The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/cxgbe/t4_sge.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2011 Chelsio Communications, Inc.
    5  * All rights reserved.
    6  * Written by: Navdeep Parhar <np@FreeBSD.org>
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_inet.h"
   34 #include "opt_inet6.h"
   35 #include "opt_kern_tls.h"
   36 #include "opt_ratelimit.h"
   37 
   38 #include <sys/types.h>
   39 #include <sys/eventhandler.h>
   40 #include <sys/mbuf.h>
   41 #include <sys/socket.h>
   42 #include <sys/kernel.h>
   43 #include <sys/ktls.h>
   44 #include <sys/malloc.h>
   45 #include <sys/msan.h>
   46 #include <sys/queue.h>
   47 #include <sys/sbuf.h>
   48 #include <sys/taskqueue.h>
   49 #include <sys/time.h>
   50 #include <sys/sglist.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/smp.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/counter.h>
   55 #include <net/bpf.h>
   56 #include <net/ethernet.h>
   57 #include <net/if.h>
   58 #include <net/if_vlan_var.h>
   59 #include <net/if_vxlan.h>
   60 #include <netinet/in.h>
   61 #include <netinet/ip.h>
   62 #include <netinet/ip6.h>
   63 #include <netinet/tcp.h>
   64 #include <netinet/udp.h>
   65 #include <machine/in_cksum.h>
   66 #include <machine/md_var.h>
   67 #include <vm/vm.h>
   68 #include <vm/pmap.h>
   69 #ifdef DEV_NETMAP
   70 #include <machine/bus.h>
   71 #include <sys/selinfo.h>
   72 #include <net/if_var.h>
   73 #include <net/netmap.h>
   74 #include <dev/netmap/netmap_kern.h>
   75 #endif
   76 
   77 #include "common/common.h"
   78 #include "common/t4_regs.h"
   79 #include "common/t4_regs_values.h"
   80 #include "common/t4_msg.h"
   81 #include "t4_l2t.h"
   82 #include "t4_mp_ring.h"
   83 
   84 #ifdef T4_PKT_TIMESTAMP
   85 #define RX_COPY_THRESHOLD (MINCLSIZE - 8)
   86 #else
   87 #define RX_COPY_THRESHOLD MINCLSIZE
   88 #endif
   89 
   90 /* Internal mbuf flags stored in PH_loc.eight[1]. */
   91 #define MC_NOMAP                0x01
   92 #define MC_RAW_WR               0x02
   93 #define MC_TLS                  0x04
   94 
   95 /*
   96  * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
   97  * 0-7 are valid values.
   98  */
   99 static int fl_pktshift = 0;
  100 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
  101     "payload DMA offset in rx buffer (bytes)");
  102 
  103 /*
  104  * Pad ethernet payload up to this boundary.
  105  * -1: driver should figure out a good value.
  106  *  0: disable padding.
  107  *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
  108  */
  109 int fl_pad = -1;
  110 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
  111     "payload pad boundary (bytes)");
  112 
  113 /*
  114  * Status page length.
  115  * -1: driver should figure out a good value.
  116  *  64 or 128 are the only other valid values.
  117  */
  118 static int spg_len = -1;
  119 SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
  120     "status page size (bytes)");
  121 
  122 /*
  123  * Congestion drops.
  124  * -1: no congestion feedback (not recommended).
  125  *  0: backpressure the channel instead of dropping packets right away.
  126  *  1: no backpressure, drop packets for the congested queue immediately.
  127  *  2: both backpressure and drop.
  128  */
  129 static int cong_drop = 0;
  130 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
  131     "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both");
  132 #ifdef TCP_OFFLOAD
  133 static int ofld_cong_drop = 0;
  134 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0,
  135     "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both");
  136 #endif
  137 
  138 /*
  139  * Deliver multiple frames in the same free list buffer if they fit.
  140  * -1: let the driver decide whether to enable buffer packing or not.
  141  *  0: disable buffer packing.
  142  *  1: enable buffer packing.
  143  */
  144 static int buffer_packing = -1;
  145 SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
  146     0, "Enable buffer packing");
  147 
  148 /*
  149  * Start next frame in a packed buffer at this boundary.
  150  * -1: driver should figure out a good value.
  151  * T4: driver will ignore this and use the same value as fl_pad above.
  152  * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
  153  */
  154 static int fl_pack = -1;
  155 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
  156     "payload pack boundary (bytes)");
  157 
  158 /*
  159  * Largest rx cluster size that the driver is allowed to allocate.
  160  */
  161 static int largest_rx_cluster = MJUM16BYTES;
  162 SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
  163     &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
  164 
  165 /*
  166  * Size of cluster allocation that's most likely to succeed.  The driver will
  167  * fall back to this size if it fails to allocate clusters larger than this.
  168  */
  169 static int safest_rx_cluster = PAGE_SIZE;
  170 SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
  171     &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
  172 
  173 #ifdef RATELIMIT
  174 /*
  175  * Knob to control TCP timestamp rewriting, and the granularity of the tick used
  176  * for rewriting.  -1 and 0-3 are all valid values.
  177  * -1: hardware should leave the TCP timestamps alone.
  178  * 0: 1ms
  179  * 1: 100us
  180  * 2: 10us
  181  * 3: 1us
  182  */
  183 static int tsclk = -1;
  184 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0,
  185     "Control TCP timestamp rewriting when using pacing");
  186 
  187 static int eo_max_backlog = 1024 * 1024;
  188 SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog,
  189     0, "Maximum backlog of ratelimited data per flow");
  190 #endif
  191 
  192 /*
  193  * The interrupt holdoff timers are multiplied by this value on T6+.
  194  * 1 and 3-17 (both inclusive) are legal values.
  195  */
  196 static int tscale = 1;
  197 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
  198     "Interrupt holdoff timer scale on T6+");
  199 
  200 /*
  201  * Number of LRO entries in the lro_ctrl structure per rx queue.
  202  */
  203 static int lro_entries = TCP_LRO_ENTRIES;
  204 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
  205     "Number of LRO entries per RX queue");
  206 
  207 /*
  208  * This enables presorting of frames before they're fed into tcp_lro_rx.
  209  */
  210 static int lro_mbufs = 0;
  211 SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
  212     "Enable presorting of LRO frames");
  213 
  214 static counter_u64_t pullups;
  215 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups,
  216     "Number of mbuf pullups performed");
  217 
  218 static counter_u64_t defrags;
  219 SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags,
  220     "Number of mbuf defrags performed");
  221 
  222 static int t4_tx_coalesce = 1;
  223 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0,
  224     "tx coalescing allowed");
  225 
  226 /*
  227  * The driver will make aggressive attempts at tx coalescing if it sees these
  228  * many packets eligible for coalescing in quick succession, with no more than
  229  * the specified gap in between the eth_tx calls that delivered the packets.
  230  */
  231 static int t4_tx_coalesce_pkts = 32;
  232 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN,
  233     &t4_tx_coalesce_pkts, 0,
  234     "# of consecutive packets (1 - 255) that will trigger tx coalescing");
  235 static int t4_tx_coalesce_gap = 5;
  236 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN,
  237     &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)");
  238 
  239 static int service_iq(struct sge_iq *, int);
  240 static int service_iq_fl(struct sge_iq *, int);
  241 static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
  242 static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *,
  243     u_int);
  244 static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
  245     int, int, int);
  246 static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
  247 static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
  248     struct sge_iq *, char *);
  249 static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
  250     struct sysctl_ctx_list *, struct sysctl_oid *);
  251 static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
  252 static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
  253     struct sge_iq *);
  254 static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
  255     struct sysctl_oid *, struct sge_fl *);
  256 static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *);
  257 static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *);
  258 static int alloc_fwq(struct adapter *);
  259 static void free_fwq(struct adapter *);
  260 static int alloc_ctrlq(struct adapter *, int);
  261 static void free_ctrlq(struct adapter *, int);
  262 static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int);
  263 static void free_rxq(struct vi_info *, struct sge_rxq *);
  264 static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
  265     struct sge_rxq *);
  266 #ifdef TCP_OFFLOAD
  267 static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
  268     int);
  269 static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
  270 static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
  271     struct sge_ofld_rxq *);
  272 #endif
  273 static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
  274 static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
  275 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
  276 static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
  277 #endif
  278 static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *,
  279     struct sysctl_oid *);
  280 static void free_eq(struct adapter *, struct sge_eq *);
  281 static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *,
  282     struct sysctl_oid *, struct sge_eq *);
  283 static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
  284 static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *);
  285 static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
  286     struct sysctl_ctx_list *, struct sysctl_oid *);
  287 static void free_wrq(struct adapter *, struct sge_wrq *);
  288 static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
  289     struct sge_wrq *);
  290 static int alloc_txq(struct vi_info *, struct sge_txq *, int);
  291 static void free_txq(struct vi_info *, struct sge_txq *);
  292 static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *,
  293     struct sysctl_oid *, struct sge_txq *);
  294 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
  295 static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int);
  296 static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *);
  297 static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
  298     struct sge_ofld_txq *);
  299 #endif
  300 static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
  301 static inline void ring_fl_db(struct adapter *, struct sge_fl *);
  302 static int refill_fl(struct adapter *, struct sge_fl *, int);
  303 static void refill_sfl(void *);
  304 static int find_refill_source(struct adapter *, int, bool);
  305 static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
  306 
  307 static inline void get_pkt_gl(struct mbuf *, struct sglist *);
  308 static inline u_int txpkt_len16(u_int, const u_int);
  309 static inline u_int txpkt_vm_len16(u_int, const u_int);
  310 static inline void calculate_mbuf_len16(struct mbuf *, bool);
  311 static inline u_int txpkts0_len16(u_int);
  312 static inline u_int txpkts1_len16(void);
  313 static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int);
  314 static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *,
  315     u_int);
  316 static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
  317     struct mbuf *);
  318 static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *,
  319     int, bool *);
  320 static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *,
  321     int, bool *);
  322 static u_int write_txpkts_wr(struct adapter *, struct sge_txq *);
  323 static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *);
  324 static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
  325 static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
  326 static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
  327 static inline uint16_t read_hw_cidx(struct sge_eq *);
  328 static inline u_int reclaimable_tx_desc(struct sge_eq *);
  329 static inline u_int total_available_tx_desc(struct sge_eq *);
  330 static u_int reclaim_tx_descs(struct sge_txq *, u_int);
  331 static void tx_reclaim(void *, int);
  332 static __be64 get_flit(struct sglist_seg *, int, int);
  333 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
  334     struct mbuf *);
  335 static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
  336     struct mbuf *);
  337 static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
  338 static void wrq_tx_drain(void *, int);
  339 static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
  340 
  341 static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
  342 #ifdef RATELIMIT
  343 #if defined(INET) || defined(INET6)
  344 static inline u_int txpkt_eo_len16(u_int, u_int, u_int);
  345 #endif
  346 static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *,
  347     struct mbuf *);
  348 #endif
  349 
  350 static counter_u64_t extfree_refs;
  351 static counter_u64_t extfree_rels;
  352 
  353 an_handler_t t4_an_handler;
  354 fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
  355 cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
  356 cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
  357 cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
  358 cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
  359 cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
  360 cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
  361 
  362 void
  363 t4_register_an_handler(an_handler_t h)
  364 {
  365         uintptr_t *loc;
  366 
  367         MPASS(h == NULL || t4_an_handler == NULL);
  368 
  369         loc = (uintptr_t *)&t4_an_handler;
  370         atomic_store_rel_ptr(loc, (uintptr_t)h);
  371 }
  372 
  373 void
  374 t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
  375 {
  376         uintptr_t *loc;
  377 
  378         MPASS(type < nitems(t4_fw_msg_handler));
  379         MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
  380         /*
  381          * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
  382          * handler dispatch table.  Reject any attempt to install a handler for
  383          * this subtype.
  384          */
  385         MPASS(type != FW_TYPE_RSSCPL);
  386         MPASS(type != FW6_TYPE_RSSCPL);
  387 
  388         loc = (uintptr_t *)&t4_fw_msg_handler[type];
  389         atomic_store_rel_ptr(loc, (uintptr_t)h);
  390 }
  391 
  392 void
  393 t4_register_cpl_handler(int opcode, cpl_handler_t h)
  394 {
  395         uintptr_t *loc;
  396 
  397         MPASS(opcode < nitems(t4_cpl_handler));
  398         MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
  399 
  400         loc = (uintptr_t *)&t4_cpl_handler[opcode];
  401         atomic_store_rel_ptr(loc, (uintptr_t)h);
  402 }
  403 
  404 static int
  405 set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
  406     struct mbuf *m)
  407 {
  408         const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
  409         u_int tid;
  410         int cookie;
  411 
  412         MPASS(m == NULL);
  413 
  414         tid = GET_TID(cpl);
  415         if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
  416                 /*
  417                  * The return code for filter-write is put in the CPL cookie so
  418                  * we have to rely on the hardware tid (is_ftid) to determine
  419                  * that this is a response to a filter.
  420                  */
  421                 cookie = CPL_COOKIE_FILTER;
  422         } else {
  423                 cookie = G_COOKIE(cpl->cookie);
  424         }
  425         MPASS(cookie > CPL_COOKIE_RESERVED);
  426         MPASS(cookie < nitems(set_tcb_rpl_handlers));
  427 
  428         return (set_tcb_rpl_handlers[cookie](iq, rss, m));
  429 }
  430 
  431 static int
  432 l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
  433     struct mbuf *m)
  434 {
  435         const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
  436         unsigned int cookie;
  437 
  438         MPASS(m == NULL);
  439 
  440         cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
  441         return (l2t_write_rpl_handlers[cookie](iq, rss, m));
  442 }
  443 
  444 static int
  445 act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
  446     struct mbuf *m)
  447 {
  448         const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
  449         u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
  450 
  451         MPASS(m == NULL);
  452         MPASS(cookie != CPL_COOKIE_RESERVED);
  453 
  454         return (act_open_rpl_handlers[cookie](iq, rss, m));
  455 }
  456 
  457 static int
  458 abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
  459     struct mbuf *m)
  460 {
  461         struct adapter *sc = iq->adapter;
  462         u_int cookie;
  463 
  464         MPASS(m == NULL);
  465         if (is_hashfilter(sc))
  466                 cookie = CPL_COOKIE_HASHFILTER;
  467         else
  468                 cookie = CPL_COOKIE_TOM;
  469 
  470         return (abort_rpl_rss_handlers[cookie](iq, rss, m));
  471 }
  472 
  473 static int
  474 fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
  475 {
  476         struct adapter *sc = iq->adapter;
  477         const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
  478         unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
  479         u_int cookie;
  480 
  481         MPASS(m == NULL);
  482         if (is_etid(sc, tid))
  483                 cookie = CPL_COOKIE_ETHOFLD;
  484         else
  485                 cookie = CPL_COOKIE_TOM;
  486 
  487         return (fw4_ack_handlers[cookie](iq, rss, m));
  488 }
  489 
  490 static void
  491 t4_init_shared_cpl_handlers(void)
  492 {
  493 
  494         t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
  495         t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
  496         t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
  497         t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
  498         t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
  499 }
  500 
  501 void
  502 t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
  503 {
  504         uintptr_t *loc;
  505 
  506         MPASS(opcode < nitems(t4_cpl_handler));
  507         MPASS(cookie > CPL_COOKIE_RESERVED);
  508         MPASS(cookie < NUM_CPL_COOKIES);
  509         MPASS(t4_cpl_handler[opcode] != NULL);
  510 
  511         switch (opcode) {
  512         case CPL_SET_TCB_RPL:
  513                 loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
  514                 break;
  515         case CPL_L2T_WRITE_RPL:
  516                 loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
  517                 break;
  518         case CPL_ACT_OPEN_RPL:
  519                 loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
  520                 break;
  521         case CPL_ABORT_RPL_RSS:
  522                 loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
  523                 break;
  524         case CPL_FW4_ACK:
  525                 loc = (uintptr_t *)&fw4_ack_handlers[cookie];
  526                 break;
  527         default:
  528                 MPASS(0);
  529                 return;
  530         }
  531         MPASS(h == NULL || *loc == (uintptr_t)NULL);
  532         atomic_store_rel_ptr(loc, (uintptr_t)h);
  533 }
  534 
  535 /*
  536  * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
  537  */
  538 void
  539 t4_sge_modload(void)
  540 {
  541 
  542         if (fl_pktshift < 0 || fl_pktshift > 7) {
  543                 printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
  544                     " using 0 instead.\n", fl_pktshift);
  545                 fl_pktshift = 0;
  546         }
  547 
  548         if (spg_len != 64 && spg_len != 128) {
  549                 int len;
  550 
  551 #if defined(__i386__) || defined(__amd64__)
  552                 len = cpu_clflush_line_size > 64 ? 128 : 64;
  553 #else
  554                 len = 64;
  555 #endif
  556                 if (spg_len != -1) {
  557                         printf("Invalid hw.cxgbe.spg_len value (%d),"
  558                             " using %d instead.\n", spg_len, len);
  559                 }
  560                 spg_len = len;
  561         }
  562 
  563         if (cong_drop < -1 || cong_drop > 2) {
  564                 printf("Invalid hw.cxgbe.cong_drop value (%d),"
  565                     " using 0 instead.\n", cong_drop);
  566                 cong_drop = 0;
  567         }
  568 #ifdef TCP_OFFLOAD
  569         if (ofld_cong_drop < -1 || ofld_cong_drop > 2) {
  570                 printf("Invalid hw.cxgbe.ofld_cong_drop value (%d),"
  571                     " using 0 instead.\n", ofld_cong_drop);
  572                 ofld_cong_drop = 0;
  573         }
  574 #endif
  575 
  576         if (tscale != 1 && (tscale < 3 || tscale > 17)) {
  577                 printf("Invalid hw.cxgbe.tscale value (%d),"
  578                     " using 1 instead.\n", tscale);
  579                 tscale = 1;
  580         }
  581 
  582         if (largest_rx_cluster != MCLBYTES &&
  583             largest_rx_cluster != MJUMPAGESIZE &&
  584             largest_rx_cluster != MJUM9BYTES &&
  585             largest_rx_cluster != MJUM16BYTES) {
  586                 printf("Invalid hw.cxgbe.largest_rx_cluster value (%d),"
  587                     " using %d instead.\n", largest_rx_cluster, MJUM16BYTES);
  588                 largest_rx_cluster = MJUM16BYTES;
  589         }
  590 
  591         if (safest_rx_cluster != MCLBYTES &&
  592             safest_rx_cluster != MJUMPAGESIZE &&
  593             safest_rx_cluster != MJUM9BYTES &&
  594             safest_rx_cluster != MJUM16BYTES) {
  595                 printf("Invalid hw.cxgbe.safest_rx_cluster value (%d),"
  596                     " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE);
  597                 safest_rx_cluster = MJUMPAGESIZE;
  598         }
  599 
  600         extfree_refs = counter_u64_alloc(M_WAITOK);
  601         extfree_rels = counter_u64_alloc(M_WAITOK);
  602         pullups = counter_u64_alloc(M_WAITOK);
  603         defrags = counter_u64_alloc(M_WAITOK);
  604         counter_u64_zero(extfree_refs);
  605         counter_u64_zero(extfree_rels);
  606         counter_u64_zero(pullups);
  607         counter_u64_zero(defrags);
  608 
  609         t4_init_shared_cpl_handlers();
  610         t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
  611         t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
  612         t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
  613 #ifdef RATELIMIT
  614         t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack,
  615             CPL_COOKIE_ETHOFLD);
  616 #endif
  617         t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
  618         t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
  619 }
  620 
  621 void
  622 t4_sge_modunload(void)
  623 {
  624 
  625         counter_u64_free(extfree_refs);
  626         counter_u64_free(extfree_rels);
  627         counter_u64_free(pullups);
  628         counter_u64_free(defrags);
  629 }
  630 
  631 uint64_t
  632 t4_sge_extfree_refs(void)
  633 {
  634         uint64_t refs, rels;
  635 
  636         rels = counter_u64_fetch(extfree_rels);
  637         refs = counter_u64_fetch(extfree_refs);
  638 
  639         return (refs - rels);
  640 }
  641 
  642 /* max 4096 */
  643 #define MAX_PACK_BOUNDARY 512
  644 
  645 static inline void
  646 setup_pad_and_pack_boundaries(struct adapter *sc)
  647 {
  648         uint32_t v, m;
  649         int pad, pack, pad_shift;
  650 
  651         pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
  652             X_INGPADBOUNDARY_SHIFT;
  653         pad = fl_pad;
  654         if (fl_pad < (1 << pad_shift) ||
  655             fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
  656             !powerof2(fl_pad)) {
  657                 /*
  658                  * If there is any chance that we might use buffer packing and
  659                  * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
  660                  * it to the minimum allowed in all other cases.
  661                  */
  662                 pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
  663 
  664                 /*
  665                  * For fl_pad = 0 we'll still write a reasonable value to the
  666                  * register but all the freelists will opt out of padding.
  667                  * We'll complain here only if the user tried to set it to a
  668                  * value greater than 0 that was invalid.
  669                  */
  670                 if (fl_pad > 0) {
  671                         device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
  672                             " (%d), using %d instead.\n", fl_pad, pad);
  673                 }
  674         }
  675         m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
  676         v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
  677         t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
  678 
  679         if (is_t4(sc)) {
  680                 if (fl_pack != -1 && fl_pack != pad) {
  681                         /* Complain but carry on. */
  682                         device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
  683                             " using %d instead.\n", fl_pack, pad);
  684                 }
  685                 return;
  686         }
  687 
  688         pack = fl_pack;
  689         if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
  690             !powerof2(fl_pack)) {
  691                 if (sc->params.pci.mps > MAX_PACK_BOUNDARY)
  692                         pack = MAX_PACK_BOUNDARY;
  693                 else
  694                         pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
  695                 MPASS(powerof2(pack));
  696                 if (pack < 16)
  697                         pack = 16;
  698                 if (pack == 32)
  699                         pack = 64;
  700                 if (pack > 4096)
  701                         pack = 4096;
  702                 if (fl_pack != -1) {
  703                         device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
  704                             " (%d), using %d instead.\n", fl_pack, pack);
  705                 }
  706         }
  707         m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
  708         if (pack == 16)
  709                 v = V_INGPACKBOUNDARY(0);
  710         else
  711                 v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
  712 
  713         MPASS(!is_t4(sc));      /* T4 doesn't have SGE_CONTROL2 */
  714         t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
  715 }
  716 
  717 /*
  718  * adap->params.vpd.cclk must be set up before this is called.
  719  */
  720 void
  721 t4_tweak_chip_settings(struct adapter *sc)
  722 {
  723         int i, reg;
  724         uint32_t v, m;
  725         int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
  726         int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
  727         int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
  728         uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
  729         static int sw_buf_sizes[] = {
  730                 MCLBYTES,
  731                 MJUMPAGESIZE,
  732                 MJUM9BYTES,
  733                 MJUM16BYTES
  734         };
  735 
  736         KASSERT(sc->flags & MASTER_PF,
  737             ("%s: trying to change chip settings when not master.", __func__));
  738 
  739         m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
  740         v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
  741             V_EGRSTATUSPAGESIZE(spg_len == 128);
  742         t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
  743 
  744         setup_pad_and_pack_boundaries(sc);
  745 
  746         v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
  747             V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
  748             V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
  749             V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
  750             V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
  751             V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
  752             V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
  753             V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
  754         t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
  755 
  756         t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
  757         t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
  758         reg = A_SGE_FL_BUFFER_SIZE2;
  759         for (i = 0; i < nitems(sw_buf_sizes); i++) {
  760                 MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
  761                 t4_write_reg(sc, reg, sw_buf_sizes[i]);
  762                 reg += 4;
  763                 MPASS(reg <= A_SGE_FL_BUFFER_SIZE15);
  764                 t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE);
  765                 reg += 4;
  766         }
  767 
  768         v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
  769             V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
  770         t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
  771 
  772         KASSERT(intr_timer[0] <= timer_max,
  773             ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
  774             timer_max));
  775         for (i = 1; i < nitems(intr_timer); i++) {
  776                 KASSERT(intr_timer[i] >= intr_timer[i - 1],
  777                     ("%s: timers not listed in increasing order (%d)",
  778                     __func__, i));
  779 
  780                 while (intr_timer[i] > timer_max) {
  781                         if (i == nitems(intr_timer) - 1) {
  782                                 intr_timer[i] = timer_max;
  783                                 break;
  784                         }
  785                         intr_timer[i] += intr_timer[i - 1];
  786                         intr_timer[i] /= 2;
  787                 }
  788         }
  789 
  790         v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
  791             V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
  792         t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
  793         v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
  794             V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
  795         t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
  796         v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
  797             V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
  798         t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
  799 
  800         if (chip_id(sc) >= CHELSIO_T6) {
  801                 m = V_TSCALE(M_TSCALE);
  802                 if (tscale == 1)
  803                         v = 0;
  804                 else
  805                         v = V_TSCALE(tscale - 2);
  806                 t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
  807 
  808                 if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
  809                         m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
  810                             V_WRTHRTHRESH(M_WRTHRTHRESH);
  811                         t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
  812                         v &= ~m;
  813                         v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
  814                             V_WRTHRTHRESH(16);
  815                         t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
  816                 }
  817         }
  818 
  819         /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */
  820         v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
  821         t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
  822 
  823         /*
  824          * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP.  These have been
  825          * chosen with MAXPHYS = 128K in mind.  The largest DDP buffer that we
  826          * may have to deal with is MAXPHYS + 1 page.
  827          */
  828         v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4);
  829         t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v);
  830 
  831         /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */
  832         m = v = F_TDDPTAGTCB | F_ISCSITAGTCB;
  833         t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
  834 
  835         m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
  836             F_RESETDDPOFFSET;
  837         v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
  838         t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
  839 }
  840 
  841 /*
  842  * SGE wants the buffer to be at least 64B and then a multiple of 16.  Its
  843  * address mut be 16B aligned.  If padding is in use the buffer's start and end
  844  * need to be aligned to the pad boundary as well.  We'll just make sure that
  845  * the size is a multiple of the pad boundary here, it is up to the buffer
  846  * allocation code to make sure the start of the buffer is aligned.
  847  */
  848 static inline int
  849 hwsz_ok(struct adapter *sc, int hwsz)
  850 {
  851         int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
  852 
  853         return (hwsz >= 64 && (hwsz & mask) == 0);
  854 }
  855 
  856 /*
  857  * Initialize the rx buffer sizes and figure out which zones the buffers will
  858  * be allocated from.
  859  */
  860 void
  861 t4_init_rx_buf_info(struct adapter *sc)
  862 {
  863         struct sge *s = &sc->sge;
  864         struct sge_params *sp = &sc->params.sge;
  865         int i, j, n;
  866         static int sw_buf_sizes[] = {   /* Sorted by size */
  867                 MCLBYTES,
  868                 MJUMPAGESIZE,
  869                 MJUM9BYTES,
  870                 MJUM16BYTES
  871         };
  872         struct rx_buf_info *rxb;
  873 
  874         s->safe_zidx = -1;
  875         rxb = &s->rx_buf_info[0];
  876         for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
  877                 rxb->size1 = sw_buf_sizes[i];
  878                 rxb->zone = m_getzone(rxb->size1);
  879                 rxb->type = m_gettype(rxb->size1);
  880                 rxb->size2 = 0;
  881                 rxb->hwidx1 = -1;
  882                 rxb->hwidx2 = -1;
  883                 for (j = 0; j < SGE_FLBUF_SIZES; j++) {
  884                         int hwsize = sp->sge_fl_buffer_size[j];
  885 
  886                         if (!hwsz_ok(sc, hwsize))
  887                                 continue;
  888 
  889                         /* hwidx for size1 */
  890                         if (rxb->hwidx1 == -1 && rxb->size1 == hwsize)
  891                                 rxb->hwidx1 = j;
  892 
  893                         /* hwidx for size2 (buffer packing) */
  894                         if (rxb->size1 - CL_METADATA_SIZE < hwsize)
  895                                 continue;
  896                         n = rxb->size1 - hwsize - CL_METADATA_SIZE;
  897                         if (n == 0) {
  898                                 rxb->hwidx2 = j;
  899                                 rxb->size2 = hwsize;
  900                                 break;  /* stop looking */
  901                         }
  902                         if (rxb->hwidx2 != -1) {
  903                                 if (n < sp->sge_fl_buffer_size[rxb->hwidx2] -
  904                                     hwsize - CL_METADATA_SIZE) {
  905                                         rxb->hwidx2 = j;
  906                                         rxb->size2 = hwsize;
  907                                 }
  908                         } else if (n <= 2 * CL_METADATA_SIZE) {
  909                                 rxb->hwidx2 = j;
  910                                 rxb->size2 = hwsize;
  911                         }
  912                 }
  913                 if (rxb->hwidx2 != -1)
  914                         sc->flags |= BUF_PACKING_OK;
  915                 if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster)
  916                         s->safe_zidx = i;
  917         }
  918 }
  919 
  920 /*
  921  * Verify some basic SGE settings for the PF and VF driver, and other
  922  * miscellaneous settings for the PF driver.
