The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/cxgbe/iw_cxgbe/t4.h

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
    5  *
    6  * This software is available to you under a choice of one of two
    7  * licenses.  You may choose to be licensed under the terms of the GNU
    8  * General Public License (GPL) Version 2, available from the file
    9  * COPYING in the main directory of this source tree, or the
   10  * OpenIB.org BSD license below:
   11  *
   12  *     Redistribution and use in source and binary forms, with or
   13  *     without modification, are permitted provided that the following
   14  *     conditions are met:
   15  *
   16  *      - Redistributions of source code must retain the above
   17  *        copyright notice, this list of conditions and the following
   18  *        disclaimer.
   19  *      - Redistributions in binary form must reproduce the above
   20  *        copyright notice, this list of conditions and the following
   21  *        disclaimer in the documentation and/or other materials
   22  *        provided with the distribution.
   23  *
   24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
   25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
   27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
   28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
   29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
   31  * SOFTWARE.
   32  *
   33  * $FreeBSD$
   34  */
   35 #ifndef __T4_H__
   36 #define __T4_H__
   37 
   38 #include "common/t4_regs_values.h"
   39 #include "common/t4_regs.h"
   40 /*
   41  * Fixme: Adding missing defines
   42  */
   43 #define SGE_PF_KDOORBELL 0x0
   44 #define  QID_MASK    0xffff8000U
   45 #define  QID_SHIFT   15
   46 #define  QID(x)      ((x) << QID_SHIFT)
   47 #define  DBPRIO      0x00004000U
   48 #define  PIDX_MASK   0x00003fffU
   49 #define  PIDX_SHIFT  0
   50 #define  PIDX(x)     ((x) << PIDX_SHIFT)
   51 
   52 #define SGE_PF_GTS 0x4
   53 #define  INGRESSQID_MASK   0xffff0000U
   54 #define  INGRESSQID_SHIFT  16
   55 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
   56 #define  TIMERREG_MASK     0x0000e000U
   57 #define  TIMERREG_SHIFT    13
   58 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
   59 #define  SEINTARM_MASK     0x00001000U
   60 #define  SEINTARM_SHIFT    12
   61 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
   62 #define  CIDXINC_MASK      0x00000fffU
   63 #define  CIDXINC_SHIFT     0
   64 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
   65 
   66 #define T4_MAX_NUM_PD 65536
   67 #define T4_MAX_MR_SIZE (~0ULL)
   68 #define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
   69 #define T4_STAG_UNSET 0xffffffff
   70 #define T4_FW_MAJ 0
   71 #define A_PCIE_MA_SYNC 0x30b4
   72 
   73 struct t4_status_page {
   74         __be32 rsvd1;   /* flit 0 - hw owns */
   75         __be16 rsvd2;
   76         __be16 qid;
   77         __be16 cidx;
   78         __be16 pidx;
   79         u8 qp_err;      /* flit 1 - sw owns */
   80         u8 db_off;
   81         u8 pad;
   82         u16 host_wq_pidx;
   83         u16 host_cidx;
   84         u16 host_pidx;
   85 };
   86 
   87 #define T4_EQ_ENTRY_SIZE 64
   88 
   89 #define T4_SQ_NUM_SLOTS 5
   90 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
   91 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
   92                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
   93 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
   94                         sizeof(struct fw_ri_immd)))
   95 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
   96                         sizeof(struct fw_ri_rdma_write_wr) - \
   97                         sizeof(struct fw_ri_immd)))
   98 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
   99                         sizeof(struct fw_ri_rdma_write_wr) - \
  100                         sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  101 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  102                         sizeof(struct fw_ri_immd)) & ~31UL)
  103 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  104 #define T4_MAX_FR_DSGL 1024
  105 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  106 #define T4_MAX_FR_FW_DSGL 4096
  107 #define T4_MAX_FR_FW_DSGL_DEPTH (T4_MAX_FR_FW_DSGL / sizeof(u64))
  108 
  109 #define T4_RQ_NUM_SLOTS 2
  110 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  111 #define T4_MAX_RECV_SGE 4
