1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 * $FreeBSD$
34 */
35 #ifndef __T4_H__
36 #define __T4_H__
37
38 #include "common/t4_regs_values.h"
39 #include "common/t4_regs.h"
40 /*
41 * Fixme: Adding missing defines
42 */
43 #define SGE_PF_KDOORBELL 0x0
44 #define QID_MASK 0xffff8000U
45 #define QID_SHIFT 15
46 #define QID(x) ((x) << QID_SHIFT)
47 #define DBPRIO 0x00004000U
48 #define PIDX_MASK 0x00003fffU
49 #define PIDX_SHIFT 0
50 #define PIDX(x) ((x) << PIDX_SHIFT)
51
52 #define SGE_PF_GTS 0x4
53 #define INGRESSQID_MASK 0xffff0000U
54 #define INGRESSQID_SHIFT 16
55 #define INGRESSQID(x) ((x) << INGRESSQID_SHIFT)
56 #define TIMERREG_MASK 0x0000e000U
57 #define TIMERREG_SHIFT 13
58 #define TIMERREG(x) ((x) << TIMERREG_SHIFT)
59 #define SEINTARM_MASK 0x00001000U
60 #define SEINTARM_SHIFT 12
61 #define SEINTARM(x) ((x) << SEINTARM_SHIFT)
62 #define CIDXINC_MASK 0x00000fffU
63 #define CIDXINC_SHIFT 0
64 #define CIDXINC(x) ((x) << CIDXINC_SHIFT)
65
66 #define T4_MAX_NUM_PD 65536
67 #define T4_MAX_MR_SIZE (~0ULL)
68 #define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
69 #define T4_STAG_UNSET 0xffffffff
70 #define T4_FW_MAJ 0
71 #define A_PCIE_MA_SYNC 0x30b4
72
73 struct t4_status_page {
74 __be32 rsvd1; /* flit 0 - hw owns */
75 __be16 rsvd2;
76 __be16 qid;
77 __be16 cidx;
78 __be16 pidx;
79 u8 qp_err; /* flit 1 - sw owns */
80 u8 db_off;
81 u8 pad;
82 u16 host_wq_pidx;
83 u16 host_cidx;
84 u16 host_pidx;
85 };
86
87 #define T4_EQ_ENTRY_SIZE 64
88
89 #define T4_SQ_NUM_SLOTS 5
90 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
91 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
92 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
93 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
94 sizeof(struct fw_ri_immd)))
95 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
96 sizeof(struct fw_ri_rdma_write_wr) - \
97 sizeof(struct fw_ri_immd)))
98 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
99 sizeof(struct fw_ri_rdma_write_wr) - \
100 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
101 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
102 sizeof(struct fw_ri_immd)) & ~31UL)
103 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
104 #define T4_MAX_FR_DSGL 1024
105 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
106 #define T4_MAX_FR_FW_DSGL 4096
107 #define T4_MAX_FR_FW_DSGL_DEPTH (T4_MAX_FR_FW_DSGL / sizeof(u64))
108
109 #define T4_RQ_NUM_SLOTS 2
110 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
111 #define T4_MAX_RECV_SGE 4
112
113 union t4_wr {
114 struct fw_ri_res_wr res;
115 struct fw_ri_wr ri;
116 struct fw_ri_rdma_write_wr write;
117 struct fw_ri_send_wr send;
118 struct fw_ri_rdma_read_wr read;
119 struct fw_ri_bind_mw_wr bind;
120 struct fw_ri_fr_nsmr_wr fr;
121 struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
122 struct fw_ri_inv_lstag_wr inv;
123 struct t4_status_page status;
124 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
125 };
126
127 union t4_recv_wr {
128 struct fw_ri_recv_wr recv;
129 struct t4_status_page status;
130 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
131 };
132
133 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
134 enum fw_wr_opcodes opcode, u8 flags, u8 len16)
135 {
136 wqe->send.opcode = (u8)opcode;
137 wqe->send.flags = flags;
138 wqe->send.wrid = wrid;
139 wqe->send.r1[0] = 0;
140 wqe->send.r1[1] = 0;
141 wqe->send.r1[2] = 0;
142 wqe->send.len16 = len16;
143 }
144
145 /* CQE/AE status codes */
146 #define T4_ERR_SUCCESS 0x0
147 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
148 /* STAG is offlimt, being 0, */
149 /* or STAG_key mismatch */
150 #define T4_ERR_PDID 0x2 /* PDID mismatch */
151 #define T4_ERR_QPID 0x3 /* QPID mismatch */
