FreeBSD/Linux Kernel Cross Reference
sys/dev/cas/if_cas.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (C) 2001 Eduardo Horvath.
5 * Copyright (c) 2001-2003 Thomas Moestl
6 * Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
31 * from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38 * driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
39 * Saturn Gigabit Ethernet controllers
40 */
41
42 #if 0
43 #define CAS_DEBUG
44 #endif
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/bus.h>
49 #include <sys/callout.h>
50 #include <sys/endian.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/module.h>
56 #include <sys/mutex.h>
57 #include <sys/refcount.h>
58 #include <sys/resource.h>
59 #include <sys/rman.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/taskqueue.h>
63
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/if_arp.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_types.h>
72 #include <net/if_vlan_var.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79
80 #include <machine/bus.h>
81 #if defined(__powerpc__)
82 #include <dev/ofw/ofw_bus.h>
83 #include <dev/ofw/openfirm.h>
84 #include <machine/ofw_machdep.h>
85 #endif
86 #include <machine/resource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90
91 #include <dev/cas/if_casreg.h>
92 #include <dev/cas/if_casvar.h>
93
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcivar.h>
96
97 #include "miibus_if.h"
98
99 #define RINGASSERT(n , min, max) \
100 CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
101
102 RINGASSERT(CAS_NRXCOMP, 128, 32768);
103 RINGASSERT(CAS_NRXDESC, 32, 8192);
104 RINGASSERT(CAS_NRXDESC2, 32, 8192);
105 RINGASSERT(CAS_NTXDESC, 32, 8192);
106
107 #undef RINGASSERT
108
109 #define CCDASSERT(m, a) \
110 CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
111
112 CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
113 CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
114 CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
115
116 #undef CCDASSERT
117
118 #define CAS_TRIES 10000
119
120 /*
121 * According to documentation, the hardware has support for basic TCP
122 * checksum offloading only, in practice this can be also used for UDP
123 * however (i.e. the problem of previous Sun NICs that a checksum of 0x0
124 * is not converted to 0xffff no longer exists).
125 */
126 #define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
127
128 static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
129 static int cas_attach(struct cas_softc *sc);
130 static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
131 uint32_t set);
132 static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
133 int nsegs, int error);
134 static void cas_detach(struct cas_softc *sc);
135 static int cas_disable_rx(struct cas_softc *sc);
136 static int cas_disable_tx(struct cas_softc *sc);
137 static void cas_eint(struct cas_softc *sc, u_int status);
138 static void cas_free(struct mbuf *m);
139 static void cas_init(void *xsc);
140 static void cas_init_locked(struct cas_softc *sc);
141 static void cas_init_regs(struct cas_softc *sc);
142 static int cas_intr(void *v);
143 static void cas_intr_task(void *arg, int pending __unused);
144 static int cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
145 static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
146 static int cas_mediachange(struct ifnet *ifp);
147 static void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
148 static void cas_meminit(struct cas_softc *sc);
149 static void cas_mifinit(struct cas_softc *sc);
150 static int cas_mii_readreg(device_t dev, int phy, int reg);
151 static void cas_mii_statchg(device_t dev);
152 static int cas_mii_writereg(device_t dev, int phy, int reg, int val);
153 static void cas_reset(struct cas_softc *sc);
154 static int cas_reset_rx(struct cas_softc *sc);
155 static int cas_reset_tx(struct cas_softc *sc);
156 static void cas_resume(struct cas_softc *sc);
157 static u_int cas_descsize(u_int sz);
158 static void cas_rint(struct cas_softc *sc);
159 static void cas_rint_timeout(void *arg);
160 static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
161 static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
162 static u_int cas_rxcompsize(u_int sz);
163 static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
164 int nsegs, int error);
165 static void cas_setladrf(struct cas_softc *sc);
166 static void cas_start(struct ifnet *ifp);
167 static void cas_stop(struct ifnet *ifp);
168 static void cas_suspend(struct cas_softc *sc);
169 static void cas_tick(void *arg);
170 static void cas_tint(struct cas_softc *sc);
171 static void cas_tx_task(void *arg, int pending __unused);
172 static inline void cas_txkick(struct cas_softc *sc);
173 static void cas_watchdog(struct cas_softc *sc);
174
175 MODULE_DEPEND(cas, ether, 1, 1, 1);
176 MODULE_DEPEND(cas, miibus, 1, 1, 1);
177
178 #ifdef CAS_DEBUG
179 #include <sys/ktr.h>
180 #define KTR_CAS KTR_SPARE2
181 #endif
182
183 static int
184 cas_attach(struct cas_softc *sc)
185 {
186 struct cas_txsoft *txs;
187 struct ifnet *ifp;
188 int error, i;
189 uint32_t v;
190
191 /* Set up ifnet structure. */
192 ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
193 if (ifp == NULL)
194 return (ENOSPC);
195 ifp->if_softc = sc;
196 if_initname(ifp, device_get_name(sc->sc_dev),
197 device_get_unit(sc->sc_dev));
198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
199 ifp->if_start = cas_start;
200 ifp->if_ioctl = cas_ioctl;
201 ifp->if_init = cas_init;
202 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_TXQUEUELEN);
203 ifp->if_snd.ifq_drv_maxlen = CAS_TXQUEUELEN;
204 IFQ_SET_READY(&ifp->if_snd);
205
206 callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
207 callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
208 /* Create local taskq. */
209 NET_TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
210 TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
211 sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
212 taskqueue_thread_enqueue, &sc->sc_tq);
213 if (sc->sc_tq == NULL) {
214 device_printf(sc->sc_dev, "could not create taskqueue\n");
215 error = ENXIO;
216 goto fail_ifnet;
217 }
218 error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
219 device_get_nameunit(sc->sc_dev));
220 if (error != 0) {
221 device_printf(sc->sc_dev, "could not start threads\n");
222 goto fail_taskq;
223 }
224
225 /* Make sure the chip is stopped. */
226 cas_reset(sc);
227
228 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
229 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
230 BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
231 &sc->sc_pdmatag);
232 if (error != 0)
233 goto fail_taskq;
234
235 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
236 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
237 CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
238 if (error != 0)
239 goto fail_ptag;
240
241 error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
242 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
243 MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
244 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
245 if (error != 0)
246 goto fail_rtag;
247
248 error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
249 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
250 sizeof(struct cas_control_data), 1,
251 sizeof(struct cas_control_data), 0,
252 NULL, NULL, &sc->sc_cdmatag);
253 if (error != 0)
254 goto fail_ttag;
255
256 /*
257 * Allocate the control data structures, create and load the
258 * DMA map for it.
259 */
260 if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
261 (void **)&sc->sc_control_data,
262 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
263 &sc->sc_cddmamap)) != 0) {
264 device_printf(sc->sc_dev,
265 "unable to allocate control data, error = %d\n", error);
266 goto fail_ctag;
267 }
268
269 sc->sc_cddma = 0;
270 if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
271 sc->sc_control_data, sizeof(struct cas_control_data),
272 cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
273 device_printf(sc->sc_dev,
274 "unable to load control data DMA map, error = %d\n",
275 error);
276 goto fail_cmem;
277 }
278
279 /*
280 * Initialize the transmit job descriptors.
281 */
282 STAILQ_INIT(&sc->sc_txfreeq);
283 STAILQ_INIT(&sc->sc_txdirtyq);
284
285 /*
286 * Create the transmit buffer DMA maps.
287 */
288 error = ENOMEM;
289 for (i = 0; i < CAS_TXQUEUELEN; i++) {
290 txs = &sc->sc_txsoft[i];
291 txs->txs_mbuf = NULL;
292 txs->txs_ndescs = 0;
293 if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
294 &txs->txs_dmamap)) != 0) {
295 device_printf(sc->sc_dev,
296 "unable to create TX DMA map %d, error = %d\n",
297 i, error);
298 goto fail_txd;
299 }
300 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
301 }
302
303 /*
304 * Allocate the receive buffers, create and load the DMA maps
305 * for them.
306 */
307 for (i = 0; i < CAS_NRXDESC; i++) {
308 if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
309 &sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
310 &sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
311 device_printf(sc->sc_dev,
312 "unable to allocate RX buffer %d, error = %d\n",
313 i, error);
314 goto fail_rxmem;
315 }
316
317 sc->sc_rxdptr = i;
318 sc->sc_rxdsoft[i].rxds_paddr = 0;
319 if ((error = bus_dmamap_load(sc->sc_rdmatag,
320 sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
321 CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
322 sc->sc_rxdsoft[i].rxds_paddr == 0) {
323 device_printf(sc->sc_dev,
324 "unable to load RX DMA map %d, error = %d\n",
325 i, error);
326 goto fail_rxmap;
327 }
328 }
329
330 if ((sc->sc_flags & CAS_SERDES) == 0) {
331 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
332 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
333 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
334 cas_mifinit(sc);
335 /*
336 * Look for an external PHY.
337 */
338 error = ENXIO;
339 v = CAS_READ_4(sc, CAS_MIF_CONF);
340 if ((v & CAS_MIF_CONF_MDI1) != 0) {
341 v |= CAS_MIF_CONF_PHY_SELECT;
342 CAS_WRITE_4(sc, CAS_MIF_CONF, v);
343 CAS_BARRIER(sc, CAS_MIF_CONF, 4,
344 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
345 /* Enable/unfreeze the GMII pins of Saturn. */
346 if (sc->sc_variant == CAS_SATURN) {
347 CAS_WRITE_4(sc, CAS_SATURN_PCFG,
348 CAS_READ_4(sc, CAS_SATURN_PCFG) &
349 ~CAS_SATURN_PCFG_FSI);
350 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
351 BUS_SPACE_BARRIER_READ |
352 BUS_SPACE_BARRIER_WRITE);
353 DELAY(10000);
354 }
355 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
356 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
357 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
358 }
359 /*
360 * Fall back on an internal PHY if no external PHY was found.
361 */
362 if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
363 v &= ~CAS_MIF_CONF_PHY_SELECT;
364 CAS_WRITE_4(sc, CAS_MIF_CONF, v);
365 CAS_BARRIER(sc, CAS_MIF_CONF, 4,
366 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
367 /* Freeze the GMII pins of Saturn for saving power. */
368 if (sc->sc_variant == CAS_SATURN) {
369 CAS_WRITE_4(sc, CAS_SATURN_PCFG,
370 CAS_READ_4(sc, CAS_SATURN_PCFG) |
371 CAS_SATURN_PCFG_FSI);
372 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
373 BUS_SPACE_BARRIER_READ |
374 BUS_SPACE_BARRIER_WRITE);
375 DELAY(10000);
376 }
377 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
378 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
379 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
380 }
381 } else {
382 /*
383 * Use the external PCS SERDES.