  923  */
  924 int
  925 t4_verify_chip_settings(struct adapter *sc)
  926 {
  927         struct sge_params *sp = &sc->params.sge;
  928         uint32_t m, v, r;
  929         int rc = 0;
  930         const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
  931 
  932         m = F_RXPKTCPLMODE;
  933         v = F_RXPKTCPLMODE;
  934         r = sp->sge_control;
  935         if ((r & m) != v) {
  936                 device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
  937                 rc = EINVAL;
  938         }
  939 
  940         /*
  941          * If this changes then every single use of PAGE_SHIFT in the driver
  942          * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
  943          */
  944         if (sp->page_shift != PAGE_SHIFT) {
  945                 device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
  946                 rc = EINVAL;
  947         }
  948 
  949         if (sc->flags & IS_VF)
  950                 return (0);
  951 
  952         v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
  953         r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
  954         if (r != v) {
  955                 device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
  956                 if (sc->vres.ddp.size != 0)
  957                         rc = EINVAL;
  958         }
  959 
  960         m = v = F_TDDPTAGTCB;
  961         r = t4_read_reg(sc, A_ULP_RX_CTL);
  962         if ((r & m) != v) {
  963                 device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
  964                 if (sc->vres.ddp.size != 0)
  965                         rc = EINVAL;
  966         }
  967 
  968         m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
  969             F_RESETDDPOFFSET;
  970         v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
  971         r = t4_read_reg(sc, A_TP_PARA_REG5);
  972         if ((r & m) != v) {
  973                 device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
  974                 if (sc->vres.ddp.size != 0)
  975                         rc = EINVAL;
  976         }
  977 
  978         return (rc);
  979 }
  980 
  981 int
  982 t4_create_dma_tag(struct adapter *sc)
  983 {
  984         int rc;
  985 
  986         rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
  987             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
  988             BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
  989             NULL, &sc->dmat);
  990         if (rc != 0) {
  991                 device_printf(sc->dev,
  992                     "failed to create main DMA tag: %d\n", rc);
  993         }
  994 
  995         return (rc);
  996 }
  997 
  998 void
  999 t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
 1000     struct sysctl_oid_list *children)
 1001 {
 1002         struct sge_params *sp = &sc->params.sge;
 1003 
 1004         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
 1005             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
 1006             sysctl_bufsizes, "A", "freelist buffer sizes");
 1007 
 1008         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
 1009             NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
 1010 
 1011         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
 1012             NULL, sp->pad_boundary, "payload pad boundary (bytes)");
 1013 
 1014         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
 1015             NULL, sp->spg_len, "status page size (bytes)");
 1016 
 1017         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
 1018             NULL, cong_drop, "congestion drop setting");
 1019 #ifdef TCP_OFFLOAD
 1020         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD,
 1021             NULL, ofld_cong_drop, "congestion drop setting");
 1022 #endif
 1023 
 1024         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
 1025             NULL, sp->pack_boundary, "payload pack boundary (bytes)");
 1026 }
 1027 
 1028 int
 1029 t4_destroy_dma_tag(struct adapter *sc)
 1030 {
 1031         if (sc->dmat)
 1032                 bus_dma_tag_destroy(sc->dmat);
 1033 
 1034         return (0);
 1035 }
 1036 
 1037 /*
 1038  * Allocate and initialize the firmware event queue, control queues, and special
 1039  * purpose rx queues owned by the adapter.
 1040  *
 1041  * Returns errno on failure.  Resources allocated up to that point may still be
 1042  * allocated.  Caller is responsible for cleanup in case this function fails.
 1043  */
 1044 int
 1045 t4_setup_adapter_queues(struct adapter *sc)
 1046 {
 1047         int rc, i;
 1048 
 1049         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
 1050 
 1051         /*
 1052          * Firmware event queue
 1053          */
 1054         rc = alloc_fwq(sc);
 1055         if (rc != 0)
 1056                 return (rc);
 1057 
 1058         /*
 1059          * That's all for the VF driver.
 1060          */
 1061         if (sc->flags & IS_VF)
 1062                 return (rc);
 1063 
 1064         /*
 1065          * XXX: General purpose rx queues, one per port.
 1066          */
 1067 
 1068         /*
 1069          * Control queues, one per port.
 1070          */
 1071         for_each_port(sc, i) {
 1072                 rc = alloc_ctrlq(sc, i);
 1073                 if (rc != 0)
 1074                         return (rc);
 1075         }
 1076 
 1077         return (rc);
 1078 }
 1079 
 1080 /*
 1081  * Idempotent
 1082  */
 1083 int
 1084 t4_teardown_adapter_queues(struct adapter *sc)
 1085 {
 1086         int i;
 1087 
 1088         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
 1089 
 1090         if (sc->sge.ctrlq != NULL) {
 1091                 MPASS(!(sc->flags & IS_VF));    /* VFs don't allocate ctrlq. */
 1092                 for_each_port(sc, i)
 1093                         free_ctrlq(sc, i);
 1094         }
 1095         free_fwq(sc);
 1096 
 1097         return (0);
 1098 }
 1099 
 1100 /* Maximum payload that could arrive with a single iq descriptor. */
 1101 static inline int
 1102 max_rx_payload(struct adapter *sc, struct ifnet *ifp, const bool ofld)
 1103 {
 1104         int maxp;
 1105 
 1106         /* large enough even when hw VLAN extraction is disabled */
 1107         maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
 1108             ETHER_VLAN_ENCAP_LEN + ifp->if_mtu;
 1109         if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS &&
 1110             maxp < sc->params.tp.max_rx_pdu)
 1111                 maxp = sc->params.tp.max_rx_pdu;
 1112         return (maxp);
 1113 }
 1114 
 1115 int
 1116 t4_setup_vi_queues(struct vi_info *vi)
 1117 {
 1118         int rc = 0, i, intr_idx;
 1119         struct sge_rxq *rxq;
 1120         struct sge_txq *txq;
 1121 #ifdef TCP_OFFLOAD
 1122         struct sge_ofld_rxq *ofld_rxq;
 1123 #endif
 1124 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 1125         struct sge_ofld_txq *ofld_txq;
 1126 #endif
 1127 #ifdef DEV_NETMAP
 1128         int saved_idx, iqidx;
 1129         struct sge_nm_rxq *nm_rxq;
 1130         struct sge_nm_txq *nm_txq;
 1131 #endif
 1132         struct adapter *sc = vi->adapter;
 1133         struct ifnet *ifp = vi->ifp;
 1134         int maxp;
 1135 
 1136         /* Interrupt vector to start from (when using multiple vectors) */
 1137         intr_idx = vi->first_intr;
 1138 
 1139 #ifdef DEV_NETMAP
 1140         saved_idx = intr_idx;
 1141         if (ifp->if_capabilities & IFCAP_NETMAP) {
 1142 
 1143                 /* netmap is supported with direct interrupts only. */
 1144                 MPASS(!forwarding_intr_to_fwq(sc));
 1145                 MPASS(vi->first_intr >= 0);
 1146 
 1147                 /*
 1148                  * We don't have buffers to back the netmap rx queues
 1149                  * right now so we create the queues in a way that
 1150                  * doesn't set off any congestion signal in the chip.
 1151                  */
 1152                 for_each_nm_rxq(vi, i, nm_rxq) {
 1153                         rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i);
 1154                         if (rc != 0)
 1155                                 goto done;
 1156                         intr_idx++;
 1157                 }
 1158 
 1159                 for_each_nm_txq(vi, i, nm_txq) {
 1160                         iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
 1161                         rc = alloc_nm_txq(vi, nm_txq, iqidx, i);
 1162                         if (rc != 0)
 1163                                 goto done;
 1164                 }
 1165         }
 1166 
 1167         /* Normal rx queues and netmap rx queues share the same interrupts. */
 1168         intr_idx = saved_idx;
 1169 #endif
 1170 
 1171         /*
 1172          * Allocate rx queues first because a default iqid is required when
 1173          * creating a tx queue.
 1174          */
 1175         maxp = max_rx_payload(sc, ifp, false);
 1176         for_each_rxq(vi, i, rxq) {
 1177                 rc = alloc_rxq(vi, rxq, i, intr_idx, maxp);
 1178                 if (rc != 0)
 1179                         goto done;
 1180                 if (!forwarding_intr_to_fwq(sc))
 1181                         intr_idx++;
 1182         }
 1183 #ifdef DEV_NETMAP
 1184         if (ifp->if_capabilities & IFCAP_NETMAP)
 1185                 intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
 1186 #endif
 1187 #ifdef TCP_OFFLOAD
 1188         maxp = max_rx_payload(sc, ifp, true);
 1189         for_each_ofld_rxq(vi, i, ofld_rxq) {
 1190                 rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp);
 1191                 if (rc != 0)
 1192                         goto done;
 1193                 if (!forwarding_intr_to_fwq(sc))
 1194                         intr_idx++;
 1195         }
 1196 #endif
 1197 
 1198         /*
 1199          * Now the tx queues.
 1200          */
 1201         for_each_txq(vi, i, txq) {
 1202                 rc = alloc_txq(vi, txq, i);
 1203                 if (rc != 0)
 1204                         goto done;
 1205         }
 1206 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 1207         for_each_ofld_txq(vi, i, ofld_txq) {
 1208                 rc = alloc_ofld_txq(vi, ofld_txq, i);
 1209                 if (rc != 0)
 1210                         goto done;
 1211         }
 1212 #endif
 1213 done:
 1214         if (rc)
 1215                 t4_teardown_vi_queues(vi);
 1216 
 1217         return (rc);
 1218 }
 1219 
 1220 /*
 1221  * Idempotent
 1222  */
 1223 int
 1224 t4_teardown_vi_queues(struct vi_info *vi)
 1225 {
 1226         int i;
 1227         struct sge_rxq *rxq;
 1228         struct sge_txq *txq;
 1229 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 1230         struct sge_ofld_txq *ofld_txq;
 1231 #endif
 1232 #ifdef TCP_OFFLOAD
 1233         struct sge_ofld_rxq *ofld_rxq;
 1234 #endif
 1235 #ifdef DEV_NETMAP
 1236         struct sge_nm_rxq *nm_rxq;
 1237         struct sge_nm_txq *nm_txq;
 1238 #endif
 1239 
 1240 #ifdef DEV_NETMAP
 1241         if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
 1242                 for_each_nm_txq(vi, i, nm_txq) {
 1243                         free_nm_txq(vi, nm_txq);
 1244                 }
 1245 
 1246                 for_each_nm_rxq(vi, i, nm_rxq) {
 1247                         free_nm_rxq(vi, nm_rxq);
 1248                 }
 1249         }
 1250 #endif
 1251 
 1252         /*
 1253          * Take down all the tx queues first, as they reference the rx queues
 1254          * (for egress updates, etc.).
 1255          */
 1256 
 1257         for_each_txq(vi, i, txq) {
 1258                 free_txq(vi, txq);
 1259         }
 1260 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 1261         for_each_ofld_txq(vi, i, ofld_txq) {
 1262                 free_ofld_txq(vi, ofld_txq);
 1263         }
 1264 #endif
 1265 
 1266         /*
 1267          * Then take down the rx queues.
 1268          */
 1269 
 1270         for_each_rxq(vi, i, rxq) {
 1271                 free_rxq(vi, rxq);
 1272         }
 1273 #ifdef TCP_OFFLOAD
 1274         for_each_ofld_rxq(vi, i, ofld_rxq) {
 1275                 free_ofld_rxq(vi, ofld_rxq);
 1276         }
 1277 #endif
 1278 
 1279         return (0);
 1280 }
 1281 
 1282 /*
 1283  * Interrupt handler when the driver is using only 1 interrupt.  This is a very
 1284  * unusual scenario.
 1285  *
 1286  * a) Deals with errors, if any.
 1287  * b) Services firmware event queue, which is taking interrupts for all other
 1288  *    queues.
 1289  */
 1290 void
 1291 t4_intr_all(void *arg)
 1292 {
 1293         struct adapter *sc = arg;
 1294         struct sge_iq *fwq = &sc->sge.fwq;
 1295 
 1296         MPASS(sc->intr_count == 1);
 1297 
 1298         if (sc->intr_type == INTR_INTX)
 1299                 t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
 1300 
 1301         t4_intr_err(arg);
 1302         t4_intr_evt(fwq);
 1303 }
 1304 
 1305 /*
 1306  * Interrupt handler for errors (installed directly when multiple interrupts are
 1307  * being used, or called by t4_intr_all).
 1308  */
 1309 void
 1310 t4_intr_err(void *arg)
 1311 {
 1312         struct adapter *sc = arg;
 1313         uint32_t v;
 1314         const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
 1315 
 1316         if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR)
 1317                 return;
 1318 
 1319         v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
 1320         if (v & F_PFSW) {
 1321                 sc->swintr++;
 1322                 t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
 1323         }
 1324 
 1325         if (t4_slow_intr_handler(sc, verbose))
 1326                 t4_fatal_err(sc, false);
 1327 }
 1328 
 1329 /*
 1330  * Interrupt handler for iq-only queues.  The firmware event queue is the only
 1331  * such queue right now.
 1332  */
 1333 void
 1334 t4_intr_evt(void *arg)
 1335 {
 1336         struct sge_iq *iq = arg;
 1337 
 1338         if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
 1339                 service_iq(iq, 0);
 1340                 (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
 1341         }
 1342 }
 1343 
 1344 /*
 1345  * Interrupt handler for iq+fl queues.
 1346  */
 1347 void
 1348 t4_intr(void *arg)
 1349 {
 1350         struct sge_iq *iq = arg;
 1351 
 1352         if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
 1353                 service_iq_fl(iq, 0);
 1354                 (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
 1355         }
 1356 }
 1357 
 1358 #ifdef DEV_NETMAP
 1359 /*
 1360  * Interrupt handler for netmap rx queues.
 1361  */
 1362 void
 1363 t4_nm_intr(void *arg)
 1364 {
 1365         struct sge_nm_rxq *nm_rxq = arg;
 1366 
 1367         if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
 1368                 service_nm_rxq(nm_rxq);
 1369                 (void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
 1370         }
 1371 }
 1372 
 1373 /*
 1374  * Interrupt handler for vectors shared between NIC and netmap rx queues.
 1375  */
 1376 void
 1377 t4_vi_intr(void *arg)
 1378 {
 1379         struct irq *irq = arg;
 1380 
 1381         MPASS(irq->nm_rxq != NULL);
 1382         t4_nm_intr(irq->nm_rxq);
 1383 
 1384         MPASS(irq->rxq != NULL);
 1385         t4_intr(irq->rxq);
 1386 }
 1387 #endif
 1388 
 1389 /*
 1390  * Deals with interrupts on an iq-only (no freelist) queue.
 1391  */
 1392 static int
 1393 service_iq(struct sge_iq *iq, int budget)
 1394 {
 1395         struct sge_iq *q;
 1396         struct adapter *sc = iq->adapter;
 1397         struct iq_desc *d = &iq->desc[iq->cidx];
 1398         int ndescs = 0, limit;
 1399         int rsp_type;
 1400         uint32_t lq;
 1401         STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
 1402 
 1403         KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
 1404         KASSERT((iq->flags & IQ_HAS_FL) == 0,
 1405             ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
 1406             iq->flags));
 1407         MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
 1408         MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
 1409 
 1410         limit = budget ? budget : iq->qsize / 16;
 1411 
 1412         /*
 1413          * We always come back and check the descriptor ring for new indirect
 1414          * interrupts and other responses after running a single handler.
 1415          */
 1416         for (;;) {
 1417                 while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
 1418 
 1419                         rmb();
 1420 
 1421                         rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
 1422                         lq = be32toh(d->rsp.pldbuflen_qid);
 1423 
 1424                         switch (rsp_type) {
 1425                         case X_RSPD_TYPE_FLBUF:
 1426                                 panic("%s: data for an iq (%p) with no freelist",
 1427                                     __func__, iq);
 1428 
 1429                                 /* NOTREACHED */
 1430 
 1431                         case X_RSPD_TYPE_CPL:
 1432                                 KASSERT(d->rss.opcode < NUM_CPL_CMDS,
 1433                                     ("%s: bad opcode %02x.", __func__,
 1434                                     d->rss.opcode));
 1435                                 t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
 1436                                 break;
 1437 
 1438                         case X_RSPD_TYPE_INTR:
 1439                                 /*
 1440                                  * There are 1K interrupt-capable queues (qids 0
 1441                                  * through 1023).  A response type indicating a
 1442                                  * forwarded interrupt with a qid >= 1K is an
 1443                                  * iWARP async notification.
 1444                                  */
 1445                                 if (__predict_true(lq >= 1024)) {
 1446                                         t4_an_handler(iq, &d->rsp);
 1447                                         break;
 1448                                 }
 1449 
 1450                                 q = sc->sge.iqmap[lq - sc->sge.iq_start -
 1451                                     sc->sge.iq_base];
 1452                                 if (atomic_cmpset_int(&q->state, IQS_IDLE,
 1453                                     IQS_BUSY)) {
 1454                                         if (service_iq_fl(q, q->qsize / 16) == 0) {
 1455                                                 (void) atomic_cmpset_int(&q->state,
 1456                                                     IQS_BUSY, IQS_IDLE);
 1457                                         } else {
 1458                                                 STAILQ_INSERT_TAIL(&iql, q,
 1459                                                     link);
 1460                                         }
 1461                                 }
 1462                                 break;
 1463 
 1464                         default:
 1465                                 KASSERT(0,
 1466                                     ("%s: illegal response type %d on iq %p",
 1467                                     __func__, rsp_type, iq));
 1468                                 log(LOG_ERR,
 1469                                     "%s: illegal response type %d on iq %p",
 1470                                     device_get_nameunit(sc->dev), rsp_type, iq);
 1471                                 break;
 1472                         }
 1473 
 1474                         d++;
 1475                         if (__predict_false(++iq->cidx == iq->sidx)) {
 1476                                 iq->cidx = 0;
 1477                                 iq->gen ^= F_RSPD_GEN;
 1478                                 d = &iq->desc[0];
 1479                         }
 1480                         if (__predict_false(++ndescs == limit)) {
 1481                                 t4_write_reg(sc, sc->sge_gts_reg,
 1482                                     V_CIDXINC(ndescs) |
 1483                                     V_INGRESSQID(iq->cntxt_id) |
 1484                                     V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
 1485                                 ndescs = 0;
 1486 
 1487                                 if (budget) {
 1488                                         return (EINPROGRESS);
 1489                                 }
 1490                         }
 1491                 }
 1492 
 1493                 if (STAILQ_EMPTY(&iql))
 1494                         break;
 1495 
 1496                 /*
 1497                  * Process the head only, and send it to the back of the list if
 1498                  * it's still not done.
 1499                  */
 1500                 q = STAILQ_FIRST(&iql);
 1501                 STAILQ_REMOVE_HEAD(&iql, link);
 1502                 if (service_iq_fl(q, q->qsize / 8) == 0)
 1503                         (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
 1504                 else
 1505                         STAILQ_INSERT_TAIL(&iql, q, link);
 1506         }
 1507 
 1508         t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
 1509             V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
 1510 
 1511         return (0);
 1512 }
 1513 
 1514 #if defined(INET) || defined(INET6)
 1515 static inline int
 1516 sort_before_lro(struct lro_ctrl *lro)
 1517 {
 1518 
 1519         return (lro->lro_mbuf_max != 0);
 1520 }
 1521 #endif
 1522 
 1523 #define CGBE_SHIFT_SCALE 10
 1524 
 1525 static inline uint64_t
 1526 t4_tstmp_to_ns(struct adapter *sc, uint64_t lf)
 1527 {
 1528         struct clock_sync *cur, dcur;
 1529         uint64_t hw_clocks;
 1530         uint64_t hw_clk_div;
 1531         sbintime_t sbt_cur_to_prev, sbt;
 1532         uint64_t hw_tstmp = lf & 0xfffffffffffffffULL;  /* 60b, not 64b. */
 1533         seqc_t gen;
 1534 
 1535         for (;;) {
 1536                 cur = &sc->cal_info[sc->cal_current];
 1537                 gen = seqc_read(&cur->gen);
 1538                 if (gen == 0)
 1539                         return (0);
 1540                 dcur = *cur;
 1541                 if (seqc_consistent(&cur->gen, gen))
 1542                         break;
 1543         }
 1544 
 1545         /*
 1546          * Our goal here is to have a result that is:
 1547          *
 1548          * (                             (cur_time - prev_time)   )
 1549          * ((hw_tstmp - hw_prev) *  ----------------------------- ) + prev_time
 1550          * (                             (hw_cur - hw_prev)       )
 1551          *
 1552          * With the constraints that we cannot use float and we
 1553          * don't want to overflow the uint64_t numbers we are using.
 1554          */
 1555         hw_clocks = hw_tstmp - dcur.hw_prev;
 1556         sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev);
 1557         hw_clk_div = dcur.hw_cur - dcur.hw_prev;
 1558         sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev;
 1559         return (sbttons(sbt));
 1560 }
 1561 
 1562 static inline void
 1563 move_to_next_rxbuf(struct sge_fl *fl)
 1564 {
 1565 
 1566         fl->rx_offset = 0;
 1567         if (__predict_false((++fl->cidx & 7) == 0)) {
 1568                 uint16_t cidx = fl->cidx >> 3;
 1569 
 1570                 if (__predict_false(cidx == fl->sidx))
 1571                         fl->cidx = cidx = 0;
 1572                 fl->hw_cidx = cidx;
 1573         }
 1574 }
 1575 
 1576 /*
 1577  * Deals with interrupts on an iq+fl queue.
 1578  */
 1579 static int
 1580 service_iq_fl(struct sge_iq *iq, int budget)
 1581 {
 1582         struct sge_rxq *rxq = iq_to_rxq(iq);
 1583         struct sge_fl *fl;
 1584         struct adapter *sc = iq->adapter;
 1585         struct iq_desc *d = &iq->desc[iq->cidx];
 1586         int ndescs, limit;
 1587         int rsp_type, starved;
 1588         uint32_t lq;
 1589         uint16_t fl_hw_cidx;
 1590         struct mbuf *m0;
 1591 #if defined(INET) || defined(INET6)
 1592         const struct timeval lro_timeout = {0, sc->lro_timeout};
 1593         struct lro_ctrl *lro = &rxq->lro;
 1594 #endif
 1595 
 1596         KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
 1597         MPASS(iq->flags & IQ_HAS_FL);
 1598 
 1599         ndescs = 0;
 1600 #if defined(INET) || defined(INET6)
 1601         if (iq->flags & IQ_ADJ_CREDIT) {
 1602                 MPASS(sort_before_lro(lro));
 1603                 iq->flags &= ~IQ_ADJ_CREDIT;
 1604                 if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
 1605                         tcp_lro_flush_all(lro);
 1606                         t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
 1607                             V_INGRESSQID((u32)iq->cntxt_id) |
 1608                             V_SEINTARM(iq->intr_params));
 1609                         return (0);
 1610                 }
 1611                 ndescs = 1;
 1612         }
 1613 #else
 1614         MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
 1615 #endif
 1616 
 1617         limit = budget ? budget : iq->qsize / 16;
 1618         fl = &rxq->fl;
 1619         fl_hw_cidx = fl->hw_cidx;       /* stable snapshot */
 1620         while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
 1621 
 1622                 rmb();
 1623 
 1624                 m0 = NULL;
 1625                 rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
 1626                 lq = be32toh(d->rsp.pldbuflen_qid);
 1627 
 1628                 switch (rsp_type) {
 1629                 case X_RSPD_TYPE_FLBUF:
 1630                         if (lq & F_RSPD_NEWBUF) {
 1631                                 if (fl->rx_offset > 0)
 1632                                         move_to_next_rxbuf(fl);
 1633                                 lq = G_RSPD_LEN(lq);
 1634                         }
 1635                         if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) {
 1636                                 FL_LOCK(fl);
 1637                                 refill_fl(sc, fl, 64);
 1638                                 FL_UNLOCK(fl);
 1639                                 fl_hw_cidx = fl->hw_cidx;
 1640                         }
 1641 
 1642                         if (d->rss.opcode == CPL_RX_PKT) {
 1643                                 if (__predict_true(eth_rx(sc, rxq, d, lq) == 0))
 1644                                         break;
 1645                                 goto out;
 1646                         }
 1647                         m0 = get_fl_payload(sc, fl, lq);
 1648                         if (__predict_false(m0 == NULL))
 1649                                 goto out;
 1650 
 1651                         /* fall through */
 1652 
 1653                 case X_RSPD_TYPE_CPL:
 1654                         KASSERT(d->rss.opcode < NUM_CPL_CMDS,
 1655                             ("%s: bad opcode %02x.", __func__, d->rss.opcode));
 1656                         t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
 1657                         break;
 1658 
 1659                 case X_RSPD_TYPE_INTR:
 1660 
 1661                         /*
 1662                          * There are 1K interrupt-capable queues (qids 0
 1663                          * through 1023).  A response type indicating a
 1664                          * forwarded interrupt with a qid >= 1K is an
 1665                          * iWARP async notification.  That is the only
 1666                          * acceptable indirect interrupt on this queue.
 1667                          */
 1668                         if (__predict_false(lq < 1024)) {
 1669                                 panic("%s: indirect interrupt on iq_fl %p "
 1670                                     "with qid %u", __func__, iq, lq);
 1671                         }
 1672 
 1673                         t4_an_handler(iq, &d->rsp);
 1674                         break;
 1675 
 1676                 default:
 1677                         KASSERT(0, ("%s: illegal response type %d on iq %p",
 1678                             __func__, rsp_type, iq));
 1679                         log(LOG_ERR, "%s: illegal response type %d on iq %p",
 1680                             device_get_nameunit(sc->dev), rsp_type, iq);
 1681                         break;
 1682                 }
 1683 
 1684                 d++;
 1685                 if (__predict_false(++iq->cidx == iq->sidx)) {
 1686                         iq->cidx = 0;
 1687                         iq->gen ^= F_RSPD_GEN;
 1688                         d = &iq->desc[0];
 1689                 }
 1690                 if (__predict_false(++ndescs == limit)) {
 1691                         t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
 1692                             V_INGRESSQID(iq->cntxt_id) |
 1693                             V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
 1694 
 1695 #if defined(INET) || defined(INET6)
 1696                         if (iq->flags & IQ_LRO_ENABLED &&
 1697                             !sort_before_lro(lro) &&
 1698                             sc->lro_timeout != 0) {
 1699                                 tcp_lro_flush_inactive(lro, &lro_timeout);
 1700                         }
 1701 #endif
 1702                         if (budget)
 1703                                 return (EINPROGRESS);
 1704                         ndescs = 0;
 1705                 }
 1706         }
 1707 out:
 1708 #if defined(INET) || defined(INET6)
 1709         if (iq->flags & IQ_LRO_ENABLED) {
 1710                 if (ndescs > 0 && lro->lro_mbuf_count > 8) {
 1711                         MPASS(sort_before_lro(lro));
 1712                         /* hold back one credit and don't flush LRO state */
 1713                         iq->flags |= IQ_ADJ_CREDIT;
 1714                         ndescs--;
 1715                 } else {
 1716                         tcp_lro_flush_all(lro);
 1717                 }
 1718         }
 1719 #endif
 1720 
 1721         t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
 1722             V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
 1723 
 1724         FL_LOCK(fl);
 1725         starved = refill_fl(sc, fl, 64);
 1726         FL_UNLOCK(fl);
 1727         if (__predict_false(starved != 0))
 1728                 add_fl_to_sfl(sc, fl);
 1729 
 1730         return (0);
 1731 }
 1732 
 1733 static inline struct cluster_metadata *
 1734 cl_metadata(struct fl_sdesc *sd)
 1735 {
 1736 
 1737         return ((void *)(sd->cl + sd->moff));
 1738 }
 1739 
 1740 static void
 1741 rxb_free(struct mbuf *m)
 1742 {
 1743         struct cluster_metadata *clm = m->m_ext.ext_arg1;
 1744 
 1745         uma_zfree(clm->zone, clm->cl);
 1746         counter_u64_add(extfree_rels, 1);
 1747 }
 1748 
 1749 /*
 1750  * The mbuf returned comes from zone_muf and carries the payload in one of these
 1751  * ways
 1752  * a) complete frame inside the mbuf
 1753  * b) m_cljset (for clusters without metadata)
 1754  * d) m_extaddref (cluster with metadata)
 1755  */
 1756 static struct mbuf *
 1757 get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
 1758     int remaining)
 1759 {
 1760         struct mbuf *m;
 1761         struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
 1762         struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
 1763         struct cluster_metadata *clm;
 1764         int len, blen;
 1765         caddr_t payload;
 1766 
 1767         if (fl->flags & FL_BUF_PACKING) {
 1768                 u_int l, pad;
 1769 
 1770                 blen = rxb->size2 - fl->rx_offset;      /* max possible in this buf */
 1771                 len = min(remaining, blen);
 1772                 payload = sd->cl + fl->rx_offset;
 1773 
 1774                 l = fr_offset + len;
 1775                 pad = roundup2(l, fl->buf_boundary) - l;
 1776                 if (fl->rx_offset + len + pad < rxb->size2)
 1777                         blen = len + pad;
 1778                 MPASS(fl->rx_offset + blen <= rxb->size2);
 1779         } else {
 1780                 MPASS(fl->rx_offset == 0);      /* not packing */
 1781                 blen = rxb->size1;
 1782                 len = min(remaining, blen);
 1783                 payload = sd->cl;
 1784         }
 1785 
 1786         if (fr_offset == 0) {
 1787                 m = m_gethdr(M_NOWAIT, MT_DATA);
 1788                 if (__predict_false(m == NULL))
 1789                         return (NULL);
 1790                 m->m_pkthdr.len = remaining;
 1791         } else {
 1792                 m = m_get(M_NOWAIT, MT_DATA);
 1793                 if (__predict_false(m == NULL))
 1794                         return (NULL);
 1795         }
 1796         m->m_len = len;
 1797         kmsan_mark(payload, len, KMSAN_STATE_INITED);
 1798 
 1799         if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
 1800                 /* copy data to mbuf */
 1801                 bcopy(payload, mtod(m, caddr_t), len);
 1802                 if (fl->flags & FL_BUF_PACKING) {
 1803                         fl->rx_offset += blen;
 1804                         MPASS(fl->rx_offset <= rxb->size2);
 1805                         if (fl->rx_offset < rxb->size2)
 1806                                 return (m);     /* without advancing the cidx */
 1807                 }
 1808         } else if (fl->flags & FL_BUF_PACKING) {
 1809                 clm = cl_metadata(sd);
 1810                 if (sd->nmbuf++ == 0) {
 1811                         clm->refcount = 1;
 1812                         clm->zone = rxb->zone;
 1813                         clm->cl = sd->cl;
 1814                         counter_u64_add(extfree_refs, 1);
 1815                 }
 1816                 m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm,
 1817                     NULL);
 1818 
 1819                 fl->rx_offset += blen;
 1820                 MPASS(fl->rx_offset <= rxb->size2);
 1821                 if (fl->rx_offset < rxb->size2)
 1822                         return (m);     /* without advancing the cidx */
 1823         } else {
 1824                 m_cljset(m, sd->cl, rxb->type);
 1825                 sd->cl = NULL;  /* consumed, not a recycle candidate */
 1826         }
 1827 
 1828         move_to_next_rxbuf(fl);
 1829 
 1830         return (m);
 1831 }
 1832 
 1833 static struct mbuf *
 1834 get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen)
 1835 {
 1836         struct mbuf *m0, *m, **pnext;
 1837         u_int remaining;
 1838 
 1839         if (__predict_false(fl->flags & FL_BUF_RESUME)) {
 1840                 M_ASSERTPKTHDR(fl->m0);
 1841                 MPASS(fl->m0->m_pkthdr.len == plen);
 1842                 MPASS(fl->remaining < plen);
 1843 
 1844                 m0 = fl->m0;
 1845                 pnext = fl->pnext;
 1846                 remaining = fl->remaining;
 1847                 fl->flags &= ~FL_BUF_RESUME;
 1848                 goto get_segment;
 1849         }
 1850 
 1851         /*
 1852          * Payload starts at rx_offset in the current hw buffer.  Its length is
 1853          * 'len' and it may span multiple hw buffers.
