FreeBSD/Linux Kernel Cross Reference
sys/dev/bxe/ecore_sp.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26 * THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "bxe.h"
33 #include "ecore_init.h"
34
35
36
37
38 /**** Exe Queue interfaces ****/
39
40 /**
41 * ecore_exe_queue_init - init the Exe Queue object
42 *
43 * @o: pointer to the object
44 * @exe_len: length
45 * @owner: pointer to the owner
46 * @validate: validate function pointer
47 * @optimize: optimize function pointer
48 * @exec: execute function pointer
49 * @get: get function pointer
50 */
51 static inline void ecore_exe_queue_init(struct bxe_softc *sc,
52 struct ecore_exe_queue_obj *o,
53 int exe_len,
54 union ecore_qable_obj *owner,
55 exe_q_validate validate,
56 exe_q_remove remove,
57 exe_q_optimize optimize,
58 exe_q_execute exec,
59 exe_q_get get)
60 {
61 ECORE_MEMSET(o, 0, sizeof(*o));
62
63 ECORE_LIST_INIT(&o->exe_queue);
64 ECORE_LIST_INIT(&o->pending_comp);
65
66 ECORE_SPIN_LOCK_INIT(&o->lock, sc);
67
68 o->exe_chunk_len = exe_len;
69 o->owner = owner;
70
71 /* Owner specific callbacks */
72 o->validate = validate;
73 o->remove = remove;
74 o->optimize = optimize;
75 o->execute = exec;
76 o->get = get;
77
78 ECORE_MSG(sc, "Setup the execution queue with the chunk length of %d\n",
79 exe_len);
80 }
81
82 static inline void ecore_exe_queue_free_elem(struct bxe_softc *sc,
83 struct ecore_exeq_elem *elem)
84 {
85 ECORE_MSG(sc, "Deleting an exe_queue element\n");
86 ECORE_FREE(sc, elem, sizeof(*elem));
87 }
88
89 static inline int ecore_exe_queue_length(struct ecore_exe_queue_obj *o)
90 {
91 struct ecore_exeq_elem *elem;
92 int cnt = 0;
93
94 ECORE_SPIN_LOCK_BH(&o->lock);
95
96 ECORE_LIST_FOR_EACH_ENTRY(elem, &o->exe_queue, link,
97 struct ecore_exeq_elem)
98 cnt++;
99
100 ECORE_SPIN_UNLOCK_BH(&o->lock);
101
102 return cnt;
103 }
104
105 /**
106 * ecore_exe_queue_add - add a new element to the execution queue
107 *
108 * @sc: driver handle
109 * @o: queue
110 * @cmd: new command to add
111 * @restore: true - do not optimize the command
112 *
113 * If the element is optimized or is illegal, frees it.
114 */
115 static inline int ecore_exe_queue_add(struct bxe_softc *sc,
116 struct ecore_exe_queue_obj *o,
117 struct ecore_exeq_elem *elem,
118 bool restore)
119 {
120 int rc;
121
122 ECORE_SPIN_LOCK_BH(&o->lock);
123
124 if (!restore) {
125 /* Try to cancel this element queue */
126 rc = o->optimize(sc, o->owner, elem);
127 if (rc)
128 goto free_and_exit;
129
130 /* Check if this request is ok */
131 rc = o->validate(sc, o->owner, elem);
132 if (rc) {
133 ECORE_MSG(sc, "Preamble failed: %d\n", rc);
134 goto free_and_exit;
135 }
136 }
137
138 /* If so, add it to the execution queue */
139 ECORE_LIST_PUSH_TAIL(&elem->link, &o->exe_queue);
140
141 ECORE_SPIN_UNLOCK_BH(&o->lock);
142
143 return ECORE_SUCCESS;
144
145 free_and_exit:
146 ecore_exe_queue_free_elem(sc, elem);
147
148 ECORE_SPIN_UNLOCK_BH(&o->lock);
149
150 return rc;
151 }
152
153 static inline void __ecore_exe_queue_reset_pending(
154 struct bxe_softc *sc,
155 struct ecore_exe_queue_obj *o)
156 {
157 struct ecore_exeq_elem *elem;
158
159 while (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
160 elem = ECORE_LIST_FIRST_ENTRY(&o->pending_comp,
161 struct ecore_exeq_elem,
162 link);
163
164 ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->pending_comp);
165 ecore_exe_queue_free_elem(sc, elem);
166 }
167 }
168
169 /**
170 * ecore_exe_queue_step - execute one execution chunk atomically
171 *
172 * @sc: driver handle
173 * @o: queue
174 * @ramrod_flags: flags
175 *
176 * (Should be called while holding the exe_queue->lock).
177 */
178 static inline int ecore_exe_queue_step(struct bxe_softc *sc,
179 struct ecore_exe_queue_obj *o,
180 unsigned long *ramrod_flags)
181 {
182 struct ecore_exeq_elem *elem, spacer;
183 int cur_len = 0, rc;
184
185 ECORE_MEMSET(&spacer, 0, sizeof(spacer));
186
187 /* Next step should not be performed until the current is finished,
188 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
189 * properly clear object internals without sending any command to the FW
190 * which also implies there won't be any completion to clear the
191 * 'pending' list.
192 */
193 if (!ECORE_LIST_IS_EMPTY(&o->pending_comp)) {
194 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
195 ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
196 __ecore_exe_queue_reset_pending(sc, o);
197 } else {
198 return ECORE_PENDING;
199 }
200 }
201
202 /* Run through the pending commands list and create a next
203 * execution chunk.
204 */
205 while (!ECORE_LIST_IS_EMPTY(&o->exe_queue)) {
206 elem = ECORE_LIST_FIRST_ENTRY(&o->exe_queue,
207 struct ecore_exeq_elem,
208 link);
209 ECORE_DBG_BREAK_IF(!elem->cmd_len);
210
211 if (cur_len + elem->cmd_len <= o->exe_chunk_len) {
212 cur_len += elem->cmd_len;
213 /* Prevent from both lists being empty when moving an
214 * element. This will allow the call of
215 * ecore_exe_queue_empty() without locking.
216 */
217 ECORE_LIST_PUSH_TAIL(&spacer.link, &o->pending_comp);
218 mb();
219 ECORE_LIST_REMOVE_ENTRY(&elem->link, &o->exe_queue);
220 ECORE_LIST_PUSH_TAIL(&elem->link, &o->pending_comp);
221 ECORE_LIST_REMOVE_ENTRY(&spacer.link, &o->pending_comp);
222 } else
223 break;
224 }
225
226 /* Sanity check */
227 if (!cur_len)
228 return ECORE_SUCCESS;
229
230 rc = o->execute(sc, o->owner, &o->pending_comp, ramrod_flags);
231 if (rc < 0)
232 /* In case of an error return the commands back to the queue
233 * and reset the pending_comp.
234 */
235 ECORE_LIST_SPLICE_INIT(&o->pending_comp, &o->exe_queue);
236 else if (!rc)
237 /* If zero is returned, means there are no outstanding pending
238 * completions and we may dismiss the pending list.
239 */
240 __ecore_exe_queue_reset_pending(sc, o);
241
242 return rc;
243 }
244
245 static inline bool ecore_exe_queue_empty(struct ecore_exe_queue_obj *o)
246 {
247 bool empty = ECORE_LIST_IS_EMPTY(&o->exe_queue);
248
249 /* Don't reorder!!! */
250 mb();
251
252 return empty && ECORE_LIST_IS_EMPTY(&o->pending_comp);
253 }
254
255 static inline struct ecore_exeq_elem *ecore_exe_queue_alloc_elem(
256 struct bxe_softc *sc)
257 {
258 ECORE_MSG(sc, "Allocating a new exe_queue element\n");
259 return ECORE_ZALLOC(sizeof(struct ecore_exeq_elem), GFP_ATOMIC,
260 sc);
261 }
262
263 /************************ raw_obj functions ***********************************/
264 static bool ecore_raw_check_pending(struct ecore_raw_obj *o)
265 {
266 /*
267 * !! converts the value returned by ECORE_TEST_BIT such that it
268 * is guaranteed not to be truncated regardless of bool definition.
269 *
270 * Note we cannot simply define the function's return value type
271 * to match the type returned by ECORE_TEST_BIT, as it varies by
272 * platform/implementation.
273 */
274
275 return !!ECORE_TEST_BIT(o->state, o->pstate);
276 }
277
278 static void ecore_raw_clear_pending(struct ecore_raw_obj *o)
279 {
280 ECORE_SMP_MB_BEFORE_CLEAR_BIT();
281 ECORE_CLEAR_BIT(o->state, o->pstate);
282 ECORE_SMP_MB_AFTER_CLEAR_BIT();
283 }
284
285 static void ecore_raw_set_pending(struct ecore_raw_obj *o)
286 {
287 ECORE_SMP_MB_BEFORE_CLEAR_BIT();
288 ECORE_SET_BIT(o->state, o->pstate);
289 ECORE_SMP_MB_AFTER_CLEAR_BIT();
290 }
291
292 /**
293 * ecore_state_wait - wait until the given bit(state) is cleared
294 *
295 * @sc: device handle
296 * @state: state which is to be cleared
297 * @state_p: state buffer
298 *
299 */
300 static inline int ecore_state_wait(struct bxe_softc *sc, int state,
301 unsigned long *pstate)
302 {
303 /* can take a while if any port is running */
304 int cnt = 5000;
305
306
307 if (CHIP_REV_IS_EMUL(sc))
308 cnt *= 20;
309
310 ECORE_MSG(sc, "waiting for state to become %d\n", state);
311
312 ECORE_MIGHT_SLEEP();
313 while (cnt--) {
314 if (!ECORE_TEST_BIT(state, pstate)) {
315 #ifdef ECORE_STOP_ON_ERROR
316 ECORE_MSG(sc, "exit (cnt %d)\n", 5000 - cnt);
317 #endif
318 return ECORE_SUCCESS;
319 }
320
321 ECORE_WAIT(sc, delay_us);
322
323 if (sc->panic)
324 return ECORE_IO;
325 }
326
327 /* timeout! */
328 ECORE_ERR("timeout waiting for state %d\n", state);
329 #ifdef ECORE_STOP_ON_ERROR
330 ecore_panic();
331 #endif
332
333 return ECORE_TIMEOUT;
334 }
335
336 static int ecore_raw_wait(struct bxe_softc *sc, struct ecore_raw_obj *raw)
337 {
338 return ecore_state_wait(sc, raw->state, raw->pstate);
339 }
340
341 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
342 /* credit handling callbacks */
343 static bool ecore_get_cam_offset_mac(struct ecore_vlan_mac_obj *o, int *offset)
344 {
345 struct ecore_credit_pool_obj *mp = o->macs_pool;
346
347 ECORE_DBG_BREAK_IF(!mp);
348
349 return mp->get_entry(mp, offset);
350 }
351
352 static bool ecore_get_credit_mac(struct ecore_vlan_mac_obj *o)
353 {
354 struct ecore_credit_pool_obj *mp = o->macs_pool;
355
356 ECORE_DBG_BREAK_IF(!mp);
357
358 return mp->get(mp, 1);
359 }
360
361 static bool ecore_get_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int *offset)
362 {
363 struct ecore_credit_pool_obj *vp = o->vlans_pool;
364
365 ECORE_DBG_BREAK_IF(!vp);
366
367 return vp->get_entry(vp, offset);
368 }
369
370 static bool ecore_get_credit_vlan(struct ecore_vlan_mac_obj *o)
371 {
372 struct ecore_credit_pool_obj *vp = o->vlans_pool;
373
374 ECORE_DBG_BREAK_IF(!vp);
375
376 return vp->get(vp, 1);
377 }
378
379 static bool ecore_get_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
380 {
381 struct ecore_credit_pool_obj *mp = o->macs_pool;
382 struct ecore_credit_pool_obj *vp = o->vlans_pool;
383
384 if (!mp->get(mp, 1))
385 return FALSE;
386
387 if (!vp->get(vp, 1)) {
388 mp->put(mp, 1);
389 return FALSE;
390 }
391
392 return TRUE;
393 }
394
395 static bool ecore_put_cam_offset_mac(struct ecore_vlan_mac_obj *o, int offset)
396 {
397 struct ecore_credit_pool_obj *mp = o->macs_pool;
398
399 return mp->put_entry(mp, offset);
400 }
401
402 static bool ecore_put_credit_mac(struct ecore_vlan_mac_obj *o)
403 {
404 struct ecore_credit_pool_obj *mp = o->macs_pool;
405
406 return mp->put(mp, 1);
407 }
408
409 static bool ecore_put_cam_offset_vlan(struct ecore_vlan_mac_obj *o, int offset)
410 {
411 struct ecore_credit_pool_obj *vp = o->vlans_pool;
412
413 return vp->put_entry(vp, offset);
414 }
415
416 static bool ecore_put_credit_vlan(struct ecore_vlan_mac_obj *o)
417 {
418 struct ecore_credit_pool_obj *vp = o->vlans_pool;
419
420 return vp->put(vp, 1);
421 }
422
423 static bool ecore_put_credit_vlan_mac(struct ecore_vlan_mac_obj *o)
424 {
425 struct ecore_credit_pool_obj *mp = o->macs_pool;
426 struct ecore_credit_pool_obj *vp = o->vlans_pool;
427
428 if (!mp->put(mp, 1))
429 return FALSE;
430
431 if (!vp->put(vp, 1)) {
432 mp->get(mp, 1);
433 return FALSE;
434 }
435
436 return TRUE;
437 }
438
439 /**
440 * __ecore_vlan_mac_h_write_trylock - try getting the writer lock on vlan mac
441 * head list.
442 *
443 * @sc: device handle
444 * @o: vlan_mac object
445 *
446 * @details: Non-blocking implementation; should be called under execution
447 * queue lock.
448 */
449 static int __ecore_vlan_mac_h_write_trylock(struct bxe_softc *sc,
450 struct ecore_vlan_mac_obj *o)
451 {
452 if (o->head_reader) {
453 ECORE_MSG(sc, "vlan_mac_lock writer - There are readers; Busy\n");
454 return ECORE_BUSY;
455 }
456
457 ECORE_MSG(sc, "vlan_mac_lock writer - Taken\n");
458 return ECORE_SUCCESS;
459 }
460
461 /**
462 * __ecore_vlan_mac_h_exec_pending - execute step instead of a previous step
463 * which wasn't able to run due to a taken lock on vlan mac head list.
464 *
465 * @sc: device handle
466 * @o: vlan_mac object
467 *
468 * @details Should be called under execution queue lock; notice it might release
469 * and reclaim it during its run.
470 */
471 static void __ecore_vlan_mac_h_exec_pending(struct bxe_softc *sc,
472 struct ecore_vlan_mac_obj *o)
473 {
474 int rc;
475 unsigned long ramrod_flags = o->saved_ramrod_flags;
476
477 ECORE_MSG(sc, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
478 ramrod_flags);
479 o->head_exe_request = FALSE;
480 o->saved_ramrod_flags = 0;
481 rc = ecore_exe_queue_step(sc, &o->exe_queue, &ramrod_flags);
482 if ((rc != ECORE_SUCCESS) && (rc != ECORE_PENDING)) {
483 ECORE_ERR("execution of pending commands failed with rc %d\n",
484 rc);
485 #ifdef ECORE_STOP_ON_ERROR
486 ecore_panic();
487 #endif
488 }
489 }
490
491 /**
492 * __ecore_vlan_mac_h_pend - Pend an execution step which couldn't have been
493 * called due to vlan mac head list lock being taken.
494 *
495 * @sc: device handle
496 * @o: vlan_mac object
497 * @ramrod_flags: ramrod flags of missed execution
498 *
499 * @details Should be called under execution queue lock.
500 */
501 static void __ecore_vlan_mac_h_pend(struct bxe_softc *sc,
502 struct ecore_vlan_mac_obj *o,
503 unsigned long ramrod_flags)
504 {
505 o->head_exe_request = TRUE;
506 o->saved_ramrod_flags = ramrod_flags;
507 ECORE_MSG(sc, "Placing pending execution with ramrod flags %lu\n",
508 ramrod_flags);
509 }
510
511 /**
512 * __ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
513 *
514 * @sc: device handle
515 * @o: vlan_mac object
516 *
517 * @details Should be called under execution queue lock. Notice if a pending
518 * execution exists, it would perform it - possibly releasing and
519 * reclaiming the execution queue lock.
520 */
521 static void __ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
522 struct ecore_vlan_mac_obj *o)
523 {
524 /* It's possible a new pending execution was added since this writer
525 * executed. If so, execute again. [Ad infinitum]
526 */
527 while(o->head_exe_request) {
528 ECORE_MSG(sc, "vlan_mac_lock - writer release encountered a pending request\n");
529 __ecore_vlan_mac_h_exec_pending(sc, o);
530 }
531 }
532
533 /**
534 * ecore_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
535 *
536 * @sc: device handle
537 * @o: vlan_mac object
538 *
539 * @details Notice if a pending execution exists, it would perform it -
540 * possibly releasing and reclaiming the execution queue lock.
541 */
542 void ecore_vlan_mac_h_write_unlock(struct bxe_softc *sc,
543 struct ecore_vlan_mac_obj *o)
544 {
545 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
546 __ecore_vlan_mac_h_write_unlock(sc, o);
547 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
548 }
549
550 /**
551 * __ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
552 *
553 * @sc: device handle
554 * @o: vlan_mac object
555 *
556 * @details Should be called under the execution queue lock. May sleep. May
557 * release and reclaim execution queue lock during its run.
558 */
559 static int __ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
560 struct ecore_vlan_mac_obj *o)
561 {
562 /* If we got here, we're holding lock --> no WRITER exists */
563 o->head_reader++;
564 ECORE_MSG(sc, "vlan_mac_lock - locked reader - number %d\n",
565 o->head_reader);
566
567 return ECORE_SUCCESS;
568 }
569
570 /**
571 * ecore_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
572 *
573 * @sc: device handle
574 * @o: vlan_mac object
575 *
576 * @details May sleep. Claims and releases execution queue lock during its run.
577 */
578 int ecore_vlan_mac_h_read_lock(struct bxe_softc *sc,
579 struct ecore_vlan_mac_obj *o)
580 {
581 int rc;
582
583 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
584 rc = __ecore_vlan_mac_h_read_lock(sc, o);
585 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
586
587 return rc;
588 }
589
590 /**
591 * __ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
592 *
593 * @sc: device handle
594 * @o: vlan_mac object
595 *
596 * @details Should be called under execution queue lock. Notice if a pending
597 * execution exists, it would be performed if this was the last
598 * reader. possibly releasing and reclaiming the execution queue lock.
599 */
600 static void __ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
601 struct ecore_vlan_mac_obj *o)
602 {
603 if (!o->head_reader) {
604 ECORE_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
605 #ifdef ECORE_STOP_ON_ERROR
606 ecore_panic();
607 #endif
608 } else {
609 o->head_reader--;
610 ECORE_MSG(sc, "vlan_mac_lock - decreased readers to %d\n",
611 o->head_reader);
612 }
613
614 /* It's possible a new pending execution was added, and that this reader
615 * was last - if so we need to execute the command.
616 */
617 if (!o->head_reader && o->head_exe_request) {
618 ECORE_MSG(sc, "vlan_mac_lock - reader release encountered a pending request\n");
619
620 /* Writer release will do the trick */
621 __ecore_vlan_mac_h_write_unlock(sc, o);
622 }
623 }
624
625 /**
626 * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
627 *
628 * @sc: device handle
629 * @o: vlan_mac object
630 *
631 * @details Notice if a pending execution exists, it would be performed if this
632 * was the last reader. Claims and releases the execution queue lock
633 * during its run.
634 */
635 void ecore_vlan_mac_h_read_unlock(struct bxe_softc *sc,
636 struct ecore_vlan_mac_obj *o)
637 {
638 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
639 __ecore_vlan_mac_h_read_unlock(sc, o);
640 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
641 }
642
643 /**
644 * ecore_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
645 *
646 * @sc: device handle
647 * @o: vlan_mac object
648 * @n: number of elements to get
649 * @base: base address for element placement
650 * @stride: stride between elements (in bytes)
651 */
652 static int ecore_get_n_elements(struct bxe_softc *sc, struct ecore_vlan_mac_obj *o,
653 int n, uint8_t *base, uint8_t stride, uint8_t size)
654 {
655 struct ecore_vlan_mac_registry_elem *pos;
656 uint8_t *next = base;
657 int counter = 0;
658 int read_lock;
659
660 ECORE_MSG(sc, "get_n_elements - taking vlan_mac_lock (reader)\n");
661 read_lock = ecore_vlan_mac_h_read_lock(sc, o);
662 if (read_lock != ECORE_SUCCESS)
663 ECORE_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
664
665 /* traverse list */
666 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
667 struct ecore_vlan_mac_registry_elem) {
668 if (counter < n) {
669 ECORE_MEMCPY(next, &pos->u, size);
670 counter++;
671 ECORE_MSG(sc, "copied element number %d to address %p element was:\n",
672 counter, next);
673 next += stride + size;
674 }
675 }
676
677 if (read_lock == ECORE_SUCCESS) {
678 ECORE_MSG(sc, "get_n_elements - releasing vlan_mac_lock (reader)\n");
679 ecore_vlan_mac_h_read_unlock(sc, o);
680 }
681
682 return counter * ETH_ALEN;
683 }
684
685 /* check_add() callbacks */
686 static int ecore_check_mac_add(struct bxe_softc *sc,
687 struct ecore_vlan_mac_obj *o,
688 union ecore_classification_ramrod_data *data)
689 {
690 struct ecore_vlan_mac_registry_elem *pos;
691
692 ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for ADD command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
693
694 if (!ECORE_IS_VALID_ETHER_ADDR(data->mac.mac))
695 return ECORE_INVAL;
696
697 /* Check if a requested MAC already exists */
698 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
699 struct ecore_vlan_mac_registry_elem)
700 if (!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN) &&
701 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
702 return ECORE_EXISTS;
703
704 return ECORE_SUCCESS;
705 }
706
707 static int ecore_check_vlan_add(struct bxe_softc *sc,
708 struct ecore_vlan_mac_obj *o,
709 union ecore_classification_ramrod_data *data)
710 {
711 struct ecore_vlan_mac_registry_elem *pos;
712
713 ECORE_MSG(sc, "Checking VLAN %d for ADD command\n", data->vlan.vlan);
714
715 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
716 struct ecore_vlan_mac_registry_elem)
717 if (data->vlan.vlan == pos->u.vlan.vlan)
718 return ECORE_EXISTS;
719
720 return ECORE_SUCCESS;
721 }
722
723 static int ecore_check_vlan_mac_add(struct bxe_softc *sc,
724 struct ecore_vlan_mac_obj *o,
725 union ecore_classification_ramrod_data *data)
726 {
727 struct ecore_vlan_mac_registry_elem *pos;
728
729 ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for ADD command\n",
730 data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
731
732 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
733 struct ecore_vlan_mac_registry_elem)
734 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
735 (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
736 ETH_ALEN)) &&
737 (data->vlan_mac.is_inner_mac ==
738 pos->u.vlan_mac.is_inner_mac))
739 return ECORE_EXISTS;
740
741 return ECORE_SUCCESS;
742 }
743
744 static int ecore_check_vxlan_fltr_add(struct bxe_softc *sc,
745 struct ecore_vlan_mac_obj *o,
746 union ecore_classification_ramrod_data *data)
747 {
748 struct ecore_vlan_mac_registry_elem *pos;
749
750 ECORE_MSG(sc, "Checking VXLAN_FLTR (Inner:%pM, %d) for ADD command\n",
751 data->vxlan_fltr.innermac, data->vxlan_fltr.vni);
752
753 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
754 struct ecore_vlan_mac_registry_elem)
755 if ((!ECORE_MEMCMP(data->vxlan_fltr.innermac,
756 pos->u.vxlan_fltr.innermac,
757 ETH_ALEN)) &&
758 (data->vxlan_fltr.vni == pos->u.vxlan_fltr.vni))
759 return ECORE_EXISTS;
760
761 return ECORE_SUCCESS;
762 }
763
764 /* check_del() callbacks */
765 static struct ecore_vlan_mac_registry_elem *
766 ecore_check_mac_del(struct bxe_softc *sc,
767 struct ecore_vlan_mac_obj *o,
768 union ecore_classification_ramrod_data *data)
769 {
770 struct ecore_vlan_mac_registry_elem *pos;
771
772 ECORE_MSG(sc, "Checking MAC %02x:%02x:%02x:%02x:%02x:%02x for DEL command\n", data->mac.mac[0], data->mac.mac[1], data->mac.mac[2], data->mac.mac[3], data->mac.mac[4], data->mac.mac[5]);
773
774 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
775 struct ecore_vlan_mac_registry_elem)
776 if ((!ECORE_MEMCMP(data->mac.mac, pos->u.mac.mac, ETH_ALEN)) &&
777 (data->mac.is_inner_mac == pos->u.mac.is_inner_mac))
778 return pos;
779
780 return NULL;
781 }
782
783 static struct ecore_vlan_mac_registry_elem *
784 ecore_check_vlan_del(struct bxe_softc *sc,
785 struct ecore_vlan_mac_obj *o,
786 union ecore_classification_ramrod_data *data)
787 {
788 struct ecore_vlan_mac_registry_elem *pos;
789
790 ECORE_MSG(sc, "Checking VLAN %d for DEL command\n", data->vlan.vlan);
791
792 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
793 struct ecore_vlan_mac_registry_elem)
794 if (data->vlan.vlan == pos->u.vlan.vlan)
795 return pos;
796
797 return NULL;
798 }
799
800 static struct ecore_vlan_mac_registry_elem *
801 ecore_check_vlan_mac_del(struct bxe_softc *sc,
802 struct ecore_vlan_mac_obj *o,
803 union ecore_classification_ramrod_data *data)
804 {
805 struct ecore_vlan_mac_registry_elem *pos;
806
807 ECORE_MSG(sc, "Checking VLAN_MAC (%02x:%02x:%02x:%02x:%02x:%02x, %d) for DEL command\n",
808 data->vlan_mac.mac[0], data->vlan_mac.mac[1], data->vlan_mac.mac[2], data->vlan_mac.mac[3], data->vlan_mac.mac[4], data->vlan_mac.mac[5], data->vlan_mac.vlan);
809
810 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
811 struct ecore_vlan_mac_registry_elem)
812 if ((data->vlan_mac.vlan == pos->u.vlan_mac.vlan) &&
813 (!ECORE_MEMCMP(data->vlan_mac.mac, pos->u.vlan_mac.mac,
814 ETH_ALEN)) &&
815 (data->vlan_mac.is_inner_mac ==
816 pos->u.vlan_mac.is_inner_mac))
817 return pos;
818
819 return NULL;
820 }
821
822 static struct ecore_vlan_mac_registry_elem *
823 ecore_check_vxlan_fltr_del
824 (struct bxe_softc *sc,
825 struct ecore_vlan_mac_obj *o,
826 union ecore_classification_ramrod_data *data)
827 {
828 struct ecore_vlan_mac_registry_elem *pos;
829
830 ECORE_MSG(sc, "Checking VXLAN_FLTR (Inner:%pM, %d) for DEL command\n",
831 data->vxlan_fltr.innermac, data->vxlan_fltr.vni);
832
833 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
834 struct ecore_vlan_mac_registry_elem)
835 if ((!ECORE_MEMCMP(data->vxlan_fltr.innermac,
836 pos->u.vxlan_fltr.innermac,
837 ETH_ALEN)) &&
838 (data->vxlan_fltr.vni == pos->u.vxlan_fltr.vni))
839 return pos;
840
841 return NULL;
842 }
843
844 /* check_move() callback */
845 static bool ecore_check_move(struct bxe_softc *sc,
846 struct ecore_vlan_mac_obj *src_o,
847 struct ecore_vlan_mac_obj *dst_o,
848 union ecore_classification_ramrod_data *data)
849 {
850 struct ecore_vlan_mac_registry_elem *pos;
851 int rc;
852
853 /* Check if we can delete the requested configuration from the first
854 * object.
855 */
856 pos = src_o->check_del(sc, src_o, data);
857
858 /* check if configuration can be added */
859 rc = dst_o->check_add(sc, dst_o, data);
860
861 /* If this classification can not be added (is already set)
862 * or can't be deleted - return an error.
863 */
864 if (rc || !pos)
865 return FALSE;
866
867 return TRUE;
868 }
869
870 static bool ecore_check_move_always_err(
871 struct bxe_softc *sc,
872 struct ecore_vlan_mac_obj *src_o,
873 struct ecore_vlan_mac_obj *dst_o,
874 union ecore_classification_ramrod_data *data)
875 {
876 return FALSE;
877 }
878
879 static inline uint8_t ecore_vlan_mac_get_rx_tx_flag(struct ecore_vlan_mac_obj *o)
880 {
881 struct ecore_raw_obj *raw = &o->raw;
882 uint8_t rx_tx_flag = 0;
883
884 if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
885 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
886 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_TX_CMD;
887
888 if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
889 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
890 rx_tx_flag |= ETH_CLASSIFY_CMD_HEADER_RX_CMD;
891
892 return rx_tx_flag;
893 }
894
895 void ecore_set_mac_in_nig(struct bxe_softc *sc,
896 bool add, unsigned char *dev_addr, int index)
897 {
898 uint32_t wb_data[2];
899 uint32_t reg_offset = ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM :
900 NIG_REG_LLH0_FUNC_MEM;
901
902 if (!ECORE_IS_MF_SI_MODE(sc) && !IS_MF_AFEX(sc))
903 return;
904
905 if (index > ECORE_LLH_CAM_MAX_PF_LINE)
906 return;
907
908 ECORE_MSG(sc, "Going to %s LLH configuration at entry %d\n",
909 (add ? "ADD" : "DELETE"), index);
910
911 if (add) {
912 /* LLH_FUNC_MEM is a uint64_t WB register */
913 reg_offset += 8*index;
914
915 wb_data[0] = ((dev_addr[2] << 24) | (dev_addr[3] << 16) |
916 (dev_addr[4] << 8) | dev_addr[5]);
917 wb_data[1] = ((dev_addr[0] << 8) | dev_addr[1]);
918
919 ECORE_REG_WR_DMAE_LEN(sc, reg_offset, wb_data, 2);
920 }
921
922 REG_WR(sc, (ECORE_PORT_ID(sc) ? NIG_REG_LLH1_FUNC_MEM_ENABLE :
923 NIG_REG_LLH0_FUNC_MEM_ENABLE) + 4*index, add);
924 }
925
926 /**
927 * ecore_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
928 *
929 * @sc: device handle
930 * @o: queue for which we want to configure this rule
931 * @add: if TRUE the command is an ADD command, DEL otherwise
932 * @opcode: CLASSIFY_RULE_OPCODE_XXX
933 * @hdr: pointer to a header to setup
934 *
935 */
936 static inline void ecore_vlan_mac_set_cmd_hdr_e2(struct bxe_softc *sc,
937 struct ecore_vlan_mac_obj *o, bool add, int opcode,
938 struct eth_classify_cmd_header *hdr)
939 {
940 struct ecore_raw_obj *raw = &o->raw;
941
942 hdr->client_id = raw->cl_id;
943 hdr->func_id = raw->func_id;
944
945 /* Rx or/and Tx (internal switching) configuration ? */
946 hdr->cmd_general_data |=
947 ecore_vlan_mac_get_rx_tx_flag(o);
948
949 if (add)
950 hdr->cmd_general_data |= ETH_CLASSIFY_CMD_HEADER_IS_ADD;
951
952 hdr->cmd_general_data |=
953 (opcode << ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT);
954 }
955
956 /**
957 * ecore_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
958 *
959 * @cid: connection id
960 * @type: ECORE_FILTER_XXX_PENDING
961 * @hdr: pointer to header to setup
962 * @rule_cnt:
963 *
964 * currently we always configure one rule and echo field to contain a CID and an
965 * opcode type.
