logical pages.
17150  *      b.  Wait 20msec. - note that this timeout is needed to make
17151  *          sure there are no requests in one of the PXP internal
17152  *          queues with "old" ILT addresses.
17153  *      c.  PF enable in the PGLC.
17154  *      d.  Clear the was_error of the PF in the PGLC. (could have
17155  *          occurred while driver was down)
17156  *      e.  PF enable in the CFC (WEAK + STRONG)
17157  *      f.  Timers scan enable
17158  *  3.  PF driver unload flow:
17159  *      a.  Clear the Timers scan_en.
17160  *      b.  Polling for scan_on=0 for that PF.
17161  *      c.  Clear the PF enable bit in the PXP.
17162  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17163  *      e.  Write zero+valid to all ILT entries (The valid bit must
17164  *          stay set)
17165  *      f.  If this is VNIC 3 of a port then also init
17166  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17167  *          to the last entry in the ILT.
17168  *
17169  *      Notes:
17170  *      Currently the PF error in the PGLC is non recoverable.
17171  *      In the future the there will be a recovery routine for this error.
17172  *      Currently attention is masked.
17173  *      Having an MCP lock on the load/unload process does not guarantee that
17174  *      there is no Timer disable during Func6/7 enable. This is because the
17175  *      Timers scan is currently being cleared by the MCP on FLR.
17176  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17177  *      there is error before clearing it. But the flow above is simpler and
17178  *      more general.
17179  *      All ILT entries are written by zero+valid and not just PF6/7
17180  *      ILT entries since in the future the ILT entries allocation for
17181  *      PF-s might be dynamic.
17182  */
17183         struct ilt_client_info ilt_cli;
17184         struct ecore_ilt ilt;
17185 
17186         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17187         memset(&ilt, 0, sizeof(struct ecore_ilt));
17188 
17189         /* initialize dummy TM client */
17190         ilt_cli.start      = 0;
17191         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17192         ilt_cli.client_num = ILT_CLIENT_TM;
17193 
17194         /*
17195          * Step 1: set zeroes to all ilt page entries with valid bit on
17196          * Step 2: set the timers first/last ilt entry to point
17197          * to the entire range to prevent ILT range error for 3rd/4th
17198          * vnic (this code assumes existence of the vnic)
17199          *
17200          * both steps performed by call to ecore_ilt_client_init_op()
17201          * with dummy TM client
17202          *
17203          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17204          * and his brother are split registers
17205          */
17206 
17207         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17208         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17209         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17210 
17211         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17212         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17213         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17214     }
17215 
17216     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17217     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17218 
17219     if (!CHIP_IS_E1x(sc)) {
17220         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17221                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17222 
17223         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17224         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17225 
17226         /* let the HW do it's magic... */
17227         do {
17228             DELAY(200000);
17229             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17230         } while (factor-- && (val != 1));
17231 
17232         if (val != 1) {
17233             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17234             return (-1);
17235         }
17236     }
17237 
17238     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17239 
17240     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17241 
17242     bxe_iov_init_dmae(sc);
17243 
17244     /* clean the DMAE memory */
17245     sc->dmae_ready = 1;
17246     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17247 
17248     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17249 
17250     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17251 
17252     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17253 
17254     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17255 
17256     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17257     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17258     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17259     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17260 
17261     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17262 
17263     /* QM queues pointers table */
17264     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17265 
17266     /* soft reset pulse */
17267     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17268     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17269 
17270     if (CNIC_SUPPORT(sc))
17271         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17272 
17273     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17274     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17275     if (!CHIP_REV_IS_SLOW(sc)) {
17276         /* enable hw interrupt from doorbell Q */
17277         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17278     }
17279 
17280     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17281 
17282     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17283     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17284 
17285     if (!CHIP_IS_E1(sc)) {
17286         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17287     }
17288 
17289     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17290         if (IS_MF_AFEX(sc)) {
17291             /*
17292              * configure that AFEX and VLAN headers must be
17293              * received in AFEX mode
17294              */
17295             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17296             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17297             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17298             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17299             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17300         } else {
17301             /*
17302              * Bit-map indicating which L2 hdrs may appear
17303              * after the basic Ethernet header
17304              */
17305             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17306                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17307         }
17308     }
17309 
17310     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17311     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17312     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17313     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17314 
17315     if (!CHIP_IS_E1x(sc)) {
17316         /* reset VFC memories */
17317         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17318                VFC_MEMORIES_RST_REG_CAM_RST |
17319                VFC_MEMORIES_RST_REG_RAM_RST);
17320         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17321                VFC_MEMORIES_RST_REG_CAM_RST |
17322                VFC_MEMORIES_RST_REG_RAM_RST);
17323 
17324         DELAY(20000);
17325     }
17326 
17327     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17328     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17329     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17330     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17331 
17332     /* sync semi rtc */
17333     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17334            0x80000000);
17335     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17336            0x80000000);
17337 
17338     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17339     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17340     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17341 
17342     if (!CHIP_IS_E1x(sc)) {
17343         if (IS_MF_AFEX(sc)) {
17344             /*
17345              * configure that AFEX and VLAN headers must be
17346              * sent in AFEX mode
17347              */
17348             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17349             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17350             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17351             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17352             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17353         } else {
17354             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17355                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17356         }
17357     }
17358 
17359     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17360 
17361     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17362 
17363     if (CNIC_SUPPORT(sc)) {
17364         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17365         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17366         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17367         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17368         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17369         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17370         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17371         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17372         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17373         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17374     }
17375     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17376 
17377     if (sizeof(union cdu_context) != 1024) {
17378         /* we currently assume that a context is 1024 bytes */
17379         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17380               (long)sizeof(union cdu_context));
17381     }
17382 
17383     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17384     val = (4 << 24) + (0 << 12) + 1024;
17385     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17386 
17387     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17388 
17389     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17390     /* enable context validation interrupt from CFC */
17391     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17392 
17393     /* set the thresholds to prevent CFC/CDU race */
17394     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17395     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17396 