 1854          */
 1855 
 1856         m0 = get_scatter_segment(sc, fl, 0, plen);
 1857         if (m0 == NULL)
 1858                 return (NULL);
 1859         remaining = plen - m0->m_len;
 1860         pnext = &m0->m_next;
 1861         while (remaining > 0) {
 1862 get_segment:
 1863                 MPASS(fl->rx_offset == 0);
 1864                 m = get_scatter_segment(sc, fl, plen - remaining, remaining);
 1865                 if (__predict_false(m == NULL)) {
 1866                         fl->m0 = m0;
 1867                         fl->pnext = pnext;
 1868                         fl->remaining = remaining;
 1869                         fl->flags |= FL_BUF_RESUME;
 1870                         return (NULL);
 1871                 }
 1872                 *pnext = m;
 1873                 pnext = &m->m_next;
 1874                 remaining -= m->m_len;
 1875         }
 1876         *pnext = NULL;
 1877 
 1878         M_ASSERTPKTHDR(m0);
 1879         return (m0);
 1880 }
 1881 
 1882 static int
 1883 skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
 1884     int remaining)
 1885 {
 1886         struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
 1887         struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
 1888         int len, blen;
 1889 
 1890         if (fl->flags & FL_BUF_PACKING) {
 1891                 u_int l, pad;
 1892 
 1893                 blen = rxb->size2 - fl->rx_offset;      /* max possible in this buf */
 1894                 len = min(remaining, blen);
 1895 
 1896                 l = fr_offset + len;
 1897                 pad = roundup2(l, fl->buf_boundary) - l;
 1898                 if (fl->rx_offset + len + pad < rxb->size2)
 1899                         blen = len + pad;
 1900                 fl->rx_offset += blen;
 1901                 MPASS(fl->rx_offset <= rxb->size2);
 1902                 if (fl->rx_offset < rxb->size2)
 1903                         return (len);   /* without advancing the cidx */
 1904         } else {
 1905                 MPASS(fl->rx_offset == 0);      /* not packing */
 1906                 blen = rxb->size1;
 1907                 len = min(remaining, blen);
 1908         }
 1909         move_to_next_rxbuf(fl);
 1910         return (len);
 1911 }
 1912 
 1913 static inline void
 1914 skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen)
 1915 {
 1916         int remaining, fr_offset, len;
 1917 
 1918         fr_offset = 0;
 1919         remaining = plen;
 1920         while (remaining > 0) {
 1921                 len = skip_scatter_segment(sc, fl, fr_offset, remaining);
 1922                 fr_offset += len;
 1923                 remaining -= len;
 1924         }
 1925 }
 1926 
 1927 static inline int
 1928 get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen)
 1929 {
 1930         int len;
 1931         struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
 1932         struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx];
 1933 
 1934         if (fl->flags & FL_BUF_PACKING)
 1935                 len = rxb->size2 - fl->rx_offset;
 1936         else
 1937                 len = rxb->size1;
 1938 
 1939         return (min(plen, len));
 1940 }
 1941 
 1942 static int
 1943 eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d,
 1944     u_int plen)
 1945 {
 1946         struct mbuf *m0;
 1947         struct ifnet *ifp = rxq->ifp;
 1948         struct sge_fl *fl = &rxq->fl;
 1949         struct vi_info *vi = ifp->if_softc;
 1950         const struct cpl_rx_pkt *cpl;
 1951 #if defined(INET) || defined(INET6)
 1952         struct lro_ctrl *lro = &rxq->lro;
 1953 #endif
 1954         uint16_t err_vec, tnl_type, tnlhdr_len;
 1955         static const int sw_hashtype[4][2] = {
 1956                 {M_HASHTYPE_NONE, M_HASHTYPE_NONE},
 1957                 {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
 1958                 {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
 1959                 {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
 1960         };
 1961         static const int sw_csum_flags[2][2] = {
 1962                 {
 1963                         /* IP, inner IP */
 1964                         CSUM_ENCAP_VXLAN |
 1965                             CSUM_L3_CALC | CSUM_L3_VALID |
 1966                             CSUM_L4_CALC | CSUM_L4_VALID |
 1967                             CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
 1968                             CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
 1969 
 1970                         /* IP, inner IP6 */
 1971                         CSUM_ENCAP_VXLAN |
 1972                             CSUM_L3_CALC | CSUM_L3_VALID |
 1973                             CSUM_L4_CALC | CSUM_L4_VALID |
 1974                             CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
 1975                 },
 1976                 {
 1977                         /* IP6, inner IP */
 1978                         CSUM_ENCAP_VXLAN |
 1979                             CSUM_L4_CALC | CSUM_L4_VALID |
 1980                             CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID |
 1981                             CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
 1982 
 1983                         /* IP6, inner IP6 */
 1984                         CSUM_ENCAP_VXLAN |
 1985                             CSUM_L4_CALC | CSUM_L4_VALID |
 1986                             CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID,
 1987                 },
 1988         };
 1989 
 1990         MPASS(plen > sc->params.sge.fl_pktshift);
 1991         if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) &&
 1992             __predict_true((fl->flags & FL_BUF_RESUME) == 0)) {
 1993                 struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
 1994                 caddr_t frame;
 1995                 int rc, slen;
 1996 
 1997                 slen = get_segment_len(sc, fl, plen) -
 1998                     sc->params.sge.fl_pktshift;
 1999                 frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift;
 2000                 CURVNET_SET_QUIET(ifp->if_vnet);
 2001                 rc = pfil_run_hooks(vi->pfil, frame, ifp,
 2002                     slen | PFIL_MEMPTR | PFIL_IN, NULL);
 2003                 CURVNET_RESTORE();
 2004                 if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) {
 2005                         skip_fl_payload(sc, fl, plen);
 2006                         return (0);
 2007                 }
 2008                 if (rc == PFIL_REALLOCED) {
 2009                         skip_fl_payload(sc, fl, plen);
 2010                         m0 = pfil_mem2mbuf(frame);
 2011                         goto have_mbuf;
 2012                 }
 2013         }
 2014 
 2015         m0 = get_fl_payload(sc, fl, plen);
 2016         if (__predict_false(m0 == NULL))
 2017                 return (ENOMEM);
 2018 
 2019         m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
 2020         m0->m_len -= sc->params.sge.fl_pktshift;
 2021         m0->m_data += sc->params.sge.fl_pktshift;
 2022 
 2023 have_mbuf:
 2024         m0->m_pkthdr.rcvif = ifp;
 2025         M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]);
 2026         m0->m_pkthdr.flowid = be32toh(d->rss.hash_val);
 2027 
 2028         cpl = (const void *)(&d->rss + 1);
 2029         if (sc->params.tp.rx_pkt_encap) {
 2030                 const uint16_t ev = be16toh(cpl->err_vec);
 2031 
 2032                 err_vec = G_T6_COMPR_RXERR_VEC(ev);
 2033                 tnl_type = G_T6_RX_TNL_TYPE(ev);
 2034                 tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev);
 2035         } else {
 2036                 err_vec = be16toh(cpl->err_vec);
 2037                 tnl_type = 0;
 2038                 tnlhdr_len = 0;
 2039         }
 2040         if (cpl->csum_calc && err_vec == 0) {
 2041                 int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6));
 2042 
 2043                 /* checksum(s) calculated and found to be correct. */
 2044 
 2045                 MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^
 2046                     (cpl->l2info & htobe32(F_RXF_IP6)));
 2047                 m0->m_pkthdr.csum_data = be16toh(cpl->csum);
 2048                 if (tnl_type == 0) {
 2049                         if (!ipv6 && ifp->if_capenable & IFCAP_RXCSUM) {
 2050                                 m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
 2051                                     CSUM_L3_VALID | CSUM_L4_CALC |
 2052                                     CSUM_L4_VALID;
 2053                         } else if (ipv6 && ifp->if_capenable & IFCAP_RXCSUM_IPV6) {
 2054                                 m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
 2055                                     CSUM_L4_VALID;
 2056                         }
 2057                         rxq->rxcsum++;
 2058                 } else {
 2059                         MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN);
 2060 
 2061                         M_HASHTYPE_SETINNER(m0);
 2062                         if (__predict_false(cpl->ip_frag)) {
 2063                                 /*
 2064                                  * csum_data is for the inner frame (which is an
 2065                                  * IP fragment) and is not 0xffff.  There is no
 2066                                  * way to pass the inner csum_data to the stack.
 2067                                  * We don't want the stack to use the inner
 2068                                  * csum_data to validate the outer frame or it
 2069                                  * will get rejected.  So we fix csum_data here
 2070                                  * and let sw do the checksum of inner IP
 2071                                  * fragments.
 2072                                  *
 2073                                  * XXX: Need 32b for csum_data2 in an rx mbuf.
 2074                                  * Maybe stuff it into rcv_tstmp?
 2075                                  */
 2076                                 m0->m_pkthdr.csum_data = 0xffff;
 2077                                 if (ipv6) {
 2078                                         m0->m_pkthdr.csum_flags = CSUM_L4_CALC |
 2079                                             CSUM_L4_VALID;
 2080                                 } else {
 2081                                         m0->m_pkthdr.csum_flags = CSUM_L3_CALC |
 2082                                             CSUM_L3_VALID | CSUM_L4_CALC |
 2083                                             CSUM_L4_VALID;
 2084                                 }
 2085                         } else {
 2086                                 int outer_ipv6;
 2087 
 2088                                 MPASS(m0->m_pkthdr.csum_data == 0xffff);
 2089 
 2090                                 outer_ipv6 = tnlhdr_len >=
 2091                                     sizeof(struct ether_header) +
 2092                                     sizeof(struct ip6_hdr);
 2093                                 m0->m_pkthdr.csum_flags =
 2094                                     sw_csum_flags[outer_ipv6][ipv6];
 2095                         }
 2096                         rxq->vxlan_rxcsum++;
 2097                 }
 2098         }
 2099 
 2100         if (cpl->vlan_ex) {
 2101                 m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
 2102                 m0->m_flags |= M_VLANTAG;
 2103                 rxq->vlan_extraction++;
 2104         }
 2105 
 2106         if (rxq->iq.flags & IQ_RX_TIMESTAMP) {
 2107                 /*
 2108                  * Fill up rcv_tstmp but do not set M_TSTMP as
 2109                  * long as we get a non-zero back from t4_tstmp_to_ns().
 2110                  */
 2111                 m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc,
 2112                     be64toh(d->rsp.u.last_flit));
 2113                 if (m0->m_pkthdr.rcv_tstmp != 0)
 2114                         m0->m_flags |= M_TSTMP;
 2115         }
 2116 
 2117 #ifdef NUMA
 2118         m0->m_pkthdr.numa_domain = ifp->if_numa_domain;
 2119 #endif
 2120 #if defined(INET) || defined(INET6)
 2121         if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 &&
 2122             (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 ||
 2123             M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) {
 2124                 if (sort_before_lro(lro)) {
 2125                         tcp_lro_queue_mbuf(lro, m0);
 2126                         return (0); /* queued for sort, then LRO */
 2127                 }
 2128                 if (tcp_lro_rx(lro, m0, 0) == 0)
 2129                         return (0); /* queued for LRO */
 2130         }
 2131 #endif
 2132         ifp->if_input(ifp, m0);
 2133 
 2134         return (0);
 2135 }
 2136 
 2137 /*
 2138  * Must drain the wrq or make sure that someone else will.
 2139  */
 2140 static void
 2141 wrq_tx_drain(void *arg, int n)
 2142 {
 2143         struct sge_wrq *wrq = arg;
 2144         struct sge_eq *eq = &wrq->eq;
 2145 
 2146         EQ_LOCK(eq);
 2147         if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
 2148                 drain_wrq_wr_list(wrq->adapter, wrq);
 2149         EQ_UNLOCK(eq);
 2150 }
 2151 
 2152 static void
 2153 drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
 2154 {
 2155         struct sge_eq *eq = &wrq->eq;
 2156         u_int available, dbdiff;        /* # of hardware descriptors */
 2157         u_int n;
 2158         struct wrqe *wr;
 2159         struct fw_eth_tx_pkt_wr *dst;   /* any fw WR struct will do */
 2160 
 2161         EQ_LOCK_ASSERT_OWNED(eq);
 2162         MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
 2163         wr = STAILQ_FIRST(&wrq->wr_list);
 2164         MPASS(wr != NULL);      /* Must be called with something useful to do */
 2165         MPASS(eq->pidx == eq->dbidx);
 2166         dbdiff = 0;
 2167 
 2168         do {
 2169                 eq->cidx = read_hw_cidx(eq);
 2170                 if (eq->pidx == eq->cidx)
 2171                         available = eq->sidx - 1;
 2172                 else
 2173                         available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
 2174 
 2175                 MPASS(wr->wrq == wrq);
 2176                 n = howmany(wr->wr_len, EQ_ESIZE);
 2177                 if (available < n)
 2178                         break;
 2179 
 2180                 dst = (void *)&eq->desc[eq->pidx];
 2181                 if (__predict_true(eq->sidx - eq->pidx > n)) {
 2182                         /* Won't wrap, won't end exactly at the status page. */
 2183                         bcopy(&wr->wr[0], dst, wr->wr_len);
 2184                         eq->pidx += n;
 2185                 } else {
 2186                         int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
 2187 
 2188                         bcopy(&wr->wr[0], dst, first_portion);
 2189                         if (wr->wr_len > first_portion) {
 2190                                 bcopy(&wr->wr[first_portion], &eq->desc[0],
 2191                                     wr->wr_len - first_portion);
 2192                         }
 2193                         eq->pidx = n - (eq->sidx - eq->pidx);
 2194                 }
 2195                 wrq->tx_wrs_copied++;
 2196 
 2197                 if (available < eq->sidx / 4 &&
 2198                     atomic_cmpset_int(&eq->equiq, 0, 1)) {
 2199                                 /*
 2200                                  * XXX: This is not 100% reliable with some
 2201                                  * types of WRs.  But this is a very unusual
 2202                                  * situation for an ofld/ctrl queue anyway.
 2203                                  */
 2204                         dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
 2205                             F_FW_WR_EQUEQ);
 2206                 }
 2207 
 2208                 dbdiff += n;
 2209                 if (dbdiff >= 16) {
 2210                         ring_eq_db(sc, eq, dbdiff);
 2211                         dbdiff = 0;
 2212                 }
 2213 
 2214                 STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
 2215                 free_wrqe(wr);
 2216                 MPASS(wrq->nwr_pending > 0);
 2217                 wrq->nwr_pending--;
 2218                 MPASS(wrq->ndesc_needed >= n);
 2219                 wrq->ndesc_needed -= n;
 2220         } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
 2221 
 2222         if (dbdiff)
 2223                 ring_eq_db(sc, eq, dbdiff);
 2224 }
 2225 
 2226 /*
 2227  * Doesn't fail.  Holds on to work requests it can't send right away.
 2228  */
 2229 void
 2230 t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
 2231 {
 2232 #ifdef INVARIANTS
 2233         struct sge_eq *eq = &wrq->eq;
 2234 #endif
 2235 
 2236         EQ_LOCK_ASSERT_OWNED(eq);
 2237         MPASS(wr != NULL);
 2238         MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
 2239         MPASS((wr->wr_len & 0x7) == 0);
 2240 
 2241         STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
 2242         wrq->nwr_pending++;
 2243         wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
 2244 
 2245         if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
 2246                 return; /* commit_wrq_wr will drain wr_list as well. */
 2247 
 2248         drain_wrq_wr_list(sc, wrq);
 2249 
 2250         /* Doorbell must have caught up to the pidx. */
 2251         MPASS(eq->pidx == eq->dbidx);
 2252 }
 2253 
 2254 void
 2255 t4_update_fl_bufsize(struct ifnet *ifp)
 2256 {
 2257         struct vi_info *vi = ifp->if_softc;
 2258         struct adapter *sc = vi->adapter;
 2259         struct sge_rxq *rxq;
 2260 #ifdef TCP_OFFLOAD
 2261         struct sge_ofld_rxq *ofld_rxq;
 2262 #endif
 2263         struct sge_fl *fl;
 2264         int i, maxp;
 2265 
 2266         maxp = max_rx_payload(sc, ifp, false);
 2267         for_each_rxq(vi, i, rxq) {
 2268                 fl = &rxq->fl;
 2269 
 2270                 FL_LOCK(fl);
 2271                 fl->zidx = find_refill_source(sc, maxp,
 2272                     fl->flags & FL_BUF_PACKING);
 2273                 FL_UNLOCK(fl);
 2274         }
 2275 #ifdef TCP_OFFLOAD
 2276         maxp = max_rx_payload(sc, ifp, true);
 2277         for_each_ofld_rxq(vi, i, ofld_rxq) {
 2278                 fl = &ofld_rxq->fl;
 2279 
 2280                 FL_LOCK(fl);
 2281                 fl->zidx = find_refill_source(sc, maxp,
 2282                     fl->flags & FL_BUF_PACKING);
 2283                 FL_UNLOCK(fl);
 2284         }
 2285 #endif
 2286 }
 2287 
 2288 static inline int
 2289 mbuf_nsegs(struct mbuf *m)
 2290 {
 2291 
 2292         M_ASSERTPKTHDR(m);
 2293         KASSERT(m->m_pkthdr.inner_l5hlen > 0,
 2294             ("%s: mbuf %p missing information on # of segments.", __func__, m));
 2295 
 2296         return (m->m_pkthdr.inner_l5hlen);
 2297 }
 2298 
 2299 static inline void
 2300 set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
 2301 {
 2302 
 2303         M_ASSERTPKTHDR(m);
 2304         m->m_pkthdr.inner_l5hlen = nsegs;
 2305 }
 2306 
 2307 static inline int
 2308 mbuf_cflags(struct mbuf *m)
 2309 {
 2310 
 2311         M_ASSERTPKTHDR(m);
 2312         return (m->m_pkthdr.PH_loc.eight[4]);
 2313 }
 2314 
 2315 static inline void
 2316 set_mbuf_cflags(struct mbuf *m, uint8_t flags)
 2317 {
 2318 
 2319         M_ASSERTPKTHDR(m);
 2320         m->m_pkthdr.PH_loc.eight[4] = flags;
 2321 }
 2322 
 2323 static inline int
 2324 mbuf_len16(struct mbuf *m)
 2325 {
 2326         int n;
 2327 
 2328         M_ASSERTPKTHDR(m);
 2329         n = m->m_pkthdr.PH_loc.eight[0];
 2330         if (!(mbuf_cflags(m) & MC_TLS))
 2331                 MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
 2332 
 2333         return (n);
 2334 }
 2335 
 2336 static inline void
 2337 set_mbuf_len16(struct mbuf *m, uint8_t len16)
 2338 {
 2339 
 2340         M_ASSERTPKTHDR(m);
 2341         if (!(mbuf_cflags(m) & MC_TLS))
 2342                 MPASS(len16 > 0 && len16 <= SGE_MAX_WR_LEN / 16);
 2343         m->m_pkthdr.PH_loc.eight[0] = len16;
 2344 }
 2345 
 2346 #ifdef RATELIMIT
 2347 static inline int
 2348 mbuf_eo_nsegs(struct mbuf *m)
 2349 {
 2350 
 2351         M_ASSERTPKTHDR(m);
 2352         return (m->m_pkthdr.PH_loc.eight[1]);
 2353 }
 2354 
 2355 #if defined(INET) || defined(INET6)
 2356 static inline void
 2357 set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs)
 2358 {
 2359 
 2360         M_ASSERTPKTHDR(m);
 2361         m->m_pkthdr.PH_loc.eight[1] = nsegs;
 2362 }
 2363 #endif
 2364 
 2365 static inline int
 2366 mbuf_eo_len16(struct mbuf *m)
 2367 {
 2368         int n;
 2369 
 2370         M_ASSERTPKTHDR(m);
 2371         n = m->m_pkthdr.PH_loc.eight[2];
 2372         MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
 2373 
 2374         return (n);
 2375 }
 2376 
 2377 #if defined(INET) || defined(INET6)
 2378 static inline void
 2379 set_mbuf_eo_len16(struct mbuf *m, uint8_t len16)
 2380 {
 2381 
 2382         M_ASSERTPKTHDR(m);
 2383         m->m_pkthdr.PH_loc.eight[2] = len16;
 2384 }
 2385 #endif
 2386 
 2387 static inline int
 2388 mbuf_eo_tsclk_tsoff(struct mbuf *m)
 2389 {
 2390 
 2391         M_ASSERTPKTHDR(m);
 2392         return (m->m_pkthdr.PH_loc.eight[3]);
 2393 }
 2394 
 2395 #if defined(INET) || defined(INET6)
 2396 static inline void
 2397 set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff)
 2398 {
 2399 
 2400         M_ASSERTPKTHDR(m);
 2401         m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff;
 2402 }
 2403 #endif
 2404 
 2405 static inline int
 2406 needs_eo(struct m_snd_tag *mst)
 2407 {
 2408 
 2409         return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT);
 2410 }
 2411 #endif
 2412 
 2413 /*
 2414  * Try to allocate an mbuf to contain a raw work request.  To make it
 2415  * easy to construct the work request, don't allocate a chain but a
 2416  * single mbuf.
 2417  */
 2418 struct mbuf *
 2419 alloc_wr_mbuf(int len, int how)
 2420 {
 2421         struct mbuf *m;
 2422 
 2423         if (len <= MHLEN)
 2424                 m = m_gethdr(how, MT_DATA);
 2425         else if (len <= MCLBYTES)
 2426                 m = m_getcl(how, MT_DATA, M_PKTHDR);
 2427         else
 2428                 m = NULL;
 2429         if (m == NULL)
 2430                 return (NULL);
 2431         m->m_pkthdr.len = len;
 2432         m->m_len = len;
 2433         set_mbuf_cflags(m, MC_RAW_WR);
 2434         set_mbuf_len16(m, howmany(len, 16));
 2435         return (m);
 2436 }
 2437 
 2438 static inline bool
 2439 needs_hwcsum(struct mbuf *m)
 2440 {
 2441         const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
 2442             CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
 2443             CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP |
 2444             CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP |
 2445             CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO;
 2446 
 2447         M_ASSERTPKTHDR(m);
 2448 
 2449         return (m->m_pkthdr.csum_flags & csum_flags);
 2450 }
 2451 
 2452 static inline bool
 2453 needs_tso(struct mbuf *m)
 2454 {
 2455         const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO |
 2456             CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
 2457 
 2458         M_ASSERTPKTHDR(m);
 2459 
 2460         return (m->m_pkthdr.csum_flags & csum_flags);
 2461 }
 2462 
 2463 static inline bool
 2464 needs_vxlan_csum(struct mbuf *m)
 2465 {
 2466 
 2467         M_ASSERTPKTHDR(m);
 2468 
 2469         return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN);
 2470 }
 2471 
 2472 static inline bool
 2473 needs_vxlan_tso(struct mbuf *m)
 2474 {
 2475         const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO |
 2476             CSUM_INNER_IP6_TSO;
 2477 
 2478         M_ASSERTPKTHDR(m);
 2479 
 2480         return ((m->m_pkthdr.csum_flags & csum_flags) != 0 &&
 2481             (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN);
 2482 }
 2483 
 2484 #if defined(INET) || defined(INET6)
 2485 static inline bool
 2486 needs_inner_tcp_csum(struct mbuf *m)
 2487 {
 2488         const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO;
 2489 
 2490         M_ASSERTPKTHDR(m);
 2491 
 2492         return (m->m_pkthdr.csum_flags & csum_flags);
 2493 }
 2494 #endif
 2495 
 2496 static inline bool
 2497 needs_l3_csum(struct mbuf *m)
 2498 {
 2499         const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP |
 2500             CSUM_INNER_IP_TSO;
 2501 
 2502         M_ASSERTPKTHDR(m);
 2503 
 2504         return (m->m_pkthdr.csum_flags & csum_flags);
 2505 }
 2506 
 2507 static inline bool
 2508 needs_outer_tcp_csum(struct mbuf *m)
 2509 {
 2510         const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP |
 2511             CSUM_IP6_TSO;
 2512 
 2513         M_ASSERTPKTHDR(m);
 2514 
 2515         return (m->m_pkthdr.csum_flags & csum_flags);
 2516 }
 2517 
 2518 #ifdef RATELIMIT
 2519 static inline bool
 2520 needs_outer_l4_csum(struct mbuf *m)
 2521 {
 2522         const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO |
 2523             CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO;
 2524 
 2525         M_ASSERTPKTHDR(m);
 2526 
 2527         return (m->m_pkthdr.csum_flags & csum_flags);
 2528 }
 2529 
 2530 static inline bool
 2531 needs_outer_udp_csum(struct mbuf *m)
 2532 {
 2533         const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP;
 2534 
 2535         M_ASSERTPKTHDR(m);
 2536 
 2537         return (m->m_pkthdr.csum_flags & csum_flags);
 2538 }
 2539 #endif
 2540 
 2541 static inline bool
 2542 needs_vlan_insertion(struct mbuf *m)
 2543 {
 2544 
 2545         M_ASSERTPKTHDR(m);
 2546 
 2547         return (m->m_flags & M_VLANTAG);
 2548 }
 2549 
 2550 #if defined(INET) || defined(INET6)
 2551 static void *
 2552 m_advance(struct mbuf **pm, int *poffset, int len)
 2553 {
 2554         struct mbuf *m = *pm;
 2555         int offset = *poffset;
 2556         uintptr_t p = 0;
 2557 
 2558         MPASS(len > 0);
 2559 
 2560         for (;;) {
 2561                 if (offset + len < m->m_len) {
 2562                         offset += len;
 2563                         p = mtod(m, uintptr_t) + offset;
 2564                         break;
 2565                 }
 2566                 len -= m->m_len - offset;
 2567                 m = m->m_next;
 2568                 offset = 0;
 2569                 MPASS(m != NULL);
 2570         }
 2571         *poffset = offset;
 2572         *pm = m;
 2573         return ((void *)p);
 2574 }
 2575 #endif
 2576 
 2577 static inline int
 2578 count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr)
 2579 {
 2580         vm_paddr_t paddr;
 2581         int i, len, off, pglen, pgoff, seglen, segoff;
 2582         int nsegs = 0;
 2583 
 2584         M_ASSERTEXTPG(m);
 2585         off = mtod(m, vm_offset_t);
 2586         len = m->m_len;
 2587         off += skip;
 2588         len -= skip;
 2589 
 2590         if (m->m_epg_hdrlen != 0) {
 2591                 if (off >= m->m_epg_hdrlen) {
 2592                         off -= m->m_epg_hdrlen;
 2593                 } else {
 2594                         seglen = m->m_epg_hdrlen - off;
 2595                         segoff = off;
 2596                         seglen = min(seglen, len);
 2597                         off = 0;
 2598                         len -= seglen;
 2599                         paddr = pmap_kextract(
 2600                             (vm_offset_t)&m->m_epg_hdr[segoff]);
 2601                         if (*nextaddr != paddr)
 2602                                 nsegs++;
 2603                         *nextaddr = paddr + seglen;
 2604                 }
 2605         }
 2606         pgoff = m->m_epg_1st_off;
 2607         for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
 2608                 pglen = m_epg_pagelen(m, i, pgoff);
 2609                 if (off >= pglen) {
 2610                         off -= pglen;
 2611                         pgoff = 0;
 2612                         continue;
 2613                 }
 2614                 seglen = pglen - off;
 2615                 segoff = pgoff + off;
 2616                 off = 0;
 2617                 seglen = min(seglen, len);
 2618                 len -= seglen;
 2619                 paddr = m->m_epg_pa[i] + segoff;
 2620                 if (*nextaddr != paddr)
 2621                         nsegs++;
 2622                 *nextaddr = paddr + seglen;
 2623                 pgoff = 0;
 2624         };
 2625         if (len != 0) {
 2626                 seglen = min(len, m->m_epg_trllen - off);
 2627                 len -= seglen;
 2628                 paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]);
 2629                 if (*nextaddr != paddr)
 2630                         nsegs++;
 2631                 *nextaddr = paddr + seglen;
 2632         }
 2633 
 2634         return (nsegs);
 2635 }
 2636 
 2637 
 2638 /*
 2639  * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
 2640  * must have at least one mbuf that's not empty.  It is possible for this
 2641  * routine to return 0 if skip accounts for all the contents of the mbuf chain.
 2642  */
 2643 static inline int
 2644 count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags)
 2645 {
 2646         vm_paddr_t nextaddr, paddr;
 2647         vm_offset_t va;
 2648         int len, nsegs;
 2649 
 2650         M_ASSERTPKTHDR(m);
 2651         MPASS(m->m_pkthdr.len > 0);
 2652         MPASS(m->m_pkthdr.len >= skip);
 2653 
 2654         nsegs = 0;
 2655         nextaddr = 0;
 2656         for (; m; m = m->m_next) {
 2657                 len = m->m_len;
 2658                 if (__predict_false(len == 0))
 2659                         continue;
 2660                 if (skip >= len) {
 2661                         skip -= len;
 2662                         continue;
 2663                 }
 2664                 if ((m->m_flags & M_EXTPG) != 0) {
 2665                         *cflags |= MC_NOMAP;
 2666                         nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr);
 2667                         skip = 0;
 2668                         continue;
 2669                 }
 2670                 va = mtod(m, vm_offset_t) + skip;
 2671                 len -= skip;
 2672                 skip = 0;
 2673                 paddr = pmap_kextract(va);
 2674                 nsegs += sglist_count((void *)(uintptr_t)va, len);
 2675                 if (paddr == nextaddr)
 2676                         nsegs--;
 2677                 nextaddr = pmap_kextract(va + len - 1) + 1;
 2678         }
 2679 
 2680         return (nsegs);
 2681 }
 2682 
 2683 /*
 2684  * The maximum number of segments that can fit in a WR.
 2685  */
 2686 static int
 2687 max_nsegs_allowed(struct mbuf *m, bool vm_wr)
 2688 {
 2689 
 2690         if (vm_wr) {
 2691                 if (needs_tso(m))
 2692                         return (TX_SGL_SEGS_VM_TSO);
 2693                 return (TX_SGL_SEGS_VM);
 2694         }
 2695 
 2696         if (needs_tso(m)) {
 2697                 if (needs_vxlan_tso(m))
 2698                         return (TX_SGL_SEGS_VXLAN_TSO);
 2699                 else
 2700                         return (TX_SGL_SEGS_TSO);
 2701         }
 2702 
 2703         return (TX_SGL_SEGS);
 2704 }
 2705 
 2706 static struct timeval txerr_ratecheck = {0};
 2707 static const struct timeval txerr_interval = {3, 0};
 2708 
 2709 /*
 2710  * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
 2711  * a) caller can assume it's been freed if this function returns with an error.