966 */
967 static inline void ecore_vlan_mac_set_rdata_hdr_e2(uint32_t cid, int type,
968 struct eth_classify_header *hdr, int rule_cnt)
969 {
970 hdr->echo = ECORE_CPU_TO_LE32((cid & ECORE_SWCID_MASK) |
971 (type << ECORE_SWCID_SHIFT));
972 hdr->rule_cnt = (uint8_t)rule_cnt;
973 }
974
975 /* hw_config() callbacks */
976 static void ecore_set_one_mac_e2(struct bxe_softc *sc,
977 struct ecore_vlan_mac_obj *o,
978 struct ecore_exeq_elem *elem, int rule_idx,
979 int cam_offset)
980 {
981 struct ecore_raw_obj *raw = &o->raw;
982 struct eth_classify_rules_ramrod_data *data =
983 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
984 int rule_cnt = rule_idx + 1, cmd = elem->cmd_data.vlan_mac.cmd;
985 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
986 bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
987 unsigned long *vlan_mac_flags = &elem->cmd_data.vlan_mac.vlan_mac_flags;
988 uint8_t *mac = elem->cmd_data.vlan_mac.u.mac.mac;
989
990 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
991 * relevant. In addition, current implementation is tuned for a
992 * single ETH MAC.
993 *
994 * When multiple unicast ETH MACs PF configuration in switch
995 * independent mode is required (NetQ, multiple netdev MACs,
996 * etc.), consider better utilisation of 8 per function MAC
997 * entries in the LLH register. There is also
998 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
999 * total number of CAM entries to 16.
1000 *
1001 * Currently we won't configure NIG for MACs other than a primary ETH
1002 * MAC and iSCSI L2 MAC.
1003 *
1004 * If this MAC is moving from one Queue to another, no need to change
1005 * NIG configuration.
1006 */
1007 if (cmd != ECORE_VLAN_MAC_MOVE) {
1008 if (ECORE_TEST_BIT(ECORE_ISCSI_ETH_MAC, vlan_mac_flags))
1009 ecore_set_mac_in_nig(sc, add, mac,
1010 ECORE_LLH_CAM_ISCSI_ETH_LINE);
1011 else if (ECORE_TEST_BIT(ECORE_ETH_MAC, vlan_mac_flags))
1012 ecore_set_mac_in_nig(sc, add, mac,
1013 ECORE_LLH_CAM_ETH_LINE);
1014 }
1015
1016 /* Reset the ramrod data buffer for the first rule */
1017 if (rule_idx == 0)
1018 ECORE_MEMSET(data, 0, sizeof(*data));
1019
1020 /* Setup a command header */
1021 ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_MAC,
1022 &rule_entry->mac.header);
1023
1024 ECORE_MSG(sc, "About to %s MAC %02x:%02x:%02x:%02x:%02x:%02x for Queue %d\n",
1025 (add ? "add" : "delete"), mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id);
1026
1027 /* Set a MAC itself */
1028 ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1029 &rule_entry->mac.mac_mid,
1030 &rule_entry->mac.mac_lsb, mac);
1031 rule_entry->mac.inner_mac =
1032 ECORE_CPU_TO_LE16(elem->cmd_data.vlan_mac.u.mac.is_inner_mac);
1033
1034 /* MOVE: Add a rule that will add this MAC to the target Queue */
1035 if (cmd == ECORE_VLAN_MAC_MOVE) {
1036 rule_entry++;
1037 rule_cnt++;
1038
1039 /* Setup ramrod data */
1040 ecore_vlan_mac_set_cmd_hdr_e2(sc,
1041 elem->cmd_data.vlan_mac.target_obj,
1042 TRUE, CLASSIFY_RULE_OPCODE_MAC,
1043 &rule_entry->mac.header);
1044
1045 /* Set a MAC itself */
1046 ecore_set_fw_mac_addr(&rule_entry->mac.mac_msb,
1047 &rule_entry->mac.mac_mid,
1048 &rule_entry->mac.mac_lsb, mac);
1049 rule_entry->mac.inner_mac =
1050 ECORE_CPU_TO_LE16(elem->cmd_data.vlan_mac.
1051 u.mac.is_inner_mac);
1052 }
1053
1054 /* Set the ramrod data header */
1055 /* TODO: take this to the higher level in order to prevent multiple
1056 writing */
1057 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1058 rule_cnt);
1059 }
1060
1061 /**
1062 * ecore_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
1063 *
1064 * @sc: device handle
1065 * @o: queue
1066 * @type:
1067 * @cam_offset: offset in cam memory
1068 * @hdr: pointer to a header to setup
1069 *
1070 * E1/E1H
1071 */
1072 static inline void ecore_vlan_mac_set_rdata_hdr_e1x(struct bxe_softc *sc,
1073 struct ecore_vlan_mac_obj *o, int type, int cam_offset,
1074 struct mac_configuration_hdr *hdr)
1075 {
1076 struct ecore_raw_obj *r = &o->raw;
1077
1078 hdr->length = 1;
1079 hdr->offset = (uint8_t)cam_offset;
1080 hdr->client_id = ECORE_CPU_TO_LE16(0xff);
1081 hdr->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
1082 (type << ECORE_SWCID_SHIFT));
1083 }
1084
1085 static inline void ecore_vlan_mac_set_cfg_entry_e1x(struct bxe_softc *sc,
1086 struct ecore_vlan_mac_obj *o, bool add, int opcode, uint8_t *mac,
1087 uint16_t vlan_id, struct mac_configuration_entry *cfg_entry)
1088 {
1089 struct ecore_raw_obj *r = &o->raw;
1090 uint32_t cl_bit_vec = (1 << r->cl_id);
1091
1092 cfg_entry->clients_bit_vector = ECORE_CPU_TO_LE32(cl_bit_vec);
1093 cfg_entry->pf_id = r->func_id;
1094 cfg_entry->vlan_id = ECORE_CPU_TO_LE16(vlan_id);
1095
1096 if (add) {
1097 ECORE_SET_FLAG(cfg_entry->flags,
1098 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1099 T_ETH_MAC_COMMAND_SET);
1100 ECORE_SET_FLAG(cfg_entry->flags,
1101 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE,
1102 opcode);
1103
1104 /* Set a MAC in a ramrod data */
1105 ecore_set_fw_mac_addr(&cfg_entry->msb_mac_addr,
1106 &cfg_entry->middle_mac_addr,
1107 &cfg_entry->lsb_mac_addr, mac);
1108 } else
1109 ECORE_SET_FLAG(cfg_entry->flags,
1110 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
1111 T_ETH_MAC_COMMAND_INVALIDATE);
1112 }
1113
1114 static inline void ecore_vlan_mac_set_rdata_e1x(struct bxe_softc *sc,
1115 struct ecore_vlan_mac_obj *o, int type, int cam_offset, bool add,
1116 uint8_t *mac, uint16_t vlan_id, int opcode, struct mac_configuration_cmd *config)
1117 {
1118 struct mac_configuration_entry *cfg_entry = &config->config_table[0];
1119 struct ecore_raw_obj *raw = &o->raw;
1120
1121 ecore_vlan_mac_set_rdata_hdr_e1x(sc, o, type, cam_offset,
1122 &config->hdr);
1123 ecore_vlan_mac_set_cfg_entry_e1x(sc, o, add, opcode, mac, vlan_id,
1124 cfg_entry);
1125
1126 ECORE_MSG(sc, "%s MAC %02x:%02x:%02x:%02x:%02x:%02x CLID %d CAM offset %d\n",
1127 (add ? "setting" : "clearing"),
1128 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], raw->cl_id, cam_offset);
1129 }
1130
1131 /**
1132 * ecore_set_one_mac_e1x - fill a single MAC rule ramrod data
1133 *
1134 * @sc: device handle
1135 * @o: ecore_vlan_mac_obj
1136 * @elem: ecore_exeq_elem
1137 * @rule_idx: rule_idx
1138 * @cam_offset: cam_offset
1139 */
1140 static void ecore_set_one_mac_e1x(struct bxe_softc *sc,
1141 struct ecore_vlan_mac_obj *o,
1142 struct ecore_exeq_elem *elem, int rule_idx,
1143 int cam_offset)
1144 {
1145 struct ecore_raw_obj *raw = &o->raw;
1146 struct mac_configuration_cmd *config =
1147 (struct mac_configuration_cmd *)(raw->rdata);
1148 /* 57710 and 57711 do not support MOVE command,
1149 * so it's either ADD or DEL
1150 */
1151 bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1152 TRUE : FALSE;
1153
1154 /* Reset the ramrod data buffer */
1155 ECORE_MEMSET(config, 0, sizeof(*config));
1156
1157 ecore_vlan_mac_set_rdata_e1x(sc, o, raw->state,
1158 cam_offset, add,
1159 elem->cmd_data.vlan_mac.u.mac.mac, 0,
1160 ETH_VLAN_FILTER_ANY_VLAN, config);
1161 }
1162
1163 static void ecore_set_one_vlan_e2(struct bxe_softc *sc,
1164 struct ecore_vlan_mac_obj *o,
1165 struct ecore_exeq_elem *elem, int rule_idx,
1166 int cam_offset)
1167 {
1168 struct ecore_raw_obj *raw = &o->raw;
1169 struct eth_classify_rules_ramrod_data *data =
1170 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1171 int rule_cnt = rule_idx + 1;
1172 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1173 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1174 bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1175 uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan.vlan;
1176
1177 /* Reset the ramrod data buffer for the first rule */
1178 if (rule_idx == 0)
1179 ECORE_MEMSET(data, 0, sizeof(*data));
1180
1181 /* Set a rule header */
1182 ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_VLAN,
1183 &rule_entry->vlan.header);
1184
1185 ECORE_MSG(sc, "About to %s VLAN %d\n", (add ? "add" : "delete"),
1186 vlan);
1187
1188 /* Set a VLAN itself */
1189 rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1190
1191 /* MOVE: Add a rule that will add this MAC to the target Queue */
1192 if (cmd == ECORE_VLAN_MAC_MOVE) {
1193 rule_entry++;
1194 rule_cnt++;
1195
1196 /* Setup ramrod data */
1197 ecore_vlan_mac_set_cmd_hdr_e2(sc,
1198 elem->cmd_data.vlan_mac.target_obj,
1199 TRUE, CLASSIFY_RULE_OPCODE_VLAN,
1200 &rule_entry->vlan.header);
1201
1202 /* Set a VLAN itself */
1203 rule_entry->vlan.vlan = ECORE_CPU_TO_LE16(vlan);
1204 }
1205
1206 /* Set the ramrod data header */
1207 /* TODO: take this to the higher level in order to prevent multiple
1208 writing */
1209 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1210 rule_cnt);
1211 }
1212
1213 static void ecore_set_one_vlan_mac_e2(struct bxe_softc *sc,
1214 struct ecore_vlan_mac_obj *o,
1215 struct ecore_exeq_elem *elem,
1216 int rule_idx, int cam_offset)
1217 {
1218 struct ecore_raw_obj *raw = &o->raw;
1219 struct eth_classify_rules_ramrod_data *data =
1220 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1221 int rule_cnt = rule_idx + 1;
1222 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1223 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1224 bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1225 uint16_t vlan = elem->cmd_data.vlan_mac.u.vlan_mac.vlan;
1226 uint8_t *mac = elem->cmd_data.vlan_mac.u.vlan_mac.mac;
1227
1228 /* Reset the ramrod data buffer for the first rule */
1229 if (rule_idx == 0)
1230 ECORE_MEMSET(data, 0, sizeof(*data));
1231
1232 /* Set a rule header */
1233 ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add, CLASSIFY_RULE_OPCODE_PAIR,
1234 &rule_entry->pair.header);
1235
1236 /* Set VLAN and MAC themselves */
1237 rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1238 ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1239 &rule_entry->pair.mac_mid,
1240 &rule_entry->pair.mac_lsb, mac);
1241 rule_entry->pair.inner_mac =
1242 elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1243 /* MOVE: Add a rule that will add this MAC to the target Queue */
1244 if (cmd == ECORE_VLAN_MAC_MOVE) {
1245 rule_entry++;
1246 rule_cnt++;
1247
1248 /* Setup ramrod data */
1249 ecore_vlan_mac_set_cmd_hdr_e2(sc,
1250 elem->cmd_data.vlan_mac.target_obj,
1251 TRUE, CLASSIFY_RULE_OPCODE_PAIR,
1252 &rule_entry->pair.header);
1253
1254 /* Set a VLAN itself */
1255 rule_entry->pair.vlan = ECORE_CPU_TO_LE16(vlan);
1256 ecore_set_fw_mac_addr(&rule_entry->pair.mac_msb,
1257 &rule_entry->pair.mac_mid,
1258 &rule_entry->pair.mac_lsb, mac);
1259 rule_entry->pair.inner_mac =
1260 elem->cmd_data.vlan_mac.u.vlan_mac.is_inner_mac;
1261 }
1262
1263 /* Set the ramrod data header */
1264 /* TODO: take this to the higher level in order to prevent multiple
1265 writing */
1266 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state, &data->header,
1267 rule_cnt);
1268 }
1269
1270 static void ecore_set_one_vxlan_fltr_e2(struct bxe_softc *sc,
1271 struct ecore_vlan_mac_obj *o,
1272 struct ecore_exeq_elem *elem,
1273 int rule_idx, int cam_offset)
1274 {
1275 struct ecore_raw_obj *raw = &o->raw;
1276 struct eth_classify_rules_ramrod_data *data =
1277 (struct eth_classify_rules_ramrod_data *)(raw->rdata);
1278 int rule_cnt = rule_idx + 1;
1279 union eth_classify_rule_cmd *rule_entry = &data->rules[rule_idx];
1280 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1281 bool add = (cmd == ECORE_VLAN_MAC_ADD) ? TRUE : FALSE;
1282 uint32_t vni = elem->cmd_data.vlan_mac.u.vxlan_fltr.vni;
1283 uint8_t *mac = elem->cmd_data.vlan_mac.u.vxlan_fltr.innermac;
1284
1285 /* Reset the ramrod data buffer for the first rule */
1286 if (rule_idx == 0)
1287 ECORE_MEMSET(data, 0, sizeof(*data));
1288
1289 /* Set a rule header */
1290 ecore_vlan_mac_set_cmd_hdr_e2(sc, o, add,
1291 CLASSIFY_RULE_OPCODE_IMAC_VNI,
1292 &rule_entry->imac_vni.header);
1293
1294 /* Set VLAN and MAC themselves */
1295 rule_entry->imac_vni.vni = vni;
1296 ecore_set_fw_mac_addr(&rule_entry->imac_vni.imac_msb,
1297 &rule_entry->imac_vni.imac_mid,
1298 &rule_entry->imac_vni.imac_lsb, mac);
1299
1300 /* MOVE: Add a rule that will add this MAC to the target Queue */
1301 if (cmd == ECORE_VLAN_MAC_MOVE) {
1302 rule_entry++;
1303 rule_cnt++;
1304
1305 /* Setup ramrod data */
1306 ecore_vlan_mac_set_cmd_hdr_e2(sc,
1307 elem->cmd_data.vlan_mac.target_obj,
1308 TRUE, CLASSIFY_RULE_OPCODE_IMAC_VNI,
1309 &rule_entry->imac_vni.header);
1310
1311 /* Set a VLAN itself */
1312 rule_entry->imac_vni.vni = vni;
1313 ecore_set_fw_mac_addr(&rule_entry->imac_vni.imac_msb,
1314 &rule_entry->imac_vni.imac_mid,
1315 &rule_entry->imac_vni.imac_lsb, mac);
1316 }
1317
1318 /* Set the ramrod data header */
1319 /* TODO: take this to the higher level in order to prevent multiple
1320 * writing
1321 */
1322 ecore_vlan_mac_set_rdata_hdr_e2(raw->cid, raw->state,
1323 &data->header, rule_cnt);
1324 }
1325
1326 /**
1327 * ecore_set_one_vlan_mac_e1h -
1328 *
1329 * @sc: device handle
1330 * @o: ecore_vlan_mac_obj
1331 * @elem: ecore_exeq_elem
1332 * @rule_idx: rule_idx
1333 * @cam_offset: cam_offset
1334 */
1335 static void ecore_set_one_vlan_mac_e1h(struct bxe_softc *sc,
1336 struct ecore_vlan_mac_obj *o,
1337 struct ecore_exeq_elem *elem,
1338 int rule_idx, int cam_offset)
1339 {
1340 struct ecore_raw_obj *raw = &o->raw;
1341 struct mac_configuration_cmd *config =
1342 (struct mac_configuration_cmd *)(raw->rdata);
1343 /* 57710 and 57711 do not support MOVE command,
1344 * so it's either ADD or DEL
1345 */
1346 bool add = (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1347 TRUE : FALSE;
1348
1349 /* Reset the ramrod data buffer */
1350 ECORE_MEMSET(config, 0, sizeof(*config));
1351
1352 ecore_vlan_mac_set_rdata_e1x(sc, o, ECORE_FILTER_VLAN_MAC_PENDING,
1353 cam_offset, add,
1354 elem->cmd_data.vlan_mac.u.vlan_mac.mac,
1355 elem->cmd_data.vlan_mac.u.vlan_mac.vlan,
1356 ETH_VLAN_FILTER_CLASSIFY, config);
1357 }
1358
1359 #define list_next_entry(pos, member) \
1360 list_entry((pos)->member.next, typeof(*(pos)), member)
1361
1362 /**
1363 * ecore_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1364 *
1365 * @sc: device handle
1366 * @p: command parameters
1367 * @ppos: pointer to the cookie
1368 *
1369 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1370 * previously configured elements list.
1371 *
1372 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1373 * into an account
1374 *
1375 * pointer to the cookie - that should be given back in the next call to make
1376 * function handle the next element. If *ppos is set to NULL it will restart the
1377 * iterator. If returned *ppos == NULL this means that the last element has been
1378 * handled.
1379 *
1380 */
1381 static int ecore_vlan_mac_restore(struct bxe_softc *sc,
1382 struct ecore_vlan_mac_ramrod_params *p,
1383 struct ecore_vlan_mac_registry_elem **ppos)
1384 {
1385 struct ecore_vlan_mac_registry_elem *pos;
1386 struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
1387
1388 /* If list is empty - there is nothing to do here */
1389 if (ECORE_LIST_IS_EMPTY(&o->head)) {
1390 *ppos = NULL;
1391 return 0;
1392 }
1393
1394 /* make a step... */
1395 if (*ppos == NULL)
1396 *ppos = ECORE_LIST_FIRST_ENTRY(&o->head,
1397 struct ecore_vlan_mac_registry_elem,
1398 link);
1399 else
1400 *ppos = ECORE_LIST_NEXT(*ppos, link,
1401 struct ecore_vlan_mac_registry_elem);
1402
1403 pos = *ppos;
1404
1405 /* If it's the last step - return NULL */
1406 if (ECORE_LIST_IS_LAST(&pos->link, &o->head))
1407 *ppos = NULL;
1408
1409 /* Prepare a 'user_req' */
1410 ECORE_MEMCPY(&p->user_req.u, &pos->u, sizeof(pos->u));
1411
1412 /* Set the command */
1413 p->user_req.cmd = ECORE_VLAN_MAC_ADD;
1414
1415 /* Set vlan_mac_flags */
1416 p->user_req.vlan_mac_flags = pos->vlan_mac_flags;
1417
1418 /* Set a restore bit */
1419 ECORE_SET_BIT_NA(RAMROD_RESTORE, &p->ramrod_flags);
1420
1421 return ecore_config_vlan_mac(sc, p);
1422 }
1423
1424 /* ecore_exeq_get_mac/ecore_exeq_get_vlan/ecore_exeq_get_vlan_mac return a
1425 * pointer to an element with a specific criteria and NULL if such an element
1426 * hasn't been found.
1427 */
1428 static struct ecore_exeq_elem *ecore_exeq_get_mac(
1429 struct ecore_exe_queue_obj *o,
1430 struct ecore_exeq_elem *elem)
1431 {
1432 struct ecore_exeq_elem *pos;
1433 struct ecore_mac_ramrod_data *data = &elem->cmd_data.vlan_mac.u.mac;
1434
1435 /* Check pending for execution commands */
1436 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1437 struct ecore_exeq_elem)
1438 if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.mac, data,
1439 sizeof(*data)) &&
1440 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1441 return pos;
1442
1443 return NULL;
1444 }
1445
1446 static struct ecore_exeq_elem *ecore_exeq_get_vlan(
1447 struct ecore_exe_queue_obj *o,
1448 struct ecore_exeq_elem *elem)
1449 {
1450 struct ecore_exeq_elem *pos;
1451 struct ecore_vlan_ramrod_data *data = &elem->cmd_data.vlan_mac.u.vlan;
1452
1453 /* Check pending for execution commands */
1454 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1455 struct ecore_exeq_elem)
1456 if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan, data,
1457 sizeof(*data)) &&
1458 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1459 return pos;
1460
1461 return NULL;
1462 }
1463
1464 static struct ecore_exeq_elem *ecore_exeq_get_vlan_mac(
1465 struct ecore_exe_queue_obj *o,
1466 struct ecore_exeq_elem *elem)
1467 {
1468 struct ecore_exeq_elem *pos;
1469 struct ecore_vlan_mac_ramrod_data *data =
1470 &elem->cmd_data.vlan_mac.u.vlan_mac;
1471
1472 /* Check pending for execution commands */
1473 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1474 struct ecore_exeq_elem)
1475 if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vlan_mac, data,
1476 sizeof(*data)) &&
1477 (pos->cmd_data.vlan_mac.cmd == elem->cmd_data.vlan_mac.cmd))
1478 return pos;
1479
1480 return NULL;
1481 }
1482
1483 static struct ecore_exeq_elem *ecore_exeq_get_vxlan_fltr
1484 (struct ecore_exe_queue_obj *o,
1485 struct ecore_exeq_elem *elem)
1486 {
1487 struct ecore_exeq_elem *pos;
1488 struct ecore_vxlan_fltr_ramrod_data *data =
1489 &elem->cmd_data.vlan_mac.u.vxlan_fltr;
1490
1491 /* Check pending for execution commands */
1492 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->exe_queue, link,
1493 struct ecore_exeq_elem)
1494 if (!ECORE_MEMCMP(&pos->cmd_data.vlan_mac.u.vxlan_fltr, data,
1495 sizeof(*data)) &&
1496 (pos->cmd_data.vlan_mac.cmd ==
1497 elem->cmd_data.vlan_mac.cmd))
1498 return pos;
1499
1500 return NULL;
1501 }
1502
1503 /**
1504 * ecore_validate_vlan_mac_add - check if an ADD command can be executed
1505 *
1506 * @sc: device handle
1507 * @qo: ecore_qable_obj
1508 * @elem: ecore_exeq_elem
1509 *
1510 * Checks that the requested configuration can be added. If yes and if
1511 * requested, consume CAM credit.
1512 *
1513 * The 'validate' is run after the 'optimize'.
1514 *
1515 */
1516 static inline int ecore_validate_vlan_mac_add(struct bxe_softc *sc,
1517 union ecore_qable_obj *qo,
1518 struct ecore_exeq_elem *elem)
1519 {
1520 struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1521 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1522 int rc;
1523
1524 /* Check the registry */
1525 rc = o->check_add(sc, o, &elem->cmd_data.vlan_mac.u);
1526 if (rc) {
1527 ECORE_MSG(sc, "ADD command is not allowed considering current registry state.\n");
1528 return rc;
1529 }
1530
1531 /* Check if there is a pending ADD command for this
1532 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1533 */
1534 if (exeq->get(exeq, elem)) {
1535 ECORE_MSG(sc, "There is a pending ADD command already\n");
1536 return ECORE_EXISTS;
1537 }
1538
1539 /* TODO: Check the pending MOVE from other objects where this
1540 * object is a destination object.
1541 */
1542
1543 /* Consume the credit if not requested not to */
1544 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1545 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1546 o->get_credit(o)))
1547 return ECORE_INVAL;
1548
1549 return ECORE_SUCCESS;
1550 }
1551
1552 /**
1553 * ecore_validate_vlan_mac_del - check if the DEL command can be executed
1554 *
1555 * @sc: device handle
1556 * @qo: quable object to check
1557 * @elem: element that needs to be deleted
1558 *
1559 * Checks that the requested configuration can be deleted. If yes and if
1560 * requested, returns a CAM credit.
1561 *
1562 * The 'validate' is run after the 'optimize'.
1563 */
1564 static inline int ecore_validate_vlan_mac_del(struct bxe_softc *sc,
1565 union ecore_qable_obj *qo,
1566 struct ecore_exeq_elem *elem)
1567 {
1568 struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1569 struct ecore_vlan_mac_registry_elem *pos;
1570 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1571 struct ecore_exeq_elem query_elem;
1572
1573 /* If this classification can not be deleted (doesn't exist)
1574 * - return a ECORE_EXIST.
1575 */
1576 pos = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1577 if (!pos) {
1578 ECORE_MSG(sc, "DEL command is not allowed considering current registry state\n");
1579 return ECORE_EXISTS;
1580 }
1581
1582 /* Check if there are pending DEL or MOVE commands for this
1583 * MAC/VLAN/VLAN-MAC. Return an error if so.
1584 */
1585 ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1586
1587 /* Check for MOVE commands */
1588 query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_MOVE;
1589 if (exeq->get(exeq, &query_elem)) {
1590 ECORE_ERR("There is a pending MOVE command already\n");
1591 return ECORE_INVAL;
1592 }
1593
1594 /* Check for DEL commands */
1595 if (exeq->get(exeq, elem)) {
1596 ECORE_MSG(sc, "There is a pending DEL command already\n");
1597 return ECORE_EXISTS;
1598 }
1599
1600 /* Return the credit to the credit pool if not requested not to */
1601 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1602 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1603 o->put_credit(o))) {
1604 ECORE_ERR("Failed to return a credit\n");
1605 return ECORE_INVAL;
1606 }
1607
1608 return ECORE_SUCCESS;
1609 }
1610
1611 /**
1612 * ecore_validate_vlan_mac_move - check if the MOVE command can be executed
1613 *
1614 * @sc: device handle
1615 * @qo: quable object to check (source)
1616 * @elem: element that needs to be moved
1617 *
1618 * Checks that the requested configuration can be moved. If yes and if
1619 * requested, returns a CAM credit.
1620 *
1621 * The 'validate' is run after the 'optimize'.
1622 */
1623 static inline int ecore_validate_vlan_mac_move(struct bxe_softc *sc,
1624 union ecore_qable_obj *qo,
1625 struct ecore_exeq_elem *elem)
1626 {
1627 struct ecore_vlan_mac_obj *src_o = &qo->vlan_mac;
1628 struct ecore_vlan_mac_obj *dest_o = elem->cmd_data.vlan_mac.target_obj;
1629 struct ecore_exeq_elem query_elem;
1630 struct ecore_exe_queue_obj *src_exeq = &src_o->exe_queue;
1631 struct ecore_exe_queue_obj *dest_exeq = &dest_o->exe_queue;
1632
1633 /* Check if we can perform this operation based on the current registry
1634 * state.
1635 */
1636 if (!src_o->check_move(sc, src_o, dest_o,
1637 &elem->cmd_data.vlan_mac.u)) {
1638 ECORE_MSG(sc, "MOVE command is not allowed considering current registry state\n");
1639 return ECORE_INVAL;
1640 }
1641
1642 /* Check if there is an already pending DEL or MOVE command for the
1643 * source object or ADD command for a destination object. Return an
1644 * error if so.
1645 */
1646 ECORE_MEMCPY(&query_elem, elem, sizeof(query_elem));
1647
1648 /* Check DEL on source */
1649 query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1650 if (src_exeq->get(src_exeq, &query_elem)) {
1651 ECORE_ERR("There is a pending DEL command on the source queue already\n");
1652 return ECORE_INVAL;
1653 }
1654
1655 /* Check MOVE on source */
1656 if (src_exeq->get(src_exeq, elem)) {
1657 ECORE_MSG(sc, "There is a pending MOVE command already\n");
1658 return ECORE_EXISTS;
1659 }
1660
1661 /* Check ADD on destination */
1662 query_elem.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1663 if (dest_exeq->get(dest_exeq, &query_elem)) {
1664 ECORE_ERR("There is a pending ADD command on the destination queue already\n");
1665 return ECORE_INVAL;
1666 }
1667
1668 /* Consume the credit if not requested not to */
1669 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT_DEST,
1670 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1671 dest_o->get_credit(dest_o)))
1672 return ECORE_INVAL;
1673
1674 if (!(ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1675 &elem->cmd_data.vlan_mac.vlan_mac_flags) ||
1676 src_o->put_credit(src_o))) {
1677 /* return the credit taken from dest... */
1678 dest_o->put_credit(dest_o);
1679 return ECORE_INVAL;
1680 }
1681
1682 return ECORE_SUCCESS;
1683 }
1684
1685 static int ecore_validate_vlan_mac(struct bxe_softc *sc,
1686 union ecore_qable_obj *qo,
1687 struct ecore_exeq_elem *elem)
1688 {
1689 switch (elem->cmd_data.vlan_mac.cmd) {
1690 case ECORE_VLAN_MAC_ADD:
1691 return ecore_validate_vlan_mac_add(sc, qo, elem);
1692 case ECORE_VLAN_MAC_DEL:
1693 return ecore_validate_vlan_mac_del(sc, qo, elem);
1694 case ECORE_VLAN_MAC_MOVE:
1695 return ecore_validate_vlan_mac_move(sc, qo, elem);
1696 default:
1697 return ECORE_INVAL;
1698 }
1699 }
1700
1701 static int ecore_remove_vlan_mac(struct bxe_softc *sc,
1702 union ecore_qable_obj *qo,
1703 struct ecore_exeq_elem *elem)
1704 {
1705 int rc = 0;
1706
1707 /* If consumption wasn't required, nothing to do */
1708 if (ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1709 &elem->cmd_data.vlan_mac.vlan_mac_flags))
1710 return ECORE_SUCCESS;
1711
1712 switch (elem->cmd_data.vlan_mac.cmd) {
1713 case ECORE_VLAN_MAC_ADD:
1714 case ECORE_VLAN_MAC_MOVE:
1715 rc = qo->vlan_mac.put_credit(&qo->vlan_mac);
1716 break;
1717 case ECORE_VLAN_MAC_DEL:
1718 rc = qo->vlan_mac.get_credit(&qo->vlan_mac);
1719 break;
1720 default:
1721 return ECORE_INVAL;
1722 }
1723
1724 if (rc != TRUE)
1725 return ECORE_INVAL;
1726
1727 return ECORE_SUCCESS;
1728 }
1729
1730 /**
1731 * ecore_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1732 *
1733 * @sc: device handle
1734 * @o: ecore_vlan_mac_obj
1735 *
1736 */
1737 static int ecore_wait_vlan_mac(struct bxe_softc *sc,
1738 struct ecore_vlan_mac_obj *o)
1739 {
1740 int cnt = 5000, rc;
1741 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1742 struct ecore_raw_obj *raw = &o->raw;
1743
1744 while (cnt--) {
1745 /* Wait for the current command to complete */
1746 rc = raw->wait_comp(sc, raw);
1747 if (rc)
1748 return rc;
1749
1750 /* Wait until there are no pending commands */
1751 if (!ecore_exe_queue_empty(exeq))
1752 ECORE_WAIT(sc, 1000);
1753 else
1754 return ECORE_SUCCESS;
1755 }
1756
1757 return ECORE_TIMEOUT;
1758 }
1759
1760 static int __ecore_vlan_mac_execute_step(struct bxe_softc *sc,
1761 struct ecore_vlan_mac_obj *o,
1762 unsigned long *ramrod_flags)
1763 {
1764 int rc = ECORE_SUCCESS;
1765
1766 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1767
1768 ECORE_MSG(sc, "vlan_mac_execute_step - trying to take writer lock\n");
1769 rc = __ecore_vlan_mac_h_write_trylock(sc, o);
1770
1771 if (rc != ECORE_SUCCESS) {
1772 __ecore_vlan_mac_h_pend(sc, o, *ramrod_flags);
1773
1774 /** Calling function should not diffrentiate between this case
1775 * and the case in which there is already a pending ramrod
1776 */
1777 rc = ECORE_PENDING;
1778 } else {
1779 rc = ecore_exe_queue_step(sc, &o->exe_queue, ramrod_flags);
1780 }
1781 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1782
1783 return rc;
1784 }
1785
1786 /**
1787 * ecore_complete_vlan_mac - complete one VLAN-MAC ramrod
1788 *
1789 * @sc: device handle
1790 * @o: ecore_vlan_mac_obj
1791 * @cqe:
1792 * @cont: if TRUE schedule next execution chunk
1793 *
1794 */
1795 static int ecore_complete_vlan_mac(struct bxe_softc *sc,
1796 struct ecore_vlan_mac_obj *o,
1797 union event_ring_elem *cqe,
1798 unsigned long *ramrod_flags)
1799 {
1800 struct ecore_raw_obj *r = &o->raw;
1801 int rc;
1802
1803 /* Clearing the pending list & raw state should be made
1804 * atomically (as execution flow assumes they represent the same)
1805 */
1806 ECORE_SPIN_LOCK_BH(&o->exe_queue.lock);
1807
1808 /* Reset pending list */
1809 __ecore_exe_queue_reset_pending(sc, &o->exe_queue);
1810
1811 /* Clear pending */
1812 r->clear_pending(r);
1813
1814 ECORE_SPIN_UNLOCK_BH(&o->exe_queue.lock);
1815
1816 /* If ramrod failed this is most likely a SW bug */
1817 if (cqe->message.error)
1818 return ECORE_INVAL;
1819
1820 /* Run the next bulk of pending commands if requested */
1821 if (ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags)) {
1822 rc = __ecore_vlan_mac_execute_step(sc, o, ramrod_flags);
1823 if (rc < 0)
1824 return rc;
1825 }
1826
1827 /* If there is more work to do return PENDING */
1828 if (!ecore_exe_queue_empty(&o->exe_queue))
1829 return ECORE_PENDING;
1830
1831 return ECORE_SUCCESS;
1832 }
1833
1834 /**
1835 * ecore_optimize_vlan_mac - optimize ADD and DEL commands.
