1 /*-
2 * Copyright (c) 2017-2019 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: John Baldwin <jhb@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include "opt_kern_tls.h"
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <sys/types.h>
34 #include <sys/ktls.h>
35 #include <sys/malloc.h>
36
37 #include <opencrypto/cryptodev.h>
38 #include <opencrypto/xform.h>
39
40 #include "common/common.h"
41 #include "crypto/t4_crypto.h"
42
43 /*
44 * Crypto operations use a key context to store cipher keys and
45 * partial hash digests. They can either be passed inline as part of
46 * a work request using crypto or they can be stored in card RAM. For
47 * the latter case, work requests must replace the inline key context
48 * with a request to read the context from card RAM.
49 *
50 * The format of a key context:
51 *
52 * +-------------------------------+
53 * | key context header |
54 * +-------------------------------+
55 * | AES key | ----- For requests with AES
56 * +-------------------------------+
57 * | Hash state | ----- For hash-only requests
58 * +-------------------------------+ -
59 * | IPAD (16-byte aligned) | \
60 * +-------------------------------+ +---- For requests with HMAC
61 * | OPAD (16-byte aligned) | /
62 * +-------------------------------+ -
63 * | GMAC H | ----- For AES-GCM
64 * +-------------------------------+ -
65 */
66
67 /* Fields in the key context header. */
68 #define S_TLS_KEYCTX_TX_WR_DUALCK 12
69 #define M_TLS_KEYCTX_TX_WR_DUALCK 0x1
70 #define V_TLS_KEYCTX_TX_WR_DUALCK(x) ((x) << S_TLS_KEYCTX_TX_WR_DUALCK)
71 #define G_TLS_KEYCTX_TX_WR_DUALCK(x) \
72 (((x) >> S_TLS_KEYCTX_TX_WR_DUALCK) & M_TLS_KEYCTX_TX_WR_DUALCK)
73 #define F_TLS_KEYCTX_TX_WR_DUALCK V_TLS_KEYCTX_TX_WR_DUALCK(1U)
74
75 #define S_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT 11
76 #define M_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT 0x1
77 #define V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(x) \
78 ((x) << S_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT)
79 #define G_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(x) \
80 (((x) >> S_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT) & \
81 M_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT)
82 #define F_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT \
83 V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1U)
84
85 #define S_TLS_KEYCTX_TX_WR_SALT_PRESENT 10
86 #define M_TLS_KEYCTX_TX_WR_SALT_PRESENT 0x1
87 #define V_TLS_KEYCTX_TX_WR_SALT_PRESENT(x) \
88 ((x) << S_TLS_KEYCTX_TX_WR_SALT_PRESENT)
89 #define G_TLS_KEYCTX_TX_WR_SALT_PRESENT(x) \
90 (((x) >> S_TLS_KEYCTX_TX_WR_SALT_PRESENT) & \
91 M_TLS_KEYCTX_TX_WR_SALT_PRESENT)
92 #define F_TLS_KEYCTX_TX_WR_SALT_PRESENT \
93 V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1U)
