FreeBSD/Linux Kernel Cross Reference
sys/dev/bxe/bxe.h
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #ifndef __BXE_H__
30 #define __BXE_H__
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/sx.h>
41 #include <sys/module.h>
42 #include <sys/endian.h>
43 #include <sys/types.h>
44 #include <sys/malloc.h>
45 #include <sys/kobj.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/bitstring.h>
53 #include <sys/limits.h>
54 #include <sys/queue.h>
55 #include <sys/taskqueue.h>
56 #include <contrib/zlib/zlib.h>
57
58 #include <net/debugnet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_var.h>
65 #include <net/if_media.h>
66 #include <net/if_vlan_var.h>
67 #include <net/bpf.h>
68
69 #include <netinet/in.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77
78 #include <machine/atomic.h>
79 #include <machine/resource.h>
80 #include <machine/endian.h>
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83
84 #include "device_if.h"
85 #include "bus_if.h"
86 #include "pci_if.h"
87
88 #if _BYTE_ORDER == _LITTLE_ENDIAN
89 #ifndef LITTLE_ENDIAN
90 #define LITTLE_ENDIAN
91 #endif
92 #ifndef __LITTLE_ENDIAN
93 #define __LITTLE_ENDIAN
94 #endif
95 #undef BIG_ENDIAN
96 #undef __BIG_ENDIAN
97 #else /* _BIG_ENDIAN */
98 #ifndef BIG_ENDIAN
99 #define BIG_ENDIAN
100 #endif
101 #ifndef __BIG_ENDIAN
102 #define __BIG_ENDIAN
103 #endif
104 #undef LITTLE_ENDIAN
105 #undef __LITTLE_ENDIAN
106 #endif
107
108 #include "ecore_mfw_req.h"
109 #include "ecore_fw_defs.h"
110 #include "ecore_hsi.h"
111 #include "ecore_reg.h"
112 #include "bxe_dcb.h"
113 #include "bxe_stats.h"
114
115 #include "bxe_elink.h"
116
117 #define VF_MAC_CREDIT_CNT 0
118 #define VF_VLAN_CREDIT_CNT (0)
119
120 #ifndef ARRAY_SIZE
121 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
122 #endif
123 #ifndef ARRSIZE
124 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
125 #endif
126 #ifndef DIV_ROUND_UP
127 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
128 #endif
129 #ifndef roundup
130 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
131 #endif
132 #ifndef ilog2
133 static inline
134 int bxe_ilog2(int x)
135 {
136 int log = 0;
137 while (x >>= 1) log++;
138 return (log);
139 }
140 #define ilog2(x) bxe_ilog2(x)
141 #endif
142
143 #include "ecore_sp.h"
144
145 #define BRCM_VENDORID 0x14e4
146 #define QLOGIC_VENDORID 0x1077
147 #define PCI_ANY_ID (uint16_t)(~0U)
148
149 struct bxe_device_type
150 {
151 uint16_t bxe_vid;
152 uint16_t bxe_did;
153 uint16_t bxe_svid;
154 uint16_t bxe_sdid;
155 char *bxe_name;
156 };
157
158 #define BCM_PAGE_SHIFT 12
159 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
160 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
161 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
162
163 #if BCM_PAGE_SIZE != 4096
164 #error Page sizes other than 4KB are unsupported!
165 #endif
166
167 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
168 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
169 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
170 #else
171 #define U64_LO(addr) ((uint32_t)(addr))
172 #define U64_HI(addr) (0)
173 #endif
174 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
175
176 #define SET_FLAG(value, mask, flag) \
177 do { \
178 (value) &= ~(mask); \
179 (value) |= ((flag) << (mask##_SHIFT)); \
180 } while (0)
181
182 #define GET_FLAG(value, mask) \
183 (((value) & (mask)) >> (mask##_SHIFT))
184
185 #define GET_FIELD(value, fname) \
186 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
187
188 #define BXE_MAX_SEGMENTS 12 /* 13-1 for parsing buffer */
189 #define BXE_TSO_MAX_SEGMENTS 32
190 #define BXE_TSO_MAX_SIZE (65535 + sizeof(struct ether_vlan_header))
191 #define BXE_TSO_MAX_SEG_SIZE 4096
192
193 /* dropless fc FW/HW related params */
194 #define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512)
195 #define MAX_AGG_QS(sc) (CHIP_IS_E1(sc) ? \
196 ETH_MAX_AGGREGATION_QUEUES_E1 : \
197 ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
198 #define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
199 #define FW_PREFETCH_CNT 16
200 #define DROPLESS_FC_HEADROOM 100
201
202 /******************/
203 /* RX SGE defines */
204 /******************/
205
206 #define RX_SGE_NUM_PAGES 2 /* must be a power of 2 */
207 #define RX_SGE_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
208 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
209 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
210 #define RX_SGE_PER_PAGE_MASK (RX_SGE_TOTAL_PER_PAGE - 1)
211 #define RX_SGE_TOTAL (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
212 #define RX_SGE_USABLE (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
213 #define RX_SGE_MAX (RX_SGE_TOTAL - 1)
214 #define RX_SGE(x) ((x) & RX_SGE_MAX)
215
216 #define RX_SGE_NEXT(x) \
217 ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
218 ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
219
220 #define RX_SGE_MASK_ELEM_SZ 64
221 #define RX_SGE_MASK_ELEM_SHIFT 6
222 #define RX_SGE_MASK_ELEM_MASK ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
223
224 /*
225 * Creates a bitmask of all ones in less significant bits.
226 * idx - index of the most significant bit in the created mask.
227 */
228 #define RX_SGE_ONES_MASK(idx) \
229 (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
230 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
231
232 /* Number of uint64_t elements in SGE mask array. */
233 #define RX_SGE_MASK_LEN \
234 ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
235 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
236 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
237
238 /*
239 * dropless fc calculations for SGEs
240 * Number of required SGEs is the sum of two:
241 * 1. Number of possible opened aggregations (next packet for
242 * these aggregations will probably consume SGE immidiatelly)
243 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
244 * after placement on BD for new TPA aggregation)
245 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
246 */
247 #define NUM_SGE_REQ(sc) \
248 (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
249 #define NUM_SGE_PG_REQ(sc) \
250 ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
251 #define SGE_TH_LO(sc) \
252 (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
253 #define SGE_TH_HI(sc) \
254 (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
255
256 #define PAGES_PER_SGE_SHIFT 0
257 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
258 #define SGE_PAGE_SIZE BCM_PAGE_SIZE
259 #define SGE_PAGE_SHIFT BCM_PAGE_SHIFT
260 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
261 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
262 #define TPA_AGG_SIZE min((8 * SGE_PAGES), 0xffff)
263
264 /*****************/
265 /* TX BD defines */
266 /*****************/
267
268 #define TX_BD_NUM_PAGES 16 /* must be a power of 2 */
269 #define TX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
270 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
271 #define TX_BD_TOTAL (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
272 #define TX_BD_USABLE (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
273 #define TX_BD_MAX (TX_BD_TOTAL - 1)
274
275 #define TX_BD_NEXT(x) \
276 ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
277 ((x) + 2) : ((x) + 1))
278 #define TX_BD(x) ((x) & TX_BD_MAX)
279 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
280 #define TX_BD_IDX(x) ((x) & TX_BD_USABLE_PER_PAGE)
281
282 /*
283 * Trigger pending transmits when the number of available BDs is greater
284 * than 1/8 of the total number of usable BDs.
285 */
286 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
287 #define BXE_TX_TIMEOUT 5
288
289 /*****************/
290 /* RX BD defines */
291 /*****************/
292
293 #define RX_BD_NUM_PAGES 8 /* power of 2 */
294 #define RX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
295 #define RX_BD_NEXT_PAGE_DESC_CNT 2
296 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
297 #define RX_BD_PER_PAGE_MASK (RX_BD_TOTAL_PER_PAGE - 1)
298 #define RX_BD_TOTAL (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
299 #define RX_BD_USABLE (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
300 #define RX_BD_MAX (RX_BD_TOTAL - 1)
301
302 #define RX_BD_NEXT(x) \
303 ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
304 ((x) + 3) : ((x) + 1))
305 #define RX_BD(x) ((x) & RX_BD_MAX)
306 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
307 #define RX_BD_IDX(x) ((x) & RX_BD_PER_PAGE_MASK)
308
309 /*
310 * dropless fc calculations for BDs
311 * Number of BDs should be as number of buffers in BRB:
312 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
313 * "next" elements on each page
314 */
315 #define NUM_BD_REQ(sc) \
316 BRB_SIZE(sc)
317 #define NUM_BD_PG_REQ(sc) \
318 ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
319 #define BD_TH_LO(sc) \
320 (NUM_BD_REQ(sc) + \
321 NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
322 FW_DROP_LEVEL(sc))
323 #define BD_TH_HI(sc) \
324 (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
325 #define MIN_RX_AVAIL(sc) \
326 ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
327 #define MIN_RX_SIZE_TPA_HW(sc) \
328 (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 : \
329 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
330 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
331 #define MIN_RX_SIZE_TPA(sc) \
332 (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
333 #define MIN_RX_SIZE_NONTPA(sc) \
334 (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
335
336 /***************/
337 /* RCQ defines */
338 /***************/
339
340 /*
341 * As long as CQE is X times bigger than BD entry we have to allocate X times
342 * more pages for CQ ring in order to keep it balanced with BD ring
343 */
344 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / \
345 sizeof(struct eth_rx_bd))
346 #define RCQ_NUM_PAGES (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
347 #define RCQ_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
348 #define RCQ_NEXT_PAGE_DESC_CNT 1
349 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
350 #define RCQ_TOTAL (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
351 #define RCQ_USABLE (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
352 #define RCQ_MAX (RCQ_TOTAL - 1)
353
354 #define RCQ_NEXT(x) \
355 ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
356 ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
357 #define RCQ(x) ((x) & RCQ_MAX)
358 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
359 #define RCQ_IDX(x) ((x) & RCQ_USABLE_PER_PAGE)
360
361 /*
362 * dropless fc calculations for RCQs
363 * Number of RCQs should be as number of buffers in BRB:
364 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
365 * "next" elements on each page
366 */
367 #define NUM_RCQ_REQ(sc) \
368 BRB_SIZE(sc)
369 #define NUM_RCQ_PG_REQ(sc) \
370 ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
371 #define RCQ_TH_LO(sc) \
372 (NUM_RCQ_REQ(sc) + \
373 NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
374 FW_DROP_LEVEL(sc))
375 #define RCQ_TH_HI(sc) \
376 (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
377
378 /* This is needed for determening of last_max */
379 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
380
381 #define __SGE_MASK_SET_BIT(el, bit) \
382 do { \
383 (el) = ((el) | ((uint64_t)0x1 << (bit))); \
384 } while (0)
385
386 #define __SGE_MASK_CLEAR_BIT(el, bit) \
387 do { \
388 (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
389 } while (0)
390
391 #define SGE_MASK_SET_BIT(fp, idx) \
392 __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
393 ((idx) & RX_SGE_MASK_ELEM_MASK))
394
395 #define SGE_MASK_CLEAR_BIT(fp, idx) \
396 __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
397 ((idx) & RX_SGE_MASK_ELEM_MASK))
398
399 /* Load / Unload modes */
400 #define LOAD_NORMAL 0
401 #define LOAD_OPEN 1
402 #define LOAD_DIAG 2
403 #define LOAD_LOOPBACK_EXT 3
404 #define UNLOAD_NORMAL 0
405 #define UNLOAD_CLOSE 1
406 #define UNLOAD_RECOVERY 2
407
408 /* Some constants... */
409 //#define MAX_PATH_NUM 2
410 //#define E2_MAX_NUM_OF_VFS 64
411 //#define E1H_FUNC_MAX 8
412 //#define E2_FUNC_MAX 4 /* per path */
413 #define MAX_VNIC_NUM 4
414 #define MAX_FUNC_NUM 8 /* common to all chips */
415 //#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */
416 #define MAX_RSS_CHAINS 16 /* a constant for HW limit */
417 #define MAX_MSI_VECTOR 8 /* a constant for HW limit */
418
419 #define ILT_NUM_PAGE_ENTRIES 3072
420 /*
421 * 57710/11 we use whole table since we have 8 functions.