1836 *
1837 * @sc: device handle
1838 * @o: ecore_qable_obj
1839 * @elem: ecore_exeq_elem
1840 */
1841 static int ecore_optimize_vlan_mac(struct bxe_softc *sc,
1842 union ecore_qable_obj *qo,
1843 struct ecore_exeq_elem *elem)
1844 {
1845 struct ecore_exeq_elem query, *pos;
1846 struct ecore_vlan_mac_obj *o = &qo->vlan_mac;
1847 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
1848
1849 ECORE_MEMCPY(&query, elem, sizeof(query));
1850
1851 switch (elem->cmd_data.vlan_mac.cmd) {
1852 case ECORE_VLAN_MAC_ADD:
1853 query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_DEL;
1854 break;
1855 case ECORE_VLAN_MAC_DEL:
1856 query.cmd_data.vlan_mac.cmd = ECORE_VLAN_MAC_ADD;
1857 break;
1858 default:
1859 /* Don't handle anything other than ADD or DEL */
1860 return 0;
1861 }
1862
1863 /* If we found the appropriate element - delete it */
1864 pos = exeq->get(exeq, &query);
1865 if (pos) {
1866
1867 /* Return the credit of the optimized command */
1868 if (!ECORE_TEST_BIT(ECORE_DONT_CONSUME_CAM_CREDIT,
1869 &pos->cmd_data.vlan_mac.vlan_mac_flags)) {
1870 if ((query.cmd_data.vlan_mac.cmd ==
1871 ECORE_VLAN_MAC_ADD) && !o->put_credit(o)) {
1872 ECORE_ERR("Failed to return the credit for the optimized ADD command\n");
1873 return ECORE_INVAL;
1874 } else if (!o->get_credit(o)) { /* VLAN_MAC_DEL */
1875 ECORE_ERR("Failed to recover the credit from the optimized DEL command\n");
1876 return ECORE_INVAL;
1877 }
1878 }
1879
1880 ECORE_MSG(sc, "Optimizing %s command\n",
1881 (elem->cmd_data.vlan_mac.cmd == ECORE_VLAN_MAC_ADD) ?
1882 "ADD" : "DEL");
1883
1884 ECORE_LIST_REMOVE_ENTRY(&pos->link, &exeq->exe_queue);
1885 ecore_exe_queue_free_elem(sc, pos);
1886 return 1;
1887 }
1888
1889 return 0;
1890 }
1891
1892 /**
1893 * ecore_vlan_mac_get_registry_elem - prepare a registry element
1894 *
1895 * @sc: device handle
1896 * @o:
1897 * @elem:
1898 * @restore:
1899 * @re:
1900 *
1901 * prepare a registry element according to the current command request.
1902 */
1903 static inline int ecore_vlan_mac_get_registry_elem(
1904 struct bxe_softc *sc,
1905 struct ecore_vlan_mac_obj *o,
1906 struct ecore_exeq_elem *elem,
1907 bool restore,
1908 struct ecore_vlan_mac_registry_elem **re)
1909 {
1910 enum ecore_vlan_mac_cmd cmd = elem->cmd_data.vlan_mac.cmd;
1911 struct ecore_vlan_mac_registry_elem *reg_elem;
1912
1913 /* Allocate a new registry element if needed. */
1914 if (!restore &&
1915 ((cmd == ECORE_VLAN_MAC_ADD) || (cmd == ECORE_VLAN_MAC_MOVE))) {
1916 reg_elem = ECORE_ZALLOC(sizeof(*reg_elem), GFP_ATOMIC, sc);
1917 if (!reg_elem)
1918 return ECORE_NOMEM;
1919
1920 /* Get a new CAM offset */
1921 if (!o->get_cam_offset(o, ®_elem->cam_offset)) {
1922 /* This shall never happen, because we have checked the
1923 * CAM availability in the 'validate'.
1924 */
1925 ECORE_DBG_BREAK_IF(1);
1926 ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
1927 return ECORE_INVAL;
1928 }
1929
1930 ECORE_MSG(sc, "Got cam offset %d\n", reg_elem->cam_offset);
1931
1932 /* Set a VLAN-MAC data */
1933 ECORE_MEMCPY(®_elem->u, &elem->cmd_data.vlan_mac.u,
1934 sizeof(reg_elem->u));
1935
1936 /* Copy the flags (needed for DEL and RESTORE flows) */
1937 reg_elem->vlan_mac_flags =
1938 elem->cmd_data.vlan_mac.vlan_mac_flags;
1939 } else /* DEL, RESTORE */
1940 reg_elem = o->check_del(sc, o, &elem->cmd_data.vlan_mac.u);
1941
1942 *re = reg_elem;
1943 return ECORE_SUCCESS;
1944 }
1945
1946 /**
1947 * ecore_execute_vlan_mac - execute vlan mac command
1948 *
1949 * @sc: device handle
1950 * @qo:
1951 * @exe_chunk:
1952 * @ramrod_flags:
1953 *
1954 * go and send a ramrod!
1955 */
1956 static int ecore_execute_vlan_mac(struct bxe_softc *sc,
1957 union ecore_qable_obj *qo,
1958 ecore_list_t *exe_chunk,
1959 unsigned long *ramrod_flags)
1960 {
1961 struct ecore_exeq_elem *elem;
1962 struct ecore_vlan_mac_obj *o = &qo->vlan_mac, *cam_obj;
1963 struct ecore_raw_obj *r = &o->raw;
1964 int rc, idx = 0;
1965 bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, ramrod_flags);
1966 bool drv_only = ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags);
1967 struct ecore_vlan_mac_registry_elem *reg_elem;
1968 enum ecore_vlan_mac_cmd cmd;
1969
1970 /* If DRIVER_ONLY execution is requested, cleanup a registry
1971 * and exit. Otherwise send a ramrod to FW.
1972 */
1973 if (!drv_only) {
1974 ECORE_DBG_BREAK_IF(r->check_pending(r));
1975
1976 /* Set pending */
1977 r->set_pending(r);
1978
1979 /* Fill the ramrod data */
1980 ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
1981 struct ecore_exeq_elem) {
1982 cmd = elem->cmd_data.vlan_mac.cmd;
1983 /* We will add to the target object in MOVE command, so
1984 * change the object for a CAM search.
1985 */
1986 if (cmd == ECORE_VLAN_MAC_MOVE)
1987 cam_obj = elem->cmd_data.vlan_mac.target_obj;
1988 else
1989 cam_obj = o;
1990
1991 rc = ecore_vlan_mac_get_registry_elem(sc, cam_obj,
1992 elem, restore,
1993 ®_elem);
1994 if (rc)
1995 goto error_exit;
1996
1997 ECORE_DBG_BREAK_IF(!reg_elem);
1998
1999 /* Push a new entry into the registry */
2000 if (!restore &&
2001 ((cmd == ECORE_VLAN_MAC_ADD) ||
2002 (cmd == ECORE_VLAN_MAC_MOVE)))
2003 ECORE_LIST_PUSH_HEAD(®_elem->link,
2004 &cam_obj->head);
2005
2006 /* Configure a single command in a ramrod data buffer */
2007 o->set_one_rule(sc, o, elem, idx,
2008 reg_elem->cam_offset);
2009
2010 /* MOVE command consumes 2 entries in the ramrod data */
2011 if (cmd == ECORE_VLAN_MAC_MOVE)
2012 idx += 2;
2013 else
2014 idx++;
2015 }
2016
2017 /* No need for an explicit memory barrier here as long as we
2018 * ensure the ordering of writing to the SPQ element
2019 * and updating of the SPQ producer which involves a memory
2020 * read. If the memory read is removed we will have to put a
2021 * full memory barrier there (inside ecore_sp_post()).
2022 */
2023 rc = ecore_sp_post(sc, o->ramrod_cmd, r->cid,
2024 r->rdata_mapping,
2025 ETH_CONNECTION_TYPE);
2026 if (rc)
2027 goto error_exit;
2028 }
2029
2030 /* Now, when we are done with the ramrod - clean up the registry */
2031 ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2032 struct ecore_exeq_elem) {
2033 cmd = elem->cmd_data.vlan_mac.cmd;
2034 if ((cmd == ECORE_VLAN_MAC_DEL) ||
2035 (cmd == ECORE_VLAN_MAC_MOVE)) {
2036 reg_elem = o->check_del(sc, o,
2037 &elem->cmd_data.vlan_mac.u);
2038
2039 ECORE_DBG_BREAK_IF(!reg_elem);
2040
2041 o->put_cam_offset(o, reg_elem->cam_offset);
2042 ECORE_LIST_REMOVE_ENTRY(®_elem->link, &o->head);
2043 ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
2044 }
2045 }
2046
2047 if (!drv_only)
2048 return ECORE_PENDING;
2049 else
2050 return ECORE_SUCCESS;
2051
2052 error_exit:
2053 r->clear_pending(r);
2054
2055 /* Cleanup a registry in case of a failure */
2056 ECORE_LIST_FOR_EACH_ENTRY(elem, exe_chunk, link,
2057 struct ecore_exeq_elem) {
2058 cmd = elem->cmd_data.vlan_mac.cmd;
2059
2060 if (cmd == ECORE_VLAN_MAC_MOVE)
2061 cam_obj = elem->cmd_data.vlan_mac.target_obj;
2062 else
2063 cam_obj = o;
2064
2065 /* Delete all newly added above entries */
2066 if (!restore &&
2067 ((cmd == ECORE_VLAN_MAC_ADD) ||
2068 (cmd == ECORE_VLAN_MAC_MOVE))) {
2069 reg_elem = o->check_del(sc, cam_obj,
2070 &elem->cmd_data.vlan_mac.u);
2071 if (reg_elem) {
2072 ECORE_LIST_REMOVE_ENTRY(®_elem->link,
2073 &cam_obj->head);
2074 ECORE_FREE(sc, reg_elem, sizeof(*reg_elem));
2075 }
2076 }
2077 }
2078
2079 return rc;
2080 }
2081
2082 static inline int ecore_vlan_mac_push_new_cmd(
2083 struct bxe_softc *sc,
2084 struct ecore_vlan_mac_ramrod_params *p)
2085 {
2086 struct ecore_exeq_elem *elem;
2087 struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2088 bool restore = ECORE_TEST_BIT(RAMROD_RESTORE, &p->ramrod_flags);
2089
2090 /* Allocate the execution queue element */
2091 elem = ecore_exe_queue_alloc_elem(sc);
2092 if (!elem)
2093 return ECORE_NOMEM;
2094
2095 /* Set the command 'length' */
2096 switch (p->user_req.cmd) {
2097 case ECORE_VLAN_MAC_MOVE:
2098 elem->cmd_len = 2;
2099 break;
2100 default:
2101 elem->cmd_len = 1;
2102 }
2103
2104 /* Fill the object specific info */
2105 ECORE_MEMCPY(&elem->cmd_data.vlan_mac, &p->user_req, sizeof(p->user_req));
2106
2107 /* Try to add a new command to the pending list */
2108 return ecore_exe_queue_add(sc, &o->exe_queue, elem, restore);
2109 }
2110
2111 /**
2112 * ecore_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
2113 *
2114 * @sc: device handle
2115 * @p:
2116 *
2117 */
2118 int ecore_config_vlan_mac(struct bxe_softc *sc,
2119 struct ecore_vlan_mac_ramrod_params *p)
2120 {
2121 int rc = ECORE_SUCCESS;
2122 struct ecore_vlan_mac_obj *o = p->vlan_mac_obj;
2123 unsigned long *ramrod_flags = &p->ramrod_flags;
2124 bool cont = ECORE_TEST_BIT(RAMROD_CONT, ramrod_flags);
2125 struct ecore_raw_obj *raw = &o->raw;
2126
2127 /*
2128 * Add new elements to the execution list for commands that require it.
2129 */
2130 if (!cont) {
2131 rc = ecore_vlan_mac_push_new_cmd(sc, p);
2132 if (rc)
2133 return rc;
2134 }
2135
2136 /* If nothing will be executed further in this iteration we want to
2137 * return PENDING if there are pending commands
2138 */
2139 if (!ecore_exe_queue_empty(&o->exe_queue))
2140 rc = ECORE_PENDING;
2141
2142 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ramrod_flags)) {
2143 ECORE_MSG(sc, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
2144 raw->clear_pending(raw);
2145 }
2146
2147 /* Execute commands if required */
2148 if (cont || ECORE_TEST_BIT(RAMROD_EXEC, ramrod_flags) ||
2149 ECORE_TEST_BIT(RAMROD_COMP_WAIT, ramrod_flags)) {
2150 rc = __ecore_vlan_mac_execute_step(sc, p->vlan_mac_obj,
2151 &p->ramrod_flags);
2152 if (rc < 0)
2153 return rc;
2154 }
2155
2156 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
2157 * then user want to wait until the last command is done.
2158 */
2159 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2160 /* Wait maximum for the current exe_queue length iterations plus
2161 * one (for the current pending command).
2162 */
2163 int max_iterations = ecore_exe_queue_length(&o->exe_queue) + 1;
2164
2165 while (!ecore_exe_queue_empty(&o->exe_queue) &&
2166 max_iterations--) {
2167
2168 /* Wait for the current command to complete */
2169 rc = raw->wait_comp(sc, raw);
2170 if (rc)
2171 return rc;
2172
2173 /* Make a next step */
2174 rc = __ecore_vlan_mac_execute_step(sc,
2175 p->vlan_mac_obj,
2176 &p->ramrod_flags);
2177 if (rc < 0)
2178 return rc;
2179 }
2180
2181 return ECORE_SUCCESS;
2182 }
2183
2184 return rc;
2185 }
2186
2187 /**
2188 * ecore_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2189 *
2190 * @sc: device handle
2191 * @o:
2192 * @vlan_mac_flags:
2193 * @ramrod_flags: execution flags to be used for this deletion
2194 *
2195 * if the last operation has completed successfully and there are no
2196 * more elements left, positive value if the last operation has completed
2197 * successfully and there are more previously configured elements, negative
2198 * value is current operation has failed.
2199 */
2200 static int ecore_vlan_mac_del_all(struct bxe_softc *sc,
2201 struct ecore_vlan_mac_obj *o,
2202 unsigned long *vlan_mac_flags,
2203 unsigned long *ramrod_flags)
2204 {
2205 struct ecore_vlan_mac_registry_elem *pos = NULL;
2206 struct ecore_vlan_mac_ramrod_params p;
2207 struct ecore_exe_queue_obj *exeq = &o->exe_queue;
2208 struct ecore_exeq_elem *exeq_pos, *exeq_pos_n;
2209 unsigned long flags;
2210 int read_lock;
2211 int rc = 0;
2212
2213 /* Clear pending commands first */
2214
2215 ECORE_SPIN_LOCK_BH(&exeq->lock);
2216
2217 ECORE_LIST_FOR_EACH_ENTRY_SAFE(exeq_pos, exeq_pos_n,
2218 &exeq->exe_queue, link,
2219 struct ecore_exeq_elem) {
2220 flags = exeq_pos->cmd_data.vlan_mac.vlan_mac_flags;
2221 if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2222 ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2223 rc = exeq->remove(sc, exeq->owner, exeq_pos);
2224 if (rc) {
2225 ECORE_ERR("Failed to remove command\n");
2226 ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2227 return rc;
2228 }
2229 ECORE_LIST_REMOVE_ENTRY(&exeq_pos->link,
2230 &exeq->exe_queue);
2231 ecore_exe_queue_free_elem(sc, exeq_pos);
2232 }
2233 }
2234
2235 ECORE_SPIN_UNLOCK_BH(&exeq->lock);
2236
2237 /* Prepare a command request */
2238 ECORE_MEMSET(&p, 0, sizeof(p));
2239 p.vlan_mac_obj = o;
2240 p.ramrod_flags = *ramrod_flags;
2241 p.user_req.cmd = ECORE_VLAN_MAC_DEL;
2242
2243 /* Add all but the last VLAN-MAC to the execution queue without actually
2244 * execution anything.
2245 */
2246 ECORE_CLEAR_BIT_NA(RAMROD_COMP_WAIT, &p.ramrod_flags);
2247 ECORE_CLEAR_BIT_NA(RAMROD_EXEC, &p.ramrod_flags);
2248 ECORE_CLEAR_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2249
2250 ECORE_MSG(sc, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2251 read_lock = ecore_vlan_mac_h_read_lock(sc, o);
2252 if (read_lock != ECORE_SUCCESS)
2253 return read_lock;
2254
2255 ECORE_LIST_FOR_EACH_ENTRY(pos, &o->head, link,
2256 struct ecore_vlan_mac_registry_elem) {
2257 flags = pos->vlan_mac_flags;
2258 if (ECORE_VLAN_MAC_CMP_FLAGS(flags) ==
2259 ECORE_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags)) {
2260 p.user_req.vlan_mac_flags = pos->vlan_mac_flags;
2261 ECORE_MEMCPY(&p.user_req.u, &pos->u, sizeof(pos->u));
2262 rc = ecore_config_vlan_mac(sc, &p);
2263 if (rc < 0) {
2264 ECORE_ERR("Failed to add a new DEL command\n");
2265 ecore_vlan_mac_h_read_unlock(sc, o);
2266 return rc;
2267 }
2268 }
2269 }
2270
2271 ECORE_MSG(sc, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2272 ecore_vlan_mac_h_read_unlock(sc, o);
2273
2274 p.ramrod_flags = *ramrod_flags;
2275 ECORE_SET_BIT_NA(RAMROD_CONT, &p.ramrod_flags);
2276
2277 return ecore_config_vlan_mac(sc, &p);
2278 }
2279
2280 static inline void ecore_init_raw_obj(struct ecore_raw_obj *raw, uint8_t cl_id,
2281 uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping, int state,
2282 unsigned long *pstate, ecore_obj_type type)
2283 {
2284 raw->func_id = func_id;
2285 raw->cid = cid;
2286 raw->cl_id = cl_id;
2287 raw->rdata = rdata;
2288 raw->rdata_mapping = rdata_mapping;
2289 raw->state = state;
2290 raw->pstate = pstate;
2291 raw->obj_type = type;
2292 raw->check_pending = ecore_raw_check_pending;
2293 raw->clear_pending = ecore_raw_clear_pending;
2294 raw->set_pending = ecore_raw_set_pending;
2295 raw->wait_comp = ecore_raw_wait;
2296 }
2297
2298 static inline void ecore_init_vlan_mac_common(struct ecore_vlan_mac_obj *o,
2299 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata, ecore_dma_addr_t rdata_mapping,
2300 int state, unsigned long *pstate, ecore_obj_type type,
2301 struct ecore_credit_pool_obj *macs_pool,
2302 struct ecore_credit_pool_obj *vlans_pool)
2303 {
2304 ECORE_LIST_INIT(&o->head);
2305 o->head_reader = 0;
2306 o->head_exe_request = FALSE;
2307 o->saved_ramrod_flags = 0;
2308
2309 o->macs_pool = macs_pool;
2310 o->vlans_pool = vlans_pool;
2311
2312 o->delete_all = ecore_vlan_mac_del_all;
2313 o->restore = ecore_vlan_mac_restore;
2314 o->complete = ecore_complete_vlan_mac;
2315 o->wait = ecore_wait_vlan_mac;
2316
2317 ecore_init_raw_obj(&o->raw, cl_id, cid, func_id, rdata, rdata_mapping,
2318 state, pstate, type);
2319 }
2320
2321 void ecore_init_mac_obj(struct bxe_softc *sc,
2322 struct ecore_vlan_mac_obj *mac_obj,
2323 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2324 ecore_dma_addr_t rdata_mapping, int state,
2325 unsigned long *pstate, ecore_obj_type type,
2326 struct ecore_credit_pool_obj *macs_pool)
2327 {
2328 union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)mac_obj;
2329
2330 ecore_init_vlan_mac_common(mac_obj, cl_id, cid, func_id, rdata,
2331 rdata_mapping, state, pstate, type,
2332 macs_pool, NULL);
2333
2334 /* CAM credit pool handling */
2335 mac_obj->get_credit = ecore_get_credit_mac;
2336 mac_obj->put_credit = ecore_put_credit_mac;
2337 mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2338 mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2339
2340 if (CHIP_IS_E1x(sc)) {
2341 mac_obj->set_one_rule = ecore_set_one_mac_e1x;
2342 mac_obj->check_del = ecore_check_mac_del;
2343 mac_obj->check_add = ecore_check_mac_add;
2344 mac_obj->check_move = ecore_check_move_always_err;
2345 mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2346
2347 /* Exe Queue */
2348 ecore_exe_queue_init(sc,
2349 &mac_obj->exe_queue, 1, qable_obj,
2350 ecore_validate_vlan_mac,
2351 ecore_remove_vlan_mac,
2352 ecore_optimize_vlan_mac,
2353 ecore_execute_vlan_mac,
2354 ecore_exeq_get_mac);
2355 } else {
2356 mac_obj->set_one_rule = ecore_set_one_mac_e2;
2357 mac_obj->check_del = ecore_check_mac_del;
2358 mac_obj->check_add = ecore_check_mac_add;
2359 mac_obj->check_move = ecore_check_move;
2360 mac_obj->ramrod_cmd =
2361 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2362 mac_obj->get_n_elements = ecore_get_n_elements;
2363
2364 /* Exe Queue */
2365 ecore_exe_queue_init(sc,
2366 &mac_obj->exe_queue, CLASSIFY_RULES_COUNT,
2367 qable_obj, ecore_validate_vlan_mac,
2368 ecore_remove_vlan_mac,
2369 ecore_optimize_vlan_mac,
2370 ecore_execute_vlan_mac,
2371 ecore_exeq_get_mac);
2372 }
2373 }
2374
2375 void ecore_init_vlan_obj(struct bxe_softc *sc,
2376 struct ecore_vlan_mac_obj *vlan_obj,
2377 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2378 ecore_dma_addr_t rdata_mapping, int state,
2379 unsigned long *pstate, ecore_obj_type type,
2380 struct ecore_credit_pool_obj *vlans_pool)
2381 {
2382 union ecore_qable_obj *qable_obj = (union ecore_qable_obj *)vlan_obj;
2383
2384 ecore_init_vlan_mac_common(vlan_obj, cl_id, cid, func_id, rdata,
2385 rdata_mapping, state, pstate, type, NULL,
2386 vlans_pool);
2387
2388 vlan_obj->get_credit = ecore_get_credit_vlan;
2389 vlan_obj->put_credit = ecore_put_credit_vlan;
2390 vlan_obj->get_cam_offset = ecore_get_cam_offset_vlan;
2391 vlan_obj->put_cam_offset = ecore_put_cam_offset_vlan;
2392
2393 if (CHIP_IS_E1x(sc)) {
2394 ECORE_ERR("Do not support chips others than E2 and newer\n");
2395 ECORE_BUG();
2396 } else {
2397 vlan_obj->set_one_rule = ecore_set_one_vlan_e2;
2398 vlan_obj->check_del = ecore_check_vlan_del;
2399 vlan_obj->check_add = ecore_check_vlan_add;
2400 vlan_obj->check_move = ecore_check_move;
2401 vlan_obj->ramrod_cmd =
2402 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2403 vlan_obj->get_n_elements = ecore_get_n_elements;
2404
2405 /* Exe Queue */
2406 ecore_exe_queue_init(sc,
2407 &vlan_obj->exe_queue, CLASSIFY_RULES_COUNT,
2408 qable_obj, ecore_validate_vlan_mac,
2409 ecore_remove_vlan_mac,
2410 ecore_optimize_vlan_mac,
2411 ecore_execute_vlan_mac,
2412 ecore_exeq_get_vlan);
2413 }
2414 }
2415
2416 void ecore_init_vlan_mac_obj(struct bxe_softc *sc,
2417 struct ecore_vlan_mac_obj *vlan_mac_obj,
2418 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2419 ecore_dma_addr_t rdata_mapping, int state,
2420 unsigned long *pstate, ecore_obj_type type,
2421 struct ecore_credit_pool_obj *macs_pool,
2422 struct ecore_credit_pool_obj *vlans_pool)
2423 {
2424 union ecore_qable_obj *qable_obj =
2425 (union ecore_qable_obj *)vlan_mac_obj;
2426
2427 ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id, rdata,
2428 rdata_mapping, state, pstate, type,
2429 macs_pool, vlans_pool);
2430
2431 /* CAM pool handling */
2432 vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2433 vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2434 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2435 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2436 * will be taken from MACs' pool object only.
2437 */
2438 vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2439 vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2440
2441 if (CHIP_IS_E1(sc)) {
2442 ECORE_ERR("Do not support chips others than E2\n");
2443 ECORE_BUG();
2444 } else if (CHIP_IS_E1H(sc)) {
2445 vlan_mac_obj->set_one_rule = ecore_set_one_vlan_mac_e1h;
2446 vlan_mac_obj->check_del = ecore_check_vlan_mac_del;
2447 vlan_mac_obj->check_add = ecore_check_vlan_mac_add;
2448 vlan_mac_obj->check_move = ecore_check_move_always_err;
2449 vlan_mac_obj->ramrod_cmd = RAMROD_CMD_ID_ETH_SET_MAC;
2450
2451 /* Exe Queue */
2452 ecore_exe_queue_init(sc,
2453 &vlan_mac_obj->exe_queue, 1, qable_obj,
2454 ecore_validate_vlan_mac,
2455 ecore_remove_vlan_mac,
2456 ecore_optimize_vlan_mac,
2457 ecore_execute_vlan_mac,
2458 ecore_exeq_get_vlan_mac);
2459 } else {
2460 vlan_mac_obj->set_one_rule = ecore_set_one_vlan_mac_e2;
2461 vlan_mac_obj->check_del = ecore_check_vlan_mac_del;
2462 vlan_mac_obj->check_add = ecore_check_vlan_mac_add;
2463 vlan_mac_obj->check_move = ecore_check_move;
2464 vlan_mac_obj->ramrod_cmd =
2465 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2466
2467 /* Exe Queue */
2468 ecore_exe_queue_init(sc,
2469 &vlan_mac_obj->exe_queue,
2470 CLASSIFY_RULES_COUNT,
2471 qable_obj, ecore_validate_vlan_mac,
2472 ecore_remove_vlan_mac,
2473 ecore_optimize_vlan_mac,
2474 ecore_execute_vlan_mac,
2475 ecore_exeq_get_vlan_mac);
2476 }
2477 }
2478
2479 void ecore_init_vxlan_fltr_obj(struct bxe_softc *sc,
2480 struct ecore_vlan_mac_obj *vlan_mac_obj,
2481 uint8_t cl_id, uint32_t cid, uint8_t func_id, void *rdata,
2482 ecore_dma_addr_t rdata_mapping, int state,
2483 unsigned long *pstate, ecore_obj_type type,
2484 struct ecore_credit_pool_obj *macs_pool,
2485 struct ecore_credit_pool_obj *vlans_pool)
2486 {
2487 union ecore_qable_obj *qable_obj =
2488 (union ecore_qable_obj *)vlan_mac_obj;
2489
2490 ecore_init_vlan_mac_common(vlan_mac_obj, cl_id, cid, func_id,
2491 rdata, rdata_mapping, state, pstate,
2492 type, macs_pool, vlans_pool);
2493
2494 /* CAM pool handling */
2495 vlan_mac_obj->get_credit = ecore_get_credit_vlan_mac;
2496 vlan_mac_obj->put_credit = ecore_put_credit_vlan_mac;
2497 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2498 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2499 * will be taken from MACs' pool object only.
2500 */
2501 vlan_mac_obj->get_cam_offset = ecore_get_cam_offset_mac;
2502 vlan_mac_obj->put_cam_offset = ecore_put_cam_offset_mac;
2503
2504 if (CHIP_IS_E1x(sc)) {
2505 ECORE_ERR("Do not support chips others than E2/E3\n");
2506 ECORE_BUG();
2507 } else {
2508 vlan_mac_obj->set_one_rule = ecore_set_one_vxlan_fltr_e2;
2509 vlan_mac_obj->check_del = ecore_check_vxlan_fltr_del;
2510 vlan_mac_obj->check_add = ecore_check_vxlan_fltr_add;
2511 vlan_mac_obj->check_move = ecore_check_move;
2512 vlan_mac_obj->ramrod_cmd =
2513 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES;
2514
2515 /* Exe Queue */
2516 ecore_exe_queue_init(sc,
2517 &vlan_mac_obj->exe_queue,
2518 CLASSIFY_RULES_COUNT,
2519 qable_obj, ecore_validate_vlan_mac,
2520 ecore_remove_vlan_mac,
2521 ecore_optimize_vlan_mac,
2522 ecore_execute_vlan_mac,
2523 ecore_exeq_get_vxlan_fltr);
2524 }
2525 }
2526
2527 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2528 static inline void __storm_memset_mac_filters(struct bxe_softc *sc,
2529 struct tstorm_eth_mac_filter_config *mac_filters,
2530 uint16_t pf_id)
2531 {
2532 size_t size = sizeof(struct tstorm_eth_mac_filter_config);
2533
2534 uint32_t addr = BAR_TSTRORM_INTMEM +
2535 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id);
2536
2537 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)mac_filters);
2538 }
2539
2540 static int ecore_set_rx_mode_e1x(struct bxe_softc *sc,
2541 struct ecore_rx_mode_ramrod_params *p)
2542 {
2543 /* update the sc MAC filter structure */
2544 uint32_t mask = (1 << p->cl_id);
2545
2546 struct tstorm_eth_mac_filter_config *mac_filters =
2547 (struct tstorm_eth_mac_filter_config *)p->rdata;
2548
2549 /* initial setting is drop-all */
2550 uint8_t drop_all_ucast = 1, drop_all_mcast = 1;
2551 uint8_t accp_all_ucast = 0, accp_all_bcast = 0, accp_all_mcast = 0;
2552 uint8_t unmatched_unicast = 0;
2553
2554 /* In e1x there we only take into account rx accept flag since tx switching
2555 * isn't enabled. */
2556 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, &p->rx_accept_flags))
2557 /* accept matched ucast */
2558 drop_all_ucast = 0;
2559
2560 if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, &p->rx_accept_flags))
2561 /* accept matched mcast */
2562 drop_all_mcast = 0;
2563
2564 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, &p->rx_accept_flags)) {
2565 /* accept all mcast */
2566 drop_all_ucast = 0;
2567 accp_all_ucast = 1;
2568 }
2569 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, &p->rx_accept_flags)) {
2570 /* accept all mcast */
2571 drop_all_mcast = 0;
2572 accp_all_mcast = 1;
2573 }
2574 if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, &p->rx_accept_flags))
2575 /* accept (all) bcast */
2576 accp_all_bcast = 1;
2577 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, &p->rx_accept_flags))
2578 /* accept unmatched unicasts */
2579 unmatched_unicast = 1;
2580
2581 mac_filters->ucast_drop_all = drop_all_ucast ?
2582 mac_filters->ucast_drop_all | mask :
2583 mac_filters->ucast_drop_all & ~mask;
2584
2585 mac_filters->mcast_drop_all = drop_all_mcast ?
2586 mac_filters->mcast_drop_all | mask :
2587 mac_filters->mcast_drop_all & ~mask;
2588
2589 mac_filters->ucast_accept_all = accp_all_ucast ?
