The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/cxgbe/tom/t4_ddp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2012 Chelsio Communications, Inc.
    5  * All rights reserved.
    6  * Written by: Navdeep Parhar <np@FreeBSD.org>
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_inet.h"
   34 
   35 #include <sys/param.h>
   36 #include <sys/aio.h>
   37 #include <sys/bio.h>
   38 #include <sys/file.h>
   39 #include <sys/systm.h>
   40 #include <sys/kernel.h>
   41 #include <sys/ktr.h>
   42 #include <sys/module.h>
   43 #include <sys/protosw.h>
   44 #include <sys/proc.h>
   45 #include <sys/domain.h>
   46 #include <sys/socket.h>
   47 #include <sys/socketvar.h>
   48 #include <sys/taskqueue.h>
   49 #include <sys/uio.h>
   50 #include <netinet/in.h>
   51 #include <netinet/in_pcb.h>
   52 #include <netinet/ip.h>
   53 #include <netinet/tcp_var.h>
   54 #define TCPSTATES
   55 #include <netinet/tcp_fsm.h>
   56 #include <netinet/toecore.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/vm_extern.h>
   60 #include <vm/vm_param.h>
   61 #include <vm/pmap.h>
   62 #include <vm/vm_map.h>
   63 #include <vm/vm_page.h>
   64 #include <vm/vm_object.h>
   65 
   66 #include <cam/scsi/scsi_all.h>
   67 #include <cam/ctl/ctl_io.h>
   68 
   69 #ifdef TCP_OFFLOAD
   70 #include "common/common.h"
   71 #include "common/t4_msg.h"
   72 #include "common/t4_regs.h"
   73 #include "common/t4_tcb.h"
   74 #include "tom/t4_tom.h"
   75 
   76 /*
   77  * Use the 'backend3' field in AIO jobs to store the amount of data
   78  * received by the AIO job so far.
   79  */
   80 #define aio_received    backend3
   81 
   82 static void aio_ddp_requeue_task(void *context, int pending);
   83 static void ddp_complete_all(struct toepcb *toep, int error);
   84 static void t4_aio_cancel_active(struct kaiocb *job);
   85 static void t4_aio_cancel_queued(struct kaiocb *job);
   86 
   87 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
   88 static struct mtx ddp_orphan_pagesets_lock;
   89 static struct task ddp_orphan_task;
   90 
   91 #define MAX_DDP_BUFFER_SIZE             (M_TCB_RX_DDP_BUF0_LEN)
   92 
   93 /*
   94  * A page set holds information about a buffer used for DDP.  The page
   95  * set holds resources such as the VM pages backing the buffer (either
   96  * held or wired) and the page pods associated with the buffer.
   97  * Recently used page sets are cached to allow for efficient reuse of
   98  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
   99  * Note that cached page sets keep the backing pages wired.  The
  100  * number of wired pages is capped by only allowing for two wired
  101  * pagesets per connection.  This is not a perfect cap, but is a
  102  * trade-off for performance.
  103  *
  104  * If an application ping-pongs two buffers for a connection via
  105  * aio_read(2) then those buffers should remain wired and expensive VM
  106  * fault lookups should be avoided after each buffer has been used
  107  * once.  If an application uses more than two buffers then this will
  108  * fall back to doing expensive VM fault lookups for each operation.