152 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
153 #define T4_ERR_WRAP 0x5 /* Wrap error */
154 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
155 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
156 /* shared memory region */
157 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
158 /* shared memory region */
159 #define T4_ERR_ECC 0x9 /* ECC error detected */
160 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
161 /* reading PSTAG for a MW */
162 /* Invalidate */
163 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
164 /* software error */
165 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
166 #define T4_ERR_CRC 0x10 /* CRC error */
167 #define T4_ERR_MARKER 0x11 /* Marker error */
168 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
169 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
170 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
171 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
172 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
173 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
174 #define T4_ERR_MSN 0x18 /* MSN error */
175 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
176 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
177 /* or READ_REQ */
178 #define T4_ERR_MSN_GAP 0x1B
179 #define T4_ERR_MSN_RANGE 0x1C
180 #define T4_ERR_IRD_OVERFLOW 0x1D
181 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
182 /* software error */
183 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
184 /* mismatch) */
185 /*
186 * CQE defs
187 */
188 struct t4_cqe {
189 __be32 header;
190 __be32 len;
191 union {
192 struct {
193 __be32 stag;
194 __be32 msn;
195 } rcqe;
196 struct {
197 u32 stag;
198 u16 nada2;
199 u16 cidx;
200 } scqe;
201 struct {
202 __be32 wrid_hi;
203 __be32 wrid_low;
204 } gen;
205 u64 drain_cookie;
206 } u;
207 __be64 reserved;
208 __be64 bits_type_ts;
209 };
210
211 /* macros for flit 0 of the cqe */
212
213 #define S_CQE_QPID 12
214 #define M_CQE_QPID 0xFFFFF
215 #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
216 #define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
217
218 #define S_CQE_SWCQE 11
219 #define M_CQE_SWCQE 0x1
220 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
221 #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
222
223 #define S_CQE_STATUS 5
224 #define M_CQE_STATUS 0x1F
225 #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
226 #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
227
228 #define S_CQE_TYPE 4
229 #define M_CQE_TYPE 0x1
230 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
231 #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
232
233 #define S_CQE_OPCODE 0
234 #define M_CQE_OPCODE 0xF
235 #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
236 #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
237
238 #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
239 #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
240 #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
241 #define SQ_TYPE(x) (CQE_TYPE((x)))
242 #define RQ_TYPE(x) (!CQE_TYPE((x)))
243 #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
244 #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
245
246 #define CQE_SEND_OPCODE(x)(\
247 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
248 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
249 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
250 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
251
252 #define CQE_LEN(x) (be32_to_cpu((x)->len))
253
254 /* used for RQ completion processing */
255 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
256 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
257
258 /* used for SQ completion processing */