2590 mac_filters->ucast_accept_all | mask :
2591 mac_filters->ucast_accept_all & ~mask;
2592
2593 mac_filters->mcast_accept_all = accp_all_mcast ?
2594 mac_filters->mcast_accept_all | mask :
2595 mac_filters->mcast_accept_all & ~mask;
2596
2597 mac_filters->bcast_accept_all = accp_all_bcast ?
2598 mac_filters->bcast_accept_all | mask :
2599 mac_filters->bcast_accept_all & ~mask;
2600
2601 mac_filters->unmatched_unicast = unmatched_unicast ?
2602 mac_filters->unmatched_unicast | mask :
2603 mac_filters->unmatched_unicast & ~mask;
2604
2605 ECORE_MSG(sc, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2606 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2607 mac_filters->ucast_drop_all, mac_filters->mcast_drop_all,
2608 mac_filters->ucast_accept_all, mac_filters->mcast_accept_all,
2609 mac_filters->bcast_accept_all);
2610
2611 /* write the MAC filter structure*/
2612 __storm_memset_mac_filters(sc, mac_filters, p->func_id);
2613
2614 /* The operation is completed */
2615 ECORE_CLEAR_BIT(p->state, p->pstate);
2616 ECORE_SMP_MB_AFTER_CLEAR_BIT();
2617
2618 return ECORE_SUCCESS;
2619 }
2620
2621 /* Setup ramrod data */
2622 static inline void ecore_rx_mode_set_rdata_hdr_e2(uint32_t cid,
2623 struct eth_classify_header *hdr,
2624 uint8_t rule_cnt)
2625 {
2626 hdr->echo = ECORE_CPU_TO_LE32(cid);
2627 hdr->rule_cnt = rule_cnt;
2628 }
2629
2630 static inline void ecore_rx_mode_set_cmd_state_e2(struct bxe_softc *sc,
2631 unsigned long *accept_flags,
2632 struct eth_filter_rules_cmd *cmd,
2633 bool clear_accept_all)
2634 {
2635 uint16_t state;
2636
2637 /* start with 'drop-all' */
2638 state = ETH_FILTER_RULES_CMD_UCAST_DROP_ALL |
2639 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2640
2641 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNICAST, accept_flags))
2642 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2643
2644 if (ECORE_TEST_BIT(ECORE_ACCEPT_MULTICAST, accept_flags))
2645 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2646
2647 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_UNICAST, accept_flags)) {
2648 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2649 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2650 }
2651
2652 if (ECORE_TEST_BIT(ECORE_ACCEPT_ALL_MULTICAST, accept_flags)) {
2653 state |= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2654 state &= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL;
2655 }
2656 if (ECORE_TEST_BIT(ECORE_ACCEPT_BROADCAST, accept_flags))
2657 state |= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2658
2659 if (ECORE_TEST_BIT(ECORE_ACCEPT_UNMATCHED, accept_flags)) {
2660 state &= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL;
2661 state |= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2662 }
2663 if (ECORE_TEST_BIT(ECORE_ACCEPT_ANY_VLAN, accept_flags))
2664 state |= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN;
2665
2666 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2667 if (clear_accept_all) {
2668 state &= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL;
2669 state &= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL;
2670 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL;
2671 state &= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED;
2672 }
2673
2674 cmd->state = ECORE_CPU_TO_LE16(state);
2675 }
2676
2677 static int ecore_set_rx_mode_e2(struct bxe_softc *sc,
2678 struct ecore_rx_mode_ramrod_params *p)
2679 {
2680 struct eth_filter_rules_ramrod_data *data = p->rdata;
2681 int rc;
2682 uint8_t rule_idx = 0;
2683
2684 /* Reset the ramrod data buffer */
2685 ECORE_MEMSET(data, 0, sizeof(*data));
2686
2687 /* Setup ramrod data */
2688
2689 /* Tx (internal switching) */
2690 if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2691 data->rules[rule_idx].client_id = p->cl_id;
2692 data->rules[rule_idx].func_id = p->func_id;
2693
2694 data->rules[rule_idx].cmd_general_data =
2695 ETH_FILTER_RULES_CMD_TX_CMD;
2696
2697 ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2698 &(data->rules[rule_idx++]),
2699 FALSE);
2700 }
2701
2702 /* Rx */
2703 if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2704 data->rules[rule_idx].client_id = p->cl_id;
2705 data->rules[rule_idx].func_id = p->func_id;
2706
2707 data->rules[rule_idx].cmd_general_data =
2708 ETH_FILTER_RULES_CMD_RX_CMD;
2709
2710 ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2711 &(data->rules[rule_idx++]),
2712 FALSE);
2713 }
2714
2715 /* If FCoE Queue configuration has been requested configure the Rx and
2716 * internal switching modes for this queue in separate rules.
2717 *
2718 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2719 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2720 */
2721 if (ECORE_TEST_BIT(ECORE_RX_MODE_FCOE_ETH, &p->rx_mode_flags)) {
2722 /* Tx (internal switching) */
2723 if (ECORE_TEST_BIT(RAMROD_TX, &p->ramrod_flags)) {
2724 data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2725 data->rules[rule_idx].func_id = p->func_id;
2726
2727 data->rules[rule_idx].cmd_general_data =
2728 ETH_FILTER_RULES_CMD_TX_CMD;
2729
2730 ecore_rx_mode_set_cmd_state_e2(sc, &p->tx_accept_flags,
2731 &(data->rules[rule_idx]),
2732 TRUE);
2733 rule_idx++;
2734 }
2735
2736 /* Rx */
2737 if (ECORE_TEST_BIT(RAMROD_RX, &p->ramrod_flags)) {
2738 data->rules[rule_idx].client_id = ECORE_FCOE_CID(sc);
2739 data->rules[rule_idx].func_id = p->func_id;
2740
2741 data->rules[rule_idx].cmd_general_data =
2742 ETH_FILTER_RULES_CMD_RX_CMD;
2743
2744 ecore_rx_mode_set_cmd_state_e2(sc, &p->rx_accept_flags,
2745 &(data->rules[rule_idx]),
2746 TRUE);
2747 rule_idx++;
2748 }
2749 }
2750
2751 /* Set the ramrod header (most importantly - number of rules to
2752 * configure).
2753 */
2754 ecore_rx_mode_set_rdata_hdr_e2(p->cid, &data->header, rule_idx);
2755
2756 ECORE_MSG(sc, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2757 data->header.rule_cnt, p->rx_accept_flags,
2758 p->tx_accept_flags);
2759
2760 /* No need for an explicit memory barrier here as long as we
2761 * ensure the ordering of writing to the SPQ element
2762 * and updating of the SPQ producer which involves a memory
2763 * read. If the memory read is removed we will have to put a
2764 * full memory barrier there (inside ecore_sp_post()).
2765 */
2766
2767 /* Send a ramrod */
2768 rc = ecore_sp_post(sc,
2769 RAMROD_CMD_ID_ETH_FILTER_RULES,
2770 p->cid,
2771 p->rdata_mapping,
2772 ETH_CONNECTION_TYPE);
2773 if (rc)
2774 return rc;
2775
2776 /* Ramrod completion is pending */
2777 return ECORE_PENDING;
2778 }
2779
2780 static int ecore_wait_rx_mode_comp_e2(struct bxe_softc *sc,
2781 struct ecore_rx_mode_ramrod_params *p)
2782 {
2783 return ecore_state_wait(sc, p->state, p->pstate);
2784 }
2785
2786 static int ecore_empty_rx_mode_wait(struct bxe_softc *sc,
2787 struct ecore_rx_mode_ramrod_params *p)
2788 {
2789 /* Do nothing */
2790 return ECORE_SUCCESS;
2791 }
2792
2793 int ecore_config_rx_mode(struct bxe_softc *sc,
2794 struct ecore_rx_mode_ramrod_params *p)
2795 {
2796 int rc;
2797
2798 /* Configure the new classification in the chip */
2799 rc = p->rx_mode_obj->config_rx_mode(sc, p);
2800 if (rc < 0)
2801 return rc;
2802
2803 /* Wait for a ramrod completion if was requested */
2804 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags)) {
2805 rc = p->rx_mode_obj->wait_comp(sc, p);
2806 if (rc)
2807 return rc;
2808 }
2809
2810 return rc;
2811 }
2812
2813 void ecore_init_rx_mode_obj(struct bxe_softc *sc,
2814 struct ecore_rx_mode_obj *o)
2815 {
2816 if (CHIP_IS_E1x(sc)) {
2817 o->wait_comp = ecore_empty_rx_mode_wait;
2818 o->config_rx_mode = ecore_set_rx_mode_e1x;
2819 } else {
2820 o->wait_comp = ecore_wait_rx_mode_comp_e2;
2821 o->config_rx_mode = ecore_set_rx_mode_e2;
2822 }
2823 }
2824
2825 /********************* Multicast verbs: SET, CLEAR ****************************/
2826 static inline uint8_t ecore_mcast_bin_from_mac(uint8_t *mac)
2827 {
2828 return (ECORE_CRC32_LE(0, mac, ETH_ALEN) >> 24) & 0xff;
2829 }
2830
2831 struct ecore_mcast_mac_elem {
2832 ecore_list_entry_t link;
2833 uint8_t mac[ETH_ALEN];
2834 uint8_t pad[2]; /* For a natural alignment of the following buffer */
2835 };
2836
2837 struct ecore_pending_mcast_cmd {
2838 ecore_list_entry_t link;
2839 int type; /* ECORE_MCAST_CMD_X */
2840 union {
2841 ecore_list_t macs_head;
2842 uint32_t macs_num; /* Needed for DEL command */
2843 int next_bin; /* Needed for RESTORE flow with aprox match */
2844 } data;
2845
2846 bool done; /* set to TRUE, when the command has been handled,
2847 * practically used in 57712 handling only, where one pending
2848 * command may be handled in a few operations. As long as for
2849 * other chips every operation handling is completed in a
2850 * single ramrod, there is no need to utilize this field.
2851 */
2852 };
2853
2854 static int ecore_mcast_wait(struct bxe_softc *sc,
2855 struct ecore_mcast_obj *o)
2856 {
2857 if (ecore_state_wait(sc, o->sched_state, o->raw.pstate) ||
2858 o->raw.wait_comp(sc, &o->raw))
2859 return ECORE_TIMEOUT;
2860
2861 return ECORE_SUCCESS;
2862 }
2863
2864 static int ecore_mcast_enqueue_cmd(struct bxe_softc *sc,
2865 struct ecore_mcast_obj *o,
2866 struct ecore_mcast_ramrod_params *p,
2867 enum ecore_mcast_cmd cmd)
2868 {
2869 int total_sz;
2870 struct ecore_pending_mcast_cmd *new_cmd;
2871 struct ecore_mcast_mac_elem *cur_mac = NULL;
2872 struct ecore_mcast_list_elem *pos;
2873 int macs_list_len = ((cmd == ECORE_MCAST_CMD_ADD) ?
2874 p->mcast_list_len : 0);
2875
2876 /* If the command is empty ("handle pending commands only"), break */
2877 if (!p->mcast_list_len)
2878 return ECORE_SUCCESS;
2879
2880 total_sz = sizeof(*new_cmd) +
2881 macs_list_len * sizeof(struct ecore_mcast_mac_elem);
2882
2883 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2884 new_cmd = ECORE_ZALLOC(total_sz, GFP_ATOMIC, sc);
2885
2886 if (!new_cmd)
2887 return ECORE_NOMEM;
2888
2889 ECORE_MSG(sc, "About to enqueue a new %d command. macs_list_len=%d\n",
2890 cmd, macs_list_len);
2891
2892 ECORE_LIST_INIT(&new_cmd->data.macs_head);
2893
2894 new_cmd->type = cmd;
2895 new_cmd->done = FALSE;
2896
2897 switch (cmd) {
2898 case ECORE_MCAST_CMD_ADD:
2899 cur_mac = (struct ecore_mcast_mac_elem *)
2900 ((uint8_t *)new_cmd + sizeof(*new_cmd));
2901
2902 /* Push the MACs of the current command into the pending command
2903 * MACs list: FIFO
2904 */
2905 ECORE_LIST_FOR_EACH_ENTRY(pos, &p->mcast_list, link,
2906 struct ecore_mcast_list_elem) {
2907 ECORE_MEMCPY(cur_mac->mac, pos->mac, ETH_ALEN);
2908 ECORE_LIST_PUSH_TAIL(&cur_mac->link,
2909 &new_cmd->data.macs_head);
2910 cur_mac++;
2911 }
2912
2913 break;
2914
2915 case ECORE_MCAST_CMD_DEL:
2916 new_cmd->data.macs_num = p->mcast_list_len;
2917 break;
2918
2919 case ECORE_MCAST_CMD_RESTORE:
2920 new_cmd->data.next_bin = 0;
2921 break;
2922
2923 default:
2924 ECORE_FREE(sc, new_cmd, total_sz);
2925 ECORE_ERR("Unknown command: %d\n", cmd);
2926 return ECORE_INVAL;
2927 }
2928
2929 /* Push the new pending command to the tail of the pending list: FIFO */
2930 ECORE_LIST_PUSH_TAIL(&new_cmd->link, &o->pending_cmds_head);
2931
2932 o->set_sched(o);
2933
2934 return ECORE_PENDING;
2935 }
2936
2937 /**
2938 * ecore_mcast_get_next_bin - get the next set bin (index)
2939 *
2940 * @o:
2941 * @last: index to start looking from (including)
2942 *
2943 * returns the next found (set) bin or a negative value if none is found.
2944 */
2945 static inline int ecore_mcast_get_next_bin(struct ecore_mcast_obj *o, int last)
2946 {
2947 int i, j, inner_start = last % BIT_VEC64_ELEM_SZ;
2948
2949 for (i = last / BIT_VEC64_ELEM_SZ; i < ECORE_MCAST_VEC_SZ; i++) {
2950 if (o->registry.aprox_match.vec[i])
2951 for (j = inner_start; j < BIT_VEC64_ELEM_SZ; j++) {
2952 int cur_bit = j + BIT_VEC64_ELEM_SZ * i;
2953 if (BIT_VEC64_TEST_BIT(o->registry.aprox_match.
2954 vec, cur_bit)) {
2955 return cur_bit;
2956 }
2957 }
2958 inner_start = 0;
2959 }
2960
2961 /* None found */
2962 return -1;
2963 }
2964
2965 /**
2966 * ecore_mcast_clear_first_bin - find the first set bin and clear it
2967 *
2968 * @o:
2969 *
2970 * returns the index of the found bin or -1 if none is found
2971 */
2972 static inline int ecore_mcast_clear_first_bin(struct ecore_mcast_obj *o)
2973 {
2974 int cur_bit = ecore_mcast_get_next_bin(o, 0);
2975
2976 if (cur_bit >= 0)
2977 BIT_VEC64_CLEAR_BIT(o->registry.aprox_match.vec, cur_bit);
2978
2979 return cur_bit;
2980 }
2981
2982 static inline uint8_t ecore_mcast_get_rx_tx_flag(struct ecore_mcast_obj *o)
2983 {
2984 struct ecore_raw_obj *raw = &o->raw;
2985 uint8_t rx_tx_flag = 0;
2986
2987 if ((raw->obj_type == ECORE_OBJ_TYPE_TX) ||
2988 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2989 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_TX_CMD;
2990
2991 if ((raw->obj_type == ECORE_OBJ_TYPE_RX) ||
2992 (raw->obj_type == ECORE_OBJ_TYPE_RX_TX))
2993 rx_tx_flag |= ETH_MULTICAST_RULES_CMD_RX_CMD;
2994
2995 return rx_tx_flag;
2996 }
2997
2998 static void ecore_mcast_set_one_rule_e2(struct bxe_softc *sc,
2999 struct ecore_mcast_obj *o, int idx,
3000 union ecore_mcast_config_data *cfg_data,
3001 enum ecore_mcast_cmd cmd)
3002 {
3003 struct ecore_raw_obj *r = &o->raw;
3004 struct eth_multicast_rules_ramrod_data *data =
3005 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3006 uint8_t func_id = r->func_id;
3007 uint8_t rx_tx_add_flag = ecore_mcast_get_rx_tx_flag(o);
3008 int bin;
3009
3010 if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE))
3011 rx_tx_add_flag |= ETH_MULTICAST_RULES_CMD_IS_ADD;
3012
3013 data->rules[idx].cmd_general_data |= rx_tx_add_flag;
3014
3015 /* Get a bin and update a bins' vector */
3016 switch (cmd) {
3017 case ECORE_MCAST_CMD_ADD:
3018 bin = ecore_mcast_bin_from_mac(cfg_data->mac);
3019 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec, bin);
3020 break;
3021
3022 case ECORE_MCAST_CMD_DEL:
3023 /* If there were no more bins to clear
3024 * (ecore_mcast_clear_first_bin() returns -1) then we would
3025 * clear any (0xff) bin.
3026 * See ecore_mcast_validate_e2() for explanation when it may
3027 * happen.
3028 */
3029 bin = ecore_mcast_clear_first_bin(o);
3030 break;
3031
3032 case ECORE_MCAST_CMD_RESTORE:
3033 bin = cfg_data->bin;
3034 break;
3035
3036 default:
3037 ECORE_ERR("Unknown command: %d\n", cmd);
3038 return;
3039 }
3040
3041 ECORE_MSG(sc, "%s bin %d\n",
3042 ((rx_tx_add_flag & ETH_MULTICAST_RULES_CMD_IS_ADD) ?
3043 "Setting" : "Clearing"), bin);
3044
3045 data->rules[idx].bin_id = (uint8_t)bin;
3046 data->rules[idx].func_id = func_id;
3047 data->rules[idx].engine_id = o->engine_id;
3048 }
3049
3050 /**
3051 * ecore_mcast_handle_restore_cmd_e2 - restore configuration from the registry
3052 *
3053 * @sc: device handle
3054 * @o:
3055 * @start_bin: index in the registry to start from (including)
3056 * @rdata_idx: index in the ramrod data to start from
3057 *
3058 * returns last handled bin index or -1 if all bins have been handled
3059 */
3060 static inline int ecore_mcast_handle_restore_cmd_e2(
3061 struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_bin,
3062 int *rdata_idx)
3063 {
3064 int cur_bin, cnt = *rdata_idx;
3065 union ecore_mcast_config_data cfg_data = {NULL};
3066
3067 /* go through the registry and configure the bins from it */
3068 for (cur_bin = ecore_mcast_get_next_bin(o, start_bin); cur_bin >= 0;
3069 cur_bin = ecore_mcast_get_next_bin(o, cur_bin + 1)) {
3070
3071 cfg_data.bin = (uint8_t)cur_bin;
3072 o->set_one_rule(sc, o, cnt, &cfg_data,
3073 ECORE_MCAST_CMD_RESTORE);
3074
3075 cnt++;
3076
3077 ECORE_MSG(sc, "About to configure a bin %d\n", cur_bin);
3078
3079 /* Break if we reached the maximum number
3080 * of rules.
3081 */
3082 if (cnt >= o->max_cmd_len)
3083 break;
3084 }
3085
3086 *rdata_idx = cnt;
3087
3088 return cur_bin;
3089 }
3090
3091 static inline void ecore_mcast_hdl_pending_add_e2(struct bxe_softc *sc,
3092 struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3093 int *line_idx)
3094 {
3095 struct ecore_mcast_mac_elem *pmac_pos, *pmac_pos_n;
3096 int cnt = *line_idx;
3097 union ecore_mcast_config_data cfg_data = {NULL};
3098
3099 ECORE_LIST_FOR_EACH_ENTRY_SAFE(pmac_pos, pmac_pos_n,
3100 &cmd_pos->data.macs_head, link, struct ecore_mcast_mac_elem) {
3101
3102 cfg_data.mac = &pmac_pos->mac[0];
3103 o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3104
3105 cnt++;
3106
3107 ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3108 pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3109
3110 ECORE_LIST_REMOVE_ENTRY(&pmac_pos->link,
3111 &cmd_pos->data.macs_head);
3112
3113 /* Break if we reached the maximum number
3114 * of rules.
3115 */
3116 if (cnt >= o->max_cmd_len)
3117 break;
3118 }
3119
3120 *line_idx = cnt;
3121
3122 /* if no more MACs to configure - we are done */
3123 if (ECORE_LIST_IS_EMPTY(&cmd_pos->data.macs_head))
3124 cmd_pos->done = TRUE;
3125 }
3126
3127 static inline void ecore_mcast_hdl_pending_del_e2(struct bxe_softc *sc,
3128 struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3129 int *line_idx)
3130 {
3131 int cnt = *line_idx;
3132
3133 while (cmd_pos->data.macs_num) {
3134 o->set_one_rule(sc, o, cnt, NULL, cmd_pos->type);
3135
3136 cnt++;
3137
3138 cmd_pos->data.macs_num--;
3139
3140 ECORE_MSG(sc, "Deleting MAC. %d left,cnt is %d\n",
3141 cmd_pos->data.macs_num, cnt);
3142
3143 /* Break if we reached the maximum
3144 * number of rules.
3145 */
3146 if (cnt >= o->max_cmd_len)
3147 break;
3148 }
3149
3150 *line_idx = cnt;
3151
3152 /* If we cleared all bins - we are done */
3153 if (!cmd_pos->data.macs_num)
3154 cmd_pos->done = TRUE;
3155 }
3156
3157 static inline void ecore_mcast_hdl_pending_restore_e2(struct bxe_softc *sc,
3158 struct ecore_mcast_obj *o, struct ecore_pending_mcast_cmd *cmd_pos,
3159 int *line_idx)
3160 {
3161 cmd_pos->data.next_bin = o->hdl_restore(sc, o, cmd_pos->data.next_bin,
3162 line_idx);
3163
3164 if (cmd_pos->data.next_bin < 0)
3165 /* If o->set_restore returned -1 we are done */
3166 cmd_pos->done = TRUE;
3167 else
3168 /* Start from the next bin next time */
3169 cmd_pos->data.next_bin++;
3170 }
3171
3172 static inline int ecore_mcast_handle_pending_cmds_e2(struct bxe_softc *sc,
3173 struct ecore_mcast_ramrod_params *p)
3174 {
3175 struct ecore_pending_mcast_cmd *cmd_pos, *cmd_pos_n;
3176 int cnt = 0;
3177 struct ecore_mcast_obj *o = p->mcast_obj;
3178
3179 ECORE_LIST_FOR_EACH_ENTRY_SAFE(cmd_pos, cmd_pos_n,
3180 &o->pending_cmds_head, link, struct ecore_pending_mcast_cmd) {
3181 switch (cmd_pos->type) {
3182 case ECORE_MCAST_CMD_ADD:
3183 ecore_mcast_hdl_pending_add_e2(sc, o, cmd_pos, &cnt);
3184 break;
3185
3186 case ECORE_MCAST_CMD_DEL:
3187 ecore_mcast_hdl_pending_del_e2(sc, o, cmd_pos, &cnt);
3188 break;
3189
3190 case ECORE_MCAST_CMD_RESTORE:
3191 ecore_mcast_hdl_pending_restore_e2(sc, o, cmd_pos,
3192 &cnt);
3193 break;
3194
3195 default:
3196 ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3197 return ECORE_INVAL;
3198 }
3199
3200 /* If the command has been completed - remove it from the list
3201 * and free the memory
3202 */
3203 if (cmd_pos->done) {
3204 ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link,
3205 &o->pending_cmds_head);
3206 ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3207 }
3208
3209 /* Break if we reached the maximum number of rules */
3210 if (cnt >= o->max_cmd_len)
3211 break;
3212 }
3213
3214 return cnt;
3215 }
3216
3217 static inline void ecore_mcast_hdl_add(struct bxe_softc *sc,
3218 struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3219 int *line_idx)
3220 {
3221 struct ecore_mcast_list_elem *mlist_pos;
3222 union ecore_mcast_config_data cfg_data = {NULL};
3223 int cnt = *line_idx;
3224
3225 ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3226 struct ecore_mcast_list_elem) {
3227 cfg_data.mac = mlist_pos->mac;
3228 o->set_one_rule(sc, o, cnt, &cfg_data, ECORE_MCAST_CMD_ADD);
3229
3230 cnt++;
3231
3232 ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3233 mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5]);
3234 }
3235
3236 *line_idx = cnt;
3237 }
3238
3239 static inline void ecore_mcast_hdl_del(struct bxe_softc *sc,
3240 struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3241 int *line_idx)
3242 {
3243 int cnt = *line_idx, i;
3244
3245 for (i = 0; i < p->mcast_list_len; i++) {
3246 o->set_one_rule(sc, o, cnt, NULL, ECORE_MCAST_CMD_DEL);
3247
3248 cnt++;
3249
3250 ECORE_MSG(sc, "Deleting MAC. %d left\n",
3251 p->mcast_list_len - i - 1);
3252 }
3253
3254 *line_idx = cnt;
3255 }
3256
3257 /**
3258 * ecore_mcast_handle_current_cmd -
3259 *
3260 * @sc: device handle
3261 * @p:
3262 * @cmd:
3263 * @start_cnt: first line in the ramrod data that may be used
3264 *
3265 * This function is called iff there is enough place for the current command in
3266 * the ramrod data.
3267 * Returns number of lines filled in the ramrod data in total.
3268 */
3269 static inline int ecore_mcast_handle_current_cmd(struct bxe_softc *sc,
3270 struct ecore_mcast_ramrod_params *p,
3271 enum ecore_mcast_cmd cmd,
3272 int start_cnt)
3273 {
3274 struct ecore_mcast_obj *o = p->mcast_obj;
3275 int cnt = start_cnt;
3276
3277 ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3278
3279 switch (cmd) {
3280 case ECORE_MCAST_CMD_ADD:
3281 ecore_mcast_hdl_add(sc, o, p, &cnt);
3282 break;
3283
3284 case ECORE_MCAST_CMD_DEL:
3285 ecore_mcast_hdl_del(sc, o, p, &cnt);
3286 break;
3287
3288 case ECORE_MCAST_CMD_RESTORE:
3289 o->hdl_restore(sc, o, 0, &cnt);
3290 break;
3291
3292 default:
3293 ECORE_ERR("Unknown command: %d\n", cmd);
3294 return ECORE_INVAL;
3295 }
3296
3297 /* The current command has been handled */
3298 p->mcast_list_len = 0;
3299
3300 return cnt;
3301 }
3302
3303 static int ecore_mcast_validate_e2(struct bxe_softc *sc,
3304 struct ecore_mcast_ramrod_params *p,
3305 enum ecore_mcast_cmd cmd)
3306 {
3307 struct ecore_mcast_obj *o = p->mcast_obj;
3308 int reg_sz = o->get_registry_size(o);
3309
3310 switch (cmd) {
3311 /* DEL command deletes all currently configured MACs */
3312 case ECORE_MCAST_CMD_DEL:
3313 o->set_registry_size(o, 0);
3314 /* Don't break */
3315
3316 /* RESTORE command will restore the entire multicast configuration */
3317 case ECORE_MCAST_CMD_RESTORE:
3318 /* Here we set the approximate amount of work to do, which in
3319 * fact may be only less as some MACs in postponed ADD
3320 * command(s) scheduled before this command may fall into
3321 * the same bin and the actual number of bins set in the
3322 * registry would be less than we estimated here. See
3323 * ecore_mcast_set_one_rule_e2() for further details.
3324 */
3325 p->mcast_list_len = reg_sz;
3326 break;
3327
3328 case ECORE_MCAST_CMD_ADD:
3329 case ECORE_MCAST_CMD_CONT:
3330 /* Here we assume that all new MACs will fall into new bins.
3331 * However we will correct the real registry size after we
3332 * handle all pending commands.
3333 */
3334 o->set_registry_size(o, reg_sz + p->mcast_list_len);
3335 break;
3336
3337 default:
3338 ECORE_ERR("Unknown command: %d\n", cmd);
3339 return ECORE_INVAL;
3340 }
3341
3342 /* Increase the total number of MACs pending to be configured */
3343 o->total_pending_num += p->mcast_list_len;
3344
3345 return ECORE_SUCCESS;
3346 }
3347
3348 static void ecore_mcast_revert_e2(struct bxe_softc *sc,
3349 struct ecore_mcast_ramrod_params *p,
3350 int old_num_bins)
3351 {
3352 struct ecore_mcast_obj *o = p->mcast_obj;
3353
3354 o->set_registry_size(o, old_num_bins);
3355 o->total_pending_num -= p->mcast_list_len;
3356 }
3357
3358 /**
3359 * ecore_mcast_set_rdata_hdr_e2 - sets a header values
3360 *
3361 * @sc: device handle
3362 * @p:
3363 * @len: number of rules to handle
3364 */
3365 static inline void ecore_mcast_set_rdata_hdr_e2(struct bxe_softc *sc,
3366 struct ecore_mcast_ramrod_params *p,
3367 uint8_t len)
3368 {
3369 struct ecore_raw_obj *r = &p->mcast_obj->raw;
3370 struct eth_multicast_rules_ramrod_data *data =
3371 (struct eth_multicast_rules_ramrod_data *)(r->rdata);
3372
3373 data->header.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3374 (ECORE_FILTER_MCAST_PENDING <<
3375 ECORE_SWCID_SHIFT));
3376 data->header.rule_cnt = len;
3377 }
3378
3379 /**
3380 * ecore_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3381 *
3382 * @sc: device handle
3383 * @o:
3384 *
3385 * Recalculate the actual number of set bins in the registry using Brian
3386 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3387 *
3388 * returns 0 for the compliance with ecore_mcast_refresh_registry_e1().
3389 */
3390 static inline int ecore_mcast_refresh_registry_e2(struct bxe_softc *sc,
3391 struct ecore_mcast_obj *o)
3392 {
3393 int i, cnt = 0;
3394 uint64_t elem;
3395
3396 for (i = 0; i < ECORE_MCAST_VEC_SZ; i++) {
3397 elem = o->registry.aprox_match.vec[i];
3398 for (; elem; cnt++)
3399 elem &= elem - 1;
3400 }
3401
3402 o->set_registry_size(o, cnt);
3403
3404 return ECORE_SUCCESS;
3405 }
3406
3407 static int ecore_mcast_setup_e2(struct bxe_softc *sc,
3408 struct ecore_mcast_ramrod_params *p,
3409 enum ecore_mcast_cmd cmd)
3410 {
3411 struct ecore_raw_obj *raw = &p->mcast_obj->raw;
3412 struct ecore_mcast_obj *o = p->mcast_obj;
3413 struct eth_multicast_rules_ramrod_data *data =
3414 (struct eth_multicast_rules_ramrod_data *)(raw->rdata);
3415 int cnt = 0, rc;
3416
3417 /* Reset the ramrod data buffer */
3418 ECORE_MEMSET(data, 0, sizeof(*data));
3419
3420 cnt = ecore_mcast_handle_pending_cmds_e2(sc, p);
3421
3422 /* If there are no more pending commands - clear SCHEDULED state */
3423 if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3424 o->clear_sched(o);
3425
3426 /* The below may be TRUE iff there was enough room in ramrod
3427 * data for all pending commands and for the current
3428 * command. Otherwise the current command would have been added
3429 * to the pending commands and p->mcast_list_len would have been
3430 * zeroed.
3431 */
3432 if (p->mcast_list_len > 0)
3433 cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, cnt);
3434
3435 /* We've pulled out some MACs - update the total number of
3436 * outstanding.
3437 */
3438 o->total_pending_num -= cnt;
3439
3440 /* send a ramrod */
3441 ECORE_DBG_BREAK_IF(o->total_pending_num < 0);
3442 ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3443
3444 ecore_mcast_set_rdata_hdr_e2(sc, p, (uint8_t)cnt);
3445
3446 /* Update a registry size if there are no more pending operations.
3447 *
3448 * We don't want to change the value of the registry size if there are
3449 * pending operations because we want it to always be equal to the
3450 * exact or the approximate number (see ecore_mcast_validate_e2()) of
3451 * set bins after the last requested operation in order to properly
3452 * evaluate the size of the next DEL/RESTORE operation.
3453 *
3454 * Note that we update the registry itself during command(s) handling
3455 * - see ecore_mcast_set_one_rule_e2(). That's because for 57712 we
3456 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3457 * with a limited amount of update commands (per MAC/bin) and we don't
3458 * know in this scope what the actual state of bins configuration is
3459 * going to be after this ramrod.