  109  */
  110 static void
  111 free_pageset(struct tom_data *td, struct pageset *ps)
  112 {
  113         vm_page_t p;
  114         int i;
  115 
  116         if (ps->prsv.prsv_nppods > 0)
  117                 t4_free_page_pods(&ps->prsv);
  118 
  119         for (i = 0; i < ps->npages; i++) {
  120                 p = ps->pages[i];
  121                 vm_page_unwire(p, PQ_INACTIVE);
  122         }
  123         mtx_lock(&ddp_orphan_pagesets_lock);
  124         TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
  125         taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
  126         mtx_unlock(&ddp_orphan_pagesets_lock);
  127 }
  128 
  129 static void
  130 ddp_free_orphan_pagesets(void *context, int pending)
  131 {
  132         struct pageset *ps;
  133 
  134         mtx_lock(&ddp_orphan_pagesets_lock);
  135         while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
  136                 ps = TAILQ_FIRST(&ddp_orphan_pagesets);
  137                 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
  138                 mtx_unlock(&ddp_orphan_pagesets_lock);
  139                 if (ps->vm)
  140                         vmspace_free(ps->vm);
  141                 free(ps, M_CXGBE);
  142                 mtx_lock(&ddp_orphan_pagesets_lock);
  143         }
  144         mtx_unlock(&ddp_orphan_pagesets_lock);
  145 }
  146 
  147 static void
  148 recycle_pageset(struct toepcb *toep, struct pageset *ps)
  149 {
  150 
  151         DDP_ASSERT_LOCKED(toep);
  152         if (!(toep->ddp.flags & DDP_DEAD)) {
  153                 KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
  154                     nitems(toep->ddp.db), ("too many wired pagesets"));
  155                 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
  156                 toep->ddp.cached_count++;
  157         } else
  158                 free_pageset(toep->td, ps);
  159 }
  160 
  161 static void
  162 ddp_complete_one(struct kaiocb *job, int error)
  163 {
  164         long copied;
  165 
  166         /*
  167          * If this job had copied data out of the socket buffer before
  168          * it was cancelled, report it as a short read rather than an
  169          * error.
  170          */
  171         copied = job->aio_received;
  172         if (copied != 0 || error == 0)
  173                 aio_complete(job, copied, 0);
  174         else
  175                 aio_complete(job, -1, error);
  176 }
  177 
  178 static void
  179 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
  180 {
  181 
  182         if (db->job) {
  183                 /*
  184                  * XXX: If we are un-offloading the socket then we
  185                  * should requeue these on the socket somehow.  If we
  186                  * got a FIN from the remote end, then this completes
  187                  * any remaining requests with an EOF read.
  188                  */
  189                 if (!aio_clear_cancel_function(db->job))
  190                         ddp_complete_one(db->job, 0);
  191         }
  192 
  193         if (db->ps)
  194                 free_pageset(td, db->ps);
  195 }
  196 
  197 void
  198 ddp_init_toep(struct toepcb *toep)
  199 {
  200 
  201         TAILQ_INIT(&toep->ddp.aiojobq);
  202         TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
  203         toep->ddp.flags = DDP_OK;
  204         toep->ddp.active_id = -1;
  205         mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
  206 }
  207 
  208 void
  209 ddp_uninit_toep(struct toepcb *toep)
  210 {
  211 
  212         mtx_destroy(&toep->ddp.lock);
  213 }
  214 
  215 void
  216 release_ddp_resources(struct toepcb *toep)
  217 {
  218         struct pageset *ps;
  219         int i;
  220 
  221         DDP_LOCK(toep);
  222         toep->ddp.flags |= DDP_DEAD;
  223         for (i = 0; i < nitems(toep->ddp.db); i++) {
  224                 free_ddp_buffer(toep->td, &toep->ddp.db[i]);
  225         }
  226         while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