17397     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17398         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17399     }
17400 
17401     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17402     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17403 
17404     /* Reset PCIE errors for debug */
17405     REG_WR(sc, 0x2814, 0xffffffff);
17406     REG_WR(sc, 0x3820, 0xffffffff);
17407 
17408     if (!CHIP_IS_E1x(sc)) {
17409         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17410                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17411                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17412         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17413                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17414                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17415                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17416         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17417                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17418                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17419                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17420     }
17421 
17422     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17423 
17424     if (!CHIP_IS_E1(sc)) {
17425         /* in E3 this done in per-port section */
17426         if (!CHIP_IS_E3(sc))
17427             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17428     }
17429 
17430     if (CHIP_IS_E1H(sc)) {
17431         /* not applicable for E2 (and above ...) */
17432         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17433     }
17434 
17435     if (CHIP_REV_IS_SLOW(sc)) {
17436         DELAY(200000);
17437     }
17438 
17439     /* finish CFC init */
17440     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17441     if (val != 1) {
17442         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17443         return (-1);
17444     }
17445     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17446     if (val != 1) {
17447         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17448         return (-1);
17449     }
17450     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17451     if (val != 1) {
17452         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17453         return (-1);
17454     }
17455     REG_WR(sc, CFC_REG_DEBUG0, 0);
17456 
17457     if (CHIP_IS_E1(sc)) {
17458         /* read NIG statistic to see if this is our first up since powerup */
17459         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17460         val = *BXE_SP(sc, wb_data[0]);
17461 
17462         /* do internal memory self test */
17463         if ((val == 0) && bxe_int_mem_test(sc)) {
17464             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17465             return (-1);
17466         }
17467     }
17468 
17469     bxe_setup_fan_failure_detection(sc);
17470 
17471     /* clear PXP2 attentions */
17472     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17473 
17474     bxe_enable_blocks_attention(sc);
17475 
17476     if (!CHIP_REV_IS_SLOW(sc)) {
17477         ecore_enable_blocks_parity(sc);
17478     }
17479 
17480     if (!BXE_NOMCP(sc)) {
17481         if (CHIP_IS_E1x(sc)) {
17482             bxe_common_init_phy(sc);
17483         }
17484     }
17485 
17486     return (0);
17487 }
17488 
17489 /**
17490  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17491  *
17492  * @sc:     driver handle
17493  */
17494 static int
17495 bxe_init_hw_common_chip(struct bxe_softc *sc)
17496 {
17497     int rc = bxe_init_hw_common(sc);
17498 
17499     if (rc) {
17500         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17501         return (rc);
17502     }
17503 
17504     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17505     if (!BXE_NOMCP(sc)) {
17506         bxe_common_init_phy(sc);
17507     }
17508 
17509     return (0);
17510 }
17511 
17512 static int
17513 bxe_init_hw_port(struct bxe_softc *sc)
17514 {
17515     int port = SC_PORT(sc);
17516     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17517     uint32_t low, high;
17518     uint32_t val;
17519 
17520     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17521 
17522     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17523 
17524     ecore_init_block(sc, BLOCK_MISC, init_phase);
17525     ecore_init_block(sc, BLOCK_PXP, init_phase);
17526     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17527 
17528     /*
17529      * Timers bug workaround: disables the pf_master bit in pglue at
17530      * common phase, we need to enable it here before any dmae access are
17531      * attempted. Therefore we manually added the enable-master to the
17532      * port phase (it also happens in the function phase)
17533      */
17534     if (!CHIP_IS_E1x(sc)) {
17535         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17536     }
17537 
17538     ecore_init_block(sc, BLOCK_ATC, init_phase);
17539     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17540     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17541     ecore_init_block(sc, BLOCK_QM, init_phase);
17542 
17543     ecore_init_block(sc, BLOCK_TCM, init_phase);
17544     ecore_init_block(sc, BLOCK_UCM, init_phase);
17545     ecore_init_block(sc, BLOCK_CCM, init_phase);
17546     ecore_init_block(sc, BLOCK_XCM, init_phase);
17547 
17548     /* QM cid (connection) count */
17549     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17550 
17551     if (CNIC_SUPPORT(sc)) {
17552         ecore_init_block(sc, BLOCK_TM, init_phase);
17553         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17554         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17555     }
17556 
17557     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17558 
17559     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17560 
17561     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17562         if (IS_MF(sc)) {
17563             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17564         } else if (sc->mtu > 4096) {
17565             if (BXE_ONE_PORT(sc)) {
17566                 low = 160;
17567             } else {
17568                 val = sc->mtu;
17569                 /* (24*1024 + val*4)/256 */
17570                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17571             }
17572         } else {
17573             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17574         }
17575         high = (low + 56); /* 14*1024/256 */
17576         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17577         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17578     }
17579 
17580     if (CHIP_IS_MODE_4_PORT(sc)) {
17581         REG_WR(sc, SC_PORT(sc) ?
17582                BRB1_REG_MAC_GUARANTIED_1 :
17583                BRB1_REG_MAC_GUARANTIED_0, 40);
17584     }
17585 
17586     ecore_init_block(sc, BLOCK_PRS, init_phase);
17587     if (CHIP_IS_E3B0(sc)) {
17588         if (IS_MF_AFEX(sc)) {
17589             /* configure headers for AFEX mode */
17590             REG_WR(sc, SC_PORT(sc) ?
17591                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17592                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17593             REG_WR(sc, SC_PORT(sc) ?
17594                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17595                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17596             REG_WR(sc, SC_PORT(sc) ?
17597                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17598                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17599         } else {
17600             /* Ovlan exists only if we are in multi-function +
17601              * switch-dependent mode, in switch-independent there
17602              * is no ovlan headers
17603              */
17604             REG_WR(sc, SC_PORT(sc) ?
17605                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17606                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17607                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17608         }
17609     }
17610 
17611     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17612     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17613     ecore_init_block(sc, BLOCK_USDM, init_phase);
17614     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17615 
17616     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17617     ecore_init_block(sc, BLOCK_USEM, init_phase);
17618     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17619     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17620 
17621     ecore_init_block(sc, BLOCK_UPB, init_phase);
17622     ecore_init_block(sc, BLOCK_XPB, init_phase);
17623 
17624     ecore_init_block(sc, BLOCK_PBF, init_phase);
17625 
17626     if (CHIP_IS_E1x(sc)) {
17627         /* configure PBF to work without PAUSE mtu 9000 */
17628         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17629 
17630         /* update threshold */
17631         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17632         /* update init credit */
17633         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17634 
17635         /* probe changes */
17636         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17637         DELAY(50);
17638         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17639     }
17640 
17641     if (CNIC_SUPPORT(sc)) {
17642         ecore_init_block(sc, BLOCK_SRC, init_phase);
17643     }
17644 
17645     ecore_init_block(sc, BLOCK_CDU, init_phase);
17646     ecore_init_block(sc, BLOCK_CFC, init_phase);
17647 
17648     if (CHIP_IS_E1(sc)) {
17649         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17650         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17651     }
17652     ecore_init_block(sc, BLOCK_HC, init_phase);
17653 
17654     ecore_init_block(sc, BLOCK_IGU, init_phase);
17655 
17656     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17657     /* init aeu_mask_attn_func_0/1:
17658      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17659      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17660      *             bits 4-7 are used for "per vn group attention" */
17661     val = IS_MF(sc) ? 0xF7 : 0x7;
17662     /* Enable DCBX attention for all but E1 */
17663     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17664     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17665 
17666     ecore_init_block(sc, BLOCK_NIG, init_phase);
17667 
17668     if (!CHIP_IS_E1x(sc)) {
17669         /* Bit-map indicating which L2 hdrs may appear after the
17670          * basic Ethernet header
17671          */
17672         if (IS_MF_AFEX(sc)) {
17673             REG_WR(sc, SC_PORT(sc) ?
17674                    NIG_REG_P1_HDRS_AFTER_BASIC :
17675                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17676         } else {