422 * 57712 we have only 4 functions, but use same size per func, so only half
423 * of the table is used.
424 */
425 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8)
426 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
427 /*
428 * the phys address is shifted right 12 bits and has an added
429 * 1=valid bit added to the 53rd bit
430 * then since this is a wide register(TM)
431 * we split it into two 32 bit writes
432 */
433 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
434 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
435
436 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
437 #define ETH_HLEN 14
438 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
439 #define ETH_MIN_PACKET_SIZE 60
440 #define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */
441 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
442 /* TCP with Timestamp Option (32) + IPv6 (40) */
443 #define ETH_MAX_TPA_HEADER_SIZE 72
444
445 /* max supported alignment is 256 (8 shift) */
446 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
447 #define BXE_RX_ALIGN_SHIFT 8
448 /* FW uses 2 cache lines alignment for start packet and size */
449 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
450 #define BXE_FW_RX_ALIGN_END (1 << BXE_RX_ALIGN_SHIFT)
451
452 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
453 #define BXE_SET_ERROR_BIT(sc, error) \
454 { \
455 (sc)->error_status |= (error); \
456 }
457
458 struct bxe_bar {
459 struct resource *resource;
460 int rid;
461 bus_space_tag_t tag;
462 bus_space_handle_t handle;
463 vm_offset_t kva;
464 };
465
466 struct bxe_intr {
467 struct resource *resource;
468 int rid;
469 void *tag;
470 };
471
472 /* Used to manage DMA allocations. */
473 struct bxe_dma {
474 struct bxe_softc *sc;
475 bus_addr_t paddr;
476 void *vaddr;
477 bus_dma_tag_t tag;
478 bus_dmamap_t map;
479 bus_dma_segment_t seg;
480 bus_size_t size;
481 int nseg;
482 char msg[32];
483 };
484
485 /* attn group wiring */
486 #define MAX_DYNAMIC_ATTN_GRPS 8
487
488 struct attn_route {
489 uint32_t sig[5];
490 };
491
492 struct iro {
493 uint32_t base;
494 uint16_t m1;
495 uint16_t m2;
496 uint16_t m3;
497 uint16_t size;
498 };
499
500 union bxe_host_hc_status_block {
501 /* pointer to fp status block e2 */
502 struct host_hc_status_block_e2 *e2_sb;
503 /* pointer to fp status block e1x */
504 struct host_hc_status_block_e1x *e1x_sb;
505 };
506
507 union bxe_db_prod {
508 struct doorbell_set_prod data;
509 uint32_t raw;
510 };
511
512 struct bxe_sw_tx_bd {
513 struct mbuf *m;
514 bus_dmamap_t m_map;
515 uint16_t first_bd;
516 uint8_t flags;
517 /* set on the first BD descriptor when there is a split BD */
518 #define BXE_TSO_SPLIT_BD (1 << 0)
519 };
520
521 struct bxe_sw_rx_bd {
522 struct mbuf *m;
523 bus_dmamap_t m_map;
524 };
525
526 struct bxe_sw_tpa_info {
527 struct bxe_sw_rx_bd bd;
528 bus_dma_segment_t seg;
529 uint8_t state;
530 #define BXE_TPA_STATE_START 1
531 #define BXE_TPA_STATE_STOP 2
532 uint8_t placement_offset;
533 uint16_t parsing_flags;
534 uint16_t vlan_tag;
535 uint16_t len_on_bd;
536 };
537
538 /*
539 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
540 * instances of the fastpath structure when using multiple queues.
541 */
542 struct bxe_fastpath {
543 /* pointer back to parent structure */
544 struct bxe_softc *sc;
545
546 struct mtx tx_mtx;
547 char tx_mtx_name[32];
548 struct mtx rx_mtx;
549 char rx_mtx_name[32];
550
551 #define BXE_FP_TX_LOCK(fp) mtx_lock(&fp->tx_mtx)
552 #define BXE_FP_TX_UNLOCK(fp) mtx_unlock(&fp->tx_mtx)
553 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
554 #define BXE_FP_TX_TRYLOCK(fp) mtx_trylock(&fp->tx_mtx)
555
556 #define BXE_FP_RX_LOCK(fp) mtx_lock(&fp->rx_mtx)
557 #define BXE_FP_RX_UNLOCK(fp) mtx_unlock(&fp->rx_mtx)
558 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
559
560 /* status block */
561 struct bxe_dma sb_dma;
562 union bxe_host_hc_status_block status_block;
563
564 /* transmit chain (tx bds) */
565 struct bxe_dma tx_dma;
566 union eth_tx_bd_types *tx_chain;
567
568 /* receive chain (rx bds) */
569 struct bxe_dma rx_dma;
570 struct eth_rx_bd *rx_chain;
571
572 /* receive completion queue chain (rcq bds) */
573 struct bxe_dma rcq_dma;
574 union eth_rx_cqe *rcq_chain;
575
576 /* receive scatter/gather entry chain (for TPA) */
577 struct bxe_dma rx_sge_dma;
578 struct eth_rx_sge *rx_sge_chain;
579
580 /* tx mbufs */
581 bus_dma_tag_t tx_mbuf_tag;
582 struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
583
584 /* rx mbufs */
585 bus_dma_tag_t rx_mbuf_tag;
586 struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
587 bus_dmamap_t rx_mbuf_spare_map;
588
589 /* rx sge mbufs */
590 bus_dma_tag_t rx_sge_mbuf_tag;
591 struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
592 bus_dmamap_t rx_sge_mbuf_spare_map;
593
594 /* rx tpa mbufs (use the larger size for TPA queue length) */
595 int tpa_enable; /* disabled per fastpath upon error */
596 struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
597 bus_dmamap_t rx_tpa_info_mbuf_spare_map;
598 uint64_t rx_tpa_queue_used;
599
600 uint16_t *sb_index_values;
601 uint16_t *sb_running_index;
602 uint32_t ustorm_rx_prods_offset;
603
604 uint8_t igu_sb_id; /* status block number in HW */
605 uint8_t fw_sb_id; /* status block number in FW */
606
607 uint32_t rx_buf_size;
608 int mbuf_alloc_size;
609
610 int state;
611 #define BXE_FP_STATE_CLOSED 0x01
612 #define BXE_FP_STATE_IRQ 0x02
613 #define BXE_FP_STATE_OPENING 0x04
614 #define BXE_FP_STATE_OPEN 0x08
615 #define BXE_FP_STATE_HALTING 0x10
616 #define BXE_FP_STATE_HALTED 0x20
617
618 /* reference back to this fastpath queue number */
619 uint8_t index; /* this is also the 'cid' */
620 #define FP_IDX(fp) (fp->index)
621
622 /* interrupt taskqueue (fast) */
623 struct task tq_task;
624 struct taskqueue *tq;
625 char tq_name[32];
626
627 struct task tx_task;
628 struct timeout_task tx_timeout_task;
629
630 /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
631 uint8_t cl_id;
632 #define FP_CL_ID(fp) (fp->cl_id)
633 uint8_t cl_qzone_id;
634
635 uint16_t fp_hc_idx;
636
637 /* driver copy of the receive buffer descriptor prod/cons indices */
638 uint16_t rx_bd_prod;
639 uint16_t rx_bd_cons;
640
641 /* driver copy of the receive completion queue prod/cons indices */
642 uint16_t rx_cq_prod;
643 uint16_t rx_cq_cons;
644
645 union bxe_db_prod tx_db;
646
647 /* Transmit packet producer index (used in eth_tx_bd). */
648 uint16_t tx_pkt_prod;
649 uint16_t tx_pkt_cons;
650
651 /* Transmit buffer descriptor producer index. */
652 uint16_t tx_bd_prod;
653 uint16_t tx_bd_cons;
654
655 uint64_t sge_mask[RX_SGE_MASK_LEN];
656 uint16_t rx_sge_prod;
657
658 struct tstorm_per_queue_stats old_tclient;
659 struct ustorm_per_queue_stats old_uclient;
660 struct xstorm_per_queue_stats old_xclient;
661 struct bxe_eth_q_stats eth_q_stats;
662 struct bxe_eth_q_stats_old eth_q_stats_old;
663
664 /* Pointer to the receive consumer in the status block */
665 uint16_t *rx_cq_cons_sb;
666
667 /* Pointer to the transmit consumer in the status block */
668 uint16_t *tx_cons_sb;
669
670 /* transmit timeout until chip reset */
671 int watchdog_timer;
672
673 /* Free/used buffer descriptor counters. */
674 //uint16_t used_tx_bd;
675
676 /* Last maximal completed SGE */
677 uint16_t last_max_sge;
678
679 //uint16_t rx_sge_free_idx;
680
681 //uint8_t segs;
682
683 #define BXE_BR_SIZE 4096
684 struct buf_ring *tx_br;
685 }; /* struct bxe_fastpath */
686
687 /* sriov XXX */
688 #define BXE_MAX_NUM_OF_VFS 64
689 #define BXE_VF_CID_WND 0
690 #define BXE_CIDS_PER_VF (1 << BXE_VF_CID_WND)
691 #define BXE_CLIENTS_PER_VF 1
692 #define BXE_FIRST_VF_CID 256
693 #define BXE_VF_CIDS (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
694 #define BXE_VF_ID_INVALID 0xFF
695 #define IS_SRIOV(sc) 0
696
697 #define GET_NUM_VFS_PER_PATH(sc) 0
698 #define GET_NUM_VFS_PER_PF(sc) 0
699
700 /* maximum number of fast-path interrupt contexts */
701 #define FP_SB_MAX_E1x 16
702 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
703
704 union cdu_context {
705 struct eth_context eth;
706 char pad[1024];
707 };
708
709 /* CDU host DB constants */
710 #define CDU_ILT_PAGE_SZ_HW 2
711 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
712 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
713
714 #define CNIC_ISCSI_CID_MAX 256
715 #define CNIC_FCOE_CID_MAX 2048
716 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
717 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
718
719 #define QM_ILT_PAGE_SZ_HW 0
720 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
721 #define QM_CID_ROUND 1024
722
723 /* TM (timers) host DB constants */
724 #define TM_ILT_PAGE_SZ_HW 0
725 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
726 /*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
727 #define TM_CONN_NUM 1024
728 #define TM_ILT_SZ (8 * TM_CONN_NUM)
729 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
730
731 /* SRC (Searcher) host DB constants */
732 #define SRC_ILT_PAGE_SZ_HW 0
