FreeBSD/Linux Kernel Cross Reference
sys/dev/cxgbe/t4_sge.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37
38 #include <sys/types.h>
39 #include <sys/eventhandler.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/kernel.h>
43 #include <sys/ktls.h>
44 #include <sys/malloc.h>
45 #include <sys/msan.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/taskqueue.h>
49 #include <sys/time.h>
50 #include <sys/sglist.h>
51 #include <sys/sysctl.h>
52 #include <sys/smp.h>
53 #include <sys/socketvar.h>
54 #include <sys/counter.h>
55 #include <net/bpf.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/if_vlan_var.h>
59 #include <net/if_vxlan.h>
60 #include <netinet/in.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet/tcp.h>
64 #include <netinet/udp.h>
65 #include <machine/in_cksum.h>
66 #include <machine/md_var.h>
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #ifdef DEV_NETMAP
70 #include <machine/bus.h>
71 #include <sys/selinfo.h>
72 #include <net/if_var.h>
73 #include <net/netmap.h>
74 #include <dev/netmap/netmap_kern.h>
75 #endif
76
77 #include "common/common.h"
78 #include "common/t4_regs.h"
79 #include "common/t4_regs_values.h"
80 #include "common/t4_msg.h"
81 #include "t4_l2t.h"
82 #include "t4_mp_ring.h"
83
84 #ifdef T4_PKT_TIMESTAMP
85 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
86 #else
87 #define RX_COPY_THRESHOLD MINCLSIZE
88 #endif
89
90 /* Internal mbuf flags stored in PH_loc.eight[1]. */
91 #define MC_NOMAP 0x01
92 #define MC_RAW_WR 0x02
93 #define MC_TLS 0x04
94
95 /*
96 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
97 * 0-7 are valid values.
98 */
99 static int fl_pktshift = 0;
100 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
101 "payload DMA offset in rx buffer (bytes)");
102
103 /*
104 * Pad ethernet payload up to this boundary.
105 * -1: driver should figure out a good value.
106 * 0: disable padding.
107 * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
108 */
109 int fl_pad = -1;
110 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
111 "payload pad boundary (bytes)");
112
113 /*
114 * Status page length.
115 * -1: driver should figure out a good value.
116 * 64 or 128 are the only other valid values.
117 */
118 static int spg_len = -1;
119 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
120 "status page size (bytes)");
121
122 /*
123 * Congestion drops.
124 * -1: no congestion feedback (not recommended).
125 * 0: backpressure the channel instead of dropping packets right away.
126 * 1: no backpressure, drop packets for the congested queue immediately.
127 * 2: both backpressure and drop.
128 */
129 static int cong_drop = 0;
130 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
131 "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
132 #ifdef TCP_OFFLOAD
133 static int ofld_cong_drop = 0;
134 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
135 "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
136 #endif
137
138 /*
139 * Deliver multiple frames in the same free list buffer if they fit.
140 * -1: let the driver decide whether to enable buffer packing or not.
141 * 0: disable buffer packing.
142 * 1: enable buffer packing.
143 */
144 static int buffer_packing = -1;
145 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
146 0, "Enable buffer packing");
147
148 /*
149 * Start next frame in a packed buffer at this boundary.
150 * -1: driver should figure out a good value.
151 * T4: driver will ignore this and use the same value as fl_pad above.
152 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
153 */
154 static int fl_pack = -1;
155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
156 "payload pack boundary (bytes)");
157
158 /*
159 * Largest rx cluster size that the driver is allowed to allocate.
160 */
161 static int largest_rx_cluster = MJUM16BYTES;
162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
163 &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
164
165 /*
166 * Size of cluster allocation that's most likely to succeed. The driver will
167 * fall back to this size if it fails to allocate clusters larger than this.
168 */
169 static int safest_rx_cluster = PAGE_SIZE;
170 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
171 &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
172
173 #ifdef RATELIMIT
174 /*
175 * Knob to control TCP timestamp rewriting, and the granularity of the tick used
176 * for rewriting. -1 and 0-3 are all valid values.
177 * -1: hardware should leave the TCP timestamps alone.
178 * 0: 1ms
179 * 1: 100us
180 * 2: 10us
181 * 3: 1us
182 */
183 static int tsclk = -1;
184 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
185 "Control TCP timestamp rewriting when using pacing");
186
187 static int eo_max_backlog = 1024 * 1024;
188 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
189 0, "Maximum backlog of ratelimited data per flow");
190 #endif
191
192 /*
193 * The interrupt holdoff timers are multiplied by this value on T6+.
194 * 1 and 3-17 (both inclusive) are legal values.
195 */
196 static int tscale = 1;
197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
198 "Interrupt holdoff timer scale on T6+");
199
200 /*
201 * Number of LRO entries in the lro_ctrl structure per rx queue.
202 */
203 static int lro_entries = TCP_LRO_ENTRIES;
204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
205 "Number of LRO entries per RX queue");
206
207 /*
208 * This enables presorting of frames before they're fed into tcp_lro_rx.
209 */
210 static int lro_mbufs = 0;
211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
212 "Enable presorting of LRO frames");
213
214 static counter_u64_t pullups;
215 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
216 "Number of mbuf pullups performed");
217
218 static counter_u64_t defrags;
219 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
220 "Number of mbuf defrags performed");
221
222 static int t4_tx_coalesce = 1;
223 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
224 "tx coalescing allowed");
225
226 /*
227 * The driver will make aggressive attempts at tx coalescing if it sees these
228 * many packets eligible for coalescing in quick succession, with no more than
229 * the specified gap in between the eth_tx calls that delivered the packets.
230 */
231 static int t4_tx_coalesce_pkts = 32;
232 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
233 &t4_tx_coalesce_pkts, 0,
234 "# of consecutive packets (1 - 255) that will trigger tx coalescing");
235 static int t4_tx_coalesce_gap = 5;
236 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
237 &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
238
239 static int service_iq(struct sge_iq *, int);
240 static int service_iq_fl(struct sge_iq *, int);
241 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
242 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
243 u_int);
244 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
245 int, int, int);
246 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
247 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
248 struct sge_iq *, char *);
249 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
250 struct sysctl_ctx_list *, struct sysctl_oid *);
251 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
252 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
253 struct sge_iq *);
254 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
255 struct sysctl_oid *, struct sge_fl *);
256 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
257 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
258 static int alloc_fwq(struct adapter *);
259 static void free_fwq(struct adapter *);
260 static int alloc_ctrlq(struct adapter *, int);
261 static void free_ctrlq(struct adapter *, int);
262 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
263 static void free_rxq(struct vi_info *, struct sge_rxq *);
264 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
265 struct sge_rxq *);
266 #ifdef TCP_OFFLOAD
267 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
268 int);
269 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
270 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
271 struct sge_ofld_rxq *);
272 #endif
273 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
274 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
275 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
276 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
277 #endif
278 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
279 struct sysctl_oid *);
280 static void free_eq(struct adapter *, struct sge_eq *);
281 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
282 struct sysctl_oid *, struct sge_eq *);
283 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
284 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
285 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
286 struct sysctl_ctx_list *, struct sysctl_oid *);
287 static void free_wrq(struct adapter *, struct sge_wrq *);
288 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
289 struct sge_wrq *);
290 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
291 static void free_txq(struct vi_info *, struct sge_txq *);
292 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
293 struct sysctl_oid *, struct sge_txq *);
294 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
295 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
296 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
297 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
298 struct sge_ofld_txq *);
299 #endif
300 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
301 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
302 static int refill_fl(struct adapter *, struct sge_fl *, int);
303 static void refill_sfl(void *);
304 static int find_refill_source(struct adapter *, int, bool);
305 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
306
307 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
308 static inline u_int txpkt_len16(u_int, const u_int);
309 static inline u_int txpkt_vm_len16(u_int, const u_int);
310 static inline void calculate_mbuf_len16(struct mbuf *, bool);
311 static inline u_int txpkts0_len16(u_int);
312 static inline u_int txpkts1_len16(void);
313 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
314 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
315 u_int);
316 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
317 struct mbuf *);
318 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
319 int, bool *);
320 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
321 int, bool *);
322 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
323 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
324 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
325 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
326 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
327 static inline uint16_t read_hw_cidx(struct sge_eq *);
328 static inline u_int reclaimable_tx_desc(struct sge_eq *);
329 static inline u_int total_available_tx_desc(struct sge_eq *);
330 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
331 static void tx_reclaim(void *, int);
332 static __be64 get_flit(struct sglist_seg *, int, int);
333 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
334 struct mbuf *);
335 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
336 struct mbuf *);
337 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
338 static void wrq_tx_drain(void *, int);
339 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
340
341 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
342 #ifdef RATELIMIT
343 #if defined(INET) || defined(INET6)
344 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
345 #endif
346 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
347 struct mbuf *);
348 #endif
349
350 static counter_u64_t extfree_refs;
351 static counter_u64_t extfree_rels;
352
353 an_handler_t t4_an_handler;
354 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
355 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
356 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
357 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
358 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
359 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
360 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
361
362 void
363 t4_register_an_handler(an_handler_t h)
364 {
365 uintptr_t *loc;
366
367 MPASS(h == NULL || t4_an_handler == NULL);
368
369 loc = (uintptr_t *)&t4_an_handler;
370 atomic_store_rel_ptr(loc, (uintptr_t)h);
371 }
372
373 void
374 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
375 {
376 uintptr_t *loc;
377
378 MPASS(type < nitems(t4_fw_msg_handler));
379 MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
380 /*
381 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
382 * handler dispatch table. Reject any attempt to install a handler for
383 * this subtype.
384 */
385 MPASS(type != FW_TYPE_RSSCPL);
386 MPASS(type != FW6_TYPE_RSSCPL);
387
388 loc = (uintptr_t *)&t4_fw_msg_handler[type];
389 atomic_store_rel_ptr(loc, (uintptr_t)h);
390 }
391
392 void
393 t4_register_cpl_handler(int opcode, cpl_handler_t h)
394 {
395 uintptr_t *loc;
396
397 MPASS(opcode < nitems(t4_cpl_handler));
398 MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
399
400 loc = (uintptr_t *)&t4_cpl_handler[opcode];
401 atomic_store_rel_ptr(loc, (uintptr_t)h);
402 }
403
404 static int
405 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
406 struct mbuf *m)
407 {
408 const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
409 u_int tid;
410 int cookie;
411
412 MPASS(m == NULL);
413
414 tid = GET_TID(cpl);
415 if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
416 /*
417 * The return code for filter-write is put in the CPL cookie so
418 * we have to rely on the hardware tid (is_ftid) to determine
419 * that this is a response to a filter.
420 */
421 cookie = CPL_COOKIE_FILTER;
422 } else {
423 cookie = G_COOKIE(cpl->cookie);
424 }
425 MPASS(cookie > CPL_COOKIE_RESERVED);
426 MPASS(cookie < nitems(set_tcb_rpl_handlers));
427
428 return (set_tcb_rpl_handlers[cookie](iq, rss, m));
429 }
430
431 static int
432 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
433 struct mbuf *m)
434 {
435 const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
436 unsigned int cookie;
437
438 MPASS(m == NULL);
439
440 cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
441 return (l2t_write_rpl_handlers[cookie](iq, rss, m));
442 }
443
444 static int
445 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
446 struct mbuf *m)
447 {
448 const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
449 u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
450
451 MPASS(m == NULL);
452 MPASS(cookie != CPL_COOKIE_RESERVED);
453
454 return (act_open_rpl_handlers[cookie](iq, rss, m));
455 }
456
457 static int
458 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
459 struct mbuf *m)
460 {
461 struct adapter *sc = iq->adapter;
462 u_int cookie;
463
464 MPASS(m == NULL);
465 if (is_hashfilter(sc))
466 cookie = CPL_COOKIE_HASHFILTER;
467 else
468 cookie = CPL_COOKIE_TOM;
469
470 return (abort_rpl_rss_handlers[cookie](iq, rss, m));
471 }
472
473 static int
474 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
475 {
476 struct adapter *sc = iq->adapter;
477 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
478 unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
479 u_int cookie;
480
481 MPASS(m == NULL);
482 if (is_etid(sc, tid))
483 cookie = CPL_COOKIE_ETHOFLD;
484 else
485 cookie = CPL_COOKIE_TOM;
486
487 return (fw4_ack_handlers[cookie](iq, rss, m));
488 }
489
490 static void
491 t4_init_shared_cpl_handlers(void)
492 {
493
494 t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
495 t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
496 t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
497 t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
498 t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
499 }
500
501 void
502 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
503 {
504 uintptr_t *loc;
505
506 MPASS(opcode < nitems(t4_cpl_handler));
507 MPASS(cookie > CPL_COOKIE_RESERVED);
508 MPASS(cookie < NUM_CPL_COOKIES);
509 MPASS(t4_cpl_handler[opcode] != NULL);
510
511 switch (opcode) {
512 case CPL_SET_TCB_RPL:
513 loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
514 break;
515 case CPL_L2T_WRITE_RPL:
516 loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
517 break;
518 case CPL_ACT_OPEN_RPL:
519 loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
520 break;
521 case CPL_ABORT_RPL_RSS:
522 loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
523 break;
524 case CPL_FW4_ACK:
525 loc = (uintptr_t *)&fw4_ack_handlers[cookie];
526 break;
527 default:
528 MPASS(0);
529 return;
530 }
531 MPASS(h == NULL || *loc == (uintptr_t)NULL);
532 atomic_store_rel_ptr(loc, (uintptr_t)h);
533 }
534
535 /*
536 * Called on MOD_LOAD. Validates and calculates the SGE tunables.
537 */
538 void
539 t4_sge_modload(void)
540 {
541
542 if (fl_pktshift < 0 || fl_pktshift > 7) {
543 printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
544 " using 0 instead.\n", fl_pktshift);
545 fl_pktshift = 0;
546 }
547
548 if (spg_len != 64 && spg_len != 128) {
549 int len;
550
551 #if defined(__i386__) || defined(__amd64__)
552 len = cpu_clflush_line_size > 64 ? 128 : 64;
553 #else
554 len = 64;
555 #endif
556 if (spg_len != -1) {
557 printf("Invalid hw.cxgbe.spg_len value (%d),"
558 " using %d instead.\n", spg_len, len);
559 }
560 spg_len = len;
561 }
562
563 if (cong_drop < -1 || cong_drop > 2) {
564 printf("Invalid hw.cxgbe.cong_drop value (%d),"
565 " using 0 instead.\n", cong_drop);
566 cong_drop = 0;
567 }
568 #ifdef TCP_OFFLOAD
569 if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
570 printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
571 " using 0 instead.\n", ofld_cong_drop);
572 ofld_cong_drop = 0;
573 }
574 #endif
575
576 if (tscale != 1 && (tscale < 3 || tscale > 17)) {
577 printf("Invalid hw.cxgbe.tscale value (%d),"
578 " using 1 instead.\n", tscale);
579 tscale = 1;
580 }
581
582 if (largest_rx_cluster != MCLBYTES &&
583 largest_rx_cluster != MJUMPAGESIZE &&
584 largest_rx_cluster != MJUM9BYTES &&
585 largest_rx_cluster != MJUM16BYTES) {
586 printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
587 " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
588 largest_rx_cluster = MJUM16BYTES;
589 }
590
591 if (safest_rx_cluster != MCLBYTES &&
592 safest_rx_cluster != MJUMPAGESIZE &&
593 safest_rx_cluster != MJUM9BYTES &&
594 safest_rx_cluster != MJUM16BYTES) {
595 printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
596 " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
597 safest_rx_cluster = MJUMPAGESIZE;
598 }
599
600 extfree_refs = counter_u64_alloc(M_WAITOK);
601 extfree_rels = counter_u64_alloc(M_WAITOK);
602 pullups = counter_u64_alloc(M_WAITOK);
603 defrags = counter_u64_alloc(M_WAITOK);
604 counter_u64_zero(extfree_refs);
605 counter_u64_zero(extfree_rels);
606 counter_u64_zero(pullups);
607 counter_u64_zero(defrags);
608
609 t4_init_shared_cpl_handlers();
610 t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
611 t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
612 t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
613 #ifdef RATELIMIT
614 t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
615 CPL_COOKIE_ETHOFLD);
616 #endif
617 t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
618 t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
619 }
620
621 void
622 t4_sge_modunload(void)
623 {
624
625 counter_u64_free(extfree_refs);
626 counter_u64_free(extfree_rels);
627 counter_u64_free(pullups);
628 counter_u64_free(defrags);
629 }
630
631 uint64_t
632 t4_sge_extfree_refs(void)
633 {
634 uint64_t refs, rels;
635
636 rels = counter_u64_fetch(extfree_rels);
637 refs = counter_u64_fetch(extfree_refs);
638
639 return (refs - rels);
640 }
641
642 /* max 4096 */
643 #define MAX_PACK_BOUNDARY 512
644
645 static inline void
646 setup_pad_and_pack_boundaries(struct adapter *sc)
647 {
648 uint32_t v, m;
649 int pad, pack, pad_shift;
650
651 pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
652 X_INGPADBOUNDARY_SHIFT;
653 pad = fl_pad;
654 if (fl_pad < (1 << pad_shift) ||
655 fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
656 !powerof2(fl_pad)) {
657 /*
658 * If there is any chance that we might use buffer packing and
659 * the chip is a T4, then pick 64 as the pad/pack boundary. Set
660 * it to the minimum allowed in all other cases.
661 */
662 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
663
664 /*
665 * For fl_pad = 0 we'll still write a reasonable value to the
666 * register but all the freelists will opt out of padding.
667 * We'll complain here only if the user tried to set it to a
668 * value greater than 0 that was invalid.
669 */
670 if (fl_pad > 0) {
671 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
672 " (%d), using %d instead.\n", fl_pad, pad);
673 }
674 }
675 m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
676 v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
677 t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
678
679 if (is_t4(sc)) {
680 if (fl_pack != -1 && fl_pack != pad) {
681 /* Complain but carry on. */
682 device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
683 " using %d instead.\n", fl_pack, pad);
684 }
685 return;
686 }
687
688 pack = fl_pack;
689 if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
690 !powerof2(fl_pack)) {
691 if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
692 pack = MAX_PACK_BOUNDARY;
693 else
694 pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
695 MPASS(powerof2(pack));
696 if (pack < 16)
697 pack = 16;
698 if (pack == 32)
699 pack = 64;
700 if (pack > 4096)
701 pack = 4096;
702 if (fl_pack != -1) {
703 device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
704 " (%d), using %d instead.\n", fl_pack, pack);
705 }
706 }
707 m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
708 if (pack == 16)
709 v = V_INGPACKBOUNDARY(0);
710 else
711 v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
712
713 MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */
714 t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
715 }
716
717 /*
718 * adap->params.vpd.cclk must be set up before this is called.
719 */
720 void
721 t4_tweak_chip_settings(struct adapter *sc)
722 {
723 int i, reg;
724 uint32_t v, m;
725 int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
726 int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
727 int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
728 uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
729 static int sw_buf_sizes[] = {
730 MCLBYTES,
731 MJUMPAGESIZE,
732 MJUM9BYTES,
733 MJUM16BYTES
734 };
735
736 KASSERT(sc->flags & MASTER_PF,
737 ("%s: trying to change chip settings when not master.", __func__));
738
739 m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
740 v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
741 V_EGRSTATUSPAGESIZE(spg_len == 128);
742 t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
743
744 setup_pad_and_pack_boundaries(sc);
745
746 v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
747 V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
748 V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
749 V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
750 V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
751 V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
752 V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
753 V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
754 t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
755
756 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
757 t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
758 reg = A_SGE_FL_BUFFER_SIZE2;
759 for (i = 0; i < nitems(sw_buf_sizes); i++) {
760 MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
761 t4_write_reg(sc, reg, sw_buf_sizes[i]);
762 reg += 4;
763 MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
764 t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
765 reg += 4;
766 }
767
768 v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
769 V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
770 t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
771
772 KASSERT(intr_timer[0] <= timer_max,
773 ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
774 timer_max));
775 for (i = 1; i < nitems(intr_timer); i++) {
776 KASSERT(intr_timer[i] >= intr_timer[i - 1],
777 ("%s: timers not listed in increasing order (%d)",
778 __func__, i));
779
780 while (intr_timer[i] > timer_max) {
781 if (i == nitems(intr_timer) - 1) {
782 intr_timer[i] = timer_max;
783 break;
784 }
785 intr_timer[i] += intr_timer[i - 1];
786 intr_timer[i] /= 2;
787 }
788 }
789
790 v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
791 V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
792 t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
793 v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
794 V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
795 t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
796 v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
797 V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
798 t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
799
800 if (chip_id(sc) >= CHELSIO_T6) {
801 m = V_TSCALE(M_TSCALE);
802 if (tscale == 1)
803 v = 0;
804 else
805 v = V_TSCALE(tscale - 2);
806 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
807
808 if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
809 m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
810 V_WRTHRTHRESH(M_WRTHRTHRESH);
811 t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
812 v &= ~m;
813 v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
814 V_WRTHRTHRESH(16);
815 t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
816 }
817 }
818
819 /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
820 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
821 t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
822
823 /*
824 * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been
825 * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we
826 * may have to deal with is MAXPHYS + 1 page.
827 */
828 v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
829 t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
830
831 /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
832 m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
833 t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
834
835 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
836 F_RESETDDPOFFSET;
837 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
838 t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
839 }
840
841 /*
842 * SGE wants the buffer to be at least 64B and then a multiple of 16. Its
843 * address mut be 16B aligned. If padding is in use the buffer's start and end
844 * need to be aligned to the pad boundary as well. We'll just make sure that
845 * the size is a multiple of the pad boundary here, it is up to the buffer
846 * allocation code to make sure the start of the buffer is aligned.
847 */
848 static inline int
849 hwsz_ok(struct adapter *sc, int hwsz)
850 {
851 int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
852
853 return (hwsz >= 64 && (hwsz & mask) == 0);
854 }
855
856 /*
857 * Initialize the rx buffer sizes and figure out which zones the buffers will
858 * be allocated from.
859 */
860 void
861 t4_init_rx_buf_info(struct adapter *sc)
862 {
863 struct sge *s = &sc->sge;
864 struct sge_params *sp = &sc->params.sge;
865 int i, j, n;
866 static int sw_buf_sizes[] = { /* Sorted by size */
867 MCLBYTES,
868 MJUMPAGESIZE,
869 MJUM9BYTES,
870 MJUM16BYTES
871 };
872 struct rx_buf_info *rxb;
873
874 s->safe_zidx = -1;
875 rxb = &s->rx_buf_info[0];
876 for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
877 rxb->size1 = sw_buf_sizes[i];
878 rxb->zone = m_getzone(rxb->size1);
879 rxb->type = m_gettype(rxb->size1);
880 rxb->size2 = 0;
881 rxb->hwidx1 = -1;
882 rxb->hwidx2 = -1;
883 for (j = 0; j < SGE_FLBUF_SIZES; j++) {
884 int hwsize = sp->sge_fl_buffer_size[j];
885
886 if (!hwsz_ok(sc, hwsize))
887 continue;
888
889 /* hwidx for size1 */
890 if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
891 rxb->hwidx1 = j;
892
893 /* hwidx for size2 (buffer packing) */
894 if (rxb->size1 - CL_METADATA_SIZE < hwsize)
895 continue;
896 n = rxb->size1 - hwsize - CL_METADATA_SIZE;
897 if (n == 0) {
898 rxb->hwidx2 = j;
899 rxb->size2 = hwsize;
900 break; /* stop looking */
901 }
902 if (rxb->hwidx2 != -1) {
903 if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
904 hwsize - CL_METADATA_SIZE) {
905 rxb->hwidx2 = j;
906 rxb->size2 = hwsize;
907 }
908 } else if (n <= 2 * CL_METADATA_SIZE) {
909 rxb->hwidx2 = j;
910 rxb->size2 = hwsize;
911 }
912 }
913 if (rxb->hwidx2 != -1)
914 sc->flags |= BUF_PACKING_OK;
915 if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
916 s->safe_zidx = i;
917 }
918 }
919
920 /*
921 * Verify some basic SGE settings for the PF and VF driver, and other
922 * miscellaneous settings for the PF driver.
923 */
924 int
925 t4_verify_chip_settings(struct adapter *sc)
926 {
927 struct sge_params *sp = &sc->params.sge;
928 uint32_t m, v, r;
929 int rc = 0;
930 const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
931
932 m = F_RXPKTCPLMODE;
933 v = F_RXPKTCPLMODE;
934 r = sp->sge_control;
935 if ((r & m) != v) {
936 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
937 rc = EINVAL;
938 }
939
940 /*
941 * If this changes then every single use of PAGE_SHIFT in the driver
942 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
943 */
944 if (sp->page_shift != PAGE_SHIFT) {
945 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
946 rc = EINVAL;
947 }
948
949 if (sc->flags & IS_VF)
950 return (0);
951
952 v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
953 r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
954 if (r != v) {
955 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
956 if (sc->vres.ddp.size != 0)
957 rc = EINVAL;
958 }
959
960 m = v = F_TDDPTAGTCB;
961 r = t4_read_reg(sc, A_ULP_RX_CTL);
962 if ((r & m) != v) {
963 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
964 if (sc->vres.ddp.size != 0)
965 rc = EINVAL;
966 }
967
968 m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
969 F_RESETDDPOFFSET;
970 v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
971 r = t4_read_reg(sc, A_TP_PARA_REG5);
972 if ((r & m) != v) {
973 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
974 if (sc->vres.ddp.size != 0)
975 rc = EINVAL;
976 }
977
978 return (rc);
979 }
980
981 int
982 t4_create_dma_tag(struct adapter *sc)
983 {
984 int rc;
985
986 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
987 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
988 BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
989 NULL, &sc->dmat);
990 if (rc != 0) {
991 device_printf(sc->dev,
992 "failed to create main DMA tag: %d\n", rc);
993 }
994
995 return (rc);
996 }
997
998 void
999 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
1000 struct sysctl_oid_list *children)
1001 {
1002 struct sge_params *sp = &sc->params.sge;
1003
1004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
1005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
1006 sysctl_bufsizes, "A", "freelist buffer sizes");
1007
1008 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
1009 NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
1010
1011 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
1012 NULL, sp->pad_boundary, "payload pad boundary (bytes)");
1013
1014 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
1015 NULL, sp->spg_len, "status page size (bytes)");
1016
1017 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
1018 NULL, cong_drop, "congestion drop setting");
1019 #ifdef TCP_OFFLOAD
1020 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
1021 NULL, ofld_cong_drop, "congestion drop setting");
1022 #endif
1023
1024 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
1025 NULL, sp->pack_boundary, "payload pack boundary (bytes)");
1026 }
1027
1028 int
1029 t4_destroy_dma_tag(struct adapter *sc)
1030 {
1031 if (sc->dmat)
1032 bus_dma_tag_destroy(sc->dmat);
1033
1034 return (0);
1035 }
1036
1037 /*
1038 * Allocate and initialize the firmware event queue, control queues, and special
1039 * purpose rx queues owned by the adapter.