  112 
  113 union t4_wr {
  114         struct fw_ri_res_wr res;
  115         struct fw_ri_wr ri;
  116         struct fw_ri_rdma_write_wr write;
  117         struct fw_ri_send_wr send;
  118         struct fw_ri_rdma_read_wr read;
  119         struct fw_ri_bind_mw_wr bind;
  120         struct fw_ri_fr_nsmr_wr fr;
  121         struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
  122         struct fw_ri_inv_lstag_wr inv;
  123         struct t4_status_page status;
  124         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
  125 };
  126 
  127 union t4_recv_wr {
  128         struct fw_ri_recv_wr recv;
  129         struct t4_status_page status;
  130         __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
  131 };
  132 
  133 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
  134                                enum fw_wr_opcodes opcode, u8 flags, u8 len16)
  135 {
  136         wqe->send.opcode = (u8)opcode;
  137         wqe->send.flags = flags;
  138         wqe->send.wrid = wrid;
  139         wqe->send.r1[0] = 0;
  140         wqe->send.r1[1] = 0;
  141         wqe->send.r1[2] = 0;
  142         wqe->send.len16 = len16;
  143 }
  144 
  145 /* CQE/AE status codes */
  146 #define T4_ERR_SUCCESS                     0x0
  147 #define T4_ERR_STAG                        0x1  /* STAG invalid: either the */
  148                                                 /* STAG is offlimt, being 0, */
  149                                                 /* or STAG_key mismatch */
  150 #define T4_ERR_PDID                        0x2  /* PDID mismatch */
  151 #define T4_ERR_QPID                        0x3  /* QPID mismatch */
  152 #define T4_ERR_ACCESS                      0x4  /* Invalid access right */
  153 #define T4_ERR_WRAP                        0x5  /* Wrap error */
  154 #define T4_ERR_BOUND                       0x6  /* base and bounds voilation */
  155 #define T4_ERR_INVALIDATE_SHARED_MR        0x7  /* attempt to invalidate a  */
  156                                                 /* shared memory region */
  157 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8  /* attempt to invalidate a  */
  158                                                 /* shared memory region */
  159 #define T4_ERR_ECC                         0x9  /* ECC error detected */
  160 #define T4_ERR_ECC_PSTAG                   0xA  /* ECC error detected when  */
  161                                                 /* reading PSTAG for a MW  */
  162                                                 /* Invalidate */
  163 #define T4_ERR_PBL_ADDR_BOUND              0xB  /* pbl addr out of bounds:  */
  164                                                 /* software error */
  165 #define T4_ERR_SWFLUSH                     0xC  /* SW FLUSHED */
  166 #define T4_ERR_CRC                         0x10 /* CRC error */
  167 #define T4_ERR_MARKER                      0x11 /* Marker error */
  168 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
  169 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
  170 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
  171 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
  172 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
  173 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
  174 #define T4_ERR_MSN                         0x18 /* MSN error */
  175 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
  176 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
  177                                                 /* or READ_REQ */
  178 #define T4_ERR_MSN_GAP                     0x1B
  179 #define T4_ERR_MSN_RANGE                   0x1C
  180 #define T4_ERR_IRD_OVERFLOW                0x1D
  181 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
  182                                                 /* software error */
  183 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
  184                                                 /* mismatch) */
  185 /*
  186  * CQE defs
  187  */
  188 struct t4_cqe {
  189         __be32 header;
  190         __be32 len;
  191         union {
  192                 struct {
  193                         __be32 stag;
  194                         __be32 msn;
  195                 } rcqe;
  196                 struct {
  197                         u32 stag;
  198                         u16 nada2;
  199                         u16 cidx;
  200                 } scqe;
  201                 struct {
