FreeBSD/Linux Kernel Cross Reference
sys/dev/cxgbe/t4_smt.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2018 Chelsio Communications, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/rwlock.h>
43 #include <sys/socket.h>
44 #include <sys/sbuf.h>
45 #include <netinet/in.h>
46
47 #include "common/common.h"
48 #include "common/t4_msg.h"
49 #include "t4_smt.h"
50
51 /*
52 * Module locking notes: There is a RW lock protecting the SMAC table as a
53 * whole plus a spinlock per SMT entry. Entry lookups and allocations happen
54 * under the protection of the table lock, individual entry changes happen
55 * while holding that entry's spinlock. The table lock nests outside the
56 * entry locks. Allocations of new entries take the table lock as writers so
57 * no other lookups can happen while allocating new entries. Entry updates
58 * take the table lock as readers so multiple entries can be updated in
59 * parallel. An SMT entry can be dropped by decrementing its reference count
60 * and therefore can happen in parallel with entry allocation but no entry
61 * can change state or increment its ref count during allocation as both of
62 * these perform lookups.
63 *
64 * Note: We do not take references to ifnets in this module because both
65 * the TOE and the sockets already hold references to the interfaces and the
66 * lifetime of an SMT entry is fully contained in the lifetime of the TOE.
67 */
68
69 /*
70 * Allocate a free SMT entry. Must be called with smt_data.lock held.
71 */
72 struct smt_entry *
73 t4_find_or_alloc_sme(struct smt_data *s, uint8_t *smac)
74 {
75 struct smt_entry *end, *e;
76 struct smt_entry *first_free = NULL;
77
78 rw_assert(&s->lock, RA_WLOCKED);
79 for (e = &s->smtab[0], end = &s->smtab[s->smt_size]; e != end; ++e) {
80 if (atomic_load_acq_int(&e->refcnt) == 0) {
81 if (!first_free)
82 first_free = e;
83 } else {
84 if (e->state == SMT_STATE_SWITCHING) {
85 /*
86 * This entry is actually in use. See if we can
87 * re-use it?
88 */
89 if (memcmp(e->smac, smac, ETHER_ADDR_LEN) == 0)
90 goto found_reuse;
91 }
92 }
93 }
94 if (first_free) {
95 e = first_free;
96 goto found;
97 }
98 return NULL;
99
100 found:
101 e->state = SMT_STATE_UNUSED;
102 found_reuse:
103 atomic_add_int(&e->refcnt, 1);
104 return e;
105 }
106
107 /*
108 * Write an SMT entry. Must be called with the entry locked.
109 */
110 int
111 t4_write_sme(struct smt_entry *e)
112 {
113 struct smt_data *s;
114 struct sge_wrq *wrq;
115 struct adapter *sc;
116 struct wrq_cookie cookie;
117 struct cpl_smt_write_req *req;
118 struct cpl_t6_smt_write_req *t6req;
119 u8 row;
120
121 mtx_assert(&e->lock, MA_OWNED);
122
123 MPASS(e->wrq != NULL);
124 wrq = e->wrq;
125 sc = wrq->adapter;
126 MPASS(wrq->adapter != NULL);
127 s = sc->smt;
128
129
130 if (chip_id(sc) <= CHELSIO_T5) {
131 /* Source MAC Table (SMT) contains 256 SMAC entries
132 * organized in 128 rows of 2 entries each.
133 */
134 req = start_wrq_wr(wrq, howmany(sizeof(*req), 16), &cookie);
135 if (req == NULL)
136 return (ENOMEM);
137 INIT_TP_WR(req, 0);
138 /* Each row contains an SMAC pair.
139 * LSB selects the SMAC entry within a row
140 */
141 row = (e->idx >> 1);
142 if (e->idx & 1) {
143 req->pfvf1 = 0x0;
144 memcpy(req->src_mac1, e->smac, ETHER_ADDR_LEN);
145 /* fill pfvf0/src_mac0 with entry
146 * at prev index from smt-tab.
147 */
148 req->pfvf0 = 0x0;
149 memcpy(req->src_mac0, s->smtab[e->idx - 1].smac,
150 ETHER_ADDR_LEN);
151 } else {
152 req->pfvf0 = 0x0;
153 memcpy(req->src_mac0, e->smac, ETHER_ADDR_LEN);
154 /* fill pfvf1/src_mac1 with entry
155 * at next index from smt-tab
156 */
157 req->pfvf1 = 0x0;
158 memcpy(req->src_mac1, s->smtab[e->idx + 1].smac,
159 ETHER_ADDR_LEN);
160 }
161 } else {
162 /* Source MAC Table (SMT) contains 256 SMAC entries */
163 t6req = start_wrq_wr(wrq, howmany(sizeof(*t6req), 16), &cookie);
164 if (t6req == NULL)
165 return (ENOMEM);
166 INIT_TP_WR(t6req, 0);
167 req = (struct cpl_smt_write_req *)t6req;
168
169 /* fill pfvf0/src_mac0 from smt-tab */
170 req->pfvf0 = 0x0;
171 memcpy(req->src_mac0, s->smtab[e->idx].smac, ETHER_ADDR_LEN);
172 row = e->idx;
173 }
174 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, e->idx |
175 V_TID_QID(e->iqid)));
176 req->params = htonl(V_SMTW_NORPL(0) |
177 V_SMTW_IDX(row) |
178 V_SMTW_OVLAN_IDX(0));
179
180 commit_wrq_wr(wrq, req, &cookie);
181
182 return (0);
183 }
184
185 /*
186 * Allocate an SMT entry for use by a switching rule.