384 */
385 CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
386 CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
387 /* Enable/unfreeze the SERDES pins of Saturn. */
388 if (sc->sc_variant == CAS_SATURN) {
389 CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
390 CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
391 BUS_SPACE_BARRIER_WRITE);
392 }
393 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
394 CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
395 BUS_SPACE_BARRIER_WRITE);
396 CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
397 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
398 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
399 error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
400 cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
401 CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
402 }
403 if (error != 0) {
404 device_printf(sc->sc_dev, "attaching PHYs failed\n");
405 goto fail_rxmap;
406 }
407 sc->sc_mii = device_get_softc(sc->sc_miibus);
408
409 /*
410 * From this point forward, the attachment cannot fail. A failure
411 * before this point releases all resources that may have been
412 * allocated.
413 */
414
415 /* Announce FIFO sizes. */
416 v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
417 device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
418 CAS_RX_FIFO_SIZE / 1024, v / 16);
419
420 /* Attach the interface. */
421 ether_ifattach(ifp, sc->sc_enaddr);
422
423 /*
424 * Tell the upper layer(s) we support long frames/checksum offloads.
425 */
426 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
427 ifp->if_capabilities = IFCAP_VLAN_MTU;
428 if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
429 ifp->if_capabilities |= IFCAP_HWCSUM;
430 ifp->if_hwassist = CAS_CSUM_FEATURES;
431 }
432 ifp->if_capenable = ifp->if_capabilities;
433
434 return (0);
435
436 /*
437 * Free any resources we've allocated during the failed attach
438 * attempt. Do this in reverse order and fall through.
439 */
440 fail_rxmap:
441 for (i = 0; i < CAS_NRXDESC; i++)
442 if (sc->sc_rxdsoft[i].rxds_paddr != 0)
443 bus_dmamap_unload(sc->sc_rdmatag,
444 sc->sc_rxdsoft[i].rxds_dmamap);
445 fail_rxmem:
446 for (i = 0; i < CAS_NRXDESC; i++)
447 if (sc->sc_rxdsoft[i].rxds_buf != NULL)
448 bus_dmamem_free(sc->sc_rdmatag,
449 sc->sc_rxdsoft[i].rxds_buf,
450 sc->sc_rxdsoft[i].rxds_dmamap);
451 fail_txd:
452 for (i = 0; i < CAS_TXQUEUELEN; i++)
453 if (sc->sc_txsoft[i].txs_dmamap != NULL)
454 bus_dmamap_destroy(sc->sc_tdmatag,
455 sc->sc_txsoft[i].txs_dmamap);
456 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
457 fail_cmem:
458 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
459 sc->sc_cddmamap);
460 fail_ctag:
461 bus_dma_tag_destroy(sc->sc_cdmatag);
462 fail_ttag:
463 bus_dma_tag_destroy(sc->sc_tdmatag);
464 fail_rtag:
465 bus_dma_tag_destroy(sc->sc_rdmatag);
466 fail_ptag:
467 bus_dma_tag_destroy(sc->sc_pdmatag);
468 fail_taskq:
469 taskqueue_free(sc->sc_tq);
470 fail_ifnet:
471 if_free(ifp);
472 return (error);
473 }
474
475 static void
476 cas_detach(struct cas_softc *sc)
477 {
478 struct ifnet *ifp = sc->sc_ifp;
479 int i;
480
481 ether_ifdetach(ifp);
482 CAS_LOCK(sc);
483 cas_stop(ifp);
484 CAS_UNLOCK(sc);
485 callout_drain(&sc->sc_tick_ch);
486 callout_drain(&sc->sc_rx_ch);
487 taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
488 taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
489 if_free(ifp);
490 taskqueue_free(sc->sc_tq);
491 device_delete_child(sc->sc_dev, sc->sc_miibus);
492
493 for (i = 0; i < CAS_NRXDESC; i++)
494 if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
495 bus_dmamap_sync(sc->sc_rdmatag,
496 sc->sc_rxdsoft[i].rxds_dmamap,
497 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
498 for (i = 0; i < CAS_NRXDESC; i++)
499 if (sc->sc_rxdsoft[i].rxds_paddr != 0)
500 bus_dmamap_unload(sc->sc_rdmatag,
501 sc->sc_rxdsoft[i].rxds_dmamap);
502 for (i = 0; i < CAS_NRXDESC; i++)
503 if (sc->sc_rxdsoft[i].rxds_buf != NULL)
504 bus_dmamem_free(sc->sc_rdmatag,
505 sc->sc_rxdsoft[i].rxds_buf,
506 sc->sc_rxdsoft[i].rxds_dmamap);
507 for (i = 0; i < CAS_TXQUEUELEN; i++)
508 if (sc->sc_txsoft[i].txs_dmamap != NULL)
509 bus_dmamap_destroy(sc->sc_tdmatag,
510 sc->sc_txsoft[i].txs_dmamap);
511 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
512 bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
513 bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
514 sc->sc_cddmamap);
515 bus_dma_tag_destroy(sc->sc_cdmatag);
516 bus_dma_tag_destroy(sc->sc_tdmatag);
517 bus_dma_tag_destroy(sc->sc_rdmatag);
518 bus_dma_tag_destroy(sc->sc_pdmatag);
519 }
520
521 static void
522 cas_suspend(struct cas_softc *sc)
523 {
524 struct ifnet *ifp = sc->sc_ifp;
525
526 CAS_LOCK(sc);
527 cas_stop(ifp);
528 CAS_UNLOCK(sc);
529 }
530
531 static void
532 cas_resume(struct cas_softc *sc)
533 {
534 struct ifnet *ifp = sc->sc_ifp;
535
536 CAS_LOCK(sc);
537 /*
538 * On resume all registers have to be initialized again like
539 * after power-on.
540 */
541 sc->sc_flags &= ~CAS_INITED;
542 if (ifp->if_flags & IFF_UP)
543 cas_init_locked(sc);
544 CAS_UNLOCK(sc);
545 }
546
547 static inline void
548 cas_rxcksum(struct mbuf *m, uint16_t cksum)
549 {
550 struct ether_header *eh;
551 struct ip *ip;
552 struct udphdr *uh;
553 uint16_t *opts;
554 int32_t hlen, len, pktlen;
555 uint32_t temp32;
556
557 pktlen = m->m_pkthdr.len;
558 if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
559 return;
560 eh = mtod(m, struct ether_header *);
561 if (eh->ether_type != htons(ETHERTYPE_IP))
562 return;
563 ip = (struct ip *)(eh + 1);
564 if (ip->ip_v != IPVERSION)
565 return;
566
567 hlen = ip->ip_hl << 2;
568 pktlen -= sizeof(struct ether_header);
569 if (hlen < sizeof(struct ip))
570 return;
571 if (ntohs(ip->ip_len) < hlen)
572 return;
573 if (ntohs(ip->ip_len) != pktlen)
574 return;
575 if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
576 return; /* Cannot handle fragmented packet. */
577
578 switch (ip->ip_p) {
579 case IPPROTO_TCP:
580 if (pktlen < (hlen + sizeof(struct tcphdr)))
581 return;
582 break;
583 case IPPROTO_UDP:
584 if (pktlen < (hlen + sizeof(struct udphdr)))
585 return;
586 uh = (struct udphdr *)((uint8_t *)ip + hlen);
587 if (uh->uh_sum == 0)
588 return; /* no checksum */
589 break;
590 default:
591 return;
592 }
593
594 cksum = ~cksum;
595 /* checksum fixup for IP options */
596 len = hlen - sizeof(struct ip);
597 if (len > 0) {
598 opts = (uint16_t *)(ip + 1);
599 for (; len > 0; len -= sizeof(uint16_t), opts++) {
600 temp32 = cksum - *opts;
601 temp32 = (temp32 >> 16) + (temp32 & 65535);
602 cksum = temp32 & 65535;
603 }
604 }
605 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
606 m->m_pkthdr.csum_data = cksum;
607 }
608
609 static void
610 cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
611 {
612 struct cas_softc *sc = xsc;
613
614 if (error != 0)
615 return;
616 if (nsegs != 1)
617 panic("%s: bad control buffer segment count", __func__);
618 sc->sc_cddma = segs[0].ds_addr;
619 }
620
621 static void
622 cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
623 {
624 struct cas_softc *sc = xsc;
625
626 if (error != 0)
627 return;
628 if (nsegs != 1)
629 panic("%s: bad RX buffer segment count", __func__);
630 sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
631 }
632
633 static void
634 cas_tick(void *arg)
635 {
636 struct cas_softc *sc = arg;
637 struct ifnet *ifp = sc->sc_ifp;
638 uint32_t v;
639
640 CAS_LOCK_ASSERT(sc, MA_OWNED);
641
642 /*
643 * Unload collision and error counters.
644 */
645 if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
646 CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
647 CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT));
648 v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
649 CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
650 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, v);
651 if_inc_counter(ifp, IFCOUNTER_OERRORS, v);
652 if_inc_counter(ifp, IFCOUNTER_IERRORS,
653 CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
654 CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
655 CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
656 CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL));
657
658 /*
659 * Then clear the hardware counters.
660 */
661 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
662 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
663 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
664 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
665 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
666 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
667 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
668 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
669
670 mii_tick(sc->sc_mii);
671
672 if (sc->sc_txfree != CAS_MAXTXFREE)
673 cas_tint(sc);
674
675 cas_watchdog(sc);
676
677 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
678 }
679
680 static int
681 cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
682 {
683 int i;
684 uint32_t reg;
685
686 for (i = CAS_TRIES; i--; DELAY(100)) {
687 reg = CAS_READ_4(sc, r);
688 if ((reg & clr) == 0 && (reg & set) == set)
689 return (1);
690 }
691 return (0);
692 }
693
694 static void
695 cas_reset(struct cas_softc *sc)
696 {
697
698 #ifdef CAS_DEBUG
699 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
700 #endif
701 /* Disable all interrupts in order to avoid spurious ones. */
702 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
703
704 cas_reset_rx(sc);
705 cas_reset_tx(sc);
706
707 /*
708 * Do a full reset modulo the result of the last auto-negotiation
709 * when using the SERDES.
710 */
711 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
712 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
713 CAS_BARRIER(sc, CAS_RESET, 4,
714 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
715 DELAY(3000);
716 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
717 device_printf(sc->sc_dev, "cannot reset device\n");
718 }
719
720 static void
721 cas_stop(struct ifnet *ifp)
722 {
723 struct cas_softc *sc = ifp->if_softc;
724 struct cas_txsoft *txs;
725
726 #ifdef CAS_DEBUG
727 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
728 #endif
729
730 callout_stop(&sc->sc_tick_ch);
731 callout_stop(&sc->sc_rx_ch);
732
733 /* Disable all interrupts in order to avoid spurious ones. */
734 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
735
736 cas_reset_tx(sc);
737 cas_reset_rx(sc);
738
739 /*
740 * Release any queued transmit buffers.