1040 *
1041 * Returns errno on failure. Resources allocated up to that point may still be
1042 * allocated. Caller is responsible for cleanup in case this function fails.
1043 */
1044 int
1045 t4_setup_adapter_queues(struct adapter *sc)
1046 {
1047 int rc, i;
1048
1049 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1050
1051 /*
1052 * Firmware event queue
1053 */
1054 rc = alloc_fwq(sc);
1055 if (rc != 0)
1056 return (rc);
1057
1058 /*
1059 * That's all for the VF driver.
1060 */
1061 if (sc->flags & IS_VF)
1062 return (rc);
1063
1064 /*
1065 * XXX: General purpose rx queues, one per port.
1066 */
1067
1068 /*
1069 * Control queues, one per port.
1070 */
1071 for_each_port(sc, i) {
1072 rc = alloc_ctrlq(sc, i);
1073 if (rc != 0)
1074 return (rc);
1075 }
1076
1077 return (rc);
1078 }
1079
1080 /*
1081 * Idempotent
1082 */
1083 int
1084 t4_teardown_adapter_queues(struct adapter *sc)
1085 {
1086 int i;
1087
1088 ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1089
1090 if (sc->sge.ctrlq != NULL) {
1091 MPASS(!(sc->flags & IS_VF)); /* VFs don't allocate ctrlq. */
1092 for_each_port(sc, i)
1093 free_ctrlq(sc, i);
1094 }
1095 free_fwq(sc);
1096
1097 return (0);
1098 }
1099
1100 /* Maximum payload that could arrive with a single iq descriptor. */
1101 static inline int
1102 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
1103 {
1104 int maxp;
1105
1106 /* large enough even when hw VLAN extraction is disabled */
1107 maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1108 ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
1109 if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
1110 maxp < sc->params.tp.max_rx_pdu)
1111 maxp = sc->params.tp.max_rx_pdu;
1112 return (maxp);
1113 }
1114
1115 int
1116 t4_setup_vi_queues(struct vi_info *vi)
1117 {
1118 int rc = 0, i, intr_idx;
1119 struct sge_rxq *rxq;
1120 struct sge_txq *txq;
1121 #ifdef TCP_OFFLOAD
1122 struct sge_ofld_rxq *ofld_rxq;
1123 #endif
1124 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1125 struct sge_ofld_txq *ofld_txq;
1126 #endif
1127 #ifdef DEV_NETMAP
1128 int saved_idx, iqidx;
1129 struct sge_nm_rxq *nm_rxq;
1130 struct sge_nm_txq *nm_txq;
1131 #endif
1132 struct adapter *sc = vi->adapter;
1133 struct ifnet *ifp = vi->ifp;
1134 int maxp;
1135
1136 /* Interrupt vector to start from (when using multiple vectors) */
1137 intr_idx = vi->first_intr;
1138
1139 #ifdef DEV_NETMAP
1140 saved_idx = intr_idx;
1141 if (ifp->if_capabilities & IFCAP_NETMAP) {
1142
1143 /* netmap is supported with direct interrupts only. */
1144 MPASS(!forwarding_intr_to_fwq(sc));
1145 MPASS(vi->first_intr >= 0);
1146
1147 /*
1148 * We don't have buffers to back the netmap rx queues
1149 * right now so we create the queues in a way that
1150 * doesn't set off any congestion signal in the chip.
1151 */
1152 for_each_nm_rxq(vi, i, nm_rxq) {
1153 rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
1154 if (rc != 0)
1155 goto done;
1156 intr_idx++;
1157 }
1158
1159 for_each_nm_txq(vi, i, nm_txq) {
1160 iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1161 rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
1162 if (rc != 0)
1163 goto done;
1164 }
1165 }
1166
1167 /* Normal rx queues and netmap rx queues share the same interrupts. */
1168 intr_idx = saved_idx;
1169 #endif
1170
1171 /*
1172 * Allocate rx queues first because a default iqid is required when
1173 * creating a tx queue.
1174 */
1175 maxp = max_rx_payload(sc, ifp, false);
1176 for_each_rxq(vi, i, rxq) {
1177 rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
1178 if (rc != 0)
1179 goto done;
1180 if (!forwarding_intr_to_fwq(sc))
1181 intr_idx++;
1182 }
1183 #ifdef DEV_NETMAP
1184 if (ifp->if_capabilities & IFCAP_NETMAP)
1185 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1186 #endif
1187 #ifdef TCP_OFFLOAD
1188 maxp = max_rx_payload(sc, ifp, true);
1189 for_each_ofld_rxq(vi, i, ofld_rxq) {
1190 rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
1191 if (rc != 0)
1192 goto done;
1193 if (!forwarding_intr_to_fwq(sc))
1194 intr_idx++;
1195 }
1196 #endif
1197
1198 /*
1199 * Now the tx queues.
1200 */
1201 for_each_txq(vi, i, txq) {
1202 rc = alloc_txq(vi, txq, i);
1203 if (rc != 0)
1204 goto done;
1205 }
1206 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1207 for_each_ofld_txq(vi, i, ofld_txq) {
1208 rc = alloc_ofld_txq(vi, ofld_txq, i);
1209 if (rc != 0)
1210 goto done;
1211 }
1212 #endif
1213 done:
1214 if (rc)
1215 t4_teardown_vi_queues(vi);
1216
1217 return (rc);
1218 }
1219
1220 /*
1221 * Idempotent
1222 */
1223 int
1224 t4_teardown_vi_queues(struct vi_info *vi)
1225 {
1226 int i;
1227 struct sge_rxq *rxq;
1228 struct sge_txq *txq;
1229 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1230 struct sge_ofld_txq *ofld_txq;
1231 #endif
1232 #ifdef TCP_OFFLOAD
1233 struct sge_ofld_rxq *ofld_rxq;
1234 #endif
1235 #ifdef DEV_NETMAP
1236 struct sge_nm_rxq *nm_rxq;
1237 struct sge_nm_txq *nm_txq;
1238 #endif
1239
1240 #ifdef DEV_NETMAP
1241 if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1242 for_each_nm_txq(vi, i, nm_txq) {
1243 free_nm_txq(vi, nm_txq);
1244 }
1245
1246 for_each_nm_rxq(vi, i, nm_rxq) {
1247 free_nm_rxq(vi, nm_rxq);
1248 }
1249 }
1250 #endif
1251
1252 /*
1253 * Take down all the tx queues first, as they reference the rx queues
1254 * (for egress updates, etc.).
1255 */
1256
1257 for_each_txq(vi, i, txq) {
1258 free_txq(vi, txq);
1259 }
1260 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1261 for_each_ofld_txq(vi, i, ofld_txq) {
1262 free_ofld_txq(vi, ofld_txq);
1263 }
1264 #endif
1265
1266 /*
1267 * Then take down the rx queues.
1268 */
1269
1270 for_each_rxq(vi, i, rxq) {
1271 free_rxq(vi, rxq);
1272 }
1273 #ifdef TCP_OFFLOAD
1274 for_each_ofld_rxq(vi, i, ofld_rxq) {
1275 free_ofld_rxq(vi, ofld_rxq);
1276 }
1277 #endif
1278
1279 return (0);
1280 }
1281
1282 /*
1283 * Interrupt handler when the driver is using only 1 interrupt. This is a very
1284 * unusual scenario.
1285 *
1286 * a) Deals with errors, if any.
1287 * b) Services firmware event queue, which is taking interrupts for all other
1288 * queues.
1289 */
1290 void
1291 t4_intr_all(void *arg)
1292 {
1293 struct adapter *sc = arg;
1294 struct sge_iq *fwq = &sc->sge.fwq;
1295
1296 MPASS(sc->intr_count == 1);
1297
1298 if (sc->intr_type == INTR_INTX)
1299 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1300
1301 t4_intr_err(arg);
1302 t4_intr_evt(fwq);
1303 }
1304
1305 /*
1306 * Interrupt handler for errors (installed directly when multiple interrupts are
1307 * being used, or called by t4_intr_all).
1308 */
1309 void
1310 t4_intr_err(void *arg)
1311 {
1312 struct adapter *sc = arg;
1313 uint32_t v;
1314 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1315
1316 if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
1317 return;
1318
1319 v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1320 if (v & F_PFSW) {
1321 sc->swintr++;
1322 t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1323 }
1324
1325 if (t4_slow_intr_handler(sc, verbose))
1326 t4_fatal_err(sc, false);
1327 }
1328
1329 /*
1330 * Interrupt handler for iq-only queues. The firmware event queue is the only
1331 * such queue right now.
1332 */
1333 void
1334 t4_intr_evt(void *arg)
1335 {
1336 struct sge_iq *iq = arg;
1337
1338 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1339 service_iq(iq, 0);
1340 (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1341 }
1342 }
1343
1344 /*
1345 * Interrupt handler for iq+fl queues.
1346 */
1347 void
1348 t4_intr(void *arg)
1349 {
1350 struct sge_iq *iq = arg;
1351
1352 if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1353 service_iq_fl(iq, 0);
1354 (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1355 }
1356 }
1357
1358 #ifdef DEV_NETMAP
1359 /*
1360 * Interrupt handler for netmap rx queues.
1361 */
1362 void
1363 t4_nm_intr(void *arg)
1364 {
1365 struct sge_nm_rxq *nm_rxq = arg;
1366
1367 if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1368 service_nm_rxq(nm_rxq);
1369 (void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1370 }
1371 }
1372
1373 /*
1374 * Interrupt handler for vectors shared between NIC and netmap rx queues.
1375 */
1376 void
1377 t4_vi_intr(void *arg)
1378 {
1379 struct irq *irq = arg;
1380
1381 MPASS(irq->nm_rxq != NULL);
1382 t4_nm_intr(irq->nm_rxq);
1383
1384 MPASS(irq->rxq != NULL);
1385 t4_intr(irq->rxq);
1386 }
1387 #endif
1388
1389 /*
1390 * Deals with interrupts on an iq-only (no freelist) queue.
1391 */
1392 static int
1393 service_iq(struct sge_iq *iq, int budget)
1394 {
1395 struct sge_iq *q;
1396 struct adapter *sc = iq->adapter;
1397 struct iq_desc *d = &iq->desc[iq->cidx];
1398 int ndescs = 0, limit;
1399 int rsp_type;
1400 uint32_t lq;
1401 STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1402
1403 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1404 KASSERT((iq->flags & IQ_HAS_FL) == 0,
1405 ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1406 iq->flags));
1407 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1408 MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1409
1410 limit = budget ? budget : iq->qsize / 16;
1411
1412 /*
1413 * We always come back and check the descriptor ring for new indirect
1414 * interrupts and other responses after running a single handler.
1415 */
1416 for (;;) {
1417 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1418
1419 rmb();
1420
1421 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1422 lq = be32toh(d->rsp.pldbuflen_qid);
1423
1424 switch (rsp_type) {
1425 case X_RSPD_TYPE_FLBUF:
1426 panic("%s: data for an iq (%p) with no freelist",
1427 __func__, iq);
1428
1429 /* NOTREACHED */
1430
1431 case X_RSPD_TYPE_CPL:
1432 KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1433 ("%s: bad opcode %02x.", __func__,
1434 d->rss.opcode));
1435 t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1436 break;
1437
1438 case X_RSPD_TYPE_INTR:
1439 /*
1440 * There are 1K interrupt-capable queues (qids 0
1441 * through 1023). A response type indicating a
1442 * forwarded interrupt with a qid >= 1K is an
1443 * iWARP async notification.
1444 */
1445 if (__predict_true(lq >= 1024)) {
1446 t4_an_handler(iq, &d->rsp);
1447 break;
1448 }
1449
1450 q = sc->sge.iqmap[lq - sc->sge.iq_start -
1451 sc->sge.iq_base];
1452 if (atomic_cmpset_int(&q->state, IQS_IDLE,
1453 IQS_BUSY)) {
1454 if (service_iq_fl(q, q->qsize / 16) == 0) {
1455 (void) atomic_cmpset_int(&q->state,
1456 IQS_BUSY, IQS_IDLE);
1457 } else {
1458 STAILQ_INSERT_TAIL(&iql, q,
1459 link);
1460 }
1461 }
1462 break;
1463
1464 default:
1465 KASSERT(0,
1466 ("%s: illegal response type %d on iq %p",
1467 __func__, rsp_type, iq));
1468 log(LOG_ERR,
1469 "%s: illegal response type %d on iq %p",
1470 device_get_nameunit(sc->dev), rsp_type, iq);
1471 break;
1472 }
1473
1474 d++;
1475 if (__predict_false(++iq->cidx == iq->sidx)) {
1476 iq->cidx = 0;
1477 iq->gen ^= F_RSPD_GEN;
1478 d = &iq->desc[0];
1479 }
1480 if (__predict_false(++ndescs == limit)) {
1481 t4_write_reg(sc, sc->sge_gts_reg,
1482 V_CIDXINC(ndescs) |
1483 V_INGRESSQID(iq->cntxt_id) |
1484 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1485 ndescs = 0;
1486
1487 if (budget) {
1488 return (EINPROGRESS);
1489 }
1490 }
1491 }
1492
1493 if (STAILQ_EMPTY(&iql))
1494 break;
1495
1496 /*
1497 * Process the head only, and send it to the back of the list if
1498 * it's still not done.
1499 */
1500 q = STAILQ_FIRST(&iql);
1501 STAILQ_REMOVE_HEAD(&iql, link);
1502 if (service_iq_fl(q, q->qsize / 8) == 0)
1503 (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1504 else
1505 STAILQ_INSERT_TAIL(&iql, q, link);
1506 }
1507
1508 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1509 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1510
1511 return (0);
1512 }
1513
1514 #if defined(INET) || defined(INET6)
1515 static inline int
1516 sort_before_lro(struct lro_ctrl *lro)
1517 {
1518
1519 return (lro->lro_mbuf_max != 0);
1520 }
1521 #endif
1522
1523 #define CGBE_SHIFT_SCALE 10
1524
1525 static inline uint64_t
1526 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
1527 {
1528 struct clock_sync *cur, dcur;
1529 uint64_t hw_clocks;
1530 uint64_t hw_clk_div;
1531 sbintime_t sbt_cur_to_prev, sbt;
1532 uint64_t hw_tstmp = lf & 0xfffffffffffffffULL; /* 60b, not 64b. */
1533 seqc_t gen;
1534
1535 for (;;) {
1536 cur = &sc->cal_info[sc->cal_current];
1537 gen = seqc_read(&cur->gen);
1538 if (gen == 0)
1539 return (0);
1540 dcur = *cur;
1541 if (seqc_consistent(&cur->gen, gen))
1542 break;
1543 }
1544
1545 /*
1546 * Our goal here is to have a result that is:
1547 *
1548 * ( (cur_time - prev_time) )
1549 * ((hw_tstmp - hw_prev) * ----------------------------- ) + prev_time
1550 * ( (hw_cur - hw_prev) )
1551 *
1552 * With the constraints that we cannot use float and we
1553 * don't want to overflow the uint64_t numbers we are using.
1554 */
1555 hw_clocks = hw_tstmp - dcur.hw_prev;
1556 sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
1557 hw_clk_div = dcur.hw_cur - dcur.hw_prev;
1558 sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
1559 return (sbttons(sbt));
1560 }
1561
1562 static inline void
1563 move_to_next_rxbuf(struct sge_fl *fl)
1564 {
1565
1566 fl->rx_offset = 0;
1567 if (__predict_false((++fl->cidx & 7) == 0)) {
1568 uint16_t cidx = fl->cidx >> 3;
1569
1570 if (__predict_false(cidx == fl->sidx))
1571 fl->cidx = cidx = 0;
1572 fl->hw_cidx = cidx;
1573 }
1574 }
1575
1576 /*
1577 * Deals with interrupts on an iq+fl queue.
1578 */
1579 static int
1580 service_iq_fl(struct sge_iq *iq, int budget)
1581 {
1582 struct sge_rxq *rxq = iq_to_rxq(iq);
1583 struct sge_fl *fl;
1584 struct adapter *sc = iq->adapter;
1585 struct iq_desc *d = &iq->desc[iq->cidx];
1586 int ndescs, limit;
1587 int rsp_type, starved;
1588 uint32_t lq;
1589 uint16_t fl_hw_cidx;
1590 struct mbuf *m0;
1591 #if defined(INET) || defined(INET6)
1592 const struct timeval lro_timeout = {0, sc->lro_timeout};
1593 struct lro_ctrl *lro = &rxq->lro;
1594 #endif
1595
1596 KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1597 MPASS(iq->flags & IQ_HAS_FL);
1598
1599 ndescs = 0;
1600 #if defined(INET) || defined(INET6)
1601 if (iq->flags & IQ_ADJ_CREDIT) {
1602 MPASS(sort_before_lro(lro));
1603 iq->flags &= ~IQ_ADJ_CREDIT;
1604 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1605 tcp_lro_flush_all(lro);
1606 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1607 V_INGRESSQID((u32)iq->cntxt_id) |
1608 V_SEINTARM(iq->intr_params));
1609 return (0);
1610 }
1611 ndescs = 1;
1612 }
1613 #else
1614 MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1615 #endif
1616
1617 limit = budget ? budget : iq->qsize / 16;
1618 fl = &rxq->fl;
1619 fl_hw_cidx = fl->hw_cidx; /* stable snapshot */
1620 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1621
1622 rmb();
1623
1624 m0 = NULL;
1625 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1626 lq = be32toh(d->rsp.pldbuflen_qid);
1627
1628 switch (rsp_type) {
1629 case X_RSPD_TYPE_FLBUF:
1630 if (lq & F_RSPD_NEWBUF) {
1631 if (fl->rx_offset > 0)
1632 move_to_next_rxbuf(fl);
1633 lq = G_RSPD_LEN(lq);
1634 }
1635 if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
1636 FL_LOCK(fl);
1637 refill_fl(sc, fl, 64);
1638 FL_UNLOCK(fl);
1639 fl_hw_cidx = fl->hw_cidx;
1640 }
1641
1642 if (d->rss.opcode == CPL_RX_PKT) {
1643 if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
1644 break;
1645 goto out;
1646 }
1647 m0 = get_fl_payload(sc, fl, lq);
1648 if (__predict_false(m0 == NULL))
1649 goto out;
1650
1651 /* fall through */
1652
1653 case X_RSPD_TYPE_CPL:
1654 KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1655 ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1656 t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1657 break;
1658
1659 case X_RSPD_TYPE_INTR:
1660
1661 /*
1662 * There are 1K interrupt-capable queues (qids 0
1663 * through 1023). A response type indicating a
1664 * forwarded interrupt with a qid >= 1K is an
1665 * iWARP async notification. That is the only
1666 * acceptable indirect interrupt on this queue.
1667 */
1668 if (__predict_false(lq < 1024)) {
1669 panic("%s: indirect interrupt on iq_fl %p "
1670 "with qid %u", __func__, iq, lq);
1671 }
1672
1673 t4_an_handler(iq, &d->rsp);
1674 break;
1675
1676 default:
1677 KASSERT(0, ("%s: illegal response type %d on iq %p",
1678 __func__, rsp_type, iq));
1679 log(LOG_ERR, "%s: illegal response type %d on iq %p",
1680 device_get_nameunit(sc->dev), rsp_type, iq);
1681 break;
1682 }
1683
1684 d++;
1685 if (__predict_false(++iq->cidx == iq->sidx)) {
1686 iq->cidx = 0;
1687 iq->gen ^= F_RSPD_GEN;
1688 d = &iq->desc[0];
1689 }
1690 if (__predict_false(++ndescs == limit)) {
1691 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1692 V_INGRESSQID(iq->cntxt_id) |
1693 V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1694
1695 #if defined(INET) || defined(INET6)
1696 if (iq->flags & IQ_LRO_ENABLED &&
1697 !sort_before_lro(lro) &&
1698 sc->lro_timeout != 0) {
1699 tcp_lro_flush_inactive(lro, &lro_timeout);
1700 }
1701 #endif
1702 if (budget)
1703 return (EINPROGRESS);
1704 ndescs = 0;
1705 }
1706 }
1707 out:
1708 #if defined(INET) || defined(INET6)
1709 if (iq->flags & IQ_LRO_ENABLED) {
1710 if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1711 MPASS(sort_before_lro(lro));
1712 /* hold back one credit and don't flush LRO state */
1713 iq->flags |= IQ_ADJ_CREDIT;
1714 ndescs--;
1715 } else {
1716 tcp_lro_flush_all(lro);
1717 }
1718 }
1719 #endif
1720
1721 t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1722 V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1723
1724 FL_LOCK(fl);
1725 starved = refill_fl(sc, fl, 64);
1726 FL_UNLOCK(fl);
1727 if (__predict_false(starved != 0))
1728 add_fl_to_sfl(sc, fl);
1729
1730 return (0);
1731 }
1732
1733 static inline struct cluster_metadata *
1734 cl_metadata(struct fl_sdesc *sd)
1735 {
1736
1737 return ((void *)(sd->cl + sd->moff));
1738 }
1739
1740 static void
1741 rxb_free(struct mbuf *m)
1742 {
1743 struct cluster_metadata *clm = m->m_ext.ext_arg1;
1744
1745 uma_zfree(clm->zone, clm->cl);
1746 counter_u64_add(extfree_rels, 1);
1747 }
1748
1749 /*
1750 * The mbuf returned comes from zone_muf and carries the payload in one of these
1751 * ways
1752 * a) complete frame inside the mbuf
1753 * b) m_cljset (for clusters without metadata)
1754 * d) m_extaddref (cluster with metadata)
1755 */
1756 static struct mbuf *
1757 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1758 int remaining)
1759 {
1760 struct mbuf *m;
1761 struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1762 struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1763 struct cluster_metadata *clm;
1764 int len, blen;
1765 caddr_t payload;
1766
1767 if (fl->flags & FL_BUF_PACKING) {
1768 u_int l, pad;
1769
1770 blen = rxb->size2 - fl->rx_offset; /* max possible in this buf */
1771 len = min(remaining, blen);
1772 payload = sd->cl + fl->rx_offset;
1773
1774 l = fr_offset + len;
1775 pad = roundup2(l, fl->buf_boundary) - l;
1776 if (fl->rx_offset + len + pad < rxb->size2)
1777 blen = len + pad;
1778 MPASS(fl->rx_offset + blen <= rxb->size2);
1779 } else {
1780 MPASS(fl->rx_offset == 0); /* not packing */
1781 blen = rxb->size1;
1782 len = min(remaining, blen);
1783 payload = sd->cl;
1784 }
1785
1786 if (fr_offset == 0) {
1787 m = m_gethdr(M_NOWAIT, MT_DATA);
1788 if (__predict_false(m == NULL))
1789 return (NULL);
1790 m->m_pkthdr.len = remaining;
1791 } else {
1792 m = m_get(M_NOWAIT, MT_DATA);
1793 if (__predict_false(m == NULL))
1794 return (NULL);
1795 }
1796 m->m_len = len;
1797 kmsan_mark(payload, len, KMSAN_STATE_INITED);
1798
1799 if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1800 /* copy data to mbuf */
1801 bcopy(payload, mtod(m, caddr_t), len);
1802 if (fl->flags & FL_BUF_PACKING) {
1803 fl->rx_offset += blen;
1804 MPASS(fl->rx_offset <= rxb->size2);
1805 if (fl->rx_offset < rxb->size2)
1806 return (m); /* without advancing the cidx */
1807 }
1808 } else if (fl->flags & FL_BUF_PACKING) {
1809 clm = cl_metadata(sd);
1810 if (sd->nmbuf++ == 0) {
1811 clm->refcount = 1;
1812 clm->zone = rxb->zone;
1813 clm->cl = sd->cl;
1814 counter_u64_add(extfree_refs, 1);
1815 }
1816 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
1817 NULL);
1818
1819 fl->rx_offset += blen;
1820 MPASS(fl->rx_offset <= rxb->size2);
1821 if (fl->rx_offset < rxb->size2)
1822 return (m); /* without advancing the cidx */
1823 } else {
1824 m_cljset(m, sd->cl, rxb->type);
1825 sd->cl = NULL; /* consumed, not a recycle candidate */
1826 }
1827
1828 move_to_next_rxbuf(fl);
1829
1830 return (m);
1831 }
1832
1833 static struct mbuf *
1834 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
1835 {
1836 struct mbuf *m0, *m, **pnext;
1837 u_int remaining;
1838
1839 if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1840 M_ASSERTPKTHDR(fl->m0);
1841 MPASS(fl->m0->m_pkthdr.len == plen);
1842 MPASS(fl->remaining < plen);
1843
1844 m0 = fl->m0;
1845 pnext = fl->pnext;
1846 remaining = fl->remaining;
1847 fl->flags &= ~FL_BUF_RESUME;
1848 goto get_segment;
1849 }
1850
1851 /*
1852 * Payload starts at rx_offset in the current hw buffer. Its length is
1853 * 'len' and it may span multiple hw buffers.