733 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
734 #define SRC_HASH_BITS 10
735 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
736 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
737 #define SRC_T2_SZ SRC_ILT_SZ
738 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
739
740 struct hw_context {
741 struct bxe_dma vcxt_dma;
742 union cdu_context *vcxt;
743 //bus_addr_t cxt_mapping;
744 size_t size;
745 };
746
747 #define SM_RX_ID 0
748 #define SM_TX_ID 1
749
750 /* defines for multiple tx priority indices */
751 #define FIRST_TX_ONLY_COS_INDEX 1
752 #define FIRST_TX_COS_INDEX 0
753
754 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
755
756 #define HC_INDEX_ETH_RX_CQ_CONS 1
757 #define HC_INDEX_OOO_TX_CQ_CONS 4
758 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
759 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
760 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
761 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
762
763 /* congestion management fairness mode */
764 #define CMNG_FNS_NONE 0
765 #define CMNG_FNS_MINMAX 1
766
767 /* CMNG constants, as derived from system spec calculations */
768 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
769 #define DEF_MIN_RATE 100
770 /* resolution of the rate shaping timer - 400 usec */
771 #define RS_PERIODIC_TIMEOUT_USEC 400
772 /* number of bytes in single QM arbitration cycle -
773 * coefficient for calculating the fairness timer */
774 #define QM_ARB_BYTES 160000
775 /* resolution of Min algorithm 1:100 */
776 #define MIN_RES 100
777 /* how many bytes above threshold for the minimal credit of Min algorithm*/
778 #define MIN_ABOVE_THRESH 32768
779 /* fairness algorithm integration time coefficient -
780 * for calculating the actual Tfair */
781 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
782 /* memory of fairness algorithm - 2 cycles */
783 #define FAIR_MEM 2
784
785 #define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */
786 #define HC_SEG_ACCESS_ATTN 4
787 #define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */
788
789 /*
790 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
791 * control by the number of fast-path status blocks supported by the
792 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
793 * status block represents an independent interrupts context that can
794 * serve a regular L2 networking queue. However special L2 queues such
795 * as the FCoE queue do not require a FP-SB and other components like
796 * the CNIC may consume FP-SB reducing the number of possible L2 queues
797 *
798 * If the maximum number of FP-SB available is X then:
799 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
800 * regular L2 queues is Y=X-1
801 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
802 * c. If the FCoE L2 queue is supported the actual number of L2 queues
803 * is Y+1
804 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
805 * slow-path interrupts) or Y+2 if CNIC is supported (one additional
806 * FP interrupt context for the CNIC).
807 * e. The number of HW context (CID count) is always X or X+1 if FCoE
808 * L2 queue is supported. the cid for the FCoE L2 queue is always X.
809 *
810 * So this is quite simple for now as no ULPs are supported yet. :-)
811 */
812 #define BXE_NUM_QUEUES(sc) ((sc)->num_queues)
813 #define BXE_NUM_ETH_QUEUES(sc) BXE_NUM_QUEUES(sc)
814 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
815 #define BXE_NUM_RX_QUEUES(sc) BXE_NUM_QUEUES(sc)
816
817 #define FOR_EACH_QUEUE(sc, var) \
818 for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
819
820 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \
821 for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
822
823 #define FOR_EACH_ETH_QUEUE(sc, var) \
824 for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
825
826 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \
827 for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
828
829 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \
830 for ((var) = 0; (var) < (sc)->max_cos; (var)++)
831
832 #define FOR_EACH_CNIC_QUEUE(sc, var) \
833 for ((var) = BXE_NUM_ETH_QUEUES(sc); \
834 (var) < BXE_NUM_QUEUES(sc); \
835 (var)++)
836
837 enum {
838 OOO_IDX_OFFSET,
839 FCOE_IDX_OFFSET,
840 FWD_IDX_OFFSET,
841 };
842
843 #define FCOE_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
844 #define bxe_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)])
845 #define bxe_fcoe(sc, var) (bxe_fcoe_fp(sc)->var)
846 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
847 #define bxe_fcoe_sp_obj(sc, var) (bxe_fcoe_inner_sp_obj(sc)->var)
848 #define bxe_fcoe_tx(sc, var) (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
849
850 #define OOO_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
851 #define bxe_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)])
852 #define bxe_ooo(sc, var) (bxe_ooo_fp(sc)->var)
853 #define bxe_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)])
854 #define bxe_ooo_sp_obj(sc, var) (bxe_ooo_inner_sp_obj(sc)->var)
855
856 #define FWD_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
857 #define bxe_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)])
858 #define bxe_fwd(sc, var) (bxe_fwd_fp(sc)->var)
859 #define bxe_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)])
860 #define bxe_fwd_sp_obj(sc, var) (bxe_fwd_inner_sp_obj(sc)->var)
861 #define bxe_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX])
862
863 #define IS_ETH_FP(fp) ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
864 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc))
865 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
866 #define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc))
867 #define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc))
868 #define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc))
869 #define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc))
870
871 enum {
872 BXE_PORT_QUERY_IDX,
873 BXE_PF_QUERY_IDX,
874 BXE_FCOE_QUERY_IDX,
875 BXE_FIRST_QUEUE_QUERY_IDX,
876 };
877
878 struct bxe_fw_stats_req {
879 struct stats_query_header hdr;
880 struct stats_query_entry query[FP_SB_MAX_E1x +
881 BXE_FIRST_QUEUE_QUERY_IDX];
882 };
883
884 struct bxe_fw_stats_data {
885 struct stats_counter storm_counters;
886 struct per_port_stats port;
887 struct per_pf_stats pf;
888 //struct fcoe_statistics_params fcoe;
889 struct per_queue_stats queue_stats[1];
890 };
891
892 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
893 #define BXE_IGU_STAS_MSG_VF_CNT 64
894 #define BXE_IGU_STAS_MSG_PF_CNT 4
895
896 #define MAX_DMAE_C 8
897
898 /*
899 * For the main interface up/down code paths, a not-so-fine-grained CORE
900 * mutex lock is used. Inside this code are various calls to kernel routines
901 * that can cause a sleep to occur. Namely memory allocations and taskqueue
902 * handling. If using an MTX lock we are *not* allowed to sleep but we can
903 * with an SX lock. This define forces the CORE lock to use and SX lock.
904 * Undefine this and an MTX lock will be used instead. Note that the IOCTL
905 * path can cause problems since it's called by a non-sleepable thread. To
906 * alleviate a potential sleep, any IOCTL processing that results in the
907 * chip/interface being started/stopped/reinitialized, the actual work is
908 * offloaded to a taskqueue.
909 */
910 #define BXE_CORE_LOCK_SX
911
912 /*
913 * This is the slowpath data structure. It is mapped into non-paged memory
914 * so that the hardware can access it's contents directly and must be page
915 * aligned.
916 */
917 struct bxe_slowpath {
918
919 /* used by the DMAE command executer */
920 struct dmae_cmd dmae[MAX_DMAE_C];
921
922 /* statistics completion */
923 uint32_t stats_comp;
924
925 /* firmware defined statistics blocks */
926 union mac_stats mac_stats;
927 struct nig_stats nig_stats;
928 struct host_port_stats port_stats;
929 struct host_func_stats func_stats;
930 //struct host_func_stats func_stats_base;
931
932 /* DMAE completion value and data source/sink */
933 uint32_t wb_comp;
934 uint32_t wb_data[4];
935
936 union {
937 struct mac_configuration_cmd e1x;
938 struct eth_classify_rules_ramrod_data e2;
939 } mac_rdata;
940
941 union {
942 struct tstorm_eth_mac_filter_config e1x;
943 struct eth_filter_rules_ramrod_data e2;
944 } rx_mode_rdata;
945
946 struct eth_rss_update_ramrod_data rss_rdata;
947
948 union {
949 struct mac_configuration_cmd e1;
950 struct eth_multicast_rules_ramrod_data e2;
951 } mcast_rdata;
952
953 union {
954 struct function_start_data func_start;
955 struct flow_control_configuration pfc_config; /* for DCBX ramrod */
956 } func_rdata;
957
958 /* Queue State related ramrods */
959 union {
960 struct client_init_ramrod_data init_data;
961 struct client_update_ramrod_data update_data;
962 } q_rdata;
963
964 /*
965 * AFEX ramrod can not be a part of func_rdata union because these
966 * events might arrive in parallel to other events from func_rdata.
967 * If they were defined in the same union the data can get corrupted.