 2712  * b) it may get defragged up if the gather list is too long for the hardware.
 2713  */
 2714 int
 2715 parse_pkt(struct mbuf **mp, bool vm_wr)
 2716 {
 2717         struct mbuf *m0 = *mp, *m;
 2718         int rc, nsegs, defragged = 0;
 2719         struct ether_header *eh;
 2720 #ifdef INET
 2721         void *l3hdr;
 2722 #endif
 2723 #if defined(INET) || defined(INET6)
 2724         int offset;
 2725         struct tcphdr *tcp;
 2726 #endif
 2727 #if defined(KERN_TLS) || defined(RATELIMIT)
 2728         struct m_snd_tag *mst;
 2729 #endif
 2730         uint16_t eh_type;
 2731         uint8_t cflags;
 2732 
 2733         cflags = 0;
 2734         M_ASSERTPKTHDR(m0);
 2735         if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
 2736                 rc = EINVAL;
 2737 fail:
 2738                 m_freem(m0);
 2739                 *mp = NULL;
 2740                 return (rc);
 2741         }
 2742 restart:
 2743         /*
 2744          * First count the number of gather list segments in the payload.
 2745          * Defrag the mbuf if nsegs exceeds the hardware limit.
 2746          */
 2747         M_ASSERTPKTHDR(m0);
 2748         MPASS(m0->m_pkthdr.len > 0);
 2749         nsegs = count_mbuf_nsegs(m0, 0, &cflags);
 2750 #if defined(KERN_TLS) || defined(RATELIMIT)
 2751         if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG)
 2752                 mst = m0->m_pkthdr.snd_tag;
 2753         else
 2754                 mst = NULL;
 2755 #endif
 2756 #ifdef KERN_TLS
 2757         if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) {
 2758                 int len16;
 2759 
 2760                 cflags |= MC_TLS;
 2761                 set_mbuf_cflags(m0, cflags);
 2762                 rc = t6_ktls_parse_pkt(m0, &nsegs, &len16);
 2763                 if (rc != 0)
 2764                         goto fail;
 2765                 set_mbuf_nsegs(m0, nsegs);
 2766                 set_mbuf_len16(m0, len16);
 2767                 return (0);
 2768         }
 2769 #endif
 2770         if (nsegs > max_nsegs_allowed(m0, vm_wr)) {
 2771                 if (defragged++ > 0) {
 2772                         rc = EFBIG;
 2773                         goto fail;
 2774                 }
 2775                 counter_u64_add(defrags, 1);
 2776                 if ((m = m_defrag(m0, M_NOWAIT)) == NULL) {
 2777                         rc = ENOMEM;
 2778                         goto fail;
 2779                 }
 2780                 *mp = m0 = m;   /* update caller's copy after defrag */
 2781                 goto restart;
 2782         }
 2783 
 2784         if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN &&
 2785             !(cflags & MC_NOMAP))) {
 2786                 counter_u64_add(pullups, 1);
 2787                 m0 = m_pullup(m0, m0->m_pkthdr.len);
 2788                 if (m0 == NULL) {
 2789                         /* Should have left well enough alone. */
 2790                         rc = EFBIG;
 2791                         goto fail;
 2792                 }
 2793                 *mp = m0;       /* update caller's copy after pullup */
 2794                 goto restart;
 2795         }
 2796         set_mbuf_nsegs(m0, nsegs);
 2797         set_mbuf_cflags(m0, cflags);
 2798         calculate_mbuf_len16(m0, vm_wr);
 2799 
 2800 #ifdef RATELIMIT
 2801         /*
 2802          * Ethofld is limited to TCP and UDP for now, and only when L4 hw
 2803          * checksumming is enabled.  needs_outer_l4_csum happens to check for
 2804          * all the right things.
 2805          */
 2806         if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) {
 2807                 m_snd_tag_rele(m0->m_pkthdr.snd_tag);
 2808                 m0->m_pkthdr.snd_tag = NULL;
 2809                 m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
 2810                 mst = NULL;
 2811         }
 2812 #endif
 2813 
 2814         if (!needs_hwcsum(m0)
 2815 #ifdef RATELIMIT
 2816                  && !needs_eo(mst)
 2817 #endif
 2818         )
 2819                 return (0);
 2820 
 2821         m = m0;
 2822         eh = mtod(m, struct ether_header *);
 2823         eh_type = ntohs(eh->ether_type);
 2824         if (eh_type == ETHERTYPE_VLAN) {
 2825                 struct ether_vlan_header *evh = (void *)eh;
 2826 
 2827                 eh_type = ntohs(evh->evl_proto);
 2828                 m0->m_pkthdr.l2hlen = sizeof(*evh);
 2829         } else
 2830                 m0->m_pkthdr.l2hlen = sizeof(*eh);
 2831 
 2832 #if defined(INET) || defined(INET6)
 2833         offset = 0;
 2834 #ifdef INET
 2835         l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
 2836 #else
 2837         m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
 2838 #endif
 2839 #endif
 2840 
 2841         switch (eh_type) {
 2842 #ifdef INET6
 2843         case ETHERTYPE_IPV6:
 2844                 m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr);
 2845                 break;
 2846 #endif
 2847 #ifdef INET
 2848         case ETHERTYPE_IP:
 2849         {
 2850                 struct ip *ip = l3hdr;
 2851 
 2852                 if (needs_vxlan_csum(m0)) {
 2853                         /* Driver will do the outer IP hdr checksum. */
 2854                         ip->ip_sum = 0;
 2855                         if (needs_vxlan_tso(m0)) {
 2856                                 const uint16_t ipl = ip->ip_len;
 2857 
 2858                                 ip->ip_len = 0;
 2859                                 ip->ip_sum = ~in_cksum_hdr(ip);
 2860                                 ip->ip_len = ipl;
 2861                         } else
 2862                                 ip->ip_sum = in_cksum_hdr(ip);
 2863                 }
 2864                 m0->m_pkthdr.l3hlen = ip->ip_hl << 2;
 2865                 break;
 2866         }
 2867 #endif
 2868         default:
 2869                 if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
 2870                         log(LOG_ERR, "%s: ethertype 0x%04x unknown.  "
 2871                             "if_cxgbe must be compiled with the same "
 2872                             "INET/INET6 options as the kernel.\n", __func__,
 2873                             eh_type);
 2874                 }
 2875                 rc = EINVAL;
 2876                 goto fail;
 2877         }
 2878 
 2879 #if defined(INET) || defined(INET6)
 2880         if (needs_vxlan_csum(m0)) {
 2881                 m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
 2882                 m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header);
 2883 
 2884                 /* Inner headers. */
 2885                 eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen +
 2886                     sizeof(struct udphdr) + sizeof(struct vxlan_header));
 2887                 eh_type = ntohs(eh->ether_type);
 2888                 if (eh_type == ETHERTYPE_VLAN) {
 2889                         struct ether_vlan_header *evh = (void *)eh;
 2890 
 2891                         eh_type = ntohs(evh->evl_proto);
 2892                         m0->m_pkthdr.inner_l2hlen = sizeof(*evh);
 2893                 } else
 2894                         m0->m_pkthdr.inner_l2hlen = sizeof(*eh);
 2895 #ifdef INET
 2896                 l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
 2897 #else
 2898                 m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen);
 2899 #endif
 2900 
 2901                 switch (eh_type) {
 2902 #ifdef INET6
 2903                 case ETHERTYPE_IPV6:
 2904                         m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr);
 2905                         break;
 2906 #endif
 2907 #ifdef INET
 2908                 case ETHERTYPE_IP:
 2909                 {
 2910                         struct ip *ip = l3hdr;
 2911 
 2912                         m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2;
 2913                         break;
 2914                 }
 2915 #endif
 2916                 default:
 2917                         if (ratecheck(&txerr_ratecheck, &txerr_interval)) {
 2918                                 log(LOG_ERR, "%s: VXLAN hw offload requested"
 2919                                     "with unknown ethertype 0x%04x.  if_cxgbe "
 2920                                     "must be compiled with the same INET/INET6 "
 2921                                     "options as the kernel.\n", __func__,
 2922                                     eh_type);
 2923                         }
 2924                         rc = EINVAL;
 2925                         goto fail;
 2926                 }
 2927                 if (needs_inner_tcp_csum(m0)) {
 2928                         tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen);
 2929                         m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4;
 2930                 }
 2931                 MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
 2932                 m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP |
 2933                     CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP |
 2934                     CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO |
 2935                     CSUM_ENCAP_VXLAN;
 2936         }
 2937 
 2938         if (needs_outer_tcp_csum(m0)) {
 2939                 tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
 2940                 m0->m_pkthdr.l4hlen = tcp->th_off * 4;
 2941 #ifdef RATELIMIT
 2942                 if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) {
 2943                         set_mbuf_eo_tsclk_tsoff(m0,
 2944                             V_FW_ETH_TX_EO_WR_TSCLK(tsclk) |
 2945                             V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1));
 2946                 } else
 2947                         set_mbuf_eo_tsclk_tsoff(m0, 0);
 2948         } else if (needs_outer_udp_csum(m0)) {
 2949                 m0->m_pkthdr.l4hlen = sizeof(struct udphdr);
 2950 #endif
 2951         }
 2952 #ifdef RATELIMIT
 2953         if (needs_eo(mst)) {
 2954                 u_int immhdrs;
 2955 
 2956                 /* EO WRs have the headers in the WR and not the GL. */
 2957                 immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen +
 2958                     m0->m_pkthdr.l4hlen;
 2959                 cflags = 0;
 2960                 nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags);
 2961                 MPASS(cflags == mbuf_cflags(m0));
 2962                 set_mbuf_eo_nsegs(m0, nsegs);
 2963                 set_mbuf_eo_len16(m0,
 2964                     txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0)));
 2965         }
 2966 #endif
 2967 #endif
 2968         MPASS(m0 == *mp);
 2969         return (0);
 2970 }
 2971 
 2972 void *
 2973 start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
 2974 {
 2975         struct sge_eq *eq = &wrq->eq;
 2976         struct adapter *sc = wrq->adapter;
 2977         int ndesc, available;
 2978         struct wrqe *wr;
 2979         void *w;
 2980 
 2981         MPASS(len16 > 0);
 2982         ndesc = tx_len16_to_desc(len16);
 2983         MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
 2984 
 2985         EQ_LOCK(eq);
 2986 
 2987         if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
 2988                 drain_wrq_wr_list(sc, wrq);
 2989 
 2990         if (!STAILQ_EMPTY(&wrq->wr_list)) {
 2991 slowpath:
 2992                 EQ_UNLOCK(eq);
 2993                 wr = alloc_wrqe(len16 * 16, wrq);
 2994                 if (__predict_false(wr == NULL))
 2995                         return (NULL);
 2996                 cookie->pidx = -1;
 2997                 cookie->ndesc = ndesc;
 2998                 return (&wr->wr);
 2999         }
 3000 
 3001         eq->cidx = read_hw_cidx(eq);
 3002         if (eq->pidx == eq->cidx)
 3003                 available = eq->sidx - 1;
 3004         else
 3005                 available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
 3006         if (available < ndesc)
 3007                 goto slowpath;
 3008 
 3009         cookie->pidx = eq->pidx;
 3010         cookie->ndesc = ndesc;
 3011         TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
 3012 
 3013         w = &eq->desc[eq->pidx];
 3014         IDXINCR(eq->pidx, ndesc, eq->sidx);
 3015         if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
 3016                 w = &wrq->ss[0];
 3017                 wrq->ss_pidx = cookie->pidx;
 3018                 wrq->ss_len = len16 * 16;
 3019         }
 3020 
 3021         EQ_UNLOCK(eq);
 3022 
 3023         return (w);
 3024 }
 3025 
 3026 void
 3027 commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
 3028 {
 3029         struct sge_eq *eq = &wrq->eq;
 3030         struct adapter *sc = wrq->adapter;
 3031         int ndesc, pidx;
 3032         struct wrq_cookie *prev, *next;
 3033 
 3034         if (cookie->pidx == -1) {
 3035                 struct wrqe *wr = __containerof(w, struct wrqe, wr);
 3036 
 3037                 t4_wrq_tx(sc, wr);
 3038                 return;
 3039         }
 3040 
 3041         if (__predict_false(w == &wrq->ss[0])) {
 3042                 int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
 3043 
 3044                 MPASS(wrq->ss_len > n); /* WR had better wrap around. */
 3045                 bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
 3046                 bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
 3047                 wrq->tx_wrs_ss++;
 3048         } else
 3049                 wrq->tx_wrs_direct++;
 3050 
 3051         EQ_LOCK(eq);
 3052         ndesc = cookie->ndesc;  /* Can be more than SGE_MAX_WR_NDESC here. */
 3053         pidx = cookie->pidx;
 3054         MPASS(pidx >= 0 && pidx < eq->sidx);
 3055         prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
 3056         next = TAILQ_NEXT(cookie, link);
 3057         if (prev == NULL) {
 3058                 MPASS(pidx == eq->dbidx);
 3059                 if (next == NULL || ndesc >= 16) {
 3060                         int available;
 3061                         struct fw_eth_tx_pkt_wr *dst;   /* any fw WR struct will do */
 3062 
 3063                         /*
 3064                          * Note that the WR via which we'll request tx updates
 3065                          * is at pidx and not eq->pidx, which has moved on
 3066                          * already.
 3067                          */
 3068                         dst = (void *)&eq->desc[pidx];
 3069                         available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
 3070                         if (available < eq->sidx / 4 &&
 3071                             atomic_cmpset_int(&eq->equiq, 0, 1)) {
 3072                                 /*
 3073                                  * XXX: This is not 100% reliable with some
 3074                                  * types of WRs.  But this is a very unusual
 3075                                  * situation for an ofld/ctrl queue anyway.
 3076                                  */
 3077                                 dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
 3078                                     F_FW_WR_EQUEQ);
 3079                         }
 3080 
 3081                         ring_eq_db(wrq->adapter, eq, ndesc);
 3082                 } else {
 3083                         MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
 3084                         next->pidx = pidx;
 3085                         next->ndesc += ndesc;
 3086                 }
 3087         } else {
 3088                 MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
 3089                 prev->ndesc += ndesc;
 3090         }
 3091         TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
 3092 
 3093         if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
 3094                 drain_wrq_wr_list(sc, wrq);
 3095 
 3096 #ifdef INVARIANTS
 3097         if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
 3098                 /* Doorbell must have caught up to the pidx. */
 3099                 MPASS(wrq->eq.pidx == wrq->eq.dbidx);
 3100         }
 3101 #endif
 3102         EQ_UNLOCK(eq);
 3103 }
 3104 
 3105 static u_int
 3106 can_resume_eth_tx(struct mp_ring *r)
 3107 {
 3108         struct sge_eq *eq = r->cookie;
 3109 
 3110         return (total_available_tx_desc(eq) > eq->sidx / 8);
 3111 }
 3112 
 3113 static inline bool
 3114 cannot_use_txpkts(struct mbuf *m)
 3115 {
 3116         /* maybe put a GL limit too, to avoid silliness? */
 3117 
 3118         return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0);
 3119 }
 3120 
 3121 static inline int
 3122 discard_tx(struct sge_eq *eq)
 3123 {
 3124 
 3125         return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
 3126 }
 3127 
 3128 static inline int
 3129 wr_can_update_eq(void *p)
 3130 {
 3131         struct fw_eth_tx_pkts_wr *wr = p;
 3132 
 3133         switch (G_FW_WR_OP(be32toh(wr->op_pkd))) {
 3134         case FW_ULPTX_WR:
 3135         case FW_ETH_TX_PKT_WR:
 3136         case FW_ETH_TX_PKTS_WR:
 3137         case FW_ETH_TX_PKTS2_WR:
 3138         case FW_ETH_TX_PKT_VM_WR:
 3139         case FW_ETH_TX_PKTS_VM_WR:
 3140                 return (1);
 3141         default:
 3142                 return (0);
 3143         }
 3144 }
 3145 
 3146 static inline void
 3147 set_txupdate_flags(struct sge_txq *txq, u_int avail,
 3148     struct fw_eth_tx_pkt_wr *wr)
 3149 {
 3150         struct sge_eq *eq = &txq->eq;
 3151         struct txpkts *txp = &txq->txp;
 3152 
 3153         if ((txp->npkt > 0 || avail < eq->sidx / 2) &&
 3154             atomic_cmpset_int(&eq->equiq, 0, 1)) {
 3155                 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
 3156                 eq->equeqidx = eq->pidx;
 3157         } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
 3158                 wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
 3159                 eq->equeqidx = eq->pidx;
 3160         }
 3161 }
 3162 
 3163 #if defined(__i386__) || defined(__amd64__)
 3164 extern uint64_t tsc_freq;
 3165 #endif
 3166 
 3167 static inline bool
 3168 record_eth_tx_time(struct sge_txq *txq)
 3169 {
 3170         const uint64_t cycles = get_cyclecount();
 3171         const uint64_t last_tx = txq->last_tx;
 3172 #if defined(__i386__) || defined(__amd64__)
 3173         const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000;
 3174 #else
 3175         const uint64_t itg = 0;
 3176 #endif
 3177 
 3178         MPASS(cycles >= last_tx);
 3179         txq->last_tx = cycles;
 3180         return (cycles - last_tx < itg);
 3181 }
 3182 
 3183 /*
 3184  * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
 3185  * be consumed.  Return the actual number consumed.  0 indicates a stall.
 3186  */
 3187 static u_int
 3188 eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing)
 3189 {
 3190         struct sge_txq *txq = r->cookie;
 3191         struct ifnet *ifp = txq->ifp;
 3192         struct sge_eq *eq = &txq->eq;
 3193         struct txpkts *txp = &txq->txp;
 3194         struct vi_info *vi = ifp->if_softc;
 3195         struct adapter *sc = vi->adapter;
 3196         u_int total, remaining;         /* # of packets */
 3197         u_int n, avail, dbdiff;         /* # of hardware descriptors */
 3198         int i, rc;
 3199         struct mbuf *m0;
 3200         bool snd, recent_tx;
 3201         void *wr;       /* start of the last WR written to the ring */
 3202 
 3203         TXQ_LOCK_ASSERT_OWNED(txq);
 3204         recent_tx = record_eth_tx_time(txq);
 3205 
 3206         remaining = IDXDIFF(pidx, cidx, r->size);
 3207         if (__predict_false(discard_tx(eq))) {
 3208                 for (i = 0; i < txp->npkt; i++)
 3209                         m_freem(txp->mb[i]);
 3210                 txp->npkt = 0;
 3211                 while (cidx != pidx) {
 3212                         m0 = r->items[cidx];
 3213                         m_freem(m0);
 3214                         if (++cidx == r->size)
 3215                                 cidx = 0;
 3216                 }
 3217                 reclaim_tx_descs(txq, eq->sidx);
 3218                 *coalescing = false;
 3219                 return (remaining);     /* emptied */
 3220         }
 3221 
 3222         /* How many hardware descriptors do we have readily available. */
 3223         if (eq->pidx == eq->cidx)
 3224                 avail = eq->sidx - 1;
 3225         else
 3226                 avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
 3227 
 3228         total = 0;
 3229         if (remaining == 0) {
 3230                 txp->score = 0;
 3231                 txq->txpkts_flush++;
 3232                 goto send_txpkts;
 3233         }
 3234 
 3235         dbdiff = 0;
 3236         MPASS(remaining > 0);
 3237         while (remaining > 0) {
 3238                 m0 = r->items[cidx];
 3239                 M_ASSERTPKTHDR(m0);
 3240                 MPASS(m0->m_nextpkt == NULL);
 3241 
 3242                 if (avail < 2 * SGE_MAX_WR_NDESC)
 3243                         avail += reclaim_tx_descs(txq, 64);
 3244 
 3245                 if (t4_tx_coalesce == 0 && txp->npkt == 0)
 3246                         goto skip_coalescing;
 3247                 if (cannot_use_txpkts(m0))
 3248                         txp->score = 0;
 3249                 else if (recent_tx) {
 3250                         if (++txp->score == 0)
 3251                                 txp->score = UINT8_MAX;
 3252                 } else
 3253                         txp->score = 1;
 3254                 if (txp->npkt > 0 || remaining > 1 ||
 3255                     txp->score >= t4_tx_coalesce_pkts ||
 3256                     atomic_load_int(&txq->eq.equiq) != 0) {
 3257                         if (vi->flags & TX_USES_VM_WR)
 3258                                 rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd);
 3259                         else
 3260                                 rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd);
 3261                 } else {
 3262                         snd = false;
 3263                         rc = EINVAL;
 3264                 }
 3265                 if (snd) {
 3266                         MPASS(txp->npkt > 0);
 3267                         for (i = 0; i < txp->npkt; i++)
 3268                                 ETHER_BPF_MTAP(ifp, txp->mb[i]);
 3269                         if (txp->npkt > 1) {
 3270                                 MPASS(avail >= tx_len16_to_desc(txp->len16));
 3271                                 if (vi->flags & TX_USES_VM_WR)
 3272                                         n = write_txpkts_vm_wr(sc, txq);
 3273                                 else
 3274                                         n = write_txpkts_wr(sc, txq);
 3275                         } else {
 3276                                 MPASS(avail >=
 3277                                     tx_len16_to_desc(mbuf_len16(txp->mb[0])));
 3278                                 if (vi->flags & TX_USES_VM_WR)
 3279                                         n = write_txpkt_vm_wr(sc, txq,
 3280                                             txp->mb[0]);
 3281                                 else
 3282                                         n = write_txpkt_wr(sc, txq, txp->mb[0],
 3283                                             avail);
 3284                         }
 3285                         MPASS(n <= SGE_MAX_WR_NDESC);
 3286                         avail -= n;
 3287                         dbdiff += n;
 3288                         wr = &eq->desc[eq->pidx];
 3289                         IDXINCR(eq->pidx, n, eq->sidx);
 3290                         txp->npkt = 0;  /* emptied */
 3291                 }
 3292                 if (rc == 0) {
 3293                         /* m0 was coalesced into txq->txpkts. */
 3294                         goto next_mbuf;
 3295                 }
 3296                 if (rc == EAGAIN) {
 3297                         /*
 3298                          * m0 is suitable for tx coalescing but could not be
 3299                          * combined with the existing txq->txpkts, which has now
 3300                          * been transmitted.  Start a new txpkts with m0.
 3301                          */
 3302                         MPASS(snd);
 3303                         MPASS(txp->npkt == 0);
 3304                         continue;
 3305                 }
 3306 
 3307                 MPASS(rc != 0 && rc != EAGAIN);
 3308                 MPASS(txp->npkt == 0);
 3309 skip_coalescing:
 3310                 n = tx_len16_to_desc(mbuf_len16(m0));
 3311                 if (__predict_false(avail < n)) {
 3312                         avail += reclaim_tx_descs(txq, min(n, 32));
 3313                         if (avail < n)
 3314                                 break;  /* out of descriptors */
 3315                 }
 3316 
 3317                 wr = &eq->desc[eq->pidx];
 3318                 if (mbuf_cflags(m0) & MC_RAW_WR) {
 3319                         n = write_raw_wr(txq, wr, m0, avail);
 3320 #ifdef KERN_TLS
 3321                 } else if (mbuf_cflags(m0) & MC_TLS) {
 3322                         ETHER_BPF_MTAP(ifp, m0);
 3323                         n = t6_ktls_write_wr(txq, wr, m0, mbuf_nsegs(m0),
 3324                             avail);
 3325 #endif
 3326                 } else {
 3327                         ETHER_BPF_MTAP(ifp, m0);
 3328                         if (vi->flags & TX_USES_VM_WR)
 3329                                 n = write_txpkt_vm_wr(sc, txq, m0);
 3330                         else
 3331                                 n = write_txpkt_wr(sc, txq, m0, avail);
 3332                 }
 3333                 MPASS(n >= 1 && n <= avail);
 3334                 if (!(mbuf_cflags(m0) & MC_TLS))
 3335                         MPASS(n <= SGE_MAX_WR_NDESC);
 3336 
 3337                 avail -= n;
 3338                 dbdiff += n;
 3339                 IDXINCR(eq->pidx, n, eq->sidx);
 3340 
 3341                 if (dbdiff >= 512 / EQ_ESIZE) { /* X_FETCHBURSTMAX_512B */
 3342                         if (wr_can_update_eq(wr))
 3343                                 set_txupdate_flags(txq, avail, wr);
 3344                         ring_eq_db(sc, eq, dbdiff);
 3345                         avail += reclaim_tx_descs(txq, 32);
 3346                         dbdiff = 0;
 3347                 }
 3348 next_mbuf:
 3349                 total++;
 3350                 remaining--;
 3351                 if (__predict_false(++cidx == r->size))
 3352                         cidx = 0;
 3353         }
 3354         if (dbdiff != 0) {
 3355                 if (wr_can_update_eq(wr))
 3356                         set_txupdate_flags(txq, avail, wr);
 3357                 ring_eq_db(sc, eq, dbdiff);
 3358                 reclaim_tx_descs(txq, 32);
 3359         } else if (eq->pidx == eq->cidx && txp->npkt > 0 &&
 3360             atomic_load_int(&txq->eq.equiq) == 0) {
 3361                 /*
 3362                  * If nothing was submitted to the chip for tx (it was coalesced
 3363                  * into txpkts instead) and there is no tx update outstanding
 3364                  * then we need to send txpkts now.
 3365                  */
 3366 send_txpkts:
 3367                 MPASS(txp->npkt > 0);
 3368                 for (i = 0; i < txp->npkt; i++)
 3369                         ETHER_BPF_MTAP(ifp, txp->mb[i]);
 3370                 if (txp->npkt > 1) {
 3371                         MPASS(avail >= tx_len16_to_desc(txp->len16));
 3372                         if (vi->flags & TX_USES_VM_WR)
 3373                                 n = write_txpkts_vm_wr(sc, txq);
 3374                         else
 3375                                 n = write_txpkts_wr(sc, txq);
 3376                 } else {
 3377                         MPASS(avail >=
 3378                             tx_len16_to_desc(mbuf_len16(txp->mb[0])));
 3379                         if (vi->flags & TX_USES_VM_WR)
 3380                                 n = write_txpkt_vm_wr(sc, txq, txp->mb[0]);
 3381                         else
 3382                                 n = write_txpkt_wr(sc, txq, txp->mb[0], avail);
 3383                 }
 3384                 MPASS(n <= SGE_MAX_WR_NDESC);
 3385                 wr = &eq->desc[eq->pidx];
 3386                 IDXINCR(eq->pidx, n, eq->sidx);
 3387                 txp->npkt = 0;  /* emptied */
 3388 
 3389                 MPASS(wr_can_update_eq(wr));
 3390                 set_txupdate_flags(txq, avail - n, wr);
 3391                 ring_eq_db(sc, eq, n);
 3392                 reclaim_tx_descs(txq, 32);
 3393         }
 3394         *coalescing = txp->npkt > 0;
 3395 
 3396         return (total);
 3397 }
 3398 
 3399 static inline void
 3400 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
 3401     int qsize, int intr_idx, int cong, int qtype)
 3402 {
 3403 
 3404         KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
 3405             ("%s: bad tmr_idx %d", __func__, tmr_idx));
 3406         KASSERT(pktc_idx < SGE_NCOUNTERS,       /* -ve is ok, means don't use */
 3407             ("%s: bad pktc_idx %d", __func__, pktc_idx));
 3408         KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count,
 3409             ("%s: bad intr_idx %d", __func__, intr_idx));
 3410         KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC ||
 3411             qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype));
 3412 
 3413         iq->flags = 0;
 3414         iq->state = IQS_DISABLED;
 3415         iq->adapter = sc;
 3416         iq->qtype = qtype;
 3417         iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
 3418         iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
 3419         if (pktc_idx >= 0) {
 3420                 iq->intr_params |= F_QINTR_CNT_EN;
 3421                 iq->intr_pktc_idx = pktc_idx;
 3422         }
 3423         iq->qsize = roundup2(qsize, 16);        /* See FW_IQ_CMD/iqsize */
 3424         iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
 3425         iq->intr_idx = intr_idx;
 3426         iq->cong_drop = cong;
 3427 }
 3428 
 3429 static inline void
 3430 init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
 3431 {
 3432         struct sge_params *sp = &sc->params.sge;
 3433 
 3434         fl->qsize = qsize;
 3435         fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
 3436         strlcpy(fl->lockname, name, sizeof(fl->lockname));
 3437         mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
 3438         if (sc->flags & BUF_PACKING_OK &&
 3439             ((!is_t4(sc) && buffer_packing) ||  /* T5+: enabled unless 0 */
 3440             (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
 3441                 fl->flags |= FL_BUF_PACKING;
 3442         fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING);
 3443         fl->safe_zidx = sc->sge.safe_zidx;
 3444         if (fl->flags & FL_BUF_PACKING) {
 3445                 fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
 3446                 fl->buf_boundary = sp->pack_boundary;
 3447         } else {
 3448                 fl->lowat = roundup2(sp->fl_starve_threshold, 8);
 3449                 fl->buf_boundary = 16;
 3450         }
 3451         if (fl_pad && fl->buf_boundary < sp->pad_boundary)
 3452                 fl->buf_boundary = sp->pad_boundary;
 3453 }
 3454 
 3455 static inline void
 3456 init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
 3457     uint8_t tx_chan, struct sge_iq *iq, char *name)
 3458 {
 3459         KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD,
 3460             ("%s: bad qtype %d", __func__, eqtype));
 3461 
 3462         eq->type = eqtype;
 3463         eq->tx_chan = tx_chan;
 3464         eq->iq = iq;
 3465         eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
 3466         strlcpy(eq->lockname, name, sizeof(eq->lockname));
 3467         mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
 3468 }
 3469 
 3470 int
 3471 alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
 3472     bus_dmamap_t *map, bus_addr_t *pa, void **va)
 3473 {
 3474         int rc;
 3475 
 3476         rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
 3477             BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
 3478         if (rc != 0) {
 3479                 CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc);
 3480                 goto done;
 3481         }
 3482 
 3483         rc = bus_dmamem_alloc(*tag, va,
 3484             BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
 3485         if (rc != 0) {
 3486                 CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc);
 3487                 goto done;
 3488         }
 3489 
 3490         rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
 3491         if (rc != 0) {
 3492                 CH_ERR(sc, "cannot load DMA map: %d\n", rc);
 3493                 goto done;
 3494         }
 3495 done:
 3496         if (rc)
 3497                 free_ring(sc, *tag, *map, *pa, *va);
 3498 
 3499         return (rc);
 3500 }
 3501 
 3502 int
 3503 free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
 3504     bus_addr_t pa, void *va)
 3505 {
 3506         if (pa)
 3507                 bus_dmamap_unload(tag, map);
 3508         if (va)
 3509                 bus_dmamem_free(tag, va, map);
 3510         if (tag)
 3511                 bus_dma_tag_destroy(tag);
 3512 
 3513         return (0);
 3514 }
 3515 
 3516 /*
 3517  * Allocates the software resources (mainly memory and sysctl nodes) for an
 3518  * ingress queue and an optional freelist.