  227                 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
  228                 free_pageset(toep->td, ps);
  229         }
  230         ddp_complete_all(toep, 0);
  231         DDP_UNLOCK(toep);
  232 }
  233 
  234 #ifdef INVARIANTS
  235 void
  236 ddp_assert_empty(struct toepcb *toep)
  237 {
  238         int i;
  239 
  240         MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
  241         for (i = 0; i < nitems(toep->ddp.db); i++) {
  242                 MPASS(toep->ddp.db[i].job == NULL);
  243                 MPASS(toep->ddp.db[i].ps == NULL);
  244         }
  245         MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
  246         MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
  247 }
  248 #endif
  249 
  250 static void
  251 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
  252     unsigned int db_idx)
  253 {
  254         unsigned int db_flag;
  255 
  256         toep->ddp.active_count--;
  257         if (toep->ddp.active_id == db_idx) {
  258                 if (toep->ddp.active_count == 0) {
  259                         KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
  260                             ("%s: active_count mismatch", __func__));
  261                         toep->ddp.active_id = -1;
  262                 } else
  263                         toep->ddp.active_id ^= 1;
  264 #ifdef VERBOSE_TRACES
  265                 CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__,
  266                     toep->tid, toep->ddp.active_id);
  267 #endif
  268         } else {
  269                 KASSERT(toep->ddp.active_count != 0 &&
  270                     toep->ddp.active_id != -1,
  271                     ("%s: active count mismatch", __func__));
  272         }
  273 
  274         db->cancel_pending = 0;
  275         db->job = NULL;
  276         recycle_pageset(toep, db->ps);
  277         db->ps = NULL;
  278 
  279         db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
  280         KASSERT(toep->ddp.flags & db_flag,
  281             ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
  282             __func__, toep, toep->ddp.flags));
  283         toep->ddp.flags &= ~db_flag;
  284 }
  285 
  286 /* XXX: handle_ddp_data code duplication */
  287 void
  288 insert_ddp_data(struct toepcb *toep, uint32_t n)
  289 {
  290         struct inpcb *inp = toep->inp;
  291         struct tcpcb *tp = intotcpcb(inp);
  292         struct ddp_buffer *db;
  293         struct kaiocb *job;
  294         size_t placed;
  295         long copied;
  296         unsigned int db_idx;
  297 #ifdef INVARIANTS
  298         unsigned int db_flag;
  299 #endif
  300 
  301         INP_WLOCK_ASSERT(inp);
  302         DDP_ASSERT_LOCKED(toep);
  303 
  304         tp->rcv_nxt += n;
  305 #ifndef USE_DDP_RX_FLOW_CONTROL
  306         KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
  307         tp->rcv_wnd -= n;
  308 #endif
  309         CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
  310             __func__, n);
  311         while (toep->ddp.active_count > 0) {
  312                 MPASS(toep->ddp.active_id != -1);
  313                 db_idx = toep->ddp.active_id;
  314 #ifdef INVARIANTS
  315                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
  316 #endif
  317                 MPASS((toep->ddp.flags & db_flag) != 0);
  318                 db = &toep->ddp.db[db_idx];
  319                 job = db->job;
  320                 copied = job->aio_received;
  321                 placed = n;
  322                 if (placed > job->uaiocb.aio_nbytes - copied)
  323                         placed = job->uaiocb.aio_nbytes - copied;
  324                 if (placed > 0)
  325                         job->msgrcv = 1;
  326                 if (!aio_clear_cancel_function(job)) {
  327                         /*
  328                          * Update the copied length for when
  329                          * t4_aio_cancel_active() completes this
  330                          * request.