968 */
969 struct afex_vif_list_ramrod_data func_afex_rdata;
970
971 union drv_info_to_mcp drv_info_to_mcp;
972 }; /* struct bxe_slowpath */
973
974 /*
975 * Port specifc data structure.
976 */
977 struct bxe_port {
978 /*
979 * Port Management Function (for 57711E only).
980 * When this field is set the driver instance is
981 * responsible for managing port specifc
982 * configurations such as handling link attentions.
983 */
984 uint32_t pmf;
985
986 /* Ethernet maximum transmission unit. */
987 uint16_t ether_mtu;
988
989 uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
990
991 uint32_t ext_phy_config;
992
993 /* Port feature config.*/
994 uint32_t config;
995
996 /* Defines the features supported by the PHY. */
997 uint32_t supported[ELINK_LINK_CONFIG_SIZE];
998
999 /* Defines the features advertised by the PHY. */
1000 uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1001 #define ADVERTISED_10baseT_Half (1 << 1)
1002 #define ADVERTISED_10baseT_Full (1 << 2)
1003 #define ADVERTISED_100baseT_Half (1 << 3)
1004 #define ADVERTISED_100baseT_Full (1 << 4)
1005 #define ADVERTISED_1000baseT_Half (1 << 5)
1006 #define ADVERTISED_1000baseT_Full (1 << 6)
1007 #define ADVERTISED_TP (1 << 7)
1008 #define ADVERTISED_FIBRE (1 << 8)
1009 #define ADVERTISED_Autoneg (1 << 9)
1010 #define ADVERTISED_Asym_Pause (1 << 10)
1011 #define ADVERTISED_Pause (1 << 11)
1012 #define ADVERTISED_2500baseX_Full (1 << 15)
1013 #define ADVERTISED_10000baseT_Full (1 << 16)
1014
1015 uint32_t phy_addr;
1016
1017 /* Used to synchronize phy accesses. */
1018 struct mtx phy_mtx;
1019 char phy_mtx_name[32];
1020
1021 #define BXE_PHY_LOCK(sc) mtx_lock(&sc->port.phy_mtx)
1022 #define BXE_PHY_UNLOCK(sc) mtx_unlock(&sc->port.phy_mtx)
1023 #define BXE_PHY_LOCK_ASSERT(sc) mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1024
1025 /*
1026 * MCP scratchpad address for port specific statistics.
1027 * The device is responsible for writing statistcss
1028 * back to the MCP for use with management firmware such
1029 * as UMP/NC-SI.
1030 */
1031 uint32_t port_stx;
1032
1033 struct nig_stats old_nig_stats;
1034 }; /* struct bxe_port */
1035
1036 struct bxe_mf_info {
1037 uint32_t mf_config[E1HVN_MAX];
1038
1039 uint32_t vnics_per_port; /* 1, 2 or 4 */
1040 uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1041 uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */
1042
1043 #define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode)
1044 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1045 #define VNICS_PER_PATH(sc) \
1046 ((sc)->devinfo.mf_info.vnics_per_port * \
1047 ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1048
1049 uint8_t min_bw[MAX_VNIC_NUM];
1050 uint8_t max_bw[MAX_VNIC_NUM];
1051
1052 uint16_t ext_id; /* vnic outer vlan or VIF ID */
1053 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1054 #define INVALID_VIF_ID 0xFFFF
1055 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1056 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1057
1058 uint16_t default_vlan;
1059 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1060
1061 uint8_t niv_allowed_priorities;
1062 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1063
1064 uint8_t niv_default_cos;
1065 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1066
1067 uint8_t niv_mba_enabled;
1068
1069 enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1070 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1071 int afex_def_vlan_tag;
1072 uint32_t pending_max;
1073
1074 uint16_t flags;
1075 #define MF_INFO_VALID_MAC 0x0001
1076
1077 uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1078 #define IS_MF(sc) \
1079 (IS_MULTI_VNIC(sc) && \
1080 ((sc)->devinfo.mf_info.mf_mode != 0))
1081 #define IS_MF_SD(sc) \
1082 (IS_MULTI_VNIC(sc) && \
1083 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1084 #define IS_MF_SI(sc) \
1085 (IS_MULTI_VNIC(sc) && \
1086 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1087 #define IS_MF_AFEX(sc) \
1088 (IS_MULTI_VNIC(sc) && \
1089 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1090 #define IS_MF_SD_MODE(sc) IS_MF_SD(sc)
1091 #define IS_MF_SI_MODE(sc) IS_MF_SI(sc)
1092 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1093
1094 uint32_t mf_protos_supported;
1095 #define MF_PROTO_SUPPORT_ETHERNET 0x1
1096 #define MF_PROTO_SUPPORT_ISCSI 0x2
1097 #define MF_PROTO_SUPPORT_FCOE 0x4
1098 }; /* struct bxe_mf_info */
1099
1100 /* Device information data structure. */
1101 struct bxe_devinfo {
1102 /* PCIe info */
1103 uint16_t vendor_id;
1104 uint16_t device_id;
1105 uint16_t subvendor_id;
1106 uint16_t subdevice_id;
1107
1108 /*
1109 * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1110 * C = Chip Number (bits 16-31)
1111 * R = Chip Revision (bits 12-15)
1112 * M = Chip Metal (bits 4-11)
1113 * B = Chip Bond ID (bits 0-3)
1114 */
1115 uint32_t chip_id;
1116 #define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000)
1117 #define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16)
1118 /* device ids */
1119 #define CHIP_NUM_57710 0x164e
1120 #define CHIP_NUM_57711 0x164f
1121 #define CHIP_NUM_57711E 0x1650
1122 #define CHIP_NUM_57712 0x1662
1123 #define CHIP_NUM_57712_MF 0x1663
1124 #define CHIP_NUM_57712_VF 0x166f
1125 #define CHIP_NUM_57800 0x168a
1126 #define CHIP_NUM_57800_MF 0x16a5
1127 #define CHIP_NUM_57800_VF 0x16a9
1128 #define CHIP_NUM_57810 0x168e
1129 #define CHIP_NUM_57810_MF 0x16ae
1130 #define CHIP_NUM_57810_VF 0x16af
1131 #define CHIP_NUM_57811 0x163d
1132 #define CHIP_NUM_57811_MF 0x163e
1133 #define CHIP_NUM_57811_VF 0x163f
1134 #define CHIP_NUM_57840_OBS 0x168d
1135 #define CHIP_NUM_57840_OBS_MF 0x16ab
1136 #define CHIP_NUM_57840_4_10 0x16a1
1137 #define CHIP_NUM_57840_2_20 0x16a2
1138 #define CHIP_NUM_57840_MF 0x16a4
1139 #define CHIP_NUM_57840_VF 0x16ad
1140
1141 #define CHIP_REV_SHIFT 12
1142 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
1143 #define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1144
1145 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
1146 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
1147 #define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT)
1148
1149 #define CHIP_REV_IS_SLOW(sc) \
1150 (CHIP_REV(sc) > 0x00005000)
1151 #define CHIP_REV_IS_FPGA(sc) \
1152 (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1153 #define CHIP_REV_IS_EMUL(sc) \
1154 (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1155 #define CHIP_REV_IS_ASIC(sc) \
1156 (!CHIP_REV_IS_SLOW(sc))
1157
1158 #define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0)
1159 #define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f)
1160
1161 #define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
1162 #define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
1163 #define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711)
1164 #define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E)
1165 #define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \
1166 (CHIP_IS_57711E(sc)))
1167 #define CHIP_IS_E1x(sc) (CHIP_IS_E1((sc)) || \
1168 CHIP_IS_E1H((sc)))
1169
1170 #define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712)
1171 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1172 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1173 #define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \
1174 CHIP_IS_57712_MF(sc))
1175
1176 #define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800)
1177 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1178 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1179 #define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810)
1180 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1181 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1182 #define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811)
1183 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1184 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1185 #define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \
1186 (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1187 (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1188 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1189 (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1190 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1191
1192 #define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \
1193 CHIP_IS_57800_MF(sc) || \
1194 CHIP_IS_57800_VF(sc) || \
1195 CHIP_IS_57810(sc) || \
1196 CHIP_IS_57810_MF(sc) || \
1197 CHIP_IS_57810_VF(sc) || \
1198 CHIP_IS_57811(sc) || \
1199 CHIP_IS_57811_MF(sc) || \
1200 CHIP_IS_57811_VF(sc) || \
1201 CHIP_IS_57840(sc) || \
1202 CHIP_IS_57840_MF(sc) || \
1203 CHIP_IS_57840_VF(sc))
1204 #define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \
1205 (CHIP_REV(sc) == CHIP_REV_Ax))
1206 #define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \
1207 (CHIP_REV(sc) == CHIP_REV_Bx))
1208
1209 #define USES_WARPCORE(sc) (CHIP_IS_E3(sc))
1210 #define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \
1211 CHIP_IS_E3(sc))
1212
1213 #define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \
1214 CHIP_IS_57712_MF(sc) || \
1215 CHIP_IS_E3(sc))
1216
1217 #define IS_VF(sc) (CHIP_IS_57712_VF(sc) || \
1218 CHIP_IS_57800_VF(sc) || \
1219 CHIP_IS_57810_VF(sc) || \
1220 CHIP_IS_57840_VF(sc))
1221 #define IS_PF(sc) (!IS_VF(sc))
1222
1223 /*
1224 * This define is used in two main places:
1225 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1226 * to nic-only mode or to offload mode. Offload mode is configured if either
1227 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1228 * already registered for this port (which means that the user wants storage
1229 * services).
1230 * 2. During cnic-related load, to know if offload mode is already configured
1231 * in the HW or needs to be configrued. Since the transition from nic-mode to
1232 * offload-mode in HW causes traffic coruption, nic-mode is configured only
1233 * in ports on which storage services where never requested.