17677             REG_WR(sc, SC_PORT(sc) ?
17678                    NIG_REG_P1_HDRS_AFTER_BASIC :
17679                    NIG_REG_P0_HDRS_AFTER_BASIC,
17680                    IS_MF_SD(sc) ? 7 : 6);
17681         }
17682 
17683         if (CHIP_IS_E3(sc)) {
17684             REG_WR(sc, SC_PORT(sc) ?
17685                    NIG_REG_LLH1_MF_MODE :
17686                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17687         }
17688     }
17689     if (!CHIP_IS_E3(sc)) {
17690         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17691     }
17692 
17693     if (!CHIP_IS_E1(sc)) {
17694         /* 0x2 disable mf_ov, 0x1 enable */
17695         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17696                (IS_MF_SD(sc) ? 0x1 : 0x2));
17697 
17698         if (!CHIP_IS_E1x(sc)) {
17699             val = 0;
17700             switch (sc->devinfo.mf_info.mf_mode) {
17701             case MULTI_FUNCTION_SD:
17702                 val = 1;
17703                 break;
17704             case MULTI_FUNCTION_SI:
17705             case MULTI_FUNCTION_AFEX:
17706                 val = 2;
17707                 break;
17708             }
17709 
17710             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17711                         NIG_REG_LLH0_CLS_TYPE), val);
17712         }
17713         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17714         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17715         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17716     }
17717 
17718     /* If SPIO5 is set to generate interrupts, enable it for this port */
17719     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17720     if (val & MISC_SPIO_SPIO5) {
17721         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17722                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17723         val = REG_RD(sc, reg_addr);
17724         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17725         REG_WR(sc, reg_addr, val);
17726     }
17727 
17728     return (0);
17729 }
17730 
17731 static uint32_t
17732 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17733                        uint32_t         reg,
17734                        uint32_t         expected,
17735                        uint32_t         poll_count)
17736 {
17737     uint32_t cur_cnt = poll_count;
17738     uint32_t val;
17739 
17740     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17741         DELAY(FLR_WAIT_INTERVAL);
17742     }
17743 
17744     return (val);
17745 }
17746 
17747 static int
17748 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17749                               uint32_t         reg,
17750                               char             *msg,
17751                               uint32_t         poll_cnt)
17752 {
17753     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17754 
17755     if (val != 0) {
17756         BLOGE(sc, "%s usage count=%d\n", msg, val);
17757         return (1);
17758     }
17759 
17760     return (0);
17761 }
17762 
17763 /* Common routines with VF FLR cleanup */
17764 static uint32_t
17765 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17766 {
17767     /* adjust polling timeout */
17768     if (CHIP_REV_IS_EMUL(sc)) {
17769         return (FLR_POLL_CNT * 2000);
17770     }
17771 
17772     if (CHIP_REV_IS_FPGA(sc)) {
17773         return (FLR_POLL_CNT * 120);
17774     }
17775 
17776     return (FLR_POLL_CNT);
17777 }
17778 
17779 static int
17780 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17781                            uint32_t         poll_cnt)
17782 {
17783     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17784     if (bxe_flr_clnup_poll_hw_counter(sc,
17785                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17786                                       "CFC PF usage counter timed out",
17787                                       poll_cnt)) {
17788         return (1);
17789     }
17790 
17791     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17792     if (bxe_flr_clnup_poll_hw_counter(sc,
17793                                       DORQ_REG_PF_USAGE_CNT,
17794                                       "DQ PF usage counter timed out",
17795                                       poll_cnt)) {
17796         return (1);
17797     }
17798 
17799     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17800     if (bxe_flr_clnup_poll_hw_counter(sc,
17801                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17802                                       "QM PF usage counter timed out",
17803                                       poll_cnt)) {
17804         return (1);
17805     }
17806 
17807     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17808     if (bxe_flr_clnup_poll_hw_counter(sc,
17809                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17810                                       "Timers VNIC usage counter timed out",
17811                                       poll_cnt)) {
17812         return (1);
17813     }
17814 
17815     if (bxe_flr_clnup_poll_hw_counter(sc,
17816                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17817                                       "Timers NUM_SCANS usage counter timed out",
17818                                       poll_cnt)) {
17819         return (1);
17820     }
17821 
17822     /* Wait DMAE PF usage counter to zero */
17823     if (bxe_flr_clnup_poll_hw_counter(sc,
17824                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17825                                       "DMAE dommand register timed out",
17826                                       poll_cnt)) {
17827         return (1);
17828     }
17829 
17830     return (0);
17831 }
17832 
17833 #define OP_GEN_PARAM(param)                                            \
17834     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17835 #define OP_GEN_TYPE(type)                                           \
17836     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17837 #define OP_GEN_AGG_VECT(index)                                             \
17838     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17839 
17840 static int
17841 bxe_send_final_clnup(struct bxe_softc *sc,
17842                      uint8_t          clnup_func,
17843                      uint32_t         poll_cnt)
17844 {
17845     uint32_t op_gen_command = 0;
17846     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17847                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17848     int ret = 0;
17849 
17850     if (REG_RD(sc, comp_addr)) {
17851         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17852         return (1);
17853     }
17854 
17855     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17856     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17857     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17858     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17859 
17860     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17861     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17862 
17863     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17864         BLOGE(sc, "FW final cleanup did not succeed\n");
17865         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17866               (REG_RD(sc, comp_addr)));
17867         bxe_panic(sc, ("FLR cleanup failed\n"));
17868         return (1);
17869     }
17870 
17871     /* Zero completion for nxt FLR */
17872     REG_WR(sc, comp_addr, 0);
17873 
17874     return (ret);
17875 }
17876 
17877 static void
17878 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17879                        struct pbf_pN_buf_regs *regs,
17880                        uint32_t               poll_count)
17881 {
17882     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17883     uint32_t cur_cnt = poll_count;
17884 
17885     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17886     crd = crd_start = REG_RD(sc, regs->crd);
17887     init_crd = REG_RD(sc, regs->init_crd);
17888 
17889     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17890     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17891     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17892 
17893     while ((crd != init_crd) &&
17894            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17895             (init_crd - crd_start))) {
17896         if (cur_cnt--) {
17897             DELAY(FLR_WAIT_INTERVAL);
17898             crd = REG_RD(sc, regs->crd);
17899             crd_freed = REG_RD(sc, regs->crd_freed);
17900         } else {
17901             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17902             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17903             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17904             break;
17905         }
17906     }
17907 
17908     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17909           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17910 }
17911 
17912 static void
17913 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17914                        struct pbf_pN_cmd_regs *regs,
17915                        uint32_t               poll_count)
17916 {
17917     uint32_t occup, to_free, freed, freed_start;
17918     uint32_t cur_cnt = poll_count;
17919 
17920     occup = to_free = REG_RD(sc, regs->lines_occup);
17921     freed = freed_start = REG_RD(sc, regs->lines_freed);
17922 
17923     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17924     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17925 
17926     while (occup &&
17927            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17928         if (cur_cnt--) {
17929             DELAY(FLR_WAIT_INTERVAL);
17930             occup = REG_RD(sc, regs->lines_occup);
17931             freed = REG_RD(sc, regs->lines_freed);
17932         } else {
17933             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17934             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17935             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17936             break;
17937         }
17938     }
17939 
17940     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17941           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17942 }
17943 
17944 static void
17945 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17946 {
17947     struct pbf_pN_cmd_regs cmd_regs[] = {
17948         {0, (CHIP_IS_E3B0(sc)) ?
17949             PBF_REG_TQ_OCCUPANCY_Q0 :
17950             PBF_REG_P0_TQ_OCCUPANCY,
17951             (CHIP_IS_E3B0(sc)) ?
17952             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17953             PBF_REG_P0_TQ_LINES_FREED_CNT},
17954         {1, (CHIP_IS_E3B0(sc)) ?
17955             PBF_REG_TQ_OCCUPANCY_Q1 :
17956             PBF_REG_P1_TQ_OCCUPANCY,
17957             (CHIP_IS_E3B0(sc)) ?
17958             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17959             PBF_REG_P1_TQ_LINES_FREED_CNT},
17960         {4, (CHIP_IS_E3B0(sc)) ?
17961             PBF_REG_TQ_OCCUPANCY_LB_Q :
17962             PBF_REG_P4_TQ_OCCUPANCY,
17963             (CHIP_IS_E3B0(sc)) ?
17964             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17965             PBF_REG_P4_TQ_LINES_FREED_CNT}
17966     };
17967 
17968     struct pbf_pN_buf_regs buf_regs[] = {
17969         {0, (CHIP_IS_E3B0(sc)) ?
17970             PBF_REG_INIT_CRD_Q0 :
17971             PBF_REG_P0_INIT_CRD ,
17972             (CHIP_IS_E3B0(sc)) ?
17973             PBF_REG_CREDIT_Q0 :
17974             PBF_REG_P0_CREDIT,
17975             (CHIP_IS_E3B0(sc)) ?
17976             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17977             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17978         {1, (CHIP_IS_E3B0(sc)) ?
17979             PBF_REG_INIT_CRD_Q1 :
17980             PBF_REG_P1_INIT_CRD,
17981             (CHIP_IS_E3B0(sc)) ?
17982             PBF_REG_CREDIT_Q1 :
17983             PBF_REG_P1_CREDIT,
17984             (CHIP_IS_E3B0(sc)) ?
17985             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17986             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17987         {4, (CHIP_IS_E3B0(sc)) ?
17988             PBF_REG_INIT_CRD_LB_Q :
17989             PBF_REG_P4_INIT_CRD,
17990             (CHIP_IS_E3B0(sc)) ?
17991             PBF_REG_CREDIT_LB_Q :
17992             PBF_REG_P4_CREDIT,
17993             (CHIP_IS_E3B0(sc)) ?