259 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
260 #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
261
262 /* generic accessor macros */
263 #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
264 #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
265 #define CQE_DRAIN_COOKIE(x) (x)->u.drain_cookie;
266
267 /* macros for flit 3 of the cqe */
268 #define S_CQE_GENBIT 63
269 #define M_CQE_GENBIT 0x1
270 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
271 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
272
273 #define S_CQE_OVFBIT 62
274 #define M_CQE_OVFBIT 0x1
275 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
276
277 #define S_CQE_IQTYPE 60
278 #define M_CQE_IQTYPE 0x3
279 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
280
281 #define M_CQE_TS 0x0fffffffffffffffULL
282 #define G_CQE_TS(x) ((x) & M_CQE_TS)
283
284 #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
285 #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
286 #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
287
288 struct t4_swsqe {
289 u64 wr_id;
290 struct t4_cqe cqe;
291 int read_len;
292 int opcode;
293 int complete;
294 int signaled;
295 u16 idx;
296 int flushed;
297 struct timespec host_ts;
298 u64 sge_ts;
299 };
300
301 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
302 {
303 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
304 return pgprot_writecombine(prot);
305 #else
306 return pgprot_noncached(prot);
307 #endif
308 }
309
310 enum {
311 T4_SQ_ONCHIP = (1<<0),
312 };
313
314 struct t4_sq {
315 union t4_wr *queue;
316 bus_addr_t dma_addr;
317 DEFINE_DMA_UNMAP_ADDR(mapping);
318 unsigned long phys_addr;
319 struct t4_swsqe *sw_sq;
320 struct t4_swsqe *oldest_read;
321 void __iomem *bar2_va;
322 u64 bar2_pa;
323 size_t memsize;
324 u32 bar2_qid;
325 u32 qid;
326 u16 in_use;
327 u16 size;
328 u16 cidx;
329 u16 pidx;
330 u16 wq_pidx;
331 u16 wq_pidx_inc;
332 u16 flags;
333 short flush_cidx;
334 };
335
336 struct t4_swrqe {
337 u64 wr_id;
338 };
339
340 struct t4_rq {
341 union t4_recv_wr *queue;
342 bus_addr_t dma_addr;
343 DEFINE_DMA_UNMAP_ADDR(mapping);
344 unsigned long phys_addr;
345 struct t4_swrqe *sw_rq;
346 void __iomem *bar2_va;
347 u64 bar2_pa;
348 size_t memsize;
349 u32 bar2_qid;
350 u32 qid;
351 u32 msn;
352 u32 rqt_hwaddr;
353 u16 rqt_size;
354 u16 in_use;
355 u16 size;
356 u16 cidx;
357 u16 pidx;
358 u16 wq_pidx;
359 u16 wq_pidx_inc;
360 };
361
362 struct t4_wq {
363 struct t4_sq sq;
364 struct t4_rq rq;
365 struct c4iw_rdev *rdev;
366 int flushed;
367 };
368
369 static inline int t4_rqes_posted(struct t4_wq *wq)
370 {
371 return wq->rq.in_use;
372 }
373
374 static inline int t4_rq_empty(struct t4_wq *wq)
375 {
376 return wq->rq.in_use == 0;
377 }
378
379 static inline int t4_rq_full(struct t4_wq *wq)
380 {
381 return wq->rq.in_use == (wq->rq.size - 1);
382 }
383
384 static inline u32 t4_rq_avail(struct t4_wq *wq)
385 {
386 return wq->rq.size - 1 - wq->rq.in_use;
387 }
388
389 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
390 {
391 wq->rq.in_use++;
392 if (++wq->rq.pidx == wq->rq.size)
393 wq->rq.pidx = 0;
394 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
395 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
396 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
397 }
398
399 static inline void t4_rq_consume(struct t4_wq *wq)
400 {
401 wq->rq.in_use--;
402 wq->rq.msn++;
403 if (++wq->rq.cidx == wq->rq.size)
404 wq->rq.cidx = 0;
405 }
406
407 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
408 {
409 return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
410 }
411
412 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
413 {
414 return wq->rq.size * T4_RQ_NUM_SLOTS;
415 }
416
417 static inline int t4_sq_onchip(struct t4_sq *sq)