1854 */
1855
1856 m0 = get_scatter_segment(sc, fl, 0, plen);
1857 if (m0 == NULL)
1858 return (NULL);
1859 remaining = plen - m0->m_len;
1860 pnext = &m0->m_next;
1861 while (remaining > 0) {
1862 get_segment:
1863 MPASS(fl->rx_offset == 0);
1864 m = get_scatter_segment(sc, fl, plen - remaining, remaining);
1865 if (__predict_false(m == NULL)) {
1866 fl->m0 = m0;
1867 fl->pnext = pnext;
1868 fl->remaining = remaining;
1869 fl->flags |= FL_BUF_RESUME;
1870 return (NULL);
1871 }
1872 *pnext = m;
1873 pnext = &m->m_next;
1874 remaining -= m->m_len;
1875 }
1876 *pnext = NULL;
1877
1878 M_ASSERTPKTHDR(m0);
1879 return (m0);
1880 }
1881
1882 static int
1883 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1884 int remaining)
1885 {
1886 struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1887 struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1888 int len, blen;
1889
1890 if (fl->flags & FL_BUF_PACKING) {
1891 u_int l, pad;
1892
1893 blen = rxb->size2 - fl->rx_offset; /* max possible in this buf */
1894 len = min(remaining, blen);
1895
1896 l = fr_offset + len;
1897 pad = roundup2(l, fl->buf_boundary) - l;
1898 if (fl->rx_offset + len + pad < rxb->size2)
1899 blen = len + pad;
1900 fl->rx_offset += blen;
1901 MPASS(fl->rx_offset <= rxb->size2);
1902 if (fl->rx_offset < rxb->size2)
1903 return (len); /* without advancing the cidx */
1904 } else {
1905 MPASS(fl->rx_offset == 0); /* not packing */
1906 blen = rxb->size1;
1907 len = min(remaining, blen);
1908 }
1909 move_to_next_rxbuf(fl);
1910 return (len);
1911 }
1912
1913 static inline void
1914 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
1915 {
1916 int remaining, fr_offset, len;
1917
1918 fr_offset = 0;
1919 remaining = plen;
1920 while (remaining > 0) {
1921 len = skip_scatter_segment(sc, fl, fr_offset, remaining);
1922 fr_offset += len;
1923 remaining -= len;
1924 }
1925 }
1926
1927 static inline int
1928 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
1929 {
1930 int len;
1931 struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1932 struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
1933
1934 if (fl->flags & FL_BUF_PACKING)
1935 len = rxb->size2 - fl->rx_offset;
1936 else
1937 len = rxb->size1;
1938
1939 return (min(plen, len));
1940 }
1941
1942 static int
1943 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
1944 u_int plen)
1945 {
1946 struct mbuf *m0;
1947 struct ifnet *ifp = rxq->ifp;
1948 struct sge_fl *fl = &rxq->fl;
1949 struct vi_info *vi = ifp->if_softc;
1950 const struct cpl_rx_pkt *cpl;
1951 #if defined(INET) || defined(INET6)
1952 struct lro_ctrl *lro = &rxq->lro;
1953 #endif
1954 uint16_t err_vec, tnl_type, tnlhdr_len;
1955 static const int sw_hashtype[4][2] = {
1956 {M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1957 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1958 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1959 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1960 };
1961 static const int sw_csum_flags[2][2] = {
1962 {
1963 /* IP, inner IP */
1964 CSUM_ENCAP_VXLAN |
1965 CSUM_L3_CALC | CSUM_L3_VALID |
1966 CSUM_L4_CALC | CSUM_L4_VALID |
1967 CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1968 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1969
1970 /* IP, inner IP6 */
1971 CSUM_ENCAP_VXLAN |
1972 CSUM_L3_CALC | CSUM_L3_VALID |
1973 CSUM_L4_CALC | CSUM_L4_VALID |
1974 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1975 },
1976 {
1977 /* IP6, inner IP */
1978 CSUM_ENCAP_VXLAN |
1979 CSUM_L4_CALC | CSUM_L4_VALID |
1980 CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
1981 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1982
1983 /* IP6, inner IP6 */
1984 CSUM_ENCAP_VXLAN |
1985 CSUM_L4_CALC | CSUM_L4_VALID |
1986 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
1987 },
1988 };
1989
1990 MPASS(plen > sc->params.sge.fl_pktshift);
1991 if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
1992 __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
1993 struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1994 caddr_t frame;
1995 int rc, slen;
1996
1997 slen = get_segment_len(sc, fl, plen) -
1998 sc->params.sge.fl_pktshift;
1999 frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
2000 CURVNET_SET_QUIET(ifp->if_vnet);
2001 rc = pfil_run_hooks(vi->pfil, frame, ifp,
2002 slen | PFIL_MEMPTR | PFIL_IN, NULL);
2003 CURVNET_RESTORE();
2004 if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
2005 skip_fl_payload(sc, fl, plen);
2006 return (0);
2007 }
2008 if (rc == PFIL_REALLOCED) {
2009 skip_fl_payload(sc, fl, plen);
2010 m0 = pfil_mem2mbuf(frame);
2011 goto have_mbuf;
2012 }
2013 }
2014
2015 m0 = get_fl_payload(sc, fl, plen);
2016 if (__predict_false(m0 == NULL))
2017 return (ENOMEM);
2018
2019 m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
2020 m0->m_len -= sc->params.sge.fl_pktshift;
2021 m0->m_data += sc->params.sge.fl_pktshift;
2022
2023 have_mbuf:
2024 m0->m_pkthdr.rcvif = ifp;
2025 M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
2026 m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
2027
2028 cpl = (const void *)(&d->rss + 1);
2029 if (sc->params.tp.rx_pkt_encap) {
2030 const uint16_t ev = be16toh(cpl->err_vec);
2031
2032 err_vec = G_T6_COMPR_RXERR_VEC(ev);
2033 tnl_type = G_T6_RX_TNL_TYPE(ev);
2034 tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
2035 } else {
2036 err_vec = be16toh(cpl->err_vec);
2037 tnl_type = 0;
2038 tnlhdr_len = 0;
2039 }
2040 if (cpl->csum_calc && err_vec == 0) {
2041 int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
2042
2043 /* checksum(s) calculated and found to be correct. */
2044
2045 MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
2046 (cpl->l2info & htobe32(F_RXF_IP6)));
2047 m0->m_pkthdr.csum_data = be16toh(cpl->csum);
2048 if (tnl_type == 0) {
2049 if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
2050 m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2051 CSUM_L3_VALID | CSUM_L4_CALC |
2052 CSUM_L4_VALID;
2053 } else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
2054 m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2055 CSUM_L4_VALID;
2056 }
2057 rxq->rxcsum++;
2058 } else {
2059 MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
2060
2061 M_HASHTYPE_SETINNER(m0);
2062 if (__predict_false(cpl->ip_frag)) {
2063 /*
2064 * csum_data is for the inner frame (which is an
2065 * IP fragment) and is not 0xffff. There is no
2066 * way to pass the inner csum_data to the stack.
2067 * We don't want the stack to use the inner
2068 * csum_data to validate the outer frame or it
2069 * will get rejected. So we fix csum_data here
2070 * and let sw do the checksum of inner IP
2071 * fragments.
2072 *
2073 * XXX: Need 32b for csum_data2 in an rx mbuf.
2074 * Maybe stuff it into rcv_tstmp?
2075 */
2076 m0->m_pkthdr.csum_data = 0xffff;
2077 if (ipv6) {
2078 m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
2079 CSUM_L4_VALID;
2080 } else {
2081 m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
2082 CSUM_L3_VALID | CSUM_L4_CALC |
2083 CSUM_L4_VALID;
2084 }
2085 } else {
2086 int outer_ipv6;
2087
2088 MPASS(m0->m_pkthdr.csum_data == 0xffff);
2089
2090 outer_ipv6 = tnlhdr_len >=
2091 sizeof(struct ether_header) +
2092 sizeof(struct ip6_hdr);
2093 m0->m_pkthdr.csum_flags =
2094 sw_csum_flags[outer_ipv6][ipv6];
2095 }
2096 rxq->vxlan_rxcsum++;
2097 }
2098 }
2099
2100 if (cpl->vlan_ex) {
2101 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
2102 m0->m_flags |= M_VLANTAG;
2103 rxq->vlan_extraction++;
2104 }
2105
2106 if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
2107 /*
2108 * Fill up rcv_tstmp but do not set M_TSTMP as
2109 * long as we get a non-zero back from t4_tstmp_to_ns().
2110 */
2111 m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
2112 be64toh(d->rsp.u.last_flit));
2113 if (m0->m_pkthdr.rcv_tstmp != 0)
2114 m0->m_flags |= M_TSTMP;
2115 }
2116
2117 #ifdef NUMA
2118 m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
2119 #endif
2120 #if defined(INET) || defined(INET6)
2121 if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
2122 (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
2123 M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
2124 if (sort_before_lro(lro)) {
2125 tcp_lro_queue_mbuf(lro, m0);
2126 return (0); /* queued for sort, then LRO */
2127 }
2128 if (tcp_lro_rx(lro, m0, 0) == 0)
2129 return (0); /* queued for LRO */
2130 }
2131 #endif
2132 ifp->if_input(ifp, m0);
2133
2134 return (0);
2135 }
2136
2137 /*
2138 * Must drain the wrq or make sure that someone else will.
2139 */
2140 static void
2141 wrq_tx_drain(void *arg, int n)
2142 {
2143 struct sge_wrq *wrq = arg;
2144 struct sge_eq *eq = &wrq->eq;
2145
2146 EQ_LOCK(eq);
2147 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2148 drain_wrq_wr_list(wrq->adapter, wrq);
2149 EQ_UNLOCK(eq);
2150 }
2151
2152 static void
2153 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2154 {
2155 struct sge_eq *eq = &wrq->eq;
2156 u_int available, dbdiff; /* # of hardware descriptors */
2157 u_int n;
2158 struct wrqe *wr;
2159 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */
2160
2161 EQ_LOCK_ASSERT_OWNED(eq);
2162 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2163 wr = STAILQ_FIRST(&wrq->wr_list);
2164 MPASS(wr != NULL); /* Must be called with something useful to do */
2165 MPASS(eq->pidx == eq->dbidx);
2166 dbdiff = 0;
2167
2168 do {
2169 eq->cidx = read_hw_cidx(eq);
2170 if (eq->pidx == eq->cidx)
2171 available = eq->sidx - 1;
2172 else
2173 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2174
2175 MPASS(wr->wrq == wrq);
2176 n = howmany(wr->wr_len, EQ_ESIZE);
2177 if (available < n)
2178 break;
2179
2180 dst = (void *)&eq->desc[eq->pidx];
2181 if (__predict_true(eq->sidx - eq->pidx > n)) {
2182 /* Won't wrap, won't end exactly at the status page. */
2183 bcopy(&wr->wr[0], dst, wr->wr_len);
2184 eq->pidx += n;
2185 } else {
2186 int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2187
2188 bcopy(&wr->wr[0], dst, first_portion);
2189 if (wr->wr_len > first_portion) {
2190 bcopy(&wr->wr[first_portion], &eq->desc[0],
2191 wr->wr_len - first_portion);
2192 }
2193 eq->pidx = n - (eq->sidx - eq->pidx);
2194 }
2195 wrq->tx_wrs_copied++;
2196
2197 if (available < eq->sidx / 4 &&
2198 atomic_cmpset_int(&eq->equiq, 0, 1)) {
2199 /*
2200 * XXX: This is not 100% reliable with some
2201 * types of WRs. But this is a very unusual
2202 * situation for an ofld/ctrl queue anyway.
2203 */
2204 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2205 F_FW_WR_EQUEQ);
2206 }
2207
2208 dbdiff += n;
2209 if (dbdiff >= 16) {
2210 ring_eq_db(sc, eq, dbdiff);
2211 dbdiff = 0;
2212 }
2213
2214 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2215 free_wrqe(wr);
2216 MPASS(wrq->nwr_pending > 0);
2217 wrq->nwr_pending--;
2218 MPASS(wrq->ndesc_needed >= n);
2219 wrq->ndesc_needed -= n;
2220 } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2221
2222 if (dbdiff)
2223 ring_eq_db(sc, eq, dbdiff);
2224 }
2225
2226 /*
2227 * Doesn't fail. Holds on to work requests it can't send right away.
2228 */
2229 void
2230 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2231 {
2232 #ifdef INVARIANTS
2233 struct sge_eq *eq = &wrq->eq;
2234 #endif
2235
2236 EQ_LOCK_ASSERT_OWNED(eq);
2237 MPASS(wr != NULL);
2238 MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2239 MPASS((wr->wr_len & 0x7) == 0);
2240
2241 STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2242 wrq->nwr_pending++;
2243 wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2244
2245 if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2246 return; /* commit_wrq_wr will drain wr_list as well. */
2247
2248 drain_wrq_wr_list(sc, wrq);
2249
2250 /* Doorbell must have caught up to the pidx. */
2251 MPASS(eq->pidx == eq->dbidx);
2252 }
2253
2254 void
2255 t4_update_fl_bufsize(struct ifnet *ifp)
2256 {
2257 struct vi_info *vi = ifp->if_softc;
2258 struct adapter *sc = vi->adapter;
2259 struct sge_rxq *rxq;
2260 #ifdef TCP_OFFLOAD
2261 struct sge_ofld_rxq *ofld_rxq;
2262 #endif
2263 struct sge_fl *fl;
2264 int i, maxp;
2265
2266 maxp = max_rx_payload(sc, ifp, false);
2267 for_each_rxq(vi, i, rxq) {
2268 fl = &rxq->fl;
2269
2270 FL_LOCK(fl);
2271 fl->zidx = find_refill_source(sc, maxp,
2272 fl->flags & FL_BUF_PACKING);
2273 FL_UNLOCK(fl);
2274 }
2275 #ifdef TCP_OFFLOAD
2276 maxp = max_rx_payload(sc, ifp, true);
2277 for_each_ofld_rxq(vi, i, ofld_rxq) {
2278 fl = &ofld_rxq->fl;
2279
2280 FL_LOCK(fl);
2281 fl->zidx = find_refill_source(sc, maxp,
2282 fl->flags & FL_BUF_PACKING);
2283 FL_UNLOCK(fl);
2284 }
2285 #endif
2286 }
2287
2288 static inline int
2289 mbuf_nsegs(struct mbuf *m)
2290 {
2291
2292 M_ASSERTPKTHDR(m);
2293 KASSERT(m->m_pkthdr.inner_l5hlen > 0,
2294 ("%s: mbuf %p missing information on # of segments.", __func__, m));
2295
2296 return (m->m_pkthdr.inner_l5hlen);
2297 }
2298
2299 static inline void
2300 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2301 {
2302
2303 M_ASSERTPKTHDR(m);
2304 m->m_pkthdr.inner_l5hlen = nsegs;
2305 }
2306
2307 static inline int
2308 mbuf_cflags(struct mbuf *m)
2309 {
2310
2311 M_ASSERTPKTHDR(m);
2312 return (m->m_pkthdr.PH_loc.eight[4]);
2313 }
2314
2315 static inline void
2316 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
2317 {
2318
2319 M_ASSERTPKTHDR(m);
2320 m->m_pkthdr.PH_loc.eight[4] = flags;
2321 }
2322
2323 static inline int
2324 mbuf_len16(struct mbuf *m)
2325 {
2326 int n;
2327
2328 M_ASSERTPKTHDR(m);
2329 n = m->m_pkthdr.PH_loc.eight[0];
2330 if (!(mbuf_cflags(m) & MC_TLS))
2331 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2332
2333 return (n);
2334 }
2335
2336 static inline void
2337 set_mbuf_len16(struct mbuf *m, uint8_t len16)
2338 {
2339
2340 M_ASSERTPKTHDR(m);
2341 if (!(mbuf_cflags(m) & MC_TLS))
2342 MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
2343 m->m_pkthdr.PH_loc.eight[0] = len16;
2344 }
2345
2346 #ifdef RATELIMIT
2347 static inline int
2348 mbuf_eo_nsegs(struct mbuf *m)
2349 {
2350
2351 M_ASSERTPKTHDR(m);
2352 return (m->m_pkthdr.PH_loc.eight[1]);
2353 }
2354
2355 #if defined(INET) || defined(INET6)
2356 static inline void
2357 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
2358 {
2359
2360 M_ASSERTPKTHDR(m);
2361 m->m_pkthdr.PH_loc.eight[1] = nsegs;
2362 }
2363 #endif
2364
2365 static inline int
2366 mbuf_eo_len16(struct mbuf *m)
2367 {
2368 int n;
2369
2370 M_ASSERTPKTHDR(m);
2371 n = m->m_pkthdr.PH_loc.eight[2];
2372 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2373
2374 return (n);
2375 }
2376
2377 #if defined(INET) || defined(INET6)
2378 static inline void
2379 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
2380 {
2381
2382 M_ASSERTPKTHDR(m);
2383 m->m_pkthdr.PH_loc.eight[2] = len16;
2384 }
2385 #endif
2386
2387 static inline int
2388 mbuf_eo_tsclk_tsoff(struct mbuf *m)
2389 {
2390
2391 M_ASSERTPKTHDR(m);
2392 return (m->m_pkthdr.PH_loc.eight[3]);
2393 }
2394
2395 #if defined(INET) || defined(INET6)
2396 static inline void
2397 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
2398 {
2399
2400 M_ASSERTPKTHDR(m);
2401 m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
2402 }
2403 #endif
2404
2405 static inline int
2406 needs_eo(struct m_snd_tag *mst)
2407 {
2408
2409 return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
2410 }
2411 #endif
2412
2413 /*
2414 * Try to allocate an mbuf to contain a raw work request. To make it
2415 * easy to construct the work request, don't allocate a chain but a
2416 * single mbuf.
2417 */
2418 struct mbuf *
2419 alloc_wr_mbuf(int len, int how)
2420 {
2421 struct mbuf *m;
2422
2423 if (len <= MHLEN)
2424 m = m_gethdr(how, MT_DATA);
2425 else if (len <= MCLBYTES)
2426 m = m_getcl(how, MT_DATA, M_PKTHDR);
2427 else
2428 m = NULL;
2429 if (m == NULL)
2430 return (NULL);
2431 m->m_pkthdr.len = len;
2432 m->m_len = len;
2433 set_mbuf_cflags(m, MC_RAW_WR);
2434 set_mbuf_len16(m, howmany(len, 16));
2435 return (m);
2436 }
2437
2438 static inline bool
2439 needs_hwcsum(struct mbuf *m)
2440 {
2441 const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
2442 CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2443 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
2444 CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
2445 CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
2446
2447 M_ASSERTPKTHDR(m);
2448
2449 return (m->m_pkthdr.csum_flags & csum_flags);
2450 }
2451
2452 static inline bool
2453 needs_tso(struct mbuf *m)
2454 {
2455 const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
2456 CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2457
2458 M_ASSERTPKTHDR(m);
2459
2460 return (m->m_pkthdr.csum_flags & csum_flags);
2461 }
2462
2463 static inline bool
2464 needs_vxlan_csum(struct mbuf *m)
2465 {
2466
2467 M_ASSERTPKTHDR(m);
2468
2469 return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
2470 }
2471
2472 static inline bool
2473 needs_vxlan_tso(struct mbuf *m)
2474 {
2475 const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
2476 CSUM_INNER_IP6_TSO;
2477
2478 M_ASSERTPKTHDR(m);
2479
2480 return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
2481 (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
2482 }
2483
2484 #if defined(INET) || defined(INET6)
2485 static inline bool
2486 needs_inner_tcp_csum(struct mbuf *m)
2487 {
2488 const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
2489
2490 M_ASSERTPKTHDR(m);
2491
2492 return (m->m_pkthdr.csum_flags & csum_flags);
2493 }
2494 #endif
2495
2496 static inline bool
2497 needs_l3_csum(struct mbuf *m)
2498 {
2499 const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
2500 CSUM_INNER_IP_TSO;
2501
2502 M_ASSERTPKTHDR(m);
2503
2504 return (m->m_pkthdr.csum_flags & csum_flags);
2505 }
2506
2507 static inline bool
2508 needs_outer_tcp_csum(struct mbuf *m)
2509 {
2510 const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
2511 CSUM_IP6_TSO;
2512
2513 M_ASSERTPKTHDR(m);
2514
2515 return (m->m_pkthdr.csum_flags & csum_flags);
2516 }
2517
2518 #ifdef RATELIMIT
2519 static inline bool
2520 needs_outer_l4_csum(struct mbuf *m)
2521 {
2522 const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
2523 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
2524
2525 M_ASSERTPKTHDR(m);
2526
2527 return (m->m_pkthdr.csum_flags & csum_flags);
2528 }
2529
2530 static inline bool
2531 needs_outer_udp_csum(struct mbuf *m)
2532 {
2533 const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
2534
2535 M_ASSERTPKTHDR(m);
2536
2537 return (m->m_pkthdr.csum_flags & csum_flags);
2538 }
2539 #endif
2540
2541 static inline bool
2542 needs_vlan_insertion(struct mbuf *m)
2543 {
2544
2545 M_ASSERTPKTHDR(m);
2546
2547 return (m->m_flags & M_VLANTAG);
2548 }
2549
2550 #if defined(INET) || defined(INET6)
2551 static void *
2552 m_advance(struct mbuf **pm, int *poffset, int len)
2553 {
2554 struct mbuf *m = *pm;
2555 int offset = *poffset;
2556 uintptr_t p = 0;
2557
2558 MPASS(len > 0);
2559
2560 for (;;) {
2561 if (offset + len < m->m_len) {
2562 offset += len;
2563 p = mtod(m, uintptr_t) + offset;
2564 break;
2565 }
2566 len -= m->m_len - offset;
2567 m = m->m_next;
2568 offset = 0;
2569 MPASS(m != NULL);
2570 }
2571 *poffset = offset;
2572 *pm = m;
2573 return ((void *)p);
2574 }
2575 #endif
2576
2577 static inline int
2578 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
2579 {
2580 vm_paddr_t paddr;
2581 int i, len, off, pglen, pgoff, seglen, segoff;
2582 int nsegs = 0;
2583
2584 M_ASSERTEXTPG(m);
2585 off = mtod(m, vm_offset_t);
2586 len = m->m_len;
2587 off += skip;
2588 len -= skip;
2589
2590 if (m->m_epg_hdrlen != 0) {
2591 if (off >= m->m_epg_hdrlen) {
2592 off -= m->m_epg_hdrlen;
2593 } else {
2594 seglen = m->m_epg_hdrlen - off;
2595 segoff = off;
2596 seglen = min(seglen, len);
2597 off = 0;
2598 len -= seglen;
2599 paddr = pmap_kextract(
2600 (vm_offset_t)&m->m_epg_hdr[segoff]);
2601 if (*nextaddr != paddr)
2602 nsegs++;
2603 *nextaddr = paddr + seglen;
2604 }
2605 }
2606 pgoff = m->m_epg_1st_off;
2607 for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
2608 pglen = m_epg_pagelen(m, i, pgoff);
2609 if (off >= pglen) {
2610 off -= pglen;
2611 pgoff = 0;
2612 continue;
2613 }
2614 seglen = pglen - off;
2615 segoff = pgoff + off;
2616 off = 0;
2617 seglen = min(seglen, len);
2618 len -= seglen;
2619 paddr = m->m_epg_pa[i] + segoff;
2620 if (*nextaddr != paddr)
2621 nsegs++;
2622 *nextaddr = paddr + seglen;
2623 pgoff = 0;
2624 };
2625 if (len != 0) {
2626 seglen = min(len, m->m_epg_trllen - off);
2627 len -= seglen;
2628 paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
2629 if (*nextaddr != paddr)
2630 nsegs++;
2631 *nextaddr = paddr + seglen;
2632 }
2633
2634 return (nsegs);
2635 }
2636
2637
2638 /*
2639 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2640 * must have at least one mbuf that's not empty. It is possible for this
2641 * routine to return 0 if skip accounts for all the contents of the mbuf chain.
2642 */
2643 static inline int
2644 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
2645 {
2646 vm_paddr_t nextaddr, paddr;
2647 vm_offset_t va;
2648 int len, nsegs;
2649
2650 M_ASSERTPKTHDR(m);
2651 MPASS(m->m_pkthdr.len > 0);
2652 MPASS(m->m_pkthdr.len >= skip);
2653
2654 nsegs = 0;
2655 nextaddr = 0;
2656 for (; m; m = m->m_next) {
2657 len = m->m_len;
2658 if (__predict_false(len == 0))
2659 continue;
2660 if (skip >= len) {
2661 skip -= len;
2662 continue;
2663 }
2664 if ((m->m_flags & M_EXTPG) != 0) {
2665 *cflags |= MC_NOMAP;
2666 nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
2667 skip = 0;
2668 continue;
2669 }
2670 va = mtod(m, vm_offset_t) + skip;
2671 len -= skip;
2672 skip = 0;
2673 paddr = pmap_kextract(va);
2674 nsegs += sglist_count((void *)(uintptr_t)va, len);
2675 if (paddr == nextaddr)
2676 nsegs--;
2677 nextaddr = pmap_kextract(va + len - 1) + 1;
2678 }
2679
2680 return (nsegs);
2681 }
2682
2683 /*
2684 * The maximum number of segments that can fit in a WR.