  331                          */
  332                         job->aio_received += placed;
  333                 } else if (copied + placed != 0) {
  334                         CTR4(KTR_CXGBE,
  335                             "%s: completing %p (copied %ld, placed %lu)",
  336                             __func__, job, copied, placed);
  337                         /* XXX: This always completes if there is some data. */
  338                         aio_complete(job, copied + placed, 0);
  339                 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
  340                         TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
  341                         toep->ddp.waiting_count++;
  342                 } else
  343                         aio_cancel(job);
  344                 n -= placed;
  345                 complete_ddp_buffer(toep, db, db_idx);
  346         }
  347 
  348         MPASS(n == 0);
  349 }
  350 
  351 /* SET_TCB_FIELD sent as a ULP command looks like this */
  352 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
  353     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
  354 
  355 /* RX_DATA_ACK sent as a ULP command looks like this */
  356 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
  357     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
  358 
  359 static inline void *
  360 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
  361     uint64_t word, uint64_t mask, uint64_t val)
  362 {
  363         struct ulptx_idata *ulpsc;
  364         struct cpl_set_tcb_field_core *req;
  365 
  366         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
  367         ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
  368 
  369         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
  370         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
  371         ulpsc->len = htobe32(sizeof(*req));
  372 
  373         req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
  374         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
  375         req->reply_ctrl = htobe16(V_NO_REPLY(1) |
  376             V_QUEUENO(toep->ofld_rxq->iq.abs_id));
  377         req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
  378         req->mask = htobe64(mask);
  379         req->val = htobe64(val);
  380 
  381         ulpsc = (struct ulptx_idata *)(req + 1);
  382         if (LEN__SET_TCB_FIELD_ULP % 16) {
  383                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
  384                 ulpsc->len = htobe32(0);
  385                 return (ulpsc + 1);
  386         }
  387         return (ulpsc);
  388 }
  389 
  390 static inline void *
  391 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
  392 {
  393         struct ulptx_idata *ulpsc;
  394         struct cpl_rx_data_ack_core *req;
  395 
  396         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
  397         ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
  398 
  399         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
  400         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
  401         ulpsc->len = htobe32(sizeof(*req));
  402 
  403         req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
  404         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
  405         req->credit_dack = htobe32(F_RX_MODULATE_RX);
  406 
  407         ulpsc = (struct ulptx_idata *)(req + 1);
  408         if (LEN__RX_DATA_ACK_ULP % 16) {
  409                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
  410                 ulpsc->len = htobe32(0);
  411                 return (ulpsc + 1);
  412         }
  413         return (ulpsc);
  414 }
  415 
  416 static struct wrqe *
  417 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
  418     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
  419 {
  420         struct wrqe *wr;
  421         struct work_request_hdr *wrh;
  422         struct ulp_txpkt *ulpmc;
  423         int len;
  424 
  425         KASSERT(db_idx == 0 || db_idx == 1,
  426             ("%s: bad DDP buffer index %d", __func__, db_idx));
  427 
  428         /*
  429          * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
  430          * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
  431          *
  432          * The work request header is 16B and always ends at a 16B boundary.
  433          * The ULPTX master commands that follow must all end at 16B boundaries
  434          * too so we round up the size to 16.
  435          */
  436         len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
  437             roundup2(LEN__RX_DATA_ACK_ULP, 16);
  438 
  439         wr = alloc_wrqe(len, toep->ctrlq);
  440         if (wr == NULL)
  441                 return (NULL);
  442         wrh = wrtod(wr);
  443         INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
  444         ulpmc = (struct ulp_txpkt *)(wrh + 1);
  445 
  446         /* Write the buffer's tag */
  447         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
  448             W_TCB_RX_DDP_BUF0_TAG + db_idx,
  449             V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
  450             V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
  451 
  452         /* Update the current offset in the DDP buffer and its total length */
  453         if (db_idx == 0)
  454                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
  455                     W_TCB_RX_DDP_BUF0_OFFSET,
  456                     V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
  457                     V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
  458                     V_TCB_RX_DDP_BUF0_OFFSET(offset) |
  459                     V_TCB_RX_DDP_BUF0_LEN(ps->len));
  460         else
  461                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
  462                     W_TCB_RX_DDP_BUF1_OFFSET,
  463                     V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
  464                     V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
  465                     V_TCB_RX_DDP_BUF1_OFFSET(offset) |
  466                     V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
  467 
  468         /* Update DDP flags */
  469         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
  470             ddp_flags_mask, ddp_flags);
  471 
  472         /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
  473         ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
  474 
  475         return (wr);
  476 }
  477 
  478 static int
  479 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
  480 {
  481         uint32_t report = be32toh(ddp_report);
  482         unsigned int db_idx;
  483         struct inpcb *inp = toep->inp;
  484         struct ddp_buffer *db;
  485         struct tcpcb *tp;
  486         struct socket *so;
  487         struct sockbuf *sb;
  488         struct kaiocb *job;
  489         long copied;
  490 
  491         db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
  492 
  493         if (__predict_false(!(report & F_DDP_INV)))
  494                 CXGBE_UNIMPLEMENTED("DDP buffer still valid");
  495 
  496         INP_WLOCK(inp);
  497         so = inp_inpcbtosocket(inp);
  498         sb = &so->so_rcv;
  499         DDP_LOCK(toep);
  500 
  501         KASSERT(toep->ddp.active_id == db_idx,
  502             ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
  503             toep->ddp.active_id, toep->tid));
  504         db = &toep->ddp.db[db_idx];
  505         job = db->job;
  506 
  507         if (__predict_false(inp->inp_flags & INP_DROPPED)) {
  508                 /*
  509                  * This can happen due to an administrative tcpdrop(8).
