The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/bxe/ecore_init.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause
    3  *
    4  * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  *
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
   20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   26  * THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 #include <sys/cdefs.h>
   30 __FBSDID("$FreeBSD$");
   31 
   32 #ifndef ECORE_INIT_H
   33 #define ECORE_INIT_H
   34 
   35 /* Init operation types and structures */
   36 enum {
   37         OP_RD = 0x1,    /* read a single register */
   38         OP_WR,          /* write a single register */
   39         OP_SW,          /* copy a string to the device */
   40         OP_ZR,          /* clear memory */
   41         OP_ZP,          /* unzip then copy with DMAE */
   42         OP_WR_64,       /* write 64 bit pattern */
   43         OP_WB,          /* copy a string using DMAE */
   44 #ifndef FW_ZIP_SUPPORT
   45         OP_FW,          /* copy an array from fw data (only used with unzipped FW) */
   46 #endif
   47         OP_WB_ZR,       /* Clear a string using DMAE or indirect-wr */
   48         OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
   49         OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
   50         OP_IF_PHASE,
   51         OP_RT,
   52         OP_DELAY,
   53         OP_VERIFY,
   54         OP_MAX
   55 };
   56 
   57 enum {
   58         STAGE_START,
   59         STAGE_END,
   60 };
   61 
   62 /* Returns the index of start or end of a specific block stage in ops array*/
   63 #define BLOCK_OPS_IDX(block, stage, end) \
   64         (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
   65 
   66 
   67 /* structs for the various opcodes */
   68 struct raw_op {
   69         uint32_t op:8;
   70         uint32_t offset:24;
   71         uint32_t raw_data;
   72 };
   73 
   74 struct op_read {
   75         uint32_t op:8;
   76         uint32_t offset:24;
   77         uint32_t val;
   78 };
   79 
   80 struct op_write {
   81         uint32_t op:8;
   82         uint32_t offset:24;
   83         uint32_t val;
   84 };
   85 
   86 struct op_arr_write {
   87         uint32_t op:8;
   88         uint32_t offset:24;
   89 #ifdef __BIG_ENDIAN
   90         uint16_t data_len;
   91         uint16_t data_off;
   92 #else /* __LITTLE_ENDIAN */
   93         uint16_t data_off;
   94         uint16_t data_len;
   95 #endif
   96 };
   97 
   98 struct op_zero {
   99         uint32_t op:8;
  100         uint32_t offset:24;
  101         uint32_t len;
  102 };
  103 
  104 struct op_if_mode {
  105         uint32_t op:8;
  106         uint32_t cmd_offset:24;
  107         uint32_t mode_bit_map;
  108 };
  109 
  110 struct op_if_phase {
  111         uint32_t op:8;
  112         uint32_t cmd_offset:24;
  113         uint32_t phase_bit_map;
  114 };
  115 
  116 struct op_delay {
  117         uint32_t op:8;
  118         uint32_t reserved:24;
  119         uint32_t delay;
  120 };
  121 
  122 union init_op {
  123         struct op_read          read;
  124         struct op_write         write;
  125         struct op_arr_write     arr_wr;
  126         struct op_zero          zero;
  127         struct raw_op           raw;
  128         struct op_if_mode       if_mode;
  129         struct op_if_phase      if_phase;
  130         struct op_delay         delay;
  131 };
  132 
  133 
  134 /* Init Phases */
  135 enum {
  136         PHASE_COMMON,
  137         PHASE_PORT0,
  138         PHASE_PORT1,
  139         PHASE_PF0,
  140         PHASE_PF1,
  141         PHASE_PF2,
  142         PHASE_PF3,
  143         PHASE_PF4,
  144         PHASE_PF5,
  145         PHASE_PF6,
  146         PHASE_PF7,
  147         NUM_OF_INIT_PHASES
  148 };
  149 
  150 /* Init Modes */
  151 enum {
  152         MODE_ASIC                      = 0x00000001,
  153         MODE_FPGA                      = 0x00000002,
  154         MODE_EMUL                      = 0x00000004,
  155         MODE_E2                        = 0x00000008,
  156         MODE_E3                        = 0x00000010,
  157         MODE_PORT2                     = 0x00000020,
  158         MODE_PORT4                     = 0x00000040,
  159         MODE_SF                        = 0x00000080,
  160         MODE_MF                        = 0x00000100,
  161         MODE_MF_SD                     = 0x00000200,
  162         MODE_MF_SI                     = 0x00000400,
  163         MODE_MF_AFEX                   = 0x00000800,
  164         MODE_E3_A0                     = 0x00001000,
  165         MODE_E3_B0                     = 0x00002000,
  166         MODE_COS3                      = 0x00004000,
  167         MODE_COS6                      = 0x00008000,
  168         MODE_LITTLE_ENDIAN             = 0x00010000,
  169         MODE_BIG_ENDIAN                = 0x00020000,