2685 */
2686 static int
2687 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
2688 {
2689
2690 if (vm_wr) {
2691 if (needs_tso(m))
2692 return (TX_SGL_SEGS_VM_TSO);
2693 return (TX_SGL_SEGS_VM);
2694 }
2695
2696 if (needs_tso(m)) {
2697 if (needs_vxlan_tso(m))
2698 return (TX_SGL_SEGS_VXLAN_TSO);
2699 else
2700 return (TX_SGL_SEGS_TSO);
2701 }
2702
2703 return (TX_SGL_SEGS);
2704 }
2705
2706 static struct timeval txerr_ratecheck = {0};
2707 static const struct timeval txerr_interval = {3, 0};
2708
2709 /*
2710 * Analyze the mbuf to determine its tx needs. The mbuf passed in may change:
2711 * a) caller can assume it's been freed if this function returns with an error.
2712 * b) it may get defragged up if the gather list is too long for the hardware.
2713 */
2714 int
2715 parse_pkt(struct mbuf **mp, bool vm_wr)
2716 {
2717 struct mbuf *m0 = *mp, *m;
2718 int rc, nsegs, defragged = 0;
2719 struct ether_header *eh;
2720 #ifdef INET
2721 void *l3hdr;
2722 #endif
2723 #if defined(INET) || defined(INET6)
2724 int offset;
2725 struct tcphdr *tcp;
2726 #endif
2727 #if defined(KERN_TLS) || defined(RATELIMIT)
2728 struct m_snd_tag *mst;
2729 #endif
2730 uint16_t eh_type;
2731 uint8_t cflags;
2732
2733 cflags = 0;
2734 M_ASSERTPKTHDR(m0);
2735 if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2736 rc = EINVAL;
2737 fail:
2738 m_freem(m0);
2739 *mp = NULL;
2740 return (rc);
2741 }
2742 restart:
2743 /*
2744 * First count the number of gather list segments in the payload.
2745 * Defrag the mbuf if nsegs exceeds the hardware limit.
2746 */
2747 M_ASSERTPKTHDR(m0);
2748 MPASS(m0->m_pkthdr.len > 0);
2749 nsegs = count_mbuf_nsegs(m0, 0, &cflags);
2750 #if defined(KERN_TLS) || defined(RATELIMIT)
2751 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
2752 mst = m0->m_pkthdr.snd_tag;
2753 else
2754 mst = NULL;
2755 #endif
2756 #ifdef KERN_TLS
2757 if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
2758 int len16;
2759
2760 cflags |= MC_TLS;
2761 set_mbuf_cflags(m0, cflags);
2762 rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
2763 if (rc != 0)
2764 goto fail;
2765 set_mbuf_nsegs(m0, nsegs);
2766 set_mbuf_len16(m0, len16);
2767 return (0);
2768 }
2769 #endif
2770 if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
2771 if (defragged++ > 0) {
2772 rc = EFBIG;
2773 goto fail;
2774 }
2775 counter_u64_add(defrags, 1);
2776 if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
2777 rc = ENOMEM;
2778 goto fail;
2779 }
2780 *mp = m0 = m; /* update caller's copy after defrag */
2781 goto restart;
2782 }
2783
2784 if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
2785 !(cflags & MC_NOMAP))) {
2786 counter_u64_add(pullups, 1);
2787 m0 = m_pullup(m0, m0->m_pkthdr.len);
2788 if (m0 == NULL) {
2789 /* Should have left well enough alone. */
2790 rc = EFBIG;
2791 goto fail;
2792 }
2793 *mp = m0; /* update caller's copy after pullup */
2794 goto restart;
2795 }
2796 set_mbuf_nsegs(m0, nsegs);
2797 set_mbuf_cflags(m0, cflags);
2798 calculate_mbuf_len16(m0, vm_wr);
2799
2800 #ifdef RATELIMIT
2801 /*
2802 * Ethofld is limited to TCP and UDP for now, and only when L4 hw
2803 * checksumming is enabled. needs_outer_l4_csum happens to check for
2804 * all the right things.
2805 */
2806 if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
2807 m_snd_tag_rele(m0->m_pkthdr.snd_tag);
2808 m0->m_pkthdr.snd_tag = NULL;
2809 m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
2810 mst = NULL;
2811 }
2812 #endif
2813
2814 if (!needs_hwcsum(m0)
2815 #ifdef RATELIMIT
2816 && !needs_eo(mst)
2817 #endif
2818 )
2819 return (0);
2820
2821 m = m0;
2822 eh = mtod(m, struct ether_header *);
2823 eh_type = ntohs(eh->ether_type);
2824 if (eh_type == ETHERTYPE_VLAN) {
2825 struct ether_vlan_header *evh = (void *)eh;
2826
2827 eh_type = ntohs(evh->evl_proto);
2828 m0->m_pkthdr.l2hlen = sizeof(*evh);
2829 } else
2830 m0->m_pkthdr.l2hlen = sizeof(*eh);
2831
2832 #if defined(INET) || defined(INET6)
2833 offset = 0;
2834 #ifdef INET
2835 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2836 #else
2837 m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2838 #endif
2839 #endif
2840
2841 switch (eh_type) {
2842 #ifdef INET6
2843 case ETHERTYPE_IPV6:
2844 m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
2845 break;
2846 #endif
2847 #ifdef INET
2848 case ETHERTYPE_IP:
2849 {
2850 struct ip *ip = l3hdr;
2851
2852 if (needs_vxlan_csum(m0)) {
2853 /* Driver will do the outer IP hdr checksum. */
2854 ip->ip_sum = 0;
2855 if (needs_vxlan_tso(m0)) {
2856 const uint16_t ipl = ip->ip_len;
2857
2858 ip->ip_len = 0;
2859 ip->ip_sum = ~in_cksum_hdr(ip);
2860 ip->ip_len = ipl;
2861 } else
2862 ip->ip_sum = in_cksum_hdr(ip);
2863 }
2864 m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
2865 break;
2866 }
2867 #endif
2868 default:
2869 if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2870 log(LOG_ERR, "%s: ethertype 0x%04x unknown. "
2871 "if_cxgbe must be compiled with the same "
2872 "INET/INET6 options as the kernel.\n", __func__,
2873 eh_type);
2874 }
2875 rc = EINVAL;
2876 goto fail;
2877 }
2878
2879 #if defined(INET) || defined(INET6)
2880 if (needs_vxlan_csum(m0)) {
2881 m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2882 m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
2883
2884 /* Inner headers. */
2885 eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
2886 sizeof(struct udphdr) + sizeof(struct vxlan_header));
2887 eh_type = ntohs(eh->ether_type);
2888 if (eh_type == ETHERTYPE_VLAN) {
2889 struct ether_vlan_header *evh = (void *)eh;
2890
2891 eh_type = ntohs(evh->evl_proto);
2892 m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
2893 } else
2894 m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
2895 #ifdef INET
2896 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2897 #else
2898 m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
2899 #endif
2900
2901 switch (eh_type) {
2902 #ifdef INET6
2903 case ETHERTYPE_IPV6:
2904 m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
2905 break;
2906 #endif
2907 #ifdef INET
2908 case ETHERTYPE_IP:
2909 {
2910 struct ip *ip = l3hdr;
2911
2912 m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
2913 break;
2914 }
2915 #endif
2916 default:
2917 if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
2918 log(LOG_ERR, "%s: VXLAN hw offload requested"
2919 "with unknown ethertype 0x%04x. if_cxgbe "
2920 "must be compiled with the same INET/INET6 "
2921 "options as the kernel.\n", __func__,
2922 eh_type);
2923 }
2924 rc = EINVAL;
2925 goto fail;
2926 }
2927 if (needs_inner_tcp_csum(m0)) {
2928 tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
2929 m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
2930 }
2931 MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
2932 m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
2933 CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
2934 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
2935 CSUM_ENCAP_VXLAN;
2936 }
2937
2938 if (needs_outer_tcp_csum(m0)) {
2939 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2940 m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2941 #ifdef RATELIMIT
2942 if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
2943 set_mbuf_eo_tsclk_tsoff(m0,
2944 V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
2945 V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
2946 } else
2947 set_mbuf_eo_tsclk_tsoff(m0, 0);
2948 } else if (needs_outer_udp_csum(m0)) {
2949 m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
2950 #endif
2951 }
2952 #ifdef RATELIMIT
2953 if (needs_eo(mst)) {
2954 u_int immhdrs;
2955
2956 /* EO WRs have the headers in the WR and not the GL. */
2957 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
2958 m0->m_pkthdr.l4hlen;
2959 cflags = 0;
2960 nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
2961 MPASS(cflags == mbuf_cflags(m0));
2962 set_mbuf_eo_nsegs(m0, nsegs);
2963 set_mbuf_eo_len16(m0,
2964 txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
2965 }
2966 #endif
2967 #endif
2968 MPASS(m0 == *mp);
2969 return (0);
2970 }
2971
2972 void *
2973 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2974 {
2975 struct sge_eq *eq = &wrq->eq;
2976 struct adapter *sc = wrq->adapter;
2977 int ndesc, available;
2978 struct wrqe *wr;
2979 void *w;
2980
2981 MPASS(len16 > 0);
2982 ndesc = tx_len16_to_desc(len16);
2983 MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2984
2985 EQ_LOCK(eq);
2986
2987 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2988 drain_wrq_wr_list(sc, wrq);
2989
2990 if (!STAILQ_EMPTY(&wrq->wr_list)) {
2991 slowpath:
2992 EQ_UNLOCK(eq);
2993 wr = alloc_wrqe(len16 * 16, wrq);
2994 if (__predict_false(wr == NULL))
2995 return (NULL);
2996 cookie->pidx = -1;
2997 cookie->ndesc = ndesc;
2998 return (&wr->wr);
2999 }
3000
3001 eq->cidx = read_hw_cidx(eq);
3002 if (eq->pidx == eq->cidx)
3003 available = eq->sidx - 1;
3004 else
3005 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3006 if (available < ndesc)
3007 goto slowpath;
3008
3009 cookie->pidx = eq->pidx;
3010 cookie->ndesc = ndesc;
3011 TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
3012
3013 w = &eq->desc[eq->pidx];
3014 IDXINCR(eq->pidx, ndesc, eq->sidx);
3015 if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
3016 w = &wrq->ss[0];
3017 wrq->ss_pidx = cookie->pidx;
3018 wrq->ss_len = len16 * 16;
3019 }
3020
3021 EQ_UNLOCK(eq);
3022
3023 return (w);
3024 }
3025
3026 void
3027 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
3028 {
3029 struct sge_eq *eq = &wrq->eq;
3030 struct adapter *sc = wrq->adapter;
3031 int ndesc, pidx;
3032 struct wrq_cookie *prev, *next;
3033
3034 if (cookie->pidx == -1) {
3035 struct wrqe *wr = __containerof(w, struct wrqe, wr);
3036
3037 t4_wrq_tx(sc, wr);
3038 return;
3039 }
3040
3041 if (__predict_false(w == &wrq->ss[0])) {
3042 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
3043
3044 MPASS(wrq->ss_len > n); /* WR had better wrap around. */
3045 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
3046 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
3047 wrq->tx_wrs_ss++;
3048 } else
3049 wrq->tx_wrs_direct++;
3050
3051 EQ_LOCK(eq);
3052 ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */
3053 pidx = cookie->pidx;
3054 MPASS(pidx >= 0 && pidx < eq->sidx);
3055 prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
3056 next = TAILQ_NEXT(cookie, link);
3057 if (prev == NULL) {
3058 MPASS(pidx == eq->dbidx);
3059 if (next == NULL || ndesc >= 16) {
3060 int available;
3061 struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */
3062
3063 /*
3064 * Note that the WR via which we'll request tx updates
3065 * is at pidx and not eq->pidx, which has moved on
3066 * already.
3067 */
3068 dst = (void *)&eq->desc[pidx];
3069 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3070 if (available < eq->sidx / 4 &&
3071 atomic_cmpset_int(&eq->equiq, 0, 1)) {
3072 /*
3073 * XXX: This is not 100% reliable with some
3074 * types of WRs. But this is a very unusual
3075 * situation for an ofld/ctrl queue anyway.
3076 */
3077 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
3078 F_FW_WR_EQUEQ);
3079 }
3080
3081 ring_eq_db(wrq->adapter, eq, ndesc);
3082 } else {
3083 MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
3084 next->pidx = pidx;
3085 next->ndesc += ndesc;
3086 }
3087 } else {
3088 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
3089 prev->ndesc += ndesc;
3090 }
3091 TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
3092
3093 if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
3094 drain_wrq_wr_list(sc, wrq);
3095
3096 #ifdef INVARIANTS
3097 if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
3098 /* Doorbell must have caught up to the pidx. */
3099 MPASS(wrq->eq.pidx == wrq->eq.dbidx);
3100 }
3101 #endif
3102 EQ_UNLOCK(eq);
3103 }
3104
3105 static u_int
3106 can_resume_eth_tx(struct mp_ring *r)
3107 {
3108 struct sge_eq *eq = r->cookie;
3109
3110 return (total_available_tx_desc(eq) > eq->sidx / 8);
3111 }
3112
3113 static inline bool
3114 cannot_use_txpkts(struct mbuf *m)
3115 {
3116 /* maybe put a GL limit too, to avoid silliness? */
3117
3118 return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
3119 }
3120
3121 static inline int
3122 discard_tx(struct sge_eq *eq)
3123 {
3124
3125 return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
3126 }
3127
3128 static inline int
3129 wr_can_update_eq(void *p)
3130 {
3131 struct fw_eth_tx_pkts_wr *wr = p;
3132
3133 switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
3134 case FW_ULPTX_WR:
3135 case FW_ETH_TX_PKT_WR:
3136 case FW_ETH_TX_PKTS_WR:
3137 case FW_ETH_TX_PKTS2_WR:
3138 case FW_ETH_TX_PKT_VM_WR:
3139 case FW_ETH_TX_PKTS_VM_WR:
3140 return (1);
3141 default:
3142 return (0);
3143 }
3144 }
3145
3146 static inline void
3147 set_txupdate_flags(struct sge_txq *txq, u_int avail,
3148 struct fw_eth_tx_pkt_wr *wr)
3149 {
3150 struct sge_eq *eq = &txq->eq;
3151 struct txpkts *txp = &txq->txp;
3152
3153 if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
3154 atomic_cmpset_int(&eq->equiq, 0, 1)) {
3155 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3156 eq->equeqidx = eq->pidx;
3157 } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
3158 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
3159 eq->equeqidx = eq->pidx;
3160 }
3161 }
3162
3163 #if defined(__i386__) || defined(__amd64__)
3164 extern uint64_t tsc_freq;
3165 #endif
3166
3167 static inline bool
3168 record_eth_tx_time(struct sge_txq *txq)
3169 {
3170 const uint64_t cycles = get_cyclecount();
3171 const uint64_t last_tx = txq->last_tx;
3172 #if defined(__i386__) || defined(__amd64__)
3173 const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
3174 #else
3175 const uint64_t itg = 0;
3176 #endif
3177
3178 MPASS(cycles >= last_tx);
3179 txq->last_tx = cycles;
3180 return (cycles - last_tx < itg);
3181 }
3182
3183 /*
3184 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
3185 * be consumed. Return the actual number consumed. 0 indicates a stall.
3186 */
3187 static u_int
3188 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
3189 {
3190 struct sge_txq *txq = r->cookie;
3191 struct ifnet *ifp = txq->ifp;
3192 struct sge_eq *eq = &txq->eq;
3193 struct txpkts *txp = &txq->txp;
3194 struct vi_info *vi = ifp->if_softc;
3195 struct adapter *sc = vi->adapter;
3196 u_int total, remaining; /* # of packets */
3197 u_int n, avail, dbdiff; /* # of hardware descriptors */
3198 int i, rc;
3199 struct mbuf *m0;
3200 bool snd, recent_tx;
3201 void *wr; /* start of the last WR written to the ring */
3202
3203 TXQ_LOCK_ASSERT_OWNED(txq);
3204 recent_tx = record_eth_tx_time(txq);
3205
3206 remaining = IDXDIFF(pidx, cidx, r->size);
3207 if (__predict_false(discard_tx(eq))) {
3208 for (i = 0; i < txp->npkt; i++)
3209 m_freem(txp->mb[i]);
3210 txp->npkt = 0;
3211 while (cidx != pidx) {
3212 m0 = r->items[cidx];
3213 m_freem(m0);
3214 if (++cidx == r->size)
3215 cidx = 0;
3216 }
3217 reclaim_tx_descs(txq, eq->sidx);
3218 *coalescing = false;
3219 return (remaining); /* emptied */
3220 }
3221
3222 /* How many hardware descriptors do we have readily available. */
3223 if (eq->pidx == eq->cidx)
3224 avail = eq->sidx - 1;
3225 else
3226 avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
3227
3228 total = 0;
3229 if (remaining == 0) {
3230 txp->score = 0;
3231 txq->txpkts_flush++;
3232 goto send_txpkts;
3233 }
3234
3235 dbdiff = 0;
3236 MPASS(remaining > 0);
3237 while (remaining > 0) {
3238 m0 = r->items[cidx];
3239 M_ASSERTPKTHDR(m0);
3240 MPASS(m0->m_nextpkt == NULL);
3241
3242 if (avail < 2 * SGE_MAX_WR_NDESC)
3243 avail += reclaim_tx_descs(txq, 64);
3244
3245 if (t4_tx_coalesce == 0 && txp->npkt == 0)
3246 goto skip_coalescing;
3247 if (cannot_use_txpkts(m0))
3248 txp->score = 0;
3249 else if (recent_tx) {
3250 if (++txp->score == 0)
3251 txp->score = UINT8_MAX;
3252 } else
3253 txp->score = 1;
3254 if (txp->npkt > 0 || remaining > 1 ||
3255 txp->score >= t4_tx_coalesce_pkts ||
3256 atomic_load_int(&txq->eq.equiq) != 0) {
3257 if (vi->flags & TX_USES_VM_WR)
3258 rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
3259 else
3260 rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
3261 } else {
3262 snd = false;
3263 rc = EINVAL;
3264 }
3265 if (snd) {
3266 MPASS(txp->npkt > 0);
3267 for (i = 0; i < txp->npkt; i++)
3268 ETHER_BPF_MTAP(ifp, txp->mb[i]);
3269 if (txp->npkt > 1) {
3270 MPASS(avail >= tx_len16_to_desc(txp->len16));
3271 if (vi->flags & TX_USES_VM_WR)
3272 n = write_txpkts_vm_wr(sc, txq);
3273 else
3274 n = write_txpkts_wr(sc, txq);
3275 } else {
3276 MPASS(avail >=
3277 tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3278 if (vi->flags & TX_USES_VM_WR)
3279 n = write_txpkt_vm_wr(sc, txq,
3280 txp->mb[0]);
3281 else
3282 n = write_txpkt_wr(sc, txq, txp->mb[0],
3283 avail);
3284 }
3285 MPASS(n <= SGE_MAX_WR_NDESC);
3286 avail -= n;
3287 dbdiff += n;
3288 wr = &eq->desc[eq->pidx];
3289 IDXINCR(eq->pidx, n, eq->sidx);
3290 txp->npkt = 0; /* emptied */
3291 }
3292 if (rc == 0) {
3293 /* m0 was coalesced into txq->txpkts. */
3294 goto next_mbuf;
3295 }
3296 if (rc == EAGAIN) {
3297 /*
3298 * m0 is suitable for tx coalescing but could not be
3299 * combined with the existing txq->txpkts, which has now
3300 * been transmitted. Start a new txpkts with m0.
3301 */
3302 MPASS(snd);
3303 MPASS(txp->npkt == 0);
3304 continue;
3305 }
3306
3307 MPASS(rc != 0 && rc != EAGAIN);
3308 MPASS(txp->npkt == 0);
3309 skip_coalescing:
3310 n = tx_len16_to_desc(mbuf_len16(m0));
3311 if (__predict_false(avail < n)) {
3312 avail += reclaim_tx_descs(txq, min(n, 32));
3313 if (avail < n)
3314 break; /* out of descriptors */
3315 }
3316
3317 wr = &eq->desc[eq->pidx];
3318 if (mbuf_cflags(m0) & MC_RAW_WR) {
3319 n = write_raw_wr(txq, wr, m0, avail);
3320 #ifdef KERN_TLS
3321 } else if (mbuf_cflags(m0) & MC_TLS) {
3322 ETHER_BPF_MTAP(ifp, m0);
3323 n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
3324 avail);
3325 #endif
3326 } else {
3327 ETHER_BPF_MTAP(ifp, m0);
3328 if (vi->flags & TX_USES_VM_WR)
3329 n = write_txpkt_vm_wr(sc, txq, m0);
3330 else
3331 n = write_txpkt_wr(sc, txq, m0, avail);
3332 }
3333 MPASS(n >= 1 && n <= avail);
3334 if (!(mbuf_cflags(m0) & MC_TLS))
3335 MPASS(n <= SGE_MAX_WR_NDESC);
3336
3337 avail -= n;
3338 dbdiff += n;
3339 IDXINCR(eq->pidx, n, eq->sidx);
3340
3341 if (dbdiff >= 512 / EQ_ESIZE) { /* X_FETCHBURSTMAX_512B */
3342 if (wr_can_update_eq(wr))
3343 set_txupdate_flags(txq, avail, wr);
3344 ring_eq_db(sc, eq, dbdiff);
3345 avail += reclaim_tx_descs(txq, 32);
3346 dbdiff = 0;
3347 }
3348 next_mbuf:
3349 total++;
3350 remaining--;
3351 if (__predict_false(++cidx == r->size))
3352 cidx = 0;
3353 }
3354 if (dbdiff != 0) {
3355 if (wr_can_update_eq(wr))
3356 set_txupdate_flags(txq, avail, wr);
3357 ring_eq_db(sc, eq, dbdiff);
3358 reclaim_tx_descs(txq, 32);
3359 } else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
3360 atomic_load_int(&txq->eq.equiq) == 0) {
3361 /*
3362 * If nothing was submitted to the chip for tx (it was coalesced
3363 * into txpkts instead) and there is no tx update outstanding
3364 * then we need to send txpkts now.
3365 */
3366 send_txpkts:
3367 MPASS(txp->npkt > 0);
3368 for (i = 0; i < txp->npkt; i++)
3369 ETHER_BPF_MTAP(ifp, txp->mb[i]);
3370 if (txp->npkt > 1) {
3371 MPASS(avail >= tx_len16_to_desc(txp->len16));
3372 if (vi->flags & TX_USES_VM_WR)
3373 n = write_txpkts_vm_wr(sc, txq);
3374 else
3375 n = write_txpkts_wr(sc, txq);
3376 } else {
3377 MPASS(avail >=
3378 tx_len16_to_desc(mbuf_len16(txp->mb[0])));
3379 if (vi->flags & TX_USES_VM_WR)
3380 n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
3381 else
3382 n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
3383 }
3384 MPASS(n <= SGE_MAX_WR_NDESC);
3385 wr = &eq->desc[eq->pidx];
3386 IDXINCR(eq->pidx, n, eq->sidx);
3387 txp->npkt = 0; /* emptied */
3388
3389 MPASS(wr_can_update_eq(wr));
3390 set_txupdate_flags(txq, avail - n, wr);
3391 ring_eq_db(sc, eq, n);
3392 reclaim_tx_descs(txq, 32);
3393 }
3394 *coalescing = txp->npkt > 0;
3395
3396 return (total);
3397 }
3398
3399 static inline void
3400 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
3401 int qsize, int intr_idx, int cong, int qtype)
3402 {
3403
3404 KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
3405 ("%s: bad tmr_idx %d", __func__, tmr_idx));
3406 KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */
3407 ("%s: bad pktc_idx %d", __func__, pktc_idx));
3408 KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
3409 ("%s: bad intr_idx %d", __func__, intr_idx));
3410 KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
3411 qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
3412
3413 iq->flags = 0;
3414 iq->state = IQS_DISABLED;
3415 iq->adapter = sc;
3416 iq->qtype = qtype;
3417 iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
3418 iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
3419 if (pktc_idx >= 0) {
3420 iq->intr_params |= F_QINTR_CNT_EN;
3421 iq->intr_pktc_idx = pktc_idx;
3422 }
3423 iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */
3424 iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
3425 iq->intr_idx = intr_idx;
3426 iq->cong_drop = cong;
3427 }
3428
3429 static inline void
3430 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
3431 {
3432 struct sge_params *sp = &sc->params.sge;
3433
3434 fl->qsize = qsize;
3435 fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3436 strlcpy(fl->lockname, name, sizeof(fl->lockname));
3437 mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
3438 if (sc->flags & BUF_PACKING_OK &&
3439 ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */
3440 (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
3441 fl->flags |= FL_BUF_PACKING;
3442 fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
3443 fl->safe_zidx = sc->sge.safe_zidx;
3444 if (fl->flags & FL_BUF_PACKING) {
3445 fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
3446 fl->buf_boundary = sp->pack_boundary;
3447 } else {
3448 fl->lowat = roundup2(sp->fl_starve_threshold, 8);
3449 fl->buf_boundary = 16;
3450 }
3451 if (fl_pad && fl->buf_boundary < sp->pad_boundary)
3452 fl->buf_boundary = sp->pad_boundary;
3453 }
3454
3455 static inline void
3456 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
3457 uint8_t tx_chan, struct sge_iq *iq, char *name)
3458 {
3459 KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
3460 ("%s: bad qtype %d", __func__, eqtype));
3461
3462 eq->type = eqtype;
3463 eq->tx_chan = tx_chan;
3464 eq->iq = iq;
3465 eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
3466 strlcpy(eq->lockname, name, sizeof(eq->lockname));
3467 mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3468 }
3469
3470 int
3471 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
3472 bus_dmamap_t *map, bus_addr_t *pa, void **va)
3473 {
3474 int rc;
3475
3476 rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
3477 BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
3478 if (rc != 0) {
3479 CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
3480 goto done;
3481 }
3482
3483 rc = bus_dmamem_alloc(*tag, va,
3484 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
3485 if (rc != 0) {
3486 CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
3487 goto done;
3488 }
3489
3490 rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
3491 if (rc != 0) {
3492 CH_ERR(sc, "cannot load DMA map: %d\n", rc);
3493 goto done;
3494 }
3495 done:
3496 if (rc)
3497 free_ring(sc, *tag, *map, *pa, *va);
3498
3499 return (rc);
3500 }
3501
3502 int
3503 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
3504 bus_addr_t pa, void *va)
3505 {
3506 if (pa)
3507 bus_dmamap_unload(tag, map);
3508 if (va)
3509 bus_dmamem_free(tag, va, map);
3510 if (tag)
3511 bus_dma_tag_destroy(tag);
3512
3513 return (0);
3514 }
3515
3516 /*
3517 * Allocates the software resources (mainly memory and sysctl nodes) for an
3518 * ingress queue and an optional freelist.