741 */
742 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
743 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
744 if (txs->txs_ndescs != 0) {
745 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
746 BUS_DMASYNC_POSTWRITE);
747 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
748 if (txs->txs_mbuf != NULL) {
749 m_freem(txs->txs_mbuf);
750 txs->txs_mbuf = NULL;
751 }
752 }
753 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
754 }
755
756 /*
757 * Mark the interface down and cancel the watchdog timer.
758 */
759 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
760 sc->sc_flags &= ~CAS_LINK;
761 sc->sc_wdog_timer = 0;
762 }
763
764 static int
765 cas_reset_rx(struct cas_softc *sc)
766 {
767
768 /*
769 * Resetting while DMA is in progress can cause a bus hang, so we
770 * disable DMA first.
771 */
772 (void)cas_disable_rx(sc);
773 CAS_WRITE_4(sc, CAS_RX_CONF, 0);
774 CAS_BARRIER(sc, CAS_RX_CONF, 4,
775 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
776 if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
777 device_printf(sc->sc_dev, "cannot disable RX DMA\n");
778
779 /* Finally, reset the ERX. */
780 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
781 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
782 CAS_BARRIER(sc, CAS_RESET, 4,
783 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
784 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
785 device_printf(sc->sc_dev, "cannot reset receiver\n");
786 return (1);
787 }
788 return (0);
789 }
790
791 static int
792 cas_reset_tx(struct cas_softc *sc)
793 {
794
795 /*
796 * Resetting while DMA is in progress can cause a bus hang, so we
797 * disable DMA first.
798 */
799 (void)cas_disable_tx(sc);
800 CAS_WRITE_4(sc, CAS_TX_CONF, 0);
801 CAS_BARRIER(sc, CAS_TX_CONF, 4,
802 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
803 if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
804 device_printf(sc->sc_dev, "cannot disable TX DMA\n");
805
806 /* Finally, reset the ETX. */
807 CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
808 ((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
809 CAS_BARRIER(sc, CAS_RESET, 4,
810 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
811 if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
812 device_printf(sc->sc_dev, "cannot reset transmitter\n");
813 return (1);
814 }
815 return (0);
816 }
817
818 static int
819 cas_disable_rx(struct cas_softc *sc)
820 {
821
822 CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
823 CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
824 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
825 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
826 if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
827 return (1);
828 if (bootverbose)
829 device_printf(sc->sc_dev, "cannot disable RX MAC\n");
830 return (0);
831 }
832
833 static int
834 cas_disable_tx(struct cas_softc *sc)
835 {
836
837 CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
838 CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
839 CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
840 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
841 if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
842 return (1);
843 if (bootverbose)
844 device_printf(sc->sc_dev, "cannot disable TX MAC\n");
845 return (0);
846 }
847
848 static inline void
849 cas_rxcompinit(struct cas_rx_comp *rxcomp)
850 {
851
852 rxcomp->crc_word1 = 0;
853 rxcomp->crc_word2 = 0;
854 rxcomp->crc_word3 =
855 htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
856 rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
857 }
858
859 static void
860 cas_meminit(struct cas_softc *sc)
861 {
862 int i;
863
864 CAS_LOCK_ASSERT(sc, MA_OWNED);
865
866 /*
867 * Initialize the transmit descriptor ring.
868 */
869 for (i = 0; i < CAS_NTXDESC; i++) {
870 sc->sc_txdescs[i].cd_flags = 0;
871 sc->sc_txdescs[i].cd_buf_ptr = 0;
872 }
873 sc->sc_txfree = CAS_MAXTXFREE;
874 sc->sc_txnext = 0;
875 sc->sc_txwin = 0;
876
877 /*
878 * Initialize the receive completion ring.
879 */
880 for (i = 0; i < CAS_NRXCOMP; i++)
881 cas_rxcompinit(&sc->sc_rxcomps[i]);
882 sc->sc_rxcptr = 0;
883
884 /*
885 * Initialize the first receive descriptor ring. We leave
886 * the second one zeroed as we don't actually use it.
887 */
888 for (i = 0; i < CAS_NRXDESC; i++)
889 CAS_INIT_RXDESC(sc, i, i);
890 sc->sc_rxdptr = 0;
891
892 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
893 }
894
895 static u_int
896 cas_descsize(u_int sz)
897 {
898
899 switch (sz) {
900 case 32:
901 return (CAS_DESC_32);
902 case 64:
903 return (CAS_DESC_64);
904 case 128:
905 return (CAS_DESC_128);
906 case 256:
907 return (CAS_DESC_256);
908 case 512:
909 return (CAS_DESC_512);
910 case 1024:
911 return (CAS_DESC_1K);
912 case 2048:
913 return (CAS_DESC_2K);
914 case 4096:
915 return (CAS_DESC_4K);
916 case 8192:
917 return (CAS_DESC_8K);
918 default:
919 printf("%s: invalid descriptor ring size %d\n", __func__, sz);
920 return (CAS_DESC_32);
921 }
922 }
923
924 static u_int
925 cas_rxcompsize(u_int sz)
926 {
927
928 switch (sz) {
929 case 128:
930 return (CAS_RX_CONF_COMP_128);
931 case 256:
932 return (CAS_RX_CONF_COMP_256);
933 case 512:
934 return (CAS_RX_CONF_COMP_512);
935 case 1024:
936 return (CAS_RX_CONF_COMP_1K);
937 case 2048:
938 return (CAS_RX_CONF_COMP_2K);
939 case 4096:
940 return (CAS_RX_CONF_COMP_4K);
941 case 8192:
942 return (CAS_RX_CONF_COMP_8K);
943 case 16384:
944 return (CAS_RX_CONF_COMP_16K);
945 case 32768:
946 return (CAS_RX_CONF_COMP_32K);
947 default:
948 printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
949 return (CAS_RX_CONF_COMP_128);
950 }
951 }
952
953 static void
954 cas_init(void *xsc)
955 {
956 struct cas_softc *sc = xsc;
957
958 CAS_LOCK(sc);
959 cas_init_locked(sc);
960 CAS_UNLOCK(sc);
961 }
962
963 /*
964 * Initialization of interface; set up initialization block
965 * and transmit/receive descriptor rings.
966 */
967 static void
968 cas_init_locked(struct cas_softc *sc)
969 {
970 struct ifnet *ifp = sc->sc_ifp;
971 uint32_t v;
972
973 CAS_LOCK_ASSERT(sc, MA_OWNED);
974
975 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
976 return;
977
978 #ifdef CAS_DEBUG
979 CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
980 __func__);
981 #endif
982 /*
983 * Initialization sequence. The numbered steps below correspond
984 * to the sequence outlined in section 6.3.5.1 in the Ethernet
985 * Channel Engine manual (part of the PCIO manual).
986 * See also the STP2002-STQ document from Sun Microsystems.
987 */
988
989 /* step 1 & 2. Reset the Ethernet Channel. */
990 cas_stop(ifp);
991 cas_reset(sc);
992 #ifdef CAS_DEBUG
993 CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
994 __func__);
995 #endif
996
997 if ((sc->sc_flags & CAS_SERDES) == 0)
998 /* Re-initialize the MIF. */
999 cas_mifinit(sc);
1000
1001 /* step 3. Setup data structures in host memory. */
1002 cas_meminit(sc);
1003
1004 /* step 4. TX MAC registers & counters */
1005 cas_init_regs(sc);
1006
1007 /* step 5. RX MAC registers & counters */
1008
1009 /* step 6 & 7. Program Ring Base Addresses. */
1010 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
1011 (((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1012 CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1013 CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1014
1015 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1016 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1017 CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1018 CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1019
1020 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1021 (((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1022 CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1023 CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1024
1025 if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1026 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1027 (((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1028 CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1029 CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1030 }
1031
1032 #ifdef CAS_DEBUG
1033 CTR5(KTR_CAS,
1034 "loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1035 CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1036 CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1037 #endif
1038
1039 /* step 8. Global Configuration & Interrupt Masks */
1040
1041 /* Disable weighted round robin. */
1042 CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1043
1044 /*
1045 * Enable infinite bursts for revisions without PCI issues if
1046 * applicable. Doing so greatly improves the TX performance.
1047 */
1048 CAS_WRITE_4(sc, CAS_INF_BURST,
1049 (sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1050 0);
1051
1052 /* Set up interrupts. */
1053 CAS_WRITE_4(sc, CAS_INTMASK,
1054 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1055 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1056 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1057 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1058 CAS_INTR_PCI_ERROR_INT
1059 #ifdef CAS_DEBUG
1060 | CAS_INTR_PCS_INT | CAS_INTR_MIF
1061 #endif
1062 ));
1063 /* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1064 CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1065 CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1066 CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1067 ~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1068 #ifdef CAS_DEBUG
1069 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1070 ~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1071 CAS_MAC_CTRL_NON_PAUSE));
1072 #else
1073 CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1074 CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1075 CAS_MAC_CTRL_NON_PAUSE);
1076 #endif
1077
1078 /* Enable PCI error interrupts. */
1079 CAS_WRITE_4(sc, CAS_ERROR_MASK,
1080 ~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1081 CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1082
1083 /* Enable PCI error interrupts in BIM configuration. */
1084 CAS_WRITE_4(sc, CAS_BIM_CONF,
1085 CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1086
1087 /*
1088 * step 9. ETX Configuration: encode receive descriptor ring size,
1089 * enable DMA and disable pre-interrupt writeback completion.
1090 */
1091 v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1092 CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1093 CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1094
1095 /* step 10. ERX Configuration */
1096
1097 /*
1098 * Encode receive completion and descriptor ring sizes, set the
1099 * swivel offset.
1100 */
1101 v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1102 v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1103 if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1104 v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1105 CAS_WRITE_4(sc, CAS_RX_CONF,
1106 v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1107
1108 /* Set the PAUSE thresholds. We use the maximum OFF threshold. */
1109 CAS_WRITE_4(sc, CAS_RX_PTHRS,
1110 (111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
1111
1112 /* RX blanking */
1113 CAS_WRITE_4(sc, CAS_RX_BLANK,
1114 (15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1115
1116 /* Set RX_COMP_AFULL threshold to half of the RX completions. */
1117 CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1118 (CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1119
1120 /* Initialize the RX page size register as appropriate for 8k. */
1121 CAS_WRITE_4(sc, CAS_RX_PSZ,
1122 (CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1123 (4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1124 (CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1125 (CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1126
1127 /* Disable RX random early detection. */
1128 CAS_WRITE_4(sc, CAS_RX_RED, 0);
1129
1130 /* Zero the RX reassembly DMA table. */
1131 for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1132 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v);
1133 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0);
1134 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0);
1135 CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0);
1136 }
1137
1138 /* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1139 CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1140 CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1141
1142 /* Finally, enable RX DMA. */
1143 CAS_WRITE_4(sc, CAS_RX_CONF,
1144 CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1145
1146 /* step 11. Configure Media. */
1147
1148 /* step 12. RX_MAC Configuration Register */
1149 v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
1150 v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
1151 v |= CAS_MAC_RX_CONF_STRPFCS;
1152 sc->sc_mac_rxcfg = v;
1153 /*
1154 * Clear the RX filter and reprogram it. This will also set the
1155 * current RX MAC configuration and enable it.