17994             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17995             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17996     };
17997 
17998     int i;
17999 
18000     /* Verify the command queues are flushed P0, P1, P4 */
18001     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18002         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18003     }
18004 
18005     /* Verify the transmission buffers are flushed P0, P1, P4 */
18006     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18007         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18008     }
18009 }
18010 
18011 static void
18012 bxe_hw_enable_status(struct bxe_softc *sc)
18013 {
18014     uint32_t val;
18015 
18016     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18017     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18018 
18019     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18020     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18021 
18022     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18023     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18024 
18025     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18026     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18027 
18028     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18029     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18030 
18031     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18032     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18033 
18034     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18035     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18036 
18037     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18038     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18039 }
18040 
18041 static int
18042 bxe_pf_flr_clnup(struct bxe_softc *sc)
18043 {
18044     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18045 
18046     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18047 
18048     /* Re-enable PF target read access */
18049     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18050 
18051     /* Poll HW usage counters */
18052     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18053     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18054         return (-1);
18055     }
18056 
18057     /* Zero the igu 'trailing edge' and 'leading edge' */
18058 
18059     /* Send the FW cleanup command */
18060     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18061         return (-1);
18062     }
18063 
18064     /* ATC cleanup */
18065 
18066     /* Verify TX hw is flushed */
18067     bxe_tx_hw_flushed(sc, poll_cnt);
18068 
18069     /* Wait 100ms (not adjusted according to platform) */
18070     DELAY(100000);
18071 
18072     /* Verify no pending pci transactions */
18073     if (bxe_is_pcie_pending(sc)) {
18074         BLOGE(sc, "PCIE Transactions still pending\n");
18075     }
18076 
18077     /* Debug */
18078     bxe_hw_enable_status(sc);
18079 
18080     /*
18081      * Master enable - Due to WB DMAE writes performed before this
18082      * register is re-initialized as part of the regular function init
18083      */
18084     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18085 
18086     return (0);
18087 }
18088 
18089 static int
18090 bxe_init_hw_func(struct bxe_softc *sc)
18091 {
18092     int port = SC_PORT(sc);
18093     int func = SC_FUNC(sc);
18094     int init_phase = PHASE_PF0 + func;
18095     struct ecore_ilt *ilt = sc->ilt;
18096     uint16_t cdu_ilt_start;
18097     uint32_t addr, val;
18098     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18099     int i, main_mem_width, rc;
18100 
18101     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18102 
18103     /* FLR cleanup */
18104     if (!CHIP_IS_E1x(sc)) {
18105         rc = bxe_pf_flr_clnup(sc);
18106         if (rc) {
18107             BLOGE(sc, "FLR cleanup failed!\n");
18108             // XXX bxe_fw_dump(sc);
18109             // XXX bxe_idle_chk(sc);
18110             return (rc);
18111         }
18112     }
18113 
18114     /* set MSI reconfigure capability */
18115     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18116         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18117         val = REG_RD(sc, addr);
18118         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18119         REG_WR(sc, addr, val);
18120     }
18121 
18122     ecore_init_block(sc, BLOCK_PXP, init_phase);
18123     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18124 
18125     ilt = sc->ilt;
18126     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18127 
18128     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18129         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18130         ilt->lines[cdu_ilt_start + i].page_mapping =
18131             sc->context[i].vcxt_dma.paddr;
18132         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18133     }
18134     ecore_ilt_init_op(sc, INITOP_SET);
18135 
18136     /* Set NIC mode */
18137     REG_WR(sc, PRS_REG_NIC_MODE, 1);
18138     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18139 
18140     if (!CHIP_IS_E1x(sc)) {
18141         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18142 
18143         /* Turn on a single ISR mode in IGU if driver is going to use
18144          * INT#x or MSI
18145          */
18146         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18147             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18148         }
18149 
18150         /*
18151          * Timers workaround bug: function init part.
18152          * Need to wait 20msec after initializing ILT,
18153          * needed to make sure there are no requests in
18154          * one of the PXP internal queues with "old" ILT addresses
18155          */
18156         DELAY(20000);
18157 
18158         /*
18159          * Master enable - Due to WB DMAE writes performed before this
18160          * register is re-initialized as part of the regular function
18161          * init
18162          */
18163         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18164         /* Enable the function in IGU */
18165         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18166     }
18167 
18168     sc->dmae_ready = 1;
18169 
18170     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18171 
18172     if (!CHIP_IS_E1x(sc))
18173         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18174 
18175     ecore_init_block(sc, BLOCK_ATC, init_phase);
18176     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18177     ecore_init_block(sc, BLOCK_NIG, init_phase);
18178     ecore_init_block(sc, BLOCK_SRC, init_phase);
18179     ecore_init_block(sc, BLOCK_MISC, init_phase);
18180     ecore_init_block(sc, BLOCK_TCM, init_phase);
18181     ecore_init_block(sc, BLOCK_UCM, init_phase);
18182     ecore_init_block(sc, BLOCK_CCM, init_phase);
18183     ecore_init_block(sc, BLOCK_XCM, init_phase);
18184     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18185     ecore_init_block(sc, BLOCK_USEM, init_phase);
18186     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18187     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18188 
18189     if (!CHIP_IS_E1x(sc))
18190         REG_WR(sc, QM_REG_PF_EN, 1);
18191 
18192     if (!CHIP_IS_E1x(sc)) {
18193         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18194         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18195         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18196         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18197     }
18198     ecore_init_block(sc, BLOCK_QM, init_phase);
18199 
18200     ecore_init_block(sc, BLOCK_TM, init_phase);
18201     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18202 
18203     bxe_iov_init_dq(sc);
18204 
18205     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18206     ecore_init_block(sc, BLOCK_PRS, init_phase);
18207     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18208     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18209     ecore_init_block(sc, BLOCK_USDM, init_phase);
18210     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18211     ecore_init_block(sc, BLOCK_UPB, init_phase);
18212     ecore_init_block(sc, BLOCK_XPB, init_phase);
18213     ecore_init_block(sc, BLOCK_PBF, init_phase);
18214     if (!CHIP_IS_E1x(sc))
18215         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18216 
18217     ecore_init_block(sc, BLOCK_CDU, init_phase);
18218 
18219     ecore_init_block(sc, BLOCK_CFC, init_phase);
18220 
18221     if (!CHIP_IS_E1x(sc))
18222         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18223 
18224     if (IS_MF(sc)) {
18225         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18226         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18227     }
18228 
18229     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18230 
18231     /* HC init per function */
18232     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18233         if (CHIP_IS_E1H(sc)) {
18234             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18235 
18236             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18237             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18238         }
18239         ecore_init_block(sc, BLOCK_HC, init_phase);
18240 
18241     } else {
18242         int num_segs, sb_idx, prod_offset;
18243 
18244         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18245 
18246         if (!CHIP_IS_E1x(sc)) {
18247             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18248             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18249         }
18250 
18251         ecore_init_block(sc, BLOCK_IGU, init_phase);
18252 
18253         if (!CHIP_IS_E1x(sc)) {
18254             int dsb_idx = 0;
18255             /**
18256              * Producer memory:
18257              * E2 mode: address 0-135 match to the mapping memory;
18258              * 136 - PF0 default prod; 137 - PF1 default prod;
18259              * 138 - PF2 default prod; 139 - PF3 default prod;
18260              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18261              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18262              * 144-147 reserved.
18263              *
18264              * E1.5 mode - In backward compatible mode;
18265              * for non default SB; each even line in the memory
18266              * holds the U producer and each odd line hold
18267              * the C producer. The first 128 producers are for
18268              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18269              * producers are for the DSB for each PF.