3519 *
3520 * Sets IQ_SW_ALLOCATED and returns 0 on success.
3521 */
3522 static int
3523 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
3524 struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
3525 {
3526 int rc;
3527 size_t len;
3528 struct adapter *sc = vi->adapter;
3529
3530 MPASS(!(iq->flags & IQ_SW_ALLOCATED));
3531
3532 len = iq->qsize * IQ_ESIZE;
3533 rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
3534 (void **)&iq->desc);
3535 if (rc != 0)
3536 return (rc);
3537
3538 if (fl) {
3539 len = fl->qsize * EQ_ESIZE;
3540 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
3541 &fl->ba, (void **)&fl->desc);
3542 if (rc) {
3543 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
3544 iq->desc);
3545 return (rc);
3546 }
3547
3548 /* Allocate space for one software descriptor per buffer. */
3549 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
3550 M_CXGBE, M_ZERO | M_WAITOK);
3551
3552 add_fl_sysctls(sc, ctx, oid, fl);
3553 iq->flags |= IQ_HAS_FL;
3554 }
3555 add_iq_sysctls(ctx, oid, iq);
3556 iq->flags |= IQ_SW_ALLOCATED;
3557
3558 return (0);
3559 }
3560
3561 /*
3562 * Frees all software resources (memory and locks) associated with an ingress
3563 * queue and an optional freelist.
3564 */
3565 static void
3566 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3567 {
3568 MPASS(iq->flags & IQ_SW_ALLOCATED);
3569
3570 if (fl) {
3571 MPASS(iq->flags & IQ_HAS_FL);
3572 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
3573 free_fl_buffers(sc, fl);
3574 free(fl->sdesc, M_CXGBE);
3575 mtx_destroy(&fl->fl_lock);
3576 bzero(fl, sizeof(*fl));
3577 }
3578 free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3579 bzero(iq, sizeof(*iq));
3580 }
3581
3582 /*
3583 * Allocates a hardware ingress queue and an optional freelist that will be
3584 * associated with it.
3585 *
3586 * Returns errno on failure. Resources allocated up to that point may still be
3587 * allocated. Caller is responsible for cleanup in case this function fails.
3588 */
3589 static int
3590 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
3591 {
3592 int rc, cntxt_id, cong_map;
3593 struct fw_iq_cmd c;
3594 struct adapter *sc = vi->adapter;
3595 struct port_info *pi = vi->pi;
3596 __be32 v = 0;
3597
3598 MPASS (!(iq->flags & IQ_HW_ALLOCATED));
3599
3600 bzero(&c, sizeof(c));
3601 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3602 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
3603 V_FW_IQ_CMD_VFN(0));
3604
3605 c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
3606 FW_LEN16(c));
3607
3608 /* Special handling for firmware event queue */
3609 if (iq == &sc->sge.fwq)
3610 v |= F_FW_IQ_CMD_IQASYNCH;
3611
3612 if (iq->intr_idx < 0) {
3613 /* Forwarded interrupts, all headed to fwq */
3614 v |= F_FW_IQ_CMD_IQANDST;
3615 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
3616 } else {
3617 KASSERT(iq->intr_idx < sc->intr_count,
3618 ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
3619 v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
3620 }
3621
3622 bzero(iq->desc, iq->qsize * IQ_ESIZE);
3623 c.type_to_iqandstindex = htobe32(v |
3624 V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
3625 V_FW_IQ_CMD_VIID(vi->viid) |
3626 V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
3627 c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
3628 F_FW_IQ_CMD_IQGTSMODE |
3629 V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
3630 V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
3631 c.iqsize = htobe16(iq->qsize);
3632 c.iqaddr = htobe64(iq->ba);
3633 c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
3634 if (iq->cong_drop != -1) {
3635 cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0;
3636 c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
3637 }
3638
3639 if (fl) {
3640 bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
3641 c.iqns_to_fl0congen |=
3642 htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
3643 F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
3644 (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
3645 (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
3646 0));
3647 if (iq->cong_drop != -1) {
3648 c.iqns_to_fl0congen |=
3649 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
3650 F_FW_IQ_CMD_FL0CONGCIF |
3651 F_FW_IQ_CMD_FL0CONGEN);
3652 }
3653 c.fl0dcaen_to_fl0cidxfthresh =
3654 htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3655 X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
3656 V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
3657 X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
3658 c.fl0size = htobe16(fl->qsize);
3659 c.fl0addr = htobe64(fl->ba);
3660 }
3661
3662 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3663 if (rc != 0) {
3664 CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
3665 return (rc);
3666 }
3667
3668 iq->cidx = 0;
3669 iq->gen = F_RSPD_GEN;
3670 iq->cntxt_id = be16toh(c.iqid);
3671 iq->abs_id = be16toh(c.physiqid);
3672
3673 cntxt_id = iq->cntxt_id - sc->sge.iq_start;
3674 if (cntxt_id >= sc->sge.iqmap_sz) {
3675 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
3676 cntxt_id, sc->sge.iqmap_sz - 1);
3677 }
3678 sc->sge.iqmap[cntxt_id] = iq;
3679
3680 if (fl) {
3681 u_int qid;
3682 #ifdef INVARIANTS
3683 int i;
3684
3685 MPASS(!(fl->flags & FL_BUF_RESUME));
3686 for (i = 0; i < fl->sidx * 8; i++)
3687 MPASS(fl->sdesc[i].cl == NULL);
3688 #endif
3689 fl->cntxt_id = be16toh(c.fl0id);
3690 fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
3691 fl->rx_offset = 0;
3692 fl->flags &= ~(FL_STARVING | FL_DOOMED);
3693
3694 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
3695 if (cntxt_id >= sc->sge.eqmap_sz) {
3696 panic("%s: fl->cntxt_id (%d) more than the max (%d)",
3697 __func__, cntxt_id, sc->sge.eqmap_sz - 1);
3698 }
3699 sc->sge.eqmap[cntxt_id] = (void *)fl;
3700
3701 qid = fl->cntxt_id;
3702 if (isset(&sc->doorbells, DOORBELL_UDB)) {
3703 uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3704 uint32_t mask = (1 << s_qpp) - 1;
3705 volatile uint8_t *udb;
3706
3707 udb = sc->udbs_base + UDBS_DB_OFFSET;
3708 udb += (qid >> s_qpp) << PAGE_SHIFT;
3709 qid &= mask;
3710 if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
3711 udb += qid << UDBS_SEG_SHIFT;
3712 qid = 0;
3713 }
3714 fl->udb = (volatile void *)udb;
3715 }
3716 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
3717
3718 FL_LOCK(fl);
3719 /* Enough to make sure the SGE doesn't think it's starved */
3720 refill_fl(sc, fl, fl->lowat);
3721 FL_UNLOCK(fl);
3722 }
3723
3724 if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
3725 iq->cong_drop != -1) {
3726 t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
3727 cong_map);
3728 }
3729
3730 /* Enable IQ interrupts */
3731 atomic_store_rel_int(&iq->state, IQS_IDLE);
3732 t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
3733 V_INGRESSQID(iq->cntxt_id));
3734
3735 iq->flags |= IQ_HW_ALLOCATED;
3736
3737 return (0);
3738 }
3739
3740 static int
3741 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
3742 {
3743 int rc;
3744
3745 MPASS(iq->flags & IQ_HW_ALLOCATED);
3746 rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3747 iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
3748 if (rc != 0) {
3749 CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
3750 return (rc);
3751 }
3752 iq->flags &= ~IQ_HW_ALLOCATED;
3753
3754 return (0);
3755 }
3756
3757 static void
3758 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3759 struct sge_iq *iq)
3760 {
3761 struct sysctl_oid_list *children;
3762
3763 if (ctx == NULL || oid == NULL)
3764 return;
3765
3766 children = SYSCTL_CHILDREN(oid);
3767 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3768 "bus address of descriptor ring");
3769 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3770 iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3771 SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3772 &iq->abs_id, 0, "absolute id of the queue");
3773 SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3774 &iq->cntxt_id, 0, "SGE context id of the queue");
3775 SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
3776 0, "consumer index");
3777 }
3778
3779 static void
3780 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3781 struct sysctl_oid *oid, struct sge_fl *fl)
3782 {
3783 struct sysctl_oid_list *children;
3784
3785 if (ctx == NULL || oid == NULL)
3786 return;
3787
3788 children = SYSCTL_CHILDREN(oid);
3789 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
3790 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
3791 children = SYSCTL_CHILDREN(oid);
3792
3793 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3794 &fl->ba, "bus address of descriptor ring");
3795 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3796 fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3797 "desc ring size in bytes");
3798 SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3799 &fl->cntxt_id, 0, "SGE context id of the freelist");
3800 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3801 fl_pad ? 1 : 0, "padding enabled");
3802 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3803 fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3804 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3805 0, "consumer index");
3806 if (fl->flags & FL_BUF_PACKING) {
3807 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3808 CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3809 }
3810 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3811 0, "producer index");
3812 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3813 CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3814 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3815 CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3816 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3817 CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3818 }
3819
3820 /*
3821 * Idempotent.
3822 */
3823 static int
3824 alloc_fwq(struct adapter *sc)
3825 {
3826 int rc, intr_idx;
3827 struct sge_iq *fwq = &sc->sge.fwq;
3828 struct vi_info *vi = &sc->port[0]->vi[0];
3829
3830 if (!(fwq->flags & IQ_SW_ALLOCATED)) {
3831 MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3832
3833 if (sc->flags & IS_VF)
3834 intr_idx = 0;
3835 else
3836 intr_idx = sc->intr_count > 1 ? 1 : 0;
3837 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
3838 rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
3839 if (rc != 0) {
3840 CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
3841 return (rc);
3842 }
3843 MPASS(fwq->flags & IQ_SW_ALLOCATED);
3844 }
3845
3846 if (!(fwq->flags & IQ_HW_ALLOCATED)) {
3847 MPASS(fwq->flags & IQ_SW_ALLOCATED);
3848
3849 rc = alloc_iq_fl_hwq(vi, fwq, NULL);
3850 if (rc != 0) {
3851 CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
3852 return (rc);
3853 }
3854 MPASS(fwq->flags & IQ_HW_ALLOCATED);
3855 }
3856
3857 return (0);
3858 }
3859
3860 /*
3861 * Idempotent.
3862 */
3863 static void
3864 free_fwq(struct adapter *sc)
3865 {
3866 struct sge_iq *fwq = &sc->sge.fwq;
3867
3868 if (fwq->flags & IQ_HW_ALLOCATED) {
3869 MPASS(fwq->flags & IQ_SW_ALLOCATED);
3870 free_iq_fl_hwq(sc, fwq, NULL);
3871 MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3872 }
3873
3874 if (fwq->flags & IQ_SW_ALLOCATED) {
3875 MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
3876 free_iq_fl(sc, fwq, NULL);
3877 MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
3878 }
3879 }
3880
3881 /*
3882 * Idempotent.
3883 */
3884 static int
3885 alloc_ctrlq(struct adapter *sc, int idx)
3886 {
3887 int rc;
3888 char name[16];
3889 struct sysctl_oid *oid;
3890 struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3891
3892 MPASS(idx < sc->params.nports);
3893
3894 if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
3895 MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3896
3897 snprintf(name, sizeof(name), "%d", idx);
3898 oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
3899 OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
3900 "ctrl queue");
3901
3902 snprintf(name, sizeof(name), "%s ctrlq%d",
3903 device_get_nameunit(sc->dev), idx);
3904 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
3905 sc->port[idx]->tx_chan, &sc->sge.fwq, name);
3906 rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
3907 if (rc != 0) {
3908 CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
3909 sysctl_remove_oid(oid, 1, 1);
3910 return (rc);
3911 }
3912 MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3913 }
3914
3915 if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
3916 MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3917
3918 rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
3919 if (rc != 0) {
3920 CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
3921 return (rc);
3922 }
3923 MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
3924 }
3925
3926 return (0);
3927 }
3928
3929 /*
3930 * Idempotent.
3931 */
3932 static void
3933 free_ctrlq(struct adapter *sc, int idx)
3934 {
3935 struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
3936
3937 if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
3938 MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
3939 free_eq_hwq(sc, NULL, &ctrlq->eq);
3940 MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3941 }
3942
3943 if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
3944 MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
3945 free_wrq(sc, ctrlq);
3946 MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
3947 }
3948 }
3949
3950 int
3951 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
3952 int cong_map)
3953 {
3954 const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
3955 uint32_t param, val;
3956 uint16_t ch_map;
3957 int cong_mode, rc, i;
3958
3959 if (chip_id(sc) < CHELSIO_T5)
3960 return (ENOTSUP);
3961
3962 /* Convert the driver knob to the mode understood by the firmware. */
3963 switch (cong_drop) {
3964 case -1:
3965 cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
3966 break;
3967 case 0:
3968 cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
3969 break;
3970 case 1:
3971 cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
3972 break;
3973 case 2:
3974 cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
3975 break;
3976 default:
3977 MPASS(0);
3978 CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
3979 cong_drop, cntxt_id);
3980 return (EINVAL);
3981 }
3982
3983 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
3984 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3985 V_FW_PARAMS_PARAM_YZ(cntxt_id);
3986 val = V_CONMCTXT_CNGTPMODE(cong_mode);
3987 if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
3988 cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
3989 for (i = 0, ch_map = 0; i < 4; i++) {
3990 if (cong_map & (1 << i))
3991 ch_map |= 1 << (i << cng_ch_bits_log);
3992 }
3993 val |= V_CONMCTXT_CNGCHMAP(ch_map);
3994 }
3995 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val);
3996 if (rc != 0) {
3997 CH_ERR(sc, "failed to set congestion manager context "
3998 "for ingress queue %d: %d\n", cntxt_id, rc);
3999 }
4000
4001 return (rc);
4002 }
4003
4004 /*
4005 * Idempotent.
4006 */
4007 static int
4008 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
4009 int maxp)
4010 {
4011 int rc;
4012 struct adapter *sc = vi->adapter;
4013 struct ifnet *ifp = vi->ifp;
4014 struct sysctl_oid *oid;
4015 char name[16];
4016
4017 if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
4018 MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4019 #if defined(INET) || defined(INET6)
4020 rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
4021 if (rc != 0)
4022 return (rc);
4023 MPASS(rxq->lro.ifp == ifp); /* also indicates LRO init'ed */
4024 #endif
4025 rxq->ifp = ifp;
4026
4027 snprintf(name, sizeof(name), "%d", idx);
4028 oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
4029 OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4030 "rx queue");
4031
4032 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
4033 intr_idx, cong_drop, IQ_ETH);
4034 #if defined(INET) || defined(INET6)
4035 if (ifp->if_capenable & IFCAP_LRO)
4036 rxq->iq.flags |= IQ_LRO_ENABLED;
4037 #endif
4038 if (ifp->if_capenable & IFCAP_HWRXTSTMP)
4039 rxq->iq.flags |= IQ_RX_TIMESTAMP;
4040 snprintf(name, sizeof(name), "%s rxq%d-fl",
4041 device_get_nameunit(vi->dev), idx);
4042 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
4043 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
4044 if (rc != 0) {
4045 CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
4046 sysctl_remove_oid(oid, 1, 1);
4047 #if defined(INET) || defined(INET6)
4048 tcp_lro_free(&rxq->lro);
4049 rxq->lro.ifp = NULL;
4050 #endif
4051 return (rc);
4052 }
4053 MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4054 add_rxq_sysctls(&vi->ctx, oid, rxq);
4055 }
4056
4057 if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
4058 MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4059 rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
4060 if (rc != 0) {
4061 CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
4062 return (rc);
4063 }
4064 MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
4065
4066 if (idx == 0)
4067 sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
4068 else
4069 KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
4070 ("iq_base mismatch"));
4071 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
4072 ("PF with non-zero iq_base"));
4073
4074 /*
4075 * The freelist is just barely above the starvation threshold
4076 * right now, fill it up a bit more.
4077 */
4078 FL_LOCK(&rxq->fl);
4079 refill_fl(sc, &rxq->fl, 128);
4080 FL_UNLOCK(&rxq->fl);
4081 }
4082
4083 return (0);
4084 }
4085
4086 /*
4087 * Idempotent.
4088 */
4089 static void
4090 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
4091 {
4092 if (rxq->iq.flags & IQ_HW_ALLOCATED) {
4093 MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
4094 free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
4095 MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4096 }
4097
4098 if (rxq->iq.flags & IQ_SW_ALLOCATED) {
4099 MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
4100 #if defined(INET) || defined(INET6)
4101 tcp_lro_free(&rxq->lro);
4102 #endif
4103 free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
4104 MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
4105 bzero(rxq, sizeof(*rxq));
4106 }
4107 }
4108
4109 static void
4110 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4111 struct sge_rxq *rxq)
4112 {
4113 struct sysctl_oid_list *children;
4114
4115 if (ctx == NULL || oid == NULL)
4116 return;
4117
4118 children = SYSCTL_CHILDREN(oid);
4119 #if defined(INET) || defined(INET6)
4120 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
4121 &rxq->lro.lro_queued, 0, NULL);
4122 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
4123 &rxq->lro.lro_flushed, 0, NULL);
4124 #endif
4125 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
4126 &rxq->rxcsum, "# of times hardware assisted with checksum");
4127 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
4128 &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
4129 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
4130 &rxq->vxlan_rxcsum,
4131 "# of times hardware assisted with inner checksum (VXLAN)");
4132 }
4133
4134 #ifdef TCP_OFFLOAD
4135 /*
4136 * Idempotent.
4137 */
4138 static int
4139 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
4140 int intr_idx, int maxp)
4141 {
4142 int rc;
4143 struct adapter *sc = vi->adapter;
4144 struct sysctl_oid *oid;
4145 char name[16];
4146
4147 if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
4148 MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4149
4150 snprintf(name, sizeof(name), "%d", idx);
4151 oid = SYSCTL_ADD_NODE(&vi->ctx,
4152 SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
4153 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
4154
4155 init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
4156 vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
4157 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
4158 device_get_nameunit(vi->dev), idx);
4159 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
4160 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
4161 oid);
4162 if (rc != 0) {
4163 CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
4164 rc);
4165 sysctl_remove_oid(oid, 1, 1);
4166 return (rc);
4167 }
4168 MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4169 ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
4170 ofld_rxq->rx_iscsi_ddp_setup_error =
4171 counter_u64_alloc(M_WAITOK);
4172 add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
4173 }
4174
4175 if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
4176 MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4177 rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
4178 if (rc != 0) {
4179 CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
4180 rc);
4181 return (rc);
4182 }
4183 MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
4184 }
4185 return (rc);
4186 }
4187
4188 /*
4189 * Idempotent.
4190 */
4191 static void
4192 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
4193 {
4194 if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
4195 MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
4196 free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4197 MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4198 }
4199
4200 if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
4201 MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
4202 free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
4203 MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
4204 counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
4205 counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
4206 bzero(ofld_rxq, sizeof(*ofld_rxq));
4207 }
4208 }
4209
4210 static void
4211 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4212 struct sge_ofld_rxq *ofld_rxq)
4213 {
4214 struct sysctl_oid_list *children;
4215
4216 if (ctx == NULL || oid == NULL)
4217 return;
4218
4219 children = SYSCTL_CHILDREN(oid);
4220 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4221 "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
4222 "# of TOE TLS records received");
4223 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
4224 "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
4225 "# of payload octets in received TOE TLS records");
4226
4227 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
4228 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
4229 children = SYSCTL_CHILDREN(oid);
4230
4231 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
4232 CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
4233 "# of times DDP buffer was setup successfully.");
4234 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
4235 CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
4236 "# of times DDP buffer setup failed.");
4237 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
4238 CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
4239 "# of octets placed directly");
4240 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
4241 CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
4242 "# of PDUs with data placed directly.");
4243 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
4244 CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
4245 "# of data octets delivered in freelist");
4246 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
4247 CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
4248 "# of PDUs with data delivered in freelist");
4249 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
4250 CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
4251 "# of PDUs with invalid padding");
4252 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
4253 CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
4254 "# of PDUs with invalid header digests");
4255 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
4256 CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
4257 "# of PDUs with invalid data digests");
4258 }
4259 #endif
4260
4261 /*
4262 * Returns a reasonable automatic cidx flush threshold for a given queue size.
4263 */
4264 static u_int
4265 qsize_to_fthresh(int qsize)
4266 {
4267 u_int fthresh;
4268
4269 while (!powerof2(qsize))
4270 qsize++;
4271 fthresh = ilog2(qsize);
4272 if (fthresh > X_CIDXFLUSHTHRESH_128)
4273 fthresh = X_CIDXFLUSHTHRESH_128;
4274
4275 return (fthresh);
4276 }
4277
4278 static int
4279 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
4280 {
4281 int rc, cntxt_id;
4282 struct fw_eq_ctrl_cmd c;
4283 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4284
4285 bzero(&c, sizeof(c));
4286
4287 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
4288 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
4289 V_FW_EQ_CTRL_CMD_VFN(0));
4290 c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
4291 F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
4292 c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
4293 c.physeqid_pkd = htobe32(0);
4294 c.fetchszm_to_iqid =
4295 htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4296 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
4297 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
4298 c.dcaen_to_eqsize =
4299 htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4300 X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4301 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4302 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4303 V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
4304 c.eqaddr = htobe64(eq->ba);
4305
4306 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4307 if (rc != 0) {
4308 CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
4309 eq->tx_chan, rc);
4310 return (rc);
4311 }
4312
4313 eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
4314 eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4315 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4316 if (cntxt_id >= sc->sge.eqmap_sz)
4317 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4318 cntxt_id, sc->sge.eqmap_sz - 1);
4319 sc->sge.eqmap[cntxt_id] = eq;
4320
4321 return (rc);
4322 }
4323
4324 static int
4325 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4326 {
4327 int rc, cntxt_id;
4328 struct fw_eq_eth_cmd c;
4329 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4330
4331 bzero(&c, sizeof(c));
4332
4333 c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
4334 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
4335 V_FW_EQ_ETH_CMD_VFN(0));
4336 c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
4337 F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
4338 c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
4339 F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
4340 c.fetchszm_to_iqid =
4341 htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
4342 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
4343 V_FW_EQ_ETH_CMD_IQID(eq->iqid));
4344 c.dcaen_to_eqsize =
4345 htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4346 X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4347 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4348 V_FW_EQ_ETH_CMD_EQSIZE(qsize));
4349 c.eqaddr = htobe64(eq->ba);
4350
4351 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4352 if (rc != 0) {
4353 device_printf(vi->dev,
4354 "failed to create Ethernet egress queue: %d\n", rc);
4355 return (rc);
4356 }
4357
4358 eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
4359 eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4360 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4361 if (cntxt_id >= sc->sge.eqmap_sz)
4362 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4363 cntxt_id, sc->sge.eqmap_sz - 1);
4364 sc->sge.eqmap[cntxt_id] = eq;
4365
4366 return (rc);
4367 }
4368
4369 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4370 static int
4371 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4372 {
4373 int rc, cntxt_id;
4374 struct fw_eq_ofld_cmd c;
4375 int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4376
4377 bzero(&c, sizeof(c));
4378
4379 c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
4380 F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
4381 V_FW_EQ_OFLD_CMD_VFN(0));
4382 c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
4383 F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
4384 c.fetchszm_to_iqid =
4385 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
4386 V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
4387 F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
4388 c.dcaen_to_eqsize =
4389 htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
4390 X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
4391 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
4392 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
4393 V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
4394 c.eqaddr = htobe64(eq->ba);
4395
4396 rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
4397 if (rc != 0) {
4398 device_printf(vi->dev,
4399 "failed to create egress queue for TCP offload: %d\n", rc);
4400 return (rc);
4401 }
4402
4403 eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
4404 eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
4405 cntxt_id = eq->cntxt_id - sc->sge.eq_start;
4406 if (cntxt_id >= sc->sge.eqmap_sz)
4407 panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
4408 cntxt_id, sc->sge.eqmap_sz - 1);
4409 sc->sge.eqmap[cntxt_id] = eq;
4410
4411 return (rc);
4412 }
4413 #endif
4414
4415 /* SW only */
4416 static int
4417 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
4418 struct sysctl_oid *oid)
4419 {
4420 int rc, qsize;
4421 size_t len;
4422
4423 MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4424
4425 qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
4426 len = qsize * EQ_ESIZE;
4427 rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
4428 (void **)&eq->desc);
4429 if (rc)
4430 return (rc);
4431 if (ctx != NULL && oid != NULL)
4432 add_eq_sysctls(sc, ctx, oid, eq);
4433 eq->flags |= EQ_SW_ALLOCATED;
4434
4435 return (0);
4436 }
4437
4438 /* SW only */
4439 static void
4440 free_eq(struct adapter *sc, struct sge_eq *eq)
4441 {
4442 MPASS(eq->flags & EQ_SW_ALLOCATED);
4443 if (eq->type == EQ_ETH)
4444 MPASS(eq->pidx == eq->cidx);
4445
4446 free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
4447 mtx_destroy(&eq->eq_lock);
4448 bzero(eq, sizeof(*eq));
4449 }
4450
4451 static void
4452 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
4453 struct sysctl_oid *oid, struct sge_eq *eq)
4454 {
4455 struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
4456
4457 SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
4458 "bus address of descriptor ring");
4459 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
4460 eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
4461 "desc ring size in bytes");
4462 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
4463 &eq->abs_id, 0, "absolute id of the queue");
4464 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
4465 &eq->cntxt_id, 0, "SGE context id of the queue");
4466 SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
4467 0, "consumer index");
4468 SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
4469 0, "producer index");
4470 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
4471 eq->sidx, "status page index");
4472 }
4473
4474 static int
4475 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
4476 {
4477 int rc;
4478
4479 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4480
4481 eq->iqid = eq->iq->cntxt_id;
4482 eq->pidx = eq->cidx = eq->dbidx = 0;
4483 /* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
4484 eq->equeqidx = 0;
4485 eq->doorbells = sc->doorbells;
4486 bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
4487
4488 switch (eq->type) {
4489 case EQ_CTRL:
4490 rc = ctrl_eq_alloc(sc, eq);
4491 break;
4492
4493 case EQ_ETH:
4494 rc = eth_eq_alloc(sc, vi, eq);
4495 break;
4496
4497 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4498 case EQ_OFLD:
4499 rc = ofld_eq_alloc(sc, vi, eq);
4500 break;
4501 #endif
4502
4503 default:
4504 panic("%s: invalid eq type %d.", __func__, eq->type);
4505 }
4506 if (rc != 0) {
4507 CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
4508 eq->type, rc);
4509 return (rc);
4510 }
4511
4512 if (isset(&eq->doorbells, DOORBELL_UDB) ||
4513 isset(&eq->doorbells, DOORBELL_UDBWC) ||
4514 isset(&eq->doorbells, DOORBELL_WCWR)) {
4515 uint32_t s_qpp = sc->params.sge.eq_s_qpp;
4516 uint32_t mask = (1 << s_qpp) - 1;
4517 volatile uint8_t *udb;
4518
4519 udb = sc->udbs_base + UDBS_DB_OFFSET;
4520 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */
4521 eq->udb_qid = eq->cntxt_id & mask; /* id in page */
4522 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
4523 clrbit(&eq->doorbells, DOORBELL_WCWR);
4524 else {
4525 udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */
4526 eq->udb_qid = 0;
4527 }
4528 eq->udb = (volatile void *)udb;
4529 }
4530
4531 eq->flags |= EQ_HW_ALLOCATED;
4532 return (0);
4533 }
4534
4535 static int
4536 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
4537 {
4538 int rc;
4539
4540 MPASS(eq->flags & EQ_HW_ALLOCATED);
4541
4542 switch (eq->type) {
4543 case EQ_CTRL:
4544 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4545 break;
4546 case EQ_ETH:
4547 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4548 break;
4549 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4550 case EQ_OFLD:
4551 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
4552 break;
4553 #endif
4554 default:
4555 panic("%s: invalid eq type %d.", __func__, eq->type);
4556 }
4557 if (rc != 0) {
4558 CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
4559 return (rc);
4560 }
4561 eq->flags &= ~EQ_HW_ALLOCATED;
4562
4563 return (0);
4564 }
4565
4566 static int
4567 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
4568 struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
4569 {
4570 struct sge_eq *eq = &wrq->eq;
4571 int rc;
4572
4573 MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4574
4575 rc = alloc_eq(sc, eq, ctx, oid);
4576 if (rc)
4577 return (rc);
4578 MPASS(eq->flags & EQ_SW_ALLOCATED);
4579 /* Can't fail after this. */
4580
4581 wrq->adapter = sc;
4582 TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
4583 TAILQ_INIT(&wrq->incomplete_wrs);
4584 STAILQ_INIT(&wrq->wr_list);
4585 wrq->nwr_pending = 0;
4586 wrq->ndesc_needed = 0;
4587 add_wrq_sysctls(ctx, oid, wrq);
4588
4589 return (0);
4590 }
4591
4592 static void
4593 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
4594 {
4595 free_eq(sc, &wrq->eq);
4596 MPASS(wrq->nwr_pending == 0);
4597 MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
4598 MPASS(STAILQ_EMPTY(&wrq->wr_list));
4599 bzero(wrq, sizeof(*wrq));
4600 }
4601
4602 static void
4603 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4604 struct sge_wrq *wrq)
4605 {
4606 struct sysctl_oid_list *children;
4607
4608 if (ctx == NULL || oid == NULL)
4609 return;
4610
4611 children = SYSCTL_CHILDREN(oid);
4612 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
4613 &wrq->tx_wrs_direct, "# of work requests (direct)");
4614 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
4615 &wrq->tx_wrs_copied, "# of work requests (copied)");
4616 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
4617 &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
4618 }
4619
4620 /*
4621 * Idempotent.