  202                         __be32 wrid_hi;
  203                         __be32 wrid_low;
  204                 } gen;
  205                 u64 drain_cookie;
  206         } u;
  207         __be64 reserved;
  208         __be64 bits_type_ts;
  209 };
  210 
  211 /* macros for flit 0 of the cqe */
  212 
  213 #define S_CQE_QPID        12
  214 #define M_CQE_QPID        0xFFFFF
  215 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
  216 #define V_CQE_QPID(x)     ((x)<<S_CQE_QPID)
  217 
  218 #define S_CQE_SWCQE       11
  219 #define M_CQE_SWCQE       0x1
  220 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
  221 #define V_CQE_SWCQE(x)    ((x)<<S_CQE_SWCQE)
  222 
  223 #define S_CQE_STATUS      5
  224 #define M_CQE_STATUS      0x1F
  225 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
  226 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
  227 
  228 #define S_CQE_TYPE        4
  229 #define M_CQE_TYPE        0x1
  230 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
  231 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
  232 
  233 #define S_CQE_OPCODE      0
  234 #define M_CQE_OPCODE      0xF
  235 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
  236 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
  237 
  238 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
  239 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
  240 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
  241 #define SQ_TYPE(x)        (CQE_TYPE((x)))
  242 #define RQ_TYPE(x)        (!CQE_TYPE((x)))
  243 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
  244 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
  245 
  246 #define CQE_SEND_OPCODE(x)(\
  247         (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
  248         (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
  249         (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
  250         (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
  251 
  252 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
  253 
  254 /* used for RQ completion processing */
  255 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
  256 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
  257 
  258 /* used for SQ completion processing */
  259 #define CQE_WRID_SQ_IDX(x)      ((x)->u.scqe.cidx)
  260 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
  261 
  262 /* generic accessor macros */
  263 #define CQE_WRID_HI(x)          ((x)->u.gen.wrid_hi)
  264 #define CQE_WRID_LOW(x)         ((x)->u.gen.wrid_low)
  265 #define CQE_DRAIN_COOKIE(x)     (x)->u.drain_cookie;
  266 
  267 /* macros for flit 3 of the cqe */
  268 #define S_CQE_GENBIT    63
  269 #define M_CQE_GENBIT    0x1
  270 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
  271 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
  272 
  273 #define S_CQE_OVFBIT    62
  274 #define M_CQE_OVFBIT    0x1
  275 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
  276 
  277 #define S_CQE_IQTYPE    60
  278 #define M_CQE_IQTYPE    0x3
  279 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
  280 
  281 #define M_CQE_TS        0x0fffffffffffffffULL
  282 #define G_CQE_TS(x)     ((x) & M_CQE_TS)
  283 
  284 #define CQE_OVFBIT(x)   ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
  285 #define CQE_GENBIT(x)   ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
  286 #define CQE_TS(x)       (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
  287 
  288 struct t4_swsqe {
  289         u64                     wr_id;
  290         struct t4_cqe           cqe;
  291         int                     read_len;
  292         int                     opcode;
  293         int                     complete;
  294         int                     signaled;
  295         u16                     idx;
  296         int                     flushed;
  297         struct timespec         host_ts;
  298         u64                     sge_ts;
  299 };
  300 
  301 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
  302 {
  303 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  304         return pgprot_writecombine(prot);
  305 #else
  306         return pgprot_noncached(prot);
  307 #endif
  308 }
  309 
  310 enum {
  311         T4_SQ_ONCHIP = (1<<0),
  312 };
  313 
  314 struct t4_sq {
  315         union t4_wr *queue;
  316         bus_addr_t dma_addr;
  317         DEFINE_DMA_UNMAP_ADDR(mapping);