18270              * Each PF has five segments: (the order inside each
18271              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18272              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18273              * 144-147 attn prods;
18274              */
18275             /* non-default-status-blocks */
18276             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18277                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18278             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18279                 prod_offset = (sc->igu_base_sb + sb_idx) *
18280                     num_segs;
18281 
18282                 for (i = 0; i < num_segs; i++) {
18283                     addr = IGU_REG_PROD_CONS_MEMORY +
18284                             (prod_offset + i) * 4;
18285                     REG_WR(sc, addr, 0);
18286                 }
18287                 /* send consumer update with value 0 */
18288                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18289                            USTORM_ID, 0, IGU_INT_NOP, 1);
18290                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18291             }
18292 
18293             /* default-status-blocks */
18294             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18295                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18296 
18297             if (CHIP_IS_MODE_4_PORT(sc))
18298                 dsb_idx = SC_FUNC(sc);
18299             else
18300                 dsb_idx = SC_VN(sc);
18301 
18302             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18303                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18304                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18305 
18306             /*
18307              * igu prods come in chunks of E1HVN_MAX (4) -
18308              * does not matters what is the current chip mode
18309              */
18310             for (i = 0; i < (num_segs * E1HVN_MAX);
18311                  i += E1HVN_MAX) {
18312                 addr = IGU_REG_PROD_CONS_MEMORY +
18313                             (prod_offset + i)*4;
18314                 REG_WR(sc, addr, 0);
18315             }
18316             /* send consumer update with 0 */
18317             if (CHIP_INT_MODE_IS_BC(sc)) {
18318                 bxe_ack_sb(sc, sc->igu_dsb_id,
18319                            USTORM_ID, 0, IGU_INT_NOP, 1);
18320                 bxe_ack_sb(sc, sc->igu_dsb_id,
18321                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18322                 bxe_ack_sb(sc, sc->igu_dsb_id,
18323                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18324                 bxe_ack_sb(sc, sc->igu_dsb_id,
18325                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18326                 bxe_ack_sb(sc, sc->igu_dsb_id,
18327                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18328             } else {
18329                 bxe_ack_sb(sc, sc->igu_dsb_id,
18330                            USTORM_ID, 0, IGU_INT_NOP, 1);
18331                 bxe_ack_sb(sc, sc->igu_dsb_id,
18332                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18333             }
18334             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18335 
18336             /* !!! these should become driver const once
18337                rf-tool supports split-68 const */
18338             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18339             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18340             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18341             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18342             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18343             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18344         }
18345     }
18346 
18347     /* Reset PCIE errors for debug */
18348     REG_WR(sc, 0x2114, 0xffffffff);
18349     REG_WR(sc, 0x2120, 0xffffffff);
18350 
18351     if (CHIP_IS_E1x(sc)) {
18352         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18353         main_mem_base = HC_REG_MAIN_MEMORY +
18354                 SC_PORT(sc) * (main_mem_size * 4);
18355         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18356         main_mem_width = 8;
18357 
18358         val = REG_RD(sc, main_mem_prty_clr);
18359         if (val) {
18360             BLOGD(sc, DBG_LOAD,
18361                   "Parity errors in HC block during function init (0x%x)!\n",
18362                   val);
18363         }
18364 
18365         /* Clear "false" parity errors in MSI-X table */
18366         for (i = main_mem_base;
18367              i < main_mem_base + main_mem_size * 4;
18368              i += main_mem_width) {
18369             bxe_read_dmae(sc, i, main_mem_width / 4);
18370             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18371                            i, main_mem_width / 4);
18372         }
18373         /* Clear HC parity attention */
18374         REG_RD(sc, main_mem_prty_clr);
18375     }
18376 
18377 #if 1
18378     /* Enable STORMs SP logging */
18379     REG_WR8(sc, BAR_USTRORM_INTMEM +
18380            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18381     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18382            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18383     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18384            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18385     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18386            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18387 #endif
18388 
18389     elink_phy_probe(&sc->link_params);
18390 
18391     return (0);
18392 }
18393 
18394 static void
18395 bxe_link_reset(struct bxe_softc *sc)
18396 {
18397     if (!BXE_NOMCP(sc)) {
18398         bxe_acquire_phy_lock(sc);
18399         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18400         bxe_release_phy_lock(sc);
18401     } else {
18402         if (!CHIP_REV_IS_SLOW(sc)) {
18403             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18404         }
18405     }
18406 }
18407 
18408 static void
18409 bxe_reset_port(struct bxe_softc *sc)
18410 {
18411     int port = SC_PORT(sc);
18412     uint32_t val;
18413 
18414         ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18415     /* reset physical Link */
18416     bxe_link_reset(sc);
18417 
18418     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18419 
18420     /* Do not rcv packets to BRB */
18421     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18422     /* Do not direct rcv packets that are not for MCP to the BRB */
18423     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18424                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18425 
18426     /* Configure AEU */
18427     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18428 
18429     DELAY(100000);
18430 
18431     /* Check for BRB port occupancy */
18432     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18433     if (val) {
18434         BLOGD(sc, DBG_LOAD,
18435               "BRB1 is not empty, %d blocks are occupied\n", val);
18436     }
18437 
18438     /* TODO: Close Doorbell port? */
18439 }
18440 
18441 static void
18442 bxe_ilt_wr(struct bxe_softc *sc,
18443            uint32_t         index,
18444            bus_addr_t       addr)
18445 {
18446     int reg;
18447     uint32_t wb_write[2];
18448 
18449     if (CHIP_IS_E1(sc)) {
18450         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18451     } else {
18452         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18453     }
18454 
18455     wb_write[0] = ONCHIP_ADDR1(addr);
18456     wb_write[1] = ONCHIP_ADDR2(addr);
18457     REG_WR_DMAE(sc, reg, wb_write, 2);
18458 }
18459 
18460 static void
18461 bxe_clear_func_ilt(struct bxe_softc *sc,
18462                    uint32_t         func)
18463 {
18464     uint32_t i, base = FUNC_ILT_BASE(func);
18465     for (i = base; i < base + ILT_PER_FUNC; i++) {
18466         bxe_ilt_wr(sc, i, 0);
18467     }
18468 }
18469 
18470 static void
18471 bxe_reset_func(struct bxe_softc *sc)
18472 {
18473     struct bxe_fastpath *fp;
18474     int port = SC_PORT(sc);
18475     int func = SC_FUNC(sc);
18476     int i;
18477 
18478     /* Disable the function in the FW */
18479     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18480     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18481     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18482     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18483 
18484     /* FP SBs */
18485     FOR_EACH_ETH_QUEUE(sc, i) {
18486         fp = &sc->fp[i];
18487         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18488                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18489                 SB_DISABLED);
18490     }
18491 
18492     /* SP SB */
18493     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18494             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18495             SB_DISABLED);
18496 
18497     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18498         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18499     }
18500 
18501     /* Configure IGU */
18502     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18503         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18504         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18505     } else {
18506         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18507         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18508     }
18509 
18510     if (CNIC_LOADED(sc)) {
18511         /* Disable Timer scan */
18512         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18513         /*
18514          * Wait for at least 10ms and up to 2 second for the timers
18515          * scan to complete
18516          */
18517         for (i = 0; i < 200; i++) {
18518             DELAY(10000);
18519             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18520                 break;
18521         }
18522     }
18523 
18524     /* Clear ILT */
18525     bxe_clear_func_ilt(sc, func);
18526 
18527     /*
18528      * Timers workaround bug for E2: if this is vnic-3,
18529      * we need to set the entire ilt range for this timers.
18530      */
18531     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18532         struct ilt_client_info ilt_cli;
18533         /* use dummy TM client */
18534         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18535         ilt_cli.start = 0;
18536         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18537         ilt_cli.client_num = ILT_CLIENT_TM;
18538 
18539         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18540     }
18541 
18542     /* this assumes that reset_port() called before reset_func()*/
18543     if (!CHIP_IS_E1x(sc)) {
18544         bxe_pf_disable(sc);
18545     }
18546 
18547     sc->dmae_ready = 0;
18548 }
18549 
18550 static int
18551 bxe_gunzip_init(struct bxe_softc *sc)
18552 {
18553     return (0);
18554 }
18555 
18556 static void
18557 bxe_gunzip_end(struct bxe_softc *sc)
18558 {
18559     return;
18560 }
18561 
18562 static int
18563 bxe_init_firmware(struct bxe_softc *sc)
18564 {
18565     if (CHIP_IS_E1(sc)) {
18566         ecore_init_e1_firmware(sc);
18567         sc->iro_array = e1_iro_arr;
18568     } else if (CHIP_IS_E1H(sc)) {
18569         ecore_init_e1h_firmware(sc);
18570         sc->iro_array = e1h_iro_arr;
18571     } else if (!CHIP_IS_E1x(sc)) {
18572         ecore_init_e2_firmware(sc);
18573         sc->iro_array = e2_iro_arr;
18574     } else {
18575         BLOGE(sc, "Unsupported chip revision\n");