4622 */
4623 static int
4624 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
4625 {
4626 int rc, iqidx;
4627 struct port_info *pi = vi->pi;
4628 struct adapter *sc = vi->adapter;
4629 struct sge_eq *eq = &txq->eq;
4630 struct txpkts *txp;
4631 char name[16];
4632 struct sysctl_oid *oid;
4633
4634 if (!(eq->flags & EQ_SW_ALLOCATED)) {
4635 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4636
4637 snprintf(name, sizeof(name), "%d", idx);
4638 oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
4639 OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
4640 "tx queue");
4641
4642 iqidx = vi->first_rxq + (idx % vi->nrxq);
4643 snprintf(name, sizeof(name), "%s txq%d",
4644 device_get_nameunit(vi->dev), idx);
4645 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
4646 &sc->sge.rxq[iqidx].iq, name);
4647
4648 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
4649 can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
4650 if (rc != 0) {
4651 CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
4652 idx, rc);
4653 failed:
4654 sysctl_remove_oid(oid, 1, 1);
4655 return (rc);
4656 }
4657
4658 rc = alloc_eq(sc, eq, &vi->ctx, oid);
4659 if (rc) {
4660 CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
4661 mp_ring_free(txq->r);
4662 goto failed;
4663 }
4664 MPASS(eq->flags & EQ_SW_ALLOCATED);
4665 /* Can't fail after this point. */
4666
4667 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
4668 txq->ifp = vi->ifp;
4669 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
4670 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
4671 M_ZERO | M_WAITOK);
4672
4673 add_txq_sysctls(vi, &vi->ctx, oid, txq);
4674 }
4675
4676 if (!(eq->flags & EQ_HW_ALLOCATED)) {
4677 MPASS(eq->flags & EQ_SW_ALLOCATED);
4678 rc = alloc_eq_hwq(sc, vi, eq);
4679 if (rc != 0) {
4680 CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
4681 return (rc);
4682 }
4683 MPASS(eq->flags & EQ_HW_ALLOCATED);
4684 /* Can't fail after this point. */
4685
4686 if (idx == 0)
4687 sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
4688 else
4689 KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
4690 ("eq_base mismatch"));
4691 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
4692 ("PF with non-zero eq_base"));
4693
4694 txp = &txq->txp;
4695 MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
4696 txq->txp.max_npkt = min(nitems(txp->mb),
4697 sc->params.max_pkts_per_eth_tx_pkts_wr);
4698 if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
4699 txq->txp.max_npkt--;
4700
4701 if (vi->flags & TX_USES_VM_WR)
4702 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4703 V_TXPKT_INTF(pi->tx_chan));
4704 else
4705 txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
4706 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
4707 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
4708
4709 txq->tc_idx = -1;
4710 }
4711
4712 return (0);
4713 }
4714
4715 /*
4716 * Idempotent.
4717 */
4718 static void
4719 free_txq(struct vi_info *vi, struct sge_txq *txq)
4720 {
4721 struct adapter *sc = vi->adapter;
4722 struct sge_eq *eq = &txq->eq;
4723
4724 if (eq->flags & EQ_HW_ALLOCATED) {
4725 MPASS(eq->flags & EQ_SW_ALLOCATED);
4726 free_eq_hwq(sc, NULL, eq);
4727 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4728 }
4729
4730 if (eq->flags & EQ_SW_ALLOCATED) {
4731 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4732 sglist_free(txq->gl);
4733 free(txq->sdesc, M_CXGBE);
4734 mp_ring_free(txq->r);
4735 free_eq(sc, eq);
4736 MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4737 bzero(txq, sizeof(*txq));
4738 }
4739 }
4740
4741 static void
4742 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
4743 struct sysctl_oid *oid, struct sge_txq *txq)
4744 {
4745 struct adapter *sc;
4746 struct sysctl_oid_list *children;
4747
4748 if (ctx == NULL || oid == NULL)
4749 return;
4750
4751 sc = vi->adapter;
4752 children = SYSCTL_CHILDREN(oid);
4753
4754 mp_ring_sysctls(txq->r, ctx, children);
4755
4756 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
4757 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
4758 sysctl_tc, "I", "traffic class (-1 means none)");
4759
4760 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
4761 &txq->txcsum, "# of times hardware assisted with checksum");
4762 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
4763 &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
4764 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
4765 &txq->tso_wrs, "# of TSO work requests");
4766 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
4767 &txq->imm_wrs, "# of work requests with immediate data");
4768 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
4769 &txq->sgl_wrs, "# of work requests with direct SGL");
4770 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
4771 &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
4772 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
4773 &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
4774 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
4775 &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
4776 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
4777 &txq->txpkts0_pkts,
4778 "# of frames tx'd using type0 txpkts work requests");
4779 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
4780 &txq->txpkts1_pkts,
4781 "# of frames tx'd using type1 txpkts work requests");
4782 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
4783 &txq->txpkts_flush,
4784 "# of times txpkts had to be flushed out by an egress-update");
4785 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
4786 &txq->raw_wrs, "# of raw work requests (non-packets)");
4787 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
4788 &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
4789 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
4790 &txq->vxlan_txcsum,
4791 "# of times hardware assisted with inner checksums (VXLAN)");
4792
4793 #ifdef KERN_TLS
4794 if (is_ktls(sc)) {
4795 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
4796 CTLFLAG_RD, &txq->kern_tls_records,
4797 "# of NIC TLS records transmitted");
4798 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
4799 CTLFLAG_RD, &txq->kern_tls_short,
4800 "# of short NIC TLS records transmitted");
4801 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
4802 CTLFLAG_RD, &txq->kern_tls_partial,
4803 "# of partial NIC TLS records transmitted");
4804 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
4805 CTLFLAG_RD, &txq->kern_tls_full,
4806 "# of full NIC TLS records transmitted");
4807 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
4808 CTLFLAG_RD, &txq->kern_tls_octets,
4809 "# of payload octets in transmitted NIC TLS records");
4810 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
4811 CTLFLAG_RD, &txq->kern_tls_waste,
4812 "# of octets DMAd but not transmitted in NIC TLS records");
4813 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
4814 CTLFLAG_RD, &txq->kern_tls_options,
4815 "# of NIC TLS options-only packets transmitted");
4816 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
4817 CTLFLAG_RD, &txq->kern_tls_header,
4818 "# of NIC TLS header-only packets transmitted");
4819 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
4820 CTLFLAG_RD, &txq->kern_tls_fin,
4821 "# of NIC TLS FIN-only packets transmitted");
4822 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
4823 CTLFLAG_RD, &txq->kern_tls_fin_short,
4824 "# of NIC TLS padded FIN packets on short TLS records");
4825 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
4826 CTLFLAG_RD, &txq->kern_tls_cbc,
4827 "# of NIC TLS sessions using AES-CBC");
4828 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
4829 CTLFLAG_RD, &txq->kern_tls_gcm,
4830 "# of NIC TLS sessions using AES-GCM");
4831 }
4832 #endif
4833 }
4834
4835 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4836 /*
4837 * Idempotent.
4838 */
4839 static int
4840 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
4841 {
4842 struct sysctl_oid *oid;
4843 struct port_info *pi = vi->pi;
4844 struct adapter *sc = vi->adapter;
4845 struct sge_eq *eq = &ofld_txq->wrq.eq;
4846 int rc, iqidx;
4847 char name[16];
4848
4849 MPASS(idx >= 0);
4850 MPASS(idx < vi->nofldtxq);
4851
4852 if (!(eq->flags & EQ_SW_ALLOCATED)) {
4853 snprintf(name, sizeof(name), "%d", idx);
4854 oid = SYSCTL_ADD_NODE(&vi->ctx,
4855 SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
4856 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
4857
4858 snprintf(name, sizeof(name), "%s ofld_txq%d",
4859 device_get_nameunit(vi->dev), idx);
4860 if (vi->nofldrxq > 0) {
4861 iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
4862 init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4863 &sc->sge.ofld_rxq[iqidx].iq, name);
4864 } else {
4865 iqidx = vi->first_rxq + (idx % vi->nrxq);
4866 init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
4867 &sc->sge.rxq[iqidx].iq, name);
4868 }
4869
4870 rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
4871 if (rc != 0) {
4872 CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
4873 rc);
4874 sysctl_remove_oid(oid, 1, 1);
4875 return (rc);
4876 }
4877 MPASS(eq->flags & EQ_SW_ALLOCATED);
4878 /* Can't fail after this point. */
4879
4880 ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
4881 ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
4882 ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
4883 ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
4884 ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
4885 add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
4886 }
4887
4888 if (!(eq->flags & EQ_HW_ALLOCATED)) {
4889 rc = alloc_eq_hwq(sc, vi, eq);
4890 if (rc != 0) {
4891 CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
4892 rc);
4893 return (rc);
4894 }
4895 MPASS(eq->flags & EQ_HW_ALLOCATED);
4896 }
4897
4898 return (0);
4899 }
4900
4901 /*
4902 * Idempotent.
4903 */
4904 static void
4905 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
4906 {
4907 struct adapter *sc = vi->adapter;
4908 struct sge_eq *eq = &ofld_txq->wrq.eq;
4909
4910 if (eq->flags & EQ_HW_ALLOCATED) {
4911 MPASS(eq->flags & EQ_SW_ALLOCATED);
4912 free_eq_hwq(sc, NULL, eq);
4913 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4914 }
4915
4916 if (eq->flags & EQ_SW_ALLOCATED) {
4917 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
4918 counter_u64_free(ofld_txq->tx_iscsi_pdus);
4919 counter_u64_free(ofld_txq->tx_iscsi_octets);
4920 counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
4921 counter_u64_free(ofld_txq->tx_toe_tls_records);
4922 counter_u64_free(ofld_txq->tx_toe_tls_octets);
4923 free_wrq(sc, &ofld_txq->wrq);
4924 MPASS(!(eq->flags & EQ_SW_ALLOCATED));
4925 bzero(ofld_txq, sizeof(*ofld_txq));
4926 }
4927 }
4928
4929 static void
4930 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
4931 struct sge_ofld_txq *ofld_txq)
4932 {
4933 struct sysctl_oid_list *children;
4934
4935 if (ctx == NULL || oid == NULL)
4936 return;
4937
4938 children = SYSCTL_CHILDREN(oid);
4939 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
4940 CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
4941 "# of iSCSI PDUs transmitted");
4942 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
4943 CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
4944 "# of payload octets in transmitted iSCSI PDUs");
4945 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
4946 CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
4947 "# of iSCSI segmentation offload work requests");
4948 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
4949 CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
4950 "# of TOE TLS records transmitted");
4951 SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
4952 CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
4953 "# of payload octets in transmitted TOE TLS records");
4954 }
4955 #endif
4956
4957 static void
4958 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
4959 {
4960 bus_addr_t *ba = arg;
4961
4962 KASSERT(nseg == 1,
4963 ("%s meant for single segment mappings only.", __func__));
4964
4965 *ba = error ? 0 : segs->ds_addr;
4966 }
4967
4968 static inline void
4969 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
4970 {
4971 uint32_t n, v;
4972
4973 n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
4974 MPASS(n > 0);
4975
4976 wmb();
4977 v = fl->dbval | V_PIDX(n);
4978 if (fl->udb)
4979 *fl->udb = htole32(v);
4980 else
4981 t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
4982 IDXINCR(fl->dbidx, n, fl->sidx);
4983 }
4984
4985 /*
4986 * Fills up the freelist by allocating up to 'n' buffers. Buffers that are
4987 * recycled do not count towards this allocation budget.
4988 *
4989 * Returns non-zero to indicate that this freelist should be added to the list
4990 * of starving freelists.
4991 */
4992 static int
4993 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
4994 {
4995 __be64 *d;
4996 struct fl_sdesc *sd;
4997 uintptr_t pa;
4998 caddr_t cl;
4999 struct rx_buf_info *rxb;
5000 struct cluster_metadata *clm;
5001 uint16_t max_pidx, zidx = fl->zidx;
5002 uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */
5003
5004 FL_LOCK_ASSERT_OWNED(fl);
5005
5006 /*
5007 * We always stop at the beginning of the hardware descriptor that's just
5008 * before the one with the hw cidx. This is to avoid hw pidx = hw cidx,
5009 * which would mean an empty freelist to the chip.
5010 */
5011 max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
5012 if (fl->pidx == max_pidx * 8)
5013 return (0);
5014
5015 d = &fl->desc[fl->pidx];
5016 sd = &fl->sdesc[fl->pidx];
5017 rxb = &sc->sge.rx_buf_info[zidx];
5018
5019 while (n > 0) {
5020
5021 if (sd->cl != NULL) {
5022
5023 if (sd->nmbuf == 0) {
5024 /*
5025 * Fast recycle without involving any atomics on
5026 * the cluster's metadata (if the cluster has
5027 * metadata). This happens when all frames
5028 * received in the cluster were small enough to
5029 * fit within a single mbuf each.
5030 */
5031 fl->cl_fast_recycled++;
5032 goto recycled;
5033 }
5034
5035 /*
5036 * Cluster is guaranteed to have metadata. Clusters
5037 * without metadata always take the fast recycle path
5038 * when they're recycled.
5039 */
5040 clm = cl_metadata(sd);
5041 MPASS(clm != NULL);
5042
5043 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5044 fl->cl_recycled++;
5045 counter_u64_add(extfree_rels, 1);
5046 goto recycled;
5047 }
5048 sd->cl = NULL; /* gave up my reference */
5049 }
5050 MPASS(sd->cl == NULL);
5051 cl = uma_zalloc(rxb->zone, M_NOWAIT);
5052 if (__predict_false(cl == NULL)) {
5053 if (zidx != fl->safe_zidx) {
5054 zidx = fl->safe_zidx;
5055 rxb = &sc->sge.rx_buf_info[zidx];
5056 cl = uma_zalloc(rxb->zone, M_NOWAIT);
5057 }
5058 if (cl == NULL)
5059 break;
5060 }
5061 fl->cl_allocated++;
5062 n--;
5063
5064 pa = pmap_kextract((vm_offset_t)cl);
5065 sd->cl = cl;
5066 sd->zidx = zidx;
5067
5068 if (fl->flags & FL_BUF_PACKING) {
5069 *d = htobe64(pa | rxb->hwidx2);
5070 sd->moff = rxb->size2;
5071 } else {
5072 *d = htobe64(pa | rxb->hwidx1);
5073 sd->moff = 0;
5074 }
5075 recycled:
5076 sd->nmbuf = 0;
5077 d++;
5078 sd++;
5079 if (__predict_false((++fl->pidx & 7) == 0)) {
5080 uint16_t pidx = fl->pidx >> 3;
5081
5082 if (__predict_false(pidx == fl->sidx)) {
5083 fl->pidx = 0;
5084 pidx = 0;
5085 sd = fl->sdesc;
5086 d = fl->desc;
5087 }
5088 if (n < 8 || pidx == max_pidx)
5089 break;
5090
5091 if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
5092 ring_fl_db(sc, fl);
5093 }
5094 }
5095
5096 if ((fl->pidx >> 3) != fl->dbidx)
5097 ring_fl_db(sc, fl);
5098
5099 return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
5100 }
5101
5102 /*
5103 * Attempt to refill all starving freelists.
5104 */
5105 static void
5106 refill_sfl(void *arg)
5107 {
5108 struct adapter *sc = arg;
5109 struct sge_fl *fl, *fl_temp;
5110
5111 mtx_assert(&sc->sfl_lock, MA_OWNED);
5112 TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
5113 FL_LOCK(fl);
5114 refill_fl(sc, fl, 64);
5115 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
5116 TAILQ_REMOVE(&sc->sfl, fl, link);
5117 fl->flags &= ~FL_STARVING;
5118 }
5119 FL_UNLOCK(fl);
5120 }
5121
5122 if (!TAILQ_EMPTY(&sc->sfl))
5123 callout_schedule(&sc->sfl_callout, hz / 5);
5124 }
5125
5126 /*
5127 * Release the driver's reference on all buffers in the given freelist. Buffers
5128 * with kernel references cannot be freed and will prevent the driver from being
5129 * unloaded safely.
5130 */
5131 void
5132 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
5133 {
5134 struct fl_sdesc *sd;
5135 struct cluster_metadata *clm;
5136 int i;
5137
5138 sd = fl->sdesc;
5139 for (i = 0; i < fl->sidx * 8; i++, sd++) {
5140 if (sd->cl == NULL)
5141 continue;
5142
5143 if (sd->nmbuf == 0)
5144 uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
5145 else if (fl->flags & FL_BUF_PACKING) {
5146 clm = cl_metadata(sd);
5147 if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
5148 uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
5149 sd->cl);
5150 counter_u64_add(extfree_rels, 1);
5151 }
5152 }
5153 sd->cl = NULL;
5154 }
5155
5156 if (fl->flags & FL_BUF_RESUME) {
5157 m_freem(fl->m0);
5158 fl->flags &= ~FL_BUF_RESUME;
5159 }
5160 }
5161
5162 static inline void
5163 get_pkt_gl(struct mbuf *m, struct sglist *gl)
5164 {
5165 int rc;
5166
5167 M_ASSERTPKTHDR(m);
5168
5169 sglist_reset(gl);
5170 rc = sglist_append_mbuf(gl, m);
5171 if (__predict_false(rc != 0)) {
5172 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
5173 "with %d.", __func__, m, mbuf_nsegs(m), rc);
5174 }
5175
5176 KASSERT(gl->sg_nseg == mbuf_nsegs(m),
5177 ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
5178 mbuf_nsegs(m), gl->sg_nseg));
5179 #if 0 /* vm_wr not readily available here. */
5180 KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
5181 ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
5182 gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
5183 #endif
5184 }
5185
5186 /*
5187 * len16 for a txpkt WR with a GL. Includes the firmware work request header.
5188 */
5189 static inline u_int
5190 txpkt_len16(u_int nsegs, const u_int extra)
5191 {
5192 u_int n;
5193
5194 MPASS(nsegs > 0);
5195
5196 nsegs--; /* first segment is part of ulptx_sgl */
5197 n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
5198 sizeof(struct cpl_tx_pkt_core) +
5199 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5200
5201 return (howmany(n, 16));
5202 }
5203
5204 /*
5205 * len16 for a txpkt_vm WR with a GL. Includes the firmware work
5206 * request header.
5207 */
5208 static inline u_int
5209 txpkt_vm_len16(u_int nsegs, const u_int extra)
5210 {
5211 u_int n;
5212
5213 MPASS(nsegs > 0);
5214
5215 nsegs--; /* first segment is part of ulptx_sgl */
5216 n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
5217 sizeof(struct cpl_tx_pkt_core) +
5218 sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5219
5220 return (howmany(n, 16));
5221 }
5222
5223 static inline void
5224 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
5225 {
5226 const int lso = sizeof(struct cpl_tx_pkt_lso_core);
5227 const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
5228
5229 if (vm_wr) {
5230 if (needs_tso(m))
5231 set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
5232 else
5233 set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
5234 return;
5235 }
5236
5237 if (needs_tso(m)) {
5238 if (needs_vxlan_tso(m))
5239 set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
5240 else
5241 set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
5242 } else
5243 set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
5244 }
5245
5246 /*
5247 * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work
5248 * request header.
5249 */
5250 static inline u_int
5251 txpkts0_len16(u_int nsegs)
5252 {
5253 u_int n;
5254
5255 MPASS(nsegs > 0);
5256
5257 nsegs--; /* first segment is part of ulptx_sgl */
5258 n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
5259 sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
5260 8 * ((3 * nsegs) / 2 + (nsegs & 1));
5261
5262 return (howmany(n, 16));
5263 }
5264
5265 /*
5266 * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work
5267 * request header.
5268 */
5269 static inline u_int
5270 txpkts1_len16(void)
5271 {
5272 u_int n;
5273
5274 n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
5275
5276 return (howmany(n, 16));
5277 }
5278
5279 static inline u_int
5280 imm_payload(u_int ndesc)
5281 {
5282 u_int n;
5283
5284 n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
5285 sizeof(struct cpl_tx_pkt_core);
5286
5287 return (n);
5288 }
5289
5290 static inline uint64_t
5291 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
5292 {
5293 uint64_t ctrl;
5294 int csum_type, l2hlen, l3hlen;
5295 int x, y;
5296 static const int csum_types[3][2] = {
5297 {TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
5298 {TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
5299 {TX_CSUM_IP, 0}
5300 };
5301
5302 M_ASSERTPKTHDR(m);
5303
5304 if (!needs_hwcsum(m))
5305 return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
5306
5307 MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
5308 MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
5309
5310 if (needs_vxlan_csum(m)) {
5311 MPASS(m->m_pkthdr.l4hlen > 0);
5312 MPASS(m->m_pkthdr.l5hlen > 0);
5313 MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
5314 MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
5315
5316 l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
5317 m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
5318 m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
5319 l3hlen = m->m_pkthdr.inner_l3hlen;
5320 } else {
5321 l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
5322 l3hlen = m->m_pkthdr.l3hlen;
5323 }
5324
5325 ctrl = 0;
5326 if (!needs_l3_csum(m))
5327 ctrl |= F_TXPKT_IPCSUM_DIS;
5328
5329 if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
5330 CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
5331 x = 0; /* TCP */
5332 else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
5333 CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
5334 x = 1; /* UDP */
5335 else
5336 x = 2;
5337
5338 if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
5339 CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
5340 y = 0; /* IPv4 */
5341 else {
5342 MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
5343 CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
5344 y = 1; /* IPv6 */
5345 }
5346 /*
5347 * needs_hwcsum returned true earlier so there must be some kind of
5348 * checksum to calculate.