94
95 #define S_TLS_KEYCTX_TX_WR_TXCK_SIZE 6
96 #define M_TLS_KEYCTX_TX_WR_TXCK_SIZE 0xf
97 #define V_TLS_KEYCTX_TX_WR_TXCK_SIZE(x) \
98 ((x) << S_TLS_KEYCTX_TX_WR_TXCK_SIZE)
99 #define G_TLS_KEYCTX_TX_WR_TXCK_SIZE(x) \
100 (((x) >> S_TLS_KEYCTX_TX_WR_TXCK_SIZE) & \
101 M_TLS_KEYCTX_TX_WR_TXCK_SIZE)
102
103 #define S_TLS_KEYCTX_TX_WR_TXMK_SIZE 2
104 #define M_TLS_KEYCTX_TX_WR_TXMK_SIZE 0xf
105 #define V_TLS_KEYCTX_TX_WR_TXMK_SIZE(x) \
106 ((x) << S_TLS_KEYCTX_TX_WR_TXMK_SIZE)
107 #define G_TLS_KEYCTX_TX_WR_TXMK_SIZE(x) \
108 (((x) >> S_TLS_KEYCTX_TX_WR_TXMK_SIZE) & \
109 M_TLS_KEYCTX_TX_WR_TXMK_SIZE)
110
111 #define S_TLS_KEYCTX_TX_WR_TXVALID 0
112 #define M_TLS_KEYCTX_TX_WR_TXVALID 0x1
113 #define V_TLS_KEYCTX_TX_WR_TXVALID(x) \
114 ((x) << S_TLS_KEYCTX_TX_WR_TXVALID)
115 #define G_TLS_KEYCTX_TX_WR_TXVALID(x) \
116 (((x) >> S_TLS_KEYCTX_TX_WR_TXVALID) & M_TLS_KEYCTX_TX_WR_TXVALID)
117 #define F_TLS_KEYCTX_TX_WR_TXVALID V_TLS_KEYCTX_TX_WR_TXVALID(1U)
118
119 #define S_TLS_KEYCTX_TX_WR_FLITCNT 3
120 #define M_TLS_KEYCTX_TX_WR_FLITCNT 0x1f
121 #define V_TLS_KEYCTX_TX_WR_FLITCNT(x) \
122 ((x) << S_TLS_KEYCTX_TX_WR_FLITCNT)
123 #define G_TLS_KEYCTX_TX_WR_FLITCNT(x) \
124 (((x) >> S_TLS_KEYCTX_TX_WR_FLITCNT) & M_TLS_KEYCTX_TX_WR_FLITCNT)
125
126 #define S_TLS_KEYCTX_TX_WR_HMACCTRL 0
127 #define M_TLS_KEYCTX_TX_WR_HMACCTRL 0x7
128 #define V_TLS_KEYCTX_TX_WR_HMACCTRL(x) \
129 ((x) << S_TLS_KEYCTX_TX_WR_HMACCTRL)
130 #define G_TLS_KEYCTX_TX_WR_HMACCTRL(x) \
131 (((x) >> S_TLS_KEYCTX_TX_WR_HMACCTRL) & M_TLS_KEYCTX_TX_WR_HMACCTRL)
132
133 #define S_TLS_KEYCTX_TX_WR_PROTOVER 4
134 #define M_TLS_KEYCTX_TX_WR_PROTOVER 0xf
135 #define V_TLS_KEYCTX_TX_WR_PROTOVER(x) \
136 ((x) << S_TLS_KEYCTX_TX_WR_PROTOVER)
137 #define G_TLS_KEYCTX_TX_WR_PROTOVER(x) \
138 (((x) >> S_TLS_KEYCTX_TX_WR_PROTOVER) & M_TLS_KEYCTX_TX_WR_PROTOVER)
139
140 #define S_TLS_KEYCTX_TX_WR_CIPHMODE 0
141 #define M_TLS_KEYCTX_TX_WR_CIPHMODE 0xf
142 #define V_TLS_KEYCTX_TX_WR_CIPHMODE(x) \
143 ((x) << S_TLS_KEYCTX_TX_WR_CIPHMODE)
144 #define G_TLS_KEYCTX_TX_WR_CIPHMODE(x) \
145 (((x) >> S_TLS_KEYCTX_TX_WR_CIPHMODE) & M_TLS_KEYCTX_TX_WR_CIPHMODE)
146
147 #define S_TLS_KEYCTX_TX_WR_AUTHMODE 4
148 #define M_TLS_KEYCTX_TX_WR_AUTHMODE 0xf
149 #define V_TLS_KEYCTX_TX_WR_AUTHMODE(x) \
150 ((x) << S_TLS_KEYCTX_TX_WR_AUTHMODE)
151 #define G_TLS_KEYCTX_TX_WR_AUTHMODE(x) \
152 (((x) >> S_TLS_KEYCTX_TX_WR_AUTHMODE) & M_TLS_KEYCTX_TX_WR_AUTHMODE)
153
154 #define S_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL 3
155 #define M_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL 0x1
156 #define V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(x) \
157 ((x) << S_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL)
158 #define G_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(x) \