1156 */
1157 cas_setladrf(sc);
1158
1159 /* step 13. TX_MAC Configuration Register */
1160 v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1161 v |= CAS_MAC_TX_CONF_EN;
1162 (void)cas_disable_tx(sc);
1163 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1164
1165 /* step 14. Issue Transmit Pending command. */
1166
1167 /* step 15. Give the receiver a swift kick. */
1168 CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1169 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1170 if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1171 CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1172
1173 ifp->if_drv_flags |= IFF_DRV_RUNNING;
1174 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1175
1176 mii_mediachg(sc->sc_mii);
1177
1178 /* Start the one second timer. */
1179 sc->sc_wdog_timer = 0;
1180 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1181 }
1182
1183 static int
1184 cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1185 {
1186 bus_dma_segment_t txsegs[CAS_NTXSEGS];
1187 struct cas_txsoft *txs;
1188 struct ip *ip;
1189 struct mbuf *m;
1190 uint64_t cflags;
1191 int error, nexttx, nsegs, offset, seg;
1192
1193 CAS_LOCK_ASSERT(sc, MA_OWNED);
1194
1195 /* Get a work queue entry. */
1196 if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1197 /* Ran out of descriptors. */
1198 return (ENOBUFS);
1199 }
1200
1201 cflags = 0;
1202 if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1203 if (M_WRITABLE(*m_head) == 0) {
1204 m = m_dup(*m_head, M_NOWAIT);
1205 m_freem(*m_head);
1206 *m_head = m;
1207 if (m == NULL)
1208 return (ENOBUFS);
1209 }
1210 offset = sizeof(struct ether_header);
1211 m = m_pullup(*m_head, offset + sizeof(struct ip));
1212 if (m == NULL) {
1213 *m_head = NULL;
1214 return (ENOBUFS);
1215 }
1216 ip = (struct ip *)(mtod(m, caddr_t) + offset);
1217 offset += (ip->ip_hl << 2);
1218 cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1219 ((offset + m->m_pkthdr.csum_data) <<
1220 CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1221 *m_head = m;
1222 }
1223
1224 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1225 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1226 if (error == EFBIG) {
1227 m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS);
1228 if (m == NULL) {
1229 m_freem(*m_head);
1230 *m_head = NULL;
1231 return (ENOBUFS);
1232 }
1233 *m_head = m;
1234 error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1235 txs->txs_dmamap, *m_head, txsegs, &nsegs,
1236 BUS_DMA_NOWAIT);
1237 if (error != 0) {
1238 m_freem(*m_head);
1239 *m_head = NULL;
1240 return (error);
1241 }
1242 } else if (error != 0)
1243 return (error);
1244 /* If nsegs is wrong then the stack is corrupt. */
1245 KASSERT(nsegs <= CAS_NTXSEGS,
1246 ("%s: too many DMA segments (%d)", __func__, nsegs));
1247 if (nsegs == 0) {
1248 m_freem(*m_head);
1249 *m_head = NULL;
1250 return (EIO);
1251 }
1252
1253 /*
1254 * Ensure we have enough descriptors free to describe
1255 * the packet. Note, we always reserve one descriptor
1256 * at the end of the ring as a termination point, in
1257 * order to prevent wrap-around.
1258 */
1259 if (nsegs > sc->sc_txfree - 1) {
1260 txs->txs_ndescs = 0;
1261 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1262 return (ENOBUFS);
1263 }
1264
1265 txs->txs_ndescs = nsegs;
1266 txs->txs_firstdesc = sc->sc_txnext;
1267 nexttx = txs->txs_firstdesc;
1268 for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1269 #ifdef CAS_DEBUG
1270 CTR6(KTR_CAS,
1271 "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1272 __func__, seg, nexttx, txsegs[seg].ds_len,
1273 txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1274 #endif
1275 sc->sc_txdescs[nexttx].cd_buf_ptr =
1276 htole64(txsegs[seg].ds_addr);
1277 KASSERT(txsegs[seg].ds_len <
1278 CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1279 ("%s: segment size too large!", __func__));
1280 sc->sc_txdescs[nexttx].cd_flags =
1281 htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1282 txs->txs_lastdesc = nexttx;
1283 }
1284
1285 /* Set EOF on the last descriptor. */
1286 #ifdef CAS_DEBUG
1287 CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1288 __func__, seg, nexttx);
1289 #endif
1290 sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1291 htole64(CAS_TD_END_OF_FRAME);
1292
1293 /* Lastly set SOF on the first descriptor. */
1294 #ifdef CAS_DEBUG
1295 CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1296 __func__, seg, nexttx);
1297 #endif
1298 if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1299 sc->sc_txwin = 0;
1300 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1301 htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1302 } else
1303 sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1304 htole64(cflags | CAS_TD_START_OF_FRAME);
1305
1306 /* Sync the DMA map. */
1307 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1308 BUS_DMASYNC_PREWRITE);
1309
1310 #ifdef CAS_DEBUG
1311 CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1312 __func__, txs->txs_firstdesc, txs->txs_lastdesc,
1313 txs->txs_ndescs);
1314 #endif
1315 STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1316 STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1317 txs->txs_mbuf = *m_head;
1318
1319 sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1320 sc->sc_txfree -= txs->txs_ndescs;
1321
1322 return (0);
1323 }
1324
1325 static void
1326 cas_init_regs(struct cas_softc *sc)
1327 {
1328 int i;
1329 const u_char *laddr = IF_LLADDR(sc->sc_ifp);
1330
1331 CAS_LOCK_ASSERT(sc, MA_OWNED);
1332
1333 /* These registers are not cleared on reset. */
1334 if ((sc->sc_flags & CAS_INITED) == 0) {
1335 /* magic values */
1336 CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1337 CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1338 CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1339
1340 /* min frame length */
1341 CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1342 /* max frame length and max burst size */
1343 CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1344 ((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1345 CAS_MAC_MAX_BF_FRM_SHFT) |
1346 (0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1347
1348 /* more magic values */
1349 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1350 CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1351 CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1352 CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
1353
1354 /* random number seed */
1355 CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1356 ((laddr[5] << 8) | laddr[4]) & 0x3ff);
1357
1358 /* secondary MAC addresses: 0:0:0:0:0:0 */
1359 for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1360 i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1361 CAS_WRITE_4(sc, i, 0);
1362
1363 /* MAC control address: 01:80:c2:00:00:01 */
1364 CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1365 CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1366 CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1367
1368 /* MAC filter address: 0:0:0:0:0:0 */
1369 CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1370 CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1371 CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1372 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1373 CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1374
1375 /* Zero the hash table. */
1376 for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1377 i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1378 CAS_WRITE_4(sc, i, 0);
1379
1380 sc->sc_flags |= CAS_INITED;
1381 }
1382
1383 /* Counters need to be zeroed. */
1384 CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1385 CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1386 CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1387 CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1388 CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1389 CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1390 CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1391 CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1392 CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1393 CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1394 CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1395
1396 /* Set XOFF PAUSE time. */
1397 CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1398
1399 /* Set the station address. */
1400 CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1401 CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1402 CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1403
1404 /* Enable MII outputs. */
1405 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1406 }
1407
1408 static void
1409 cas_tx_task(void *arg, int pending __unused)
1410 {
1411 struct ifnet *ifp;
1412
1413 ifp = (struct ifnet *)arg;
1414 cas_start(ifp);
1415 }
1416
1417 static inline void
1418 cas_txkick(struct cas_softc *sc)
1419 {
1420
1421 /*
1422 * Update the TX kick register. This register has to point to the
1423 * descriptor after the last valid one and for optimum performance
1424 * should be incremented in multiples of 4 (the DMA engine fetches/
1425 * updates descriptors in batches of 4).
1426 */
1427 #ifdef CAS_DEBUG
1428 CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1429 device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1430 #endif
1431 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1432 CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1433 }
1434
1435 static void
1436 cas_start(struct ifnet *ifp)
1437 {
1438 struct cas_softc *sc = ifp->if_softc;
1439 struct mbuf *m;
1440 int kicked, ntx;
1441
1442 CAS_LOCK(sc);
1443
1444 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1445 IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1446 CAS_UNLOCK(sc);
1447 return;
1448 }
1449
1450 if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1451 cas_tint(sc);
1452
1453 #ifdef CAS_DEBUG
1454 CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1455 device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1456 sc->sc_txnext);
1457 #endif
1458 ntx = 0;
1459 kicked = 0;
1460 for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) {
1461 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1462 if (m == NULL)
1463 break;
1464 if (cas_load_txmbuf(sc, &m) != 0) {
1465 if (m == NULL)
1466 break;
1467 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1468 IFQ_DRV_PREPEND(&ifp->if_snd, m);
1469 break;
1470 }
1471 if ((sc->sc_txnext % 4) == 0) {
1472 cas_txkick(sc);
1473 kicked = 1;
1474 } else
1475 kicked = 0;
1476 ntx++;
1477 BPF_MTAP(ifp, m);
1478 }
1479
1480 if (ntx > 0) {
1481 if (kicked == 0)
1482 cas_txkick(sc);
1483 #ifdef CAS_DEBUG
1484 CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1485 device_get_name(sc->sc_dev), sc->sc_txnext);
1486 #endif
1487
1488 /* Set a watchdog timer in case the chip flakes out. */
1489 sc->sc_wdog_timer = 5;
1490 #ifdef CAS_DEBUG
1491 CTR3(KTR_CAS, "%s: %s: watchdog %d",
1492 device_get_name(sc->sc_dev), __func__,
1493 sc->sc_wdog_timer);
1494 #endif
1495 }
1496
1497 CAS_UNLOCK(sc);
1498 }
1499
1500 static void
1501 cas_tint(struct cas_softc *sc)
1502 {
1503 struct ifnet *ifp = sc->sc_ifp;
1504 struct cas_txsoft *txs;
1505 int progress;
1506 uint32_t txlast;
1507 #ifdef CAS_DEBUG
1508 int i;
1509
1510 CAS_LOCK_ASSERT(sc, MA_OWNED);
1511
1512 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1513 #endif
1514
1515 /*
1516 * Go through our TX list and free mbufs for those
1517 * frames that have been transmitted.