418 {
419 return sq->flags & T4_SQ_ONCHIP;
420 }
421
422 static inline int t4_sq_empty(struct t4_wq *wq)
423 {
424 return wq->sq.in_use == 0;
425 }
426
427 static inline int t4_sq_full(struct t4_wq *wq)
428 {
429 return wq->sq.in_use == (wq->sq.size - 1);
430 }
431
432 static inline u32 t4_sq_avail(struct t4_wq *wq)
433 {
434 return wq->sq.size - 1 - wq->sq.in_use;
435 }
436
437 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
438 {
439 wq->sq.in_use++;
440 if (++wq->sq.pidx == wq->sq.size)
441 wq->sq.pidx = 0;
442 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
443 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
444 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
445 }
446
447 static inline void t4_sq_consume(struct t4_wq *wq)
448 {
449 BUG_ON(wq->sq.in_use < 1);
450 if (wq->sq.cidx == wq->sq.flush_cidx)
451 wq->sq.flush_cidx = -1;
452 wq->sq.in_use--;
453 if (++wq->sq.cidx == wq->sq.size)
454 wq->sq.cidx = 0;
455 }
456
457 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
458 {
459 return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
460 }
461
462 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
463 {
464 return wq->sq.size * T4_SQ_NUM_SLOTS;
465 }
466
467 /* This function copies 64 byte coalesced work request to memory
468 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
469 * from the FIFO instead of from Host.
470 */
471 static inline void pio_copy(u64 __iomem *dst, u64 *src)
472 {
473 int count = 8;
474
475 while (count) {
476 writeq(*src, dst);
477 src++;
478 dst++;
479 count--;
480 }
481 }
482
483 static inline void
484 t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
485 {
486
487 /* Flush host queue memory writes. */
488 wmb();
489 if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
490 CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d",
491 __func__, wq->sq.pidx);
492 pio_copy((u64 __iomem *)
493 ((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
494 (u64 *)wqe);
495 } else {
496 CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d",
497 __func__, wq->sq.pidx);
498 writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
499 (void __iomem *)((u64)wq->sq.bar2_va +
500 SGE_UDB_KDOORBELL));
501 }
502
503 /* Flush user doorbell area writes. */
504 wmb();
505 return;
506 }
507
508 static inline void
509 t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
510 {
511
512 /* Flush host queue memory writes. */
513 wmb();
514 if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
515 CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d",
516 __func__, wq->rq.pidx);
517 pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
518 SGE_UDB_WCDOORBELL), (u64 *)wqe);
519 } else {
520 CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d",
521 __func__, wq->rq.pidx);
522 writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
523 (void __iomem *)((u64)wq->rq.bar2_va +
524 SGE_UDB_KDOORBELL));
525 }
526
527 /* Flush user doorbell area writes. */
528 wmb();
529 return;
530 }
531
532 static inline int t4_wq_in_error(struct t4_wq *wq)
533 {
534 return wq->rq.queue[wq->rq.size].status.qp_err;
535 }
536
537 static inline void t4_set_wq_in_error(struct t4_wq *wq)
538 {
539 wq->rq.queue[wq->rq.size].status.qp_err = 1;
540 }
541
542 enum t4_cq_flags {
543 CQ_ARMED = 1,
544 };
545
546 struct t4_cq {
547 struct t4_cqe *queue;
548 bus_addr_t dma_addr;
549 DEFINE_DMA_UNMAP_ADDR(mapping);
550 struct t4_cqe *sw_queue;
551 void __iomem *bar2_va;
552 u64 bar2_pa;
553 u32 bar2_qid;
554 struct c4iw_rdev *rdev;
555 size_t memsize;
556 __be64 bits_type_ts;
557 u32 cqid;
558 u32 qid_mask;
559 int vector;
560 u16 size; /* including status page */
561 u16 cidx;
562 u16 sw_pidx;
563 u16 sw_cidx;
564 u16 sw_in_use;
565 u16 cidx_inc;