  170 };
  171 
  172 /* Init Blocks */
  173 enum {
  174         BLOCK_ATC,
  175         BLOCK_BRB1,
  176         BLOCK_CCM,
  177         BLOCK_CDU,
  178         BLOCK_CFC,
  179         BLOCK_CSDM,
  180         BLOCK_CSEM,
  181         BLOCK_DBG,
  182         BLOCK_DMAE,
  183         BLOCK_DORQ,
  184         BLOCK_HC,
  185         BLOCK_IGU,
  186         BLOCK_MISC,
  187         BLOCK_NIG,
  188         BLOCK_PBF,
  189         BLOCK_PGLUE_B,
  190         BLOCK_PRS,
  191         BLOCK_PXP2,
  192         BLOCK_PXP,
  193         BLOCK_QM,
  194         BLOCK_SRC,
  195         BLOCK_TCM,
  196         BLOCK_TM,
  197         BLOCK_TSDM,
  198         BLOCK_TSEM,
  199         BLOCK_UCM,
  200         BLOCK_UPB,
  201         BLOCK_USDM,
  202         BLOCK_USEM,
  203         BLOCK_XCM,
  204         BLOCK_XPB,
  205         BLOCK_XSDM,
  206         BLOCK_XSEM,
  207         BLOCK_MISC_AEU,
  208         NUM_OF_INIT_BLOCKS
  209 };
  210 
  211 
  212 
  213 
  214 
  215 
  216 
  217 
  218 /* Vnics per mode */
  219 #define ECORE_PORT2_MODE_NUM_VNICS 4
  220 
  221 
  222 /* QM queue numbers */
  223 #define ECORE_ETH_Q             0
  224 #define ECORE_TOE_Q             3
  225 #define ECORE_TOE_ACK_Q         6
  226 #define ECORE_ISCSI_Q           9
  227 #define ECORE_ISCSI_ACK_Q       11
  228 #define ECORE_FCOE_Q            10
  229 
  230 /* Vnics per mode */
  231 #define ECORE_PORT4_MODE_NUM_VNICS 2
  232 
  233 /* COS offset for port1 in E3 B0 4port mode */
  234 #define ECORE_E3B0_PORT1_COS_OFFSET 3
  235 
  236 /* QM Register addresses */
  237 #define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
  238         (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
  239 #define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
  240         (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
  241 #define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
  242         (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
  243 
  244 /* extracts the QM queue number for the specified port and vnic */
  245 #define ECORE_PF_Q_NUM(q_num, port, vnic)\
  246         ((((port) << 1) | (vnic)) * 16 + (q_num))
  247 
  248 
  249 /* Maps the specified queue to the specified COS */
  250 static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos)
  251 {
  252         /* find current COS mapping */
  253         uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
  254 
  255         /* check if queue->COS mapping has changed */
  256         if (curr_cos != new_cos) {
  257                 uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
  258                 uint32_t reg_addr, reg_bit_map, vnic;
  259 
  260                 /* update parameters for 4port mode */
  261                 if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
  262                         num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
  263                         if (PORT_ID(sc)) {
  264                                 curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
  265                                 new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
  266                         }
  267                 }
  268 
  269                 /* change queue mapping for each VNIC */
  270                 for (vnic = 0; vnic < num_vnics; vnic++) {
  271                         uint32_t pf_q_num =
  272                                 ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
  273                         uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
  274 
  275                         /* overwrite queue->VOQ mapping */
  276                         REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
  277 
  278                         /* clear queue bit from current COS bit map */
  279                         reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
  280                         reg_bit_map = REG_RD(sc, reg_addr);
  281                         REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
  282 
  283                         /* set queue bit in new COS bit map */
  284                         reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
  285                         reg_bit_map = REG_RD(sc, reg_addr);
  286                         REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
  287 
  288                         /* set/clear queue bit in command-queue bit map
  289                         (E2/E3A0 only, valid COS values are 0/1) */
  290                         if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
  291                                 reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
  292                                 reg_bit_map = REG_RD(sc, reg_addr);
  293                                 q_bit_map = 1 << (2 * (pf_q_num & 0xf));
  294                                 reg_bit_map = new_cos ?