3460 */
3461 if (!o->total_pending_num)
3462 ecore_mcast_refresh_registry_e2(sc, o);
3463
3464 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3465 * RAMROD_PENDING status immediately.
3466 */
3467 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3468 raw->clear_pending(raw);
3469 return ECORE_SUCCESS;
3470 } else {
3471 /* No need for an explicit memory barrier here as long as we
3472 * ensure the ordering of writing to the SPQ element
3473 * and updating of the SPQ producer which involves a memory
3474 * read. If the memory read is removed we will have to put a
3475 * full memory barrier there (inside ecore_sp_post()).
3476 */
3477
3478 /* Send a ramrod */
3479 rc = ecore_sp_post( sc,
3480 RAMROD_CMD_ID_ETH_MULTICAST_RULES,
3481 raw->cid,
3482 raw->rdata_mapping,
3483 ETH_CONNECTION_TYPE);
3484 if (rc)
3485 return rc;
3486
3487 /* Ramrod completion is pending */
3488 return ECORE_PENDING;
3489 }
3490 }
3491
3492 static int ecore_mcast_validate_e1h(struct bxe_softc *sc,
3493 struct ecore_mcast_ramrod_params *p,
3494 enum ecore_mcast_cmd cmd)
3495 {
3496 /* Mark, that there is a work to do */
3497 if ((cmd == ECORE_MCAST_CMD_DEL) || (cmd == ECORE_MCAST_CMD_RESTORE))
3498 p->mcast_list_len = 1;
3499
3500 return ECORE_SUCCESS;
3501 }
3502
3503 static void ecore_mcast_revert_e1h(struct bxe_softc *sc,
3504 struct ecore_mcast_ramrod_params *p,
3505 int old_num_bins)
3506 {
3507 /* Do nothing */
3508 }
3509
3510 #define ECORE_57711_SET_MC_FILTER(filter, bit) \
3511 do { \
3512 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3513 } while (0)
3514
3515 static inline void ecore_mcast_hdl_add_e1h(struct bxe_softc *sc,
3516 struct ecore_mcast_obj *o,
3517 struct ecore_mcast_ramrod_params *p,
3518 uint32_t *mc_filter)
3519 {
3520 struct ecore_mcast_list_elem *mlist_pos;
3521 int bit;
3522
3523 ECORE_LIST_FOR_EACH_ENTRY(mlist_pos, &p->mcast_list, link,
3524 struct ecore_mcast_list_elem) {
3525 bit = ecore_mcast_bin_from_mac(mlist_pos->mac);
3526 ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3527
3528 ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC, bin %d\n",
3529 mlist_pos->mac[0], mlist_pos->mac[1], mlist_pos->mac[2], mlist_pos->mac[3], mlist_pos->mac[4], mlist_pos->mac[5], bit);
3530
3531 /* bookkeeping... */
3532 BIT_VEC64_SET_BIT(o->registry.aprox_match.vec,
3533 bit);
3534 }
3535 }
3536
3537 static inline void ecore_mcast_hdl_restore_e1h(struct bxe_softc *sc,
3538 struct ecore_mcast_obj *o, struct ecore_mcast_ramrod_params *p,
3539 uint32_t *mc_filter)
3540 {
3541 int bit;
3542
3543 for (bit = ecore_mcast_get_next_bin(o, 0);
3544 bit >= 0;
3545 bit = ecore_mcast_get_next_bin(o, bit + 1)) {
3546 ECORE_57711_SET_MC_FILTER(mc_filter, bit);
3547 ECORE_MSG(sc, "About to set bin %d\n", bit);
3548 }
3549 }
3550
3551 /* On 57711 we write the multicast MACs' approximate match
3552 * table by directly into the TSTORM's internal RAM. So we don't
3553 * really need to handle any tricks to make it work.
3554 */
3555 static int ecore_mcast_setup_e1h(struct bxe_softc *sc,
3556 struct ecore_mcast_ramrod_params *p,
3557 enum ecore_mcast_cmd cmd)
3558 {
3559 int i;
3560 struct ecore_mcast_obj *o = p->mcast_obj;
3561 struct ecore_raw_obj *r = &o->raw;
3562
3563 /* If CLEAR_ONLY has been requested - clear the registry
3564 * and clear a pending bit.
3565 */
3566 if (!ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3567 uint32_t mc_filter[ECORE_MC_HASH_SIZE] = {0};
3568
3569 /* Set the multicast filter bits before writing it into
3570 * the internal memory.
3571 */
3572 switch (cmd) {
3573 case ECORE_MCAST_CMD_ADD:
3574 ecore_mcast_hdl_add_e1h(sc, o, p, mc_filter);
3575 break;
3576
3577 case ECORE_MCAST_CMD_DEL:
3578 ECORE_MSG(sc,
3579 "Invalidating multicast MACs configuration\n");
3580
3581 /* clear the registry */
3582 ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3583 sizeof(o->registry.aprox_match.vec));
3584 break;
3585
3586 case ECORE_MCAST_CMD_RESTORE:
3587 ecore_mcast_hdl_restore_e1h(sc, o, p, mc_filter);
3588 break;
3589
3590 default:
3591 ECORE_ERR("Unknown command: %d\n", cmd);
3592 return ECORE_INVAL;
3593 }
3594
3595 /* Set the mcast filter in the internal memory */
3596 for (i = 0; i < ECORE_MC_HASH_SIZE; i++)
3597 REG_WR(sc, ECORE_MC_HASH_OFFSET(sc, i), mc_filter[i]);
3598 } else
3599 /* clear the registry */
3600 ECORE_MEMSET(o->registry.aprox_match.vec, 0,
3601 sizeof(o->registry.aprox_match.vec));
3602
3603 /* We are done */
3604 r->clear_pending(r);
3605
3606 return ECORE_SUCCESS;
3607 }
3608
3609 static int ecore_mcast_validate_e1(struct bxe_softc *sc,
3610 struct ecore_mcast_ramrod_params *p,
3611 enum ecore_mcast_cmd cmd)
3612 {
3613 struct ecore_mcast_obj *o = p->mcast_obj;
3614 int reg_sz = o->get_registry_size(o);
3615
3616 switch (cmd) {
3617 /* DEL command deletes all currently configured MACs */
3618 case ECORE_MCAST_CMD_DEL:
3619 o->set_registry_size(o, 0);
3620 /* Don't break */
3621
3622 /* RESTORE command will restore the entire multicast configuration */
3623 case ECORE_MCAST_CMD_RESTORE:
3624 p->mcast_list_len = reg_sz;
3625 ECORE_MSG(sc, "Command %d, p->mcast_list_len=%d\n",
3626 cmd, p->mcast_list_len);
3627 break;
3628
3629 case ECORE_MCAST_CMD_ADD:
3630 case ECORE_MCAST_CMD_CONT:
3631 /* Multicast MACs on 57710 are configured as unicast MACs and
3632 * there is only a limited number of CAM entries for that
3633 * matter.
3634 */
3635 if (p->mcast_list_len > o->max_cmd_len) {
3636 ECORE_ERR("Can't configure more than %d multicast MACs on 57710\n",
3637 o->max_cmd_len);
3638 return ECORE_INVAL;
3639 }
3640 /* Every configured MAC should be cleared if DEL command is
3641 * called. Only the last ADD command is relevant as long as
3642 * every ADD commands overrides the previous configuration.
3643 */
3644 ECORE_MSG(sc, "p->mcast_list_len=%d\n", p->mcast_list_len);
3645 if (p->mcast_list_len > 0)
3646 o->set_registry_size(o, p->mcast_list_len);
3647
3648 break;
3649
3650 default:
3651 ECORE_ERR("Unknown command: %d\n", cmd);
3652 return ECORE_INVAL;
3653 }
3654
3655 /* We want to ensure that commands are executed one by one for 57710.
3656 * Therefore each none-empty command will consume o->max_cmd_len.
3657 */
3658 if (p->mcast_list_len)
3659 o->total_pending_num += o->max_cmd_len;
3660
3661 return ECORE_SUCCESS;
3662 }
3663
3664 static void ecore_mcast_revert_e1(struct bxe_softc *sc,
3665 struct ecore_mcast_ramrod_params *p,
3666 int old_num_macs)
3667 {
3668 struct ecore_mcast_obj *o = p->mcast_obj;
3669
3670 o->set_registry_size(o, old_num_macs);
3671
3672 /* If current command hasn't been handled yet and we are
3673 * here means that it's meant to be dropped and we have to
3674 * update the number of outstanding MACs accordingly.
3675 */
3676 if (p->mcast_list_len)
3677 o->total_pending_num -= o->max_cmd_len;
3678 }
3679
3680 static void ecore_mcast_set_one_rule_e1(struct bxe_softc *sc,
3681 struct ecore_mcast_obj *o, int idx,
3682 union ecore_mcast_config_data *cfg_data,
3683 enum ecore_mcast_cmd cmd)
3684 {
3685 struct ecore_raw_obj *r = &o->raw;
3686 struct mac_configuration_cmd *data =
3687 (struct mac_configuration_cmd *)(r->rdata);
3688
3689 /* copy mac */
3690 if ((cmd == ECORE_MCAST_CMD_ADD) || (cmd == ECORE_MCAST_CMD_RESTORE)) {
3691 ecore_set_fw_mac_addr(&data->config_table[idx].msb_mac_addr,
3692 &data->config_table[idx].middle_mac_addr,
3693 &data->config_table[idx].lsb_mac_addr,
3694 cfg_data->mac);
3695
3696 data->config_table[idx].vlan_id = 0;
3697 data->config_table[idx].pf_id = r->func_id;
3698 data->config_table[idx].clients_bit_vector =
3699 ECORE_CPU_TO_LE32(1 << r->cl_id);
3700
3701 ECORE_SET_FLAG(data->config_table[idx].flags,
3702 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3703 T_ETH_MAC_COMMAND_SET);
3704 }
3705 }
3706
3707 /**
3708 * ecore_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3709 *
3710 * @sc: device handle
3711 * @p:
3712 * @len: number of rules to handle
3713 */
3714 static inline void ecore_mcast_set_rdata_hdr_e1(struct bxe_softc *sc,
3715 struct ecore_mcast_ramrod_params *p,
3716 uint8_t len)
3717 {
3718 struct ecore_raw_obj *r = &p->mcast_obj->raw;
3719 struct mac_configuration_cmd *data =
3720 (struct mac_configuration_cmd *)(r->rdata);
3721
3722 uint8_t offset = (CHIP_REV_IS_SLOW(sc) ?
3723 ECORE_MAX_EMUL_MULTI*(1 + r->func_id) :
3724 ECORE_MAX_MULTICAST*(1 + r->func_id));
3725
3726 data->hdr.offset = offset;
3727 data->hdr.client_id = ECORE_CPU_TO_LE16(0xff);
3728 data->hdr.echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
3729 (ECORE_FILTER_MCAST_PENDING <<
3730 ECORE_SWCID_SHIFT));
3731 data->hdr.length = len;
3732 }
3733
3734 /**
3735 * ecore_mcast_handle_restore_cmd_e1 - restore command for 57710
3736 *
3737 * @sc: device handle
3738 * @o:
3739 * @start_idx: index in the registry to start from
3740 * @rdata_idx: index in the ramrod data to start from
3741 *
3742 * restore command for 57710 is like all other commands - always a stand alone
3743 * command - start_idx and rdata_idx will always be 0. This function will always
3744 * succeed.
3745 * returns -1 to comply with 57712 variant.
3746 */
3747 static inline int ecore_mcast_handle_restore_cmd_e1(
3748 struct bxe_softc *sc, struct ecore_mcast_obj *o , int start_idx,
3749 int *rdata_idx)
3750 {
3751 struct ecore_mcast_mac_elem *elem;
3752 int i = 0;
3753 union ecore_mcast_config_data cfg_data = {NULL};
3754
3755 /* go through the registry and configure the MACs from it. */
3756 ECORE_LIST_FOR_EACH_ENTRY(elem, &o->registry.exact_match.macs, link,
3757 struct ecore_mcast_mac_elem) {
3758 cfg_data.mac = &elem->mac[0];
3759 o->set_one_rule(sc, o, i, &cfg_data, ECORE_MCAST_CMD_RESTORE);
3760
3761 i++;
3762
3763 ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3764 cfg_data.mac[0], cfg_data.mac[1], cfg_data.mac[2], cfg_data.mac[3], cfg_data.mac[4], cfg_data.mac[5]);
3765 }
3766
3767 *rdata_idx = i;
3768
3769 return -1;
3770 }
3771
3772 static inline int ecore_mcast_handle_pending_cmds_e1(
3773 struct bxe_softc *sc, struct ecore_mcast_ramrod_params *p)
3774 {
3775 struct ecore_pending_mcast_cmd *cmd_pos;
3776 struct ecore_mcast_mac_elem *pmac_pos;
3777 struct ecore_mcast_obj *o = p->mcast_obj;
3778 union ecore_mcast_config_data cfg_data = {NULL};
3779 int cnt = 0;
3780
3781 /* If nothing to be done - return */
3782 if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3783 return 0;
3784
3785 /* Handle the first command */
3786 cmd_pos = ECORE_LIST_FIRST_ENTRY(&o->pending_cmds_head,
3787 struct ecore_pending_mcast_cmd, link);
3788
3789 switch (cmd_pos->type) {
3790 case ECORE_MCAST_CMD_ADD:
3791 ECORE_LIST_FOR_EACH_ENTRY(pmac_pos, &cmd_pos->data.macs_head,
3792 link, struct ecore_mcast_mac_elem) {
3793 cfg_data.mac = &pmac_pos->mac[0];
3794 o->set_one_rule(sc, o, cnt, &cfg_data, cmd_pos->type);
3795
3796 cnt++;
3797
3798 ECORE_MSG(sc, "About to configure %02x:%02x:%02x:%02x:%02x:%02x mcast MAC\n",
3799 pmac_pos->mac[0], pmac_pos->mac[1], pmac_pos->mac[2], pmac_pos->mac[3], pmac_pos->mac[4], pmac_pos->mac[5]);
3800 }
3801 break;
3802
3803 case ECORE_MCAST_CMD_DEL:
3804 cnt = cmd_pos->data.macs_num;
3805 ECORE_MSG(sc, "About to delete %d multicast MACs\n", cnt);
3806 break;
3807
3808 case ECORE_MCAST_CMD_RESTORE:
3809 o->hdl_restore(sc, o, 0, &cnt);
3810 break;
3811
3812 default:
3813 ECORE_ERR("Unknown command: %d\n", cmd_pos->type);
3814 return ECORE_INVAL;
3815 }
3816
3817 ECORE_LIST_REMOVE_ENTRY(&cmd_pos->link, &o->pending_cmds_head);
3818 ECORE_FREE(sc, cmd_pos, cmd_pos->alloc_len);
3819
3820 return cnt;
3821 }
3822
3823 /**
3824 * ecore_get_fw_mac_addr - revert the ecore_set_fw_mac_addr().
3825 *
3826 * @fw_hi:
3827 * @fw_mid:
3828 * @fw_lo:
3829 * @mac:
3830 */
3831 static inline void ecore_get_fw_mac_addr(uint16_t *fw_hi, uint16_t *fw_mid,
3832 uint16_t *fw_lo, uint8_t *mac)
3833 {
3834 mac[1] = ((uint8_t *)fw_hi)[0];
3835 mac[0] = ((uint8_t *)fw_hi)[1];
3836 mac[3] = ((uint8_t *)fw_mid)[0];
3837 mac[2] = ((uint8_t *)fw_mid)[1];
3838 mac[5] = ((uint8_t *)fw_lo)[0];
3839 mac[4] = ((uint8_t *)fw_lo)[1];
3840 }
3841
3842 /**
3843 * ecore_mcast_refresh_registry_e1 -
3844 *
3845 * @sc: device handle
3846 * @cnt:
3847 *
3848 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3849 * and update the registry correspondingly: if ADD - allocate a memory and add
3850 * the entries to the registry (list), if DELETE - clear the registry and free
3851 * the memory.
3852 */
3853 static inline int ecore_mcast_refresh_registry_e1(struct bxe_softc *sc,
3854 struct ecore_mcast_obj *o)
3855 {
3856 struct ecore_raw_obj *raw = &o->raw;
3857 struct ecore_mcast_mac_elem *elem;
3858 struct mac_configuration_cmd *data =
3859 (struct mac_configuration_cmd *)(raw->rdata);
3860
3861 /* If first entry contains a SET bit - the command was ADD,
3862 * otherwise - DEL_ALL
3863 */
3864 if (ECORE_GET_FLAG(data->config_table[0].flags,
3865 MAC_CONFIGURATION_ENTRY_ACTION_TYPE)) {
3866 int i, len = data->hdr.length;
3867
3868 /* Break if it was a RESTORE command */
3869 if (!ECORE_LIST_IS_EMPTY(&o->registry.exact_match.macs))
3870 return ECORE_SUCCESS;
3871
3872 elem = ECORE_CALLOC(len, sizeof(*elem), GFP_ATOMIC, sc);
3873 if (!elem) {
3874 ECORE_ERR("Failed to allocate registry memory\n");
3875 return ECORE_NOMEM;
3876 }
3877
3878 for (i = 0; i < len; i++, elem++) {
3879 ecore_get_fw_mac_addr(
3880 &data->config_table[i].msb_mac_addr,
3881 &data->config_table[i].middle_mac_addr,
3882 &data->config_table[i].lsb_mac_addr,
3883 elem->mac);
3884 ECORE_MSG(sc, "Adding registry entry for [%02x:%02x:%02x:%02x:%02x:%02x]\n",
3885 elem->mac[0], elem->mac[1], elem->mac[2], elem->mac[3], elem->mac[4], elem->mac[5]);
3886 ECORE_LIST_PUSH_TAIL(&elem->link,
3887 &o->registry.exact_match.macs);
3888 }
3889 } else {
3890 elem = ECORE_LIST_FIRST_ENTRY(&o->registry.exact_match.macs,
3891 struct ecore_mcast_mac_elem,
3892 link);
3893 ECORE_MSG(sc, "Deleting a registry\n");
3894 ECORE_FREE(sc, elem, sizeof(*elem));
3895 ECORE_LIST_INIT(&o->registry.exact_match.macs);
3896 }
3897
3898 return ECORE_SUCCESS;
3899 }
3900
3901 static int ecore_mcast_setup_e1(struct bxe_softc *sc,
3902 struct ecore_mcast_ramrod_params *p,
3903 enum ecore_mcast_cmd cmd)
3904 {
3905 struct ecore_mcast_obj *o = p->mcast_obj;
3906 struct ecore_raw_obj *raw = &o->raw;
3907 struct mac_configuration_cmd *data =
3908 (struct mac_configuration_cmd *)(raw->rdata);
3909 int cnt = 0, i, rc;
3910
3911 /* Reset the ramrod data buffer */
3912 ECORE_MEMSET(data, 0, sizeof(*data));
3913
3914 /* First set all entries as invalid */
3915 for (i = 0; i < o->max_cmd_len ; i++)
3916 ECORE_SET_FLAG(data->config_table[i].flags,
3917 MAC_CONFIGURATION_ENTRY_ACTION_TYPE,
3918 T_ETH_MAC_COMMAND_INVALIDATE);
3919
3920 /* Handle pending commands first */
3921 cnt = ecore_mcast_handle_pending_cmds_e1(sc, p);
3922
3923 /* If there are no more pending commands - clear SCHEDULED state */
3924 if (ECORE_LIST_IS_EMPTY(&o->pending_cmds_head))
3925 o->clear_sched(o);
3926
3927 /* The below may be TRUE iff there were no pending commands */
3928 if (!cnt)
3929 cnt = ecore_mcast_handle_current_cmd(sc, p, cmd, 0);
3930
3931 /* For 57710 every command has o->max_cmd_len length to ensure that
3932 * commands are done one at a time.
3933 */
3934 o->total_pending_num -= o->max_cmd_len;
3935
3936 /* send a ramrod */
3937
3938 ECORE_DBG_BREAK_IF(cnt > o->max_cmd_len);
3939
3940 /* Set ramrod header (in particular, a number of entries to update) */
3941 ecore_mcast_set_rdata_hdr_e1(sc, p, (uint8_t)cnt);
3942
3943 /* update a registry: we need the registry contents to be always up
3944 * to date in order to be able to execute a RESTORE opcode. Here
3945 * we use the fact that for 57710 we sent one command at a time
3946 * hence we may take the registry update out of the command handling
3947 * and do it in a simpler way here.
3948 */
3949 rc = ecore_mcast_refresh_registry_e1(sc, o);
3950 if (rc)
3951 return rc;
3952
3953 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3954 * RAMROD_PENDING status immediately.
3955 */
3956 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
3957 raw->clear_pending(raw);
3958 return ECORE_SUCCESS;
3959 } else {
3960 /* No need for an explicit memory barrier here as long as we
3961 * ensure the ordering of writing to the SPQ element
3962 * and updating of the SPQ producer which involves a memory
3963 * read. If the memory read is removed we will have to put a
3964 * full memory barrier there (inside ecore_sp_post()).
3965 */
3966
3967 /* Send a ramrod */
3968 rc = ecore_sp_post( sc,
3969 RAMROD_CMD_ID_ETH_SET_MAC,
3970 raw->cid,
3971 raw->rdata_mapping,
3972 ETH_CONNECTION_TYPE);
3973 if (rc)
3974 return rc;
3975
3976 /* Ramrod completion is pending */
3977 return ECORE_PENDING;
3978 }
3979 }
3980
3981 static int ecore_mcast_get_registry_size_exact(struct ecore_mcast_obj *o)
3982 {
3983 return o->registry.exact_match.num_macs_set;
3984 }
3985
3986 static int ecore_mcast_get_registry_size_aprox(struct ecore_mcast_obj *o)
3987 {
3988 return o->registry.aprox_match.num_bins_set;
3989 }
3990
3991 static void ecore_mcast_set_registry_size_exact(struct ecore_mcast_obj *o,
3992 int n)
3993 {
3994 o->registry.exact_match.num_macs_set = n;
3995 }
3996
3997 static void ecore_mcast_set_registry_size_aprox(struct ecore_mcast_obj *o,
3998 int n)
3999 {
4000 o->registry.aprox_match.num_bins_set = n;
4001 }
4002
4003 int ecore_config_mcast(struct bxe_softc *sc,
4004 struct ecore_mcast_ramrod_params *p,
4005 enum ecore_mcast_cmd cmd)
4006 {
4007 struct ecore_mcast_obj *o = p->mcast_obj;
4008 struct ecore_raw_obj *r = &o->raw;
4009 int rc = 0, old_reg_size;
4010
4011 /* This is needed to recover number of currently configured mcast macs
4012 * in case of failure.
4013 */
4014 old_reg_size = o->get_registry_size(o);
4015
4016 /* Do some calculations and checks */
4017 rc = o->validate(sc, p, cmd);
4018 if (rc)
4019 return rc;
4020
4021 /* Return if there is no work to do */
4022 if ((!p->mcast_list_len) && (!o->check_sched(o)))
4023 return ECORE_SUCCESS;
4024
4025 ECORE_MSG(sc, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4026 o->total_pending_num, p->mcast_list_len, o->max_cmd_len);
4027
4028 /* Enqueue the current command to the pending list if we can't complete
4029 * it in the current iteration
4030 */
4031 if (r->check_pending(r) ||
4032 ((o->max_cmd_len > 0) && (o->total_pending_num > o->max_cmd_len))) {
4033 rc = o->enqueue_cmd(sc, p->mcast_obj, p, cmd);
4034 if (rc < 0)
4035 goto error_exit1;
4036
4037 /* As long as the current command is in a command list we
4038 * don't need to handle it separately.
4039 */
4040 p->mcast_list_len = 0;
4041 }
4042
4043 if (!r->check_pending(r)) {
4044
4045 /* Set 'pending' state */
4046 r->set_pending(r);
4047
4048 /* Configure the new classification in the chip */
4049 rc = o->config_mcast(sc, p, cmd);
4050 if (rc < 0)
4051 goto error_exit2;
4052
4053 /* Wait for a ramrod completion if was requested */
4054 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4055 rc = o->wait_comp(sc, o);
4056 }
4057
4058 return rc;
4059
4060 error_exit2:
4061 r->clear_pending(r);
4062
4063 error_exit1:
4064 o->revert(sc, p, old_reg_size);
4065
4066 return rc;
4067 }
4068
4069 static void ecore_mcast_clear_sched(struct ecore_mcast_obj *o)
4070 {
4071 ECORE_SMP_MB_BEFORE_CLEAR_BIT();
4072 ECORE_CLEAR_BIT(o->sched_state, o->raw.pstate);
4073 ECORE_SMP_MB_AFTER_CLEAR_BIT();
4074 }
4075
4076 static void ecore_mcast_set_sched(struct ecore_mcast_obj *o)
4077 {
4078 ECORE_SMP_MB_BEFORE_CLEAR_BIT();
4079 ECORE_SET_BIT(o->sched_state, o->raw.pstate);
4080 ECORE_SMP_MB_AFTER_CLEAR_BIT();
4081 }
4082
4083 static bool ecore_mcast_check_sched(struct ecore_mcast_obj *o)
4084 {
4085 return !!ECORE_TEST_BIT(o->sched_state, o->raw.pstate);
4086 }
4087
4088 static bool ecore_mcast_check_pending(struct ecore_mcast_obj *o)
4089 {
4090 return o->raw.check_pending(&o->raw) || o->check_sched(o);
4091 }
4092
4093 void ecore_init_mcast_obj(struct bxe_softc *sc,
4094 struct ecore_mcast_obj *mcast_obj,
4095 uint8_t mcast_cl_id, uint32_t mcast_cid, uint8_t func_id,
4096 uint8_t engine_id, void *rdata, ecore_dma_addr_t rdata_mapping,
4097 int state, unsigned long *pstate, ecore_obj_type type)
4098 {
4099 ECORE_MEMSET(mcast_obj, 0, sizeof(*mcast_obj));
4100
4101 ecore_init_raw_obj(&mcast_obj->raw, mcast_cl_id, mcast_cid, func_id,
4102 rdata, rdata_mapping, state, pstate, type);
4103
4104 mcast_obj->engine_id = engine_id;
4105
4106 ECORE_LIST_INIT(&mcast_obj->pending_cmds_head);
4107
4108 mcast_obj->sched_state = ECORE_FILTER_MCAST_SCHED;
4109 mcast_obj->check_sched = ecore_mcast_check_sched;
4110 mcast_obj->set_sched = ecore_mcast_set_sched;
4111 mcast_obj->clear_sched = ecore_mcast_clear_sched;
4112
4113 if (CHIP_IS_E1(sc)) {
4114 mcast_obj->config_mcast = ecore_mcast_setup_e1;
4115 mcast_obj->enqueue_cmd = ecore_mcast_enqueue_cmd;
4116 mcast_obj->hdl_restore =
4117 ecore_mcast_handle_restore_cmd_e1;
4118 mcast_obj->check_pending = ecore_mcast_check_pending;
4119
4120 if (CHIP_REV_IS_SLOW(sc))
4121 mcast_obj->max_cmd_len = ECORE_MAX_EMUL_MULTI;
4122 else
4123 mcast_obj->max_cmd_len = ECORE_MAX_MULTICAST;
4124
4125 mcast_obj->wait_comp = ecore_mcast_wait;
4126 mcast_obj->set_one_rule = ecore_mcast_set_one_rule_e1;
4127 mcast_obj->validate = ecore_mcast_validate_e1;
4128 mcast_obj->revert = ecore_mcast_revert_e1;
4129 mcast_obj->get_registry_size =
4130 ecore_mcast_get_registry_size_exact;
4131 mcast_obj->set_registry_size =
4132 ecore_mcast_set_registry_size_exact;
4133
4134 /* 57710 is the only chip that uses the exact match for mcast
4135 * at the moment.
4136 */
4137 ECORE_LIST_INIT(&mcast_obj->registry.exact_match.macs);
4138
4139 } else if (CHIP_IS_E1H(sc)) {
4140 mcast_obj->config_mcast = ecore_mcast_setup_e1h;
4141 mcast_obj->enqueue_cmd = NULL;
4142 mcast_obj->hdl_restore = NULL;
4143 mcast_obj->check_pending = ecore_mcast_check_pending;
4144
4145 /* 57711 doesn't send a ramrod, so it has unlimited credit
4146 * for one command.
4147 */
4148 mcast_obj->max_cmd_len = -1;
4149 mcast_obj->wait_comp = ecore_mcast_wait;
4150 mcast_obj->set_one_rule = NULL;
4151 mcast_obj->validate = ecore_mcast_validate_e1h;
4152 mcast_obj->revert = ecore_mcast_revert_e1h;
4153 mcast_obj->get_registry_size =
4154 ecore_mcast_get_registry_size_aprox;
4155 mcast_obj->set_registry_size =
4156 ecore_mcast_set_registry_size_aprox;
4157 } else {
4158 mcast_obj->config_mcast = ecore_mcast_setup_e2;
4159 mcast_obj->enqueue_cmd = ecore_mcast_enqueue_cmd;
4160 mcast_obj->hdl_restore =
4161 ecore_mcast_handle_restore_cmd_e2;
4162 mcast_obj->check_pending = ecore_mcast_check_pending;
4163 /* TODO: There should be a proper HSI define for this number!!!
4164 */
4165 mcast_obj->max_cmd_len = 16;
4166 mcast_obj->wait_comp = ecore_mcast_wait;
4167 mcast_obj->set_one_rule = ecore_mcast_set_one_rule_e2;
4168 mcast_obj->validate = ecore_mcast_validate_e2;
4169 mcast_obj->revert = ecore_mcast_revert_e2;
4170 mcast_obj->get_registry_size =
4171 ecore_mcast_get_registry_size_aprox;
4172 mcast_obj->set_registry_size =
4173 ecore_mcast_set_registry_size_aprox;
4174 }
4175 }
4176
4177 /*************************** Credit handling **********************************/
4178
4179 /**
4180 * atomic_add_ifless - add if the result is less than a given value.
4181 *
4182 * @v: pointer of type ecore_atomic_t
4183 * @a: the amount to add to v...
4184 * @u: ...if (v + a) is less than u.
4185 *
4186 * returns TRUE if (v + a) was less than u, and FALSE otherwise.
4187 *
4188 */
4189 static inline bool __atomic_add_ifless(ecore_atomic_t *v, int a, int u)
4190 {
4191 int c, old;
4192
4193 c = ECORE_ATOMIC_READ(v);
4194 for (;;) {
4195 if (ECORE_UNLIKELY(c + a >= u))
4196 return FALSE;
4197
4198 old = ECORE_ATOMIC_CMPXCHG((v), c, c + a);
4199 if (ECORE_LIKELY(old == c))
4200 break;
4201 c = old;
4202 }
4203
4204 return TRUE;
4205 }
4206
4207 /**
4208 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4209 *
4210 * @v: pointer of type ecore_atomic_t
4211 * @a: the amount to dec from v...
4212 * @u: ...if (v - a) is more or equal than u.
4213 *
4214 * returns TRUE if (v - a) was more or equal than u, and FALSE
4215 * otherwise.