1234 */
1235 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1236
1237 uint8_t chip_port_mode;
1238 #define CHIP_4_PORT_MODE 0x0
1239 #define CHIP_2_PORT_MODE 0x1
1240 #define CHIP_PORT_MODE_NONE 0x2
1241 #define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode)
1242 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1243
1244 uint8_t int_block;
1245 #define INT_BLOCK_HC 0
1246 #define INT_BLOCK_IGU 1
1247 #define INT_BLOCK_MODE_NORMAL 0
1248 #define INT_BLOCK_MODE_BW_COMP 2
1249 #define CHIP_INT_MODE_IS_NBC(sc) \
1250 (!CHIP_IS_E1x(sc) && \
1251 !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1252 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1253
1254 uint32_t shmem_base;
1255 uint32_t shmem2_base;
1256 uint32_t bc_ver;
1257 char bc_ver_str[32];
1258 uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1259 struct bxe_mf_info mf_info;
1260
1261 int flash_size;
1262 #define NVRAM_1MB_SIZE 0x20000
1263 #define NVRAM_TIMEOUT_COUNT 30000
1264 #define NVRAM_PAGE_SIZE 256
1265
1266 /* PCIe capability information */
1267 uint32_t pcie_cap_flags;
1268 #define BXE_PM_CAPABLE_FLAG 0x00000001
1269 #define BXE_PCIE_CAPABLE_FLAG 0x00000002
1270 #define BXE_MSI_CAPABLE_FLAG 0x00000004
1271 #define BXE_MSIX_CAPABLE_FLAG 0x00000008
1272 uint16_t pcie_pm_cap_reg;
1273 uint16_t pcie_pcie_cap_reg;
1274 //uint16_t pcie_devctl;
1275 uint16_t pcie_link_width;
1276 uint16_t pcie_link_speed;
1277 uint16_t pcie_msi_cap_reg;
1278 uint16_t pcie_msix_cap_reg;
1279
1280 /* device configuration read from bootcode shared memory */
1281 uint32_t hw_config;
1282 uint32_t hw_config2;
1283 }; /* struct bxe_devinfo */
1284
1285 struct bxe_sp_objs {
1286 struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1287 struct ecore_queue_sp_obj q_obj; /* Queue State object */
1288 }; /* struct bxe_sp_objs */
1289
1290 /*
1291 * Data that will be used to create a link report message. We will keep the
1292 * data used for the last link report in order to prevent reporting the same
1293 * link parameters twice.
1294 */
1295 struct bxe_link_report_data {
1296 uint16_t line_speed; /* Effective line speed */
1297 unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1298 };
1299 enum {
1300 BXE_LINK_REPORT_FULL_DUPLEX,
1301 BXE_LINK_REPORT_LINK_DOWN,
1302 BXE_LINK_REPORT_RX_FC_ON,
1303 BXE_LINK_REPORT_TX_FC_ON
1304 };
1305
1306 /* Top level device private data structure. */
1307 struct bxe_softc {
1308 /*
1309 * First entry must be a pointer to the BSD ifnet struct which
1310 * has a first element of 'void *if_softc' (which is us). XXX
1311 */
1312 if_t ifp;
1313 struct ifmedia ifmedia; /* network interface media structure */
1314 int media;
1315
1316 volatile int state; /* device state */
1317 #define BXE_STATE_CLOSED 0x0000
1318 #define BXE_STATE_OPENING_WAITING_LOAD 0x1000
1319 #define BXE_STATE_OPENING_WAITING_PORT 0x2000
1320 #define BXE_STATE_OPEN 0x3000
1321 #define BXE_STATE_CLOSING_WAITING_HALT 0x4000
1322 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1323 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1324 #define BXE_STATE_DISABLED 0xD000
1325 #define BXE_STATE_DIAG 0xE000
1326 #define BXE_STATE_ERROR 0xF000
1327
1328 int flags;
1329 #define BXE_ONE_PORT_FLAG 0x00000001
1330 #define BXE_NO_ISCSI 0x00000002
1331 #define BXE_NO_FCOE 0x00000004
1332 #define BXE_ONE_PORT(sc) (sc->flags & BXE_ONE_PORT_FLAG)
1333 //#define BXE_NO_WOL_FLAG 0x00000008
1334 //#define BXE_USING_DAC_FLAG 0x00000010
1335 //#define BXE_USING_MSIX_FLAG 0x00000020
1336 //#define BXE_USING_MSI_FLAG 0x00000040
1337 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1338 #define BXE_NO_MCP_FLAG 0x00000200
1339 #define BXE_NOMCP(sc) (sc->flags & BXE_NO_MCP_FLAG)
1340 //#define BXE_SAFC_TX_FLAG 0x00000400
1341 #define BXE_MF_FUNC_DIS 0x00000800
1342 #define BXE_TX_SWITCHING 0x00001000
1343 #define BXE_NO_PULSE 0x00002000
1344
1345 unsigned long debug; /* per-instance debug logging config */
1346
1347 #define MAX_BARS 5
1348 struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1349
1350 uint16_t doorbell_size;
1351
1352 /* periodic timer callout */
1353 #define PERIODIC_STOP 0
1354 #define PERIODIC_GO 1
1355 volatile unsigned long periodic_flags;
1356 struct callout periodic_callout;
1357
1358 /* chip start/stop/reset taskqueue */
1359 #define CHIP_TQ_NONE 0
1360 #define CHIP_TQ_START 1
1361 #define CHIP_TQ_STOP 2
1362 #define CHIP_TQ_REINIT 3
1363 volatile unsigned long chip_tq_flags;
1364 struct task chip_tq_task;
1365 struct taskqueue *chip_tq;
1366 char chip_tq_name[32];
1367
1368 struct timeout_task sp_err_timeout_task;
1369
1370 /* slowpath interrupt taskqueue */
1371 struct task sp_tq_task;
1372 struct taskqueue *sp_tq;
1373 char sp_tq_name[32];
1374
1375 struct bxe_fastpath fp[MAX_RSS_CHAINS];
1376 struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS];
1377
1378 device_t dev; /* parent device handle */
1379 uint8_t unit; /* driver instance number */
1380
1381 int pcie_bus; /* PCIe bus number */
1382 int pcie_device; /* PCIe device/slot number */
1383 int pcie_func; /* PCIe function number */
1384
1385 uint8_t pfunc_rel; /* function relative */
1386 uint8_t pfunc_abs; /* function absolute */
1387 uint8_t path_id; /* function absolute */
1388 #define SC_PATH(sc) (sc->path_id)
1389 #define SC_PORT(sc) (sc->pfunc_rel & 1)
1390 #define SC_FUNC(sc) (sc->pfunc_rel)
1391 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1392 #define SC_VN(sc) (sc->pfunc_rel >> 1)
1393 #define SC_L_ID(sc) (SC_VN(sc) << 2)
1394 #define PORT_ID(sc) SC_PORT(sc)
1395 #define PATH_ID(sc) SC_PATH(sc)
1396 #define VNIC_ID(sc) SC_VN(sc)
1397 #define FUNC_ID(sc) SC_FUNC(sc)
1398 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1399 #define SC_FW_MB_IDX_VN(sc, vn) \
1400 (SC_PORT(sc) + (vn) * \
1401 ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1402 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1403
1404 int if_capen; /* enabled interface capabilities */
1405
1406 struct bxe_devinfo devinfo;
1407 char fw_ver_str[32];
1408 char mf_mode_str[32];
1409 char pci_link_str[32];
1410
1411 const struct iro *iro_array;
1412
1413 #ifdef BXE_CORE_LOCK_SX
1414 struct sx core_sx;
1415 char core_sx_name[32];
1416 #else
1417 struct mtx core_mtx;
1418 char core_mtx_name[32];
1419 #endif
1420 struct mtx sp_mtx;
1421 char sp_mtx_name[32];
1422 struct mtx dmae_mtx;
1423 char dmae_mtx_name[32];
1424 struct mtx fwmb_mtx;
1425 char fwmb_mtx_name[32];
1426 struct mtx print_mtx;
1427 char print_mtx_name[32];
1428 struct mtx stats_mtx;
1429 char stats_mtx_name[32];
1430 struct mtx mcast_mtx;
1431 char mcast_mtx_name[32];
1432
1433 #ifdef BXE_CORE_LOCK_SX
1434 #define BXE_CORE_TRYLOCK(sc) sx_try_xlock(&sc->core_sx)
1435 #define BXE_CORE_LOCK(sc) sx_xlock(&sc->core_sx)
1436 #define BXE_CORE_UNLOCK(sc) sx_xunlock(&sc->core_sx)
1437 #define BXE_CORE_LOCK_ASSERT(sc) sx_assert(&sc->core_sx, SA_XLOCKED)
1438 #else
1439 #define BXE_CORE_TRYLOCK(sc) mtx_trylock(&sc->core_mtx)
1440 #define BXE_CORE_LOCK(sc) mtx_lock(&sc->core_mtx)
1441 #define BXE_CORE_UNLOCK(sc) mtx_unlock(&sc->core_mtx)
1442 #define BXE_CORE_LOCK_ASSERT(sc) mtx_assert(&sc->core_mtx, MA_OWNED)
1443 #endif
1444
1445 #define BXE_SP_LOCK(sc) mtx_lock(&sc->sp_mtx)
1446 #define BXE_SP_UNLOCK(sc) mtx_unlock(&sc->sp_mtx)
1447 #define BXE_SP_LOCK_ASSERT(sc) mtx_assert(&sc->sp_mtx, MA_OWNED)
1448
1449 #define BXE_DMAE_LOCK(sc) mtx_lock(&sc->dmae_mtx)
1450 #define BXE_DMAE_UNLOCK(sc) mtx_unlock(&sc->dmae_mtx)
1451 #define BXE_DMAE_LOCK_ASSERT(sc) mtx_assert(&sc->dmae_mtx, MA_OWNED)
1452
1453 #define BXE_FWMB_LOCK(sc) mtx_lock(&sc->fwmb_mtx)
1454 #define BXE_FWMB_UNLOCK(sc) mtx_unlock(&sc->fwmb_mtx)
1455 #define BXE_FWMB_LOCK_ASSERT(sc) mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1456
1457 #define BXE_PRINT_LOCK(sc) mtx_lock(&sc->print_mtx)
1458 #define BXE_PRINT_UNLOCK(sc) mtx_unlock(&sc->print_mtx)
1459 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1460
1461 #define BXE_STATS_LOCK(sc) mtx_lock(&sc->stats_mtx)
1462 #define BXE_STATS_UNLOCK(sc) mtx_unlock(&sc->stats_mtx)
1463 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1464
1465 #define BXE_MCAST_LOCK(sc) mtx_lock(&sc->mcast_mtx);