18576         return (-1);
18577     }
18578 
18579     return (0);
18580 }
18581 
18582 static void
18583 bxe_release_firmware(struct bxe_softc *sc)
18584 {
18585     /* Do nothing */
18586     return;
18587 }
18588 
18589 static int
18590 ecore_gunzip(struct bxe_softc *sc,
18591              const uint8_t    *zbuf,
18592              int              len)
18593 {
18594     /* XXX : Implement... */
18595     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18596     return (FALSE);
18597 }
18598 
18599 static void
18600 ecore_reg_wr_ind(struct bxe_softc *sc,
18601                  uint32_t         addr,
18602                  uint32_t         val)
18603 {
18604     bxe_reg_wr_ind(sc, addr, val);
18605 }
18606 
18607 static void
18608 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18609                           bus_addr_t       phys_addr,
18610                           uint32_t         addr,
18611                           uint32_t         len)
18612 {
18613     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18614 }
18615 
18616 void
18617 ecore_storm_memset_struct(struct bxe_softc *sc,
18618                           uint32_t         addr,
18619                           size_t           size,
18620                           uint32_t         *data)
18621 {
18622     uint8_t i;
18623     for (i = 0; i < size/4; i++) {
18624         REG_WR(sc, addr + (i * 4), data[i]);
18625     }
18626 }
18627 
18628 
18629 /*
18630  * character device - ioctl interface definitions
18631  */
18632 
18633 
18634 #include "bxe_dump.h"
18635 #include "bxe_ioctl.h"
18636 #include <sys/conf.h>
18637 
18638 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18639                 struct thread *td);
18640 
18641 static struct cdevsw bxe_cdevsw = {
18642     .d_version = D_VERSION,
18643     .d_ioctl = bxe_eioctl,
18644     .d_name = "bxecnic",
18645 };
18646 
18647 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18648 
18649 
18650 #define DUMP_ALL_PRESETS        0x1FFF
18651 #define DUMP_MAX_PRESETS        13
18652 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18653 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18654 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18655 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18656 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18657 
18658 #define IS_REG_IN_PRESET(presets, idx)  \
18659                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18660 
18661 
18662 static int
18663 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18664 {
18665     if (CHIP_IS_E1(sc))
18666         return dump_num_registers[0][preset-1];
18667     else if (CHIP_IS_E1H(sc))
18668         return dump_num_registers[1][preset-1];
18669     else if (CHIP_IS_E2(sc))
18670         return dump_num_registers[2][preset-1];
18671     else if (CHIP_IS_E3A0(sc))
18672         return dump_num_registers[3][preset-1];
18673     else if (CHIP_IS_E3B0(sc))
18674         return dump_num_registers[4][preset-1];
18675     else
18676         return 0;
18677 }
18678 
18679 static int
18680 bxe_get_total_regs_len32(struct bxe_softc *sc)
18681 {
18682     uint32_t preset_idx;
18683     int regdump_len32 = 0;
18684 
18685 
18686     /* Calculate the total preset regs length */
18687     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18688         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18689     }
18690 
18691     return regdump_len32;
18692 }
18693 
18694 static const uint32_t *
18695 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18696 {
18697     if (CHIP_IS_E2(sc))
18698         return page_vals_e2;
18699     else if (CHIP_IS_E3(sc))
18700         return page_vals_e3;
18701     else
18702         return NULL;
18703 }
18704 
18705 static uint32_t
18706 __bxe_get_page_reg_num(struct bxe_softc *sc)
18707 {
18708     if (CHIP_IS_E2(sc))
18709         return PAGE_MODE_VALUES_E2;
18710     else if (CHIP_IS_E3(sc))
18711         return PAGE_MODE_VALUES_E3;
18712     else
18713         return 0;
18714 }
18715 
18716 static const uint32_t *
18717 __bxe_get_page_write_ar(struct bxe_softc *sc)
18718 {
18719     if (CHIP_IS_E2(sc))
18720         return page_write_regs_e2;
18721     else if (CHIP_IS_E3(sc))
18722         return page_write_regs_e3;
18723     else
18724         return NULL;
18725 }
18726 
18727 static uint32_t
18728 __bxe_get_page_write_num(struct bxe_softc *sc)
18729 {
18730     if (CHIP_IS_E2(sc))
18731         return PAGE_WRITE_REGS_E2;
18732     else if (CHIP_IS_E3(sc))
18733         return PAGE_WRITE_REGS_E3;
18734     else
18735         return 0;
18736 }
18737 
18738 static const struct reg_addr *
18739 __bxe_get_page_read_ar(struct bxe_softc *sc)
18740 {
18741     if (CHIP_IS_E2(sc))
18742         return page_read_regs_e2;
18743     else if (CHIP_IS_E3(sc))
18744         return page_read_regs_e3;
18745     else
18746         return NULL;
18747 }
18748 
18749 static uint32_t
18750 __bxe_get_page_read_num(struct bxe_softc *sc)
18751 {
18752     if (CHIP_IS_E2(sc))
18753         return PAGE_READ_REGS_E2;
18754     else if (CHIP_IS_E3(sc))
18755         return PAGE_READ_REGS_E3;
18756     else
18757         return 0;
18758 }
18759 
18760 static bool
18761 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18762 {
18763     if (CHIP_IS_E1(sc))
18764         return IS_E1_REG(reg_info->chips);
18765     else if (CHIP_IS_E1H(sc))
18766         return IS_E1H_REG(reg_info->chips);
18767     else if (CHIP_IS_E2(sc))
18768         return IS_E2_REG(reg_info->chips);
18769     else if (CHIP_IS_E3A0(sc))
18770         return IS_E3A0_REG(reg_info->chips);
18771     else if (CHIP_IS_E3B0(sc))
18772         return IS_E3B0_REG(reg_info->chips);
18773     else
18774         return 0;
18775 }
18776 
18777 static bool
18778 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18779 {
18780     if (CHIP_IS_E1(sc))
18781         return IS_E1_REG(wreg_info->chips);
18782     else if (CHIP_IS_E1H(sc))
18783         return IS_E1H_REG(wreg_info->chips);
18784     else if (CHIP_IS_E2(sc))
18785         return IS_E2_REG(wreg_info->chips);
18786     else if (CHIP_IS_E3A0(sc))
18787         return IS_E3A0_REG(wreg_info->chips);
18788     else if (CHIP_IS_E3B0(sc))
18789         return IS_E3B0_REG(wreg_info->chips);
18790     else
18791         return 0;
18792 }
18793 
18794 /**
18795  * bxe_read_pages_regs - read "paged" registers
18796  *
18797  * @bp          device handle
18798  * @p           output buffer
18799  *
18800  * Reads "paged" memories: memories that may only be read by first writing to a
18801  * specific address ("write address") and then reading from a specific address
18802  * ("read address"). There may be more than one write address per "page" and
18803  * more than one read address per write address.
18804  */
18805 static void
18806 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18807 {
18808     uint32_t i, j, k, n;
18809 
18810     /* addresses of the paged registers */
18811     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18812     /* number of paged registers */
18813     int num_pages = __bxe_get_page_reg_num(sc);
18814     /* write addresses */
18815     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18816     /* number of write addresses */
18817     int write_num = __bxe_get_page_write_num(sc);
18818     /* read addresses info */
18819     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18820     /* number of read addresses */
18821     int read_num = __bxe_get_page_read_num(sc);
18822     uint32_t addr, size;
18823 
18824     for (i = 0; i < num_pages; i++) {
18825         for (j = 0; j < write_num; j++) {
18826             REG_WR(sc, write_addr[j], page_addr[i]);
18827 
18828             for (k = 0; k < read_num; k++) {
18829                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18830                     size = read_addr[k].size;
18831                     for (n = 0; n < size; n++) {
18832                         addr = read_addr[k].addr + n*4;
18833                         *p++ = REG_RD(sc, addr);
18834                     }
18835                 }
18836             }
18837         }
18838     }
18839     return;
18840 }
18841 
18842 
18843 static int
18844 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18845 {
18846     uint32_t i, j, addr;
18847     const struct wreg_addr *wreg_addr_p = NULL;
18848 
18849     if (CHIP_IS_E1(sc))
18850         wreg_addr_p = &wreg_addr_e1;
18851     else if (CHIP_IS_E1H(sc))
18852         wreg_addr_p = &wreg_addr_e1h;
18853     else if (CHIP_IS_E2(sc))
18854         wreg_addr_p = &wreg_addr_e2;
18855     else if (CHIP_IS_E3A0(sc))
18856         wreg_addr_p = &wreg_addr_e3;
18857     else if (CHIP_IS_E3B0(sc))
18858         wreg_addr_p = &wreg_addr_e3b0;
18859     else
18860         return (-1);
18861 
18862     /* Read the idle_chk registers */
18863     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18864         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18865             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18866             for (j = 0; j < idle_reg_addrs[i].size; j++)
18867                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18868         }
18869     }
18870 
18871     /* Read the regular registers */
18872     for (i = 0; i < REGS_COUNT; i++) {
18873         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18874             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18875             for (j = 0; j < reg_addrs[i].size; j++)
18876                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18877         }
18878     }
18879 
18880     /* Read the CAM registers */
18881     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18882         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18883         for (i = 0; i < wreg_addr_p->size; i++) {
18884             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18885 
18886             /* In case of wreg_addr register, read additional
18887                registers from read_regs array
18888              */
18889             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18890                 addr = *(wreg_addr_p->read_regs);
18891                 *p++ = REG_RD(sc, addr + j*4);
18892             }
18893         }
18894     }
18895 
18896     /* Paged registers are supported in E2 & E3 only */
18897     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18898         /* Read "paged" registers */
18899         bxe_read_pages_regs(sc, p, preset);
18900     }
18901 
18902     return 0;
18903 }
18904 
18905 int
18906 bxe_grc_dump(struct bxe_softc *sc)
18907 {
18908     int rval = 0;
18909     uint32_t preset_idx;
18910     uint8_t *buf;
18911     uint32_t size;
18912     struct  dump_header *d_hdr;
18913     uint32_t i;
18914     uint32_t reg_val;
18915     uint32_t reg_addr;
18916     uint32_t cmd_offset;
18917     struct ecore_ilt *ilt = SC_ILT(sc);
18918     struct bxe_fastpath *fp;
18919     struct ilt_client_info *ilt_cli;
18920     int grc_dump_size;
18921 
18922 
18923     if (sc->grcdump_done || sc->grcdump_started)
18924         return (rval);
18925     
18926     sc->grcdump_started = 1;
18927     BLOGI(sc, "Started collecting grcdump\n");
18928 
18929     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18930                 sizeof(struct  dump_header);
18931 
18932     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18933 
18934     if (sc->grc_dump == NULL) {
18935         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18936         return(ENOMEM);
18937     }
18938 
18939 
18940 
18941     /* Disable parity attentions as long as following dump may
18942      * cause false alarms by reading never written registers. We
18943      * will re-enable parity attentions right after the dump.