4216 */
4217 static inline bool __atomic_dec_ifmoe(ecore_atomic_t *v, int a, int u)
4218 {
4219 int c, old;
4220
4221 c = ECORE_ATOMIC_READ(v);
4222 for (;;) {
4223 if (ECORE_UNLIKELY(c - a < u))
4224 return FALSE;
4225
4226 old = ECORE_ATOMIC_CMPXCHG((v), c, c - a);
4227 if (ECORE_LIKELY(old == c))
4228 break;
4229 c = old;
4230 }
4231
4232 return TRUE;
4233 }
4234
4235 static bool ecore_credit_pool_get(struct ecore_credit_pool_obj *o, int cnt)
4236 {
4237 bool rc;
4238
4239 ECORE_SMP_MB();
4240 rc = __atomic_dec_ifmoe(&o->credit, cnt, 0);
4241 ECORE_SMP_MB();
4242
4243 return rc;
4244 }
4245
4246 static bool ecore_credit_pool_put(struct ecore_credit_pool_obj *o, int cnt)
4247 {
4248 bool rc;
4249
4250 ECORE_SMP_MB();
4251
4252 /* Don't let to refill if credit + cnt > pool_sz */
4253 rc = __atomic_add_ifless(&o->credit, cnt, o->pool_sz + 1);
4254
4255 ECORE_SMP_MB();
4256
4257 return rc;
4258 }
4259
4260 static int ecore_credit_pool_check(struct ecore_credit_pool_obj *o)
4261 {
4262 int cur_credit;
4263
4264 ECORE_SMP_MB();
4265 cur_credit = ECORE_ATOMIC_READ(&o->credit);
4266
4267 return cur_credit;
4268 }
4269
4270 static bool ecore_credit_pool_always_TRUE(struct ecore_credit_pool_obj *o,
4271 int cnt)
4272 {
4273 return TRUE;
4274 }
4275
4276 static bool ecore_credit_pool_get_entry(
4277 struct ecore_credit_pool_obj *o,
4278 int *offset)
4279 {
4280 int idx, vec, i;
4281
4282 *offset = -1;
4283
4284 /* Find "internal cam-offset" then add to base for this object... */
4285 for (vec = 0; vec < ECORE_POOL_VEC_SIZE; vec++) {
4286
4287 /* Skip the current vector if there are no free entries in it */
4288 if (!o->pool_mirror[vec])
4289 continue;
4290
4291 /* If we've got here we are going to find a free entry */
4292 for (idx = vec * BIT_VEC64_ELEM_SZ, i = 0;
4293 i < BIT_VEC64_ELEM_SZ; idx++, i++)
4294
4295 if (BIT_VEC64_TEST_BIT(o->pool_mirror, idx)) {
4296 /* Got one!! */
4297 BIT_VEC64_CLEAR_BIT(o->pool_mirror, idx);
4298 *offset = o->base_pool_offset + idx;
4299 return TRUE;
4300 }
4301 }
4302
4303 return FALSE;
4304 }
4305
4306 static bool ecore_credit_pool_put_entry(
4307 struct ecore_credit_pool_obj *o,
4308 int offset)
4309 {
4310 if (offset < o->base_pool_offset)
4311 return FALSE;
4312
4313 offset -= o->base_pool_offset;
4314
4315 if (offset >= o->pool_sz)
4316 return FALSE;
4317
4318 /* Return the entry to the pool */
4319 BIT_VEC64_SET_BIT(o->pool_mirror, offset);
4320
4321 return TRUE;
4322 }
4323
4324 static bool ecore_credit_pool_put_entry_always_TRUE(
4325 struct ecore_credit_pool_obj *o,
4326 int offset)
4327 {
4328 return TRUE;
4329 }
4330
4331 static bool ecore_credit_pool_get_entry_always_TRUE(
4332 struct ecore_credit_pool_obj *o,
4333 int *offset)
4334 {
4335 *offset = -1;
4336 return TRUE;
4337 }
4338 /**
4339 * ecore_init_credit_pool - initialize credit pool internals.
4340 *
4341 * @p:
4342 * @base: Base entry in the CAM to use.
4343 * @credit: pool size.
4344 *
4345 * If base is negative no CAM entries handling will be performed.
4346 * If credit is negative pool operations will always succeed (unlimited pool).
4347 *
4348 */
4349 void ecore_init_credit_pool(struct ecore_credit_pool_obj *p,
4350 int base, int credit)
4351 {
4352 /* Zero the object first */
4353 ECORE_MEMSET(p, 0, sizeof(*p));
4354
4355 /* Set the table to all 1s */
4356 ECORE_MEMSET(&p->pool_mirror, 0xff, sizeof(p->pool_mirror));
4357
4358 /* Init a pool as full */
4359 ECORE_ATOMIC_SET(&p->credit, credit);
4360
4361 /* The total poll size */
4362 p->pool_sz = credit;
4363
4364 p->base_pool_offset = base;
4365
4366 /* Commit the change */
4367 ECORE_SMP_MB();
4368
4369 p->check = ecore_credit_pool_check;
4370
4371 /* if pool credit is negative - disable the checks */
4372 if (credit >= 0) {
4373 p->put = ecore_credit_pool_put;
4374 p->get = ecore_credit_pool_get;
4375 p->put_entry = ecore_credit_pool_put_entry;
4376 p->get_entry = ecore_credit_pool_get_entry;
4377 } else {
4378 p->put = ecore_credit_pool_always_TRUE;
4379 p->get = ecore_credit_pool_always_TRUE;
4380 p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4381 p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4382 }
4383
4384 /* If base is negative - disable entries handling */
4385 if (base < 0) {
4386 p->put_entry = ecore_credit_pool_put_entry_always_TRUE;
4387 p->get_entry = ecore_credit_pool_get_entry_always_TRUE;
4388 }
4389 }
4390
4391 void ecore_init_mac_credit_pool(struct bxe_softc *sc,
4392 struct ecore_credit_pool_obj *p, uint8_t func_id,
4393 uint8_t func_num)
4394 {
4395 /* TODO: this will be defined in consts as well... */
4396 #define ECORE_CAM_SIZE_EMUL 5
4397
4398 int cam_sz;
4399
4400 if (CHIP_IS_E1(sc)) {
4401 /* In E1, Multicast is saved in cam... */
4402 if (!CHIP_REV_IS_SLOW(sc))
4403 cam_sz = (MAX_MAC_CREDIT_E1 / 2) - ECORE_MAX_MULTICAST;
4404 else
4405 cam_sz = ECORE_CAM_SIZE_EMUL - ECORE_MAX_EMUL_MULTI;
4406
4407 ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4408
4409 } else if (CHIP_IS_E1H(sc)) {
4410 /* CAM credit is equally divided between all active functions
4411 * on the PORT!.
4412 */
4413 if ((func_num > 0)) {
4414 if (!CHIP_REV_IS_SLOW(sc))
4415 cam_sz = (MAX_MAC_CREDIT_E1H / (2*func_num));
4416 else
4417 cam_sz = ECORE_CAM_SIZE_EMUL;
4418 ecore_init_credit_pool(p, func_id * cam_sz, cam_sz);
4419 } else {
4420 /* this should never happen! Block MAC operations. */
4421 ecore_init_credit_pool(p, 0, 0);
4422 }
4423 } else {
4424 /*
4425 * CAM credit is equaly divided between all active functions
4426 * on the PATH.
4427 */
4428 if (func_num > 0) {
4429 if (!CHIP_REV_IS_SLOW(sc))
4430 cam_sz = PF_MAC_CREDIT_E2(sc, func_num);
4431 else
4432 cam_sz = ECORE_CAM_SIZE_EMUL;
4433
4434 /* No need for CAM entries handling for 57712 and
4435 * newer.
4436 */
4437 ecore_init_credit_pool(p, -1, cam_sz);
4438 } else {
4439 /* this should never happen! Block MAC operations. */
4440 ecore_init_credit_pool(p, 0, 0);
4441 }
4442 }
4443 }
4444
4445 void ecore_init_vlan_credit_pool(struct bxe_softc *sc,
4446 struct ecore_credit_pool_obj *p,
4447 uint8_t func_id,
4448 uint8_t func_num)
4449 {
4450 if (CHIP_IS_E1x(sc)) {
4451 /* There is no VLAN credit in HW on 57710 and 57711 only
4452 * MAC / MAC-VLAN can be set
4453 */
4454 ecore_init_credit_pool(p, 0, -1);
4455 } else {
4456 /* CAM credit is equally divided between all active functions
4457 * on the PATH.
4458 */
4459 if (func_num > 0) {
4460 int credit = PF_VLAN_CREDIT_E2(sc, func_num);
4461
4462 ecore_init_credit_pool(p, -1/*unused for E2*/, credit);
4463 } else
4464 /* this should never happen! Block VLAN operations. */
4465 ecore_init_credit_pool(p, 0, 0);
4466 }
4467 }
4468
4469 /****************** RSS Configuration ******************/
4470
4471 /**
4472 * ecore_setup_rss - configure RSS
4473 *
4474 * @sc: device handle
4475 * @p: rss configuration
4476 *
4477 * sends on UPDATE ramrod for that matter.
4478 */
4479 static int ecore_setup_rss(struct bxe_softc *sc,
4480 struct ecore_config_rss_params *p)
4481 {
4482 struct ecore_rss_config_obj *o = p->rss_obj;
4483 struct ecore_raw_obj *r = &o->raw;
4484 struct eth_rss_update_ramrod_data *data =
4485 (struct eth_rss_update_ramrod_data *)(r->rdata);
4486 uint16_t caps = 0;
4487 uint8_t rss_mode = 0;
4488 int rc;
4489
4490 ECORE_MEMSET(data, 0, sizeof(*data));
4491
4492 ECORE_MSG(sc, "Configuring RSS\n");
4493
4494 /* Set an echo field */
4495 data->echo = ECORE_CPU_TO_LE32((r->cid & ECORE_SWCID_MASK) |
4496 (r->state << ECORE_SWCID_SHIFT));
4497
4498 /* RSS mode */
4499 if (ECORE_TEST_BIT(ECORE_RSS_MODE_DISABLED, &p->rss_flags))
4500 rss_mode = ETH_RSS_MODE_DISABLED;
4501 else if (ECORE_TEST_BIT(ECORE_RSS_MODE_REGULAR, &p->rss_flags))
4502 rss_mode = ETH_RSS_MODE_REGULAR;
4503
4504 data->rss_mode = rss_mode;
4505
4506 ECORE_MSG(sc, "rss_mode=%d\n", rss_mode);
4507
4508 /* RSS capabilities */
4509 if (ECORE_TEST_BIT(ECORE_RSS_IPV4, &p->rss_flags))
4510 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY;
4511
4512 if (ECORE_TEST_BIT(ECORE_RSS_IPV4_TCP, &p->rss_flags))
4513 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY;
4514
4515 if (ECORE_TEST_BIT(ECORE_RSS_IPV4_UDP, &p->rss_flags))
4516 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY;
4517
4518 if (ECORE_TEST_BIT(ECORE_RSS_IPV6, &p->rss_flags))
4519 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY;
4520
4521 if (ECORE_TEST_BIT(ECORE_RSS_IPV6_TCP, &p->rss_flags))
4522 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY;
4523
4524 if (ECORE_TEST_BIT(ECORE_RSS_IPV6_UDP, &p->rss_flags))
4525 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY;
4526
4527 if (ECORE_TEST_BIT(ECORE_RSS_IPV4_VXLAN, &p->rss_flags))
4528 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY;
4529
4530 if (ECORE_TEST_BIT(ECORE_RSS_IPV6_VXLAN, &p->rss_flags))
4531 caps |= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY;
4532
4533 if (ECORE_TEST_BIT(ECORE_RSS_TUNN_INNER_HDRS, &p->rss_flags))
4534 caps |= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY;
4535
4536 /* RSS keys */
4537 if (ECORE_TEST_BIT(ECORE_RSS_SET_SRCH, &p->rss_flags)) {
4538 ECORE_MEMCPY(&data->rss_key[0], &p->rss_key[0],
4539 sizeof(data->rss_key));
4540 caps |= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY;
4541 }
4542
4543 data->capabilities = ECORE_CPU_TO_LE16(caps);
4544
4545 /* Hashing mask */
4546 data->rss_result_mask = p->rss_result_mask;
4547
4548 /* RSS engine ID */
4549 data->rss_engine_id = o->engine_id;
4550
4551 ECORE_MSG(sc, "rss_engine_id=%d\n", data->rss_engine_id);
4552
4553 /* Indirection table */
4554 ECORE_MEMCPY(data->indirection_table, p->ind_table,
4555 T_ETH_INDIRECTION_TABLE_SIZE);
4556
4557 /* Remember the last configuration */
4558 ECORE_MEMCPY(o->ind_table, p->ind_table, T_ETH_INDIRECTION_TABLE_SIZE);
4559
4560
4561 /* No need for an explicit memory barrier here as long as we
4562 * ensure the ordering of writing to the SPQ element
4563 * and updating of the SPQ producer which involves a memory
4564 * read. If the memory read is removed we will have to put a
4565 * full memory barrier there (inside ecore_sp_post()).
4566 */
4567
4568 /* Send a ramrod */
4569 rc = ecore_sp_post(sc,
4570 RAMROD_CMD_ID_ETH_RSS_UPDATE,
4571 r->cid,
4572 r->rdata_mapping,
4573 ETH_CONNECTION_TYPE);
4574
4575 if (rc < 0)
4576 return rc;
4577
4578 return ECORE_PENDING;
4579 }
4580
4581 void ecore_get_rss_ind_table(struct ecore_rss_config_obj *rss_obj,
4582 uint8_t *ind_table)
4583 {
4584 ECORE_MEMCPY(ind_table, rss_obj->ind_table, sizeof(rss_obj->ind_table));
4585 }
4586
4587 int ecore_config_rss(struct bxe_softc *sc,
4588 struct ecore_config_rss_params *p)
4589 {
4590 int rc;
4591 struct ecore_rss_config_obj *o = p->rss_obj;
4592 struct ecore_raw_obj *r = &o->raw;
4593
4594 /* Do nothing if only driver cleanup was requested */
4595 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, &p->ramrod_flags)) {
4596 ECORE_MSG(sc, "Not configuring RSS ramrod_flags=%lx\n",
4597 p->ramrod_flags);
4598 return ECORE_SUCCESS;
4599 }
4600
4601 r->set_pending(r);
4602
4603 rc = o->config_rss(sc, p);
4604 if (rc < 0) {
4605 r->clear_pending(r);
4606 return rc;
4607 }
4608
4609 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, &p->ramrod_flags))
4610 rc = r->wait_comp(sc, r);
4611
4612 return rc;
4613 }
4614
4615 void ecore_init_rss_config_obj(struct bxe_softc *sc,
4616 struct ecore_rss_config_obj *rss_obj,
4617 uint8_t cl_id, uint32_t cid, uint8_t func_id, uint8_t engine_id,
4618 void *rdata, ecore_dma_addr_t rdata_mapping,
4619 int state, unsigned long *pstate,
4620 ecore_obj_type type)
4621 {
4622 ecore_init_raw_obj(&rss_obj->raw, cl_id, cid, func_id, rdata,
4623 rdata_mapping, state, pstate, type);
4624
4625 rss_obj->engine_id = engine_id;
4626 rss_obj->config_rss = ecore_setup_rss;
4627 }
4628
4629
4630 /********************** Queue state object ***********************************/
4631
4632 /**
4633 * ecore_queue_state_change - perform Queue state change transition
4634 *
4635 * @sc: device handle
4636 * @params: parameters to perform the transition
4637 *
4638 * returns 0 in case of successfully completed transition, negative error
4639 * code in case of failure, positive (EBUSY) value if there is a completion
4640 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4641 * not set in params->ramrod_flags for asynchronous commands).
4642 *
4643 */
4644 int ecore_queue_state_change(struct bxe_softc *sc,
4645 struct ecore_queue_state_params *params)
4646 {
4647 struct ecore_queue_sp_obj *o = params->q_obj;
4648 int rc, pending_bit;
4649 unsigned long *pending = &o->pending;
4650
4651 /* Check that the requested transition is legal */
4652 rc = o->check_transition(sc, o, params);
4653 if (rc) {
4654 ECORE_ERR("check transition returned an error. rc %d\n", rc);
4655 return ECORE_INVAL;
4656 }
4657
4658 /* Set "pending" bit */
4659 ECORE_MSG(sc, "pending bit was=%lx\n", o->pending);
4660 pending_bit = o->set_pending(o, params);
4661 ECORE_MSG(sc, "pending bit now=%lx\n", o->pending);
4662
4663 /* Don't send a command if only driver cleanup was requested */
4664 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags))
4665 o->complete_cmd(sc, o, pending_bit);
4666 else {
4667 /* Send a ramrod */
4668 rc = o->send_cmd(sc, params);
4669 if (rc) {
4670 o->next_state = ECORE_Q_STATE_MAX;
4671 ECORE_CLEAR_BIT(pending_bit, pending);
4672 ECORE_SMP_MB_AFTER_CLEAR_BIT();
4673 return rc;
4674 }
4675
4676 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) {
4677 rc = o->wait_comp(sc, o, pending_bit);
4678 if (rc)
4679 return rc;
4680
4681 return ECORE_SUCCESS;
4682 }
4683 }
4684
4685 return ECORE_RET_PENDING(pending_bit, pending);
4686 }
4687
4688 static int ecore_queue_set_pending(struct ecore_queue_sp_obj *obj,
4689 struct ecore_queue_state_params *params)
4690 {
4691 enum ecore_queue_cmd cmd = params->cmd, bit;
4692
4693 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4694 * UPDATE command.
4695 */
4696 if ((cmd == ECORE_Q_CMD_ACTIVATE) ||
4697 (cmd == ECORE_Q_CMD_DEACTIVATE))
4698 bit = ECORE_Q_CMD_UPDATE;
4699 else
4700 bit = cmd;
4701
4702 ECORE_SET_BIT(bit, &obj->pending);
4703 return bit;
4704 }
4705
4706 static int ecore_queue_wait_comp(struct bxe_softc *sc,
4707 struct ecore_queue_sp_obj *o,
4708 enum ecore_queue_cmd cmd)
4709 {
4710 return ecore_state_wait(sc, cmd, &o->pending);
4711 }
4712
4713 /**
4714 * ecore_queue_comp_cmd - complete the state change command.
4715 *
4716 * @sc: device handle
4717 * @o:
4718 * @cmd:
4719 *
4720 * Checks that the arrived completion is expected.
4721 */
4722 static int ecore_queue_comp_cmd(struct bxe_softc *sc,
4723 struct ecore_queue_sp_obj *o,
4724 enum ecore_queue_cmd cmd)
4725 {
4726 unsigned long cur_pending = o->pending;
4727
4728 if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
4729 ECORE_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4730 cmd, o->cids[ECORE_PRIMARY_CID_INDEX],
4731 o->state, cur_pending, o->next_state);
4732 return ECORE_INVAL;
4733 }
4734
4735 if (o->next_tx_only >= o->max_cos)
4736 /* >= because tx only must always be smaller than cos since the
4737 * primary connection supports COS 0
4738 */
4739 ECORE_ERR("illegal value for next tx_only: %d. max cos was %d",
4740 o->next_tx_only, o->max_cos);
4741
4742 ECORE_MSG(sc,
4743 "Completing command %d for queue %d, setting state to %d\n",
4744 cmd, o->cids[ECORE_PRIMARY_CID_INDEX], o->next_state);
4745
4746 if (o->next_tx_only) /* print num tx-only if any exist */
4747 ECORE_MSG(sc, "primary cid %d: num tx-only cons %d\n",
4748 o->cids[ECORE_PRIMARY_CID_INDEX], o->next_tx_only);
4749
4750 o->state = o->next_state;
4751 o->num_tx_only = o->next_tx_only;
4752 o->next_state = ECORE_Q_STATE_MAX;
4753
4754 /* It's important that o->state and o->next_state are
4755 * updated before o->pending.
4756 */
4757 wmb();
4758
4759 ECORE_CLEAR_BIT(cmd, &o->pending);
4760 ECORE_SMP_MB_AFTER_CLEAR_BIT();
4761
4762 return ECORE_SUCCESS;
4763 }
4764
4765 static void ecore_q_fill_setup_data_e2(struct bxe_softc *sc,
4766 struct ecore_queue_state_params *cmd_params,
4767 struct client_init_ramrod_data *data)
4768 {
4769 struct ecore_queue_setup_params *params = &cmd_params->params.setup;
4770
4771 /* Rx data */
4772
4773 /* IPv6 TPA supported for E2 and above only */
4774 data->rx.tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_IPV6,
4775 ¶ms->flags) *
4776 CLIENT_INIT_RX_DATA_TPA_EN_IPV6;
4777 }
4778
4779 static void ecore_q_fill_init_general_data(struct bxe_softc *sc,
4780 struct ecore_queue_sp_obj *o,
4781 struct ecore_general_setup_params *params,
4782 struct client_init_general_data *gen_data,
4783 unsigned long *flags)
4784 {
4785 gen_data->client_id = o->cl_id;
4786
4787 if (ECORE_TEST_BIT(ECORE_Q_FLG_STATS, flags)) {
4788 gen_data->statistics_counter_id =
4789 params->stat_id;
4790 gen_data->statistics_en_flg = 1;
4791 gen_data->statistics_zero_flg =
4792 ECORE_TEST_BIT(ECORE_Q_FLG_ZERO_STATS, flags);
4793 } else
4794 gen_data->statistics_counter_id =
4795 DISABLE_STATISTIC_COUNTER_ID_VALUE;
4796
4797 gen_data->is_fcoe_flg = ECORE_TEST_BIT(ECORE_Q_FLG_FCOE,
4798 flags);
4799 gen_data->activate_flg = ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
4800 flags);
4801 gen_data->sp_client_id = params->spcl_id;
4802 gen_data->mtu = ECORE_CPU_TO_LE16(params->mtu);
4803 gen_data->func_id = o->func_id;
4804
4805 gen_data->cos = params->cos;
4806
4807 gen_data->traffic_type =
4808 ECORE_TEST_BIT(ECORE_Q_FLG_FCOE, flags) ?
4809 LLFC_TRAFFIC_TYPE_FCOE : LLFC_TRAFFIC_TYPE_NW;
4810
4811 gen_data->fp_hsi_ver = params->fp_hsi;
4812
4813 ECORE_MSG(sc, "flags: active %d, cos %d, stats en %d\n",
4814 gen_data->activate_flg, gen_data->cos, gen_data->statistics_en_flg);
4815 }
4816
4817 static void ecore_q_fill_init_tx_data(struct ecore_queue_sp_obj *o,
4818 struct ecore_txq_setup_params *params,
4819 struct client_init_tx_data *tx_data,
4820 unsigned long *flags)
4821 {
4822 tx_data->enforce_security_flg =
4823 ECORE_TEST_BIT(ECORE_Q_FLG_TX_SEC, flags);
4824 tx_data->default_vlan =
4825 ECORE_CPU_TO_LE16(params->default_vlan);
4826 tx_data->default_vlan_flg =
4827 ECORE_TEST_BIT(ECORE_Q_FLG_DEF_VLAN, flags);
4828 tx_data->tx_switching_flg =
4829 ECORE_TEST_BIT(ECORE_Q_FLG_TX_SWITCH, flags);
4830 tx_data->anti_spoofing_flg =
4831 ECORE_TEST_BIT(ECORE_Q_FLG_ANTI_SPOOF, flags);
4832 tx_data->force_default_pri_flg =
4833 ECORE_TEST_BIT(ECORE_Q_FLG_FORCE_DEFAULT_PRI, flags);
4834 tx_data->refuse_outband_vlan_flg =
4835 ECORE_TEST_BIT(ECORE_Q_FLG_REFUSE_OUTBAND_VLAN, flags);
4836 tx_data->tunnel_lso_inc_ip_id =
4837 ECORE_TEST_BIT(ECORE_Q_FLG_TUN_INC_INNER_IP_ID, flags);
4838 tx_data->tunnel_non_lso_pcsum_location =
4839 ECORE_TEST_BIT(ECORE_Q_FLG_PCSUM_ON_PKT, flags) ? CSUM_ON_PKT :
4840 CSUM_ON_BD;
4841
4842 tx_data->tx_status_block_id = params->fw_sb_id;
4843 tx_data->tx_sb_index_number = params->sb_cq_index;
4844 tx_data->tss_leading_client_id = params->tss_leading_cl_id;
4845
4846 tx_data->tx_bd_page_base.lo =
4847 ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4848 tx_data->tx_bd_page_base.hi =
4849 ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4850
4851 /* Don't configure any Tx switching mode during queue SETUP */
4852 tx_data->state = 0;
4853 }
4854
4855 static void ecore_q_fill_init_pause_data(struct ecore_queue_sp_obj *o,
4856 struct rxq_pause_params *params,
4857 struct client_init_rx_data *rx_data)
4858 {
4859 /* flow control data */
4860 rx_data->cqe_pause_thr_low = ECORE_CPU_TO_LE16(params->rcq_th_lo);
4861 rx_data->cqe_pause_thr_high = ECORE_CPU_TO_LE16(params->rcq_th_hi);
4862 rx_data->bd_pause_thr_low = ECORE_CPU_TO_LE16(params->bd_th_lo);
4863 rx_data->bd_pause_thr_high = ECORE_CPU_TO_LE16(params->bd_th_hi);
4864 rx_data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_th_lo);
4865 rx_data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_th_hi);
4866 rx_data->rx_cos_mask = ECORE_CPU_TO_LE16(params->pri_map);
4867 }
4868
4869 static void ecore_q_fill_init_rx_data(struct ecore_queue_sp_obj *o,
4870 struct ecore_rxq_setup_params *params,
4871 struct client_init_rx_data *rx_data,
4872 unsigned long *flags)
4873 {
4874 rx_data->tpa_en = ECORE_TEST_BIT(ECORE_Q_FLG_TPA, flags) *
4875 CLIENT_INIT_RX_DATA_TPA_EN_IPV4;
4876 rx_data->tpa_en |= ECORE_TEST_BIT(ECORE_Q_FLG_TPA_GRO, flags) *
4877 CLIENT_INIT_RX_DATA_TPA_MODE;
4878 rx_data->vmqueue_mode_en_flg = 0;
4879
4880 rx_data->extra_data_over_sgl_en_flg =
4881 ECORE_TEST_BIT(ECORE_Q_FLG_OOO, flags);
4882 rx_data->cache_line_alignment_log_size =
4883 params->cache_line_log;
4884 rx_data->enable_dynamic_hc =
4885 ECORE_TEST_BIT(ECORE_Q_FLG_DHC, flags);
4886 rx_data->max_sges_for_packet = params->max_sges_pkt;
4887 rx_data->client_qzone_id = params->cl_qzone_id;
4888 rx_data->max_agg_size = ECORE_CPU_TO_LE16(params->tpa_agg_sz);
4889
4890 /* Always start in DROP_ALL mode */
4891 rx_data->state = ECORE_CPU_TO_LE16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL |
4892 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL);
4893
4894 /* We don't set drop flags */
4895 rx_data->drop_ip_cs_err_flg = 0;
4896 rx_data->drop_tcp_cs_err_flg = 0;
4897 rx_data->drop_ttl0_flg = 0;
4898 rx_data->drop_udp_cs_err_flg = 0;
4899 rx_data->inner_vlan_removal_enable_flg =
4900 ECORE_TEST_BIT(ECORE_Q_FLG_VLAN, flags);
4901 rx_data->outer_vlan_removal_enable_flg =
4902 ECORE_TEST_BIT(ECORE_Q_FLG_OV, flags);
4903 rx_data->status_block_id = params->fw_sb_id;
4904 rx_data->rx_sb_index_number = params->sb_cq_index;
4905 rx_data->max_tpa_queues = params->max_tpa_queues;
4906 rx_data->max_bytes_on_bd = ECORE_CPU_TO_LE16(params->buf_sz);
4907 rx_data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buf_sz);
4908 rx_data->bd_page_base.lo =
4909 ECORE_CPU_TO_LE32(U64_LO(params->dscr_map));
4910 rx_data->bd_page_base.hi =
4911 ECORE_CPU_TO_LE32(U64_HI(params->dscr_map));
4912 rx_data->sge_page_base.lo =
4913 ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
4914 rx_data->sge_page_base.hi =
4915 ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
4916 rx_data->cqe_page_base.lo =
4917 ECORE_CPU_TO_LE32(U64_LO(params->rcq_map));
4918 rx_data->cqe_page_base.hi =
4919 ECORE_CPU_TO_LE32(U64_HI(params->rcq_map));
4920 rx_data->is_leading_rss = ECORE_TEST_BIT(ECORE_Q_FLG_LEADING_RSS,
4921 flags);
4922
4923 if (ECORE_TEST_BIT(ECORE_Q_FLG_MCAST, flags)) {
4924 rx_data->approx_mcast_engine_id = params->mcast_engine_id;
4925 rx_data->is_approx_mcast = 1;
4926 }
4927
4928 rx_data->rss_engine_id = params->rss_engine_id;
4929
4930 /* silent vlan removal */
4931 rx_data->silent_vlan_removal_flg =
4932 ECORE_TEST_BIT(ECORE_Q_FLG_SILENT_VLAN_REM, flags);
4933 rx_data->silent_vlan_value =
4934 ECORE_CPU_TO_LE16(params->silent_removal_value);
4935 rx_data->silent_vlan_mask =
4936 ECORE_CPU_TO_LE16(params->silent_removal_mask);
4937 }
4938
4939 /* initialize the general, tx and rx parts of a queue object */
4940 static void ecore_q_fill_setup_data_cmn(struct bxe_softc *sc,
4941 struct ecore_queue_state_params *cmd_params,
4942 struct client_init_ramrod_data *data)
4943 {
4944 ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4945 &cmd_params->params.setup.gen_params,
4946 &data->general,
4947 &cmd_params->params.setup.flags);
4948
4949 ecore_q_fill_init_tx_data(cmd_params->q_obj,
4950 &cmd_params->params.setup.txq_params,
4951 &data->tx,
4952 &cmd_params->params.setup.flags);
4953
4954 ecore_q_fill_init_rx_data(cmd_params->q_obj,
4955 &cmd_params->params.setup.rxq_params,
4956 &data->rx,
4957 &cmd_params->params.setup.flags);
4958
4959 ecore_q_fill_init_pause_data(cmd_params->q_obj,
4960 &cmd_params->params.setup.pause_params,
4961 &data->rx);
4962 }
4963
4964 /* initialize the general and tx parts of a tx-only queue object */
4965 static void ecore_q_fill_setup_tx_only(struct bxe_softc *sc,
4966 struct ecore_queue_state_params *cmd_params,
4967 struct tx_queue_init_ramrod_data *data)
4968 {
4969 ecore_q_fill_init_general_data(sc, cmd_params->q_obj,
4970 &cmd_params->params.tx_only.gen_params,
4971 &data->general,
4972 &cmd_params->params.tx_only.flags);
4973
4974 ecore_q_fill_init_tx_data(cmd_params->q_obj,
4975 &cmd_params->params.tx_only.txq_params,
4976 &data->tx,
4977 &cmd_params->params.tx_only.flags);
4978
4979 ECORE_MSG(sc, "cid %d, tx bd page lo %x hi %x",
4980 cmd_params->q_obj->cids[0],
4981 data->tx.tx_bd_page_base.lo,
4982 data->tx.tx_bd_page_base.hi);
4983 }
4984
4985 /**
4986 * ecore_q_init - init HW/FW queue
4987 *
4988 * @sc: device handle
4989 * @params:
4990 *
4991 * HW/FW initial Queue configuration:
4992 * - HC: Rx and Tx
4993 * - CDU context validation
4994 *
4995 */
4996 static inline int ecore_q_init(struct bxe_softc *sc,
4997 struct ecore_queue_state_params *params)
4998 {
4999 struct ecore_queue_sp_obj *o = params->q_obj;
5000 struct ecore_queue_init_params *init = ¶ms->params.init;
5001 uint16_t hc_usec;
5002 uint8_t cos;
5003
5004 /* Tx HC configuration */
5005 if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_TX, &o->type) &&
5006 ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->tx.flags)) {
5007 hc_usec = init->tx.hc_rate ? 1000000 / init->tx.hc_rate : 0;
5008
5009 ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->tx.fw_sb_id,
5010 init->tx.sb_cq_index,
5011 !ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->tx.flags),
5012 hc_usec);
5013 }
5014
5015 /* Rx HC configuration */
5016 if (ECORE_TEST_BIT(ECORE_Q_TYPE_HAS_RX, &o->type) &&
5017 ECORE_TEST_BIT(ECORE_Q_FLG_HC, &init->rx.flags)) {
5018 hc_usec = init->rx.hc_rate ? 1000000 / init->rx.hc_rate : 0;
5019
5020 ECORE_UPDATE_COALESCE_SB_INDEX(sc, init->rx.fw_sb_id,
5021 init->rx.sb_cq_index,
5022 !ECORE_TEST_BIT(ECORE_Q_FLG_HC_EN, &init->rx.flags),
5023 hc_usec);
5024 }
5025
5026 /* Set CDU context validation values */
5027 for (cos = 0; cos < o->max_cos; cos++) {
5028 ECORE_MSG(sc, "setting context validation. cid %d, cos %d\n",
5029 o->cids[cos], cos);
5030 ECORE_MSG(sc, "context pointer %p\n", init->cxts[cos]);
5031 ECORE_SET_CTX_VALIDATION(sc, init->cxts[cos], o->cids[cos]);
5032 }
5033
5034 /* As no ramrod is sent, complete the command immediately */
5035 o->complete_cmd(sc, o, ECORE_Q_CMD_INIT);
5036
5037 ECORE_MMIOWB();
5038 ECORE_SMP_MB();
5039
5040 return ECORE_SUCCESS;
5041 }
5042
5043 static inline int ecore_q_send_setup_e1x(struct bxe_softc *sc,
5044 struct ecore_queue_state_params *params)
5045 {
5046 struct ecore_queue_sp_obj *o = params->q_obj;
5047 struct client_init_ramrod_data *rdata =
5048 (struct client_init_ramrod_data *)o->rdata;
5049 ecore_dma_addr_t data_mapping = o->rdata_mapping;
5050 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5051
5052 /* Clear the ramrod data */
5053 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5054
5055 /* Fill the ramrod data */
5056 ecore_q_fill_setup_data_cmn(sc, params, rdata);
5057
5058 /* No need for an explicit memory barrier here as long as we
5059 * ensure the ordering of writing to the SPQ element
5060 * and updating of the SPQ producer which involves a memory
5061 * read. If the memory read is removed we will have to put a
5062 * full memory barrier there (inside ecore_sp_post()).