 3519  *
 3520  * Sets IQ_SW_ALLOCATED and returns 0 on success.
 3521  */
 3522 static int
 3523 alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
 3524     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
 3525 {
 3526         int rc;
 3527         size_t len;
 3528         struct adapter *sc = vi->adapter;
 3529 
 3530         MPASS(!(iq->flags & IQ_SW_ALLOCATED));
 3531 
 3532         len = iq->qsize * IQ_ESIZE;
 3533         rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
 3534             (void **)&iq->desc);
 3535         if (rc != 0)
 3536                 return (rc);
 3537 
 3538         if (fl) {
 3539                 len = fl->qsize * EQ_ESIZE;
 3540                 rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
 3541                     &fl->ba, (void **)&fl->desc);
 3542                 if (rc) {
 3543                         free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba,
 3544                             iq->desc);
 3545                         return (rc);
 3546                 }
 3547 
 3548                 /* Allocate space for one software descriptor per buffer. */
 3549                 fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc),
 3550                     M_CXGBE, M_ZERO | M_WAITOK);
 3551 
 3552                 add_fl_sysctls(sc, ctx, oid, fl);
 3553                 iq->flags |= IQ_HAS_FL;
 3554         }
 3555         add_iq_sysctls(ctx, oid, iq);
 3556         iq->flags |= IQ_SW_ALLOCATED;
 3557 
 3558         return (0);
 3559 }
 3560 
 3561 /*
 3562  * Frees all software resources (memory and locks) associated with an ingress
 3563  * queue and an optional freelist.
 3564  */
 3565 static void
 3566 free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
 3567 {
 3568         MPASS(iq->flags & IQ_SW_ALLOCATED);
 3569 
 3570         if (fl) {
 3571                 MPASS(iq->flags & IQ_HAS_FL);
 3572                 free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc);
 3573                 free_fl_buffers(sc, fl);
 3574                 free(fl->sdesc, M_CXGBE);
 3575                 mtx_destroy(&fl->fl_lock);
 3576                 bzero(fl, sizeof(*fl));
 3577         }
 3578         free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
 3579         bzero(iq, sizeof(*iq));
 3580 }
 3581 
 3582 /*
 3583  * Allocates a hardware ingress queue and an optional freelist that will be
 3584  * associated with it.
 3585  *
 3586  * Returns errno on failure.  Resources allocated up to that point may still be
 3587  * allocated.  Caller is responsible for cleanup in case this function fails.
 3588  */
 3589 static int
 3590 alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
 3591 {
 3592         int rc, cntxt_id, cong_map;
 3593         struct fw_iq_cmd c;
 3594         struct adapter *sc = vi->adapter;
 3595         struct port_info *pi = vi->pi;
 3596         __be32 v = 0;
 3597 
 3598         MPASS (!(iq->flags & IQ_HW_ALLOCATED));
 3599 
 3600         bzero(&c, sizeof(c));
 3601         c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
 3602             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
 3603             V_FW_IQ_CMD_VFN(0));
 3604 
 3605         c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
 3606             FW_LEN16(c));
 3607 
 3608         /* Special handling for firmware event queue */
 3609         if (iq == &sc->sge.fwq)
 3610                 v |= F_FW_IQ_CMD_IQASYNCH;
 3611 
 3612         if (iq->intr_idx < 0) {
 3613                 /* Forwarded interrupts, all headed to fwq */
 3614                 v |= F_FW_IQ_CMD_IQANDST;
 3615                 v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
 3616         } else {
 3617                 KASSERT(iq->intr_idx < sc->intr_count,
 3618                     ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx));
 3619                 v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx);
 3620         }
 3621 
 3622         bzero(iq->desc, iq->qsize * IQ_ESIZE);
 3623         c.type_to_iqandstindex = htobe32(v |
 3624             V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
 3625             V_FW_IQ_CMD_VIID(vi->viid) |
 3626             V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
 3627         c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
 3628             F_FW_IQ_CMD_IQGTSMODE |
 3629             V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
 3630             V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
 3631         c.iqsize = htobe16(iq->qsize);
 3632         c.iqaddr = htobe64(iq->ba);
 3633         c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype));
 3634         if (iq->cong_drop != -1) {
 3635                 cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0;
 3636                 c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
 3637         }
 3638 
 3639         if (fl) {
 3640                 bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len);
 3641                 c.iqns_to_fl0congen |=
 3642                     htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
 3643                         F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
 3644                         (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
 3645                         (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
 3646                             0));
 3647                 if (iq->cong_drop != -1) {
 3648                         c.iqns_to_fl0congen |=
 3649                                 htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) |
 3650                                     F_FW_IQ_CMD_FL0CONGCIF |
 3651                                     F_FW_IQ_CMD_FL0CONGEN);
 3652                 }
 3653                 c.fl0dcaen_to_fl0cidxfthresh =
 3654                     htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
 3655                         X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
 3656                         V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
 3657                         X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
 3658                 c.fl0size = htobe16(fl->qsize);
 3659                 c.fl0addr = htobe64(fl->ba);
 3660         }
 3661 
 3662         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
 3663         if (rc != 0) {
 3664                 CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc);
 3665                 return (rc);
 3666         }
 3667 
 3668         iq->cidx = 0;
 3669         iq->gen = F_RSPD_GEN;
 3670         iq->cntxt_id = be16toh(c.iqid);
 3671         iq->abs_id = be16toh(c.physiqid);
 3672 
 3673         cntxt_id = iq->cntxt_id - sc->sge.iq_start;
 3674         if (cntxt_id >= sc->sge.iqmap_sz) {
 3675                 panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
 3676                     cntxt_id, sc->sge.iqmap_sz - 1);
 3677         }
 3678         sc->sge.iqmap[cntxt_id] = iq;
 3679 
 3680         if (fl) {
 3681                 u_int qid;
 3682 #ifdef INVARIANTS
 3683                 int i;
 3684 
 3685                 MPASS(!(fl->flags & FL_BUF_RESUME));
 3686                 for (i = 0; i < fl->sidx * 8; i++)
 3687                         MPASS(fl->sdesc[i].cl == NULL);
 3688 #endif
 3689                 fl->cntxt_id = be16toh(c.fl0id);
 3690                 fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0;
 3691                 fl->rx_offset = 0;
 3692                 fl->flags &= ~(FL_STARVING | FL_DOOMED);
 3693 
 3694                 cntxt_id = fl->cntxt_id - sc->sge.eq_start;
 3695                 if (cntxt_id >= sc->sge.eqmap_sz) {
 3696                         panic("%s: fl->cntxt_id (%d) more than the max (%d)",
 3697                             __func__, cntxt_id, sc->sge.eqmap_sz - 1);
 3698                 }
 3699                 sc->sge.eqmap[cntxt_id] = (void *)fl;
 3700 
 3701                 qid = fl->cntxt_id;
 3702                 if (isset(&sc->doorbells, DOORBELL_UDB)) {
 3703                         uint32_t s_qpp = sc->params.sge.eq_s_qpp;
 3704                         uint32_t mask = (1 << s_qpp) - 1;
 3705                         volatile uint8_t *udb;
 3706 
 3707                         udb = sc->udbs_base + UDBS_DB_OFFSET;
 3708                         udb += (qid >> s_qpp) << PAGE_SHIFT;
 3709                         qid &= mask;
 3710                         if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
 3711                                 udb += qid << UDBS_SEG_SHIFT;
 3712                                 qid = 0;
 3713                         }
 3714                         fl->udb = (volatile void *)udb;
 3715                 }
 3716                 fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
 3717 
 3718                 FL_LOCK(fl);
 3719                 /* Enough to make sure the SGE doesn't think it's starved */
 3720                 refill_fl(sc, fl, fl->lowat);
 3721                 FL_UNLOCK(fl);
 3722         }
 3723 
 3724         if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) &&
 3725             iq->cong_drop != -1) {
 3726                 t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop,
 3727                     cong_map);
 3728         }
 3729 
 3730         /* Enable IQ interrupts */
 3731         atomic_store_rel_int(&iq->state, IQS_IDLE);
 3732         t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
 3733             V_INGRESSQID(iq->cntxt_id));
 3734 
 3735         iq->flags |= IQ_HW_ALLOCATED;
 3736 
 3737         return (0);
 3738 }
 3739 
 3740 static int
 3741 free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
 3742 {
 3743         int rc;
 3744 
 3745         MPASS(iq->flags & IQ_HW_ALLOCATED);
 3746         rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
 3747             iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
 3748         if (rc != 0) {
 3749                 CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc);
 3750                 return (rc);
 3751         }
 3752         iq->flags &= ~IQ_HW_ALLOCATED;
 3753 
 3754         return (0);
 3755 }
 3756 
 3757 static void
 3758 add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
 3759     struct sge_iq *iq)
 3760 {
 3761         struct sysctl_oid_list *children;
 3762 
 3763         if (ctx == NULL || oid == NULL)
 3764                 return;
 3765 
 3766         children = SYSCTL_CHILDREN(oid);
 3767         SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
 3768             "bus address of descriptor ring");
 3769         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
 3770             iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
 3771         SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
 3772             &iq->abs_id, 0, "absolute id of the queue");
 3773         SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
 3774             &iq->cntxt_id, 0, "SGE context id of the queue");
 3775         SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx,
 3776             0, "consumer index");
 3777 }
 3778 
 3779 static void
 3780 add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
 3781     struct sysctl_oid *oid, struct sge_fl *fl)
 3782 {
 3783         struct sysctl_oid_list *children;
 3784 
 3785         if (ctx == NULL || oid == NULL)
 3786                 return;
 3787 
 3788         children = SYSCTL_CHILDREN(oid);
 3789         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl",
 3790             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist");
 3791         children = SYSCTL_CHILDREN(oid);
 3792 
 3793         SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
 3794             &fl->ba, "bus address of descriptor ring");
 3795         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
 3796             fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
 3797             "desc ring size in bytes");
 3798         SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
 3799             &fl->cntxt_id, 0, "SGE context id of the freelist");
 3800         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
 3801             fl_pad ? 1 : 0, "padding enabled");
 3802         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
 3803             fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
 3804         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
 3805             0, "consumer index");
 3806         if (fl->flags & FL_BUF_PACKING) {
 3807                 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
 3808                     CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
 3809         }
 3810         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
 3811             0, "producer index");
 3812         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
 3813             CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
 3814         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
 3815             CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
 3816         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
 3817             CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
 3818 }
 3819 
 3820 /*
 3821  * Idempotent.
 3822  */
 3823 static int
 3824 alloc_fwq(struct adapter *sc)
 3825 {
 3826         int rc, intr_idx;
 3827         struct sge_iq *fwq = &sc->sge.fwq;
 3828         struct vi_info *vi = &sc->port[0]->vi[0];
 3829 
 3830         if (!(fwq->flags & IQ_SW_ALLOCATED)) {
 3831                 MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
 3832 
 3833                 if (sc->flags & IS_VF)
 3834                         intr_idx = 0;
 3835                 else
 3836                         intr_idx = sc->intr_count > 1 ? 1 : 0;
 3837                 init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER);
 3838                 rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid);
 3839                 if (rc != 0) {
 3840                         CH_ERR(sc, "failed to allocate fwq: %d\n", rc);
 3841                         return (rc);
 3842                 }
 3843                 MPASS(fwq->flags & IQ_SW_ALLOCATED);
 3844         }
 3845 
 3846         if (!(fwq->flags & IQ_HW_ALLOCATED)) {
 3847                 MPASS(fwq->flags & IQ_SW_ALLOCATED);
 3848 
 3849                 rc = alloc_iq_fl_hwq(vi, fwq, NULL);
 3850                 if (rc != 0) {
 3851                         CH_ERR(sc, "failed to create hw fwq: %d\n", rc);
 3852                         return (rc);
 3853                 }
 3854                 MPASS(fwq->flags & IQ_HW_ALLOCATED);
 3855         }
 3856 
 3857         return (0);
 3858 }
 3859 
 3860 /*
 3861  * Idempotent.
 3862  */
 3863 static void
 3864 free_fwq(struct adapter *sc)
 3865 {
 3866         struct sge_iq *fwq = &sc->sge.fwq;
 3867 
 3868         if (fwq->flags & IQ_HW_ALLOCATED) {
 3869                 MPASS(fwq->flags & IQ_SW_ALLOCATED);
 3870                 free_iq_fl_hwq(sc, fwq, NULL);
 3871                 MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
 3872         }
 3873 
 3874         if (fwq->flags & IQ_SW_ALLOCATED) {
 3875                 MPASS(!(fwq->flags & IQ_HW_ALLOCATED));
 3876                 free_iq_fl(sc, fwq, NULL);
 3877                 MPASS(!(fwq->flags & IQ_SW_ALLOCATED));
 3878         }
 3879 }
 3880 
 3881 /*
 3882  * Idempotent.
 3883  */
 3884 static int
 3885 alloc_ctrlq(struct adapter *sc, int idx)
 3886 {
 3887         int rc;
 3888         char name[16];
 3889         struct sysctl_oid *oid;
 3890         struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
 3891 
 3892         MPASS(idx < sc->params.nports);
 3893 
 3894         if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) {
 3895                 MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
 3896 
 3897                 snprintf(name, sizeof(name), "%d", idx);
 3898                 oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid),
 3899                     OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
 3900                     "ctrl queue");
 3901 
 3902                 snprintf(name, sizeof(name), "%s ctrlq%d",
 3903                     device_get_nameunit(sc->dev), idx);
 3904                 init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE,
 3905                     sc->port[idx]->tx_chan, &sc->sge.fwq, name);
 3906                 rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid);
 3907                 if (rc != 0) {
 3908                         CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc);
 3909                         sysctl_remove_oid(oid, 1, 1);
 3910                         return (rc);
 3911                 }
 3912                 MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
 3913         }
 3914 
 3915         if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) {
 3916                 MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
 3917 
 3918                 rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq);
 3919                 if (rc != 0) {
 3920                         CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc);
 3921                         return (rc);
 3922                 }
 3923                 MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED);
 3924         }
 3925 
 3926         return (0);
 3927 }
 3928 
 3929 /*
 3930  * Idempotent.
 3931  */
 3932 static void
 3933 free_ctrlq(struct adapter *sc, int idx)
 3934 {
 3935         struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx];
 3936 
 3937         if (ctrlq->eq.flags & EQ_HW_ALLOCATED) {
 3938                 MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED);
 3939                 free_eq_hwq(sc, NULL, &ctrlq->eq);
 3940                 MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
 3941         }
 3942 
 3943         if (ctrlq->eq.flags & EQ_SW_ALLOCATED) {
 3944                 MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED));
 3945                 free_wrq(sc, ctrlq);
 3946                 MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED));
 3947         }
 3948 }
 3949 
 3950 int
 3951 t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop,
 3952     int cong_map)
 3953 {
 3954         const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log;
 3955         uint32_t param, val;
 3956         uint16_t ch_map;
 3957         int cong_mode, rc, i;
 3958 
 3959         if (chip_id(sc) < CHELSIO_T5)
 3960                 return (ENOTSUP);
 3961 
 3962         /* Convert the driver knob to the mode understood by the firmware. */
 3963         switch (cong_drop) {
 3964         case -1:
 3965                 cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE;
 3966                 break;
 3967         case 0:
 3968                 cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL;
 3969                 break;
 3970         case 1:
 3971                 cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE;
 3972                 break;
 3973         case 2:
 3974                 cong_mode = X_CONMCTXT_CNGTPMODE_BOTH;
 3975                 break;
 3976         default:
 3977                 MPASS(0);
 3978                 CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n",
 3979                     cong_drop, cntxt_id);
 3980                 return (EINVAL);
 3981         }
 3982 
 3983         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
 3984             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
 3985             V_FW_PARAMS_PARAM_YZ(cntxt_id);
 3986         val = V_CONMCTXT_CNGTPMODE(cong_mode);
 3987         if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL ||
 3988             cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) {
 3989                 for (i = 0, ch_map = 0; i < 4; i++) {
 3990                         if (cong_map & (1 << i))
 3991                                 ch_map |= 1 << (i << cng_ch_bits_log);
 3992                 }
 3993                 val |= V_CONMCTXT_CNGCHMAP(ch_map);
 3994         }
 3995         rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
 3996         if (rc != 0) {
 3997                 CH_ERR(sc, "failed to set congestion manager context "
 3998                     "for ingress queue %d: %d\n", cntxt_id, rc);
 3999         }
 4000 
 4001         return (rc);
 4002 }
 4003 
 4004 /*
 4005  * Idempotent.
 4006  */
 4007 static int
 4008 alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx,
 4009     int maxp)
 4010 {
 4011         int rc;
 4012         struct adapter *sc = vi->adapter;
 4013         struct ifnet *ifp = vi->ifp;
 4014         struct sysctl_oid *oid;
 4015         char name[16];
 4016 
 4017         if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) {
 4018                 MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
 4019 #if defined(INET) || defined(INET6)
 4020                 rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs);
 4021                 if (rc != 0)
 4022                         return (rc);
 4023                 MPASS(rxq->lro.ifp == ifp);     /* also indicates LRO init'ed */
 4024 #endif
 4025                 rxq->ifp = ifp;
 4026 
 4027                 snprintf(name, sizeof(name), "%d", idx);
 4028                 oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid),
 4029                     OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
 4030                     "rx queue");
 4031 
 4032                 init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq,
 4033                     intr_idx, cong_drop, IQ_ETH);
 4034 #if defined(INET) || defined(INET6)
 4035                 if (ifp->if_capenable & IFCAP_LRO)
 4036                         rxq->iq.flags |= IQ_LRO_ENABLED;
 4037 #endif
 4038                 if (ifp->if_capenable & IFCAP_HWRXTSTMP)
 4039                         rxq->iq.flags |= IQ_RX_TIMESTAMP;
 4040                 snprintf(name, sizeof(name), "%s rxq%d-fl",
 4041                     device_get_nameunit(vi->dev), idx);
 4042                 init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
 4043                 rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid);
 4044                 if (rc != 0) {
 4045                         CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc);
 4046                         sysctl_remove_oid(oid, 1, 1);
 4047 #if defined(INET) || defined(INET6)
 4048                         tcp_lro_free(&rxq->lro);
 4049                         rxq->lro.ifp = NULL;
 4050 #endif
 4051                         return (rc);
 4052                 }
 4053                 MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
 4054                 add_rxq_sysctls(&vi->ctx, oid, rxq);
 4055         }
 4056 
 4057         if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) {
 4058                 MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
 4059                 rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl);
 4060                 if (rc != 0) {
 4061                         CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc);
 4062                         return (rc);
 4063                 }
 4064                 MPASS(rxq->iq.flags & IQ_HW_ALLOCATED);
 4065 
 4066                 if (idx == 0)
 4067                         sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
 4068                 else
 4069                         KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
 4070                             ("iq_base mismatch"));
 4071                 KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
 4072                     ("PF with non-zero iq_base"));
 4073 
 4074                 /*
 4075                  * The freelist is just barely above the starvation threshold
 4076                  * right now, fill it up a bit more.
 4077                  */
 4078                 FL_LOCK(&rxq->fl);
 4079                 refill_fl(sc, &rxq->fl, 128);
 4080                 FL_UNLOCK(&rxq->fl);
 4081         }
 4082 
 4083         return (0);
 4084 }
 4085 
 4086 /*
 4087  * Idempotent.
 4088  */
 4089 static void
 4090 free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
 4091 {
 4092         if (rxq->iq.flags & IQ_HW_ALLOCATED) {
 4093                 MPASS(rxq->iq.flags & IQ_SW_ALLOCATED);
 4094                 free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl);
 4095                 MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
 4096         }
 4097 
 4098         if (rxq->iq.flags & IQ_SW_ALLOCATED) {
 4099                 MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED));
 4100 #if defined(INET) || defined(INET6)
 4101                 tcp_lro_free(&rxq->lro);
 4102 #endif
 4103                 free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl);
 4104                 MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED));
 4105                 bzero(rxq, sizeof(*rxq));
 4106         }
 4107 }
 4108 
 4109 static void
 4110 add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
 4111     struct sge_rxq *rxq)
 4112 {
 4113         struct sysctl_oid_list *children;
 4114 
 4115         if (ctx == NULL || oid == NULL)
 4116                 return;
 4117 
 4118         children = SYSCTL_CHILDREN(oid);
 4119 #if defined(INET) || defined(INET6)
 4120         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
 4121             &rxq->lro.lro_queued, 0, NULL);
 4122         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
 4123             &rxq->lro.lro_flushed, 0, NULL);
 4124 #endif
 4125         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
 4126             &rxq->rxcsum, "# of times hardware assisted with checksum");
 4127         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD,
 4128             &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag");
 4129         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD,
 4130             &rxq->vxlan_rxcsum,
 4131             "# of times hardware assisted with inner checksum (VXLAN)");
 4132 }
 4133 
 4134 #ifdef TCP_OFFLOAD
 4135 /*
 4136  * Idempotent.
 4137  */
 4138 static int
 4139 alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx,
 4140     int intr_idx, int maxp)
 4141 {
 4142         int rc;
 4143         struct adapter *sc = vi->adapter;
 4144         struct sysctl_oid *oid;
 4145         char name[16];
 4146 
 4147         if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) {
 4148                 MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
 4149 
 4150                 snprintf(name, sizeof(name), "%d", idx);
 4151                 oid = SYSCTL_ADD_NODE(&vi->ctx,
 4152                     SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name,
 4153                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue");
 4154 
 4155                 init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
 4156                     vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD);
 4157                 snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
 4158                     device_get_nameunit(vi->dev), idx);
 4159                 init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
 4160                 rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx,
 4161                     oid);
 4162                 if (rc != 0) {
 4163                         CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx,
 4164                             rc);
 4165                         sysctl_remove_oid(oid, 1, 1);
 4166                         return (rc);
 4167                 }
 4168                 MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
 4169                 ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK);
 4170                 ofld_rxq->rx_iscsi_ddp_setup_error =
 4171                     counter_u64_alloc(M_WAITOK);
 4172                 add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq);
 4173         }
 4174 
 4175         if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) {
 4176                 MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
 4177                 rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl);
 4178                 if (rc != 0) {
 4179                         CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx,
 4180                             rc);
 4181                         return (rc);
 4182                 }
 4183                 MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED);
 4184         }
 4185         return (rc);
 4186 }
 4187 
 4188 /*
 4189  * Idempotent.
 4190  */
 4191 static void
 4192 free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
 4193 {
 4194         if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) {
 4195                 MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED);
 4196                 free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
 4197                 MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
 4198         }
 4199 
 4200         if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) {
 4201                 MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED));
 4202                 free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl);
 4203                 MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED));
 4204                 counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok);
 4205                 counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error);
 4206                 bzero(ofld_rxq, sizeof(*ofld_rxq));
 4207         }
 4208 }
 4209 
 4210 static void
 4211 add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
 4212     struct sge_ofld_rxq *ofld_rxq)
 4213 {
 4214         struct sysctl_oid_list *children;
 4215 
 4216         if (ctx == NULL || oid == NULL)
 4217                 return;
 4218 
 4219         children = SYSCTL_CHILDREN(oid);
 4220         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 4221             "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records,
 4222             "# of TOE TLS records received");
 4223         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
 4224             "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets,
 4225             "# of payload octets in received TOE TLS records");
 4226 
 4227         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi",
 4228             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics");
 4229         children = SYSCTL_CHILDREN(oid);
 4230 
 4231         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok",
 4232             CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok,
 4233             "# of times DDP buffer was setup successfully.");
 4234         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error",
 4235             CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error,
 4236             "# of times DDP buffer setup failed.");
 4237         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets",
 4238             CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0,
 4239             "# of octets placed directly");
 4240         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus",
 4241             CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0,
 4242             "# of PDUs with data placed directly.");
 4243         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets",
 4244             CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0,
 4245             "# of data octets delivered in freelist");
 4246         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus",
 4247             CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0,
 4248             "# of PDUs with data delivered in freelist");
 4249         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors",
 4250             CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0,
 4251             "# of PDUs with invalid padding");
 4252         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors",
 4253             CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0,
 4254             "# of PDUs with invalid header digests");
 4255         SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors",
 4256             CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0,
 4257             "# of PDUs with invalid data digests");
 4258 }
 4259 #endif
 4260 
 4261 /*
 4262  * Returns a reasonable automatic cidx flush threshold for a given queue size.