  295                                               (reg_bit_map | q_bit_map) :
  296                                               (reg_bit_map & (~q_bit_map));
  297                                 REG_WR(sc, reg_addr, reg_bit_map);
  298                         }
  299                 }
  300         }
  301 }
  302 
  303 /* Configures the QM according to the specified per-traffic-type COSes */
  304 static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode,
  305                                        struct priority_cos *traffic_cos)
  306 {
  307         ecore_map_q_cos(sc, ECORE_FCOE_Q,
  308                         traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
  309         ecore_map_q_cos(sc, ECORE_ISCSI_Q,
  310                         traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
  311         ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
  312                 traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
  313         if (mode != STATIC_COS) {
  314                 /* required only in OVERRIDE_COS mode */
  315                 ecore_map_q_cos(sc, ECORE_ETH_Q,
  316                                 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
  317                 ecore_map_q_cos(sc, ECORE_TOE_Q,
  318                                 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
  319                 ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
  320                                 traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
  321         }
  322 }
  323 
  324 
  325 /*
  326  * congestion management port init api description
  327  * the api works as follows:
  328  * the driver should pass the cmng_init_input struct, the port_init function
  329  * will prepare the required internal ram structure which will be passed back
  330  * to the driver (cmng_init) that will write it into the internal ram.
  331  *
  332  * IMPORTANT REMARKS:
  333  * 1. the cmng_init struct does not represent the contiguous internal ram
  334  *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
  335  *    offset in order to write the port sub struct and the
  336  *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
  337  *    words - don't use memcpy!).
  338  * 2. although the cmng_init struct is filled for the maximal vnic number
  339  *    possible, the driver should only write the valid vnics into the internal
  340  *    ram according to the appropriate port mode.
  341  */
  342 #define BITS_TO_BYTES(x) ((x)/8)
  343 
  344 /* CMNG constants, as derived from system spec calculations */
  345 
  346 /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
  347 #define DEF_MIN_RATE 100
  348 
  349 /* resolution of the rate shaping timer - 400 usec */
  350 #define RS_PERIODIC_TIMEOUT_USEC 400
  351 
  352 /*
  353  *  number of bytes in single QM arbitration cycle -
  354  *  coefficient for calculating the fairness timer
  355  */
  356 #define QM_ARB_BYTES 160000
  357 
  358 /* resolution of Min algorithm 1:100 */
  359 #define MIN_RES 100
  360 
  361 /*
  362  *  how many bytes above threshold for
  363  *  the minimal credit of Min algorithm
  364  */
  365 #define MIN_ABOVE_THRESH 32768
  366 
  367 /*
  368  *  Fairness algorithm integration time coefficient -
  369  *  for calculating the actual Tfair
  370  */
  371 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
  372 
  373 /* Memory of fairness algorithm - 2 cycles */
  374 #define FAIR_MEM 2
  375 #define SAFC_TIMEOUT_USEC 52
  376 
  377 #define SDM_TICKS 4
  378 
  379 
  380 static inline void ecore_init_max(const struct cmng_init_input *input_data,
  381                                   uint32_t r_param, struct cmng_init *ram_data)
  382 {
  383         uint32_t vnic;
  384         struct cmng_vnic *vdata = &ram_data->vnic;
  385         struct cmng_struct_per_port *pdata = &ram_data->port;
  386         /*
  387          * rate shaping per-port variables
  388          *  100 micro seconds in SDM ticks = 25
  389          *  since each tick is 4 microSeconds
  390          */
  391 
  392         pdata->rs_vars.rs_periodic_timeout =
  393         RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
  394 
  395         /* this is the threshold below which no timer arming will occur.