159 (((x) >> S_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL) & \
160 M_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL)
161 #define F_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL \
162 V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1U)
163
164 #define S_TLS_KEYCTX_TX_WR_SEQNUMCTRL 1
165 #define M_TLS_KEYCTX_TX_WR_SEQNUMCTRL 0x3
166 #define V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(x) \
167 ((x) << S_TLS_KEYCTX_TX_WR_SEQNUMCTRL)
168 #define G_TLS_KEYCTX_TX_WR_SEQNUMCTRL(x) \
169 (((x) >> S_TLS_KEYCTX_TX_WR_SEQNUMCTRL) & \
170 M_TLS_KEYCTX_TX_WR_SEQNUMCTRL)
171
172 #define S_TLS_KEYCTX_TX_WR_RXVALID 0
173 #define M_TLS_KEYCTX_TX_WR_RXVALID 0x1
174 #define V_TLS_KEYCTX_TX_WR_RXVALID(x) \
175 ((x) << S_TLS_KEYCTX_TX_WR_RXVALID)
176 #define G_TLS_KEYCTX_TX_WR_RXVALID(x) \
177 (((x) >> S_TLS_KEYCTX_TX_WR_RXVALID) & M_TLS_KEYCTX_TX_WR_RXVALID)
178 #define F_TLS_KEYCTX_TX_WR_RXVALID V_TLS_KEYCTX_TX_WR_RXVALID(1U)
179
180 #define S_TLS_KEYCTX_TX_WR_IVPRESENT 7
181 #define M_TLS_KEYCTX_TX_WR_IVPRESENT 0x1
182 #define V_TLS_KEYCTX_TX_WR_IVPRESENT(x) \
183 ((x) << S_TLS_KEYCTX_TX_WR_IVPRESENT)
184 #define G_TLS_KEYCTX_TX_WR_IVPRESENT(x) \
185 (((x) >> S_TLS_KEYCTX_TX_WR_IVPRESENT) & \
186 M_TLS_KEYCTX_TX_WR_IVPRESENT)
187 #define F_TLS_KEYCTX_TX_WR_IVPRESENT V_TLS_KEYCTX_TX_WR_IVPRESENT(1U)
188
189 #define S_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT 6
190 #define M_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT 0x1
191 #define V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(x) \
192 ((x) << S_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT)
193 #define G_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(x) \
194 (((x) >> S_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT) & \
195 M_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT)
196 #define F_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT \
197 V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1U)
198
199 #define S_TLS_KEYCTX_TX_WR_RXCK_SIZE 3
200 #define M_TLS_KEYCTX_TX_WR_RXCK_SIZE 0x7
201 #define V_TLS_KEYCTX_TX_WR_RXCK_SIZE(x) \
202 ((x) << S_TLS_KEYCTX_TX_WR_RXCK_SIZE)
203 #define G_TLS_KEYCTX_TX_WR_RXCK_SIZE(x) \
204 (((x) >> S_TLS_KEYCTX_TX_WR_RXCK_SIZE) & \
205 M_TLS_KEYCTX_TX_WR_RXCK_SIZE)
206
207 #define S_TLS_KEYCTX_TX_WR_RXMK_SIZE 0
208 #define M_TLS_KEYCTX_TX_WR_RXMK_SIZE 0x7
209 #define V_TLS_KEYCTX_TX_WR_RXMK_SIZE(x) \
210 ((x) << S_TLS_KEYCTX_TX_WR_RXMK_SIZE)
211 #define G_TLS_KEYCTX_TX_WR_RXMK_SIZE(x) \
212 (((x) >> S_TLS_KEYCTX_TX_WR_RXMK_SIZE) & \
213 M_TLS_KEYCTX_TX_WR_RXMK_SIZE)
214
215 #define S_TLS_KEYCTX_TX_WR_IVINSERT 55
216 #define M_TLS_KEYCTX_TX_WR_IVINSERT 0x1ffULL
217 #define V_TLS_KEYCTX_TX_WR_IVINSERT(x) \
218 ((x) << S_TLS_KEYCTX_TX_WR_IVINSERT)