5349 */
5350 csum_type = csum_types[x][y];
5351 MPASS(csum_type != 0);
5352 if (csum_type == TX_CSUM_IP)
5353 ctrl |= F_TXPKT_L4CSUM_DIS;
5354 ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
5355 if (chip_id(sc) <= CHELSIO_T5)
5356 ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
5357 else
5358 ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
5359
5360 return (ctrl);
5361 }
5362
5363 static inline void *
5364 write_lso_cpl(void *cpl, struct mbuf *m0)
5365 {
5366 struct cpl_tx_pkt_lso_core *lso;
5367 uint32_t ctrl;
5368
5369 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5370 m0->m_pkthdr.l4hlen > 0,
5371 ("%s: mbuf %p needs TSO but missing header lengths",
5372 __func__, m0));
5373
5374 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
5375 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
5376 V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5377 V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
5378 V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
5379 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5380 ctrl |= F_LSO_IPV6;
5381
5382 lso = cpl;
5383 lso->lso_ctrl = htobe32(ctrl);
5384 lso->ipid_ofst = htobe16(0);
5385 lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
5386 lso->seqno_offset = htobe32(0);
5387 lso->len = htobe32(m0->m_pkthdr.len);
5388
5389 return (lso + 1);
5390 }
5391
5392 static void *
5393 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
5394 {
5395 struct cpl_tx_tnl_lso *tnl_lso = cpl;
5396 uint32_t ctrl;
5397
5398 KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
5399 m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
5400 m0->m_pkthdr.inner_l5hlen > 0,
5401 ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
5402 __func__, m0));
5403 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
5404 m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
5405 ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
5406 __func__, m0));
5407
5408 /* Outer headers. */
5409 ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
5410 F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
5411 V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
5412 (m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
5413 V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
5414 F_CPL_TX_TNL_LSO_IPLENSETOUT;
5415 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
5416 ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
5417 else {
5418 ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
5419 F_CPL_TX_TNL_LSO_IPIDINCOUT;
5420 }
5421 tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
5422 tnl_lso->IpIdOffsetOut = 0;
5423 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
5424 htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
5425 F_CPL_TX_TNL_LSO_UDPLENSETOUT |
5426 V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
5427 m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
5428 m0->m_pkthdr.l5hlen) |
5429 V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
5430 tnl_lso->r1 = 0;
5431
5432 /* Inner headers. */
5433 ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
5434 (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
5435 V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
5436 V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
5437 if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
5438 ctrl |= F_CPL_TX_TNL_LSO_IPV6;
5439 tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
5440 tnl_lso->IpIdOffset = 0;
5441 tnl_lso->IpIdSplit_to_Mss =
5442 htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
5443 tnl_lso->TCPSeqOffset = 0;
5444 tnl_lso->EthLenOffset_Size =
5445 htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
5446
5447 return (tnl_lso + 1);
5448 }
5449
5450 #define VM_TX_L2HDR_LEN 16 /* ethmacdst to vlantci */
5451
5452 /*
5453 * Write a VM txpkt WR for this packet to the hardware descriptors, update the
5454 * software descriptor, and advance the pidx. It is guaranteed that enough
5455 * descriptors are available.
5456 *
5457 * The return value is the # of hardware descriptors used.
5458 */
5459 static u_int
5460 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
5461 {
5462 struct sge_eq *eq;
5463 struct fw_eth_tx_pkt_vm_wr *wr;
5464 struct tx_sdesc *txsd;
5465 struct cpl_tx_pkt_core *cpl;
5466 uint32_t ctrl; /* used in many unrelated places */
5467 uint64_t ctrl1;
5468 int len16, ndesc, pktlen;
5469 caddr_t dst;
5470
5471 TXQ_LOCK_ASSERT_OWNED(txq);
5472 M_ASSERTPKTHDR(m0);
5473
5474 len16 = mbuf_len16(m0);
5475 pktlen = m0->m_pkthdr.len;
5476 ctrl = sizeof(struct cpl_tx_pkt_core);
5477 if (needs_tso(m0))
5478 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5479 ndesc = tx_len16_to_desc(len16);
5480
5481 /* Firmware work request header */
5482 eq = &txq->eq;
5483 wr = (void *)&eq->desc[eq->pidx];
5484 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
5485 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5486
5487 ctrl = V_FW_WR_LEN16(len16);
5488 wr->equiq_to_len16 = htobe32(ctrl);
5489 wr->r3[0] = 0;
5490 wr->r3[1] = 0;
5491
5492 /*
5493 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
5494 * vlantci is ignored unless the ethtype is 0x8100, so it's
5495 * simpler to always copy it rather than making it
5496 * conditional. Also, it seems that we do not have to set
5497 * vlantci or fake the ethtype when doing VLAN tag insertion.
5498 */
5499 m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
5500
5501 if (needs_tso(m0)) {
5502 cpl = write_lso_cpl(wr + 1, m0);
5503 txq->tso_wrs++;
5504 } else
5505 cpl = (void *)(wr + 1);
5506
5507 /* Checksum offload */
5508 ctrl1 = csum_to_ctrl(sc, m0);
5509 if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
5510 txq->txcsum++; /* some hardware assistance provided */
5511
5512 /* VLAN tag insertion */
5513 if (needs_vlan_insertion(m0)) {
5514 ctrl1 |= F_TXPKT_VLAN_VLD |
5515 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5516 txq->vlan_insertion++;
5517 }
5518
5519 /* CPL header */
5520 cpl->ctrl0 = txq->cpl_ctrl0;
5521 cpl->pack = 0;
5522 cpl->len = htobe16(pktlen);
5523 cpl->ctrl1 = htobe64(ctrl1);
5524
5525 /* SGL */
5526 dst = (void *)(cpl + 1);
5527
5528 /*
5529 * A packet using TSO will use up an entire descriptor for the
5530 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
5531 * If this descriptor is the last descriptor in the ring, wrap
5532 * around to the front of the ring explicitly for the start of
5533 * the sgl.
5534 */
5535 if (dst == (void *)&eq->desc[eq->sidx]) {
5536 dst = (void *)&eq->desc[0];
5537 write_gl_to_txd(txq, m0, &dst, 0);
5538 } else
5539 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5540 txq->sgl_wrs++;
5541 txq->txpkt_wrs++;
5542
5543 txsd = &txq->sdesc[eq->pidx];
5544 txsd->m = m0;
5545 txsd->desc_used = ndesc;
5546
5547 return (ndesc);
5548 }
5549
5550 /*
5551 * Write a raw WR to the hardware descriptors, update the software
5552 * descriptor, and advance the pidx. It is guaranteed that enough
5553 * descriptors are available.
5554 *
5555 * The return value is the # of hardware descriptors used.
5556 */
5557 static u_int
5558 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
5559 {
5560 struct sge_eq *eq = &txq->eq;
5561 struct tx_sdesc *txsd;
5562 struct mbuf *m;
5563 caddr_t dst;
5564 int len16, ndesc;
5565
5566 len16 = mbuf_len16(m0);
5567 ndesc = tx_len16_to_desc(len16);
5568 MPASS(ndesc <= available);
5569
5570 dst = wr;
5571 for (m = m0; m != NULL; m = m->m_next)
5572 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5573
5574 txq->raw_wrs++;
5575
5576 txsd = &txq->sdesc[eq->pidx];
5577 txsd->m = m0;
5578 txsd->desc_used = ndesc;
5579
5580 return (ndesc);
5581 }
5582
5583 /*
5584 * Write a txpkt WR for this packet to the hardware descriptors, update the
5585 * software descriptor, and advance the pidx. It is guaranteed that enough
5586 * descriptors are available.
5587 *
5588 * The return value is the # of hardware descriptors used.
5589 */
5590 static u_int
5591 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
5592 u_int available)
5593 {
5594 struct sge_eq *eq;
5595 struct fw_eth_tx_pkt_wr *wr;
5596 struct tx_sdesc *txsd;
5597 struct cpl_tx_pkt_core *cpl;
5598 uint32_t ctrl; /* used in many unrelated places */
5599 uint64_t ctrl1;
5600 int len16, ndesc, pktlen, nsegs;
5601 caddr_t dst;
5602
5603 TXQ_LOCK_ASSERT_OWNED(txq);
5604 M_ASSERTPKTHDR(m0);
5605
5606 len16 = mbuf_len16(m0);
5607 nsegs = mbuf_nsegs(m0);
5608 pktlen = m0->m_pkthdr.len;
5609 ctrl = sizeof(struct cpl_tx_pkt_core);
5610 if (needs_tso(m0)) {
5611 if (needs_vxlan_tso(m0))
5612 ctrl += sizeof(struct cpl_tx_tnl_lso);
5613 else
5614 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
5615 } else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
5616 available >= 2) {
5617 /* Immediate data. Recalculate len16 and set nsegs to 0. */
5618 ctrl += pktlen;
5619 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
5620 sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
5621 nsegs = 0;
5622 }
5623 ndesc = tx_len16_to_desc(len16);
5624 MPASS(ndesc <= available);
5625
5626 /* Firmware work request header */
5627 eq = &txq->eq;
5628 wr = (void *)&eq->desc[eq->pidx];
5629 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
5630 V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
5631
5632 ctrl = V_FW_WR_LEN16(len16);
5633 wr->equiq_to_len16 = htobe32(ctrl);
5634 wr->r3 = 0;
5635
5636 if (needs_tso(m0)) {
5637 if (needs_vxlan_tso(m0)) {
5638 cpl = write_tnl_lso_cpl(wr + 1, m0);
5639 txq->vxlan_tso_wrs++;
5640 } else {
5641 cpl = write_lso_cpl(wr + 1, m0);
5642 txq->tso_wrs++;
5643 }
5644 } else
5645 cpl = (void *)(wr + 1);
5646
5647 /* Checksum offload */
5648 ctrl1 = csum_to_ctrl(sc, m0);
5649 if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5650 /* some hardware assistance provided */
5651 if (needs_vxlan_csum(m0))
5652 txq->vxlan_txcsum++;
5653 else
5654 txq->txcsum++;
5655 }
5656
5657 /* VLAN tag insertion */
5658 if (needs_vlan_insertion(m0)) {
5659 ctrl1 |= F_TXPKT_VLAN_VLD |
5660 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
5661 txq->vlan_insertion++;
5662 }
5663
5664 /* CPL header */
5665 cpl->ctrl0 = txq->cpl_ctrl0;
5666 cpl->pack = 0;
5667 cpl->len = htobe16(pktlen);
5668 cpl->ctrl1 = htobe64(ctrl1);
5669
5670 /* SGL */
5671 dst = (void *)(cpl + 1);
5672 if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
5673 dst = (caddr_t)&eq->desc[0];
5674 if (nsegs > 0) {
5675
5676 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
5677 txq->sgl_wrs++;
5678 } else {
5679 struct mbuf *m;
5680
5681 for (m = m0; m != NULL; m = m->m_next) {
5682 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
5683 #ifdef INVARIANTS
5684 pktlen -= m->m_len;
5685 #endif
5686 }
5687 #ifdef INVARIANTS
5688 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
5689 #endif
5690 txq->imm_wrs++;
5691 }
5692
5693 txq->txpkt_wrs++;
5694
5695 txsd = &txq->sdesc[eq->pidx];
5696 txsd->m = m0;
5697 txsd->desc_used = ndesc;
5698
5699 return (ndesc);
5700 }
5701
5702 static inline bool
5703 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
5704 {
5705 int len;
5706
5707 MPASS(txp->npkt > 0);
5708 MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5709
5710 if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
5711 len = VM_TX_L2HDR_LEN;
5712 else
5713 len = sizeof(struct ether_header);
5714
5715 return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
5716 }
5717
5718 static inline void
5719 save_l2hdr(struct txpkts *txp, struct mbuf *m)
5720 {
5721 MPASS(m->m_len >= VM_TX_L2HDR_LEN);
5722
5723 memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
5724 }
5725
5726 static int
5727 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5728 int avail, bool *send)
5729 {
5730 struct txpkts *txp = &txq->txp;
5731
5732 /* Cannot have TSO and coalesce at the same time. */
5733 if (cannot_use_txpkts(m)) {
5734 cannot_coalesce:
5735 *send = txp->npkt > 0;
5736 return (EINVAL);
5737 }
5738
5739 /* VF allows coalescing of type 1 (1 GL) only */
5740 if (mbuf_nsegs(m) > 1)
5741 goto cannot_coalesce;
5742
5743 *send = false;
5744 if (txp->npkt > 0) {
5745 MPASS(tx_len16_to_desc(txp->len16) <= avail);
5746 MPASS(txp->npkt < txp->max_npkt);
5747 MPASS(txp->wr_type == 1); /* VF supports type 1 only */
5748
5749 if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
5750 retry_after_send:
5751 *send = true;
5752 return (EAGAIN);
5753 }
5754 if (m->m_pkthdr.len + txp->plen > 65535)
5755 goto retry_after_send;
5756 if (cmp_l2hdr(txp, m))
5757 goto retry_after_send;
5758
5759 txp->len16 += txpkts1_len16();
5760 txp->plen += m->m_pkthdr.len;
5761 txp->mb[txp->npkt++] = m;
5762 if (txp->npkt == txp->max_npkt)
5763 *send = true;
5764 } else {
5765 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
5766 txpkts1_len16();
5767 if (tx_len16_to_desc(txp->len16) > avail)
5768 goto cannot_coalesce;
5769 txp->npkt = 1;
5770 txp->wr_type = 1;
5771 txp->plen = m->m_pkthdr.len;
5772 txp->mb[0] = m;
5773 save_l2hdr(txp, m);
5774 }
5775 return (0);
5776 }
5777
5778 static int
5779 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
5780 int avail, bool *send)
5781 {
5782 struct txpkts *txp = &txq->txp;
5783 int nsegs;
5784
5785 MPASS(!(sc->flags & IS_VF));
5786
5787 /* Cannot have TSO and coalesce at the same time. */
5788 if (cannot_use_txpkts(m)) {
5789 cannot_coalesce:
5790 *send = txp->npkt > 0;
5791 return (EINVAL);
5792 }
5793
5794 *send = false;
5795 nsegs = mbuf_nsegs(m);
5796 if (txp->npkt == 0) {
5797 if (m->m_pkthdr.len > 65535)
5798 goto cannot_coalesce;
5799 if (nsegs > 1) {
5800 txp->wr_type = 0;
5801 txp->len16 =
5802 howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5803 txpkts0_len16(nsegs);
5804 } else {
5805 txp->wr_type = 1;
5806 txp->len16 =
5807 howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
5808 txpkts1_len16();
5809 }
5810 if (tx_len16_to_desc(txp->len16) > avail)
5811 goto cannot_coalesce;
5812 txp->npkt = 1;
5813 txp->plen = m->m_pkthdr.len;
5814 txp->mb[0] = m;
5815 } else {
5816 MPASS(tx_len16_to_desc(txp->len16) <= avail);
5817 MPASS(txp->npkt < txp->max_npkt);
5818
5819 if (m->m_pkthdr.len + txp->plen > 65535) {
5820 retry_after_send:
5821 *send = true;
5822 return (EAGAIN);
5823 }
5824
5825 MPASS(txp->wr_type == 0 || txp->wr_type == 1);
5826 if (txp->wr_type == 0) {
5827 if (tx_len16_to_desc(txp->len16 +
5828 txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
5829 goto retry_after_send;
5830 txp->len16 += txpkts0_len16(nsegs);
5831 } else {
5832 if (nsegs != 1)
5833 goto retry_after_send;
5834 if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
5835 avail)
5836 goto retry_after_send;
5837 txp->len16 += txpkts1_len16();
5838 }
5839
5840 txp->plen += m->m_pkthdr.len;
5841 txp->mb[txp->npkt++] = m;
5842 if (txp->npkt == txp->max_npkt)
5843 *send = true;
5844 }
5845 return (0);
5846 }
5847
5848 /*
5849 * Write a txpkts WR for the packets in txp to the hardware descriptors, update
5850 * the software descriptor, and advance the pidx. It is guaranteed that enough
5851 * descriptors are available.
5852 *
5853 * The return value is the # of hardware descriptors used.
5854 */
5855 static u_int
5856 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
5857 {
5858 const struct txpkts *txp = &txq->txp;
5859 struct sge_eq *eq = &txq->eq;
5860 struct fw_eth_tx_pkts_wr *wr;
5861 struct tx_sdesc *txsd;
5862 struct cpl_tx_pkt_core *cpl;
5863 uint64_t ctrl1;
5864 int ndesc, i, checkwrap;
5865 struct mbuf *m, *last;
5866 void *flitp;
5867
5868 TXQ_LOCK_ASSERT_OWNED(txq);
5869 MPASS(txp->npkt > 0);
5870 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5871
5872 wr = (void *)&eq->desc[eq->pidx];
5873 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
5874 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5875 wr->plen = htobe16(txp->plen);
5876 wr->npkt = txp->npkt;
5877 wr->r3 = 0;
5878 wr->type = txp->wr_type;
5879 flitp = wr + 1;
5880
5881 /*
5882 * At this point we are 16B into a hardware descriptor. If checkwrap is
5883 * set then we know the WR is going to wrap around somewhere. We'll
5884 * check for that at appropriate points.
5885 */
5886 ndesc = tx_len16_to_desc(txp->len16);
5887 last = NULL;
5888 checkwrap = eq->sidx - ndesc < eq->pidx;
5889 for (i = 0; i < txp->npkt; i++) {
5890 m = txp->mb[i];
5891 if (txp->wr_type == 0) {
5892 struct ulp_txpkt *ulpmc;
5893 struct ulptx_idata *ulpsc;
5894
5895 /* ULP master command */
5896 ulpmc = flitp;
5897 ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
5898 V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
5899 ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
5900
5901 /* ULP subcommand */
5902 ulpsc = (void *)(ulpmc + 1);
5903 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
5904 F_ULP_TX_SC_MORE);
5905 ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
5906
5907 cpl = (void *)(ulpsc + 1);
5908 if (checkwrap &&
5909 (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
5910 cpl = (void *)&eq->desc[0];
5911 } else {
5912 cpl = flitp;
5913 }
5914
5915 /* Checksum offload */
5916 ctrl1 = csum_to_ctrl(sc, m);
5917 if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
5918 /* some hardware assistance provided */
5919 if (needs_vxlan_csum(m))
5920 txq->vxlan_txcsum++;
5921 else
5922 txq->txcsum++;
5923 }
5924
5925 /* VLAN tag insertion */
5926 if (needs_vlan_insertion(m)) {
5927 ctrl1 |= F_TXPKT_VLAN_VLD |
5928 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
5929 txq->vlan_insertion++;
5930 }
5931
5932 /* CPL header */
5933 cpl->ctrl0 = txq->cpl_ctrl0;
5934 cpl->pack = 0;
5935 cpl->len = htobe16(m->m_pkthdr.len);
5936 cpl->ctrl1 = htobe64(ctrl1);
5937
5938 flitp = cpl + 1;
5939 if (checkwrap &&
5940 (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
5941 flitp = (void *)&eq->desc[0];
5942
5943 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
5944
5945 if (last != NULL)
5946 last->m_nextpkt = m;
5947 last = m;
5948 }
5949
5950 txq->sgl_wrs++;
5951 if (txp->wr_type == 0) {
5952 txq->txpkts0_pkts += txp->npkt;
5953 txq->txpkts0_wrs++;
5954 } else {
5955 txq->txpkts1_pkts += txp->npkt;
5956 txq->txpkts1_wrs++;
5957 }
5958
5959 txsd = &txq->sdesc[eq->pidx];
5960 txsd->m = txp->mb[0];
5961 txsd->desc_used = ndesc;
5962
5963 return (ndesc);
5964 }
5965
5966 static u_int
5967 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
5968 {
5969 const struct txpkts *txp = &txq->txp;
5970 struct sge_eq *eq = &txq->eq;
5971 struct fw_eth_tx_pkts_vm_wr *wr;
5972 struct tx_sdesc *txsd;
5973 struct cpl_tx_pkt_core *cpl;
5974 uint64_t ctrl1;
5975 int ndesc, i;
5976 struct mbuf *m, *last;
5977 void *flitp;
5978
5979 TXQ_LOCK_ASSERT_OWNED(txq);
5980 MPASS(txp->npkt > 0);
5981 MPASS(txp->wr_type == 1); /* VF supports type 1 only */
5982 MPASS(txp->mb[0] != NULL);
5983 MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
5984
5985 wr = (void *)&eq->desc[eq->pidx];
5986 wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
5987 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
5988 wr->r3 = 0;
5989 wr->plen = htobe16(txp->plen);
5990 wr->npkt = txp->npkt;
5991 wr->r4 = 0;
5992 memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
5993 flitp = wr + 1;
5994
5995 /*
5996 * At this point we are 32B into a hardware descriptor. Each mbuf in
5997 * the WR will take 32B so we check for the end of the descriptor ring
5998 * before writing odd mbufs (mb[1], 3, 5, ..)
5999 */
6000 ndesc = tx_len16_to_desc(txp->len16);
6001 last = NULL;
6002 for (i = 0; i < txp->npkt; i++) {
6003 m = txp->mb[i];
6004 if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
6005 flitp = &eq->desc[0];
6006 cpl = flitp;
6007
6008 /* Checksum offload */
6009 ctrl1 = csum_to_ctrl(sc, m);
6010 if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
6011 txq->txcsum++; /* some hardware assistance provided */
6012
6013 /* VLAN tag insertion */
6014 if (needs_vlan_insertion(m)) {
6015 ctrl1 |= F_TXPKT_VLAN_VLD |
6016 V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
6017 txq->vlan_insertion++;
6018 }
6019
6020 /* CPL header */
6021 cpl->ctrl0 = txq->cpl_ctrl0;
6022 cpl->pack = 0;
6023 cpl->len = htobe16(m->m_pkthdr.len);
6024 cpl->ctrl1 = htobe64(ctrl1);
6025
6026 flitp = cpl + 1;
6027 MPASS(mbuf_nsegs(m) == 1);
6028 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
6029
6030 if (last != NULL)
6031 last->m_nextpkt = m;
6032 last = m;
6033 }
6034
6035 txq->sgl_wrs++;
6036 txq->txpkts1_pkts += txp->npkt;
6037 txq->txpkts1_wrs++;
6038
6039 txsd = &txq->sdesc[eq->pidx];
6040 txsd->m = txp->mb[0];
6041 txsd->desc_used = ndesc;
6042
6043 return (ndesc);
6044 }
6045
6046 /*
6047 * If the SGL ends on an address that is not 16 byte aligned, this function will
6048 * add a 0 filled flit at the end.
6049 */
6050 static void
6051 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
6052 {
6053 struct sge_eq *eq = &txq->eq;
6054 struct sglist *gl = txq->gl;
6055 struct sglist_seg *seg;
6056 __be64 *flitp, *wrap;
6057 struct ulptx_sgl *usgl;
6058 int i, nflits, nsegs;
6059
6060 KASSERT(((uintptr_t)(*to) & 0xf) == 0,
6061 ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
6062 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6063 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6064
6065 get_pkt_gl(m, gl);
6066 nsegs = gl->sg_nseg;
6067 MPASS(nsegs > 0);
6068
6069 nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
6070 flitp = (__be64 *)(*to);
6071 wrap = (__be64 *)(&eq->desc[eq->sidx]);
6072 seg = &gl->sg_segs[0];
6073 usgl = (void *)flitp;
6074
6075 /*
6076 * We start at a 16 byte boundary somewhere inside the tx descriptor
6077 * ring, so we're at least 16 bytes away from the status page. There is
6078 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
6079 */
6080
6081 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6082 V_ULPTX_NSGE(nsegs));
6083 usgl->len0 = htobe32(seg->ss_len);
6084 usgl->addr0 = htobe64(seg->ss_paddr);
6085 seg++;
6086
6087 if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
6088
6089 /* Won't wrap around at all */
6090
6091 for (i = 0; i < nsegs - 1; i++, seg++) {
6092 usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
6093 usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
6094 }
6095 if (i & 1)
6096 usgl->sge[i / 2].len[1] = htobe32(0);
6097 flitp += nflits;
6098 } else {
6099
6100 /* Will wrap somewhere in the rest of the SGL */
6101
6102 /* 2 flits already written, write the rest flit by flit */
6103 flitp = (void *)(usgl + 1);
6104 for (i = 0; i < nflits - 2; i++) {
6105 if (flitp == wrap)
6106 flitp = (void *)eq->desc;
6107 *flitp++ = get_flit(seg, nsegs - 1, i);
6108 }
6109 }
6110
6111 if (nflits & 1) {
6112 MPASS(((uintptr_t)flitp) & 0xf);
6113 *flitp++ = 0;
6114 }
6115
6116 MPASS((((uintptr_t)flitp) & 0xf) == 0);
6117 if (__predict_false(flitp == wrap))
6118 *to = (void *)eq->desc;
6119 else
6120 *to = (void *)flitp;
6121 }
6122
6123 static inline void
6124 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
6125 {
6126
6127 MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
6128 MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
6129
6130 if (__predict_true((uintptr_t)(*to) + len <=
6131 (uintptr_t)&eq->desc[eq->sidx])) {
6132 bcopy(from, *to, len);
6133 (*to) += len;
6134 } else {
6135 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
6136
6137 bcopy(from, *to, portion);
6138 from += portion;
6139 portion = len - portion; /* remaining */
6140 bcopy(from, (void *)eq->desc, portion);
6141 (*to) = (caddr_t)eq->desc + portion;
6142 }
6143 }
6144
6145 static inline void
6146 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
6147 {
6148 u_int db;
6149
6150 MPASS(n > 0);
6151
6152 db = eq->doorbells;
6153 if (n > 1)
6154 clrbit(&db, DOORBELL_WCWR);
6155 wmb();
6156
6157 switch (ffs(db) - 1) {
6158 case DOORBELL_UDB:
6159 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6160 break;
6161
6162 case DOORBELL_WCWR: {
6163 volatile uint64_t *dst, *src;
6164 int i;
6165
6166 /*
6167 * Queues whose 128B doorbell segment fits in the page do not
6168 * use relative qid (udb_qid is always 0). Only queues with
6169 * doorbell segments can do WCWR.