1466 #define BXE_MCAST_UNLOCK(sc) mtx_unlock(&sc->mcast_mtx);
1467 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1468
1469 int dmae_ready;
1470 #define DMAE_READY(sc) (sc->dmae_ready)
1471
1472 struct ecore_credit_pool_obj vlans_pool;
1473 struct ecore_credit_pool_obj macs_pool;
1474 struct ecore_rx_mode_obj rx_mode_obj;
1475 struct ecore_mcast_obj mcast_obj;
1476 struct ecore_rss_config_obj rss_conf_obj;
1477 struct ecore_func_sp_obj func_obj;
1478
1479 uint16_t fw_seq;
1480 uint16_t fw_drv_pulse_wr_seq;
1481 uint32_t func_stx;
1482
1483 struct elink_params link_params;
1484 struct elink_vars link_vars;
1485 uint32_t link_cnt;
1486 struct bxe_link_report_data last_reported_link;
1487 char mac_addr_str[32];
1488
1489 int last_reported_link_state;
1490
1491 int tx_ring_size;
1492 int rx_ring_size;
1493 int wol;
1494
1495 int is_leader;
1496 int recovery_state;
1497 #define BXE_RECOVERY_DONE 1
1498 #define BXE_RECOVERY_INIT 2
1499 #define BXE_RECOVERY_WAIT 3
1500 #define BXE_RECOVERY_FAILED 4
1501 #define BXE_RECOVERY_NIC_LOADING 5
1502
1503 #define BXE_ERR_TXQ_STUCK 0x1 /* Tx queue stuck detected by driver. */
1504 #define BXE_ERR_MISC 0x2 /* MISC ERR */
1505 #define BXE_ERR_PARITY 0x4 /* Parity error detected. */
1506 #define BXE_ERR_STATS_TO 0x8 /* Statistics timeout detected. */
1507 #define BXE_ERR_MC_ASSERT 0x10 /* MC assert attention received. */
1508 #define BXE_ERR_PANIC 0x20 /* Driver asserted. */
1509 #define BXE_ERR_MCP_ASSERT 0x40 /* MCP assert attention received. No Recovery*/
1510 #define BXE_ERR_GLOBAL 0x80 /* PCIe/PXP/IGU/MISC/NIG device blocks error- needs PCIe/Fundamental reset */
1511 uint32_t error_status;
1512
1513 uint32_t rx_mode;
1514 #define BXE_RX_MODE_NONE 0
1515 #define BXE_RX_MODE_NORMAL 1
1516 #define BXE_RX_MODE_ALLMULTI 2
1517 #define BXE_RX_MODE_PROMISC 3
1518 #define BXE_MAX_MULTICAST 64
1519
1520 struct bxe_port port;
1521
1522 struct cmng_init cmng;
1523
1524 /* user configs */
1525 int num_queues;
1526 int max_rx_bufs;
1527 int hc_rx_ticks;
1528 int hc_tx_ticks;
1529 int rx_budget;
1530 int max_aggregation_size;
1531 int mrrs;
1532 int autogreeen;
1533 #define AUTO_GREEN_HW_DEFAULT 0
1534 #define AUTO_GREEN_FORCE_ON 1
1535 #define AUTO_GREEN_FORCE_OFF 2
1536 int interrupt_mode;
1537 #define INTR_MODE_INTX 0
1538 #define INTR_MODE_MSI 1
1539 #define INTR_MODE_MSIX 2
1540 int udp_rss;
1541
1542 /* interrupt allocations */
1543 struct bxe_intr intr[MAX_RSS_CHAINS+1];
1544 int intr_count;
1545 uint8_t igu_dsb_id;
1546 uint8_t igu_base_sb;
1547 uint8_t igu_sb_cnt;
1548 //uint8_t min_msix_vec_cnt;
1549 uint32_t igu_base_addr;
1550 //bus_addr_t def_status_blk_mapping;
1551 uint8_t base_fw_ndsb;
1552 #define DEF_SB_IGU_ID 16
1553 #define DEF_SB_ID HC_SP_SB_ID
1554
1555 /* parent bus DMA tag */
1556 bus_dma_tag_t parent_dma_tag;
1557
1558 /* default status block */
1559 struct bxe_dma def_sb_dma;
1560 struct host_sp_status_block *def_sb;
1561 uint16_t def_idx;
1562 uint16_t def_att_idx;
1563 uint32_t attn_state;
1564 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
1565
1566 /* general SP events - stats query, cfc delete, etc */
1567 #define HC_SP_INDEX_ETH_DEF_CONS 3
1568 /* EQ completions */
1569 #define HC_SP_INDEX_EQ_CONS 7
1570 /* FCoE L2 connection completions */
1571 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
1572 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
1573 /* iSCSI L2 */
1574 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
1575 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1576
1577 /* event queue */
1578 struct bxe_dma eq_dma;
1579 union event_ring_elem *eq;
1580 uint16_t eq_prod;
1581 uint16_t eq_cons;
1582 uint16_t *eq_cons_sb;
1583 #define NUM_EQ_PAGES 1 /* must be a power of 2 */
1584 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1585 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1586 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1587 #define EQ_DESC_MASK (NUM_EQ_DESC - 1)
1588 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1589 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1590 #define NEXT_EQ_IDX(x) \
1591 ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1592 ((x) + 2) : ((x) + 1))
1593 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1594 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1595
1596 /* slow path */
1597 struct bxe_dma sp_dma;
1598 struct bxe_slowpath *sp;
1599 unsigned long sp_state;
1600
1601 /* slow path queue */
1602 struct bxe_dma spq_dma;
1603 struct eth_spe *spq;
1604 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1605 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1606 #define MAX_SPQ_PENDING 8
1607
1608 uint16_t spq_prod_idx;
1609 struct eth_spe *spq_prod_bd;
1610 struct eth_spe *spq_last_bd;
1611 uint16_t *dsb_sp_prod;
1612 //uint16_t *spq_hw_con;
1613 //uint16_t spq_left;
1614
1615 volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1616 volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1617
1618 /* fw decompression buffer */
1619 struct bxe_dma gz_buf_dma;
1620 void *gz_buf;
1621 z_streamp gz_strm;
1622 uint32_t gz_outlen;
1623 #define GUNZIP_BUF(sc) (sc->gz_buf)
1624 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1625 #define GUNZIP_PHYS(sc) (sc->gz_buf_dma.paddr)
1626 #define FW_BUF_SIZE 0x40000
1627
1628 const struct raw_op *init_ops;
1629 const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1630 const uint32_t *init_data; /* data blob, 32 bit granularity */
1631 uint32_t init_mode_flags;
1632 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1633 /* PRAM blobs - raw data */
1634 const uint8_t *tsem_int_table_data;
1635 const uint8_t *tsem_pram_data;
1636 const uint8_t *usem_int_table_data;
1637 const uint8_t *usem_pram_data;
1638 const uint8_t *xsem_int_table_data;
1639 const uint8_t *xsem_pram_data;
1640 const uint8_t *csem_int_table_data;
1641 const uint8_t *csem_pram_data;
1642 #define INIT_OPS(sc) (sc->init_ops)
1643 #define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets)
1644 #define INIT_DATA(sc) (sc->init_data)
1645 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1646 #define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data)
1647 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1648 #define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data)
1649 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1650 #define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data)
1651 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1652 #define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data)
1653
1654 /* ILT
1655 * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1656 * context size we need 8 ILT entries.
1657 */
1658 #define ILT_MAX_L2_LINES 8
1659 struct hw_context context[ILT_MAX_L2_LINES];
1660 struct ecore_ilt *ilt;
1661 #define ILT_MAX_LINES 256
1662
1663 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1664 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1665 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1666 #if 1
1667 #define BXE_L2_MAX_CID(sc) \
1668 (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1669 #else
1670 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */ \
1671 (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1672 #endif
1673 #if 1
1674 #define BXE_L2_CID_COUNT(sc) \
1675 (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1676 #else
1677 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */ \
1678 (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1679 #endif
1680 #define L2_ILT_LINES(sc) \
1681 (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1682
1683 int qm_cid_count;
1684
1685 uint8_t dropless_fc;
1686
1687 /* total number of FW statistics requests */
1688 uint8_t fw_stats_num;
1689 /*
1690 * This is a memory buffer that will contain both statistics ramrod
1691 * request and data.
1692 */
1693 struct bxe_dma fw_stats_dma;
1694 /*
1695 * FW statistics request shortcut (points at the beginning of fw_stats
1696 * buffer).
1697 */
1698 int fw_stats_req_size;
1699 struct bxe_fw_stats_req *fw_stats_req;
1700 bus_addr_t fw_stats_req_mapping;
1701 /*
1702 * FW statistics data shortcut (points at the beginning of fw_stats
1703 * buffer + fw_stats_req_size).