219 #define G_TLS_KEYCTX_TX_WR_IVINSERT(x) \
220 (((x) >> S_TLS_KEYCTX_TX_WR_IVINSERT) & M_TLS_KEYCTX_TX_WR_IVINSERT)
221
222 #define S_TLS_KEYCTX_TX_WR_AADSTRTOFST 47
223 #define M_TLS_KEYCTX_TX_WR_AADSTRTOFST 0xffULL
224 #define V_TLS_KEYCTX_TX_WR_AADSTRTOFST(x) \
225 ((x) << S_TLS_KEYCTX_TX_WR_AADSTRTOFST)
226 #define G_TLS_KEYCTX_TX_WR_AADSTRTOFST(x) \
227 (((x) >> S_TLS_KEYCTX_TX_WR_AADSTRTOFST) & \
228 M_TLS_KEYCTX_TX_WR_AADSTRTOFST)
229
230 #define S_TLS_KEYCTX_TX_WR_AADSTOPOFST 39
231 #define M_TLS_KEYCTX_TX_WR_AADSTOPOFST 0xffULL
232 #define V_TLS_KEYCTX_TX_WR_AADSTOPOFST(x) \
233 ((x) << S_TLS_KEYCTX_TX_WR_AADSTOPOFST)
234 #define G_TLS_KEYCTX_TX_WR_AADSTOPOFST(x) \
235 (((x) >> S_TLS_KEYCTX_TX_WR_AADSTOPOFST) & \
236 M_TLS_KEYCTX_TX_WR_AADSTOPOFST)
237
238 #define S_TLS_KEYCTX_TX_WR_CIPHERSRTOFST 30
239 #define M_TLS_KEYCTX_TX_WR_CIPHERSRTOFST 0x1ffULL
240 #define V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(x) \
241 ((x) << S_TLS_KEYCTX_TX_WR_CIPHERSRTOFST)
242 #define G_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(x) \
243 (((x) >> S_TLS_KEYCTX_TX_WR_CIPHERSRTOFST) & \
244 M_TLS_KEYCTX_TX_WR_CIPHERSRTOFST)
245
246 #define S_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST 23
247 #define M_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST 0x7f
248 #define V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(x) \
249 ((x) << S_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST)
250 #define G_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(x) \
251 (((x) >> S_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST) & \
252 M_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST)
253
254 #define S_TLS_KEYCTX_TX_WR_AUTHSRTOFST 14
255 #define M_TLS_KEYCTX_TX_WR_AUTHSRTOFST 0x1ff
256 #define V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(x) \
257 ((x) << S_TLS_KEYCTX_TX_WR_AUTHSRTOFST)
258 #define G_TLS_KEYCTX_TX_WR_AUTHSRTOFST(x) \
259 (((x) >> S_TLS_KEYCTX_TX_WR_AUTHSRTOFST) & \
260 M_TLS_KEYCTX_TX_WR_AUTHSRTOFST)
261
262 #define S_TLS_KEYCTX_TX_WR_AUTHSTOPOFST 7
263 #define M_TLS_KEYCTX_TX_WR_AUTHSTOPOFST 0x7f
264 #define V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(x) \
265 ((x) << S_TLS_KEYCTX_TX_WR_AUTHSTOPOFST)
266 #define G_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(x) \
267 (((x) >> S_TLS_KEYCTX_TX_WR_AUTHSTOPOFST) & \
268 M_TLS_KEYCTX_TX_WR_AUTHSTOPOFST)
269
270 #define S_TLS_KEYCTX_TX_WR_AUTHINSRT 0
271 #define M_TLS_KEYCTX_TX_WR_AUTHINSRT 0x7f
272 #define V_TLS_KEYCTX_TX_WR_AUTHINSRT(x) \
273 ((x) << S_TLS_KEYCTX_TX_WR_AUTHINSRT)
274 #define G_TLS_KEYCTX_TX_WR_AUTHINSRT(x) \
275 (((x) >> S_TLS_KEYCTX_TX_WR_AUTHINSRT) & \
276 M_TLS_KEYCTX_TX_WR_AUTHINSRT)
277
278 /* Key Context Programming Operation type */
279 #define KEY_WRITE_RX 0x1
280 #define KEY_WRITE_TX 0x2