  396          *  1.25 coefficient is for the threshold to be a little bigger
  397          *  then the real time to compensate for timer in-accuracy
  398          */
  399         pdata->rs_vars.rs_threshold =
  400         (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
  401 
  402         /* rate shaping per-vnic variables */
  403         for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
  404                 /* global vnic counter */
  405                 vdata->vnic_max_rate[vnic].vn_counter.rate =
  406                 input_data->vnic_max_rate[vnic];
  407                 /*
  408                  * maximal Mbps for this vnic
  409                  * the quota in each timer period - number of bytes
  410                  * transmitted in this period
  411                  */
  412                 vdata->vnic_max_rate[vnic].vn_counter.quota =
  413                         RS_PERIODIC_TIMEOUT_USEC *
  414                         (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
  415         }
  416 
  417 }
  418 
  419 static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
  420                                   struct rate_shaping_vars_per_vn *ram_data)
  421 {
  422         /* global vnic counter */
  423         ram_data->vn_counter.rate = vnic_max_rate;
  424 
  425         /*
  426         * maximal Mbps for this vnic
  427         * the quota in each timer period - number of bytes
  428         * transmitted in this period
  429         */
  430         ram_data->vn_counter.quota =
  431                 RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
  432 }
  433 
  434 static inline void ecore_init_min(const struct cmng_init_input *input_data,
  435                                   uint32_t r_param, struct cmng_init *ram_data)
  436 {
  437         uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
  438         struct cmng_vnic *vdata = &ram_data->vnic;
  439         struct cmng_struct_per_port *pdata = &ram_data->port;
  440 
  441         /* this is the resolution of the fairness timer */
  442         fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
  443 
  444         /*
  445          * fairness per-port variables
  446          * for 10G it is 1000usec. for 1G it is 10000usec.
  447          */
  448         tFair = T_FAIR_COEF / input_data->port_rate;
  449 
  450         /* this is the threshold below which we won't arm the timer anymore */
  451         pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
  452 
  453         /*
  454          *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
  455          *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
  456          */
  457         pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
  458 
  459         /* since each tick is 4 microSeconds */
  460         pdata->fair_vars.fairness_timeout =
  461                                 fair_periodic_timeout_usec / SDM_TICKS;
  462 
  463         /* calculate sum of weights */
  464         vnicWeightSum = 0;
  465 
  466         for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
  467                 vnicWeightSum += input_data->vnic_min_rate[vnic];
  468 
  469         /* global vnic counter */
  470         if (vnicWeightSum > 0) {
  471                 /* fairness per-vnic variables */
  472                 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
  473                         /*
  474                          *  this is the credit for each period of the fairness
  475                          *  algorithm - number of bytes in T_FAIR (this vnic
  476                          *  share of the port rate)
  477                          */
  478                         vdata->vnic_min_rate[vnic].vn_credit_delta =
  479                                 ((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
  480                                 (T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
  481                         if (vdata->vnic_min_rate[vnic].vn_credit_delta <
  482                             pdata->fair_vars.fair_threshold +
  483                             MIN_ABOVE_THRESH) {
  484                                 vdata->vnic_min_rate[vnic].vn_credit_delta =
  485                                         pdata->fair_vars.fair_threshold +
  486                                         MIN_ABOVE_THRESH;
  487                         }
  488                 }
  489         }
  490 }
  491 
  492 static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
  493                                      uint32_t r_param, struct cmng_init *ram_data)
  494 {
  495         uint32_t vnic, cos;
  496         uint32_t cosWeightSum = 0;
  497         struct cmng_vnic *vdata = &ram_data->vnic;
  498         struct cmng_struct_per_port *pdata = &ram_data->port;
  499 
  500         for (cos = 0; cos < MAX_COS_NUMBER; cos++)
  501                 cosWeightSum += input_data->cos_min_rate[cos];
  502 
  503         if (cosWeightSum > 0) {
  504 
  505                 for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
  506                         /*
  507                          *  Since cos and vnic shouldn't work together the rate
  508                          *  to divide between the coses is the port rate.