1518 */
1519 progress = 0;
1520 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1521 while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1522 #ifdef CAS_DEBUG
1523 if ((ifp->if_flags & IFF_DEBUG) != 0) {
1524 printf(" txsoft %p transmit chain:\n", txs);
1525 for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1526 printf("descriptor %d: ", i);
1527 printf("cd_flags: 0x%016llx\t",
1528 (long long)le64toh(
1529 sc->sc_txdescs[i].cd_flags));
1530 printf("cd_buf_ptr: 0x%016llx\n",
1531 (long long)le64toh(
1532 sc->sc_txdescs[i].cd_buf_ptr));
1533 if (i == txs->txs_lastdesc)
1534 break;
1535 }
1536 }
1537 #endif
1538
1539 /*
1540 * In theory, we could harvest some descriptors before
1541 * the ring is empty, but that's a bit complicated.
1542 *
1543 * CAS_TX_COMPn points to the last descriptor
1544 * processed + 1.
1545 */
1546 txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1547 #ifdef CAS_DEBUG
1548 CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1549 "txs->txs_lastdesc = %d, txlast = %d",
1550 __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1551 #endif
1552 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1553 if ((txlast >= txs->txs_firstdesc) &&
1554 (txlast <= txs->txs_lastdesc))
1555 break;
1556 } else {
1557 /* Ick -- this command wraps. */
1558 if ((txlast >= txs->txs_firstdesc) ||
1559 (txlast <= txs->txs_lastdesc))
1560 break;
1561 }
1562
1563 #ifdef CAS_DEBUG
1564 CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1565 #endif
1566 STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1567
1568 sc->sc_txfree += txs->txs_ndescs;
1569
1570 bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1571 BUS_DMASYNC_POSTWRITE);
1572 bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1573 if (txs->txs_mbuf != NULL) {
1574 m_freem(txs->txs_mbuf);
1575 txs->txs_mbuf = NULL;
1576 }
1577
1578 STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1579
1580 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1581 progress = 1;
1582 }
1583
1584 #ifdef CAS_DEBUG
1585 CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
1586 "CAS_TX_COMP3 %x",
1587 __func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
1588 ((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
1589 CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
1590 CAS_READ_4(sc, CAS_TX_COMP3));
1591 #endif
1592
1593 if (progress) {
1594 /* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1595 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1596 if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1597 sc->sc_wdog_timer = 0;
1598 }
1599
1600 #ifdef CAS_DEBUG
1601 CTR3(KTR_CAS, "%s: %s: watchdog %d",
1602 device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1603 #endif
1604 }
1605
1606 static void
1607 cas_rint_timeout(void *arg)
1608 {
1609 struct epoch_tracker et;
1610 struct cas_softc *sc = arg;
1611
1612 CAS_LOCK_ASSERT(sc, MA_OWNED);
1613
1614 NET_EPOCH_ENTER(et);
1615 cas_rint(sc);
1616 NET_EPOCH_EXIT(et);
1617 }
1618
1619 static void
1620 cas_rint(struct cas_softc *sc)
1621 {
1622 struct cas_rxdsoft *rxds, *rxds2;
1623 struct ifnet *ifp = sc->sc_ifp;
1624 struct mbuf *m, *m2;
1625 uint64_t word1, word2, word3 __unused, word4;
1626 uint32_t rxhead;
1627 u_int idx, idx2, len, off, skip;
1628
1629 CAS_LOCK_ASSERT(sc, MA_OWNED);
1630
1631 callout_stop(&sc->sc_rx_ch);
1632
1633 #ifdef CAS_DEBUG
1634 CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1635 #endif
1636
1637 #define PRINTWORD(n, delimiter) \
1638 printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1639
1640 #define SKIPASSERT(n) \
1641 KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \
1642 ("%s: word ## n not 0", __func__))
1643
1644 #define WORDTOH(n) \
1645 word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1646
1647 /*
1648 * Read the completion head register once. This limits
1649 * how long the following loop can execute.
1650 */
1651 rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1652 #ifdef CAS_DEBUG
1653 CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1654 __func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
1655 #endif
1656 skip = 0;
1657 CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1658 for (; sc->sc_rxcptr != rxhead;
1659 sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1660 if (skip != 0) {
1661 SKIPASSERT(1);
1662 SKIPASSERT(2);
1663 SKIPASSERT(3);
1664
1665 --skip;
1666 goto skip;
1667 }
1668
1669 WORDTOH(1);
1670 WORDTOH(2);
1671 WORDTOH(3);
1672 WORDTOH(4);
1673
1674 #ifdef CAS_DEBUG
1675 if ((ifp->if_flags & IFF_DEBUG) != 0) {
1676 printf(" completion %d: ", sc->sc_rxcptr);
1677 PRINTWORD(1, '\t');
1678 PRINTWORD(2, '\t');
1679 PRINTWORD(3, '\t');
1680 PRINTWORD(4, '\n');
1681 }
1682 #endif
1683
1684 if (__predict_false(
1685 (word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1686 (word4 & CAS_RC4_ZERO) != 0)) {
1687 /*
1688 * The descriptor is still marked as owned, although
1689 * it is supposed to have completed. This has been
1690 * observed on some machines. Just exiting here
1691 * might leave the packet sitting around until another
1692 * one arrives to trigger a new interrupt, which is
1693 * generally undesirable, so set up a timeout.
1694 */
1695 callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1696 cas_rint_timeout, sc);
1697 break;
1698 }
1699
1700 if (__predict_false(
1701 (word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1702 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1703 device_printf(sc->sc_dev,
1704 "receive error: CRC error\n");
1705 continue;
1706 }
1707
1708 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1709 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1710 ("%s: data and header present", __func__));
1711 KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1712 CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1713 ("%s: split and header present", __func__));
1714 KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1715 (word1 & CAS_RC1_RELEASE_HDR) == 0,
1716 ("%s: data present but header release", __func__));
1717 KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1718 (word1 & CAS_RC1_RELEASE_DATA) == 0,
1719 ("%s: header present but data release", __func__));
1720
1721 if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1722 idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1723 off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1724 #ifdef CAS_DEBUG
1725 CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1726 __func__, idx, off, len);
1727 #endif
1728 rxds = &sc->sc_rxdsoft[idx];
1729 MGETHDR(m, M_NOWAIT, MT_DATA);
1730 if (m != NULL) {
1731 refcount_acquire(&rxds->rxds_refcount);
1732 bus_dmamap_sync(sc->sc_rdmatag,
1733 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1734 m_extadd(m, (char *)rxds->rxds_buf +
1735 off * 256 + ETHER_ALIGN, len, cas_free,
1736 sc, (void *)(uintptr_t)idx,
1737 M_RDONLY, EXT_NET_DRV);
1738 if ((m->m_flags & M_EXT) == 0) {
1739 m_freem(m);
1740 m = NULL;
1741 }
1742 }
1743 if (m != NULL) {
1744 m->m_pkthdr.rcvif = ifp;
1745 m->m_pkthdr.len = m->m_len = len;
1746 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1747 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1748 cas_rxcksum(m, CAS_GET(word4,
1749 CAS_RC4_TCP_CSUM));
1750 /* Pass it on. */
1751 CAS_UNLOCK(sc);
1752 (*ifp->if_input)(ifp, m);
1753 CAS_LOCK(sc);
1754 } else
1755 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1756
1757 if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1758 refcount_release(&rxds->rxds_refcount) != 0)
1759 cas_add_rxdesc(sc, idx);
1760 } else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1761 idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1762 off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1763 #ifdef CAS_DEBUG
1764 CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1765 __func__, idx, off, len);
1766 #endif
1767 rxds = &sc->sc_rxdsoft[idx];
1768 MGETHDR(m, M_NOWAIT, MT_DATA);
1769 if (m != NULL) {
1770 refcount_acquire(&rxds->rxds_refcount);
1771 off += ETHER_ALIGN;
1772 m->m_len = min(CAS_PAGE_SIZE - off, len);
1773 bus_dmamap_sync(sc->sc_rdmatag,
1774 rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1775 m_extadd(m, (char *)rxds->rxds_buf + off,
1776 m->m_len, cas_free, sc,
1777 (void *)(uintptr_t)idx, M_RDONLY,
1778 EXT_NET_DRV);
1779 if ((m->m_flags & M_EXT) == 0) {
1780 m_freem(m);
1781 m = NULL;
1782 }
1783 }
1784 idx2 = 0;
1785 m2 = NULL;
1786 rxds2 = NULL;
1787 if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1788 KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1789 ("%s: split but no release next",
1790 __func__));
1791
1792 idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1793 #ifdef CAS_DEBUG
1794 CTR2(KTR_CAS, "%s: split at idx %d",
1795 __func__, idx2);
1796 #endif
1797 rxds2 = &sc->sc_rxdsoft[idx2];
1798 if (m != NULL) {
1799 MGET(m2, M_NOWAIT, MT_DATA);
1800 if (m2 != NULL) {
1801 refcount_acquire(
1802 &rxds2->rxds_refcount);
1803 m2->m_len = len - m->m_len;
1804 bus_dmamap_sync(
1805 sc->sc_rdmatag,
1806 rxds2->rxds_dmamap,
1807 BUS_DMASYNC_POSTREAD);
1808 m_extadd(m2,
1809 (char *)rxds2->rxds_buf,
1810 m2->m_len, cas_free, sc,
1811 (void *)(uintptr_t)idx2,
1812 M_RDONLY, EXT_NET_DRV);
1813 if ((m2->m_flags & M_EXT) ==
1814 0) {
1815 m_freem(m2);
1816 m2 = NULL;
1817 }
1818 }
1819 }
1820 if (m2 != NULL)
1821 m->m_next = m2;
1822 else if (m != NULL) {
1823 m_freem(m);
1824 m = NULL;
1825 }
1826 }
1827 if (m != NULL) {
1828 m->m_pkthdr.rcvif = ifp;
1829 m->m_pkthdr.len = len;
1830 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1831 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1832 cas_rxcksum(m, CAS_GET(word4,
1833 CAS_RC4_TCP_CSUM));
1834 /* Pass it on. */
1835 CAS_UNLOCK(sc);
1836 (*ifp->if_input)(ifp, m);
1837 CAS_LOCK(sc);
1838 } else
1839 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1840
1841 if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1842 refcount_release(&rxds->rxds_refcount) != 0)
1843 cas_add_rxdesc(sc, idx);
1844 if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1845 refcount_release(&rxds2->rxds_refcount) != 0)
1846 cas_add_rxdesc(sc, idx2);
1847 }
1848
1849 skip = CAS_GET(word1, CAS_RC1_SKIP);
1850
1851 skip:
1852 cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1853 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1854 break;
1855 }
1856 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1857 CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1858
1859 #undef PRINTWORD
1860 #undef SKIPASSERT
1861 #undef WORDTOH
1862
1863 #ifdef CAS_DEBUG
1864 CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1865 __func__, sc->sc_rxcptr, sc->sc_rxdptr,
1866 CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1867 #endif
1868 }
1869
1870 static void
1871 cas_free(struct mbuf *m)
1872 {
1873 struct cas_rxdsoft *rxds;
1874 struct cas_softc *sc;
1875 u_int idx, locked;
1876
1877 sc = m->m_ext.ext_arg1;
1878 idx = (uintptr_t)m->m_ext.ext_arg2;
1879 rxds = &sc->sc_rxdsoft[idx];
1880 if (refcount_release(&rxds->rxds_refcount) == 0)
1881 return;
1882
1883 /*
1884 * NB: this function can be called via m_freem(9) within
1885 * this driver!