281 #define KEY_DELETE_RX 0x4
282 #define KEY_DELETE_TX 0x8
283
284 #define S_KEY_CLR_LOC 4
285 #define M_KEY_CLR_LOC 0xf
286 #define V_KEY_CLR_LOC(x) ((x) << S_KEY_CLR_LOC)
287 #define G_KEY_CLR_LOC(x) (((x) >> S_KEY_CLR_LOC) & M_KEY_CLR_LOC)
288 #define F_KEY_CLR_LOC V_KEY_CLR_LOC(1U)
289
290 #define S_KEY_GET_LOC 0
291 #define M_KEY_GET_LOC 0xf
292 #define V_KEY_GET_LOC(x) ((x) << S_KEY_GET_LOC)
293 #define G_KEY_GET_LOC(x) (((x) >> S_KEY_GET_LOC) & M_KEY_GET_LOC)
294
295 /*
296 * Generate the initial GMAC hash state for a AES-GCM key.
297 *
298 * Borrowed from AES_GMAC_Setkey().
299 */
300 void
301 t4_init_gmac_hash(const char *key, int klen, char *ghash)
302 {
303 static char zeroes[GMAC_BLOCK_LEN];
304 uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
305 int rounds;
306
307 rounds = rijndaelKeySetupEnc(keysched, key, klen * 8);
308 rijndaelEncrypt(keysched, rounds, zeroes, ghash);
309 explicit_bzero(keysched, sizeof(keysched));
310 }
311
312 /* Copy out the partial hash state from a software hash implementation. */
313 void
314 t4_copy_partial_hash(int alg, union authctx *auth_ctx, void *dst)
315 {
316 uint32_t *u32;
317 uint64_t *u64;
318 u_int i;
319
320 u32 = (uint32_t *)dst;
321 u64 = (uint64_t *)dst;
322 switch (alg) {
323 case CRYPTO_SHA1:
324 case CRYPTO_SHA1_HMAC:
325 for (i = 0; i < SHA1_HASH_LEN / 4; i++)
326 u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
327 break;
328 case CRYPTO_SHA2_224:
329 case CRYPTO_SHA2_224_HMAC:
330 for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
331 u32[i] = htobe32(auth_ctx->sha224ctx.state[i]);
332 break;
333 case CRYPTO_SHA2_256:
334 case CRYPTO_SHA2_256_HMAC:
335 for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
336 u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
337 break;
338 case CRYPTO_SHA2_384:
339 case CRYPTO_SHA2_384_HMAC:
340 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
341 u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
342 break;
343 case CRYPTO_SHA2_512:
344 case CRYPTO_SHA2_512_HMAC:
345 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
346 u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
347 break;
348 }
349 }
350
351 void
352 t4_init_hmac_digest(const struct auth_hash *axf, u_int partial_digest_len,
353 const char *key, int klen, char *dst)
354 {
355 union authctx auth_ctx;
356
357 hmac_init_ipad(axf, key, klen, &auth_ctx);
358 t4_copy_partial_hash(axf->type, &auth_ctx, dst);
359
360 dst += roundup2(partial_digest_len, 16);
361
362 hmac_init_opad(axf, key, klen, &auth_ctx);
363 t4_copy_partial_hash(axf->type, &auth_ctx, dst);
364
365 explicit_bzero(&auth_ctx, sizeof(auth_ctx));
366 }
367
368 /*
369 * Borrowed from cesa_prep_aes_key().
370 *
371 * NB: The crypto engine wants the words in the decryption key in reverse
372 * order.