  509                          */
  510                         uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
  511                         for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
  512                                 /*
  513                                  * this is the credit for each period of
  514                                  * the fairness algorithm - number of bytes
  515                                  * in T_FAIR (this cos share of the vnic rate)
  516                                  */
  517                                 ccd[cos] =
  518                                     ((uint32_t)input_data->cos_min_rate[cos] * 100 *
  519                                     (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
  520                                  if (ccd[cos] < pdata->fair_vars.fair_threshold
  521                                                 + MIN_ABOVE_THRESH) {
  522                                         ccd[cos] =
  523                                             pdata->fair_vars.fair_threshold +
  524                                             MIN_ABOVE_THRESH;
  525                                 }
  526                         }
  527                 }
  528         }
  529 }
  530 
  531 static inline void ecore_init_safc(const struct cmng_init_input *input_data,
  532                                    struct cmng_init *ram_data)
  533 {
  534         /* in microSeconds */
  535         ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
  536 }
  537 
  538 /* Congestion management port init */
  539 static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
  540                                    struct cmng_init *ram_data)
  541 {
  542         uint32_t r_param;
  543         ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
  544 
  545         ram_data->port.flags = input_data->flags;
  546 
  547         /*
  548          *  number of bytes transmitted in a rate of 10Gbps
  549          *  in one usec = 1.25KB.
  550          */
  551         r_param = BITS_TO_BYTES(input_data->port_rate);
  552         ecore_init_max(input_data, r_param, ram_data);
  553         ecore_init_min(input_data, r_param, ram_data);
  554         ecore_init_fw_wrr(input_data, r_param, ram_data);
  555         ecore_init_safc(input_data, ram_data);
  556 }
  557 
  558 
  559 
  560 
  561 /* Returns the index of start or end of a specific block stage in ops array*/
  562 #define BLOCK_OPS_IDX(block, stage, end) \
  563                         (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
  564 
  565 
  566 #define INITOP_SET              0       /* set the HW directly */
  567 #define INITOP_CLEAR            1       /* clear the HW directly */
  568 #define INITOP_INIT             2       /* set the init-value array */
  569 
  570 /****************************************************************************
  571 * ILT management
  572 ****************************************************************************/
  573 struct ilt_line {
  574         ecore_dma_addr_t page_mapping;
  575         void *page;
  576         uint32_t size;
  577 };
  578 
  579 struct ilt_client_info {
  580         uint32_t page_size;
  581         uint16_t start;
  582         uint16_t end;
  583         uint16_t client_num;
  584         uint16_t flags;
  585 #define ILT_CLIENT_SKIP_INIT    0x1
  586 #define ILT_CLIENT_SKIP_MEM     0x2
  587 };
  588 
  589 struct ecore_ilt {
  590         uint32_t start_line;
  591         struct ilt_line         *lines;
  592         struct ilt_client_info  clients[4];
  593 #define ILT_CLIENT_CDU  0
  594 #define ILT_CLIENT_QM   1
  595 #define ILT_CLIENT_SRC  2
  596 #define ILT_CLIENT_TM   3
  597 };
  598 
  599 /****************************************************************************
  600 * SRC configuration
  601 ****************************************************************************/
  602 struct src_ent {
  603         uint8_t opaque[56];
  604         uint64_t next;
  605 };
  606 
  607 /****************************************************************************
  608 * Parity configuration
  609 ****************************************************************************/
  610 #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
  611 { \
  612         block##_REG_##block##_PRTY_MASK, \
  613         block##_REG_##block##_PRTY_STS_CLR, \
  614         en_mask, {m1, m1h, m2, m3}, #block \
  615 }
  616 
  617 #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
  618 { \
  619         block##_REG_##block##_PRTY_MASK_0, \
  620         block##_REG_##block##_PRTY_STS_CLR_0, \
  621         en_mask, {m1, m1h, m2, m3}, #block"_0" \
  622 }
  623 
  624 #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
  625 { \
  626         block##_REG_##block##_PRTY_MASK_1, \
  627         block##_REG_##block##_PRTY_STS_CLR_1, \
  628         en_mask, {m1, m1h, m2, m3}, #block"_1" \
  629 }
  630 
  631 static const struct {
  632         uint32_t mask_addr;
  633         uint32_t sts_clr_addr;
  634         uint32_t en_mask;               /* Mask to enable parity attentions */
  635         struct {
  636                 uint32_t e1;            /* 57710 */