1886 */
1887 if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1888 CAS_LOCK(sc);
1889 cas_add_rxdesc(sc, idx);
1890 if (locked == 0)
1891 CAS_UNLOCK(sc);
1892 }
1893
1894 static inline void
1895 cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1896 {
1897
1898 CAS_LOCK_ASSERT(sc, MA_OWNED);
1899
1900 bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1901 BUS_DMASYNC_PREREAD);
1902 CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1903 sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1904
1905 /*
1906 * Update the RX kick register. This register has to point to the
1907 * descriptor after the last valid one (before the current batch)
1908 * and for optimum performance should be incremented in multiples
1909 * of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1910 */
1911 if ((sc->sc_rxdptr % 4) == 0) {
1912 CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1913 CAS_WRITE_4(sc, CAS_RX_KICK,
1914 (sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1915 }
1916 }
1917
1918 static void
1919 cas_eint(struct cas_softc *sc, u_int status)
1920 {
1921 struct ifnet *ifp = sc->sc_ifp;
1922
1923 CAS_LOCK_ASSERT(sc, MA_OWNED);
1924
1925 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1926
1927 device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1928 if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1929 status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1930 printf(", PCI bus error 0x%x", status);
1931 if ((status & CAS_ERROR_OTHER) != 0) {
1932 status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1933 printf(", PCI status 0x%x", status);
1934 pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1935 }
1936 }
1937 printf("\n");
1938
1939 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1940 cas_init_locked(sc);
1941 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1942 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1943 }
1944
1945 static int
1946 cas_intr(void *v)
1947 {
1948 struct cas_softc *sc = v;
1949
1950 if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1951 CAS_INTR_SUMMARY) == 0))
1952 return (FILTER_STRAY);
1953
1954 /* Disable interrupts. */
1955 CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1956 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1957
1958 return (FILTER_HANDLED);
1959 }
1960
1961 static void
1962 cas_intr_task(void *arg, int pending __unused)
1963 {
1964 struct cas_softc *sc = arg;
1965 struct ifnet *ifp = sc->sc_ifp;
1966 uint32_t status, status2;
1967
1968 CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1969
1970 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1971 return;
1972
1973 status = CAS_READ_4(sc, CAS_STATUS);
1974 if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1975 goto done;
1976
1977 CAS_LOCK(sc);
1978 #ifdef CAS_DEBUG
1979 CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1980 device_get_name(sc->sc_dev), __func__,
1981 (status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
1982
1983 /*
1984 * PCS interrupts must be cleared, otherwise no traffic is passed!
1985 */
1986 if ((status & CAS_INTR_PCS_INT) != 0) {
1987 status2 =
1988 CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
1989 CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
1990 if ((status2 & CAS_PCS_INTR_LINK) != 0)
1991 device_printf(sc->sc_dev,
1992 "%s: PCS link status changed\n", __func__);
1993 }
1994 if ((status & CAS_MAC_CTRL_STATUS) != 0) {
1995 status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
1996 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
1997 device_printf(sc->sc_dev,
1998 "%s: PAUSE received (PAUSE time %d slots)\n",
1999 __func__,
2000 (status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
2001 CAS_MAC_CTRL_STATUS_PT_SHFT);
2002 if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
2003 device_printf(sc->sc_dev,
2004 "%s: transited to PAUSE state\n", __func__);
2005 if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
2006 device_printf(sc->sc_dev,
2007 "%s: transited to non-PAUSE state\n", __func__);
2008 }
2009 if ((status & CAS_INTR_MIF) != 0)
2010 device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2011 #endif
2012
2013 if (__predict_false((status &
2014 (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2015 CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2016 cas_eint(sc, status);
2017 CAS_UNLOCK(sc);
2018 return;
2019 }
2020
2021 if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2022 status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2023 if ((status2 &
2024 (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2025 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2026 else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2027 device_printf(sc->sc_dev,
2028 "MAC TX fault, status %x\n", status2);
2029 }
2030
2031 if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2032 status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2033 if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2034 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2035 else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2036 device_printf(sc->sc_dev,
2037 "MAC RX fault, status %x\n", status2);
2038 }
2039
2040 if ((status &
2041 (CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2042 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2043 cas_rint(sc);
2044 #ifdef CAS_DEBUG
2045 if (__predict_false((status &
2046 (CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2047 CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2048 device_printf(sc->sc_dev,
2049 "RX fault, status %x\n", status);
2050 #endif
2051 }
2052
2053 if ((status &
2054 (CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
2055 cas_tint(sc);
2056
2057 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2058 CAS_UNLOCK(sc);
2059 return;
2060 } else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2061 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2062 CAS_UNLOCK(sc);
2063
2064 status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2065 if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2066 taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2067 return;
2068 }
2069
2070 done:
2071 /* Re-enable interrupts. */
2072 CAS_WRITE_4(sc, CAS_INTMASK,
2073 ~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2074 CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2075 CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2076 CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2077 CAS_INTR_PCI_ERROR_INT
2078 #ifdef CAS_DEBUG
2079 | CAS_INTR_PCS_INT | CAS_INTR_MIF
2080 #endif
2081 ));
2082 }
2083
2084 static void
2085 cas_watchdog(struct cas_softc *sc)
2086 {
2087 struct ifnet *ifp = sc->sc_ifp;
2088
2089 CAS_LOCK_ASSERT(sc, MA_OWNED);
2090
2091 #ifdef CAS_DEBUG
2092 CTR4(KTR_CAS,
2093 "%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
2094 __func__, CAS_READ_4(sc, CAS_RX_CONF),
2095 CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2096 CAS_READ_4(sc, CAS_MAC_RX_CONF));
2097 CTR4(KTR_CAS,
2098 "%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
2099 __func__, CAS_READ_4(sc, CAS_TX_CONF),
2100 CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2101 CAS_READ_4(sc, CAS_MAC_TX_CONF));
2102 #endif
2103
2104 if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2105 return;
2106
2107 if ((sc->sc_flags & CAS_LINK) != 0)
2108 device_printf(sc->sc_dev, "device timeout\n");
2109 else if (bootverbose)
2110 device_printf(sc->sc_dev, "device timeout (no link)\n");
2111 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2112
2113 /* Try to get more packets going. */
2114 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2115 cas_init_locked(sc);
2116 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2117 taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2118 }
2119
2120 static void
2121 cas_mifinit(struct cas_softc *sc)
2122 {
2123
2124 /* Configure the MIF in frame mode. */
2125 CAS_WRITE_4(sc, CAS_MIF_CONF,
2126 CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2127 CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2128 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2129 }
2130
2131 /*
2132 * MII interface
2133 *
2134 * The MII interface supports at least three different operating modes:
2135 *
2136 * Bitbang mode is implemented using data, clock and output enable registers.
2137 *
2138 * Frame mode is implemented by loading a complete frame into the frame
2139 * register and polling the valid bit for completion.
2140 *
2141 * Polling mode uses the frame register but completion is indicated by
2142 * an interrupt.
2143 *
2144 */
2145 static int
2146 cas_mii_readreg(device_t dev, int phy, int reg)
2147 {
2148 struct cas_softc *sc;
2149 int n;
2150 uint32_t v;
2151
2152 #ifdef CAS_DEBUG_PHY
2153 printf("%s: phy %d reg %d\n", __func__, phy, reg);
2154 #endif
2155
2156 sc = device_get_softc(dev);
2157 if ((sc->sc_flags & CAS_SERDES) != 0) {
2158 switch (reg) {
2159 case MII_BMCR:
2160 reg = CAS_PCS_CTRL;
2161 break;
2162 case MII_BMSR:
2163 reg = CAS_PCS_STATUS;
2164 break;
2165 case MII_PHYIDR1:
2166 case MII_PHYIDR2:
2167 return (0);
2168 case MII_ANAR:
2169 reg = CAS_PCS_ANAR;
2170 break;
2171 case MII_ANLPAR:
2172 reg = CAS_PCS_ANLPAR;
2173 break;
2174 case MII_EXTSR:
2175 return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2176 default:
2177 device_printf(sc->sc_dev,
2178 "%s: unhandled register %d\n", __func__, reg);
2179 return (0);
2180 }
2181 return (CAS_READ_4(sc, reg));
2182 }
2183
2184 /* Construct the frame command. */
2185 v = CAS_MIF_FRAME_READ |
2186 (phy << CAS_MIF_FRAME_PHY_SHFT) |
2187 (reg << CAS_MIF_FRAME_REG_SHFT);
2188
2189 CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2190 CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2191 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2192 for (n = 0; n < 100; n++) {
2193 DELAY(1);
2194 v = CAS_READ_4(sc, CAS_MIF_FRAME);
2195 if (v & CAS_MIF_FRAME_TA_LSB)
2196 return (v & CAS_MIF_FRAME_DATA);
2197 }
2198
2199 device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2200 return (0);
2201 }
2202
2203 static int
2204 cas_mii_writereg(device_t dev, int phy, int reg, int val)
2205 {
2206 struct cas_softc *sc;
2207 int n;
2208 uint32_t v;
2209
2210 #ifdef CAS_DEBUG_PHY
2211 printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2212 #endif
2213
2214 sc = device_get_softc(dev);
2215 if ((sc->sc_flags & CAS_SERDES) != 0) {
2216 switch (reg) {
2217 case MII_BMSR:
2218 reg = CAS_PCS_STATUS;
2219 break;
2220 case MII_BMCR:
2221 reg = CAS_PCS_CTRL;
2222 if ((val & CAS_PCS_CTRL_RESET) == 0)
2223 break;
2224 CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2225 CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2226 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2227 if (!cas_bitwait(sc, CAS_PCS_CTRL,
2228 CAS_PCS_CTRL_RESET, 0))
2229 device_printf(sc->sc_dev,
2230 "cannot reset PCS\n");
2231 /* FALLTHROUGH */
2232 case MII_ANAR:
2233 CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2234 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2235 BUS_SPACE_BARRIER_WRITE);
2236 CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2237 CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2238 BUS_SPACE_BARRIER_WRITE);
2239 CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2240 CAS_PCS_SERDES_CTRL_ESD);
2241 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2242 BUS_SPACE_BARRIER_WRITE);
2243 CAS_WRITE_4(sc, CAS_PCS_CONF,
2244 CAS_PCS_CONF_EN);
2245 CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2246 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2247 return (0);
2248 case MII_ANLPAR:
2249 reg = CAS_PCS_ANLPAR;
2250 break;
2251 default:
2252 device_printf(sc->sc_dev,
2253 "%s: unhandled register %d\n", __func__, reg);
2254 return (0);
2255 }
2256 CAS_WRITE_4(sc, reg, val);
2257 CAS_BARRIER(sc, reg, 4,
2258 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2259 return (0);
2260 }
2261
2262 /* Construct the frame command. */
2263 v = CAS_MIF_FRAME_WRITE |
2264 (phy << CAS_MIF_FRAME_PHY_SHFT) |
2265 (reg << CAS_MIF_FRAME_REG_SHFT) |
2266 (val & CAS_MIF_FRAME_DATA);
2267
2268 CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2269 CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2270 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2271 for (n = 0; n < 100; n++) {
2272 DELAY(1);
2273 v = CAS_READ_4(sc, CAS_MIF_FRAME);
2274 if (v & CAS_MIF_FRAME_TA_LSB)
2275 return (1);
2276 }
2277
2278 device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2279 return (0);
2280 }
2281
2282 static void
2283 cas_mii_statchg(device_t dev)
2284 {
2285 struct cas_softc *sc;
2286 struct ifnet *ifp;
2287 int gigabit;
2288 uint32_t rxcfg, txcfg, v;
2289
2290 sc = device_get_softc(dev);
2291 ifp = sc->sc_ifp;
2292
2293 CAS_LOCK_ASSERT(sc, MA_OWNED);
2294
2295 #ifdef CAS_DEBUG
2296 if ((ifp->if_flags & IFF_DEBUG) != 0)
2297 device_printf(sc->sc_dev, "%s: status changen", __func__);
2298 #endif
2299
2300 if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2301 IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2302 sc->sc_flags |= CAS_LINK;
2303 else
2304 sc->sc_flags &= ~CAS_LINK;
2305
2306 switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2307 case IFM_1000_SX:
2308 case IFM_1000_LX:
2309 case IFM_1000_CX:
2310 case IFM_1000_T:
2311 gigabit = 1;
2312 break;
2313 default:
2314 gigabit = 0;
2315 }
2316
2317 /*
2318 * The configuration done here corresponds to the steps F) and
2319 * G) and as far as enabling of RX and TX MAC goes also step H)
2320 * of the initialization sequence outlined in section 11.2.1 of
2321 * the Cassini+ ASIC Specification.