  318         unsigned long phys_addr;
  319         struct t4_swsqe *sw_sq;
  320         struct t4_swsqe *oldest_read;
  321         void __iomem *bar2_va;
  322         u64 bar2_pa;
  323         size_t memsize;
  324         u32 bar2_qid;
  325         u32 qid;
  326         u16 in_use;
  327         u16 size;
  328         u16 cidx;
  329         u16 pidx;
  330         u16 wq_pidx;
  331         u16 wq_pidx_inc;
  332         u16 flags;
  333         short flush_cidx;
  334 };
  335 
  336 struct t4_swrqe {
  337         u64 wr_id;
  338 };
  339 
  340 struct t4_rq {
  341         union  t4_recv_wr *queue;
  342         bus_addr_t dma_addr;
  343         DEFINE_DMA_UNMAP_ADDR(mapping);
  344         unsigned long phys_addr;
  345         struct t4_swrqe *sw_rq;
  346         void __iomem *bar2_va;
  347         u64 bar2_pa;
  348         size_t memsize;
  349         u32 bar2_qid;
  350         u32 qid;
  351         u32 msn;
  352         u32 rqt_hwaddr;
  353         u16 rqt_size;
  354         u16 in_use;
  355         u16 size;
  356         u16 cidx;
  357         u16 pidx;
  358         u16 wq_pidx;
  359         u16 wq_pidx_inc;
  360 };
  361 
  362 struct t4_wq {
  363         struct t4_sq sq;
  364         struct t4_rq rq;
  365         struct c4iw_rdev *rdev;
  366         int flushed;
  367 };
  368 
  369 static inline int t4_rqes_posted(struct t4_wq *wq)
  370 {
  371         return wq->rq.in_use;
  372 }
  373 
  374 static inline int t4_rq_empty(struct t4_wq *wq)
  375 {
  376         return wq->rq.in_use == 0;
  377 }
  378 
  379 static inline int t4_rq_full(struct t4_wq *wq)
  380 {
  381         return wq->rq.in_use == (wq->rq.size - 1);
  382 }
  383 
  384 static inline u32 t4_rq_avail(struct t4_wq *wq)
  385 {
  386         return wq->rq.size - 1 - wq->rq.in_use;
  387 }
  388 
  389 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
  390 {
  391         wq->rq.in_use++;
  392         if (++wq->rq.pidx == wq->rq.size)
  393                 wq->rq.pidx = 0;
  394         wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  395         if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
  396                 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
  397 }
  398 
  399 static inline void t4_rq_consume(struct t4_wq *wq)
  400 {
  401         wq->rq.in_use--;
  402         wq->rq.msn++;
  403         if (++wq->rq.cidx == wq->rq.size)
  404                 wq->rq.cidx = 0;
  405 }
  406 
  407 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
  408 {
  409         return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
  410 }
  411 
  412 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
  413 {
  414         return wq->rq.size * T4_RQ_NUM_SLOTS;
  415 }
  416 
  417 static inline int t4_sq_onchip(struct t4_sq *sq)
  418 {
  419         return sq->flags & T4_SQ_ONCHIP;
  420 }
  421 
  422 static inline int t4_sq_empty(struct t4_wq *wq)
  423 {
  424         return wq->sq.in_use == 0;
  425 }
  426 
  427 static inline int t4_sq_full(struct t4_wq *wq)
  428 {
  429         return wq->sq.in_use == (wq->sq.size - 1);
  430 }
  431 
  432 static inline u32 t4_sq_avail(struct t4_wq *wq)
  433 {
  434         return wq->sq.size - 1 - wq->sq.in_use;
  435 }
  436 
  437 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
  438 {
  439         wq->sq.in_use++;
  440         if (++wq->sq.pidx == wq->sq.size)
  441                 wq->sq.pidx = 0;
  442         wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  443         if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
  444                 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
  445 }
  446 
  447 static inline void t4_sq_consume(struct t4_wq *wq)
  448 {
  449         BUG_ON(wq->sq.in_use < 1);
  450         if (wq->sq.cidx == wq->sq.flush_cidx)
  451                 wq->sq.flush_cidx = -1;
  452         wq->sq.in_use--;
  453         if (++wq->sq.cidx == wq->sq.size)
  454                 wq->sq.cidx = 0;
  455 }
  456 
  457 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
  458 {
  459         return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
  460 }
  461 
  462 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
  463 {
  464                 return wq->sq.size * T4_SQ_NUM_SLOTS;
  465 }
  466 
  467 /* This function copies 64 byte coalesced work request to memory
  468  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
  469  * from the FIFO instead of from Host.