  637                 uint32_t e1h;   /* 57711 */
  638                 uint32_t e2;            /* 57712 */
  639                 uint32_t e3;            /* 578xx */
  640         } reg_mask;             /* Register mask (all valid bits) */
  641         char name[8];           /* Block's longest name is 7 characters long
  642                                  * (name + suffix)
  643                                  */
  644 } ecore_blocks_parity_data[] = {
  645         /* bit 19 masked */
  646         /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
  647         /* bit 5,18,20-31 */
  648         /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
  649         /* bit 5 */
  650         /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
  651         /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
  652         /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
  653 
  654         /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
  655          * want to handle "system kill" flow at the moment.
  656          */
  657         BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
  658                         0x7ffffff),
  659         BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
  660                           0xffffffff),
  661         BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
  662         BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
  663         BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
  664         BLOCK_PRTY_INFO_0(NIG,  0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
  665         BLOCK_PRTY_INFO_1(NIG,  0xffff, 0, 0, 0xff, 0xffff),
  666         BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
  667         BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
  668         BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
  669         BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
  670         BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
  671         BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
  672         {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
  673                 GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
  674                 {0xf, 0xf, 0xf, 0xf}, "UPB"},
  675         {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
  676                 GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
  677                 {0xf, 0xf, 0xf, 0xf}, "XPB"},
  678         BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
  679         BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
  680         BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
  681         BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
  682         BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
  683         BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
  684         BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
  685         BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
  686         BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
  687         BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
  688         BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
  689         BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
  690         BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
  691         BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
  692         BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
  693         BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
  694         BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
  695         BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
  696                           0xffffffff),
  697         BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
  698         BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
  699                           0xffffffff),
  700         BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
  701         BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
  702                           0xffffffff),
  703         BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
  704         BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
  705                           0xffffffff),
  706         BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
  707 };
  708 
  709 
  710 /* [28] MCP Latched rom_parity
  711  * [29] MCP Latched ump_rx_parity
  712  * [30] MCP Latched ump_tx_parity
  713  * [31] MCP Latched scpad_parity
  714  */
  715 #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS       \
  716         (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
  717          AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
  718          AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
  719 
  720 #define MISC_AEU_ENABLE_MCP_PRTY_BITS   \
  721         (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
  722          AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
  723 
  724 /* Below registers control the MCP parity attention output. When
  725  * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
  726  * enabled, when cleared - disabled.