566 u8 gen;
567 u8 error;
568 unsigned long flags;
569 };
570
571 static inline void write_gts(struct t4_cq *cq, u32 val)
572 {
573 writel(val | V_INGRESSQID(cq->bar2_qid),
574 (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
575 }
576
577 static inline int t4_clear_cq_armed(struct t4_cq *cq)
578 {
579 return test_and_clear_bit(CQ_ARMED, &cq->flags);
580 }
581
582 static inline int t4_arm_cq(struct t4_cq *cq, int se)
583 {
584 u32 val;
585
586 set_bit(CQ_ARMED, &cq->flags);
587 while (cq->cidx_inc > CIDXINC_MASK) {
588 val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
589 writel(val | V_INGRESSQID(cq->bar2_qid),
590 (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
591 cq->cidx_inc -= CIDXINC_MASK;
592 }
593 val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
594 writel(val | V_INGRESSQID(cq->bar2_qid),
595 (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
596 cq->cidx_inc = 0;
597 return 0;
598 }
599
600 static inline void t4_swcq_produce(struct t4_cq *cq)
601 {
602 cq->sw_in_use++;
603 if (cq->sw_in_use == cq->size) {
604 CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
605 __func__, cq->cqid);
606 cq->error = 1;
607 BUG_ON(1);
608 }
609 if (++cq->sw_pidx == cq->size)
610 cq->sw_pidx = 0;
611 }
612
613 static inline void t4_swcq_consume(struct t4_cq *cq)
614 {
615 BUG_ON(cq->sw_in_use < 1);
616 cq->sw_in_use--;
617 if (++cq->sw_cidx == cq->size)
618 cq->sw_cidx = 0;
619 }
620
621 static inline void t4_hwcq_consume(struct t4_cq *cq)
622 {
623 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
624 if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
625 u32 val;
626
627 val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
628 write_gts(cq, val);
629 cq->cidx_inc = 0;
630 }
631 if (++cq->cidx == cq->size) {
632 cq->cidx = 0;
633 cq->gen ^= 1;
634 }
635 }
636
637 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
638 {
639 return (CQE_GENBIT(cqe) == cq->gen);
640 }
641
642 static inline int t4_cq_notempty(struct t4_cq *cq)
643 {
644 return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
645 }
646
647 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
648 {
649 int ret;
650 u16 prev_cidx;
651
652 if (cq->cidx == 0)
653 prev_cidx = cq->size - 1;
654 else
655 prev_cidx = cq->cidx - 1;
656
657 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
658 ret = -EOVERFLOW;
659 cq->error = 1;
660 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
661 BUG_ON(1);
662 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
663
664 /* Ensure CQE is flushed to memory */
665 rmb();
666 *cqe = &cq->queue[cq->cidx];
667 ret = 0;
668 } else
669 ret = -ENODATA;
670 return ret;
671 }
672
673 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
674 {
675 if (cq->sw_in_use == cq->size) {
676 CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
677 __func__, cq->cqid);
678 cq->error = 1;
679 BUG_ON(1);
680 return NULL;
681 }
682 if (cq->sw_in_use)
683 return &cq->sw_queue[cq->sw_cidx];
684 return NULL;
685 }
686
687 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
688 {
689 int ret = 0;
690
691 if (cq->error)
692 ret = -ENODATA;
693 else if (cq->sw_in_use)
694 *cqe = &cq->sw_queue[cq->sw_cidx];
695 else
696 ret = t4_next_hw_cqe(cq, cqe);
697 return ret;
698 }
699
700 static inline int t4_cq_in_error(struct t4_cq *cq)
701 {
702 return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
703 }
704
705 static inline void t4_set_cq_in_error(struct t4_cq *cq)
706 {
707 ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
708 }
709 struct t4_dev_status_page {
710 u8 db_off;
711 u8 wc_supported;
712 u16 pad2;
713 u32 pad3;
714 u64 qp_start;
715 u64 qp_size;
716 u64 cq_start;
717 u64 cq_size;
718 };
719 #endif
Cache object: ffe8e81d02fac705b40825630546196c
|