1704 */
1705 int fw_stats_data_size;
1706 struct bxe_fw_stats_data *fw_stats_data;
1707 bus_addr_t fw_stats_data_mapping;
1708
1709 /* tracking a pending STAT_QUERY ramrod */
1710 uint16_t stats_pending;
1711 /* number of completed statistics ramrods */
1712 uint16_t stats_comp;
1713 uint16_t stats_counter;
1714 uint8_t stats_init;
1715 int stats_state;
1716
1717 struct bxe_eth_stats eth_stats;
1718 struct host_func_stats func_stats;
1719 struct bxe_eth_stats_old eth_stats_old;
1720 struct bxe_net_stats_old net_stats_old;
1721 struct bxe_fw_port_stats_old fw_stats_old;
1722
1723 struct dmae_cmd stats_dmae; /* used by dmae command loader */
1724 int executer_idx;
1725
1726 int mtu;
1727
1728 /* LLDP params */
1729 struct bxe_config_lldp_params lldp_config_params;
1730 /* DCB support on/off */
1731 int dcb_state;
1732 #define BXE_DCB_STATE_OFF 0
1733 #define BXE_DCB_STATE_ON 1
1734 /* DCBX engine mode */
1735 int dcbx_enabled;
1736 #define BXE_DCBX_ENABLED_OFF 0
1737 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1738 #define BXE_DCBX_ENABLED_ON_NEG_ON 2
1739 #define BXE_DCBX_ENABLED_INVALID -1
1740 uint8_t dcbx_mode_uset;
1741 struct bxe_config_dcbx_params dcbx_config_params;
1742 struct bxe_dcbx_port_params dcbx_port_params;
1743 int dcb_version;
1744
1745 uint8_t cnic_support;
1746 uint8_t cnic_enabled;
1747 uint8_t cnic_loaded;
1748 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1749 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1750 #define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */
1751
1752 /* multiple tx classes of service */
1753 uint8_t max_cos;
1754 #define BXE_MAX_PRIORITY 8
1755 /* priority to cos mapping */
1756 uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1757
1758 int panic;
1759
1760 struct cdev *ioctl_dev;
1761
1762 void *grc_dump;
1763 unsigned int trigger_grcdump;
1764 unsigned int grcdump_done;
1765 unsigned int grcdump_started;
1766 int bxe_pause_param;
1767 void *eeprom;
1768 }; /* struct bxe_softc */
1769
1770 /* IOCTL sub-commands for edebug and firmware upgrade */
1771 #define BXE_IOC_RD_NVRAM 1
1772 #define BXE_IOC_WR_NVRAM 2
1773 #define BXE_IOC_STATS_SHOW_NUM 3
1774 #define BXE_IOC_STATS_SHOW_STR 4
1775 #define BXE_IOC_STATS_SHOW_CNT 5
1776
1777 struct bxe_nvram_data {
1778 uint32_t op; /* ioctl sub-command */
1779 uint32_t offset;
1780 uint32_t len;
1781 uint32_t value[1]; /* variable */
1782 };
1783
1784 union bxe_stats_show_data {
1785 uint32_t op; /* ioctl sub-command */
1786
1787 struct {
1788 uint32_t num; /* return number of stats */
1789 uint32_t len; /* length of each string item */
1790 } desc;
1791
1792 /* variable length... */
1793 char str[1]; /* holds names of desc.num stats, each desc.len in length */
1794
1795 /* variable length... */
1796 uint64_t stats[1]; /* holds all stats */
1797 };
1798
1799 /* function init flags */
1800 #define FUNC_FLG_RSS 0x0001
1801 #define FUNC_FLG_STATS 0x0002
1802 /* FUNC_FLG_UNMATCHED 0x0004 */
1803 #define FUNC_FLG_TPA 0x0008
1804 #define FUNC_FLG_SPQ 0x0010
1805 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1806
1807 struct bxe_func_init_params {
1808 bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1809 bus_addr_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */
1810 uint16_t func_flgs;
1811 uint16_t func_id; /* abs function id */
1812 uint16_t pf_id;
1813 uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */
1814 };
1815
1816 /* memory resources reside at BARs 0, 2, 4 */
1817 /* Run `pciconf -lb` to see mappings */
1818 #define BAR0 0
1819 #define BAR1 2
1820 #define BAR2 4
1821
1822 #ifdef BXE_REG_NO_INLINE
1823
1824 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1825 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1826 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1827
1828 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1829 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1830 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1831
1832 #define REG_RD8(sc, offset) bxe_reg_read8(sc, offset)
1833 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1834 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1835
1836 #define REG_WR8(sc, offset, val) bxe_reg_write8(sc, offset, val)
1837 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1838 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1839
1840 #else /* not BXE_REG_NO_INLINE */
1841
1842 #define REG_WR8(sc, offset, val) \
1843 bus_space_write_1(sc->bar[BAR0].tag, \
1844 sc->bar[BAR0].handle, \
1845 offset, val)
1846
1847 #define REG_WR16(sc, offset, val) \
1848 bus_space_write_2(sc->bar[BAR0].tag, \
1849 sc->bar[BAR0].handle, \
1850 offset, val)
1851
1852 #define REG_WR32(sc, offset, val) \
1853 bus_space_write_4(sc->bar[BAR0].tag, \
1854 sc->bar[BAR0].handle, \
1855 offset, val)
1856
1857 #define REG_RD8(sc, offset) \
1858 bus_space_read_1(sc->bar[BAR0].tag, \
1859 sc->bar[BAR0].handle, \
1860 offset)
1861
1862 #define REG_RD16(sc, offset) \
1863 bus_space_read_2(sc->bar[BAR0].tag, \
1864 sc->bar[BAR0].handle, \
1865 offset)
1866
1867 #define REG_RD32(sc, offset) \
1868 bus_space_read_4(sc->bar[BAR0].tag, \
1869 sc->bar[BAR0].handle, \
1870 offset)
1871
1872 #endif /* BXE_REG_NO_INLINE */
1873
1874 #define REG_RD(sc, offset) REG_RD32(sc, offset)
1875 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1876
1877 #define REG_RD_IND(sc, offset) bxe_reg_rd_ind(sc, offset)
1878 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1879
1880 #define BXE_SP(sc, var) (&(sc)->sp->var)
1881 #define BXE_SP_MAPPING(sc, var) \
1882 (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1883
1884 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1885 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1886
1887 #define REG_RD_DMAE(sc, offset, valp, len32) \
1888 do { \
1889 bxe_read_dmae(sc, offset, len32); \
1890 memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1891 } while (0)
1892
1893 #define REG_WR_DMAE(sc, offset, valp, len32) \
1894 do { \
1895 memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4); \
1896 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1897 } while (0)
1898
1899 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1900 REG_WR_DMAE(sc, offset, valp, len32)
1901
1902 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1903 REG_RD_DMAE(sc, offset, valp, len32)
1904
1905 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \
1906 do { \
1907 /* if (le32_swap) { */ \
1908 /* BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1909 /* } */ \
1910 memcpy(GUNZIP_BUF(sc), data, len32 * 4); \
1911 ecore_write_big_buf_wb(sc, addr, len32); \
1912 } while (0)
1913
1914 #define BXE_DB_MIN_SHIFT 3 /* 8 bytes */
1915 #define BXE_DB_SHIFT 7 /* 128 bytes */
1916 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1917 #error "Minimum DB doorbell stride is 8"
1918 #endif
1919 #define DPM_TRIGGER_TYPE 0x40
1920 #define DOORBELL(sc, cid, val) \
1921 do { \
1922 bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle, \
1923 ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1924 (uint32_t)val); \
1925 } while(0)
1926
1927 #define SHMEM_ADDR(sc, field) \
1928 (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1929 #define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field))
1930 #define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field))
1931 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1932
1933 #define SHMEM2_ADDR(sc, field) \
1934 (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1935 #define SHMEM2_HAS(sc, field) \
1936 (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \
1937 offsetof(struct shmem2_region, field)))
1938 #define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field))
1939 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1940
1941 #define MFCFG_ADDR(sc, field) \
1942 (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1943 #define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field))
1944 #define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field))
1945 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1946
1947 /* DMAE command defines */
1948
1949 #define DMAE_TIMEOUT -1
1950 #define DMAE_PCI_ERROR -2 /* E2 and onward */
1951 #define DMAE_NOT_RDY -3
1952 #define DMAE_PCI_ERR_FLAG 0x80000000
1953
1954 #define DMAE_SRC_PCI 0
1955 #define DMAE_SRC_GRC 1
1956
1957 #define DMAE_DST_NONE 0
1958 #define DMAE_DST_PCI 1
1959 #define DMAE_DST_GRC 2
1960
1961 #define DMAE_COMP_PCI 0
1962 #define DMAE_COMP_GRC 1
1963
1964 #define DMAE_COMP_REGULAR 0
1965 #define DMAE_COM_SET_ERR 1
1966
1967 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1968 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
1969 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
1970 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
1971
1972 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
1973 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
1974
1975 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_CMD_ENDIANITY_SHIFT)
1976 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_CMD_ENDIANITY_SHIFT)
1977 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_CMD_ENDIANITY_SHIFT)
1978 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
1979
1980 #define DMAE_CMD_PORT_0 0
1981 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
1982
1983 #define DMAE_SRC_PF 0
1984 #define DMAE_SRC_VF 1
1985
1986 #define DMAE_DST_PF 0
1987 #define DMAE_DST_VF 1
1988
1989 #define DMAE_C_SRC 0
1990 #define DMAE_C_DST 1
1991
1992 #define DMAE_LEN32_RD_MAX 0x80
1993 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
1994
1995 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
1996
1997 #define MAX_DMAE_C_PER_PORT 8
1998 #define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
1999 #define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2000
2001 static const uint32_t dmae_reg_go_c[] = {
2002 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2003 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2004 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2005 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2006 };
2007
2008 #define ATTN_NIG_FOR_FUNC (1L << 8)
2009 #define ATTN_SW_TIMER_4_FUNC (1L << 9)
2010 #define GPIO_2_FUNC (1L << 10)
2011 #define GPIO_3_FUNC (1L << 11)
2012 #define GPIO_4_FUNC (1L << 12)
2013 #define ATTN_GENERAL_ATTN_1 (1L << 13)
2014 #define ATTN_GENERAL_ATTN_2 (1L << 14)
2015 #define ATTN_GENERAL_ATTN_3 (1L << 15)
2016 #define ATTN_GENERAL_ATTN_4 (1L << 13)
2017 #define ATTN_GENERAL_ATTN_5 (1L << 14)
2018 #define ATTN_GENERAL_ATTN_6 (1L << 15)
2019 #define ATTN_HARD_WIRED_MASK 0xff00
2020 #define ATTENTION_ID 4
2021
2022 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2023 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2024
2025 #define MAX_IGU_ATTN_ACK_TO 100
2026
2027 #define STORM_ASSERT_ARRAY_SIZE 50
2028
2029 #define BXE_PMF_LINK_ASSERT(sc) \
2030 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2031
2032 #define BXE_MC_ASSERT_BITS \
2033 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2034 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2035 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2036 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2037
2038 #define BXE_MCP_ASSERT \
2039 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2040
2041 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2042 #define BXE_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2043 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2044 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2045 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2046 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2047 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2048