373 */
374 void
375 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
376 {
377 uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
378 uint32_t *dkey;
379 int i;
380
381 rijndaelKeySetupEnc(ek, enc_key, kbits);
382 dkey = dec_key;
383 dkey += (kbits / 8) / 4;
384
385 switch (kbits) {
386 case 128:
387 for (i = 0; i < 4; i++)
388 *--dkey = htobe32(ek[4 * 10 + i]);
389 break;
390 case 192:
391 for (i = 0; i < 2; i++)
392 *--dkey = htobe32(ek[4 * 11 + 2 + i]);
393 for (i = 0; i < 4; i++)
394 *--dkey = htobe32(ek[4 * 12 + i]);
395 break;
396 case 256:
397 for (i = 0; i < 4; i++)
398 *--dkey = htobe32(ek[4 * 13 + i]);
399 for (i = 0; i < 4; i++)
400 *--dkey = htobe32(ek[4 * 14 + i]);
401 break;
402 }
403 MPASS(dkey == dec_key);
404 explicit_bzero(ek, sizeof(ek));
405 }
406
407 #ifdef KERN_TLS
408 /*
409 * - keyid management
410 * - request to program key?
411 */
412 u_int
413 t4_tls_key_info_size(const struct ktls_session *tls)
414 {
415 u_int key_info_size, mac_key_size;
416
417 key_info_size = sizeof(struct tx_keyctx_hdr) +
418 tls->params.cipher_key_len;
419 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
420 key_info_size += GMAC_BLOCK_LEN;
421 } else {
422 switch (tls->params.auth_algorithm) {
423 case CRYPTO_SHA1_HMAC:
424 mac_key_size = SHA1_HASH_LEN;
425 break;
426 case CRYPTO_SHA2_256_HMAC:
427 mac_key_size = SHA2_256_HASH_LEN;
428 break;
429 case CRYPTO_SHA2_384_HMAC:
430 mac_key_size = SHA2_512_HASH_LEN;
431 break;
432 default:
433 __assert_unreachable();
434 }
435 key_info_size += roundup2(mac_key_size, 16) * 2;
436 }
437 return (key_info_size);
438 }
439
440 int
441 t4_tls_proto_ver(const struct ktls_session *tls)
442 {
443 if (tls->params.tls_vminor == TLS_MINOR_VER_ONE)
444 return (SCMD_PROTO_VERSION_TLS_1_1);
445 else
446 return (SCMD_PROTO_VERSION_TLS_1_2);
447 }
448
449 int
450 t4_tls_cipher_mode(const struct ktls_session *tls)
451 {
452 switch (tls->params.cipher_algorithm) {
453 case CRYPTO_AES_CBC:
454 return (SCMD_CIPH_MODE_AES_CBC);
455 case CRYPTO_AES_NIST_GCM_16:
456 return (SCMD_CIPH_MODE_AES_GCM);
457 default:
458 return (SCMD_CIPH_MODE_NOP);
459 }
460 }
461
462 int
463 t4_tls_auth_mode(const struct ktls_session *tls)
464 {
465 switch (tls->params.cipher_algorithm) {
466 case CRYPTO_AES_CBC:
467 switch (tls->params.auth_algorithm) {
468 case CRYPTO_SHA1_HMAC:
469 return (SCMD_AUTH_MODE_SHA1);
470 case CRYPTO_SHA2_256_HMAC:
471 return (SCMD_AUTH_MODE_SHA256);
472 case CRYPTO_SHA2_384_HMAC:
473 return (SCMD_AUTH_MODE_SHA512_384);
474 default:
475 return (SCMD_AUTH_MODE_NOP);
476 }
477 case CRYPTO_AES_NIST_GCM_16:
478 return (SCMD_AUTH_MODE_GHASH);
479 default:
480 return (SCMD_AUTH_MODE_NOP);
481 }
482 }
483
484 int
485 t4_tls_hmac_ctrl(const struct ktls_session *tls)
486 {
487 switch (tls->params.cipher_algorithm) {
488 case CRYPTO_AES_CBC:
489 return (SCMD_HMAC_CTRL_NO_TRUNC);
490 case CRYPTO_AES_NIST_GCM_16:
491 return (SCMD_HMAC_CTRL_NOP);
492 default:
493 return (SCMD_HMAC_CTRL_NOP);
494 }
495 }
496
497 static int
498 tls_cipher_key_size(const struct ktls_session *tls)
499 {
500 switch (tls->params.cipher_key_len) {
501 case 128 / 8:
502 return (CHCR_KEYCTX_CIPHER_KEY_SIZE_128);
503 case 192 / 8:
504 return (CHCR_KEYCTX_CIPHER_KEY_SIZE_192);
505 case 256 / 8:
506 return (CHCR_KEYCTX_CIPHER_KEY_SIZE_256);
507 default:
508 __assert_unreachable();
509 }
510 }
511
512 static int
513 tls_mac_key_size(const struct ktls_session *tls)
514 {
515 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
516 return (CHCR_KEYCTX_MAC_KEY_SIZE_512);
517 else {
518 switch (tls->params.auth_algorithm) {
519 case CRYPTO_SHA1_HMAC:
520 return (CHCR_KEYCTX_MAC_KEY_SIZE_160);
521 case CRYPTO_SHA2_256_HMAC:
522 return (CHCR_KEYCTX_MAC_KEY_SIZE_256);
523 case CRYPTO_SHA2_384_HMAC:
524 return (CHCR_KEYCTX_MAC_KEY_SIZE_512);
525 default:
526 __assert_unreachable();
527 }
528 }
529 }
530
531 void
532 t4_tls_key_ctx(const struct ktls_session *tls, int direction,
533 struct tls_keyctx *kctx)
534 {
535 const struct auth_hash *axf;
536 u_int mac_key_size;
537 char *hash;
538
539 /* Key context header. */
540 if (direction == KTLS_TX) {
541 kctx->u.txhdr.ctxlen = t4_tls_key_info_size(tls) / 16;
542 kctx->u.txhdr.dualck_to_txvalid =
543 V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) |
544 V_TLS_KEYCTX_TX_WR_TXCK_SIZE(tls_cipher_key_size(tls)) |
545 V_TLS_KEYCTX_TX_WR_TXMK_SIZE(tls_mac_key_size(tls)) |
546 V_TLS_KEYCTX_TX_WR_TXVALID(1);
547 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC)
548 kctx->u.txhdr.dualck_to_txvalid |=
549 V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1);
550 kctx->u.txhdr.dualck_to_txvalid =
551 htobe16(kctx->u.txhdr.dualck_to_txvalid);
552 } else {
553 kctx->u.rxhdr.flitcnt_hmacctrl =
554 V_TLS_KEYCTX_TX_WR_FLITCNT(t4_tls_key_info_size(tls) / 16) |
555 V_TLS_KEYCTX_TX_WR_HMACCTRL(t4_tls_hmac_ctrl(tls));
556
557 kctx->u.rxhdr.protover_ciphmode =
558 V_TLS_KEYCTX_TX_WR_PROTOVER(t4_tls_proto_ver(tls)) |
559 V_TLS_KEYCTX_TX_WR_CIPHMODE(t4_tls_cipher_mode(tls));
560
561 kctx->u.rxhdr.authmode_to_rxvalid =
562 V_TLS_KEYCTX_TX_WR_AUTHMODE(t4_tls_auth_mode(tls)) |
563 V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(3) |
564 V_TLS_KEYCTX_TX_WR_RXVALID(1);
565
566 kctx->u.rxhdr.ivpresent_to_rxmk_size =
567 V_TLS_KEYCTX_TX_WR_IVPRESENT(0) |
568 V_TLS_KEYCTX_TX_WR_RXCK_SIZE(tls_cipher_key_size(tls)) |
569 V_TLS_KEYCTX_TX_WR_RXMK_SIZE(tls_mac_key_size(tls));
570
571 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
572 kctx->u.rxhdr.ivinsert_to_authinsrt =
573 htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) |
574 V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) |
575 V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) |
576 V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) |
577 V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) |
578 V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) |
579 V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) |
580 V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL));
581 } else {
582 kctx->u.rxhdr.authmode_to_rxvalid |=
583 V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1);
584 kctx->u.rxhdr.ivpresent_to_rxmk_size |=
585 V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1);
586 kctx->u.rxhdr.ivinsert_to_authinsrt =
587 htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) |
588 V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) |