 4263  */
 4264 static u_int
 4265 qsize_to_fthresh(int qsize)
 4266 {
 4267         u_int fthresh;
 4268 
 4269         while (!powerof2(qsize))
 4270                 qsize++;
 4271         fthresh = ilog2(qsize);
 4272         if (fthresh > X_CIDXFLUSHTHRESH_128)
 4273                 fthresh = X_CIDXFLUSHTHRESH_128;
 4274 
 4275         return (fthresh);
 4276 }
 4277 
 4278 static int
 4279 ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
 4280 {
 4281         int rc, cntxt_id;
 4282         struct fw_eq_ctrl_cmd c;
 4283         int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
 4284 
 4285         bzero(&c, sizeof(c));
 4286 
 4287         c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
 4288             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
 4289             V_FW_EQ_CTRL_CMD_VFN(0));
 4290         c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
 4291             F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
 4292         c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
 4293         c.physeqid_pkd = htobe32(0);
 4294         c.fetchszm_to_iqid =
 4295             htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
 4296                 V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
 4297                 F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
 4298         c.dcaen_to_eqsize =
 4299             htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
 4300                 X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
 4301                 V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
 4302                 V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
 4303                 V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
 4304         c.eqaddr = htobe64(eq->ba);
 4305 
 4306         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
 4307         if (rc != 0) {
 4308                 CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n",
 4309                     eq->tx_chan, rc);
 4310                 return (rc);
 4311         }
 4312 
 4313         eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
 4314         eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
 4315         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
 4316         if (cntxt_id >= sc->sge.eqmap_sz)
 4317             panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
 4318                 cntxt_id, sc->sge.eqmap_sz - 1);
 4319         sc->sge.eqmap[cntxt_id] = eq;
 4320 
 4321         return (rc);
 4322 }
 4323 
 4324 static int
 4325 eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
 4326 {
 4327         int rc, cntxt_id;
 4328         struct fw_eq_eth_cmd c;
 4329         int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
 4330 
 4331         bzero(&c, sizeof(c));
 4332 
 4333         c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
 4334             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
 4335             V_FW_EQ_ETH_CMD_VFN(0));
 4336         c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
 4337             F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
 4338         c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
 4339             F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
 4340         c.fetchszm_to_iqid =
 4341             htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
 4342                 V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
 4343                 V_FW_EQ_ETH_CMD_IQID(eq->iqid));
 4344         c.dcaen_to_eqsize =
 4345             htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
 4346                 X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
 4347                 V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
 4348                 V_FW_EQ_ETH_CMD_EQSIZE(qsize));
 4349         c.eqaddr = htobe64(eq->ba);
 4350 
 4351         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
 4352         if (rc != 0) {
 4353                 device_printf(vi->dev,
 4354                     "failed to create Ethernet egress queue: %d\n", rc);
 4355                 return (rc);
 4356         }
 4357 
 4358         eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
 4359         eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
 4360         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
 4361         if (cntxt_id >= sc->sge.eqmap_sz)
 4362             panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
 4363                 cntxt_id, sc->sge.eqmap_sz - 1);
 4364         sc->sge.eqmap[cntxt_id] = eq;
 4365 
 4366         return (rc);
 4367 }
 4368 
 4369 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 4370 static int
 4371 ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
 4372 {
 4373         int rc, cntxt_id;
 4374         struct fw_eq_ofld_cmd c;
 4375         int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
 4376 
 4377         bzero(&c, sizeof(c));
 4378 
 4379         c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
 4380             F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
 4381             V_FW_EQ_OFLD_CMD_VFN(0));
 4382         c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
 4383             F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
 4384         c.fetchszm_to_iqid =
 4385                 htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
 4386                     V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
 4387                     F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
 4388         c.dcaen_to_eqsize =
 4389             htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
 4390                 X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
 4391                 V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
 4392                 V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
 4393                 V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
 4394         c.eqaddr = htobe64(eq->ba);
 4395 
 4396         rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
 4397         if (rc != 0) {
 4398                 device_printf(vi->dev,
 4399                     "failed to create egress queue for TCP offload: %d\n", rc);
 4400                 return (rc);
 4401         }
 4402 
 4403         eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
 4404         eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
 4405         cntxt_id = eq->cntxt_id - sc->sge.eq_start;
 4406         if (cntxt_id >= sc->sge.eqmap_sz)
 4407             panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
 4408                 cntxt_id, sc->sge.eqmap_sz - 1);
 4409         sc->sge.eqmap[cntxt_id] = eq;
 4410 
 4411         return (rc);
 4412 }
 4413 #endif
 4414 
 4415 /* SW only */
 4416 static int
 4417 alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx,
 4418     struct sysctl_oid *oid)
 4419 {
 4420         int rc, qsize;
 4421         size_t len;
 4422 
 4423         MPASS(!(eq->flags & EQ_SW_ALLOCATED));
 4424 
 4425         qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
 4426         len = qsize * EQ_ESIZE;
 4427         rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba,
 4428             (void **)&eq->desc);
 4429         if (rc)
 4430                 return (rc);
 4431         if (ctx != NULL && oid != NULL)
 4432                 add_eq_sysctls(sc, ctx, oid, eq);
 4433         eq->flags |= EQ_SW_ALLOCATED;
 4434 
 4435         return (0);
 4436 }
 4437 
 4438 /* SW only */
 4439 static void
 4440 free_eq(struct adapter *sc, struct sge_eq *eq)
 4441 {
 4442         MPASS(eq->flags & EQ_SW_ALLOCATED);
 4443         if (eq->type == EQ_ETH)
 4444                 MPASS(eq->pidx == eq->cidx);
 4445 
 4446         free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
 4447         mtx_destroy(&eq->eq_lock);
 4448         bzero(eq, sizeof(*eq));
 4449 }
 4450 
 4451 static void
 4452 add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
 4453     struct sysctl_oid *oid, struct sge_eq *eq)
 4454 {
 4455         struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
 4456 
 4457         SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba,
 4458             "bus address of descriptor ring");
 4459         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
 4460             eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
 4461             "desc ring size in bytes");
 4462         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
 4463             &eq->abs_id, 0, "absolute id of the queue");
 4464         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
 4465             &eq->cntxt_id, 0, "SGE context id of the queue");
 4466         SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx,
 4467             0, "consumer index");
 4468         SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx,
 4469             0, "producer index");
 4470         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
 4471             eq->sidx, "status page index");
 4472 }
 4473 
 4474 static int
 4475 alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
 4476 {
 4477         int rc;
 4478 
 4479         MPASS(!(eq->flags & EQ_HW_ALLOCATED));
 4480 
 4481         eq->iqid = eq->iq->cntxt_id;
 4482         eq->pidx = eq->cidx = eq->dbidx = 0;
 4483         /* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
 4484         eq->equeqidx = 0;
 4485         eq->doorbells = sc->doorbells;
 4486         bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len);
 4487 
 4488         switch (eq->type) {
 4489         case EQ_CTRL:
 4490                 rc = ctrl_eq_alloc(sc, eq);
 4491                 break;
 4492 
 4493         case EQ_ETH:
 4494                 rc = eth_eq_alloc(sc, vi, eq);
 4495                 break;
 4496 
 4497 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 4498         case EQ_OFLD:
 4499                 rc = ofld_eq_alloc(sc, vi, eq);
 4500                 break;
 4501 #endif
 4502 
 4503         default:
 4504                 panic("%s: invalid eq type %d.", __func__, eq->type);
 4505         }
 4506         if (rc != 0) {
 4507                 CH_ERR(sc, "failed to allocate egress queue(%d): %d\n",
 4508                     eq->type, rc);
 4509                 return (rc);
 4510         }
 4511 
 4512         if (isset(&eq->doorbells, DOORBELL_UDB) ||
 4513             isset(&eq->doorbells, DOORBELL_UDBWC) ||
 4514             isset(&eq->doorbells, DOORBELL_WCWR)) {
 4515                 uint32_t s_qpp = sc->params.sge.eq_s_qpp;
 4516                 uint32_t mask = (1 << s_qpp) - 1;
 4517                 volatile uint8_t *udb;
 4518 
 4519                 udb = sc->udbs_base + UDBS_DB_OFFSET;
 4520                 udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;   /* pg offset */
 4521                 eq->udb_qid = eq->cntxt_id & mask;              /* id in page */
 4522                 if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
 4523                         clrbit(&eq->doorbells, DOORBELL_WCWR);
 4524                 else {
 4525                         udb += eq->udb_qid << UDBS_SEG_SHIFT;   /* seg offset */
 4526                         eq->udb_qid = 0;
 4527                 }
 4528                 eq->udb = (volatile void *)udb;
 4529         }
 4530 
 4531         eq->flags |= EQ_HW_ALLOCATED;
 4532         return (0);
 4533 }
 4534 
 4535 static int
 4536 free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq)
 4537 {
 4538         int rc;
 4539 
 4540         MPASS(eq->flags & EQ_HW_ALLOCATED);
 4541 
 4542         switch (eq->type) {
 4543         case EQ_CTRL:
 4544                 rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
 4545                 break;
 4546         case EQ_ETH:
 4547                 rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
 4548                 break;
 4549 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 4550         case EQ_OFLD:
 4551                 rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
 4552                 break;
 4553 #endif
 4554         default:
 4555                 panic("%s: invalid eq type %d.", __func__, eq->type);
 4556         }
 4557         if (rc != 0) {
 4558                 CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc);
 4559                 return (rc);
 4560         }
 4561         eq->flags &= ~EQ_HW_ALLOCATED;
 4562 
 4563         return (0);
 4564 }
 4565 
 4566 static int
 4567 alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
 4568     struct sysctl_ctx_list *ctx, struct sysctl_oid *oid)
 4569 {
 4570         struct sge_eq *eq = &wrq->eq;
 4571         int rc;
 4572 
 4573         MPASS(!(eq->flags & EQ_SW_ALLOCATED));
 4574 
 4575         rc = alloc_eq(sc, eq, ctx, oid);
 4576         if (rc)
 4577                 return (rc);
 4578         MPASS(eq->flags & EQ_SW_ALLOCATED);
 4579         /* Can't fail after this. */
 4580 
 4581         wrq->adapter = sc;
 4582         TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
 4583         TAILQ_INIT(&wrq->incomplete_wrs);
 4584         STAILQ_INIT(&wrq->wr_list);
 4585         wrq->nwr_pending = 0;
 4586         wrq->ndesc_needed = 0;
 4587         add_wrq_sysctls(ctx, oid, wrq);
 4588 
 4589         return (0);
 4590 }
 4591 
 4592 static void
 4593 free_wrq(struct adapter *sc, struct sge_wrq *wrq)
 4594 {
 4595         free_eq(sc, &wrq->eq);
 4596         MPASS(wrq->nwr_pending == 0);
 4597         MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
 4598         MPASS(STAILQ_EMPTY(&wrq->wr_list));
 4599         bzero(wrq, sizeof(*wrq));
 4600 }
 4601 
 4602 static void
 4603 add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
 4604     struct sge_wrq *wrq)
 4605 {
 4606         struct sysctl_oid_list *children;
 4607 
 4608         if (ctx == NULL || oid == NULL)
 4609                 return;
 4610 
 4611         children = SYSCTL_CHILDREN(oid);
 4612         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
 4613             &wrq->tx_wrs_direct, "# of work requests (direct)");
 4614         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
 4615             &wrq->tx_wrs_copied, "# of work requests (copied)");
 4616         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
 4617             &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
 4618 }
 4619 
 4620 /*
 4621  * Idempotent.
 4622  */
 4623 static int
 4624 alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx)
 4625 {
 4626         int rc, iqidx;
 4627         struct port_info *pi = vi->pi;
 4628         struct adapter *sc = vi->adapter;
 4629         struct sge_eq *eq = &txq->eq;
 4630         struct txpkts *txp;
 4631         char name[16];
 4632         struct sysctl_oid *oid;
 4633 
 4634         if (!(eq->flags & EQ_SW_ALLOCATED)) {
 4635                 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
 4636 
 4637                 snprintf(name, sizeof(name), "%d", idx);
 4638                 oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid),
 4639                     OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
 4640                     "tx queue");
 4641 
 4642                 iqidx = vi->first_rxq + (idx % vi->nrxq);
 4643                 snprintf(name, sizeof(name), "%s txq%d",
 4644                     device_get_nameunit(vi->dev), idx);
 4645                 init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
 4646                     &sc->sge.rxq[iqidx].iq, name);
 4647 
 4648                 rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx,
 4649                     can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK);
 4650                 if (rc != 0) {
 4651                         CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n",
 4652                             idx, rc);
 4653 failed:
 4654                         sysctl_remove_oid(oid, 1, 1);
 4655                         return (rc);
 4656                 }
 4657 
 4658                 rc = alloc_eq(sc, eq, &vi->ctx, oid);
 4659                 if (rc) {
 4660                         CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc);
 4661                         mp_ring_free(txq->r);
 4662                         goto failed;
 4663                 }
 4664                 MPASS(eq->flags & EQ_SW_ALLOCATED);
 4665                 /* Can't fail after this point. */
 4666 
 4667                 TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
 4668                 txq->ifp = vi->ifp;
 4669                 txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
 4670                 txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
 4671                     M_ZERO | M_WAITOK);
 4672 
 4673                 add_txq_sysctls(vi, &vi->ctx, oid, txq);
 4674         }
 4675 
 4676         if (!(eq->flags & EQ_HW_ALLOCATED)) {
 4677                 MPASS(eq->flags & EQ_SW_ALLOCATED);
 4678                 rc = alloc_eq_hwq(sc, vi, eq);
 4679                 if (rc != 0) {
 4680                         CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc);
 4681                         return (rc);
 4682                 }
 4683                 MPASS(eq->flags & EQ_HW_ALLOCATED);
 4684                 /* Can't fail after this point. */
 4685 
 4686                 if (idx == 0)
 4687                         sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
 4688                 else
 4689                         KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
 4690                             ("eq_base mismatch"));
 4691                 KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
 4692                     ("PF with non-zero eq_base"));
 4693 
 4694                 txp = &txq->txp;
 4695                 MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr);
 4696                 txq->txp.max_npkt = min(nitems(txp->mb),
 4697                     sc->params.max_pkts_per_eth_tx_pkts_wr);
 4698                 if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF))
 4699                         txq->txp.max_npkt--;
 4700 
 4701                 if (vi->flags & TX_USES_VM_WR)
 4702                         txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
 4703                             V_TXPKT_INTF(pi->tx_chan));
 4704                 else
 4705                         txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
 4706                             V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
 4707                             V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
 4708 
 4709                 txq->tc_idx = -1;
 4710         }
 4711 
 4712         return (0);
 4713 }
 4714 
 4715 /*
 4716  * Idempotent.
 4717  */
 4718 static void
 4719 free_txq(struct vi_info *vi, struct sge_txq *txq)
 4720 {
 4721         struct adapter *sc = vi->adapter;
 4722         struct sge_eq *eq = &txq->eq;
 4723 
 4724         if (eq->flags & EQ_HW_ALLOCATED) {
 4725                 MPASS(eq->flags & EQ_SW_ALLOCATED);
 4726                 free_eq_hwq(sc, NULL, eq);
 4727                 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
 4728         }
 4729 
 4730         if (eq->flags & EQ_SW_ALLOCATED) {
 4731                 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
 4732                 sglist_free(txq->gl);
 4733                 free(txq->sdesc, M_CXGBE);
 4734                 mp_ring_free(txq->r);
 4735                 free_eq(sc, eq);
 4736                 MPASS(!(eq->flags & EQ_SW_ALLOCATED));
 4737                 bzero(txq, sizeof(*txq));
 4738         }
 4739 }
 4740 
 4741 static void
 4742 add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx,
 4743     struct sysctl_oid *oid, struct sge_txq *txq)
 4744 {
 4745         struct adapter *sc;
 4746         struct sysctl_oid_list *children;
 4747 
 4748         if (ctx == NULL || oid == NULL)
 4749                 return;
 4750 
 4751         sc = vi->adapter;
 4752         children = SYSCTL_CHILDREN(oid);
 4753 
 4754         mp_ring_sysctls(txq->r, ctx, children);
 4755 
 4756         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc",
 4757             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq,
 4758             sysctl_tc, "I", "traffic class (-1 means none)");
 4759 
 4760         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
 4761             &txq->txcsum, "# of times hardware assisted with checksum");
 4762         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD,
 4763             &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag");
 4764         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
 4765             &txq->tso_wrs, "# of TSO work requests");
 4766         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
 4767             &txq->imm_wrs, "# of work requests with immediate data");
 4768         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
 4769             &txq->sgl_wrs, "# of work requests with direct SGL");
 4770         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
 4771             &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
 4772         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD,
 4773             &txq->txpkts0_wrs, "# of txpkts (type 0) work requests");
 4774         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD,
 4775             &txq->txpkts1_wrs, "# of txpkts (type 1) work requests");
 4776         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD,
 4777             &txq->txpkts0_pkts,
 4778             "# of frames tx'd using type0 txpkts work requests");
 4779         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD,
 4780             &txq->txpkts1_pkts,
 4781             "# of frames tx'd using type1 txpkts work requests");
 4782         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD,
 4783             &txq->txpkts_flush,
 4784             "# of times txpkts had to be flushed out by an egress-update");
 4785         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD,
 4786             &txq->raw_wrs, "# of raw work requests (non-packets)");
 4787         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD,
 4788             &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests");
 4789         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD,
 4790             &txq->vxlan_txcsum,
 4791             "# of times hardware assisted with inner checksums (VXLAN)");
 4792 
 4793 #ifdef KERN_TLS
 4794         if (is_ktls(sc)) {
 4795                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records",
 4796                     CTLFLAG_RD, &txq->kern_tls_records,
 4797                     "# of NIC TLS records transmitted");
 4798                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short",
 4799                     CTLFLAG_RD, &txq->kern_tls_short,
 4800                     "# of short NIC TLS records transmitted");
 4801                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial",
 4802                     CTLFLAG_RD, &txq->kern_tls_partial,
 4803                     "# of partial NIC TLS records transmitted");
 4804                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full",
 4805                     CTLFLAG_RD, &txq->kern_tls_full,
 4806                     "# of full NIC TLS records transmitted");
 4807                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets",
 4808                     CTLFLAG_RD, &txq->kern_tls_octets,
 4809                     "# of payload octets in transmitted NIC TLS records");
 4810                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste",
 4811                     CTLFLAG_RD, &txq->kern_tls_waste,
 4812                     "# of octets DMAd but not transmitted in NIC TLS records");
 4813                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options",
 4814                     CTLFLAG_RD, &txq->kern_tls_options,
 4815                     "# of NIC TLS options-only packets transmitted");
 4816                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header",
 4817                     CTLFLAG_RD, &txq->kern_tls_header,
 4818                     "# of NIC TLS header-only packets transmitted");
 4819                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin",
 4820                     CTLFLAG_RD, &txq->kern_tls_fin,
 4821                     "# of NIC TLS FIN-only packets transmitted");
 4822                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short",
 4823                     CTLFLAG_RD, &txq->kern_tls_fin_short,
 4824                     "# of NIC TLS padded FIN packets on short TLS records");
 4825                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc",
 4826                     CTLFLAG_RD, &txq->kern_tls_cbc,
 4827                     "# of NIC TLS sessions using AES-CBC");
 4828                 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm",
 4829                     CTLFLAG_RD, &txq->kern_tls_gcm,
 4830                     "# of NIC TLS sessions using AES-GCM");
 4831         }
 4832 #endif
 4833 }
 4834 
 4835 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
 4836 /*
 4837  * Idempotent.
 4838  */
 4839 static int
 4840 alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx)
 4841 {
 4842         struct sysctl_oid *oid;
 4843         struct port_info *pi = vi->pi;
 4844         struct adapter *sc = vi->adapter;
 4845         struct sge_eq *eq = &ofld_txq->wrq.eq;
 4846         int rc, iqidx;
 4847         char name[16];
 4848 
 4849         MPASS(idx >= 0);
 4850         MPASS(idx < vi->nofldtxq);
 4851 
 4852         if (!(eq->flags & EQ_SW_ALLOCATED)) {
 4853                 snprintf(name, sizeof(name), "%d", idx);
 4854                 oid = SYSCTL_ADD_NODE(&vi->ctx,
 4855                     SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name,
 4856                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue");
 4857 
 4858                 snprintf(name, sizeof(name), "%s ofld_txq%d",
 4859                     device_get_nameunit(vi->dev), idx);
 4860                 if (vi->nofldrxq > 0) {
 4861                         iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq);
 4862                         init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
 4863                             &sc->sge.ofld_rxq[iqidx].iq, name);
 4864                 } else {
 4865                         iqidx = vi->first_rxq + (idx % vi->nrxq);
 4866                         init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
 4867                             &sc->sge.rxq[iqidx].iq, name);
 4868                 }
 4869 
 4870                 rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid);
 4871                 if (rc != 0) {
 4872                         CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx,
 4873                             rc);
 4874                         sysctl_remove_oid(oid, 1, 1);
 4875                         return (rc);
 4876                 }
 4877                 MPASS(eq->flags & EQ_SW_ALLOCATED);
 4878                 /* Can't fail after this point. */
 4879 
 4880                 ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK);
 4881                 ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK);
 4882                 ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK);
 4883                 ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK);
 4884                 ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK);
 4885                 add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq);
 4886         }
 4887 
 4888         if (!(eq->flags & EQ_HW_ALLOCATED)) {
 4889                 rc = alloc_eq_hwq(sc, vi, eq);
 4890                 if (rc != 0) {
 4891                         CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx,
 4892                             rc);
 4893                         return (rc);
 4894                 }
 4895                 MPASS(eq->flags & EQ_HW_ALLOCATED);
 4896         }
 4897 
 4898         return (0);
 4899 }
 4900 
 4901 /*
 4902  * Idempotent.
 4903  */
 4904 static void
 4905 free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq)
 4906 {
 4907         struct adapter *sc = vi->adapter;
 4908         struct sge_eq *eq = &ofld_txq->wrq.eq;
 4909 
 4910         if (eq->flags & EQ_HW_ALLOCATED) {
 4911                 MPASS(eq->flags & EQ_SW_ALLOCATED);
 4912                 free_eq_hwq(sc, NULL, eq);
 4913                 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
 4914         }
 4915 
 4916         if (eq->flags & EQ_SW_ALLOCATED) {
 4917                 MPASS(!(eq->flags & EQ_HW_ALLOCATED));
 4918                 counter_u64_free(ofld_txq->tx_iscsi_pdus);
 4919                 counter_u64_free(ofld_txq->tx_iscsi_octets);
 4920                 counter_u64_free(ofld_txq->tx_iscsi_iso_wrs);
 4921                 counter_u64_free(ofld_txq->tx_toe_tls_records);
 4922                 counter_u64_free(ofld_txq->tx_toe_tls_octets);
 4923                 free_wrq(sc, &ofld_txq->wrq);
 4924                 MPASS(!(eq->flags & EQ_SW_ALLOCATED));
 4925                 bzero(ofld_txq, sizeof(*ofld_txq));
 4926         }
 4927 }
 4928 
 4929 static void
 4930 add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
 4931     struct sge_ofld_txq *ofld_txq)
 4932 {
 4933         struct sysctl_oid_list *children;
 4934 
 4935         if (ctx == NULL || oid == NULL)
 4936                 return;
 4937 
 4938         children = SYSCTL_CHILDREN(oid);
 4939         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus",
 4940             CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus,
 4941             "# of iSCSI PDUs transmitted");
 4942         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets",
 4943             CTLFLAG_RD, &ofld_txq->tx_iscsi_octets,
 4944             "# of payload octets in transmitted iSCSI PDUs");
 4945         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs",
 4946             CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs,
 4947             "# of iSCSI segmentation offload work requests");
 4948         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records",
 4949             CTLFLAG_RD, &ofld_txq->tx_toe_tls_records,
 4950             "# of TOE TLS records transmitted");
 4951         SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets",
 4952             CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets,
 4953             "# of payload octets in transmitted TOE TLS records");
 4954 }
 4955 #endif
 4956 
 4957 static void
 4958 oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 4959 {
 4960         bus_addr_t *ba = arg;
 4961 
 4962         KASSERT(nseg == 1,
 4963             ("%s meant for single segment mappings only.", __func__));
 4964 
 4965         *ba = error ? 0 : segs->ds_addr;
 4966 }
 4967 
 4968 static inline void
 4969 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
 4970 {
 4971         uint32_t n, v;
 4972 
 4973         n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx);
 4974         MPASS(n > 0);
 4975 
 4976         wmb();
 4977         v = fl->dbval | V_PIDX(n);
 4978         if (fl->udb)
 4979                 *fl->udb = htole32(v);
 4980         else
 4981                 t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
 4982         IDXINCR(fl->dbidx, n, fl->sidx);
 4983 }
 4984 
 4985 /*
 4986  * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
 4987  * recycled do not count towards this allocation budget.
 4988  *
 4989  * Returns non-zero to indicate that this freelist should be added to the list
 4990  * of starving freelists.
 4991  */
 4992 static int
 4993 refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
 4994 {
 4995         __be64 *d;
 4996         struct fl_sdesc *sd;
 4997         uintptr_t pa;
 4998         caddr_t cl;
 4999         struct rx_buf_info *rxb;
 5000         struct cluster_metadata *clm;
 5001         uint16_t max_pidx, zidx = fl->zidx;
 5002         uint16_t hw_cidx = fl->hw_cidx;         /* stable snapshot */
 5003 
 5004         FL_LOCK_ASSERT_OWNED(fl);
 5005 
 5006         /*
 5007          * We always stop at the beginning of the hardware descriptor that's just
 5008          * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
 5009          * which would mean an empty freelist to the chip.
 5010          */
 5011         max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
 5012         if (fl->pidx == max_pidx * 8)
 5013                 return (0);
 5014 
 5015         d = &fl->desc[fl->pidx];
 5016         sd = &fl->sdesc[fl->pidx];
 5017         rxb = &sc->sge.rx_buf_info[zidx];
 5018 
 5019         while (n > 0) {
 5020 
 5021                 if (sd->cl != NULL) {
 5022 
 5023                         if (sd->nmbuf == 0) {
 5024                                 /*
 5025                                  * Fast recycle without involving any atomics on
 5026                                  * the cluster's metadata (if the cluster has
 5027                                  * metadata).  This happens when all frames
 5028                                  * received in the cluster were small enough to
 5029                                  * fit within a single mbuf each.
 5030                                  */
 5031                                 fl->cl_fast_recycled++;
 5032                                 goto recycled;
 5033                         }
 5034 
 5035                         /*
 5036                          * Cluster is guaranteed to have metadata.  Clusters
 5037                          * without metadata always take the fast recycle path
 5038                          * when they're recycled.
 5039                          */
 5040                         clm = cl_metadata(sd);
 5041                         MPASS(clm != NULL);
 5042 
 5043                         if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
 5044                                 fl->cl_recycled++;
 5045                                 counter_u64_add(extfree_rels, 1);
 5046                                 goto recycled;
 5047                         }
 5048                         sd->cl = NULL;  /* gave up my reference */
 5049                 }
 5050                 MPASS(sd->cl == NULL);
 5051                 cl = uma_zalloc(rxb->zone, M_NOWAIT);
 5052                 if (__predict_false(cl == NULL)) {
 5053                         if (zidx != fl->safe_zidx) {
 5054                                 zidx = fl->safe_zidx;
 5055                                 rxb = &sc->sge.rx_buf_info[zidx];
 5056                                 cl = uma_zalloc(rxb->zone, M_NOWAIT);
 5057                         }
 5058                         if (cl == NULL)
 5059                                 break;
 5060                 }
 5061                 fl->cl_allocated++;
 5062                 n--;
 5063 
 5064                 pa = pmap_kextract((vm_offset_t)cl);
 5065                 sd->cl = cl;
 5066                 sd->zidx = zidx;
 5067 
 5068                 if (fl->flags & FL_BUF_PACKING) {
 5069                         *d = htobe64(pa | rxb->hwidx2);
 5070                         sd->moff = rxb->size2;
 5071                 } else {
 5072                         *d = htobe64(pa | rxb->hwidx1);
 5073                         sd->moff = 0;
 5074                 }
 5075 recycled:
 5076                 sd->nmbuf = 0;
 5077                 d++;
 5078                 sd++;
 5079                 if (__predict_false((++fl->pidx & 7) == 0)) {
 5080                         uint16_t pidx = fl->pidx >> 3;
 5081 
 5082                         if (__predict_false(pidx == fl->sidx)) {
 5083                                 fl->pidx = 0;
 5084                                 pidx = 0;
 5085                                 sd = fl->sdesc;
 5086                                 d = fl->desc;
 5087                         }
 5088                         if (n < 8 || pidx == max_pidx)
 5089                                 break;
 5090 
 5091                         if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
 5092                                 ring_fl_db(sc, fl);
 5093                 }
 5094         }
 5095 
 5096         if ((fl->pidx >> 3) != fl->dbidx)
 5097                 ring_fl_db(sc, fl);
 5098 
 5099         return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
 5100 }
 5101 
 5102 /*
 5103  * Attempt to refill all starving freelists.
 5104  */
 5105 static void
 5106 refill_sfl(void *arg)
 5107 {
 5108         struct adapter *sc = arg;
 5109         struct sge_fl *fl, *fl_temp;
 5110 
 5111         mtx_assert(&sc->sfl_lock, MA_OWNED);
 5112         TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
 5113                 FL_LOCK(fl);
 5114                 refill_fl(sc, fl, 64);
 5115                 if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
 5116                         TAILQ_REMOVE(&sc->sfl, fl, link);
 5117                         fl->flags &= ~FL_STARVING;
 5118                 }
 5119                 FL_UNLOCK(fl);
 5120         }
 5121 
 5122         if (!TAILQ_EMPTY(&sc->sfl))
 5123                 callout_schedule(&sc->sfl_callout, hz / 5);
 5124 }
 5125 
 5126 /*
 5127  * Release the driver's reference on all buffers in the given freelist.  Buffers
 5128  * with kernel references cannot be freed and will prevent the driver from being
 5129  * unloaded safely.
 5130  */
 5131 void
 5132 free_fl_buffers(struct adapter *sc, struct sge_fl *fl)
 5133 {
 5134         struct fl_sdesc *sd;
 5135         struct cluster_metadata *clm;
 5136         int i;
 5137 
 5138         sd = fl->sdesc;
 5139         for (i = 0; i < fl->sidx * 8; i++, sd++) {
 5140                 if (sd->cl == NULL)
 5141                         continue;
 5142 
 5143                 if (sd->nmbuf == 0)
 5144                         uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl);
 5145                 else if (fl->flags & FL_BUF_PACKING) {
 5146                         clm = cl_metadata(sd);
 5147                         if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
 5148                                 uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone,
 5149                                     sd->cl);
 5150                                 counter_u64_add(extfree_rels, 1);
 5151                         }
 5152                 }
 5153                 sd->cl = NULL;
 5154         }
 5155 
 5156         if (fl->flags & FL_BUF_RESUME) {
 5157                 m_freem(fl->m0);
 5158                 fl->flags &= ~FL_BUF_RESUME;
 5159         }
 5160 }
 5161 
 5162 static inline void
 5163 get_pkt_gl(struct mbuf *m, struct sglist *gl)
 5164 {
 5165         int rc;
 5166 
 5167         M_ASSERTPKTHDR(m);
 5168 
 5169         sglist_reset(gl);
 5170         rc = sglist_append_mbuf(gl, m);
 5171         if (__predict_false(rc != 0)) {
 5172                 panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
 5173                     "with %d.", __func__, m, mbuf_nsegs(m), rc);
 5174         }
 5175 
 5176         KASSERT(gl->sg_nseg == mbuf_nsegs(m),
 5177             ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
 5178             mbuf_nsegs(m), gl->sg_nseg));
 5179 #if 0   /* vm_wr not readily available here. */
 5180         KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr),
 5181             ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
 5182                 gl->sg_nseg, max_nsegs_allowed(m, vm_wr)));
 5183 #endif
 5184 }
 5185 
 5186 /*
 5187  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
 5188  */
 5189 static inline u_int
 5190 txpkt_len16(u_int nsegs, const u_int extra)
 5191 {
 5192         u_int n;
 5193 
 5194         MPASS(nsegs > 0);
 5195 
 5196         nsegs--; /* first segment is part of ulptx_sgl */
 5197         n = extra + sizeof(struct fw_eth_tx_pkt_wr) +
 5198             sizeof(struct cpl_tx_pkt_core) +
 5199             sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
 5200 
 5201         return (howmany(n, 16));
 5202 }
 5203 
 5204 /*
 5205  * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
 5206  * request header.
 5207  */
 5208 static inline u_int
 5209 txpkt_vm_len16(u_int nsegs, const u_int extra)
 5210 {
 5211         u_int n;
 5212 
 5213         MPASS(nsegs > 0);
 5214 
 5215         nsegs--; /* first segment is part of ulptx_sgl */
 5216         n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) +
 5217             sizeof(struct cpl_tx_pkt_core) +
 5218             sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
 5219 
 5220         return (howmany(n, 16));
 5221 }
 5222 
 5223 static inline void
 5224 calculate_mbuf_len16(struct mbuf *m, bool vm_wr)
 5225 {
 5226         const int lso = sizeof(struct cpl_tx_pkt_lso_core);
 5227         const int tnl_lso = sizeof(struct cpl_tx_tnl_lso);
 5228 
 5229         if (vm_wr) {
 5230                 if (needs_tso(m))
 5231                         set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso));
 5232                 else
 5233                         set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0));
 5234                 return;
 5235         }
 5236 
 5237         if (needs_tso(m)) {
 5238                 if (needs_vxlan_tso(m))
 5239                         set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso));
 5240                 else
 5241                         set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso));
 5242         } else
 5243                 set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0));
 5244 }
 5245 
 5246 /*
 5247  * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
 5248  * request header.
 5249  */
 5250 static inline u_int
 5251 txpkts0_len16(u_int nsegs)
 5252 {
 5253         u_int n;
 5254 
 5255         MPASS(nsegs > 0);
 5256 
 5257         nsegs--; /* first segment is part of ulptx_sgl */
 5258         n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
 5259             sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
 5260             8 * ((3 * nsegs) / 2 + (nsegs & 1));
 5261 
 5262         return (howmany(n, 16));
 5263 }
 5264 
 5265 /*
 5266  * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
 5267  * request header.
 5268  */
 5269 static inline u_int
 5270 txpkts1_len16(void)
 5271 {
 5272         u_int n;
 5273 
 5274         n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
 5275 
 5276         return (howmany(n, 16));
 5277 }
 5278 
 5279 static inline u_int
 5280 imm_payload(u_int ndesc)
 5281 {
 5282         u_int n;
 5283 
 5284         n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
 5285             sizeof(struct cpl_tx_pkt_core);
 5286 
 5287         return (n);
 5288 }
 5289 
 5290 static inline uint64_t
 5291 csum_to_ctrl(struct adapter *sc, struct mbuf *m)
 5292 {
 5293         uint64_t ctrl;
 5294         int csum_type, l2hlen, l3hlen;
 5295         int x, y;
 5296         static const int csum_types[3][2] = {
 5297                 {TX_CSUM_TCPIP, TX_CSUM_TCPIP6},
 5298                 {TX_CSUM_UDPIP, TX_CSUM_UDPIP6},
 5299                 {TX_CSUM_IP, 0}
 5300         };
 5301 
 5302         M_ASSERTPKTHDR(m);
 5303 
 5304         if (!needs_hwcsum(m))
 5305                 return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS);
 5306 
 5307         MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN);
 5308         MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip));
 5309 
 5310         if (needs_vxlan_csum(m)) {
 5311                 MPASS(m->m_pkthdr.l4hlen > 0);
 5312                 MPASS(m->m_pkthdr.l5hlen > 0);
 5313                 MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN);
 5314                 MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip));
 5315 
 5316                 l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen +
 5317                     m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen +
 5318                     m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN;
 5319                 l3hlen = m->m_pkthdr.inner_l3hlen;
 5320         } else {
 5321                 l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN;
 5322                 l3hlen = m->m_pkthdr.l3hlen;
 5323         }
 5324 
 5325         ctrl = 0;
 5326         if (!needs_l3_csum(m))
 5327                 ctrl |= F_TXPKT_IPCSUM_DIS;
 5328 
 5329         if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP |
 5330             CSUM_IP6_TCP | CSUM_INNER_IP6_TCP))
 5331                 x = 0;  /* TCP */
 5332         else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP |
 5333             CSUM_IP6_UDP | CSUM_INNER_IP6_UDP))
 5334                 x = 1;  /* UDP */
 5335         else
 5336                 x = 2;
 5337 
 5338         if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP |
 5339             CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP))
 5340                 y = 0;  /* IPv4 */
 5341         else {
 5342                 MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP |
 5343                     CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP));
 5344                 y = 1;  /* IPv6 */
 5345         }
 5346         /*
 5347          * needs_hwcsum returned true earlier so there must be some kind of
 5348          * checksum to calculate.