  470  */
  471 static inline void pio_copy(u64 __iomem *dst, u64 *src)
  472 {
  473         int count = 8;
  474 
  475         while (count) {
  476                 writeq(*src, dst);
  477                 src++;
  478                 dst++;
  479                 count--;
  480         }
  481 }
  482 
  483 static inline void
  484 t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
  485 {
  486 
  487         /* Flush host queue memory writes. */
  488         wmb();
  489         if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
  490                 CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d",
  491                                 __func__, wq->sq.pidx);
  492                 pio_copy((u64 __iomem *)
  493                                 ((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
  494                                 (u64 *)wqe);
  495         } else {
  496                 CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d",
  497                                 __func__, wq->sq.pidx);
  498                 writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
  499                                 (void __iomem *)((u64)wq->sq.bar2_va +
  500                                         SGE_UDB_KDOORBELL));
  501         }
  502 
  503         /* Flush user doorbell area writes. */
  504         wmb();
  505         return;
  506 }
  507 
  508 static inline void
  509 t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
  510 {
  511 
  512         /* Flush host queue memory writes. */
  513         wmb();
  514         if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
  515                 CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d",
  516                                 __func__, wq->rq.pidx);
  517                 pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
  518                                         SGE_UDB_WCDOORBELL), (u64 *)wqe);
  519         } else {
  520                 CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d",
  521                                 __func__, wq->rq.pidx);
  522                 writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
  523                                 (void __iomem *)((u64)wq->rq.bar2_va +
  524                                         SGE_UDB_KDOORBELL));
  525         }
  526 
  527         /* Flush user doorbell area writes. */
  528         wmb();
  529         return;
  530 }
  531 
  532 static inline int t4_wq_in_error(struct t4_wq *wq)
  533 {
  534         return wq->rq.queue[wq->rq.size].status.qp_err;
  535 }
  536 
  537 static inline void t4_set_wq_in_error(struct t4_wq *wq)
  538 {
  539         wq->rq.queue[wq->rq.size].status.qp_err = 1;
  540 }
  541 
  542 enum t4_cq_flags {
  543         CQ_ARMED        = 1,
  544 };
  545 
  546 struct t4_cq {
  547         struct t4_cqe *queue;
  548         bus_addr_t dma_addr;
  549         DEFINE_DMA_UNMAP_ADDR(mapping);
  550         struct t4_cqe *sw_queue;
  551         void __iomem *bar2_va;
  552         u64 bar2_pa;
  553         u32 bar2_qid;
  554         struct c4iw_rdev *rdev;
  555         size_t memsize;
  556         __be64 bits_type_ts;
  557         u32 cqid;
  558         u32 qid_mask;
  559         int vector;
  560         u16 size; /* including status page */
  561         u16 cidx;
  562         u16 sw_pidx;
  563         u16 sw_cidx;
  564         u16 sw_in_use;
  565         u16 cidx_inc;
  566         u8 gen;
  567         u8 error;
  568         unsigned long flags;
  569 };
  570 
  571 static inline void write_gts(struct t4_cq *cq, u32 val)
  572 {
  573         writel(val | V_INGRESSQID(cq->bar2_qid),
  574                        (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
  575 }
  576 
  577 static inline int t4_clear_cq_armed(struct t4_cq *cq)
  578 {
  579         return test_and_clear_bit(CQ_ARMED, &cq->flags);
  580 }
  581 
  582 static inline int t4_arm_cq(struct t4_cq *cq, int se)
  583 {
  584         u32 val;
  585 
  586         set_bit(CQ_ARMED, &cq->flags);
  587         while (cq->cidx_inc > CIDXINC_MASK) {
  588                 val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
  589                 writel(val | V_INGRESSQID(cq->bar2_qid),
  590                        (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