  727  */
  728 static const struct {
  729         uint32_t addr;
  730         uint32_t bits;
  731 } mcp_attn_ctl_regs[] = {
  732         { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
  733                 MISC_AEU_ENABLE_MCP_PRTY_BITS },
  734         { MISC_REG_AEU_ENABLE4_NIG_0,
  735                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
  736         { MISC_REG_AEU_ENABLE4_PXP_0,
  737                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
  738         { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
  739                 MISC_AEU_ENABLE_MCP_PRTY_BITS },
  740         { MISC_REG_AEU_ENABLE4_NIG_1,
  741                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
  742         { MISC_REG_AEU_ENABLE4_PXP_1,
  743                 MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
  744 };
  745 
  746 static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable)
  747 {
  748         int i;
  749         uint32_t reg_val;
  750 
  751         for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
  752                 reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
  753 
  754                 if (enable)
  755                         reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
  756                 else
  757                         reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
  758 
  759                 REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
  760         }
  761 }
  762 
  763 static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx)
  764 {
  765         if (CHIP_IS_E1(sc))
  766                 return ecore_blocks_parity_data[idx].reg_mask.e1;
  767         else if (CHIP_IS_E1H(sc))
  768                 return ecore_blocks_parity_data[idx].reg_mask.e1h;
  769         else if (CHIP_IS_E2(sc))
  770                 return ecore_blocks_parity_data[idx].reg_mask.e2;
  771         else /* CHIP_IS_E3 */
  772                 return ecore_blocks_parity_data[idx].reg_mask.e3;
  773 }
  774 
  775 static inline void ecore_disable_blocks_parity(struct bxe_softc *sc)
  776 {
  777         int i;
  778 
  779         for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
  780                 uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
  781 
  782                 if (dis_mask) {
  783                         REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
  784                                dis_mask);
  785                         ECORE_MSG(sc, "Setting parity mask "
  786                                                  "for %s to\t\t0x%x\n",
  787                                     ecore_blocks_parity_data[i].name, dis_mask);
  788                 }
  789         }
  790 
  791         /* Disable MCP parity attentions */
  792         ecore_set_mcp_parity(sc, FALSE);
  793 }
  794 
  795 /**
  796  * Clear the parity error status registers.
  797  */
  798 static inline void ecore_clear_blocks_parity(struct bxe_softc *sc)
  799 {
  800         int i;
  801         uint32_t reg_val, mcp_aeu_bits =
  802                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
  803                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
  804                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
  805                 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
  806 
  807         /* Clear SEM_FAST parities */
  808         REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
  809         REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
  810         REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
  811         REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
  812 
  813         for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
  814                 uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
  815 
  816                 if (reg_mask) {
  817                         reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
  818                                          sts_clr_addr);
  819                         if (reg_val & reg_mask)
  820                                 ECORE_MSG(sc,
  821                                            "Parity errors in %s: 0x%x\n",
  822                                            ecore_blocks_parity_data[i].name,
  823                                            reg_val & reg_mask);
  824                 }
  825         }
  826 
  827         /* Check if there were parity attentions in MCP */
  828         reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
  829         if (reg_val & mcp_aeu_bits)
  830                 ECORE_MSG(sc, "Parity error in MCP: 0x%x\n",
  831                            reg_val & mcp_aeu_bits);
  832 
  833         /* Clear parity attentions in MCP:
  834          * [7]  clears Latched rom_parity
  835          * [8]  clears Latched ump_rx_parity
  836          * [9]  clears Latched ump_tx_parity
  837          * [10] clears Latched scpad_parity (both ports)
  838          */
  839         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
  840 }
  841 
  842 static inline void ecore_enable_blocks_parity(struct bxe_softc *sc)
  843 {
  844         int i;
  845 
  846         for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
  847                 uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
  848 
  849                 if (reg_mask)
  850                         REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
  851                                 ecore_blocks_parity_data[i].en_mask & reg_mask);
  852         }
  853 
  854         /* Enable MCP parity attentions */
  855         ecore_set_mcp_parity(sc, TRUE);
  856 }
  857 
  858 
  859 #endif /* ECORE_INIT_H */
  860 

Cache object: ea26c68055ba23cce98cafbff3786d46


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.