 5349          */
 5350         csum_type = csum_types[x][y];
 5351         MPASS(csum_type != 0);
 5352         if (csum_type == TX_CSUM_IP)
 5353                 ctrl |= F_TXPKT_L4CSUM_DIS;
 5354         ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen);
 5355         if (chip_id(sc) <= CHELSIO_T5)
 5356                 ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen);
 5357         else
 5358                 ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen);
 5359 
 5360         return (ctrl);
 5361 }
 5362 
 5363 static inline void *
 5364 write_lso_cpl(void *cpl, struct mbuf *m0)
 5365 {
 5366         struct cpl_tx_pkt_lso_core *lso;
 5367         uint32_t ctrl;
 5368 
 5369         KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
 5370             m0->m_pkthdr.l4hlen > 0,
 5371             ("%s: mbuf %p needs TSO but missing header lengths",
 5372                 __func__, m0));
 5373 
 5374         ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
 5375             F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
 5376             V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
 5377             V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
 5378             V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
 5379         if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
 5380                 ctrl |= F_LSO_IPV6;
 5381 
 5382         lso = cpl;
 5383         lso->lso_ctrl = htobe32(ctrl);
 5384         lso->ipid_ofst = htobe16(0);
 5385         lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
 5386         lso->seqno_offset = htobe32(0);
 5387         lso->len = htobe32(m0->m_pkthdr.len);
 5388 
 5389         return (lso + 1);
 5390 }
 5391 
 5392 static void *
 5393 write_tnl_lso_cpl(void *cpl, struct mbuf *m0)
 5394 {
 5395         struct cpl_tx_tnl_lso *tnl_lso = cpl;
 5396         uint32_t ctrl;
 5397 
 5398         KASSERT(m0->m_pkthdr.inner_l2hlen > 0 &&
 5399             m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 &&
 5400             m0->m_pkthdr.inner_l5hlen > 0,
 5401             ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths",
 5402                 __func__, m0));
 5403         KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
 5404             m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0,
 5405             ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths",
 5406                 __func__, m0));
 5407 
 5408         /* Outer headers. */
 5409         ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) |
 5410             F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST |
 5411             V_CPL_TX_TNL_LSO_ETHHDRLENOUT(
 5412                 (m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) |
 5413             V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) |
 5414             F_CPL_TX_TNL_LSO_IPLENSETOUT;
 5415         if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
 5416                 ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT;
 5417         else {
 5418                 ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT |
 5419                     F_CPL_TX_TNL_LSO_IPIDINCOUT;
 5420         }
 5421         tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl);
 5422         tnl_lso->IpIdOffsetOut = 0;
 5423         tnl_lso->UdpLenSetOut_to_TnlHdrLen =
 5424                 htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT |
 5425                     F_CPL_TX_TNL_LSO_UDPLENSETOUT |
 5426                     V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen +
 5427                         m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen +
 5428                         m0->m_pkthdr.l5hlen) |
 5429                     V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN));
 5430         tnl_lso->r1 = 0;
 5431 
 5432         /* Inner headers. */
 5433         ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN(
 5434             (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) |
 5435             V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) |
 5436             V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2);
 5437         if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr))
 5438                 ctrl |= F_CPL_TX_TNL_LSO_IPV6;
 5439         tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl);
 5440         tnl_lso->IpIdOffset = 0;
 5441         tnl_lso->IpIdSplit_to_Mss =
 5442             htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz));
 5443         tnl_lso->TCPSeqOffset = 0;
 5444         tnl_lso->EthLenOffset_Size =
 5445             htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len));
 5446 
 5447         return (tnl_lso + 1);
 5448 }
 5449 
 5450 #define VM_TX_L2HDR_LEN 16      /* ethmacdst to vlantci */
 5451 
 5452 /*
 5453  * Write a VM txpkt WR for this packet to the hardware descriptors, update the
 5454  * software descriptor, and advance the pidx.  It is guaranteed that enough
 5455  * descriptors are available.
 5456  *
 5457  * The return value is the # of hardware descriptors used.
 5458  */
 5459 static u_int
 5460 write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0)
 5461 {
 5462         struct sge_eq *eq;
 5463         struct fw_eth_tx_pkt_vm_wr *wr;
 5464         struct tx_sdesc *txsd;
 5465         struct cpl_tx_pkt_core *cpl;
 5466         uint32_t ctrl;  /* used in many unrelated places */
 5467         uint64_t ctrl1;
 5468         int len16, ndesc, pktlen;
 5469         caddr_t dst;
 5470 
 5471         TXQ_LOCK_ASSERT_OWNED(txq);
 5472         M_ASSERTPKTHDR(m0);
 5473 
 5474         len16 = mbuf_len16(m0);
 5475         pktlen = m0->m_pkthdr.len;
 5476         ctrl = sizeof(struct cpl_tx_pkt_core);
 5477         if (needs_tso(m0))
 5478                 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
 5479         ndesc = tx_len16_to_desc(len16);
 5480 
 5481         /* Firmware work request header */
 5482         eq = &txq->eq;
 5483         wr = (void *)&eq->desc[eq->pidx];
 5484         wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
 5485             V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
 5486 
 5487         ctrl = V_FW_WR_LEN16(len16);
 5488         wr->equiq_to_len16 = htobe32(ctrl);
 5489         wr->r3[0] = 0;
 5490         wr->r3[1] = 0;
 5491 
 5492         /*
 5493          * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
 5494          * vlantci is ignored unless the ethtype is 0x8100, so it's
 5495          * simpler to always copy it rather than making it
 5496          * conditional.  Also, it seems that we do not have to set
 5497          * vlantci or fake the ethtype when doing VLAN tag insertion.
 5498          */
 5499         m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst);
 5500 
 5501         if (needs_tso(m0)) {
 5502                 cpl = write_lso_cpl(wr + 1, m0);
 5503                 txq->tso_wrs++;
 5504         } else
 5505                 cpl = (void *)(wr + 1);
 5506 
 5507         /* Checksum offload */
 5508         ctrl1 = csum_to_ctrl(sc, m0);
 5509         if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
 5510                 txq->txcsum++;  /* some hardware assistance provided */
 5511 
 5512         /* VLAN tag insertion */
 5513         if (needs_vlan_insertion(m0)) {
 5514                 ctrl1 |= F_TXPKT_VLAN_VLD |
 5515                     V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
 5516                 txq->vlan_insertion++;
 5517         }
 5518 
 5519         /* CPL header */
 5520         cpl->ctrl0 = txq->cpl_ctrl0;
 5521         cpl->pack = 0;
 5522         cpl->len = htobe16(pktlen);
 5523         cpl->ctrl1 = htobe64(ctrl1);
 5524 
 5525         /* SGL */
 5526         dst = (void *)(cpl + 1);
 5527 
 5528         /*
 5529          * A packet using TSO will use up an entire descriptor for the
 5530          * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
 5531          * If this descriptor is the last descriptor in the ring, wrap
 5532          * around to the front of the ring explicitly for the start of
 5533          * the sgl.
 5534          */
 5535         if (dst == (void *)&eq->desc[eq->sidx]) {
 5536                 dst = (void *)&eq->desc[0];
 5537                 write_gl_to_txd(txq, m0, &dst, 0);
 5538         } else
 5539                 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
 5540         txq->sgl_wrs++;
 5541         txq->txpkt_wrs++;
 5542 
 5543         txsd = &txq->sdesc[eq->pidx];
 5544         txsd->m = m0;
 5545         txsd->desc_used = ndesc;
 5546 
 5547         return (ndesc);
 5548 }
 5549 
 5550 /*
 5551  * Write a raw WR to the hardware descriptors, update the software
 5552  * descriptor, and advance the pidx.  It is guaranteed that enough
 5553  * descriptors are available.
 5554  *
 5555  * The return value is the # of hardware descriptors used.
 5556  */
 5557 static u_int
 5558 write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available)
 5559 {
 5560         struct sge_eq *eq = &txq->eq;
 5561         struct tx_sdesc *txsd;
 5562         struct mbuf *m;
 5563         caddr_t dst;
 5564         int len16, ndesc;
 5565 
 5566         len16 = mbuf_len16(m0);
 5567         ndesc = tx_len16_to_desc(len16);
 5568         MPASS(ndesc <= available);
 5569 
 5570         dst = wr;
 5571         for (m = m0; m != NULL; m = m->m_next)
 5572                 copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
 5573 
 5574         txq->raw_wrs++;
 5575 
 5576         txsd = &txq->sdesc[eq->pidx];
 5577         txsd->m = m0;
 5578         txsd->desc_used = ndesc;
 5579 
 5580         return (ndesc);
 5581 }
 5582 
 5583 /*
 5584  * Write a txpkt WR for this packet to the hardware descriptors, update the
 5585  * software descriptor, and advance the pidx.  It is guaranteed that enough
 5586  * descriptors are available.
 5587  *
 5588  * The return value is the # of hardware descriptors used.
 5589  */
 5590 static u_int
 5591 write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0,
 5592     u_int available)
 5593 {
 5594         struct sge_eq *eq;
 5595         struct fw_eth_tx_pkt_wr *wr;
 5596         struct tx_sdesc *txsd;
 5597         struct cpl_tx_pkt_core *cpl;
 5598         uint32_t ctrl;  /* used in many unrelated places */
 5599         uint64_t ctrl1;
 5600         int len16, ndesc, pktlen, nsegs;
 5601         caddr_t dst;
 5602 
 5603         TXQ_LOCK_ASSERT_OWNED(txq);
 5604         M_ASSERTPKTHDR(m0);
 5605 
 5606         len16 = mbuf_len16(m0);
 5607         nsegs = mbuf_nsegs(m0);
 5608         pktlen = m0->m_pkthdr.len;
 5609         ctrl = sizeof(struct cpl_tx_pkt_core);
 5610         if (needs_tso(m0)) {
 5611                 if (needs_vxlan_tso(m0))
 5612                         ctrl += sizeof(struct cpl_tx_tnl_lso);
 5613                 else
 5614                         ctrl += sizeof(struct cpl_tx_pkt_lso_core);
 5615         } else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) &&
 5616             available >= 2) {
 5617                 /* Immediate data.  Recalculate len16 and set nsegs to 0. */
 5618                 ctrl += pktlen;
 5619                 len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
 5620                     sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
 5621                 nsegs = 0;
 5622         }
 5623         ndesc = tx_len16_to_desc(len16);
 5624         MPASS(ndesc <= available);
 5625 
 5626         /* Firmware work request header */
 5627         eq = &txq->eq;
 5628         wr = (void *)&eq->desc[eq->pidx];
 5629         wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
 5630             V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
 5631 
 5632         ctrl = V_FW_WR_LEN16(len16);
 5633         wr->equiq_to_len16 = htobe32(ctrl);
 5634         wr->r3 = 0;
 5635 
 5636         if (needs_tso(m0)) {
 5637                 if (needs_vxlan_tso(m0)) {
 5638                         cpl = write_tnl_lso_cpl(wr + 1, m0);
 5639                         txq->vxlan_tso_wrs++;
 5640                 } else {
 5641                         cpl = write_lso_cpl(wr + 1, m0);
 5642                         txq->tso_wrs++;
 5643                 }
 5644         } else
 5645                 cpl = (void *)(wr + 1);
 5646 
 5647         /* Checksum offload */
 5648         ctrl1 = csum_to_ctrl(sc, m0);
 5649         if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
 5650                 /* some hardware assistance provided */
 5651                 if (needs_vxlan_csum(m0))
 5652                         txq->vxlan_txcsum++;
 5653                 else
 5654                         txq->txcsum++;
 5655         }
 5656 
 5657         /* VLAN tag insertion */
 5658         if (needs_vlan_insertion(m0)) {
 5659                 ctrl1 |= F_TXPKT_VLAN_VLD |
 5660                     V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
 5661                 txq->vlan_insertion++;
 5662         }
 5663 
 5664         /* CPL header */
 5665         cpl->ctrl0 = txq->cpl_ctrl0;
 5666         cpl->pack = 0;
 5667         cpl->len = htobe16(pktlen);
 5668         cpl->ctrl1 = htobe64(ctrl1);
 5669 
 5670         /* SGL */
 5671         dst = (void *)(cpl + 1);
 5672         if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx]))
 5673                 dst = (caddr_t)&eq->desc[0];
 5674         if (nsegs > 0) {
 5675 
 5676                 write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
 5677                 txq->sgl_wrs++;
 5678         } else {
 5679                 struct mbuf *m;
 5680 
 5681                 for (m = m0; m != NULL; m = m->m_next) {
 5682                         copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
 5683 #ifdef INVARIANTS
 5684                         pktlen -= m->m_len;
 5685 #endif
 5686                 }
 5687 #ifdef INVARIANTS
 5688                 KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
 5689 #endif
 5690                 txq->imm_wrs++;
 5691         }
 5692 
 5693         txq->txpkt_wrs++;
 5694 
 5695         txsd = &txq->sdesc[eq->pidx];
 5696         txsd->m = m0;
 5697         txsd->desc_used = ndesc;
 5698 
 5699         return (ndesc);
 5700 }
 5701 
 5702 static inline bool
 5703 cmp_l2hdr(struct txpkts *txp, struct mbuf *m)
 5704 {
 5705         int len;
 5706 
 5707         MPASS(txp->npkt > 0);
 5708         MPASS(m->m_len >= VM_TX_L2HDR_LEN);
 5709 
 5710         if (txp->ethtype == be16toh(ETHERTYPE_VLAN))
 5711                 len = VM_TX_L2HDR_LEN;
 5712         else
 5713                 len = sizeof(struct ether_header);
 5714 
 5715         return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0);
 5716 }
 5717 
 5718 static inline void
 5719 save_l2hdr(struct txpkts *txp, struct mbuf *m)
 5720 {
 5721         MPASS(m->m_len >= VM_TX_L2HDR_LEN);
 5722 
 5723         memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN);
 5724 }
 5725 
 5726 static int
 5727 add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
 5728     int avail, bool *send)
 5729 {
 5730         struct txpkts *txp = &txq->txp;
 5731 
 5732         /* Cannot have TSO and coalesce at the same time. */
 5733         if (cannot_use_txpkts(m)) {
 5734 cannot_coalesce:
 5735                 *send = txp->npkt > 0;
 5736                 return (EINVAL);
 5737         }
 5738 
 5739         /* VF allows coalescing of type 1 (1 GL) only */
 5740         if (mbuf_nsegs(m) > 1)
 5741                 goto cannot_coalesce;
 5742 
 5743         *send = false;
 5744         if (txp->npkt > 0) {
 5745                 MPASS(tx_len16_to_desc(txp->len16) <= avail);
 5746                 MPASS(txp->npkt < txp->max_npkt);
 5747                 MPASS(txp->wr_type == 1);       /* VF supports type 1 only */
 5748 
 5749                 if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) {
 5750 retry_after_send:
 5751                         *send = true;
 5752                         return (EAGAIN);
 5753                 }
 5754                 if (m->m_pkthdr.len + txp->plen > 65535)
 5755                         goto retry_after_send;
 5756                 if (cmp_l2hdr(txp, m))
 5757                         goto retry_after_send;
 5758 
 5759                 txp->len16 += txpkts1_len16();
 5760                 txp->plen += m->m_pkthdr.len;
 5761                 txp->mb[txp->npkt++] = m;
 5762                 if (txp->npkt == txp->max_npkt)
 5763                         *send = true;
 5764         } else {
 5765                 txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) +
 5766                     txpkts1_len16();
 5767                 if (tx_len16_to_desc(txp->len16) > avail)
 5768                         goto cannot_coalesce;
 5769                 txp->npkt = 1;
 5770                 txp->wr_type = 1;
 5771                 txp->plen = m->m_pkthdr.len;
 5772                 txp->mb[0] = m;
 5773                 save_l2hdr(txp, m);
 5774         }
 5775         return (0);
 5776 }
 5777 
 5778 static int
 5779 add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m,
 5780     int avail, bool *send)
 5781 {
 5782         struct txpkts *txp = &txq->txp;
 5783         int nsegs;
 5784 
 5785         MPASS(!(sc->flags & IS_VF));
 5786 
 5787         /* Cannot have TSO and coalesce at the same time. */
 5788         if (cannot_use_txpkts(m)) {
 5789 cannot_coalesce:
 5790                 *send = txp->npkt > 0;
 5791                 return (EINVAL);
 5792         }
 5793 
 5794         *send = false;
 5795         nsegs = mbuf_nsegs(m);
 5796         if (txp->npkt == 0) {
 5797                 if (m->m_pkthdr.len > 65535)
 5798                         goto cannot_coalesce;
 5799                 if (nsegs > 1) {
 5800                         txp->wr_type = 0;
 5801                         txp->len16 =
 5802                             howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
 5803                             txpkts0_len16(nsegs);
 5804                 } else {
 5805                         txp->wr_type = 1;
 5806                         txp->len16 =
 5807                             howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) +
 5808                             txpkts1_len16();
 5809                 }
 5810                 if (tx_len16_to_desc(txp->len16) > avail)
 5811                         goto cannot_coalesce;
 5812                 txp->npkt = 1;
 5813                 txp->plen = m->m_pkthdr.len;
 5814                 txp->mb[0] = m;
 5815         } else {
 5816                 MPASS(tx_len16_to_desc(txp->len16) <= avail);
 5817                 MPASS(txp->npkt < txp->max_npkt);
 5818 
 5819                 if (m->m_pkthdr.len + txp->plen > 65535) {
 5820 retry_after_send:
 5821                         *send = true;
 5822                         return (EAGAIN);
 5823                 }
 5824 
 5825                 MPASS(txp->wr_type == 0 || txp->wr_type == 1);
 5826                 if (txp->wr_type == 0) {
 5827                         if (tx_len16_to_desc(txp->len16 +
 5828                             txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC))
 5829                                 goto retry_after_send;
 5830                         txp->len16 += txpkts0_len16(nsegs);
 5831                 } else {
 5832                         if (nsegs != 1)
 5833                                 goto retry_after_send;
 5834                         if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) >
 5835                             avail)
 5836                                 goto retry_after_send;
 5837                         txp->len16 += txpkts1_len16();
 5838                 }
 5839 
 5840                 txp->plen += m->m_pkthdr.len;
 5841                 txp->mb[txp->npkt++] = m;
 5842                 if (txp->npkt == txp->max_npkt)
 5843                         *send = true;
 5844         }
 5845         return (0);
 5846 }
 5847 
 5848 /*
 5849  * Write a txpkts WR for the packets in txp to the hardware descriptors, update
 5850  * the software descriptor, and advance the pidx.  It is guaranteed that enough
 5851  * descriptors are available.
 5852  *
 5853  * The return value is the # of hardware descriptors used.
 5854  */
 5855 static u_int
 5856 write_txpkts_wr(struct adapter *sc, struct sge_txq *txq)
 5857 {
 5858         const struct txpkts *txp = &txq->txp;
 5859         struct sge_eq *eq = &txq->eq;
 5860         struct fw_eth_tx_pkts_wr *wr;
 5861         struct tx_sdesc *txsd;
 5862         struct cpl_tx_pkt_core *cpl;
 5863         uint64_t ctrl1;
 5864         int ndesc, i, checkwrap;
 5865         struct mbuf *m, *last;
 5866         void *flitp;
 5867 
 5868         TXQ_LOCK_ASSERT_OWNED(txq);
 5869         MPASS(txp->npkt > 0);
 5870         MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
 5871 
 5872         wr = (void *)&eq->desc[eq->pidx];
 5873         wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
 5874         wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
 5875         wr->plen = htobe16(txp->plen);
 5876         wr->npkt = txp->npkt;
 5877         wr->r3 = 0;
 5878         wr->type = txp->wr_type;
 5879         flitp = wr + 1;
 5880 
 5881         /*
 5882          * At this point we are 16B into a hardware descriptor.  If checkwrap is
 5883          * set then we know the WR is going to wrap around somewhere.  We'll
 5884          * check for that at appropriate points.
 5885          */
 5886         ndesc = tx_len16_to_desc(txp->len16);
 5887         last = NULL;
 5888         checkwrap = eq->sidx - ndesc < eq->pidx;
 5889         for (i = 0; i < txp->npkt; i++) {
 5890                 m = txp->mb[i];
 5891                 if (txp->wr_type == 0) {
 5892                         struct ulp_txpkt *ulpmc;
 5893                         struct ulptx_idata *ulpsc;
 5894 
 5895                         /* ULP master command */
 5896                         ulpmc = flitp;
 5897                         ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
 5898                             V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
 5899                         ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m)));
 5900 
 5901                         /* ULP subcommand */
 5902                         ulpsc = (void *)(ulpmc + 1);
 5903                         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
 5904                             F_ULP_TX_SC_MORE);
 5905                         ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
 5906 
 5907                         cpl = (void *)(ulpsc + 1);
 5908                         if (checkwrap &&
 5909                             (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
 5910                                 cpl = (void *)&eq->desc[0];
 5911                 } else {
 5912                         cpl = flitp;
 5913                 }
 5914 
 5915                 /* Checksum offload */
 5916                 ctrl1 = csum_to_ctrl(sc, m);
 5917                 if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) {
 5918                         /* some hardware assistance provided */
 5919                         if (needs_vxlan_csum(m))
 5920                                 txq->vxlan_txcsum++;
 5921                         else
 5922                                 txq->txcsum++;
 5923                 }
 5924 
 5925                 /* VLAN tag insertion */
 5926                 if (needs_vlan_insertion(m)) {
 5927                         ctrl1 |= F_TXPKT_VLAN_VLD |
 5928                             V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
 5929                         txq->vlan_insertion++;
 5930                 }
 5931 
 5932                 /* CPL header */
 5933                 cpl->ctrl0 = txq->cpl_ctrl0;
 5934                 cpl->pack = 0;
 5935                 cpl->len = htobe16(m->m_pkthdr.len);
 5936                 cpl->ctrl1 = htobe64(ctrl1);
 5937 
 5938                 flitp = cpl + 1;
 5939                 if (checkwrap &&
 5940                     (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
 5941                         flitp = (void *)&eq->desc[0];
 5942 
 5943                 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
 5944 
 5945                 if (last != NULL)
 5946                         last->m_nextpkt = m;
 5947                 last = m;
 5948         }
 5949 
 5950         txq->sgl_wrs++;
 5951         if (txp->wr_type == 0) {
 5952                 txq->txpkts0_pkts += txp->npkt;
 5953                 txq->txpkts0_wrs++;
 5954         } else {
 5955                 txq->txpkts1_pkts += txp->npkt;
 5956                 txq->txpkts1_wrs++;
 5957         }
 5958 
 5959         txsd = &txq->sdesc[eq->pidx];
 5960         txsd->m = txp->mb[0];
 5961         txsd->desc_used = ndesc;
 5962 
 5963         return (ndesc);
 5964 }
 5965 
 5966 static u_int
 5967 write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq)
 5968 {
 5969         const struct txpkts *txp = &txq->txp;
 5970         struct sge_eq *eq = &txq->eq;
 5971         struct fw_eth_tx_pkts_vm_wr *wr;
 5972         struct tx_sdesc *txsd;
 5973         struct cpl_tx_pkt_core *cpl;
 5974         uint64_t ctrl1;
 5975         int ndesc, i;
 5976         struct mbuf *m, *last;
 5977         void *flitp;
 5978 
 5979         TXQ_LOCK_ASSERT_OWNED(txq);
 5980         MPASS(txp->npkt > 0);
 5981         MPASS(txp->wr_type == 1);       /* VF supports type 1 only */
 5982         MPASS(txp->mb[0] != NULL);
 5983         MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
 5984 
 5985         wr = (void *)&eq->desc[eq->pidx];
 5986         wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR));
 5987         wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16));
 5988         wr->r3 = 0;
 5989         wr->plen = htobe16(txp->plen);
 5990         wr->npkt = txp->npkt;
 5991         wr->r4 = 0;
 5992         memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16);
 5993         flitp = wr + 1;
 5994 
 5995         /*
 5996          * At this point we are 32B into a hardware descriptor.  Each mbuf in
 5997          * the WR will take 32B so we check for the end of the descriptor ring
 5998          * before writing odd mbufs (mb[1], 3, 5, ..)
 5999          */
 6000         ndesc = tx_len16_to_desc(txp->len16);
 6001         last = NULL;
 6002         for (i = 0; i < txp->npkt; i++) {
 6003                 m = txp->mb[i];
 6004                 if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
 6005                         flitp = &eq->desc[0];
 6006                 cpl = flitp;
 6007 
 6008                 /* Checksum offload */
 6009                 ctrl1 = csum_to_ctrl(sc, m);
 6010                 if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS))
 6011                         txq->txcsum++;  /* some hardware assistance provided */
 6012 
 6013                 /* VLAN tag insertion */
 6014                 if (needs_vlan_insertion(m)) {
 6015                         ctrl1 |= F_TXPKT_VLAN_VLD |
 6016                             V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
 6017                         txq->vlan_insertion++;
 6018                 }
 6019 
 6020                 /* CPL header */
 6021                 cpl->ctrl0 = txq->cpl_ctrl0;
 6022                 cpl->pack = 0;
 6023                 cpl->len = htobe16(m->m_pkthdr.len);
 6024                 cpl->ctrl1 = htobe64(ctrl1);
 6025 
 6026                 flitp = cpl + 1;
 6027                 MPASS(mbuf_nsegs(m) == 1);
 6028                 write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0);
 6029 
 6030                 if (last != NULL)
 6031                         last->m_nextpkt = m;
 6032                 last = m;
 6033         }
 6034 
 6035         txq->sgl_wrs++;
 6036         txq->txpkts1_pkts += txp->npkt;
 6037         txq->txpkts1_wrs++;
 6038 
 6039         txsd = &txq->sdesc[eq->pidx];
 6040         txsd->m = txp->mb[0];
 6041         txsd->desc_used = ndesc;
 6042 
 6043         return (ndesc);
 6044 }
 6045 
 6046 /*
 6047  * If the SGL ends on an address that is not 16 byte aligned, this function will
 6048  * add a 0 filled flit at the end.
 6049  */
 6050 static void
 6051 write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
 6052 {
 6053         struct sge_eq *eq = &txq->eq;
 6054         struct sglist *gl = txq->gl;
 6055         struct sglist_seg *seg;
 6056         __be64 *flitp, *wrap;
 6057         struct ulptx_sgl *usgl;
 6058         int i, nflits, nsegs;
 6059 
 6060         KASSERT(((uintptr_t)(*to) & 0xf) == 0,
 6061             ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
 6062         MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
 6063         MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
 6064 
 6065         get_pkt_gl(m, gl);
 6066         nsegs = gl->sg_nseg;
 6067         MPASS(nsegs > 0);
 6068 
 6069         nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
 6070         flitp = (__be64 *)(*to);
 6071         wrap = (__be64 *)(&eq->desc[eq->sidx]);
 6072         seg = &gl->sg_segs[0];
 6073         usgl = (void *)flitp;
 6074 
 6075         /*
 6076          * We start at a 16 byte boundary somewhere inside the tx descriptor
 6077          * ring, so we're at least 16 bytes away from the status page.  There is
 6078          * no chance of a wrap around in the middle of usgl (which is 16 bytes).
 6079          */
 6080 
 6081         usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
 6082             V_ULPTX_NSGE(nsegs));
 6083         usgl->len0 = htobe32(seg->ss_len);
 6084         usgl->addr0 = htobe64(seg->ss_paddr);
 6085         seg++;
 6086 
 6087         if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
 6088 
 6089                 /* Won't wrap around at all */
 6090 
 6091                 for (i = 0; i < nsegs - 1; i++, seg++) {
 6092                         usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
 6093                         usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
 6094                 }
 6095                 if (i & 1)
 6096                         usgl->sge[i / 2].len[1] = htobe32(0);
 6097                 flitp += nflits;
 6098         } else {
 6099 
 6100                 /* Will wrap somewhere in the rest of the SGL */
 6101 
 6102                 /* 2 flits already written, write the rest flit by flit */
 6103                 flitp = (void *)(usgl + 1);
 6104                 for (i = 0; i < nflits - 2; i++) {
 6105                         if (flitp == wrap)
 6106                                 flitp = (void *)eq->desc;
 6107                         *flitp++ = get_flit(seg, nsegs - 1, i);
 6108                 }
 6109         }
 6110 
 6111         if (nflits & 1) {
 6112                 MPASS(((uintptr_t)flitp) & 0xf);
 6113                 *flitp++ = 0;
 6114         }
 6115 
 6116         MPASS((((uintptr_t)flitp) & 0xf) == 0);
 6117         if (__predict_false(flitp == wrap))
 6118                 *to = (void *)eq->desc;
 6119         else
 6120                 *to = (void *)flitp;
 6121 }
 6122 
 6123 static inline void
 6124 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
 6125 {
 6126 
 6127         MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
 6128         MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
 6129 
 6130         if (__predict_true((uintptr_t)(*to) + len <=
 6131             (uintptr_t)&eq->desc[eq->sidx])) {
 6132                 bcopy(from, *to, len);
 6133                 (*to) += len;
 6134         } else {
 6135                 int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
 6136 
 6137                 bcopy(from, *to, portion);
 6138                 from += portion;
 6139                 portion = len - portion;        /* remaining */
 6140                 bcopy(from, (void *)eq->desc, portion);
 6141                 (*to) = (caddr_t)eq->desc + portion;
 6142         }
 6143 }
 6144 
 6145 static inline void
 6146 ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
 6147 {
 6148         u_int db;
 6149 
 6150         MPASS(n > 0);
 6151 
 6152         db = eq->doorbells;
 6153         if (n > 1)
 6154                 clrbit(&db, DOORBELL_WCWR);
 6155         wmb();
 6156 
 6157         switch (ffs(db) - 1) {
 6158         case DOORBELL_UDB:
 6159                 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
 6160                 break;
 6161 
 6162         case DOORBELL_WCWR: {
 6163                 volatile uint64_t *dst, *src;
 6164                 int i;
 6165 
 6166                 /*
 6167                  * Queues whose 128B doorbell segment fits in the page do not
 6168                  * use relative qid (udb_qid is always 0).  Only queues with
 6169                  * doorbell segments can do WCWR.