  510                  * Just fail the request with ECONNRESET.
  511                  */
  512                 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
  513                     __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
  514                 if (aio_clear_cancel_function(job))
  515                         ddp_complete_one(job, ECONNRESET);
  516                 goto completed;
  517         }
  518 
  519         tp = intotcpcb(inp);
  520 
  521         /*
  522          * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
  523          * sequence number of the next byte to receive.  The length of
  524          * the data received for this message must be computed by
  525          * comparing the new and old values of rcv_nxt.
  526          *
  527          * For RX_DATA_DDP, len might be non-zero, but it is only the
  528          * length of the most recent DMA.  It does not include the
  529          * total length of the data received since the previous update
  530          * for this DDP buffer.  rcv_nxt is the sequence number of the
  531          * first received byte from the most recent DMA.
  532          */
  533         len += be32toh(rcv_nxt) - tp->rcv_nxt;
  534         tp->rcv_nxt += len;
  535         tp->t_rcvtime = ticks;
  536 #ifndef USE_DDP_RX_FLOW_CONTROL
  537         KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
  538         tp->rcv_wnd -= len;
  539 #endif
  540 #ifdef VERBOSE_TRACES
  541         CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__,
  542             toep->tid, db_idx, len, report);
  543 #endif
  544 
  545         /* receive buffer autosize */
  546         MPASS(toep->vnet == so->so_vnet);
  547         CURVNET_SET(toep->vnet);
  548         SOCKBUF_LOCK(sb);
  549         if (sb->sb_flags & SB_AUTOSIZE &&
  550             V_tcp_do_autorcvbuf &&
  551             sb->sb_hiwat < V_tcp_autorcvbuf_max &&
  552             len > (sbspace(sb) / 8 * 7)) {
  553                 struct adapter *sc = td_adapter(toep->td);
  554                 unsigned int hiwat = sb->sb_hiwat;
  555                 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
  556                     V_tcp_autorcvbuf_max);
  557 
  558                 if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
  559                         sb->sb_flags &= ~SB_AUTOSIZE;
  560         }
  561         SOCKBUF_UNLOCK(sb);
  562         CURVNET_RESTORE();
  563 
  564         job->msgrcv = 1;
  565         if (db->cancel_pending) {
  566                 /*
  567                  * Update the job's length but defer completion to the
  568                  * TCB_RPL callback.
  569                  */
  570                 job->aio_received += len;
  571                 goto out;
  572         } else if (!aio_clear_cancel_function(job)) {
  573                 /*
  574                  * Update the copied length for when
  575                  * t4_aio_cancel_active() completes this request.