6170 */
6171 KASSERT(eq->udb_qid == 0 && n == 1,
6172 ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
6173 __func__, eq->doorbells, n, eq->dbidx, eq));
6174
6175 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
6176 UDBS_DB_OFFSET);
6177 i = eq->dbidx;
6178 src = (void *)&eq->desc[i];
6179 while (src != (void *)&eq->desc[i + 1])
6180 *dst++ = *src++;
6181 wmb();
6182 break;
6183 }
6184
6185 case DOORBELL_UDBWC:
6186 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
6187 wmb();
6188 break;
6189
6190 case DOORBELL_KDB:
6191 t4_write_reg(sc, sc->sge_kdoorbell_reg,
6192 V_QID(eq->cntxt_id) | V_PIDX(n));
6193 break;
6194 }
6195
6196 IDXINCR(eq->dbidx, n, eq->sidx);
6197 }
6198
6199 static inline u_int
6200 reclaimable_tx_desc(struct sge_eq *eq)
6201 {
6202 uint16_t hw_cidx;
6203
6204 hw_cidx = read_hw_cidx(eq);
6205 return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
6206 }
6207
6208 static inline u_int
6209 total_available_tx_desc(struct sge_eq *eq)
6210 {
6211 uint16_t hw_cidx, pidx;
6212
6213 hw_cidx = read_hw_cidx(eq);
6214 pidx = eq->pidx;
6215
6216 if (pidx == hw_cidx)
6217 return (eq->sidx - 1);
6218 else
6219 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
6220 }
6221
6222 static inline uint16_t
6223 read_hw_cidx(struct sge_eq *eq)
6224 {
6225 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6226 uint16_t cidx = spg->cidx; /* stable snapshot */
6227
6228 return (be16toh(cidx));
6229 }
6230
6231 /*
6232 * Reclaim 'n' descriptors approximately.
6233 */
6234 static u_int
6235 reclaim_tx_descs(struct sge_txq *txq, u_int n)
6236 {
6237 struct tx_sdesc *txsd;
6238 struct sge_eq *eq = &txq->eq;
6239 u_int can_reclaim, reclaimed;
6240
6241 TXQ_LOCK_ASSERT_OWNED(txq);
6242 MPASS(n > 0);
6243
6244 reclaimed = 0;
6245 can_reclaim = reclaimable_tx_desc(eq);
6246 while (can_reclaim && reclaimed < n) {
6247 int ndesc;
6248 struct mbuf *m, *nextpkt;
6249
6250 txsd = &txq->sdesc[eq->cidx];
6251 ndesc = txsd->desc_used;
6252
6253 /* Firmware doesn't return "partial" credits. */
6254 KASSERT(can_reclaim >= ndesc,
6255 ("%s: unexpected number of credits: %d, %d",
6256 __func__, can_reclaim, ndesc));
6257 KASSERT(ndesc != 0,
6258 ("%s: descriptor with no credits: cidx %d",
6259 __func__, eq->cidx));
6260
6261 for (m = txsd->m; m != NULL; m = nextpkt) {
6262 nextpkt = m->m_nextpkt;
6263 m->m_nextpkt = NULL;
6264 m_freem(m);
6265 }
6266 reclaimed += ndesc;
6267 can_reclaim -= ndesc;
6268 IDXINCR(eq->cidx, ndesc, eq->sidx);
6269 }
6270
6271 return (reclaimed);
6272 }
6273
6274 static void
6275 tx_reclaim(void *arg, int n)
6276 {
6277 struct sge_txq *txq = arg;
6278 struct sge_eq *eq = &txq->eq;
6279
6280 do {
6281 if (TXQ_TRYLOCK(txq) == 0)
6282 break;
6283 n = reclaim_tx_descs(txq, 32);
6284 if (eq->cidx == eq->pidx)
6285 eq->equeqidx = eq->pidx;
6286 TXQ_UNLOCK(txq);
6287 } while (n > 0);
6288 }
6289
6290 static __be64
6291 get_flit(struct sglist_seg *segs, int nsegs, int idx)
6292 {
6293 int i = (idx / 3) * 2;
6294
6295 switch (idx % 3) {
6296 case 0: {
6297 uint64_t rc;
6298
6299 rc = (uint64_t)segs[i].ss_len << 32;
6300 if (i + 1 < nsegs)
6301 rc |= (uint64_t)(segs[i + 1].ss_len);
6302
6303 return (htobe64(rc));
6304 }
6305 case 1:
6306 return (htobe64(segs[i].ss_paddr));
6307 case 2:
6308 return (htobe64(segs[i + 1].ss_paddr));
6309 }
6310
6311 return (0);
6312 }
6313
6314 static int
6315 find_refill_source(struct adapter *sc, int maxp, bool packing)
6316 {
6317 int i, zidx = -1;
6318 struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6319
6320 if (packing) {
6321 for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6322 if (rxb->hwidx2 == -1)
6323 continue;
6324 if (rxb->size1 < PAGE_SIZE &&
6325 rxb->size1 < largest_rx_cluster)
6326 continue;
6327 if (rxb->size1 > largest_rx_cluster)
6328 break;
6329 MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
6330 if (rxb->size2 >= maxp)
6331 return (i);
6332 zidx = i;
6333 }
6334 } else {
6335 for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6336 if (rxb->hwidx1 == -1)
6337 continue;
6338 if (rxb->size1 > largest_rx_cluster)
6339 break;
6340 if (rxb->size1 >= maxp)
6341 return (i);
6342 zidx = i;
6343 }
6344 }
6345
6346 return (zidx);
6347 }
6348
6349 static void
6350 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
6351 {
6352 mtx_lock(&sc->sfl_lock);
6353 FL_LOCK(fl);
6354 if ((fl->flags & FL_DOOMED) == 0) {
6355 fl->flags |= FL_STARVING;
6356 TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
6357 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
6358 }
6359 FL_UNLOCK(fl);
6360 mtx_unlock(&sc->sfl_lock);
6361 }
6362
6363 static void
6364 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
6365 {
6366 struct sge_wrq *wrq = (void *)eq;
6367
6368 atomic_readandclear_int(&eq->equiq);
6369 taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
6370 }
6371
6372 static void
6373 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
6374 {
6375 struct sge_txq *txq = (void *)eq;
6376
6377 MPASS(eq->type == EQ_ETH);
6378
6379 atomic_readandclear_int(&eq->equiq);
6380 if (mp_ring_is_idle(txq->r))
6381 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
6382 else
6383 mp_ring_check_drainage(txq->r, 64);
6384 }
6385
6386 static int
6387 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
6388 struct mbuf *m)
6389 {
6390 const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
6391 unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
6392 struct adapter *sc = iq->adapter;
6393 struct sge *s = &sc->sge;
6394 struct sge_eq *eq;
6395 static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
6396 &handle_wrq_egr_update, &handle_eth_egr_update,
6397 &handle_wrq_egr_update};
6398
6399 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6400 rss->opcode));
6401
6402 eq = s->eqmap[qid - s->eq_start - s->eq_base];
6403 (*h[eq->type])(sc, eq);
6404
6405 return (0);
6406 }
6407
6408 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
6409 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
6410 offsetof(struct cpl_fw6_msg, data));
6411
6412 static int
6413 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
6414 {
6415 struct adapter *sc = iq->adapter;
6416 const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
6417
6418 KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
6419 rss->opcode));
6420
6421 if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
6422 const struct rss_header *rss2;
6423
6424 rss2 = (const struct rss_header *)&cpl->data[0];
6425 return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
6426 }
6427
6428 return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
6429 }
6430
6431 /**
6432 * t4_handle_wrerr_rpl - process a FW work request error message
6433 * @adap: the adapter
6434 * @rpl: start of the FW message
6435 */
6436 static int
6437 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
6438 {
6439 u8 opcode = *(const u8 *)rpl;
6440 const struct fw_error_cmd *e = (const void *)rpl;
6441 unsigned int i;
6442
6443 if (opcode != FW_ERROR_CMD) {
6444 log(LOG_ERR,
6445 "%s: Received WRERR_RPL message with opcode %#x\n",
6446 device_get_nameunit(adap->dev), opcode);
6447 return (EINVAL);
6448 }
6449 log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
6450 G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
6451 "non-fatal");
6452 switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
6453 case FW_ERROR_TYPE_EXCEPTION:
6454 log(LOG_ERR, "exception info:\n");
6455 for (i = 0; i < nitems(e->u.exception.info); i++)
6456 log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
6457 be32toh(e->u.exception.info[i]));
6458 log(LOG_ERR, "\n");
6459 break;
6460 case FW_ERROR_TYPE_HWMODULE:
6461 log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
6462 be32toh(e->u.hwmodule.regaddr),
6463 be32toh(e->u.hwmodule.regval));
6464 break;
6465 case FW_ERROR_TYPE_WR:
6466 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
6467 be16toh(e->u.wr.cidx),
6468 G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
6469 G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
6470 be32toh(e->u.wr.eqid));
6471 for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
6472 log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
6473 e->u.wr.wrhdr[i]);
6474 log(LOG_ERR, "\n");
6475 break;
6476 case FW_ERROR_TYPE_ACL:
6477 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
6478 be16toh(e->u.acl.cidx),
6479 G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
6480 G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
6481 be32toh(e->u.acl.eqid),
6482 G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
6483 "MAC");
6484 for (i = 0; i < nitems(e->u.acl.val); i++)
6485 log(LOG_ERR, " %02x", e->u.acl.val[i]);
6486 log(LOG_ERR, "\n");
6487 break;
6488 default:
6489 log(LOG_ERR, "type %#x\n",
6490 G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
6491 return (EINVAL);
6492 }
6493 return (0);
6494 }
6495
6496 static inline bool
6497 bufidx_used(struct adapter *sc, int idx)
6498 {
6499 struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
6500 int i;
6501
6502 for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
6503 if (rxb->size1 > largest_rx_cluster)
6504 continue;
6505 if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
6506 return (true);
6507 }
6508
6509 return (false);
6510 }
6511
6512 static int
6513 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
6514 {
6515 struct adapter *sc = arg1;
6516 struct sge_params *sp = &sc->params.sge;
6517 int i, rc;
6518 struct sbuf sb;
6519 char c;
6520
6521 sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
6522 for (i = 0; i < SGE_FLBUF_SIZES; i++) {
6523 if (bufidx_used(sc, i))
6524 c = '*';
6525 else
6526 c = '\0';
6527
6528 sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
6529 }
6530 sbuf_trim(&sb);
6531 sbuf_finish(&sb);
6532 rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
6533 sbuf_delete(&sb);
6534 return (rc);
6535 }
6536
6537 #ifdef RATELIMIT
6538 #if defined(INET) || defined(INET6)
6539 /*
6540 * len16 for a txpkt WR with a GL. Includes the firmware work request header.
6541 */
6542 static inline u_int
6543 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
6544 {
6545 u_int n;
6546
6547 MPASS(immhdrs > 0);
6548
6549 n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
6550 sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
6551 if (__predict_false(nsegs == 0))
6552 goto done;
6553
6554 nsegs--; /* first segment is part of ulptx_sgl */
6555 n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
6556 if (tso)
6557 n += sizeof(struct cpl_tx_pkt_lso_core);
6558
6559 done:
6560 return (howmany(n, 16));
6561 }
6562 #endif
6563
6564 #define ETID_FLOWC_NPARAMS 6
6565 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
6566 ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
6567 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
6568
6569 static int
6570 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
6571 struct vi_info *vi)
6572 {
6573 struct wrq_cookie cookie;
6574 u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
6575 struct fw_flowc_wr *flowc;
6576
6577 mtx_assert(&cst->lock, MA_OWNED);
6578 MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
6579 EO_FLOWC_PENDING);
6580
6581 flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
6582 if (__predict_false(flowc == NULL))
6583 return (ENOMEM);
6584
6585 bzero(flowc, ETID_FLOWC_LEN);
6586 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6587 V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
6588 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
6589 V_FW_WR_FLOWID(cst->etid));
6590 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
6591 flowc->mnemval[0].val = htobe32(pfvf);
6592 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
6593 flowc->mnemval[1].val = htobe32(pi->tx_chan);
6594 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
6595 flowc->mnemval[2].val = htobe32(pi->tx_chan);
6596 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
6597 flowc->mnemval[3].val = htobe32(cst->iqid);
6598 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
6599 flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
6600 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
6601 flowc->mnemval[5].val = htobe32(cst->schedcl);
6602
6603 commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6604
6605 cst->flags &= ~EO_FLOWC_PENDING;
6606 cst->flags |= EO_FLOWC_RPL_PENDING;
6607 MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */
6608 cst->tx_credits -= ETID_FLOWC_LEN16;
6609
6610 return (0);
6611 }
6612
6613 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
6614
6615 void
6616 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
6617 {
6618 struct fw_flowc_wr *flowc;
6619 struct wrq_cookie cookie;
6620
6621 mtx_assert(&cst->lock, MA_OWNED);
6622
6623 flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
6624 if (__predict_false(flowc == NULL))
6625 CXGBE_UNIMPLEMENTED(__func__);
6626
6627 bzero(flowc, ETID_FLUSH_LEN16 * 16);
6628 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
6629 V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
6630 flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
6631 V_FW_WR_FLOWID(cst->etid));
6632
6633 commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
6634
6635 cst->flags |= EO_FLUSH_RPL_PENDING;
6636 MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
6637 cst->tx_credits -= ETID_FLUSH_LEN16;
6638 cst->ncompl++;
6639 }
6640
6641 static void
6642 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
6643 struct mbuf *m0, int compl)
6644 {
6645 struct cpl_tx_pkt_core *cpl;
6646 uint64_t ctrl1;
6647 uint32_t ctrl; /* used in many unrelated places */
6648 int len16, pktlen, nsegs, immhdrs;
6649 uintptr_t p;
6650 struct ulptx_sgl *usgl;
6651 struct sglist sg;
6652 struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */
6653
6654 mtx_assert(&cst->lock, MA_OWNED);
6655 M_ASSERTPKTHDR(m0);
6656 KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
6657 m0->m_pkthdr.l4hlen > 0,
6658 ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
6659
6660 len16 = mbuf_eo_len16(m0);
6661 nsegs = mbuf_eo_nsegs(m0);
6662 pktlen = m0->m_pkthdr.len;
6663 ctrl = sizeof(struct cpl_tx_pkt_core);
6664 if (needs_tso(m0))
6665 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
6666 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
6667 ctrl += immhdrs;
6668
6669 wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
6670 V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
6671 wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
6672 V_FW_WR_FLOWID(cst->etid));
6673 wr->r3 = 0;
6674 if (needs_outer_udp_csum(m0)) {
6675 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
6676 wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
6677 wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6678 wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
6679 wr->u.udpseg.rtplen = 0;
6680 wr->u.udpseg.r4 = 0;
6681 wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
6682 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
6683 wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
6684 cpl = (void *)(wr + 1);
6685 } else {
6686 MPASS(needs_outer_tcp_csum(m0));
6687 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
6688 wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
6689 wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
6690 wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
6691 wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
6692 wr->u.tcpseg.r4 = 0;
6693 wr->u.tcpseg.r5 = 0;
6694 wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
6695
6696 if (needs_tso(m0)) {
6697 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
6698
6699 wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
6700
6701 ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
6702 F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
6703 V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
6704 ETHER_HDR_LEN) >> 2) |
6705 V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
6706 V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
6707 if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
6708 ctrl |= F_LSO_IPV6;
6709 lso->lso_ctrl = htobe32(ctrl);
6710 lso->ipid_ofst = htobe16(0);
6711 lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
6712 lso->seqno_offset = htobe32(0);
6713 lso->len = htobe32(pktlen);
6714
6715 cpl = (void *)(lso + 1);
6716 } else {
6717 wr->u.tcpseg.mss = htobe16(0xffff);
6718 cpl = (void *)(wr + 1);
6719 }
6720 }
6721
6722 /* Checksum offload must be requested for ethofld. */
6723 MPASS(needs_outer_l4_csum(m0));
6724 ctrl1 = csum_to_ctrl(cst->adapter, m0);
6725
6726 /* VLAN tag insertion */
6727 if (needs_vlan_insertion(m0)) {
6728 ctrl1 |= F_TXPKT_VLAN_VLD |
6729 V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
6730 }
6731
6732 /* CPL header */
6733 cpl->ctrl0 = cst->ctrl0;
6734 cpl->pack = 0;
6735 cpl->len = htobe16(pktlen);
6736 cpl->ctrl1 = htobe64(ctrl1);
6737
6738 /* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
6739 p = (uintptr_t)(cpl + 1);
6740 m_copydata(m0, 0, immhdrs, (void *)p);
6741
6742 /* SGL */
6743 if (nsegs > 0) {
6744 int i, pad;
6745
6746 /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
6747 p += immhdrs;
6748 pad = 16 - (immhdrs & 0xf);
6749 bzero((void *)p, pad);
6750
6751 usgl = (void *)(p + pad);
6752 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
6753 V_ULPTX_NSGE(nsegs));
6754
6755 sglist_init(&sg, nitems(segs), segs);
6756 for (; m0 != NULL; m0 = m0->m_next) {
6757 if (__predict_false(m0->m_len == 0))
6758 continue;
6759 if (immhdrs >= m0->m_len) {
6760 immhdrs -= m0->m_len;
6761 continue;
6762 }
6763 if (m0->m_flags & M_EXTPG)
6764 sglist_append_mbuf_epg(&sg, m0,
6765 mtod(m0, vm_offset_t), m0->m_len);
6766 else
6767 sglist_append(&sg, mtod(m0, char *) + immhdrs,
6768 m0->m_len - immhdrs);
6769 immhdrs = 0;
6770 }
6771 MPASS(sg.sg_nseg == nsegs);
6772
6773 /*
6774 * Zero pad last 8B in case the WR doesn't end on a 16B
6775 * boundary.
6776 */
6777 *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
6778
6779 usgl->len0 = htobe32(segs[0].ss_len);
6780 usgl->addr0 = htobe64(segs[0].ss_paddr);
6781 for (i = 0; i < nsegs - 1; i++) {
6782 usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
6783 usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
6784 }
6785 if (i & 1)
6786 usgl->sge[i / 2].len[1] = htobe32(0);
6787 }
6788
6789 }
6790
6791 static void
6792 ethofld_tx(struct cxgbe_rate_tag *cst)
6793 {
6794 struct mbuf *m;
6795 struct wrq_cookie cookie;
6796 int next_credits, compl;
6797 struct fw_eth_tx_eo_wr *wr;
6798
6799 mtx_assert(&cst->lock, MA_OWNED);
6800
6801 while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
6802 M_ASSERTPKTHDR(m);
6803
6804 /* How many len16 credits do we need to send this mbuf. */
6805 next_credits = mbuf_eo_len16(m);
6806 MPASS(next_credits > 0);
6807 if (next_credits > cst->tx_credits) {
6808 /*
6809 * Tx will make progress eventually because there is at
6810 * least one outstanding fw4_ack that will return
6811 * credits and kick the tx.
6812 */
6813 MPASS(cst->ncompl > 0);
6814 return;
6815 }
6816 wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
6817 if (__predict_false(wr == NULL)) {
6818 /* XXX: wishful thinking, not a real assertion. */
6819 MPASS(cst->ncompl > 0);
6820 return;
6821 }
6822 cst->tx_credits -= next_credits;
6823 cst->tx_nocompl += next_credits;
6824 compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
6825 ETHER_BPF_MTAP(cst->com.ifp, m);
6826 write_ethofld_wr(cst, wr, m, compl);
6827 commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
6828 if (compl) {
6829 cst->ncompl++;
6830 cst->tx_nocompl = 0;
6831 }
6832 (void) mbufq_dequeue(&cst->pending_tx);
6833
6834 /*
6835 * Drop the mbuf's reference on the tag now rather
6836 * than waiting until m_freem(). This ensures that
6837 * cxgbe_rate_tag_free gets called when the inp drops
6838 * its reference on the tag and there are no more
6839 * mbufs in the pending_tx queue and can flush any
6840 * pending requests. Otherwise if the last mbuf
6841 * doesn't request a completion the etid will never be
6842 * released.
6843 */
6844 m->m_pkthdr.snd_tag = NULL;
6845 m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
6846 m_snd_tag_rele(&cst->com);
6847
6848 mbufq_enqueue(&cst->pending_fwack, m);
6849 }
6850 }
6851
6852 int
6853 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
6854 {
6855 struct cxgbe_rate_tag *cst;
6856 int rc;
6857
6858 MPASS(m0->m_nextpkt == NULL);
6859 MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
6860 MPASS(m0->m_pkthdr.snd_tag != NULL);
6861 cst = mst_to_crt(m0->m_pkthdr.snd_tag);
6862
6863 mtx_lock(&cst->lock);
6864 MPASS(cst->flags & EO_SND_TAG_REF);
6865
6866 if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
6867 struct vi_info *vi = ifp->if_softc;
6868 struct port_info *pi = vi->pi;
6869 struct adapter *sc = pi->adapter;
6870 const uint32_t rss_mask = vi->rss_size - 1;
6871 uint32_t rss_hash;
6872
6873 cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
6874 if (M_HASHTYPE_ISHASH(m0))
6875 rss_hash = m0->m_pkthdr.flowid;
6876 else
6877 rss_hash = arc4random();
6878 /* We assume RSS hashing */
6879 cst->iqid = vi->rss[rss_hash & rss_mask];
6880 cst->eo_txq += rss_hash % vi->nofldtxq;
6881 rc = send_etid_flowc_wr(cst, pi, vi);
6882 if (rc != 0)
6883 goto done;
6884 }
6885
6886 if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
6887 rc = ENOBUFS;
6888 goto done;
6889 }
6890
6891 mbufq_enqueue(&cst->pending_tx, m0);
6892 cst->plen += m0->m_pkthdr.len;
6893
6894 /*
6895 * Hold an extra reference on the tag while generating work
6896 * requests to ensure that we don't try to free the tag during
6897 * ethofld_tx() in case we are sending the final mbuf after
6898 * the inp was freed.
6899 */
6900 m_snd_tag_ref(&cst->com);
6901 ethofld_tx(cst);
6902 mtx_unlock(&cst->lock);
6903 m_snd_tag_rele(&cst->com);
6904 return (0);
6905
6906 done:
6907 mtx_unlock(&cst->lock);
6908 if (__predict_false(rc != 0))
6909 m_freem(m0);
6910 return (rc);
6911 }
6912
6913 static int
6914 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
6915 {
6916 struct adapter *sc = iq->adapter;
6917 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
6918 struct mbuf *m;
6919 u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
6920 struct cxgbe_rate_tag *cst;
6921 uint8_t credits = cpl->credits;
6922
6923 cst = lookup_etid(sc, etid);
6924 mtx_lock(&cst->lock);
6925 if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
6926 MPASS(credits >= ETID_FLOWC_LEN16);
6927 credits -= ETID_FLOWC_LEN16;
6928 cst->flags &= ~EO_FLOWC_RPL_PENDING;
6929 }
6930
6931 KASSERT(cst->ncompl > 0,
6932 ("%s: etid %u (%p) wasn't expecting completion.",
6933 __func__, etid, cst));
6934 cst->ncompl--;
6935
6936 while (credits > 0) {
6937 m = mbufq_dequeue(&cst->pending_fwack);
6938 if (__predict_false(m == NULL)) {
6939 /*
6940 * The remaining credits are for the final flush that
6941 * was issued when the tag was freed by the kernel.
6942 */
6943 MPASS((cst->flags &
6944 (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
6945 EO_FLUSH_RPL_PENDING);
6946 MPASS(credits == ETID_FLUSH_LEN16);
6947 MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
6948 MPASS(cst->ncompl == 0);
6949
6950 cst->flags &= ~EO_FLUSH_RPL_PENDING;
6951 cst->tx_credits += cpl->credits;
6952 cxgbe_rate_tag_free_locked(cst);
6953 return (0); /* cst is gone. */
6954 }
6955 KASSERT(m != NULL,
6956 ("%s: too many credits (%u, %u)", __func__, cpl->credits,
6957 credits));
6958 KASSERT(credits >= mbuf_eo_len16(m),
6959 ("%s: too few credits (%u, %u, %u)", __func__,
6960 cpl->credits, credits, mbuf_eo_len16(m)));
6961 credits -= mbuf_eo_len16(m);
6962 cst->plen -= m->m_pkthdr.len;
6963 m_freem(m);
6964 }
6965
6966 cst->tx_credits += cpl->credits;
6967 MPASS(cst->tx_credits <= cst->tx_total);
6968
6969 if (cst->flags & EO_SND_TAG_REF) {
6970 /*
6971 * As with ethofld_transmit(), hold an extra reference
6972 * so that the tag is stable across ethold_tx().
6973 */
6974 m_snd_tag_ref(&cst->com);
6975 m = mbufq_first(&cst->pending_tx);
6976 if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
6977 ethofld_tx(cst);
6978 mtx_unlock(&cst->lock);
6979 m_snd_tag_rele(&cst->com);
6980 } else {
6981 /*
6982 * There shouldn't be any pending packets if the tag
6983 * was freed by the kernel since any pending packet
6984 * should hold a reference to the tag.
6985 */
6986 MPASS(mbufq_first(&cst->pending_tx) == NULL);
6987 mtx_unlock(&cst->lock);
6988 }
6989
6990 return (0);
6991 }
6992 #endif
Cache object: 59126a99128088a7d5dc5ddc407062a5
|