 6170                  */
 6171                 KASSERT(eq->udb_qid == 0 && n == 1,
 6172                     ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
 6173                     __func__, eq->doorbells, n, eq->dbidx, eq));
 6174 
 6175                 dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
 6176                     UDBS_DB_OFFSET);
 6177                 i = eq->dbidx;
 6178                 src = (void *)&eq->desc[i];
 6179                 while (src != (void *)&eq->desc[i + 1])
 6180                         *dst++ = *src++;
 6181                 wmb();
 6182                 break;
 6183         }
 6184 
 6185         case DOORBELL_UDBWC:
 6186                 *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
 6187                 wmb();
 6188                 break;
 6189 
 6190         case DOORBELL_KDB:
 6191                 t4_write_reg(sc, sc->sge_kdoorbell_reg,
 6192                     V_QID(eq->cntxt_id) | V_PIDX(n));
 6193                 break;
 6194         }
 6195 
 6196         IDXINCR(eq->dbidx, n, eq->sidx);
 6197 }
 6198 
 6199 static inline u_int
 6200 reclaimable_tx_desc(struct sge_eq *eq)
 6201 {
 6202         uint16_t hw_cidx;
 6203 
 6204         hw_cidx = read_hw_cidx(eq);
 6205         return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
 6206 }
 6207 
 6208 static inline u_int
 6209 total_available_tx_desc(struct sge_eq *eq)
 6210 {
 6211         uint16_t hw_cidx, pidx;
 6212 
 6213         hw_cidx = read_hw_cidx(eq);
 6214         pidx = eq->pidx;
 6215 
 6216         if (pidx == hw_cidx)
 6217                 return (eq->sidx - 1);
 6218         else
 6219                 return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
 6220 }
 6221 
 6222 static inline uint16_t
 6223 read_hw_cidx(struct sge_eq *eq)
 6224 {
 6225         struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
 6226         uint16_t cidx = spg->cidx;      /* stable snapshot */
 6227 
 6228         return (be16toh(cidx));
 6229 }
 6230 
 6231 /*
 6232  * Reclaim 'n' descriptors approximately.
 6233  */
 6234 static u_int
 6235 reclaim_tx_descs(struct sge_txq *txq, u_int n)
 6236 {
 6237         struct tx_sdesc *txsd;
 6238         struct sge_eq *eq = &txq->eq;
 6239         u_int can_reclaim, reclaimed;
 6240 
 6241         TXQ_LOCK_ASSERT_OWNED(txq);
 6242         MPASS(n > 0);
 6243 
 6244         reclaimed = 0;
 6245         can_reclaim = reclaimable_tx_desc(eq);
 6246         while (can_reclaim && reclaimed < n) {
 6247                 int ndesc;
 6248                 struct mbuf *m, *nextpkt;
 6249 
 6250                 txsd = &txq->sdesc[eq->cidx];
 6251                 ndesc = txsd->desc_used;
 6252 
 6253                 /* Firmware doesn't return "partial" credits. */
 6254                 KASSERT(can_reclaim >= ndesc,
 6255                     ("%s: unexpected number of credits: %d, %d",
 6256                     __func__, can_reclaim, ndesc));
 6257                 KASSERT(ndesc != 0,
 6258                     ("%s: descriptor with no credits: cidx %d",
 6259                     __func__, eq->cidx));
 6260 
 6261                 for (m = txsd->m; m != NULL; m = nextpkt) {
 6262                         nextpkt = m->m_nextpkt;
 6263                         m->m_nextpkt = NULL;
 6264                         m_freem(m);
 6265                 }
 6266                 reclaimed += ndesc;
 6267                 can_reclaim -= ndesc;
 6268                 IDXINCR(eq->cidx, ndesc, eq->sidx);
 6269         }
 6270 
 6271         return (reclaimed);
 6272 }
 6273 
 6274 static void
 6275 tx_reclaim(void *arg, int n)
 6276 {
 6277         struct sge_txq *txq = arg;
 6278         struct sge_eq *eq = &txq->eq;
 6279 
 6280         do {
 6281                 if (TXQ_TRYLOCK(txq) == 0)
 6282                         break;
 6283                 n = reclaim_tx_descs(txq, 32);
 6284                 if (eq->cidx == eq->pidx)
 6285                         eq->equeqidx = eq->pidx;
 6286                 TXQ_UNLOCK(txq);
 6287         } while (n > 0);
 6288 }
 6289 
 6290 static __be64
 6291 get_flit(struct sglist_seg *segs, int nsegs, int idx)
 6292 {
 6293         int i = (idx / 3) * 2;
 6294 
 6295         switch (idx % 3) {
 6296         case 0: {
 6297                 uint64_t rc;
 6298 
 6299                 rc = (uint64_t)segs[i].ss_len << 32;
 6300                 if (i + 1 < nsegs)
 6301                         rc |= (uint64_t)(segs[i + 1].ss_len);
 6302 
 6303                 return (htobe64(rc));
 6304         }
 6305         case 1:
 6306                 return (htobe64(segs[i].ss_paddr));
 6307         case 2:
 6308                 return (htobe64(segs[i + 1].ss_paddr));
 6309         }
 6310 
 6311         return (0);
 6312 }
 6313 
 6314 static int
 6315 find_refill_source(struct adapter *sc, int maxp, bool packing)
 6316 {
 6317         int i, zidx = -1;
 6318         struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
 6319 
 6320         if (packing) {
 6321                 for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
 6322                         if (rxb->hwidx2 == -1)
 6323                                 continue;
 6324                         if (rxb->size1 < PAGE_SIZE &&
 6325                             rxb->size1 < largest_rx_cluster)
 6326                                 continue;
 6327                         if (rxb->size1 > largest_rx_cluster)
 6328                                 break;
 6329                         MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE);
 6330                         if (rxb->size2 >= maxp)
 6331                                 return (i);
 6332                         zidx = i;
 6333                 }
 6334         } else {
 6335                 for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
 6336                         if (rxb->hwidx1 == -1)
 6337                                 continue;
 6338                         if (rxb->size1 > largest_rx_cluster)
 6339                                 break;
 6340                         if (rxb->size1 >= maxp)
 6341                                 return (i);
 6342                         zidx = i;
 6343                 }
 6344         }
 6345 
 6346         return (zidx);
 6347 }
 6348 
 6349 static void
 6350 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
 6351 {
 6352         mtx_lock(&sc->sfl_lock);
 6353         FL_LOCK(fl);
 6354         if ((fl->flags & FL_DOOMED) == 0) {
 6355                 fl->flags |= FL_STARVING;
 6356                 TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
 6357                 callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
 6358         }
 6359         FL_UNLOCK(fl);
 6360         mtx_unlock(&sc->sfl_lock);
 6361 }
 6362 
 6363 static void
 6364 handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
 6365 {
 6366         struct sge_wrq *wrq = (void *)eq;
 6367 
 6368         atomic_readandclear_int(&eq->equiq);
 6369         taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
 6370 }
 6371 
 6372 static void
 6373 handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
 6374 {
 6375         struct sge_txq *txq = (void *)eq;
 6376 
 6377         MPASS(eq->type == EQ_ETH);
 6378 
 6379         atomic_readandclear_int(&eq->equiq);
 6380         if (mp_ring_is_idle(txq->r))
 6381                 taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
 6382         else
 6383                 mp_ring_check_drainage(txq->r, 64);
 6384 }
 6385 
 6386 static int
 6387 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
 6388     struct mbuf *m)
 6389 {
 6390         const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
 6391         unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
 6392         struct adapter *sc = iq->adapter;
 6393         struct sge *s = &sc->sge;
 6394         struct sge_eq *eq;
 6395         static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
 6396                 &handle_wrq_egr_update, &handle_eth_egr_update,
 6397                 &handle_wrq_egr_update};
 6398 
 6399         KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
 6400             rss->opcode));
 6401 
 6402         eq = s->eqmap[qid - s->eq_start - s->eq_base];
 6403         (*h[eq->type])(sc, eq);
 6404 
 6405         return (0);
 6406 }
 6407 
 6408 /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
 6409 CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
 6410     offsetof(struct cpl_fw6_msg, data));
 6411 
 6412 static int
 6413 handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
 6414 {
 6415         struct adapter *sc = iq->adapter;
 6416         const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
 6417 
 6418         KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
 6419             rss->opcode));
 6420 
 6421         if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
 6422                 const struct rss_header *rss2;
 6423 
 6424                 rss2 = (const struct rss_header *)&cpl->data[0];
 6425                 return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
 6426         }
 6427 
 6428         return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
 6429 }
 6430 
 6431 /**
 6432  *      t4_handle_wrerr_rpl - process a FW work request error message
 6433  *      @adap: the adapter
 6434  *      @rpl: start of the FW message
 6435  */
 6436 static int
 6437 t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
 6438 {
 6439         u8 opcode = *(const u8 *)rpl;
 6440         const struct fw_error_cmd *e = (const void *)rpl;
 6441         unsigned int i;
 6442 
 6443         if (opcode != FW_ERROR_CMD) {
 6444                 log(LOG_ERR,
 6445                     "%s: Received WRERR_RPL message with opcode %#x\n",
 6446                     device_get_nameunit(adap->dev), opcode);
 6447                 return (EINVAL);
 6448         }
 6449         log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
 6450             G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
 6451             "non-fatal");
 6452         switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
 6453         case FW_ERROR_TYPE_EXCEPTION:
 6454                 log(LOG_ERR, "exception info:\n");
 6455                 for (i = 0; i < nitems(e->u.exception.info); i++)
 6456                         log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
 6457                             be32toh(e->u.exception.info[i]));
 6458                 log(LOG_ERR, "\n");
 6459                 break;
 6460         case FW_ERROR_TYPE_HWMODULE:
 6461                 log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
 6462                     be32toh(e->u.hwmodule.regaddr),
 6463                     be32toh(e->u.hwmodule.regval));
 6464                 break;
 6465         case FW_ERROR_TYPE_WR:
 6466                 log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
 6467                     be16toh(e->u.wr.cidx),
 6468                     G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
 6469                     G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
 6470                     be32toh(e->u.wr.eqid));
 6471                 for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
 6472                         log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
 6473                             e->u.wr.wrhdr[i]);
 6474                 log(LOG_ERR, "\n");
 6475                 break;
 6476         case FW_ERROR_TYPE_ACL:
 6477                 log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
 6478                     be16toh(e->u.acl.cidx),
 6479                     G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
 6480                     G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
 6481                     be32toh(e->u.acl.eqid),
 6482                     G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
 6483                     "MAC");
 6484                 for (i = 0; i < nitems(e->u.acl.val); i++)
 6485                         log(LOG_ERR, " %02x", e->u.acl.val[i]);
 6486                 log(LOG_ERR, "\n");
 6487                 break;
 6488         default:
 6489                 log(LOG_ERR, "type %#x\n",
 6490                     G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
 6491                 return (EINVAL);
 6492         }
 6493         return (0);
 6494 }
 6495 
 6496 static inline bool
 6497 bufidx_used(struct adapter *sc, int idx)
 6498 {
 6499         struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0];
 6500         int i;
 6501 
 6502         for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) {
 6503                 if (rxb->size1 > largest_rx_cluster)
 6504                         continue;
 6505                 if (rxb->hwidx1 == idx || rxb->hwidx2 == idx)
 6506                         return (true);
 6507         }
 6508 
 6509         return (false);
 6510 }
 6511 
 6512 static int
 6513 sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
 6514 {
 6515         struct adapter *sc = arg1;
 6516         struct sge_params *sp = &sc->params.sge;
 6517         int i, rc;
 6518         struct sbuf sb;
 6519         char c;
 6520 
 6521         sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND);
 6522         for (i = 0; i < SGE_FLBUF_SIZES; i++) {
 6523                 if (bufidx_used(sc, i))
 6524                         c = '*';
 6525                 else
 6526                         c = '\0';
 6527 
 6528                 sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c);
 6529         }
 6530         sbuf_trim(&sb);
 6531         sbuf_finish(&sb);
 6532         rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
 6533         sbuf_delete(&sb);
 6534         return (rc);
 6535 }
 6536 
 6537 #ifdef RATELIMIT
 6538 #if defined(INET) || defined(INET6)
 6539 /*
 6540  * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
 6541  */
 6542 static inline u_int
 6543 txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso)
 6544 {
 6545         u_int n;
 6546 
 6547         MPASS(immhdrs > 0);
 6548 
 6549         n = roundup2(sizeof(struct fw_eth_tx_eo_wr) +
 6550             sizeof(struct cpl_tx_pkt_core) + immhdrs, 16);
 6551         if (__predict_false(nsegs == 0))
 6552                 goto done;
 6553 
 6554         nsegs--; /* first segment is part of ulptx_sgl */
 6555         n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
 6556         if (tso)
 6557                 n += sizeof(struct cpl_tx_pkt_lso_core);
 6558 
 6559 done:
 6560         return (howmany(n, 16));
 6561 }
 6562 #endif
 6563 
 6564 #define ETID_FLOWC_NPARAMS 6
 6565 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \
 6566     ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16))
 6567 #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16))
 6568 
 6569 static int
 6570 send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi,
 6571     struct vi_info *vi)
 6572 {
 6573         struct wrq_cookie cookie;
 6574         u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN;
 6575         struct fw_flowc_wr *flowc;
 6576 
 6577         mtx_assert(&cst->lock, MA_OWNED);
 6578         MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) ==
 6579             EO_FLOWC_PENDING);
 6580 
 6581         flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie);
 6582         if (__predict_false(flowc == NULL))
 6583                 return (ENOMEM);
 6584 
 6585         bzero(flowc, ETID_FLOWC_LEN);
 6586         flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
 6587             V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0));
 6588         flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) |
 6589             V_FW_WR_FLOWID(cst->etid));
 6590         flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
 6591         flowc->mnemval[0].val = htobe32(pfvf);
 6592         flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
 6593         flowc->mnemval[1].val = htobe32(pi->tx_chan);
 6594         flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
 6595         flowc->mnemval[2].val = htobe32(pi->tx_chan);
 6596         flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
 6597         flowc->mnemval[3].val = htobe32(cst->iqid);
 6598         flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE;
 6599         flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
 6600         flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
 6601         flowc->mnemval[5].val = htobe32(cst->schedcl);
 6602 
 6603         commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
 6604 
 6605         cst->flags &= ~EO_FLOWC_PENDING;
 6606         cst->flags |= EO_FLOWC_RPL_PENDING;
 6607         MPASS(cst->tx_credits >= ETID_FLOWC_LEN16);     /* flowc is first WR. */
 6608         cst->tx_credits -= ETID_FLOWC_LEN16;
 6609 
 6610         return (0);
 6611 }
 6612 
 6613 #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16))
 6614 
 6615 void
 6616 send_etid_flush_wr(struct cxgbe_rate_tag *cst)
 6617 {
 6618         struct fw_flowc_wr *flowc;
 6619         struct wrq_cookie cookie;
 6620 
 6621         mtx_assert(&cst->lock, MA_OWNED);
 6622 
 6623         flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie);
 6624         if (__predict_false(flowc == NULL))
 6625                 CXGBE_UNIMPLEMENTED(__func__);
 6626 
 6627         bzero(flowc, ETID_FLUSH_LEN16 * 16);
 6628         flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
 6629             V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL);
 6630         flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) |
 6631             V_FW_WR_FLOWID(cst->etid));
 6632 
 6633         commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie);
 6634 
 6635         cst->flags |= EO_FLUSH_RPL_PENDING;
 6636         MPASS(cst->tx_credits >= ETID_FLUSH_LEN16);
 6637         cst->tx_credits -= ETID_FLUSH_LEN16;
 6638         cst->ncompl++;
 6639 }
 6640 
 6641 static void
 6642 write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr,
 6643     struct mbuf *m0, int compl)
 6644 {
 6645         struct cpl_tx_pkt_core *cpl;
 6646         uint64_t ctrl1;
 6647         uint32_t ctrl;  /* used in many unrelated places */
 6648         int len16, pktlen, nsegs, immhdrs;
 6649         uintptr_t p;
 6650         struct ulptx_sgl *usgl;
 6651         struct sglist sg;
 6652         struct sglist_seg segs[38];     /* XXX: find real limit.  XXX: get off the stack */
 6653 
 6654         mtx_assert(&cst->lock, MA_OWNED);
 6655         M_ASSERTPKTHDR(m0);
 6656         KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
 6657             m0->m_pkthdr.l4hlen > 0,
 6658             ("%s: ethofld mbuf %p is missing header lengths", __func__, m0));
 6659 
 6660         len16 = mbuf_eo_len16(m0);
 6661         nsegs = mbuf_eo_nsegs(m0);
 6662         pktlen = m0->m_pkthdr.len;
 6663         ctrl = sizeof(struct cpl_tx_pkt_core);
 6664         if (needs_tso(m0))
 6665                 ctrl += sizeof(struct cpl_tx_pkt_lso_core);
 6666         immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen;
 6667         ctrl += immhdrs;
 6668 
 6669         wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) |
 6670             V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl));
 6671         wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) |
 6672             V_FW_WR_FLOWID(cst->etid));
 6673         wr->r3 = 0;
 6674         if (needs_outer_udp_csum(m0)) {
 6675                 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
 6676                 wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen;
 6677                 wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
 6678                 wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen;
 6679                 wr->u.udpseg.rtplen = 0;
 6680                 wr->u.udpseg.r4 = 0;
 6681                 wr->u.udpseg.mss = htobe16(pktlen - immhdrs);
 6682                 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
 6683                 wr->u.udpseg.plen = htobe32(pktlen - immhdrs);
 6684                 cpl = (void *)(wr + 1);
 6685         } else {
 6686                 MPASS(needs_outer_tcp_csum(m0));
 6687                 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
 6688                 wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen;
 6689                 wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen);
 6690                 wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen;
 6691                 wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0);
 6692                 wr->u.tcpseg.r4 = 0;
 6693                 wr->u.tcpseg.r5 = 0;
 6694                 wr->u.tcpseg.plen = htobe32(pktlen - immhdrs);
 6695 
 6696                 if (needs_tso(m0)) {
 6697                         struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
 6698 
 6699                         wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz);
 6700 
 6701                         ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) |
 6702                             F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE |
 6703                             V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen -
 6704                                 ETHER_HDR_LEN) >> 2) |
 6705                             V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) |
 6706                             V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
 6707                         if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
 6708                                 ctrl |= F_LSO_IPV6;
 6709                         lso->lso_ctrl = htobe32(ctrl);
 6710                         lso->ipid_ofst = htobe16(0);
 6711                         lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
 6712                         lso->seqno_offset = htobe32(0);
 6713                         lso->len = htobe32(pktlen);
 6714 
 6715                         cpl = (void *)(lso + 1);
 6716                 } else {
 6717                         wr->u.tcpseg.mss = htobe16(0xffff);
 6718                         cpl = (void *)(wr + 1);
 6719                 }
 6720         }
 6721 
 6722         /* Checksum offload must be requested for ethofld. */
 6723         MPASS(needs_outer_l4_csum(m0));
 6724         ctrl1 = csum_to_ctrl(cst->adapter, m0);
 6725 
 6726         /* VLAN tag insertion */
 6727         if (needs_vlan_insertion(m0)) {
 6728                 ctrl1 |= F_TXPKT_VLAN_VLD |
 6729                     V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
 6730         }
 6731 
 6732         /* CPL header */
 6733         cpl->ctrl0 = cst->ctrl0;
 6734         cpl->pack = 0;
 6735         cpl->len = htobe16(pktlen);
 6736         cpl->ctrl1 = htobe64(ctrl1);
 6737 
 6738         /* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */
 6739         p = (uintptr_t)(cpl + 1);
 6740         m_copydata(m0, 0, immhdrs, (void *)p);
 6741 
 6742         /* SGL */
 6743         if (nsegs > 0) {
 6744                 int i, pad;
 6745 
 6746                 /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */
 6747                 p += immhdrs;
 6748                 pad = 16 - (immhdrs & 0xf);
 6749                 bzero((void *)p, pad);
 6750 
 6751                 usgl = (void *)(p + pad);
 6752                 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
 6753                     V_ULPTX_NSGE(nsegs));
 6754 
 6755                 sglist_init(&sg, nitems(segs), segs);
 6756                 for (; m0 != NULL; m0 = m0->m_next) {
 6757                         if (__predict_false(m0->m_len == 0))
 6758                                 continue;
 6759                         if (immhdrs >= m0->m_len) {
 6760                                 immhdrs -= m0->m_len;
 6761                                 continue;
 6762                         }
 6763                         if (m0->m_flags & M_EXTPG)
 6764                                 sglist_append_mbuf_epg(&sg, m0,
 6765                                     mtod(m0, vm_offset_t), m0->m_len);
 6766                         else
 6767                                 sglist_append(&sg, mtod(m0, char *) + immhdrs,
 6768                                     m0->m_len - immhdrs);
 6769                         immhdrs = 0;
 6770                 }
 6771                 MPASS(sg.sg_nseg == nsegs);
 6772 
 6773                 /*
 6774                  * Zero pad last 8B in case the WR doesn't end on a 16B
 6775                  * boundary.
 6776                  */
 6777                 *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0;
 6778 
 6779                 usgl->len0 = htobe32(segs[0].ss_len);
 6780                 usgl->addr0 = htobe64(segs[0].ss_paddr);
 6781                 for (i = 0; i < nsegs - 1; i++) {
 6782                         usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len);
 6783                         usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr);
 6784                 }
 6785                 if (i & 1)
 6786                         usgl->sge[i / 2].len[1] = htobe32(0);
 6787         }
 6788 
 6789 }
 6790 
 6791 static void
 6792 ethofld_tx(struct cxgbe_rate_tag *cst)
 6793 {
 6794         struct mbuf *m;
 6795         struct wrq_cookie cookie;
 6796         int next_credits, compl;
 6797         struct fw_eth_tx_eo_wr *wr;
 6798 
 6799         mtx_assert(&cst->lock, MA_OWNED);
 6800 
 6801         while ((m = mbufq_first(&cst->pending_tx)) != NULL) {
 6802                 M_ASSERTPKTHDR(m);
 6803 
 6804                 /* How many len16 credits do we need to send this mbuf. */
 6805                 next_credits = mbuf_eo_len16(m);
 6806                 MPASS(next_credits > 0);
 6807                 if (next_credits > cst->tx_credits) {
 6808                         /*
 6809                          * Tx will make progress eventually because there is at
 6810                          * least one outstanding fw4_ack that will return
 6811                          * credits and kick the tx.
 6812                          */
 6813                         MPASS(cst->ncompl > 0);
 6814                         return;
 6815                 }
 6816                 wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie);
 6817                 if (__predict_false(wr == NULL)) {
 6818                         /* XXX: wishful thinking, not a real assertion. */
 6819                         MPASS(cst->ncompl > 0);
 6820                         return;
 6821                 }
 6822                 cst->tx_credits -= next_credits;
 6823                 cst->tx_nocompl += next_credits;
 6824                 compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2;
 6825                 ETHER_BPF_MTAP(cst->com.ifp, m);
 6826                 write_ethofld_wr(cst, wr, m, compl);
 6827                 commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie);
 6828                 if (compl) {
 6829                         cst->ncompl++;
 6830                         cst->tx_nocompl = 0;
 6831                 }
 6832                 (void) mbufq_dequeue(&cst->pending_tx);
 6833 
 6834                 /*
 6835                  * Drop the mbuf's reference on the tag now rather
 6836                  * than waiting until m_freem().  This ensures that
 6837                  * cxgbe_rate_tag_free gets called when the inp drops
 6838                  * its reference on the tag and there are no more
 6839                  * mbufs in the pending_tx queue and can flush any
 6840                  * pending requests.  Otherwise if the last mbuf
 6841                  * doesn't request a completion the etid will never be
 6842                  * released.
 6843                  */
 6844                 m->m_pkthdr.snd_tag = NULL;
 6845                 m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
 6846                 m_snd_tag_rele(&cst->com);
 6847 
 6848                 mbufq_enqueue(&cst->pending_fwack, m);
 6849         }
 6850 }
 6851 
 6852 int
 6853 ethofld_transmit(struct ifnet *ifp, struct mbuf *m0)
 6854 {
 6855         struct cxgbe_rate_tag *cst;
 6856         int rc;
 6857 
 6858         MPASS(m0->m_nextpkt == NULL);
 6859         MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG);
 6860         MPASS(m0->m_pkthdr.snd_tag != NULL);
 6861         cst = mst_to_crt(m0->m_pkthdr.snd_tag);
 6862 
 6863         mtx_lock(&cst->lock);
 6864         MPASS(cst->flags & EO_SND_TAG_REF);
 6865 
 6866         if (__predict_false(cst->flags & EO_FLOWC_PENDING)) {
 6867                 struct vi_info *vi = ifp->if_softc;
 6868                 struct port_info *pi = vi->pi;
 6869                 struct adapter *sc = pi->adapter;
 6870                 const uint32_t rss_mask = vi->rss_size - 1;
 6871                 uint32_t rss_hash;
 6872 
 6873                 cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq];
 6874                 if (M_HASHTYPE_ISHASH(m0))
 6875                         rss_hash = m0->m_pkthdr.flowid;
 6876                 else
 6877                         rss_hash = arc4random();
 6878                 /* We assume RSS hashing */
 6879                 cst->iqid = vi->rss[rss_hash & rss_mask];
 6880                 cst->eo_txq += rss_hash % vi->nofldtxq;
 6881                 rc = send_etid_flowc_wr(cst, pi, vi);
 6882                 if (rc != 0)
 6883                         goto done;
 6884         }
 6885 
 6886         if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) {
 6887                 rc = ENOBUFS;
 6888                 goto done;
 6889         }
 6890 
 6891         mbufq_enqueue(&cst->pending_tx, m0);
 6892         cst->plen += m0->m_pkthdr.len;
 6893 
 6894         /*
 6895          * Hold an extra reference on the tag while generating work
 6896          * requests to ensure that we don't try to free the tag during
 6897          * ethofld_tx() in case we are sending the final mbuf after
 6898          * the inp was freed.
 6899          */
 6900         m_snd_tag_ref(&cst->com);
 6901         ethofld_tx(cst);
 6902         mtx_unlock(&cst->lock);
 6903         m_snd_tag_rele(&cst->com);
 6904         return (0);
 6905 
 6906 done:
 6907         mtx_unlock(&cst->lock);
 6908         if (__predict_false(rc != 0))
 6909                 m_freem(m0);
 6910         return (rc);
 6911 }
 6912 
 6913 static int
 6914 ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
 6915 {
 6916         struct adapter *sc = iq->adapter;
 6917         const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
 6918         struct mbuf *m;
 6919         u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
 6920         struct cxgbe_rate_tag *cst;
 6921         uint8_t credits = cpl->credits;
 6922 
 6923         cst = lookup_etid(sc, etid);
 6924         mtx_lock(&cst->lock);
 6925         if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) {
 6926                 MPASS(credits >= ETID_FLOWC_LEN16);
 6927                 credits -= ETID_FLOWC_LEN16;
 6928                 cst->flags &= ~EO_FLOWC_RPL_PENDING;
 6929         }
 6930 
 6931         KASSERT(cst->ncompl > 0,
 6932             ("%s: etid %u (%p) wasn't expecting completion.",
 6933             __func__, etid, cst));
 6934         cst->ncompl--;
 6935 
 6936         while (credits > 0) {
 6937                 m = mbufq_dequeue(&cst->pending_fwack);
 6938                 if (__predict_false(m == NULL)) {
 6939                         /*
 6940                          * The remaining credits are for the final flush that
 6941                          * was issued when the tag was freed by the kernel.
 6942                          */
 6943                         MPASS((cst->flags &
 6944                             (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) ==
 6945                             EO_FLUSH_RPL_PENDING);
 6946                         MPASS(credits == ETID_FLUSH_LEN16);
 6947                         MPASS(cst->tx_credits + cpl->credits == cst->tx_total);
 6948                         MPASS(cst->ncompl == 0);
 6949 
 6950                         cst->flags &= ~EO_FLUSH_RPL_PENDING;
 6951                         cst->tx_credits += cpl->credits;
 6952                         cxgbe_rate_tag_free_locked(cst);
 6953                         return (0);     /* cst is gone. */
 6954                 }
 6955                 KASSERT(m != NULL,
 6956                     ("%s: too many credits (%u, %u)", __func__, cpl->credits,
 6957                     credits));
 6958                 KASSERT(credits >= mbuf_eo_len16(m),
 6959                     ("%s: too few credits (%u, %u, %u)", __func__,
 6960                     cpl->credits, credits, mbuf_eo_len16(m)));
 6961                 credits -= mbuf_eo_len16(m);
 6962                 cst->plen -= m->m_pkthdr.len;
 6963                 m_freem(m);
 6964         }
 6965 
 6966         cst->tx_credits += cpl->credits;
 6967         MPASS(cst->tx_credits <= cst->tx_total);
 6968 
 6969         if (cst->flags & EO_SND_TAG_REF) {
 6970                 /*
 6971                  * As with ethofld_transmit(), hold an extra reference
 6972                  * so that the tag is stable across ethold_tx().
 6973                  */
 6974                 m_snd_tag_ref(&cst->com);
 6975                 m = mbufq_first(&cst->pending_tx);
 6976                 if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m))
 6977                         ethofld_tx(cst);
 6978                 mtx_unlock(&cst->lock);
 6979                 m_snd_tag_rele(&cst->com);
 6980         } else {
 6981                 /*
 6982                  * There shouldn't be any pending packets if the tag
 6983                  * was freed by the kernel since any pending packet
 6984                  * should hold a reference to the tag.
 6985                  */
 6986                 MPASS(mbufq_first(&cst->pending_tx) == NULL);
 6987                 mtx_unlock(&cst->lock);
 6988         }
 6989 
 6990         return (0);
 6991 }
 6992 #endif

Cache object: 59126a99128088a7d5dc5ddc407062a5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.