5063 */
5064 return ecore_sp_post(sc,
5065 ramrod,
5066 o->cids[ECORE_PRIMARY_CID_INDEX],
5067 data_mapping,
5068 ETH_CONNECTION_TYPE);
5069 }
5070
5071 static inline int ecore_q_send_setup_e2(struct bxe_softc *sc,
5072 struct ecore_queue_state_params *params)
5073 {
5074 struct ecore_queue_sp_obj *o = params->q_obj;
5075 struct client_init_ramrod_data *rdata =
5076 (struct client_init_ramrod_data *)o->rdata;
5077 ecore_dma_addr_t data_mapping = o->rdata_mapping;
5078 int ramrod = RAMROD_CMD_ID_ETH_CLIENT_SETUP;
5079
5080 /* Clear the ramrod data */
5081 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5082
5083 /* Fill the ramrod data */
5084 ecore_q_fill_setup_data_cmn(sc, params, rdata);
5085 ecore_q_fill_setup_data_e2(sc, params, rdata);
5086
5087 /* No need for an explicit memory barrier here as long as we
5088 * ensure the ordering of writing to the SPQ element
5089 * and updating of the SPQ producer which involves a memory
5090 * read. If the memory read is removed we will have to put a
5091 * full memory barrier there (inside ecore_sp_post()).
5092 */
5093 return ecore_sp_post(sc,
5094 ramrod,
5095 o->cids[ECORE_PRIMARY_CID_INDEX],
5096 data_mapping,
5097 ETH_CONNECTION_TYPE);
5098 }
5099
5100 static inline int ecore_q_send_setup_tx_only(struct bxe_softc *sc,
5101 struct ecore_queue_state_params *params)
5102 {
5103 struct ecore_queue_sp_obj *o = params->q_obj;
5104 struct tx_queue_init_ramrod_data *rdata =
5105 (struct tx_queue_init_ramrod_data *)o->rdata;
5106 ecore_dma_addr_t data_mapping = o->rdata_mapping;
5107 int ramrod = RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP;
5108 struct ecore_queue_setup_tx_only_params *tx_only_params =
5109 ¶ms->params.tx_only;
5110 uint8_t cid_index = tx_only_params->cid_index;
5111
5112 if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &o->type))
5113 ramrod = RAMROD_CMD_ID_ETH_FORWARD_SETUP;
5114 ECORE_MSG(sc, "sending forward tx-only ramrod");
5115
5116 if (cid_index >= o->max_cos) {
5117 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5118 o->cl_id, cid_index);
5119 return ECORE_INVAL;
5120 }
5121
5122 ECORE_MSG(sc, "parameters received: cos: %d sp-id: %d\n",
5123 tx_only_params->gen_params.cos,
5124 tx_only_params->gen_params.spcl_id);
5125
5126 /* Clear the ramrod data */
5127 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5128
5129 /* Fill the ramrod data */
5130 ecore_q_fill_setup_tx_only(sc, params, rdata);
5131
5132 ECORE_MSG(sc, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5133 o->cids[cid_index], rdata->general.client_id,
5134 rdata->general.sp_client_id, rdata->general.cos);
5135
5136 /* No need for an explicit memory barrier here as long as we
5137 * ensure the ordering of writing to the SPQ element
5138 * and updating of the SPQ producer which involves a memory
5139 * read. If the memory read is removed we will have to put a
5140 * full memory barrier there (inside ecore_sp_post()).
5141 */
5142 return ecore_sp_post(sc, ramrod, o->cids[cid_index],
5143 data_mapping, ETH_CONNECTION_TYPE);
5144 }
5145
5146 static void ecore_q_fill_update_data(struct bxe_softc *sc,
5147 struct ecore_queue_sp_obj *obj,
5148 struct ecore_queue_update_params *params,
5149 struct client_update_ramrod_data *data)
5150 {
5151 /* Client ID of the client to update */
5152 data->client_id = obj->cl_id;
5153
5154 /* Function ID of the client to update */
5155 data->func_id = obj->func_id;
5156
5157 /* Default VLAN value */
5158 data->default_vlan = ECORE_CPU_TO_LE16(params->def_vlan);
5159
5160 /* Inner VLAN stripping */
5161 data->inner_vlan_removal_enable_flg =
5162 ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM,
5163 ¶ms->update_flags);
5164 data->inner_vlan_removal_change_flg =
5165 ECORE_TEST_BIT(ECORE_Q_UPDATE_IN_VLAN_REM_CHNG,
5166 ¶ms->update_flags);
5167
5168 /* Outer VLAN stripping */
5169 data->outer_vlan_removal_enable_flg =
5170 ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM,
5171 ¶ms->update_flags);
5172 data->outer_vlan_removal_change_flg =
5173 ECORE_TEST_BIT(ECORE_Q_UPDATE_OUT_VLAN_REM_CHNG,
5174 ¶ms->update_flags);
5175
5176 /* Drop packets that have source MAC that doesn't belong to this
5177 * Queue.
5178 */
5179 data->anti_spoofing_enable_flg =
5180 ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF,
5181 ¶ms->update_flags);
5182 data->anti_spoofing_change_flg =
5183 ECORE_TEST_BIT(ECORE_Q_UPDATE_ANTI_SPOOF_CHNG,
5184 ¶ms->update_flags);
5185
5186 /* Activate/Deactivate */
5187 data->activate_flg =
5188 ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE, ¶ms->update_flags);
5189 data->activate_change_flg =
5190 ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5191 ¶ms->update_flags);
5192
5193 /* Enable default VLAN */
5194 data->default_vlan_enable_flg =
5195 ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN,
5196 ¶ms->update_flags);
5197 data->default_vlan_change_flg =
5198 ECORE_TEST_BIT(ECORE_Q_UPDATE_DEF_VLAN_EN_CHNG,
5199 ¶ms->update_flags);
5200
5201 /* silent vlan removal */
5202 data->silent_vlan_change_flg =
5203 ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5204 ¶ms->update_flags);
5205 data->silent_vlan_removal_flg =
5206 ECORE_TEST_BIT(ECORE_Q_UPDATE_SILENT_VLAN_REM,
5207 ¶ms->update_flags);
5208 data->silent_vlan_value = ECORE_CPU_TO_LE16(params->silent_removal_value);
5209 data->silent_vlan_mask = ECORE_CPU_TO_LE16(params->silent_removal_mask);
5210
5211 /* tx switching */
5212 data->tx_switching_flg =
5213 ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING,
5214 ¶ms->update_flags);
5215 data->tx_switching_change_flg =
5216 ECORE_TEST_BIT(ECORE_Q_UPDATE_TX_SWITCHING_CHNG,
5217 ¶ms->update_flags);
5218
5219 /* PTP */
5220 data->handle_ptp_pkts_flg =
5221 ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS,
5222 ¶ms->update_flags);
5223 data->handle_ptp_pkts_change_flg =
5224 ECORE_TEST_BIT(ECORE_Q_UPDATE_PTP_PKTS_CHNG,
5225 ¶ms->update_flags);
5226 }
5227
5228 static inline int ecore_q_send_update(struct bxe_softc *sc,
5229 struct ecore_queue_state_params *params)
5230 {
5231 struct ecore_queue_sp_obj *o = params->q_obj;
5232 struct client_update_ramrod_data *rdata =
5233 (struct client_update_ramrod_data *)o->rdata;
5234 ecore_dma_addr_t data_mapping = o->rdata_mapping;
5235 struct ecore_queue_update_params *update_params =
5236 ¶ms->params.update;
5237 uint8_t cid_index = update_params->cid_index;
5238
5239 if (cid_index >= o->max_cos) {
5240 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5241 o->cl_id, cid_index);
5242 return ECORE_INVAL;
5243 }
5244
5245 /* Clear the ramrod data */
5246 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5247
5248 /* Fill the ramrod data */
5249 ecore_q_fill_update_data(sc, o, update_params, rdata);
5250
5251 /* No need for an explicit memory barrier here as long as we
5252 * ensure the ordering of writing to the SPQ element
5253 * and updating of the SPQ producer which involves a memory
5254 * read. If the memory read is removed we will have to put a
5255 * full memory barrier there (inside ecore_sp_post()).
5256 */
5257 return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_CLIENT_UPDATE,
5258 o->cids[cid_index], data_mapping,
5259 ETH_CONNECTION_TYPE);
5260 }
5261
5262 /**
5263 * ecore_q_send_deactivate - send DEACTIVATE command
5264 *
5265 * @sc: device handle
5266 * @params:
5267 *
5268 * implemented using the UPDATE command.
5269 */
5270 static inline int ecore_q_send_deactivate(struct bxe_softc *sc,
5271 struct ecore_queue_state_params *params)
5272 {
5273 struct ecore_queue_update_params *update = ¶ms->params.update;
5274
5275 ECORE_MEMSET(update, 0, sizeof(*update));
5276
5277 ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5278
5279 return ecore_q_send_update(sc, params);
5280 }
5281
5282 /**
5283 * ecore_q_send_activate - send ACTIVATE command
5284 *
5285 * @sc: device handle
5286 * @params:
5287 *
5288 * implemented using the UPDATE command.
5289 */
5290 static inline int ecore_q_send_activate(struct bxe_softc *sc,
5291 struct ecore_queue_state_params *params)
5292 {
5293 struct ecore_queue_update_params *update = ¶ms->params.update;
5294
5295 ECORE_MEMSET(update, 0, sizeof(*update));
5296
5297 ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE, &update->update_flags);
5298 ECORE_SET_BIT_NA(ECORE_Q_UPDATE_ACTIVATE_CHNG, &update->update_flags);
5299
5300 return ecore_q_send_update(sc, params);
5301 }
5302
5303 static void ecore_q_fill_update_tpa_data(struct bxe_softc *sc,
5304 struct ecore_queue_sp_obj *obj,
5305 struct ecore_queue_update_tpa_params *params,
5306 struct tpa_update_ramrod_data *data)
5307 {
5308 data->client_id = obj->cl_id;
5309 data->complete_on_both_clients = params->complete_on_both_clients;
5310 data->dont_verify_rings_pause_thr_flg =
5311 params->dont_verify_thr;
5312 data->max_agg_size = ECORE_CPU_TO_LE16(params->max_agg_sz);
5313 data->max_sges_for_packet = params->max_sges_pkt;
5314 data->max_tpa_queues = params->max_tpa_queues;
5315 data->sge_buff_size = ECORE_CPU_TO_LE16(params->sge_buff_sz);
5316 data->sge_page_base_hi = ECORE_CPU_TO_LE32(U64_HI(params->sge_map));
5317 data->sge_page_base_lo = ECORE_CPU_TO_LE32(U64_LO(params->sge_map));
5318 data->sge_pause_thr_high = ECORE_CPU_TO_LE16(params->sge_pause_thr_high);
5319 data->sge_pause_thr_low = ECORE_CPU_TO_LE16(params->sge_pause_thr_low);
5320 data->tpa_mode = params->tpa_mode;
5321 data->update_ipv4 = params->update_ipv4;
5322 data->update_ipv6 = params->update_ipv6;
5323 }
5324
5325 static inline int ecore_q_send_update_tpa(struct bxe_softc *sc,
5326 struct ecore_queue_state_params *params)
5327 {
5328 struct ecore_queue_sp_obj *o = params->q_obj;
5329 struct tpa_update_ramrod_data *rdata =
5330 (struct tpa_update_ramrod_data *)o->rdata;
5331 ecore_dma_addr_t data_mapping = o->rdata_mapping;
5332 struct ecore_queue_update_tpa_params *update_tpa_params =
5333 ¶ms->params.update_tpa;
5334 uint16_t type;
5335
5336 /* Clear the ramrod data */
5337 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
5338
5339 /* Fill the ramrod data */
5340 ecore_q_fill_update_tpa_data(sc, o, update_tpa_params, rdata);
5341
5342 /* Add the function id inside the type, so that sp post function
5343 * doesn't automatically add the PF func-id, this is required
5344 * for operations done by PFs on behalf of their VFs
5345 */
5346 type = ETH_CONNECTION_TYPE |
5347 ((o->func_id) << SPE_HDR_T_FUNCTION_ID_SHIFT);
5348
5349 /* No need for an explicit memory barrier here as long as we
5350 * ensure the ordering of writing to the SPQ element
5351 * and updating of the SPQ producer which involves a memory
5352 * read. If the memory read is removed we will have to put a
5353 * full memory barrier there (inside ecore_sp_post()).
5354 */
5355 return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TPA_UPDATE,
5356 o->cids[ECORE_PRIMARY_CID_INDEX],
5357 data_mapping, type);
5358 }
5359
5360 static inline int ecore_q_send_halt(struct bxe_softc *sc,
5361 struct ecore_queue_state_params *params)
5362 {
5363 struct ecore_queue_sp_obj *o = params->q_obj;
5364
5365 /* build eth_halt_ramrod_data.client_id in a big-endian friendly way */
5366 ecore_dma_addr_t data_mapping = 0;
5367 data_mapping = (ecore_dma_addr_t)o->cl_id;
5368
5369 /* No need for an explicit memory barrier here as long as we
5370 * ensure the ordering of writing to the SPQ element
5371 * and updating of the SPQ producer which involves a memory
5372 * read. If the memory read is removed we will have to put a
5373 * full memory barrier there (inside ecore_sp_post()).
5374 */
5375 return ecore_sp_post(sc,
5376 RAMROD_CMD_ID_ETH_HALT,
5377 o->cids[ECORE_PRIMARY_CID_INDEX],
5378 data_mapping,
5379 ETH_CONNECTION_TYPE);
5380 }
5381
5382 static inline int ecore_q_send_cfc_del(struct bxe_softc *sc,
5383 struct ecore_queue_state_params *params)
5384 {
5385 struct ecore_queue_sp_obj *o = params->q_obj;
5386 uint8_t cid_idx = params->params.cfc_del.cid_index;
5387
5388 if (cid_idx >= o->max_cos) {
5389 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5390 o->cl_id, cid_idx);
5391 return ECORE_INVAL;
5392 }
5393
5394 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_CFC_DEL,
5395 o->cids[cid_idx], 0,
5396 NONE_CONNECTION_TYPE);
5397 }
5398
5399 static inline int ecore_q_send_terminate(struct bxe_softc *sc,
5400 struct ecore_queue_state_params *params)
5401 {
5402 struct ecore_queue_sp_obj *o = params->q_obj;
5403 uint8_t cid_index = params->params.terminate.cid_index;
5404
5405 if (cid_index >= o->max_cos) {
5406 ECORE_ERR("queue[%d]: cid_index (%d) is out of range\n",
5407 o->cl_id, cid_index);
5408 return ECORE_INVAL;
5409 }
5410
5411 return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_TERMINATE,
5412 o->cids[cid_index], 0,
5413 ETH_CONNECTION_TYPE);
5414 }
5415
5416 static inline int ecore_q_send_empty(struct bxe_softc *sc,
5417 struct ecore_queue_state_params *params)
5418 {
5419 struct ecore_queue_sp_obj *o = params->q_obj;
5420
5421 return ecore_sp_post(sc, RAMROD_CMD_ID_ETH_EMPTY,
5422 o->cids[ECORE_PRIMARY_CID_INDEX], 0,
5423 ETH_CONNECTION_TYPE);
5424 }
5425
5426 static inline int ecore_queue_send_cmd_cmn(struct bxe_softc *sc,
5427 struct ecore_queue_state_params *params)
5428 {
5429 switch (params->cmd) {
5430 case ECORE_Q_CMD_INIT:
5431 return ecore_q_init(sc, params);
5432 case ECORE_Q_CMD_SETUP_TX_ONLY:
5433 return ecore_q_send_setup_tx_only(sc, params);
5434 case ECORE_Q_CMD_DEACTIVATE:
5435 return ecore_q_send_deactivate(sc, params);
5436 case ECORE_Q_CMD_ACTIVATE:
5437 return ecore_q_send_activate(sc, params);
5438 case ECORE_Q_CMD_UPDATE:
5439 return ecore_q_send_update(sc, params);
5440 case ECORE_Q_CMD_UPDATE_TPA:
5441 return ecore_q_send_update_tpa(sc, params);
5442 case ECORE_Q_CMD_HALT:
5443 return ecore_q_send_halt(sc, params);
5444 case ECORE_Q_CMD_CFC_DEL:
5445 return ecore_q_send_cfc_del(sc, params);
5446 case ECORE_Q_CMD_TERMINATE:
5447 return ecore_q_send_terminate(sc, params);
5448 case ECORE_Q_CMD_EMPTY:
5449 return ecore_q_send_empty(sc, params);
5450 default:
5451 ECORE_ERR("Unknown command: %d\n", params->cmd);
5452 return ECORE_INVAL;
5453 }
5454 }
5455
5456 static int ecore_queue_send_cmd_e1x(struct bxe_softc *sc,
5457 struct ecore_queue_state_params *params)
5458 {
5459 switch (params->cmd) {
5460 case ECORE_Q_CMD_SETUP:
5461 return ecore_q_send_setup_e1x(sc, params);
5462 case ECORE_Q_CMD_INIT:
5463 case ECORE_Q_CMD_SETUP_TX_ONLY:
5464 case ECORE_Q_CMD_DEACTIVATE:
5465 case ECORE_Q_CMD_ACTIVATE:
5466 case ECORE_Q_CMD_UPDATE:
5467 case ECORE_Q_CMD_UPDATE_TPA:
5468 case ECORE_Q_CMD_HALT:
5469 case ECORE_Q_CMD_CFC_DEL:
5470 case ECORE_Q_CMD_TERMINATE:
5471 case ECORE_Q_CMD_EMPTY:
5472 return ecore_queue_send_cmd_cmn(sc, params);
5473 default:
5474 ECORE_ERR("Unknown command: %d\n", params->cmd);
5475 return ECORE_INVAL;
5476 }
5477 }
5478
5479 static int ecore_queue_send_cmd_e2(struct bxe_softc *sc,
5480 struct ecore_queue_state_params *params)
5481 {
5482 switch (params->cmd) {
5483 case ECORE_Q_CMD_SETUP:
5484 return ecore_q_send_setup_e2(sc, params);
5485 case ECORE_Q_CMD_INIT:
5486 case ECORE_Q_CMD_SETUP_TX_ONLY:
5487 case ECORE_Q_CMD_DEACTIVATE:
5488 case ECORE_Q_CMD_ACTIVATE:
5489 case ECORE_Q_CMD_UPDATE:
5490 case ECORE_Q_CMD_UPDATE_TPA:
5491 case ECORE_Q_CMD_HALT:
5492 case ECORE_Q_CMD_CFC_DEL:
5493 case ECORE_Q_CMD_TERMINATE:
5494 case ECORE_Q_CMD_EMPTY:
5495 return ecore_queue_send_cmd_cmn(sc, params);
5496 default:
5497 ECORE_ERR("Unknown command: %d\n", params->cmd);
5498 return ECORE_INVAL;
5499 }
5500 }
5501
5502 /**
5503 * ecore_queue_chk_transition - check state machine of a regular Queue
5504 *
5505 * @sc: device handle
5506 * @o:
5507 * @params:
5508 *
5509 * (not Forwarding)
5510 * It both checks if the requested command is legal in a current
5511 * state and, if it's legal, sets a `next_state' in the object
5512 * that will be used in the completion flow to set the `state'
5513 * of the object.
5514 *
5515 * returns 0 if a requested command is a legal transition,
5516 * ECORE_INVAL otherwise.
5517 */
5518 static int ecore_queue_chk_transition(struct bxe_softc *sc,
5519 struct ecore_queue_sp_obj *o,
5520 struct ecore_queue_state_params *params)
5521 {
5522 enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5523 enum ecore_queue_cmd cmd = params->cmd;
5524 struct ecore_queue_update_params *update_params =
5525 ¶ms->params.update;
5526 uint8_t next_tx_only = o->num_tx_only;
5527
5528 /* Forget all pending for completion commands if a driver only state
5529 * transition has been requested.
5530 */
5531 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
5532 o->pending = 0;
5533 o->next_state = ECORE_Q_STATE_MAX;
5534 }
5535
5536 /* Don't allow a next state transition if we are in the middle of
5537 * the previous one.
5538 */
5539 if (o->pending) {
5540 ECORE_ERR("Blocking transition since pending was %lx\n",
5541 o->pending);
5542 return ECORE_BUSY;
5543 }
5544
5545 switch (state) {
5546 case ECORE_Q_STATE_RESET:
5547 if (cmd == ECORE_Q_CMD_INIT)
5548 next_state = ECORE_Q_STATE_INITIALIZED;
5549
5550 break;
5551 case ECORE_Q_STATE_INITIALIZED:
5552 if (cmd == ECORE_Q_CMD_SETUP) {
5553 if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5554 ¶ms->params.setup.flags))
5555 next_state = ECORE_Q_STATE_ACTIVE;
5556 else
5557 next_state = ECORE_Q_STATE_INACTIVE;
5558 }
5559
5560 break;
5561 case ECORE_Q_STATE_ACTIVE:
5562 if (cmd == ECORE_Q_CMD_DEACTIVATE)
5563 next_state = ECORE_Q_STATE_INACTIVE;
5564
5565 else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5566 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5567 next_state = ECORE_Q_STATE_ACTIVE;
5568
5569 else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5570 next_state = ECORE_Q_STATE_MULTI_COS;
5571 next_tx_only = 1;
5572 }
5573
5574 else if (cmd == ECORE_Q_CMD_HALT)
5575 next_state = ECORE_Q_STATE_STOPPED;
5576
5577 else if (cmd == ECORE_Q_CMD_UPDATE) {
5578 /* If "active" state change is requested, update the
5579 * state accordingly.
5580 */
5581 if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5582 &update_params->update_flags) &&
5583 !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5584 &update_params->update_flags))
5585 next_state = ECORE_Q_STATE_INACTIVE;
5586 else
5587 next_state = ECORE_Q_STATE_ACTIVE;
5588 }
5589
5590 break;
5591 case ECORE_Q_STATE_MULTI_COS:
5592 if (cmd == ECORE_Q_CMD_TERMINATE)
5593 next_state = ECORE_Q_STATE_MCOS_TERMINATED;
5594
5595 else if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5596 next_state = ECORE_Q_STATE_MULTI_COS;
5597 next_tx_only = o->num_tx_only + 1;
5598 }
5599
5600 else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5601 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5602 next_state = ECORE_Q_STATE_MULTI_COS;
5603
5604 else if (cmd == ECORE_Q_CMD_UPDATE) {
5605 /* If "active" state change is requested, update the
5606 * state accordingly.
5607 */
5608 if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5609 &update_params->update_flags) &&
5610 !ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5611 &update_params->update_flags))
5612 next_state = ECORE_Q_STATE_INACTIVE;
5613 else
5614 next_state = ECORE_Q_STATE_MULTI_COS;
5615 }
5616
5617 break;
5618 case ECORE_Q_STATE_MCOS_TERMINATED:
5619 if (cmd == ECORE_Q_CMD_CFC_DEL) {
5620 next_tx_only = o->num_tx_only - 1;
5621 if (next_tx_only == 0)
5622 next_state = ECORE_Q_STATE_ACTIVE;
5623 else
5624 next_state = ECORE_Q_STATE_MULTI_COS;
5625 }
5626
5627 break;
5628 case ECORE_Q_STATE_INACTIVE:
5629 if (cmd == ECORE_Q_CMD_ACTIVATE)
5630 next_state = ECORE_Q_STATE_ACTIVE;
5631
5632 else if ((cmd == ECORE_Q_CMD_EMPTY) ||
5633 (cmd == ECORE_Q_CMD_UPDATE_TPA))
5634 next_state = ECORE_Q_STATE_INACTIVE;
5635
5636 else if (cmd == ECORE_Q_CMD_HALT)
5637 next_state = ECORE_Q_STATE_STOPPED;
5638
5639 else if (cmd == ECORE_Q_CMD_UPDATE) {
5640 /* If "active" state change is requested, update the
5641 * state accordingly.
5642 */
5643 if (ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE_CHNG,
5644 &update_params->update_flags) &&
5645 ECORE_TEST_BIT(ECORE_Q_UPDATE_ACTIVATE,
5646 &update_params->update_flags)){
5647 if (o->num_tx_only == 0)
5648 next_state = ECORE_Q_STATE_ACTIVE;
5649 else /* tx only queues exist for this queue */
5650 next_state = ECORE_Q_STATE_MULTI_COS;
5651 } else
5652 next_state = ECORE_Q_STATE_INACTIVE;
5653 }
5654
5655 break;
5656 case ECORE_Q_STATE_STOPPED:
5657 if (cmd == ECORE_Q_CMD_TERMINATE)
5658 next_state = ECORE_Q_STATE_TERMINATED;
5659
5660 break;
5661 case ECORE_Q_STATE_TERMINATED:
5662 if (cmd == ECORE_Q_CMD_CFC_DEL)
5663 next_state = ECORE_Q_STATE_RESET;
5664
5665 break;
5666 default:
5667 ECORE_ERR("Illegal state: %d\n", state);
5668 }
5669
5670 /* Transition is assured */
5671 if (next_state != ECORE_Q_STATE_MAX) {
5672 ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5673 state, cmd, next_state);
5674 o->next_state = next_state;
5675 o->next_tx_only = next_tx_only;
5676 return ECORE_SUCCESS;
5677 }
5678
5679 ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5680
5681 return ECORE_INVAL;
5682 }
5683
5684 /**
5685 * ecore_queue_chk_fwd_transition - check state machine of a Forwarding Queue.
5686 *
5687 * @sc: device handle
5688 * @o:
5689 * @params:
5690 *
5691 * It both checks if the requested command is legal in a current
5692 * state and, if it's legal, sets a `next_state' in the object
5693 * that will be used in the completion flow to set the `state'
5694 * of the object.
5695 *
5696 * returns 0 if a requested command is a legal transition,
5697 * ECORE_INVAL otherwise.
5698 */
5699 static int ecore_queue_chk_fwd_transition(struct bxe_softc *sc,
5700 struct ecore_queue_sp_obj *o,
5701 struct ecore_queue_state_params *params)
5702 {
5703 enum ecore_q_state state = o->state, next_state = ECORE_Q_STATE_MAX;
5704 enum ecore_queue_cmd cmd = params->cmd;
5705
5706 switch (state) {
5707 case ECORE_Q_STATE_RESET:
5708 if (cmd == ECORE_Q_CMD_INIT)
5709 next_state = ECORE_Q_STATE_INITIALIZED;
5710
5711 break;
5712 case ECORE_Q_STATE_INITIALIZED:
5713 if (cmd == ECORE_Q_CMD_SETUP_TX_ONLY) {
5714 if (ECORE_TEST_BIT(ECORE_Q_FLG_ACTIVE,
5715 ¶ms->params.tx_only.flags))
5716 next_state = ECORE_Q_STATE_ACTIVE;
5717 else
5718 next_state = ECORE_Q_STATE_INACTIVE;
5719 }
5720
5721 break;
5722 case ECORE_Q_STATE_ACTIVE:
5723 case ECORE_Q_STATE_INACTIVE:
5724 if (cmd == ECORE_Q_CMD_CFC_DEL)
5725 next_state = ECORE_Q_STATE_RESET;
5726
5727 break;
5728 default:
5729 ECORE_ERR("Illegal state: %d\n", state);
5730 }
5731
5732 /* Transition is assured */
5733 if (next_state != ECORE_Q_STATE_MAX) {
5734 ECORE_MSG(sc, "Good state transition: %d(%d)->%d\n",
5735 state, cmd, next_state);
5736 o->next_state = next_state;
5737 return ECORE_SUCCESS;
5738 }
5739
5740 ECORE_MSG(sc, "Bad state transition request: %d %d\n", state, cmd);
5741 return ECORE_INVAL;
5742 }
5743
5744 void ecore_init_queue_obj(struct bxe_softc *sc,
5745 struct ecore_queue_sp_obj *obj,
5746 uint8_t cl_id, uint32_t *cids, uint8_t cid_cnt, uint8_t func_id,
5747 void *rdata,
5748 ecore_dma_addr_t rdata_mapping, unsigned long type)
5749 {
5750 ECORE_MEMSET(obj, 0, sizeof(*obj));
5751
5752 /* We support only ECORE_MULTI_TX_COS Tx CoS at the moment */
5753 ECORE_BUG_ON(ECORE_MULTI_TX_COS < cid_cnt);
5754
5755 memcpy(obj->cids, cids, sizeof(obj->cids[0]) * cid_cnt);
5756 obj->max_cos = cid_cnt;
5757 obj->cl_id = cl_id;
5758 obj->func_id = func_id;
5759 obj->rdata = rdata;
5760 obj->rdata_mapping = rdata_mapping;
5761 obj->type = type;
5762 obj->next_state = ECORE_Q_STATE_MAX;
5763
5764 if (CHIP_IS_E1x(sc))
5765 obj->send_cmd = ecore_queue_send_cmd_e1x;
5766 else
5767 obj->send_cmd = ecore_queue_send_cmd_e2;
5768
5769 if (ECORE_TEST_BIT(ECORE_Q_TYPE_FWD, &type))
5770 obj->check_transition = ecore_queue_chk_fwd_transition;
5771 else
5772 obj->check_transition = ecore_queue_chk_transition;
5773
5774 obj->complete_cmd = ecore_queue_comp_cmd;
5775 obj->wait_comp = ecore_queue_wait_comp;
5776 obj->set_pending = ecore_queue_set_pending;
5777 }
5778
5779 /* return a queue object's logical state*/
5780 int ecore_get_q_logical_state(struct bxe_softc *sc,
5781 struct ecore_queue_sp_obj *obj)
5782 {
5783 switch (obj->state) {
5784 case ECORE_Q_STATE_ACTIVE:
5785 case ECORE_Q_STATE_MULTI_COS:
5786 return ECORE_Q_LOGICAL_STATE_ACTIVE;
5787 case ECORE_Q_STATE_RESET:
5788 case ECORE_Q_STATE_INITIALIZED:
5789 case ECORE_Q_STATE_MCOS_TERMINATED:
5790 case ECORE_Q_STATE_INACTIVE:
5791 case ECORE_Q_STATE_STOPPED:
5792 case ECORE_Q_STATE_TERMINATED:
5793 case ECORE_Q_STATE_FLRED:
5794 return ECORE_Q_LOGICAL_STATE_STOPPED;
5795 default:
5796 return ECORE_INVAL;
5797 }
5798 }
5799
5800 /********************** Function state object *********************************/
5801 enum ecore_func_state ecore_func_get_state(struct bxe_softc *sc,
5802 struct ecore_func_sp_obj *o)
5803 {
5804 /* in the middle of transaction - return INVALID state */
5805 if (o->pending)
5806 return ECORE_F_STATE_MAX;
5807
5808 /* unsure the order of reading of o->pending and o->state
5809 * o->pending should be read first
5810 */
5811 rmb();
5812
5813 return o->state;
5814 }
5815
5816 static int ecore_func_wait_comp(struct bxe_softc *sc,
5817 struct ecore_func_sp_obj *o,
5818 enum ecore_func_cmd cmd)
5819 {
5820 return ecore_state_wait(sc, cmd, &o->pending);
5821 }
5822
5823 /**
5824 * ecore_func_state_change_comp - complete the state machine transition
5825 *
5826 * @sc: device handle
5827 * @o:
5828 * @cmd:
5829 *
5830 * Called on state change transition. Completes the state
5831 * machine transition only - no HW interaction.