  591                 cq->cidx_inc -= CIDXINC_MASK;
  592         }
  593         val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
  594         writel(val | V_INGRESSQID(cq->bar2_qid),
  595                        (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
  596         cq->cidx_inc = 0;
  597         return 0;
  598 }
  599 
  600 static inline void t4_swcq_produce(struct t4_cq *cq)
  601 {
  602         cq->sw_in_use++;
  603         if (cq->sw_in_use == cq->size) {
  604                 CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
  605                          __func__, cq->cqid);
  606                 cq->error = 1;
  607                 BUG_ON(1);
  608         }
  609         if (++cq->sw_pidx == cq->size)
  610                 cq->sw_pidx = 0;
  611 }
  612 
  613 static inline void t4_swcq_consume(struct t4_cq *cq)
  614 {
  615         BUG_ON(cq->sw_in_use < 1);
  616         cq->sw_in_use--;
  617         if (++cq->sw_cidx == cq->size)
  618                 cq->sw_cidx = 0;
  619 }
  620 
  621 static inline void t4_hwcq_consume(struct t4_cq *cq)
  622 {
  623         cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
  624         if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
  625                 u32 val;
  626 
  627                 val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
  628                 write_gts(cq, val);
  629                 cq->cidx_inc = 0;
  630         }
  631         if (++cq->cidx == cq->size) {
  632                 cq->cidx = 0;
  633                 cq->gen ^= 1;
  634         }
  635 }
  636 
  637 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
  638 {
  639         return (CQE_GENBIT(cqe) == cq->gen);
  640 }
  641 
  642 static inline int t4_cq_notempty(struct t4_cq *cq)
  643 {
  644         return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
  645 }
  646 
  647 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  648 {
  649         int ret;
  650         u16 prev_cidx;
  651 
  652         if (cq->cidx == 0)
  653                 prev_cidx = cq->size - 1;
  654         else
  655                 prev_cidx = cq->cidx - 1;
  656 
  657         if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
  658                 ret = -EOVERFLOW;
  659                 cq->error = 1;
  660                 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
  661                 BUG_ON(1);
  662         } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
  663 
  664                 /* Ensure CQE is flushed to memory */
  665                 rmb();
  666                 *cqe = &cq->queue[cq->cidx];
  667                 ret = 0;
  668         } else
  669                 ret = -ENODATA;
  670         return ret;
  671 }
  672 
  673 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
  674 {
  675         if (cq->sw_in_use == cq->size) {
  676                 CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
  677                          __func__, cq->cqid);
  678                 cq->error = 1;
  679                 BUG_ON(1);
  680                 return NULL;
  681         }
  682         if (cq->sw_in_use)
  683                 return &cq->sw_queue[cq->sw_cidx];
  684         return NULL;
  685 }
  686 
  687 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  688 {
  689         int ret = 0;
  690 
  691         if (cq->error)
  692                 ret = -ENODATA;
  693         else if (cq->sw_in_use)
  694                 *cqe = &cq->sw_queue[cq->sw_cidx];
  695         else
  696                 ret = t4_next_hw_cqe(cq, cqe);
  697         return ret;
  698 }
  699 
  700 static inline int t4_cq_in_error(struct t4_cq *cq)
  701 {
  702         return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
  703 }
  704 
  705 static inline void t4_set_cq_in_error(struct t4_cq *cq)
  706 {
  707         ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
  708 }
  709 struct t4_dev_status_page {
  710         u8 db_off;
  711         u8 wc_supported;
  712         u16 pad2;
  713         u32 pad3;
  714         u64 qp_start;
  715         u64 qp_size;
  716         u64 cq_start;
  717         u64 cq_size;
  718 };
  719 #endif

Cache object: ffe8e81d02fac705b40825630546196c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.