187 */
188 struct smt_entry *
189 t4_smt_alloc_switching(struct smt_data *s, uint8_t *smac)
190 {
191 struct smt_entry *e;
192
193 MPASS(s != NULL);
194 rw_wlock(&s->lock);
195 e = t4_find_or_alloc_sme(s, smac);
196 rw_wunlock(&s->lock);
197 return e;
198 }
199
200 /*
201 * Sets/updates the contents of a switching SMT entry that has been allocated
202 * with an earlier call to @t4_smt_alloc_switching.
203 */
204 int
205 t4_smt_set_switching(struct adapter *sc, struct smt_entry *e, uint16_t pfvf,
206 uint8_t *smac)
207 {
208 int rc = 0;
209
210 if (atomic_load_acq_int(&e->refcnt) == 1) {
211 /* Setup the entry for the first time */
212 mtx_lock(&e->lock);
213 e->wrq = &sc->sge.ctrlq[0];
214 e->iqid = sc->sge.fwq.abs_id;
215 e->pfvf = pfvf;
216 e->state = SMT_STATE_SWITCHING;
217 memcpy(e->smac, smac, ETHER_ADDR_LEN);
218 rc = t4_write_sme(e);
219 mtx_unlock(&e->lock);
220 }
221
222 return (rc);
223 }
224
225 int
226 t4_init_smt(struct adapter *sc, int flags)
227 {
228 int i, smt_size;
229 struct smt_data *s;
230
231 smt_size = SMT_SIZE;
232 s = malloc(sizeof(*s) + smt_size * sizeof (struct smt_entry), M_CXGBE,
233 M_ZERO | flags);
234 if (!s)
235 return (ENOMEM);
236
237 s->smt_size = smt_size;
238 rw_init(&s->lock, "SMT");
239
240 for (i = 0; i < smt_size; i++) {
241 struct smt_entry *e = &s->smtab[i];
242
243 e->idx = i;
244 e->state = SMT_STATE_UNUSED;
245 mtx_init(&e->lock, "SMT_E", NULL, MTX_DEF);
246 atomic_store_rel_int(&e->refcnt, 0);
247 }
248
249 sc->smt = s;
250
251 return (0);
252 }
253
254 int
255 t4_free_smt(struct smt_data *s)
256 {
257 int i;
258
259 for (i = 0; i < s->smt_size; i++)
260 mtx_destroy(&s->smtab[i].lock);
261 rw_destroy(&s->lock);
262 free(s, M_CXGBE);
263
264 return (0);
265 }
266
267 int
268 do_smt_write_rpl(struct sge_iq *iq, const struct rss_header *rss,
269 struct mbuf *m)
270 {
271 struct adapter *sc = iq->adapter;
272 const struct cpl_smt_write_rpl *rpl = (const void *)(rss + 1);
273 unsigned int tid = GET_TID(rpl);
274 unsigned int smtidx = G_TID_TID(tid);
275
276 if (__predict_false(rpl->status != CPL_ERR_NONE)) {
277 struct smt_entry *e = &sc->smt->smtab[smtidx];
278 log(LOG_ERR,
279 "Unexpected SMT_WRITE_RPL (%u) for entry at hw_idx %u\n",
280 rpl->status, smtidx);
281 mtx_lock(&e->lock);
282 e->state = SMT_STATE_ERROR;
283 mtx_unlock(&e->lock);
284 return (EINVAL);
285 }
286
287 return (0);
288 }
289
290 static char
291 smt_state(const struct smt_entry *e)
292 {
293 switch (e->state) {
294 case SMT_STATE_SWITCHING: return 'X';
295 case SMT_STATE_ERROR: return 'E';
296 default: return 'U';
297 }
298 }
299
300 int
301 sysctl_smt(SYSCTL_HANDLER_ARGS)
302 {
303 struct adapter *sc = arg1;
304 struct smt_data *smt = sc->smt;
305 struct smt_entry *e;
306 struct sbuf *sb;
307 int rc, i, header = 0;
308
309 if (smt == NULL)
310 return (ENXIO);
311
312 rc = sysctl_wire_old_buffer(req, 0);
313 if (rc != 0)
314 return (rc);
315
316 sb = sbuf_new_for_sysctl(NULL, NULL, SMT_SIZE, req);
317 if (sb == NULL)
318 return (ENOMEM);
319
320 e = &smt->smtab[0];
321 for (i = 0; i < smt->smt_size; i++, e++) {
322 mtx_lock(&e->lock);
323 if (e->state == SMT_STATE_UNUSED)
324 goto skip;
325
326 if (header == 0) {
327 sbuf_printf(sb, " Idx "
328 "Ethernet address State Users");
329 header = 1;
330 }
331 sbuf_printf(sb, "\n%4u %02x:%02x:%02x:%02x:%02x:%02x "
332 "%c %5u",
333 e->idx, e->smac[0], e->smac[1], e->smac[2],
334 e->smac[3], e->smac[4], e->smac[5],
335 smt_state(e), atomic_load_acq_int(&e->refcnt));
336 skip:
337 mtx_unlock(&e->lock);
338 }
339
340 rc = sbuf_finish(sb);
341 sbuf_delete(sb);
342
343 return (rc);
344 }
Cache object: 33ee35ce51d4986bfd9870232edb94f0
|