18944      */
18945 
18946     /* Disable parity on path 0 */
18947     bxe_pretend_func(sc, 0);
18948 
18949     ecore_disable_blocks_parity(sc);
18950 
18951     /* Disable parity on path 1 */
18952     bxe_pretend_func(sc, 1);
18953     ecore_disable_blocks_parity(sc);
18954 
18955     /* Return to current function */
18956     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18957 
18958     buf = sc->grc_dump;
18959     d_hdr = sc->grc_dump;
18960 
18961     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18962     d_hdr->version = BNX2X_DUMP_VERSION;
18963     d_hdr->preset = DUMP_ALL_PRESETS;
18964 
18965     if (CHIP_IS_E1(sc)) {
18966         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18967     } else if (CHIP_IS_E1H(sc)) {
18968         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18969     } else if (CHIP_IS_E2(sc)) {
18970         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18971                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18972     } else if (CHIP_IS_E3A0(sc)) {
18973         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18974                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18975     } else if (CHIP_IS_E3B0(sc)) {
18976         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18977                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18978     }
18979 
18980     buf += sizeof(struct  dump_header);
18981 
18982     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18983 
18984         /* Skip presets with IOR */
18985         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18986             (preset_idx == 11))
18987             continue;
18988 
18989         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18990 
18991         if (rval)
18992             break;
18993 
18994         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18995 
18996         buf += size;
18997     }
18998 
18999     bxe_pretend_func(sc, 0);
19000     ecore_clear_blocks_parity(sc);
19001     ecore_enable_blocks_parity(sc);
19002 
19003     bxe_pretend_func(sc, 1);
19004     ecore_clear_blocks_parity(sc);
19005     ecore_enable_blocks_parity(sc);
19006 
19007     /* Return to current function */
19008     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
19009 
19010 
19011 
19012     if(sc->state == BXE_STATE_OPEN) {
19013         if(sc->fw_stats_req  != NULL) {
19014                 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
19015                                 (uintmax_t)sc->fw_stats_req_mapping,
19016                                 (uintmax_t)sc->fw_stats_data_mapping,
19017                                 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
19018                 }       
19019                 if(sc->def_sb != NULL) {
19020                         BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19021                                 (void *)sc->def_sb_dma.paddr, sc->def_sb,
19022                                 sizeof(struct host_sp_status_block));
19023                 }
19024                 if(sc->eq_dma.vaddr != NULL) {
19025                 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19026                                 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19027                 }
19028                 if(sc->sp_dma.vaddr != NULL) {
19029                 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19030                                 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19031                                 sizeof(struct bxe_slowpath));
19032                 }
19033                 if(sc->spq_dma.vaddr != NULL) {
19034                 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19035                                 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19036                 }
19037                 if(sc->gz_buf_dma.vaddr != NULL) {
19038                 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19039                                 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19040                                 FW_BUF_SIZE);
19041                 }
19042         for (i = 0; i < sc->num_queues; i++) {
19043                 fp = &sc->fp[i];
19044                         if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19045                         fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19046                         fp->rx_sge_dma.vaddr != NULL) {
19047 
19048                                 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19049                                 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19050                                 sizeof(union bxe_host_hc_status_block));
19051                                 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19052                                 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19053                                 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19054                         BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19055                                 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19056                                 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19057                         BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19058                                 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19059                                 (BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19060                         BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19061                                 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19062                                 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19063                 }
19064                 }
19065                 if(ilt != NULL ) {
19066                 ilt_cli = &ilt->clients[1];
19067                         if(ilt->lines != NULL) {
19068                 for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19069                         BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19070                                 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19071                                 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19072                 }
19073                         }
19074                 }
19075 
19076 
19077         cmd_offset = DMAE_REG_CMD_MEM;
19078         for (i = 0; i < 224; i++) {
19079                 reg_addr = (cmd_offset +(i * 4));
19080                 reg_val = REG_RD(sc, reg_addr);
19081                 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19082                                 reg_addr, reg_val);
19083         }
19084         }
19085 
19086     BLOGI(sc, "Collection of grcdump done\n");
19087     sc->grcdump_done = 1;
19088     return(rval);
19089 }
19090 
19091 static int
19092 bxe_add_cdev(struct bxe_softc *sc)
19093 {
19094     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19095 
19096     if (sc->eeprom == NULL) {
19097         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19098         return (-1);
19099     }
19100 
19101     sc->ioctl_dev = make_dev(&bxe_cdevsw,
19102                             if_getdunit(sc->ifp),
19103                             UID_ROOT,
19104                             GID_WHEEL,
19105                             0600,
19106                             "%s",
19107                             if_name(sc->ifp));
19108 
19109     if (sc->ioctl_dev == NULL) {
19110         free(sc->eeprom, M_DEVBUF);
19111         sc->eeprom = NULL;
19112         return (-1);
19113     }
19114 
19115     sc->ioctl_dev->si_drv1 = sc;
19116 
19117     return (0);
19118 }
19119 
19120 static void
19121 bxe_del_cdev(struct bxe_softc *sc)
19122 {
19123     if (sc->ioctl_dev != NULL)
19124         destroy_dev(sc->ioctl_dev);
19125 
19126     if (sc->eeprom != NULL) {
19127         free(sc->eeprom, M_DEVBUF);
19128         sc->eeprom = NULL;
19129     }
19130     sc->ioctl_dev = NULL;
19131 
19132     return;
19133 }
19134 
19135 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19136 {
19137 
19138     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19139         return FALSE;
19140 
19141     return TRUE;
19142 }
19143 
19144 
19145 static int
19146 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19147 {
19148     int rval = 0;
19149 
19150     if(!bxe_is_nvram_accessible(sc)) {
19151         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19152         return (-EAGAIN);
19153     }
19154     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19155 
19156 
19157    return (rval);
19158 }
19159 
19160 static int
19161 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19162 {
19163     int rval = 0;
19164 
19165     if(!bxe_is_nvram_accessible(sc)) {
19166         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19167         return (-EAGAIN);
19168     }
19169     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19170 
19171    return (rval);
19172 }
19173 
19174 static int
19175 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19176 {
19177     int rval = 0;
19178 
19179     switch (eeprom->eeprom_cmd) {
19180 
19181     case BXE_EEPROM_CMD_SET_EEPROM:
19182 
19183         rval = copyin(eeprom->eeprom_data, sc->eeprom,
19184                        eeprom->eeprom_data_len);
19185 
19186         if (rval)
19187             break;
19188 
19189         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19190                        eeprom->eeprom_data_len);
19191         break;
19192 
19193     case BXE_EEPROM_CMD_GET_EEPROM:
19194 
19195         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19196                        eeprom->eeprom_data_len);
19197 
19198         if (rval) {
19199             break;
19200         }
19201 
19202         rval = copyout(sc->eeprom, eeprom->eeprom_data,
19203                        eeprom->eeprom_data_len);
19204         break;
19205 
19206     default:
19207             rval = EINVAL;
19208             break;
19209     }
19210 
19211     if (rval) {
19212         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
19213     }
19214 
19215     return (rval);
19216 }
19217 
19218 static int
19219 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19220 {
19221     uint32_t ext_phy_config;
19222     int port = SC_PORT(sc);
19223     int cfg_idx = bxe_get_link_cfg_idx(sc);
19224 
19225     dev_p->supported = sc->port.supported[cfg_idx] |
19226             (sc->port.supported[cfg_idx ^ 1] &
19227             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19228     dev_p->advertising = sc->port.advertising[cfg_idx];
19229     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19230         ELINK_ETH_PHY_SFP_1G_FIBER) {
19231         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19232         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19233     }
19234     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19235         !(sc->flags & BXE_MF_FUNC_DIS)) {
19236         dev_p->duplex = sc->link_vars.duplex;
19237         if (IS_MF(sc) && !BXE_NOMCP(sc))
19238             dev_p->speed = bxe_get_mf_speed(sc);
19239         else
19240             dev_p->speed = sc->link_vars.line_speed;
19241     } else {
19242         dev_p->duplex = DUPLEX_UNKNOWN;
19243         dev_p->speed = SPEED_UNKNOWN;
19244     }
19245 
19246     dev_p->port = bxe_media_detect(sc);
19247 
19248     ext_phy_config = SHMEM_RD(sc,
19249                          dev_info.port_hw_config[port].external_phy_config);
19250     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19251         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19252         dev_p->phy_address =  sc->port.phy_addr;
19253     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19254             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19255         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19256             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19257         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19258     else
19259         dev_p->phy_address = 0;
19260 
19261     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19262         dev_p->autoneg = AUTONEG_ENABLE;
19263     else
19264        dev_p->autoneg = AUTONEG_DISABLE;
19265 
19266 
19267     return 0;
19268 }
19269 
19270 static int
19271 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19272         struct thread *td)
19273 {
19274     struct bxe_softc    *sc;
19275     int                 rval = 0;
19276     bxe_grcdump_t       *dump = NULL;
19277     int grc_dump_size;
19278     bxe_drvinfo_t   *drv_infop = NULL;
19279     bxe_dev_setting_t  *dev_p;
19280     bxe_dev_setting_t  dev_set;
19281     bxe_get_regs_t  *reg_p;
19282     bxe_reg_rdw_t *reg_rdw_p;
19283     bxe_pcicfg_rdw_t *cfg_rdw_p;
19284     bxe_perm_mac_addr_t *mac_addr_p;
19285 
19286 
19287     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19288         return ENXIO;
19289 
19290     dump = (bxe_grcdump_t *)data;
19291 
19292     switch(cmd) {
19293 
19294         case BXE_GRC_DUMP_SIZE:
19295             dump->pci_func = sc->pcie_func;
19296             dump->grcdump_size =
19297                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19298                      sizeof(struct  dump_header);
19299             break;
19300 
19301         case BXE_GRC_DUMP:
19302             
19303             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19304                                 sizeof(struct  dump_header);
19305             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19306                 (dump->grcdump_size < grc_dump_size)) {
19307                 rval = EINVAL;
19308                 break;
19309             }
19310 
19311             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19312                 (!sc->grcdump_started)) {
19313                 rval =  bxe_grc_dump(sc);
19314             }
19315 
19316             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19317                 (sc->grc_dump != NULL))  {
19318                 dump->grcdump_dwords = grc_dump_size >> 2;
19319                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19320                 free(sc->grc_dump, M_DEVBUF);
19321                 sc->grc_dump = NULL;
19322                 sc->grcdump_started = 0;
19323                 sc->grcdump_done = 0;
19324             }
19325 
19326             break;
19327 
19328         case BXE_DRV_INFO:
19329             drv_infop = (bxe_drvinfo_t *)data;
19330             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19331             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19332                 BXE_DRIVER_VERSION);
19333             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19334                 sc->devinfo.bc_ver_str);
19335             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19336                 "%s", sc->fw_ver_str);
19337             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19338             drv_infop->reg_dump_len =
19339                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19340                     + sizeof(struct  dump_header);
19341             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19342                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19343             break;
19344 
19345         case BXE_DEV_SETTING:
19346             dev_p = (bxe_dev_setting_t *)data;
19347             bxe_get_settings(sc, &dev_set);
19348             dev_p->supported = dev_set.supported;
19349             dev_p->advertising = dev_set.advertising;
19350             dev_p->speed = dev_set.speed;
19351             dev_p->duplex = dev_set.duplex;
19352             dev_p->port = dev_set.port;
19353             dev_p->phy_address = dev_set.phy_address;
19354             dev_p->autoneg = dev_set.autoneg;
19355 
19356             break;
19357 
19358         case BXE_GET_REGS:
19359 
19360             reg_p = (bxe_get_regs_t *)data;
19361             grc_dump_size = reg_p->reg_buf_len;
19362 
19363             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19364                 bxe_grc_dump(sc);
19365             }
19366             if((sc->grcdump_done) && (sc->grcdump_started) &&
19367                 (sc->grc_dump != NULL))  {
19368                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19369                 free(sc->grc_dump, M_DEVBUF);
19370                 sc->grc_dump = NULL;
19371                 sc->grcdump_started = 0;
19372                 sc->grcdump_done = 0;
19373             }
19374 
19375             break;
19376 
19377         case BXE_RDW_REG:
19378             reg_rdw_p = (bxe_reg_rdw_t *)data;
19379             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19380                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19381                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19382 
19383             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19384                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19385                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19386 
19387             break;
19388 
19389         case BXE_RDW_PCICFG:
19390             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19391             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19392 
19393                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19394                                          cfg_rdw_p->cfg_width);
19395 
19396             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19397                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19398                             cfg_rdw_p->cfg_width);
19399             } else {
19400                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19401             }
19402             break;
19403 
19404         case BXE_MAC_ADDR:
19405             mac_addr_p = (bxe_perm_mac_addr_t *)data;
19406             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19407                 sc->mac_addr_str);
19408             break;
19409 
19410         case BXE_EEPROM:
19411             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19412             break;
19413 
19414 
19415         default:
19416             break;
19417     }
19418 
19419     return (rval);
19420 }
19421 
19422 #ifdef DEBUGNET
19423 static void
19424 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
19425 {
19426         struct bxe_softc *sc;
19427 
19428         sc = if_getsoftc(ifp);
19429         BXE_CORE_LOCK(sc);
19430         *nrxr = sc->num_queues;
19431         *ncl = DEBUGNET_MAX_IN_FLIGHT;
19432         *clsize = sc->fp[0].mbuf_alloc_size;
19433         BXE_CORE_UNLOCK(sc);
19434 }
19435 
19436 static void
19437 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
19438 {
19439 }
19440 
19441 static int
19442 bxe_debugnet_transmit(if_t ifp, struct mbuf *m)
19443 {
19444         struct bxe_softc *sc;
19445         int error;
19446 
19447         sc = if_getsoftc(ifp);
19448         if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19449             IFF_DRV_RUNNING || !sc->link_vars.link_up)
19450                 return (ENOENT);
19451 
19452         error = bxe_tx_encap(&sc->fp[0], &m);
19453         if (error != 0 && m != NULL)
19454                 m_freem(m);
19455         return (error);
19456 }
19457 
19458 static int
19459 bxe_debugnet_poll(if_t ifp, int count)
19460 {
19461         struct bxe_softc *sc;
19462         int i;
19463 
19464         sc = if_getsoftc(ifp);
19465         if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19466             !sc->link_vars.link_up)
19467                 return (ENOENT);
19468 
19469         for (i = 0; i < sc->num_queues; i++)
19470                 (void)bxe_rxeof(sc, &sc->fp[i]);
19471         (void)bxe_txeof(sc, &sc->fp[0]);
19472         return (0);
19473 }
19474 #endif /* DEBUGNET */

Cache object: cb4ca7cbbf48f3fc87644b5803d7f66a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.