5832 */
5833 static inline int ecore_func_state_change_comp(struct bxe_softc *sc,
5834 struct ecore_func_sp_obj *o,
5835 enum ecore_func_cmd cmd)
5836 {
5837 unsigned long cur_pending = o->pending;
5838
5839 if (!ECORE_TEST_AND_CLEAR_BIT(cmd, &cur_pending)) {
5840 ECORE_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5841 cmd, ECORE_FUNC_ID(sc), o->state,
5842 cur_pending, o->next_state);
5843 return ECORE_INVAL;
5844 }
5845
5846 ECORE_MSG(sc,
5847 "Completing command %d for func %d, setting state to %d\n",
5848 cmd, ECORE_FUNC_ID(sc), o->next_state);
5849
5850 o->state = o->next_state;
5851 o->next_state = ECORE_F_STATE_MAX;
5852
5853 /* It's important that o->state and o->next_state are
5854 * updated before o->pending.
5855 */
5856 wmb();
5857
5858 ECORE_CLEAR_BIT(cmd, &o->pending);
5859 ECORE_SMP_MB_AFTER_CLEAR_BIT();
5860
5861 return ECORE_SUCCESS;
5862 }
5863
5864 /**
5865 * ecore_func_comp_cmd - complete the state change command
5866 *
5867 * @sc: device handle
5868 * @o:
5869 * @cmd:
5870 *
5871 * Checks that the arrived completion is expected.
5872 */
5873 static int ecore_func_comp_cmd(struct bxe_softc *sc,
5874 struct ecore_func_sp_obj *o,
5875 enum ecore_func_cmd cmd)
5876 {
5877 /* Complete the state machine part first, check if it's a
5878 * legal completion.
5879 */
5880 int rc = ecore_func_state_change_comp(sc, o, cmd);
5881 return rc;
5882 }
5883
5884 /**
5885 * ecore_func_chk_transition - perform function state machine transition
5886 *
5887 * @sc: device handle
5888 * @o:
5889 * @params:
5890 *
5891 * It both checks if the requested command is legal in a current
5892 * state and, if it's legal, sets a `next_state' in the object
5893 * that will be used in the completion flow to set the `state'
5894 * of the object.
5895 *
5896 * returns 0 if a requested command is a legal transition,
5897 * ECORE_INVAL otherwise.
5898 */
5899 static int ecore_func_chk_transition(struct bxe_softc *sc,
5900 struct ecore_func_sp_obj *o,
5901 struct ecore_func_state_params *params)
5902 {
5903 enum ecore_func_state state = o->state, next_state = ECORE_F_STATE_MAX;
5904 enum ecore_func_cmd cmd = params->cmd;
5905
5906 /* Forget all pending for completion commands if a driver only state
5907 * transition has been requested.
5908 */
5909 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
5910 o->pending = 0;
5911 o->next_state = ECORE_F_STATE_MAX;
5912 }
5913
5914 /* Don't allow a next state transition if we are in the middle of
5915 * the previous one.
5916 */
5917 if (o->pending)
5918 return ECORE_BUSY;
5919
5920 switch (state) {
5921 case ECORE_F_STATE_RESET:
5922 if (cmd == ECORE_F_CMD_HW_INIT)
5923 next_state = ECORE_F_STATE_INITIALIZED;
5924
5925 break;
5926 case ECORE_F_STATE_INITIALIZED:
5927 if (cmd == ECORE_F_CMD_START)
5928 next_state = ECORE_F_STATE_STARTED;
5929
5930 else if (cmd == ECORE_F_CMD_HW_RESET)
5931 next_state = ECORE_F_STATE_RESET;
5932
5933 break;
5934 case ECORE_F_STATE_STARTED:
5935 if (cmd == ECORE_F_CMD_STOP)
5936 next_state = ECORE_F_STATE_INITIALIZED;
5937 /* afex ramrods can be sent only in started mode, and only
5938 * if not pending for function_stop ramrod completion
5939 * for these events - next state remained STARTED.
5940 */
5941 else if ((cmd == ECORE_F_CMD_AFEX_UPDATE) &&
5942 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5943 next_state = ECORE_F_STATE_STARTED;
5944
5945 else if ((cmd == ECORE_F_CMD_AFEX_VIFLISTS) &&
5946 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5947 next_state = ECORE_F_STATE_STARTED;
5948
5949 /* Switch_update ramrod can be sent in either started or
5950 * tx_stopped state, and it doesn't change the state.
5951 */
5952 else if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5953 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5954 next_state = ECORE_F_STATE_STARTED;
5955
5956 else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
5957 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5958 next_state = ECORE_F_STATE_STARTED;
5959
5960 else if (cmd == ECORE_F_CMD_TX_STOP)
5961 next_state = ECORE_F_STATE_TX_STOPPED;
5962
5963 break;
5964 case ECORE_F_STATE_TX_STOPPED:
5965 if ((cmd == ECORE_F_CMD_SWITCH_UPDATE) &&
5966 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5967 next_state = ECORE_F_STATE_TX_STOPPED;
5968
5969 else if ((cmd == ECORE_F_CMD_SET_TIMESYNC) &&
5970 (!ECORE_TEST_BIT(ECORE_F_CMD_STOP, &o->pending)))
5971 next_state = ECORE_F_STATE_TX_STOPPED;
5972
5973 else if (cmd == ECORE_F_CMD_TX_START)
5974 next_state = ECORE_F_STATE_STARTED;
5975
5976 break;
5977 default:
5978 ECORE_ERR("Unknown state: %d\n", state);
5979 }
5980
5981 /* Transition is assured */
5982 if (next_state != ECORE_F_STATE_MAX) {
5983 ECORE_MSG(sc, "Good function state transition: %d(%d)->%d\n",
5984 state, cmd, next_state);
5985 o->next_state = next_state;
5986 return ECORE_SUCCESS;
5987 }
5988
5989 ECORE_MSG(sc, "Bad function state transition request: %d %d\n",
5990 state, cmd);
5991
5992 return ECORE_INVAL;
5993 }
5994
5995 /**
5996 * ecore_func_init_func - performs HW init at function stage
5997 *
5998 * @sc: device handle
5999 * @drv:
6000 *
6001 * Init HW when the current phase is
6002 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
6003 * HW blocks.
6004 */
6005 static inline int ecore_func_init_func(struct bxe_softc *sc,
6006 const struct ecore_func_sp_drv_ops *drv)
6007 {
6008 return drv->init_hw_func(sc);
6009 }
6010
6011 /**
6012 * ecore_func_init_port - performs HW init at port stage
6013 *
6014 * @sc: device handle
6015 * @drv:
6016 *
6017 * Init HW when the current phase is
6018 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
6019 * FUNCTION-only HW blocks.
6020 *
6021 */
6022 static inline int ecore_func_init_port(struct bxe_softc *sc,
6023 const struct ecore_func_sp_drv_ops *drv)
6024 {
6025 int rc = drv->init_hw_port(sc);
6026 if (rc)
6027 return rc;
6028
6029 return ecore_func_init_func(sc, drv);
6030 }
6031
6032 /**
6033 * ecore_func_init_cmn_chip - performs HW init at chip-common stage
6034 *
6035 * @sc: device handle
6036 * @drv:
6037 *
6038 * Init HW when the current phase is
6039 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
6040 * PORT-only and FUNCTION-only HW blocks.
6041 */
6042 static inline int ecore_func_init_cmn_chip(struct bxe_softc *sc,
6043 const struct ecore_func_sp_drv_ops *drv)
6044 {
6045 int rc = drv->init_hw_cmn_chip(sc);
6046 if (rc)
6047 return rc;
6048
6049 return ecore_func_init_port(sc, drv);
6050 }
6051
6052 /**
6053 * ecore_func_init_cmn - performs HW init at common stage
6054 *
6055 * @sc: device handle
6056 * @drv:
6057 *
6058 * Init HW when the current phase is
6059 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
6060 * PORT-only and FUNCTION-only HW blocks.
6061 */
6062 static inline int ecore_func_init_cmn(struct bxe_softc *sc,
6063 const struct ecore_func_sp_drv_ops *drv)
6064 {
6065 int rc = drv->init_hw_cmn(sc);
6066 if (rc)
6067 return rc;
6068
6069 return ecore_func_init_port(sc, drv);
6070 }
6071
6072 static int ecore_func_hw_init(struct bxe_softc *sc,
6073 struct ecore_func_state_params *params)
6074 {
6075 uint32_t load_code = params->params.hw_init.load_phase;
6076 struct ecore_func_sp_obj *o = params->f_obj;
6077 const struct ecore_func_sp_drv_ops *drv = o->drv;
6078 int rc = 0;
6079
6080 ECORE_MSG(sc, "function %d load_code %x\n",
6081 ECORE_ABS_FUNC_ID(sc), load_code);
6082
6083 /* Prepare buffers for unzipping the FW */
6084 rc = drv->gunzip_init(sc);
6085 if (rc)
6086 return rc;
6087
6088 /* Prepare FW */
6089 rc = drv->init_fw(sc);
6090 if (rc) {
6091 ECORE_ERR("Error loading firmware\n");
6092 goto init_err;
6093 }
6094
6095 /* Handle the beginning of COMMON_XXX pases separately... */
6096 switch (load_code) {
6097 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6098 rc = ecore_func_init_cmn_chip(sc, drv);
6099 if (rc)
6100 goto init_err;
6101
6102 break;
6103 case FW_MSG_CODE_DRV_LOAD_COMMON:
6104 rc = ecore_func_init_cmn(sc, drv);
6105 if (rc)
6106 goto init_err;
6107
6108 break;
6109 case FW_MSG_CODE_DRV_LOAD_PORT:
6110 rc = ecore_func_init_port(sc, drv);
6111 if (rc)
6112 goto init_err;
6113
6114 break;
6115 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6116 rc = ecore_func_init_func(sc, drv);
6117 if (rc)
6118 goto init_err;
6119
6120 break;
6121 default:
6122 ECORE_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6123 rc = ECORE_INVAL;
6124 }
6125
6126 init_err:
6127 drv->gunzip_end(sc);
6128
6129 /* In case of success, complete the command immediately: no ramrods
6130 * have been sent.
6131 */
6132 if (!rc)
6133 o->complete_cmd(sc, o, ECORE_F_CMD_HW_INIT);
6134
6135 return rc;
6136 }
6137
6138 /**
6139 * ecore_func_reset_func - reset HW at function stage
6140 *
6141 * @sc: device handle
6142 * @drv:
6143 *
6144 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6145 * FUNCTION-only HW blocks.
6146 */
6147 static inline void ecore_func_reset_func(struct bxe_softc *sc,
6148 const struct ecore_func_sp_drv_ops *drv)
6149 {
6150 drv->reset_hw_func(sc);
6151 }
6152
6153 /**
6154 * ecore_func_reset_port - reser HW at port stage
6155 *
6156 * @sc: device handle
6157 * @drv:
6158 *
6159 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6160 * FUNCTION-only and PORT-only HW blocks.
6161 *
6162 * !!!IMPORTANT!!!
6163 *
6164 * It's important to call reset_port before reset_func() as the last thing
6165 * reset_func does is pf_disable() thus disabling PGLUE_B, which
6166 * makes impossible any DMAE transactions.
6167 */
6168 static inline void ecore_func_reset_port(struct bxe_softc *sc,
6169 const struct ecore_func_sp_drv_ops *drv)
6170 {
6171 drv->reset_hw_port(sc);
6172 ecore_func_reset_func(sc, drv);
6173 }
6174
6175 /**
6176 * ecore_func_reset_cmn - reser HW at common stage
6177 *
6178 * @sc: device handle
6179 * @drv:
6180 *
6181 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6182 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6183 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6184 */
6185 static inline void ecore_func_reset_cmn(struct bxe_softc *sc,
6186 const struct ecore_func_sp_drv_ops *drv)
6187 {
6188 ecore_func_reset_port(sc, drv);
6189 drv->reset_hw_cmn(sc);
6190 }
6191
6192 static inline int ecore_func_hw_reset(struct bxe_softc *sc,
6193 struct ecore_func_state_params *params)
6194 {
6195 uint32_t reset_phase = params->params.hw_reset.reset_phase;
6196 struct ecore_func_sp_obj *o = params->f_obj;
6197 const struct ecore_func_sp_drv_ops *drv = o->drv;
6198
6199 ECORE_MSG(sc, "function %d reset_phase %x\n", ECORE_ABS_FUNC_ID(sc),
6200 reset_phase);
6201
6202 switch (reset_phase) {
6203 case FW_MSG_CODE_DRV_UNLOAD_COMMON:
6204 ecore_func_reset_cmn(sc, drv);
6205 break;
6206 case FW_MSG_CODE_DRV_UNLOAD_PORT:
6207 ecore_func_reset_port(sc, drv);
6208 break;
6209 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
6210 ecore_func_reset_func(sc, drv);
6211 break;
6212 default:
6213 ECORE_ERR("Unknown reset_phase (0x%x) from MCP\n",
6214 reset_phase);
6215 break;
6216 }
6217
6218 /* Complete the command immediately: no ramrods have been sent. */
6219 o->complete_cmd(sc, o, ECORE_F_CMD_HW_RESET);
6220
6221 return ECORE_SUCCESS;
6222 }
6223
6224 static inline int ecore_func_send_start(struct bxe_softc *sc,
6225 struct ecore_func_state_params *params)
6226 {
6227 struct ecore_func_sp_obj *o = params->f_obj;
6228 struct function_start_data *rdata =
6229 (struct function_start_data *)o->rdata;
6230 ecore_dma_addr_t data_mapping = o->rdata_mapping;
6231 struct ecore_func_start_params *start_params = ¶ms->params.start;
6232
6233 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6234
6235 /* Fill the ramrod data with provided parameters */
6236 rdata->function_mode = (uint8_t)start_params->mf_mode;
6237 rdata->sd_vlan_tag = ECORE_CPU_TO_LE16(start_params->sd_vlan_tag);
6238 rdata->path_id = ECORE_PATH_ID(sc);
6239 rdata->network_cos_mode = start_params->network_cos_mode;
6240
6241 rdata->vxlan_dst_port = start_params->vxlan_dst_port;
6242 rdata->geneve_dst_port = start_params->geneve_dst_port;
6243 rdata->inner_clss_l2gre = start_params->inner_clss_l2gre;
6244 rdata->inner_clss_l2geneve = start_params->inner_clss_l2geneve;
6245 rdata->inner_clss_vxlan = start_params->inner_clss_vxlan;
6246 rdata->inner_rss = start_params->inner_rss;
6247
6248 rdata->sd_accept_mf_clss_fail = start_params->class_fail;
6249 if (start_params->class_fail_ethtype) {
6250 rdata->sd_accept_mf_clss_fail_match_ethtype = 1;
6251 rdata->sd_accept_mf_clss_fail_ethtype =
6252 ECORE_CPU_TO_LE16(start_params->class_fail_ethtype);
6253 }
6254 rdata->sd_vlan_force_pri_flg = start_params->sd_vlan_force_pri;
6255 rdata->sd_vlan_force_pri_val = start_params->sd_vlan_force_pri_val;
6256
6257 /** @@@TMP - until FW 7.10.7 (which will introduce an HSI change)
6258 * `sd_vlan_eth_type' will replace ethertype in SD mode even if
6259 * it's set to 0; This will probably break SD, so we're setting it
6260 * to ethertype 0x8100 for now.
6261 */
6262 if (start_params->sd_vlan_eth_type)
6263 rdata->sd_vlan_eth_type =
6264 ECORE_CPU_TO_LE16(start_params->sd_vlan_eth_type);
6265 else
6266 rdata->sd_vlan_eth_type =
6267 ECORE_CPU_TO_LE16((uint16_t) 0x8100);
6268
6269 rdata->no_added_tags = start_params->no_added_tags;
6270
6271 rdata->c2s_pri_tt_valid = start_params->c2s_pri_valid;
6272 if (rdata->c2s_pri_tt_valid) {
6273 memcpy(rdata->c2s_pri_trans_table.val,
6274 start_params->c2s_pri,
6275 MAX_VLAN_PRIORITIES);
6276 rdata->c2s_pri_default = start_params->c2s_pri_default;
6277 }
6278
6279 /* No need for an explicit memory barrier here as long as we
6280 * ensure the ordering of writing to the SPQ element
6281 * and updating of the SPQ producer which involves a memory
6282 * read. If the memory read is removed we will have to put a
6283 * full memory barrier there (inside ecore_sp_post()).
6284 */
6285 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_START, 0,
6286 data_mapping, NONE_CONNECTION_TYPE);
6287 }
6288
6289 static inline int ecore_func_send_switch_update(struct bxe_softc *sc,
6290 struct ecore_func_state_params *params)
6291 {
6292 struct ecore_func_sp_obj *o = params->f_obj;
6293 struct function_update_data *rdata =
6294 (struct function_update_data *)o->rdata;
6295 ecore_dma_addr_t data_mapping = o->rdata_mapping;
6296 struct ecore_func_switch_update_params *switch_update_params =
6297 ¶ms->params.switch_update;
6298
6299 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6300
6301 /* Fill the ramrod data with provided parameters */
6302 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
6303 &switch_update_params->changes)) {
6304 rdata->tx_switch_suspend_change_flg = 1;
6305 rdata->tx_switch_suspend =
6306 ECORE_TEST_BIT(ECORE_F_UPDATE_TX_SWITCH_SUSPEND,
6307 &switch_update_params->changes);
6308 }
6309
6310 if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_TAG_CHNG,
6311 &switch_update_params->changes)) {
6312 rdata->sd_vlan_tag_change_flg = 1;
6313 rdata->sd_vlan_tag =
6314 ECORE_CPU_TO_LE16(switch_update_params->vlan);
6315 }
6316
6317 if (ECORE_TEST_BIT(ECORE_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG,
6318 &switch_update_params->changes)) {
6319 rdata->sd_vlan_eth_type_change_flg = 1;
6320 rdata->sd_vlan_eth_type =
6321 ECORE_CPU_TO_LE16(switch_update_params->vlan_eth_type);
6322 }
6323
6324 if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_CHNG,
6325 &switch_update_params->changes)) {
6326 rdata->sd_vlan_force_pri_change_flg = 1;
6327 if (ECORE_TEST_BIT(ECORE_F_UPDATE_VLAN_FORCE_PRIO_FLAG,
6328 &switch_update_params->changes))
6329 rdata->sd_vlan_force_pri_flg = 1;
6330 rdata->sd_vlan_force_pri_flg =
6331 switch_update_params->vlan_force_prio;
6332 }
6333
6334 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_CFG_CHNG,
6335 &switch_update_params->changes)) {
6336 rdata->update_tunn_cfg_flg = 1;
6337 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE,
6338 &switch_update_params->changes))
6339 rdata->inner_clss_l2gre = 1;
6340 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN,
6341 &switch_update_params->changes))
6342 rdata->inner_clss_vxlan = 1;
6343 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE,
6344 &switch_update_params->changes))
6345 rdata->inner_clss_l2geneve = 1;
6346 if (ECORE_TEST_BIT(ECORE_F_UPDATE_TUNNEL_INNER_RSS,
6347 &switch_update_params->changes))
6348 rdata->inner_rss = 1;
6349
6350 rdata->vxlan_dst_port =
6351 ECORE_CPU_TO_LE16(switch_update_params->vxlan_dst_port);
6352 rdata->geneve_dst_port =
6353 ECORE_CPU_TO_LE16(switch_update_params->geneve_dst_port);
6354 }
6355
6356 rdata->echo = SWITCH_UPDATE;
6357
6358 /* No need for an explicit memory barrier here as long as we
6359 * ensure the ordering of writing to the SPQ element
6360 * and updating of the SPQ producer which involves a memory
6361 * read. If the memory read is removed we will have to put a
6362 * full memory barrier there (inside ecore_sp_post()).
6363 */
6364 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6365 data_mapping, NONE_CONNECTION_TYPE);
6366 }
6367
6368 static inline int ecore_func_send_afex_update(struct bxe_softc *sc,
6369 struct ecore_func_state_params *params)
6370 {
6371 struct ecore_func_sp_obj *o = params->f_obj;
6372 struct function_update_data *rdata =
6373 (struct function_update_data *)o->afex_rdata;
6374 ecore_dma_addr_t data_mapping = o->afex_rdata_mapping;
6375 struct ecore_func_afex_update_params *afex_update_params =
6376 ¶ms->params.afex_update;
6377
6378 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6379
6380 /* Fill the ramrod data with provided parameters */
6381 rdata->vif_id_change_flg = 1;
6382 rdata->vif_id = ECORE_CPU_TO_LE16(afex_update_params->vif_id);
6383 rdata->afex_default_vlan_change_flg = 1;
6384 rdata->afex_default_vlan =
6385 ECORE_CPU_TO_LE16(afex_update_params->afex_default_vlan);
6386 rdata->allowed_priorities_change_flg = 1;
6387 rdata->allowed_priorities = afex_update_params->allowed_priorities;
6388 rdata->echo = AFEX_UPDATE;
6389
6390 /* No need for an explicit memory barrier here as long as we
6391 * ensure the ordering of writing to the SPQ element
6392 * and updating of the SPQ producer which involves a memory
6393 * read. If the memory read is removed we will have to put a
6394 * full memory barrier there (inside ecore_sp_post()).
6395 */
6396 ECORE_MSG(sc,
6397 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6398 rdata->vif_id,
6399 rdata->afex_default_vlan, rdata->allowed_priorities);
6400
6401 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE, 0,
6402 data_mapping, NONE_CONNECTION_TYPE);
6403 }
6404
6405 static
6406 inline int ecore_func_send_afex_viflists(struct bxe_softc *sc,
6407 struct ecore_func_state_params *params)
6408 {
6409 struct ecore_func_sp_obj *o = params->f_obj;
6410 struct afex_vif_list_ramrod_data *rdata =
6411 (struct afex_vif_list_ramrod_data *)o->afex_rdata;
6412 struct ecore_func_afex_viflists_params *afex_vif_params =
6413 ¶ms->params.afex_viflists;
6414 uint64_t *p_rdata = (uint64_t *)rdata;
6415
6416 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6417
6418 /* Fill the ramrod data with provided parameters */
6419 rdata->vif_list_index = ECORE_CPU_TO_LE16(afex_vif_params->vif_list_index);
6420 rdata->func_bit_map = afex_vif_params->func_bit_map;
6421 rdata->afex_vif_list_command = afex_vif_params->afex_vif_list_command;
6422 rdata->func_to_clear = afex_vif_params->func_to_clear;
6423
6424 /* send in echo type of sub command */
6425 rdata->echo = afex_vif_params->afex_vif_list_command;
6426
6427 ECORE_MSG(sc, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6428 rdata->afex_vif_list_command, rdata->vif_list_index,
6429 rdata->func_bit_map, rdata->func_to_clear);
6430
6431 /* No need for an explicit memory barrier here as long as we
6432 * ensure the ordering of writing to the SPQ element
6433 * and updating of the SPQ producer which involves a memory
6434 * read. If the memory read is removed we will have to put a
6435 * full memory barrier there (inside ecore_sp_post()).
6436 */
6437
6438 /* this ramrod sends data directly and not through DMA mapping */
6439 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS, 0,
6440 *p_rdata, NONE_CONNECTION_TYPE);
6441 }
6442
6443 static inline int ecore_func_send_stop(struct bxe_softc *sc,
6444 struct ecore_func_state_params *params)
6445 {
6446 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_FUNCTION_STOP, 0, 0,
6447 NONE_CONNECTION_TYPE);
6448 }
6449
6450 static inline int ecore_func_send_tx_stop(struct bxe_softc *sc,
6451 struct ecore_func_state_params *params)
6452 {
6453 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC, 0, 0,
6454 NONE_CONNECTION_TYPE);
6455 }
6456 static inline int ecore_func_send_tx_start(struct bxe_softc *sc,
6457 struct ecore_func_state_params *params)
6458 {
6459 struct ecore_func_sp_obj *o = params->f_obj;
6460 struct flow_control_configuration *rdata =
6461 (struct flow_control_configuration *)o->rdata;
6462 ecore_dma_addr_t data_mapping = o->rdata_mapping;
6463 struct ecore_func_tx_start_params *tx_start_params =
6464 ¶ms->params.tx_start;
6465 int i;
6466
6467 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6468
6469 rdata->dcb_enabled = tx_start_params->dcb_enabled;
6470 rdata->dcb_version = tx_start_params->dcb_version;
6471 rdata->dont_add_pri_0 = tx_start_params->dont_add_pri_0;
6472
6473 for (i = 0; i < ARRAY_SIZE(rdata->traffic_type_to_priority_cos); i++)
6474 rdata->traffic_type_to_priority_cos[i] =
6475 tx_start_params->traffic_type_to_priority_cos[i];
6476
6477 for (i = 0; i < MAX_TRAFFIC_TYPES; i++)
6478 rdata->dcb_outer_pri[i] = tx_start_params->dcb_outer_pri[i];
6479
6480 /* No need for an explicit memory barrier here as long as we
6481 * ensure the ordering of writing to the SPQ element
6482 * and updating of the SPQ producer which involves a memory
6483 * read. If the memory read is removed we will have to put a
6484 * full memory barrier there (inside ecore_sp_post()).
6485 */
6486 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_START_TRAFFIC, 0,
6487 data_mapping, NONE_CONNECTION_TYPE);
6488 }
6489
6490 static inline int ecore_func_send_set_timesync(struct bxe_softc *sc,
6491 struct ecore_func_state_params *params)
6492 {
6493 struct ecore_func_sp_obj *o = params->f_obj;
6494 struct set_timesync_ramrod_data *rdata =
6495 (struct set_timesync_ramrod_data *)o->rdata;
6496 ecore_dma_addr_t data_mapping = o->rdata_mapping;
6497 struct ecore_func_set_timesync_params *set_timesync_params =
6498 ¶ms->params.set_timesync;
6499
6500 ECORE_MEMSET(rdata, 0, sizeof(*rdata));
6501
6502 /* Fill the ramrod data with provided parameters */
6503 rdata->drift_adjust_cmd = set_timesync_params->drift_adjust_cmd;
6504 rdata->offset_cmd = set_timesync_params->offset_cmd;
6505 rdata->add_sub_drift_adjust_value =
6506 set_timesync_params->add_sub_drift_adjust_value;
6507 rdata->drift_adjust_value = set_timesync_params->drift_adjust_value;
6508 rdata->drift_adjust_period = set_timesync_params->drift_adjust_period;
6509 rdata->offset_delta.lo =
6510 ECORE_CPU_TO_LE32(U64_LO(set_timesync_params->offset_delta));
6511 rdata->offset_delta.hi =
6512 ECORE_CPU_TO_LE32(U64_HI(set_timesync_params->offset_delta));
6513
6514 ECORE_MSG(sc, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6515 rdata->drift_adjust_cmd, rdata->offset_cmd,
6516 rdata->add_sub_drift_adjust_value, rdata->drift_adjust_value,
6517 rdata->drift_adjust_period, rdata->offset_delta.lo,
6518 rdata->offset_delta.hi);
6519
6520 return ecore_sp_post(sc, RAMROD_CMD_ID_COMMON_SET_TIMESYNC, 0,
6521 data_mapping, NONE_CONNECTION_TYPE);
6522 }
6523
6524 static int ecore_func_send_cmd(struct bxe_softc *sc,
6525 struct ecore_func_state_params *params)
6526 {
6527 switch (params->cmd) {
6528 case ECORE_F_CMD_HW_INIT:
6529 return ecore_func_hw_init(sc, params);
6530 case ECORE_F_CMD_START:
6531 return ecore_func_send_start(sc, params);
6532 case ECORE_F_CMD_STOP:
6533 return ecore_func_send_stop(sc, params);
6534 case ECORE_F_CMD_HW_RESET:
6535 return ecore_func_hw_reset(sc, params);
6536 case ECORE_F_CMD_AFEX_UPDATE:
6537 return ecore_func_send_afex_update(sc, params);
6538 case ECORE_F_CMD_AFEX_VIFLISTS:
6539 return ecore_func_send_afex_viflists(sc, params);
6540 case ECORE_F_CMD_TX_STOP:
6541 return ecore_func_send_tx_stop(sc, params);
6542 case ECORE_F_CMD_TX_START:
6543 return ecore_func_send_tx_start(sc, params);
6544 case ECORE_F_CMD_SWITCH_UPDATE:
6545 return ecore_func_send_switch_update(sc, params);
6546 case ECORE_F_CMD_SET_TIMESYNC:
6547 return ecore_func_send_set_timesync(sc, params);
6548 default:
6549 ECORE_ERR("Unknown command: %d\n", params->cmd);
6550 return ECORE_INVAL;
6551 }
6552 }
6553
6554 void ecore_init_func_obj(struct bxe_softc *sc,
6555 struct ecore_func_sp_obj *obj,
6556 void *rdata, ecore_dma_addr_t rdata_mapping,
6557 void *afex_rdata, ecore_dma_addr_t afex_rdata_mapping,
6558 struct ecore_func_sp_drv_ops *drv_iface)
6559 {
6560 ECORE_MEMSET(obj, 0, sizeof(*obj));
6561
6562 ECORE_MUTEX_INIT(&obj->one_pending_mutex);
6563
6564 obj->rdata = rdata;
6565 obj->rdata_mapping = rdata_mapping;
6566 obj->afex_rdata = afex_rdata;
6567 obj->afex_rdata_mapping = afex_rdata_mapping;
6568 obj->send_cmd = ecore_func_send_cmd;
6569 obj->check_transition = ecore_func_chk_transition;
6570 obj->complete_cmd = ecore_func_comp_cmd;
6571 obj->wait_comp = ecore_func_wait_comp;
6572 obj->drv = drv_iface;
6573 }
6574
6575 /**
6576 * ecore_func_state_change - perform Function state change transition
6577 *
6578 * @sc: device handle
6579 * @params: parameters to perform the transaction
6580 *
6581 * returns 0 in case of successfully completed transition,
6582 * negative error code in case of failure, positive
6583 * (EBUSY) value if there is a completion to that is
6584 * still pending (possible only if RAMROD_COMP_WAIT is
6585 * not set in params->ramrod_flags for asynchronous
6586 * commands).
6587 */
6588 int ecore_func_state_change(struct bxe_softc *sc,
6589 struct ecore_func_state_params *params)
6590 {
6591 struct ecore_func_sp_obj *o = params->f_obj;
6592 int rc, cnt = 300;
6593 enum ecore_func_cmd cmd = params->cmd;
6594 unsigned long *pending = &o->pending;
6595
6596 ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6597
6598 /* Check that the requested transition is legal */
6599 rc = o->check_transition(sc, o, params);
6600 if ((rc == ECORE_BUSY) &&
6601 (ECORE_TEST_BIT(RAMROD_RETRY, ¶ms->ramrod_flags))) {
6602 while ((rc == ECORE_BUSY) && (--cnt > 0)) {
6603 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6604 ECORE_MSLEEP(10);
6605 ECORE_MUTEX_LOCK(&o->one_pending_mutex);
6606 rc = o->check_transition(sc, o, params);
6607 }
6608 if (rc == ECORE_BUSY) {
6609 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6610 ECORE_ERR("timeout waiting for previous ramrod completion\n");
6611 return rc;
6612 }
6613 } else if (rc) {
6614 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6615 return rc;
6616 }
6617
6618 /* Set "pending" bit */
6619 ECORE_SET_BIT(cmd, pending);
6620
6621 /* Don't send a command if only driver cleanup was requested */
6622 if (ECORE_TEST_BIT(RAMROD_DRV_CLR_ONLY, ¶ms->ramrod_flags)) {
6623 ecore_func_state_change_comp(sc, o, cmd);
6624 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6625 } else {
6626 /* Send a ramrod */
6627 rc = o->send_cmd(sc, params);
6628
6629 ECORE_MUTEX_UNLOCK(&o->one_pending_mutex);
6630
6631 if (rc) {
6632 o->next_state = ECORE_F_STATE_MAX;
6633 ECORE_CLEAR_BIT(cmd, pending);
6634 ECORE_SMP_MB_AFTER_CLEAR_BIT();
6635 return rc;
6636 }
6637
6638 if (ECORE_TEST_BIT(RAMROD_COMP_WAIT, ¶ms->ramrod_flags)) {
6639 rc = o->wait_comp(sc, o, cmd);
6640 if (rc)
6641 return rc;
6642
6643 return ECORE_SUCCESS;
6644 }
6645 }
6646
6647 return ECORE_RET_PENDING(cmd, pending);
6648 }
Cache object: ebac2d71dd42d4b191cd543282af5455
|