2322 */
2323
2324 rxcfg = sc->sc_mac_rxcfg;
2325 rxcfg &= ~CAS_MAC_RX_CONF_CARR;
2326 txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2327 CAS_MAC_TX_CONF_NGUL;
2328 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2329 txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2330 else if (gigabit != 0) {
2331 rxcfg |= CAS_MAC_RX_CONF_CARR;
2332 txcfg |= CAS_MAC_TX_CONF_CARR;
2333 }
2334 (void)cas_disable_tx(sc);
2335 CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2336 (void)cas_disable_rx(sc);
2337 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2338
2339 v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2340 ~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2341 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2342 IFM_ETH_RXPAUSE) != 0)
2343 v |= CAS_MAC_CTRL_CONF_RXP;
2344 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2345 IFM_ETH_TXPAUSE) != 0)
2346 v |= CAS_MAC_CTRL_CONF_TXP;
2347 CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2348
2349 /*
2350 * All supported chips have a bug causing incorrect checksum
2351 * to be calculated when letting them strip the FCS in half-
2352 * duplex mode. In theory we could disable FCS stripping and
2353 * manually adjust the checksum accordingly. It seems to make
2354 * more sense to optimze for the common case and just disable
2355 * hardware checksumming in half-duplex mode though.
2356 */
2357 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2358 ifp->if_capenable &= ~IFCAP_HWCSUM;
2359 ifp->if_hwassist = 0;
2360 } else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2361 ifp->if_capenable = ifp->if_capabilities;
2362 ifp->if_hwassist = CAS_CSUM_FEATURES;
2363 }
2364
2365 if (sc->sc_variant == CAS_SATURN) {
2366 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2367 /* silicon bug workaround */
2368 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2369 else
2370 CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2371 }
2372
2373 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2374 gigabit != 0)
2375 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2376 CAS_MAC_SLOT_TIME_CARR);
2377 else
2378 CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2379 CAS_MAC_SLOT_TIME_NORM);
2380
2381 /* XIF Configuration */
2382 v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2383 if ((sc->sc_flags & CAS_SERDES) == 0) {
2384 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2385 v |= CAS_MAC_XIF_CONF_NOECHO;
2386 v |= CAS_MAC_XIF_CONF_BUF_OE;
2387 }
2388 if (gigabit != 0)
2389 v |= CAS_MAC_XIF_CONF_GMII;
2390 if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2391 v |= CAS_MAC_XIF_CONF_FDXLED;
2392 CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2393
2394 sc->sc_mac_rxcfg = rxcfg;
2395 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2396 (sc->sc_flags & CAS_LINK) != 0) {
2397 CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2398 txcfg | CAS_MAC_TX_CONF_EN);
2399 CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2400 rxcfg | CAS_MAC_RX_CONF_EN);
2401 }
2402 }
2403
2404 static int
2405 cas_mediachange(struct ifnet *ifp)
2406 {
2407 struct cas_softc *sc = ifp->if_softc;
2408 int error;
2409
2410 /* XXX add support for serial media. */
2411
2412 CAS_LOCK(sc);
2413 error = mii_mediachg(sc->sc_mii);
2414 CAS_UNLOCK(sc);
2415 return (error);
2416 }
2417
2418 static void
2419 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2420 {
2421 struct cas_softc *sc = ifp->if_softc;
2422
2423 CAS_LOCK(sc);
2424 if ((ifp->if_flags & IFF_UP) == 0) {
2425 CAS_UNLOCK(sc);
2426 return;
2427 }
2428
2429 mii_pollstat(sc->sc_mii);
2430 ifmr->ifm_active = sc->sc_mii->mii_media_active;
2431 ifmr->ifm_status = sc->sc_mii->mii_media_status;
2432 CAS_UNLOCK(sc);
2433 }
2434
2435 static int
2436 cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2437 {
2438 struct cas_softc *sc = ifp->if_softc;
2439 struct ifreq *ifr = (struct ifreq *)data;
2440 int error;
2441
2442 error = 0;
2443 switch (cmd) {
2444 case SIOCSIFFLAGS:
2445 CAS_LOCK(sc);
2446 if ((ifp->if_flags & IFF_UP) != 0) {
2447 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2448 ((ifp->if_flags ^ sc->sc_ifflags) &
2449 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
2450 cas_setladrf(sc);
2451 else
2452 cas_init_locked(sc);
2453 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2454 cas_stop(ifp);
2455 sc->sc_ifflags = ifp->if_flags;
2456 CAS_UNLOCK(sc);
2457 break;
2458 case SIOCSIFCAP:
2459 CAS_LOCK(sc);
2460 if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2461 error = EINVAL;
2462 CAS_UNLOCK(sc);
2463 break;
2464 }
2465 ifp->if_capenable = ifr->ifr_reqcap;
2466 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2467 ifp->if_hwassist = CAS_CSUM_FEATURES;
2468 else
2469 ifp->if_hwassist = 0;
2470 CAS_UNLOCK(sc);
2471 break;
2472 case SIOCADDMULTI:
2473 case SIOCDELMULTI:
2474 CAS_LOCK(sc);
2475 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2476 cas_setladrf(sc);
2477 CAS_UNLOCK(sc);
2478 break;
2479 case SIOCSIFMTU:
2480 if ((ifr->ifr_mtu < ETHERMIN) ||
2481 (ifr->ifr_mtu > ETHERMTU_JUMBO))
2482 error = EINVAL;
2483 else
2484 ifp->if_mtu = ifr->ifr_mtu;
2485 break;
2486 case SIOCGIFMEDIA:
2487 case SIOCSIFMEDIA:
2488 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2489 break;
2490 default:
2491 error = ether_ioctl(ifp, cmd, data);
2492 break;
2493 }
2494
2495 return (error);
2496 }
2497
2498 static u_int
2499 cas_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2500 {
2501 uint32_t crc, *hash = arg;
2502
2503 crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
2504 /* We just want the 8 most significant bits. */
2505 crc >>= 24;
2506 /* Set the corresponding bit in the filter. */
2507 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2508
2509 return (1);
2510 }
2511
2512 static void
2513 cas_setladrf(struct cas_softc *sc)
2514 {
2515 struct ifnet *ifp = sc->sc_ifp;
2516 int i;
2517 uint32_t hash[16];
2518 uint32_t v;
2519
2520 CAS_LOCK_ASSERT(sc, MA_OWNED);
2521
2522 /*
2523 * Turn off the RX MAC and the hash filter as required by the Sun
2524 * Cassini programming restrictions.
2525 */
2526 v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
2527 CAS_MAC_RX_CONF_EN);
2528 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2529 CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2530 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2531 if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
2532 CAS_MAC_RX_CONF_EN, 0))
2533 device_printf(sc->sc_dev,
2534 "cannot disable RX MAC or hash filter\n");
2535
2536 v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
2537 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2538 v |= CAS_MAC_RX_CONF_PROMISC;
2539 goto chipit;
2540 }
2541 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2542 v |= CAS_MAC_RX_CONF_PGRP;
2543 goto chipit;
2544 }
2545
2546 /*
2547 * Set up multicast address filter by passing all multicast
2548 * addresses through a crc generator, and then using the high
2549 * order 8 bits as an index into the 256 bit logical address
2550 * filter. The high order 4 bits selects the word, while the
2551 * other 4 bits select the bit within the word (where bit 0
2552 * is the MSB).