589 V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) |
590 V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) |
591 V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) |
592 V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) |
593 V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) |
594 V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL));
595 }
596 }
597
598 /* Key. */
599 if (direction == KTLS_RX &&
600 tls->params.cipher_algorithm == CRYPTO_AES_CBC)
601 t4_aes_getdeckey(kctx->keys.edkey, tls->params.cipher_key,
602 tls->params.cipher_key_len * 8);
603 else
604 memcpy(kctx->keys.edkey, tls->params.cipher_key,
605 tls->params.cipher_key_len);
606
607 /* Auth state and implicit IV (salt). */
608 hash = kctx->keys.edkey + tls->params.cipher_key_len;
609 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
610 _Static_assert(offsetof(struct tx_keyctx_hdr, txsalt) ==
611 offsetof(struct rx_keyctx_hdr, rxsalt),
612 "salt offset mismatch");
613 memcpy(kctx->u.txhdr.txsalt, tls->params.iv, SALT_SIZE);
614 t4_init_gmac_hash(tls->params.cipher_key,
615 tls->params.cipher_key_len, hash);
616 } else {
617 switch (tls->params.auth_algorithm) {
618 case CRYPTO_SHA1_HMAC:
619 axf = &auth_hash_hmac_sha1;
620 mac_key_size = SHA1_HASH_LEN;
621 break;
622 case CRYPTO_SHA2_256_HMAC:
623 axf = &auth_hash_hmac_sha2_256;
624 mac_key_size = SHA2_256_HASH_LEN;
625 break;
626 case CRYPTO_SHA2_384_HMAC:
627 axf = &auth_hash_hmac_sha2_384;
628 mac_key_size = SHA2_512_HASH_LEN;
629 break;
630 default:
631 __assert_unreachable();
632 }
633 t4_init_hmac_digest(axf, mac_key_size, tls->params.auth_key,
634 tls->params.auth_key_len, hash);
635 }
636 }
637
638 int
639 t4_alloc_tls_keyid(struct adapter *sc)
640 {
641 vmem_addr_t addr;
642
643 if (sc->vres.key.size == 0)
644 return (-1);
645
646 if (vmem_alloc(sc->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT,
647 &addr) != 0)
648 return (-1);
649
650 return (addr);
651 }
652
653 void
654 t4_free_tls_keyid(struct adapter *sc, int keyid)
655 {
656 vmem_free(sc->key_map, keyid, TLS_KEY_CONTEXT_SZ);
657 }
658
659 void
660 t4_write_tlskey_wr(const struct ktls_session *tls, int direction, int tid,
661 int flags, int keyid, struct tls_key_req *kwr)
662 {
663 kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_ATOMIC | flags);
664 kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(TLS_KEY_WR_SZ, 16)) |
665 V_FW_WR_FLOWID(tid));
666 kwr->protocol = t4_tls_proto_ver(tls);
667 kwr->mfs = htobe16(tls->params.max_frame_len);
668 kwr->reneg_to_write_rx = V_KEY_GET_LOC(direction == KTLS_TX ?
669 KEY_WRITE_TX : KEY_WRITE_RX);
670
671 /* master command */
672 kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
673 V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1));
674 kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(TLS_KEY_CONTEXT_SZ >> 5));
675 kwr->len16 = htobe32((tid << 8) |
676 DIV_ROUND_UP(TLS_KEY_WR_SZ - sizeof(struct work_request_hdr), 16));
677 kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5));
678
679 /* sub command */
680 kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
681 kwr->sc_len = htobe32(TLS_KEY_CONTEXT_SZ);
682 }
683 #endif
Cache object: 74403bd406ecf76f40a7debd290a10f2
|