2049 #define MULTI_MASK 0x7f
2050
2051 #define PFS_PER_PORT(sc) \
2052 ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2053 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2054
2055 #define FIRST_ABS_FUNC_IN_PORT(sc) \
2056 ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \
2057 PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2058
2059 #define FOREACH_ABS_FUNC_IN_PORT(sc, i) \
2060 for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \
2061 (i) < MAX_FUNC_NUM; \
2062 (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2063
2064 #define BXE_SWCID_SHIFT 17
2065 #define BXE_SWCID_MASK ((0x1 << BXE_SWCID_SHIFT) - 1)
2066
2067 #define SW_CID(x) (le32toh(x) & BXE_SWCID_MASK)
2068 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2069
2070 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2071 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2072 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2073 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2074 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2075
2076 /* must be used on a CID before placing it on a HW ring */
2077 #define HW_CID(sc, x) \
2078 ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2079
2080 #define SPEED_10 10
2081 #define SPEED_100 100
2082 #define SPEED_1000 1000
2083 #define SPEED_2500 2500
2084 #define SPEED_10000 10000
2085
2086 #define PCI_PM_D0 1
2087 #define PCI_PM_D3hot 2
2088
2089 #ifndef DUPLEX_UNKNOWN
2090 #define DUPLEX_UNKNOWN (0xff)
2091 #endif
2092
2093 #ifndef SPEED_UNKNOWN
2094 #define SPEED_UNKNOWN (-1)
2095 #endif
2096
2097 /* Enable or disable autonegotiation. */
2098 #define AUTONEG_DISABLE 0x00
2099 #define AUTONEG_ENABLE 0x01
2100
2101 /* Which connector port. */
2102 #define PORT_TP 0x00
2103 #define PORT_AUI 0x01
2104 #define PORT_MII 0x02
2105 #define PORT_FIBRE 0x03
2106 #define PORT_BNC 0x04
2107 #define PORT_DA 0x05
2108 #define PORT_NONE 0xef
2109 #define PORT_OTHER 0xff
2110
2111 int bxe_test_bit(int nr, volatile unsigned long * addr);
2112 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2113 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2114 int bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2115 int bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2116 int bxe_cmpxchg(volatile int *addr, int old, int new);
2117
2118 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2119 uint32_t val);
2120 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2121
2122
2123 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2124 struct bxe_dma *dma, const char *msg);
2125 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2126
2127 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2128 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2129 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2130 uint8_t dst_type, uint8_t with_comp,
2131 uint8_t comp_type);
2132 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2133 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2134 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2135 uint32_t dst_addr, uint32_t len32);
2136 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2137 uint32_t addr, uint32_t len);
2138
2139 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2140 uint32_t cid);
2141 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2142 uint8_t sb_index, uint8_t disable,
2143 uint16_t usec);
2144
2145 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2146 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2147
2148 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2149 uint8_t segment, uint16_t index, uint8_t op,
2150 uint8_t update);
2151
2152 void ecore_init_e1_firmware(struct bxe_softc *sc);
2153 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2154 void ecore_init_e2_firmware(struct bxe_softc *sc);
2155
2156 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2157 size_t size, uint32_t *data);
2158
2159 /*********************/
2160 /* LOGGING AND DEBUG */
2161 /*********************/
2162
2163 /* debug logging codepaths */
2164 #define DBG_LOAD 0x00000001 /* load and unload */
2165 #define DBG_INTR 0x00000002 /* interrupt handling */
2166 #define DBG_SP 0x00000004 /* slowpath handling */
2167 #define DBG_STATS 0x00000008 /* stats updates */
2168 #define DBG_TX 0x00000010 /* packet transmit */
2169 #define DBG_RX 0x00000020 /* packet receive */
2170 #define DBG_PHY 0x00000040 /* phy/link handling */
2171 #define DBG_IOCTL 0x00000080 /* ioctl handling */
2172 #define DBG_MBUF 0x00000100 /* dumping mbuf info */
2173 #define DBG_REGS 0x00000200 /* register access */
2174 #define DBG_LRO 0x00000400 /* lro processing */
2175 #define DBG_ASSERT 0x80000000 /* debug assert */
2176 #define DBG_ALL 0xFFFFFFFF /* flying monkeys */
2177
2178 #define DBASSERT(sc, exp, msg) \
2179 do { \
2180 if (__predict_false(sc->debug & DBG_ASSERT)) { \
2181 if (__predict_false(!(exp))) { \
2182 panic msg; \
2183 } \
2184 } \
2185 } while (0)
2186
2187 /* log a debug message */
2188 #define BLOGD(sc, codepath, format, args...) \
2189 do { \
2190 if (__predict_false(sc->debug & (codepath))) { \
2191 device_printf((sc)->dev, \
2192 "%s(%s:%d) " format, \
2193 __FUNCTION__, \
2194 __FILE__, \
2195 __LINE__, \
2196 ## args); \
2197 } \
2198 } while(0)
2199
2200 /* log a info message */
2201 #define BLOGI(sc, format, args...) \
2202 do { \
2203 if (__predict_false(sc->debug)) { \
2204 device_printf((sc)->dev, \
2205 "%s(%s:%d) " format, \
2206 __FUNCTION__, \
2207 __FILE__, \
2208 __LINE__, \
2209 ## args); \
2210 } else { \
2211 device_printf((sc)->dev, \
2212 format, \
2213 ## args); \
2214 } \
2215 } while(0)
2216
2217 /* log a warning message */
2218 #define BLOGW(sc, format, args...) \
2219 do { \
2220 if (__predict_false(sc->debug)) { \
2221 device_printf((sc)->dev, \
2222 "%s(%s:%d) WARNING: " format, \
2223 __FUNCTION__, \
2224 __FILE__, \
2225 __LINE__, \
2226 ## args); \
2227 } else { \
2228 device_printf((sc)->dev, \
2229 "WARNING: " format, \
2230 ## args); \
2231 } \
2232 } while(0)
2233
2234 /* log a error message */
2235 #define BLOGE(sc, format, args...) \
2236 do { \
2237 if (__predict_false(sc->debug)) { \
2238 device_printf((sc)->dev, \
2239 "%s(%s:%d) ERROR: " format, \
2240 __FUNCTION__, \
2241 __FILE__, \
2242 __LINE__, \
2243 ## args); \
2244 } else { \
2245 device_printf((sc)->dev, \
2246 "ERROR: " format, \
2247 ## args); \
2248 } \
2249 } while(0)
2250
2251 #ifdef ECORE_STOP_ON_ERROR
2252
2253 #define bxe_panic(sc, msg) \
2254 do { \
2255 panic msg; \
2256 } while (0)
2257
2258 #else
2259
2260 #define bxe_panic(sc, msg) \
2261 device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2262
2263 #endif
2264
2265 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2266 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2267
2268 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2269 uint8_t *mem, uint32_t len);
2270 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2271 struct mbuf *m, uint8_t contents);
2272
2273 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2274 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2275
2276 /***********/
2277 /* INLINES */
2278 /***********/
2279
2280 static inline uint32_t
2281 reg_poll(struct bxe_softc *sc,
2282 uint32_t reg,
2283 uint32_t expected,
2284 int ms,
2285 int wait)
2286 {
2287 uint32_t val;
2288
2289 do {
2290 val = REG_RD(sc, reg);
2291 if (val == expected) {
2292 break;
2293 }
2294 ms -= wait;
2295 DELAY(wait * 1000);
2296 } while (ms > 0);
2297
2298 return (val);
2299 }
2300
2301 static inline void
2302 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2303 {
2304 mb(); /* status block is written to by the chip */
2305 fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2306 }
2307
2308 static inline void
2309 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2310 uint8_t igu_sb_id,
2311 uint8_t segment,
2312 uint16_t index,
2313 uint8_t op,
2314 uint8_t update,
2315 uint32_t igu_addr)
2316 {
2317 struct igu_regular cmd_data = {0};
2318
2319 cmd_data.sb_id_and_flags =
2320 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2321 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2322 (update << IGU_REGULAR_BUPDATE_SHIFT) |
2323 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2324
2325 BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2326 cmd_data.sb_id_and_flags, igu_addr);
2327 REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2328
2329 /* Make sure that ACK is written */
2330 bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2331 BUS_SPACE_BARRIER_WRITE);
2332 mb();
2333 }
2334
2335 static inline void
2336 bxe_hc_ack_sb(struct bxe_softc *sc,
2337 uint8_t sb_id,
2338 uint8_t storm,
2339 uint16_t index,
2340 uint8_t op,
2341 uint8_t update)
2342 {
2343 uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2344 COMMAND_REG_INT_ACK);
2345 struct igu_ack_register igu_ack;
2346
2347 igu_ack.status_block_index = index;
2348 igu_ack.sb_id_and_flags =
2349 ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2350 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2351 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2352 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2353
2354 REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2355
2356 /* Make sure that ACK is written */
2357 bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2358 BUS_SPACE_BARRIER_WRITE);
2359 mb();
2360 }
2361
2362 static inline void
2363 bxe_ack_sb(struct bxe_softc *sc,
2364 uint8_t igu_sb_id,
2365 uint8_t storm,
2366 uint16_t index,
2367 uint8_t op,
2368 uint8_t update)
2369 {
2370 if (sc->devinfo.int_block == INT_BLOCK_HC)
2371 bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2372 else {
2373 uint8_t segment;
2374 if (CHIP_INT_MODE_IS_BC(sc)) {
2375 segment = storm;
2376 } else if (igu_sb_id != sc->igu_dsb_id) {
2377 segment = IGU_SEG_ACCESS_DEF;
2378 } else if (storm == ATTENTION_ID) {
2379 segment = IGU_SEG_ACCESS_ATTN;
2380 } else {
2381 segment = IGU_SEG_ACCESS_DEF;
2382 }
2383 bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2384 }
2385 }
2386
2387 static inline uint16_t
2388 bxe_hc_ack_int(struct bxe_softc *sc)
2389 {
2390 uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2391 COMMAND_REG_SIMD_MASK);
2392 uint32_t result = REG_RD(sc, hc_addr);
2393
2394 mb();
2395 return (result);
2396 }
2397
2398 static inline uint16_t
2399 bxe_igu_ack_int(struct bxe_softc *sc)
2400 {
2401 uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2402 uint32_t result = REG_RD(sc, igu_addr);
2403
2404 BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2405 result, igu_addr);
2406
2407 mb();
2408 return (result);
2409 }
2410
2411 static inline uint16_t
2412 bxe_ack_int(struct bxe_softc *sc)
2413 {
2414 mb();
2415 if (sc->devinfo.int_block == INT_BLOCK_HC) {
2416 return (bxe_hc_ack_int(sc));
2417 } else {
2418 return (bxe_igu_ack_int(sc));
2419 }
2420 }
2421
2422 static inline int
2423 func_by_vn(struct bxe_softc *sc,
2424 int vn)
2425 {
2426 return (2 * vn + SC_PORT(sc));
2427 }
2428
2429 /*
2430 * Statistics ID are global per chip/path, while Client IDs for E1x
2431 * are per port.
2432 */
2433 static inline uint8_t
2434 bxe_stats_id(struct bxe_fastpath *fp)
2435 {
2436 struct bxe_softc *sc = fp->sc;
2437
2438 if (!CHIP_IS_E1x(sc)) {
2439 return (fp->cl_id);
2440 }
2441
2442 return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2443 }
2444
2445 #endif /* __BXE_H__ */
2446
Cache object: 1a3a9ada6f6b6070c9cce37697083bc6
|