2553 */
2554
2555 memset(hash, 0, sizeof(hash));
2556 if_foreach_llmaddr(ifp, cas_hash_maddr, &hash);
2557
2558 v |= CAS_MAC_RX_CONF_HFILTER;
2559
2560 /* Now load the hash table into the chip (if we are using it). */
2561 for (i = 0; i < 16; i++)
2562 CAS_WRITE_4(sc,
2563 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2564 hash[i]);
2565
2566 chipit:
2567 sc->sc_mac_rxcfg = v;
2568 CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
2569 }
2570
2571 static int cas_pci_attach(device_t dev);
2572 static int cas_pci_detach(device_t dev);
2573 static int cas_pci_probe(device_t dev);
2574 static int cas_pci_resume(device_t dev);
2575 static int cas_pci_suspend(device_t dev);
2576
2577 static device_method_t cas_pci_methods[] = {
2578 /* Device interface */
2579 DEVMETHOD(device_probe, cas_pci_probe),
2580 DEVMETHOD(device_attach, cas_pci_attach),
2581 DEVMETHOD(device_detach, cas_pci_detach),
2582 DEVMETHOD(device_suspend, cas_pci_suspend),
2583 DEVMETHOD(device_resume, cas_pci_resume),
2584 /* Use the suspend handler here, it is all that is required. */
2585 DEVMETHOD(device_shutdown, cas_pci_suspend),
2586
2587 /* MII interface */
2588 DEVMETHOD(miibus_readreg, cas_mii_readreg),
2589 DEVMETHOD(miibus_writereg, cas_mii_writereg),
2590 DEVMETHOD(miibus_statchg, cas_mii_statchg),
2591
2592 DEVMETHOD_END
2593 };
2594
2595 static driver_t cas_pci_driver = {
2596 "cas",
2597 cas_pci_methods,
2598 sizeof(struct cas_softc)
2599 };
2600
2601 static const struct cas_pci_dev {
2602 uint32_t cpd_devid;
2603 uint8_t cpd_revid;
2604 int cpd_variant;
2605 const char *cpd_desc;
2606 } cas_pci_devlist[] = {
2607 { 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2608 { 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2609 { 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2610 { 0, 0, 0, NULL }
2611 };
2612
2613 DRIVER_MODULE(cas, pci, cas_pci_driver, 0, 0);
2614 MODULE_PNP_INFO("W32:vendor/device", pci, cas, cas_pci_devlist,
2615 nitems(cas_pci_devlist) - 1);
2616 DRIVER_MODULE(miibus, cas, miibus_driver, 0, 0);
2617 MODULE_DEPEND(cas, pci, 1, 1, 1);
2618
2619 static int
2620 cas_pci_probe(device_t dev)
2621 {
2622 int i;
2623
2624 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2625 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2626 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2627 device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2628 return (BUS_PROBE_DEFAULT);
2629 }
2630 }
2631
2632 return (ENXIO);
2633 }
2634
2635 static struct resource_spec cas_pci_res_spec[] = {
2636 { SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */
2637 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */
2638 { -1, 0 }
2639 };
2640
2641 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
2642 #define CAS_PHY_INTERFACE "phy-interface"
2643 #define CAS_PHY_TYPE "phy-type"
2644 #define CAS_PHY_TYPE_PCS "pcs"
2645
2646 static int
2647 cas_pci_attach(device_t dev)
2648 {
2649 char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2650 struct cas_softc *sc;
2651 int i;
2652 #if !defined(__powerpc__)
2653 u_char enaddr[4][ETHER_ADDR_LEN];
2654 u_int j, k, lma, pcs[4], phy;
2655 #endif
2656
2657 sc = device_get_softc(dev);
2658 sc->sc_variant = CAS_UNKNOWN;
2659 for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2660 if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2661 pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2662 sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2663 break;
2664 }
2665 }
2666 if (sc->sc_variant == CAS_UNKNOWN) {
2667 device_printf(dev, "unknown adaptor\n");
2668 return (ENXIO);
2669 }
2670
2671 /* PCI configuration */
2672 pci_write_config(dev, PCIR_COMMAND,
2673 pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN |
2674 PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2);
2675
2676 sc->sc_dev = dev;
2677 if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2678 /* Hardware checksumming may hang TX. */
2679 sc->sc_flags |= CAS_NO_CSUM;
2680 if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2681 sc->sc_flags |= CAS_REG_PLUS;
2682 if (sc->sc_variant == CAS_CAS ||
2683 (sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2684 sc->sc_flags |= CAS_TABORT;
2685 if (bootverbose)
2686 device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2687
2688 if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2689 device_printf(dev, "failed to allocate resources\n");
2690 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2691 return (ENXIO);
2692 }
2693
2694 CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2695
2696 #if defined(__powerpc__)
2697 OF_getetheraddr(dev, sc->sc_enaddr);
2698 if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2699 sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2700 CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2701 buf[sizeof(buf) - 1] = '\0';
2702 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2703 sc->sc_flags |= CAS_SERDES;
2704 }
2705 #else
2706 /*
2707 * Dig out VPD (vital product data) and read the MAC address as well
2708 * as the PHY type. The VPD resides in the PCI Expansion ROM (PCI
2709 * FCode) and can't be accessed via the PCI capability pointer.
2710 * SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2711 * in the free US Patent 7149820.
2712 */
2713
2714 #define PCI_ROMHDR_SIZE 0x1c
2715 #define PCI_ROMHDR_SIG 0x00
2716 #define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */
2717 #define PCI_ROMHDR_PTR_DATA 0x18
2718 #define PCI_ROM_SIZE 0x18
2719 #define PCI_ROM_SIG 0x00
2720 #define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */
2721 /* reversed */
2722 #define PCI_ROM_VENDOR 0x04
2723 #define PCI_ROM_DEVICE 0x06
2724 #define PCI_ROM_PTR_VPD 0x08
2725 #define PCI_VPDRES_BYTE0 0x00
2726 #define PCI_VPDRES_ISLARGE(x) ((x) & 0x80)
2727 #define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f)
2728 #define PCI_VPDRES_LARGE_LEN_LSB 0x01
2729 #define PCI_VPDRES_LARGE_LEN_MSB 0x02
2730 #define PCI_VPDRES_LARGE_SIZE 0x03
2731 #define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */
2732 #define PCI_VPDRES_TYPE_VPD 0x10 /* large */
2733 #define PCI_VPD_KEY0 0x00
2734 #define PCI_VPD_KEY1 0x01
2735 #define PCI_VPD_LEN 0x02
2736 #define PCI_VPD_SIZE 0x03
2737
2738 #define CAS_ROM_READ_1(sc, offs) \
2739 CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2740 #define CAS_ROM_READ_2(sc, offs) \
2741 CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2742 #define CAS_ROM_READ_4(sc, offs) \
2743 CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2744
2745 lma = phy = 0;
2746 memset(enaddr, 0, sizeof(enaddr));
2747 memset(pcs, 0, sizeof(pcs));
2748
2749 /* Enable PCI Expansion ROM access. */
2750 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2751 CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2752
2753 /* Read PCI Expansion ROM header. */
2754 if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2755 (i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2756 PCI_ROMHDR_SIZE) {
2757 device_printf(dev, "unexpected PCI Expansion ROM header\n");
2758 goto fail_prom;
2759 }
2760
2761 /* Read PCI Expansion ROM data. */
2762 if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2763 CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2764 CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2765 (j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2766 i + PCI_ROM_SIZE) {
2767 device_printf(dev, "unexpected PCI Expansion ROM data\n");
2768 goto fail_prom;
2769 }
2770
2771 /* Read PCI VPD. */
2772 next:
2773 if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2774 j + PCI_VPDRES_BYTE0)) == 0) {
2775 device_printf(dev, "no large PCI VPD\n");
2776 goto fail_prom;
2777 }
2778
2779 i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2780 CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2781 switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2782 j + PCI_VPDRES_BYTE0))) {
2783 case PCI_VPDRES_TYPE_ID_STRING:
2784 /* Skip identifier string. */
2785 j += PCI_VPDRES_LARGE_SIZE + i;
2786 goto next;
2787 case PCI_VPDRES_TYPE_VPD:
2788 for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2789 i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2790 j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2791 if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2792 /* no Enhanced VPD */
2793 continue;
2794 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2795 /* no instance property */
2796 continue;
2797 if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2798 /* byte array */
2799 if (CAS_ROM_READ_1(sc,
2800 j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2801 continue;
2802 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2803 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2804 buf, sizeof(buf));
2805 buf[sizeof(buf) - 1] = '\0';
2806 if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2807 continue;
2808 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2809 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2810 5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2811 enaddr[lma], sizeof(enaddr[lma]));
2812 lma++;
2813 if (lma == 4 && phy == 4)
2814 break;
2815 } else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2816 'S') {
2817 /* string */
2818 if (CAS_ROM_READ_1(sc,
2819 j + PCI_VPD_SIZE + 4) !=
2820 sizeof(CAS_PHY_TYPE_PCS))
2821 continue;
2822 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2823 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2824 buf, sizeof(buf));
2825 buf[sizeof(buf) - 1] = '\0';
2826 if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2827 k = sizeof(CAS_PHY_INTERFACE);
2828 else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2829 k = sizeof(CAS_PHY_TYPE);
2830 else
2831 continue;
2832 bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2833 CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2834 5 + k, buf, sizeof(buf));
2835 buf[sizeof(buf) - 1] = '\0';
2836 if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2837 pcs[phy] = 1;
2838 phy++;
2839 if (lma == 4 && phy == 4)
2840 break;
2841 }
2842 }
2843 break;
2844 default:
2845 device_printf(dev, "unexpected PCI VPD\n");
2846 goto fail_prom;
2847 }
2848
2849 fail_prom:
2850 CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2851
2852 if (lma == 0) {
2853 device_printf(dev, "could not determine Ethernet address\n");
2854 goto fail;
2855 }
2856 i = 0;
2857 if (lma > 1 && pci_get_slot(dev) < nitems(enaddr))
2858 i = pci_get_slot(dev);
2859 memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2860
2861 if (phy == 0) {
2862 device_printf(dev, "could not determine PHY type\n");
2863 goto fail;
2864 }
2865 i = 0;
2866 if (phy > 1 && pci_get_slot(dev) < nitems(pcs))
2867 i = pci_get_slot(dev);
2868 if (pcs[i] != 0)
2869 sc->sc_flags |= CAS_SERDES;
2870 #endif
2871
2872 if (cas_attach(sc) != 0) {
2873 device_printf(dev, "could not be attached\n");
2874 goto fail;
2875 }
2876
2877 if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2878 INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2879 device_printf(dev, "failed to set up interrupt\n");
2880 cas_detach(sc);
2881 goto fail;
2882 }
2883 return (0);
2884
2885 fail:
2886 CAS_LOCK_DESTROY(sc);
2887 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2888 return (ENXIO);
2889 }
2890
2891 static int
2892 cas_pci_detach(device_t dev)
2893 {
2894 struct cas_softc *sc;
2895
2896 sc = device_get_softc(dev);
2897 bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2898 cas_detach(sc);
2899 CAS_LOCK_DESTROY(sc);
2900 bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2901 return (0);
2902 }
2903
2904 static int
2905 cas_pci_suspend(device_t dev)
2906 {
2907
2908 cas_suspend(device_get_softc(dev));
2909 return (0);
2910 }
2911
2912 static int
2913 cas_pci_resume(device_t dev)
2914 {
2915
2916 cas_resume(device_get_softc(dev));
2917 return (0);
2918 }
Cache object: 8a3b984e759f01d531e034b387dbc421
|