  576                  */
  577                 job->aio_received += len;
  578         } else {
  579                 copied = job->aio_received;
  580 #ifdef VERBOSE_TRACES
  581                 CTR5(KTR_CXGBE,
  582                     "%s: tid %u, completing %p (copied %ld, placed %d)",
  583                     __func__, toep->tid, job, copied, len);
  584 #endif
  585                 aio_complete(job, copied + len, 0);
  586                 t4_rcvd(&toep->td->tod, tp);
  587         }
  588 
  589 completed:
  590         complete_ddp_buffer(toep, db, db_idx);
  591         if (toep->ddp.waiting_count > 0)
  592                 ddp_queue_toep(toep);
  593 out:
  594         DDP_UNLOCK(toep);
  595         INP_WUNLOCK(inp);
  596 
  597         return (0);
  598 }
  599 
  600 void
  601 handle_ddp_indicate(struct toepcb *toep)
  602 {
  603 
  604         DDP_ASSERT_LOCKED(toep);
  605         MPASS(toep->ddp.active_count == 0);
  606         MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
  607         if (toep->ddp.waiting_count == 0) {
  608                 /*
  609                  * The pending requests that triggered the request for an
  610                  * an indicate were cancelled.  Those cancels should have
  611                  * already disabled DDP.  Just ignore this as the data is
  612                  * going into the socket buffer anyway.
  613                  */
  614                 return;
  615         }
  616         CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
  617             toep->tid, toep->ddp.waiting_count);
  618         ddp_queue_toep(toep);
  619 }
  620 
  621 CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1);
  622 
  623 static int
  624 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
  625 {
  626         struct adapter *sc = iq->adapter;
  627         const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
  628         unsigned int tid = GET_TID(cpl);
  629         unsigned int db_idx;
  630         struct toepcb *toep;
  631         struct inpcb *inp;
  632         struct ddp_buffer *db;
  633         struct kaiocb *job;
  634         long copied;
  635 
  636         if (cpl->status != CPL_ERR_NONE)
  637                 panic("XXX: tcp_rpl failed: %d", cpl->status);
  638 
  639         toep = lookup_tid(sc, tid);
  640         inp = toep->inp;
  641         switch (cpl->cookie) {
  642         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0):
  643         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1):
  644                 /*
  645                  * XXX: This duplicates a lot of code with handle_ddp_data().
  646                  */
  647                 db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0;
  648                 MPASS(db_idx < nitems(toep->ddp.db));
  649                 INP_WLOCK(inp);
  650                 DDP_LOCK(toep);
  651                 db = &toep->ddp.db[db_idx];
  652 
  653                 /*
  654                  * handle_ddp_data() should leave the job around until
  655                  * this callback runs once a cancel is pending.
  656                  */
  657                 MPASS(db != NULL);
  658                 MPASS(db->job != NULL);
  659                 MPASS(db->cancel_pending);
  660 
  661                 /*
  662                  * XXX: It's not clear what happens if there is data
  663                  * placed when the buffer is invalidated.  I suspect we
  664                  * need to read the TCB to see how much data was placed.
  665                  *
  666                  * For now this just pretends like nothing was placed.
  667                  *
  668                  * XXX: Note that if we did check the PCB we would need to
  669                  * also take care of updating the tp, etc.
  670                  */
  671                 job = db->job;
  672                 copied = job->aio_received;
  673                 if (copied == 0) {
  674                         CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
  675                         aio_cancel(job);
  676                 } else {
  677                         CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
  678                             __func__, job, copied);
  679                         aio_complete(job, copied, 0);
  680                         t4_rcvd(&toep->td->tod, intotcpcb(inp));
  681                 }
  682 
  683                 complete_ddp_buffer(toep, db, db_idx);
  684                 if (toep->ddp.waiting_count > 0)
  685                         ddp_queue_toep(toep);
  686                 DDP_UNLOCK(toep);
  687                 INP_WUNLOCK(inp);
  688                 break;
  689         default:
  690                 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
  691                     G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
  692         }
  693 
  694         return (0);
  695 }
  696 
  697 void
  698 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
  699 {
  700         struct ddp_buffer *db;
  701         struct kaiocb *job;
  702         long copied;
  703         unsigned int db_idx;
  704 #ifdef INVARIANTS
  705         unsigned int db_flag;
  706 #endif
  707         int len, placed;
  708 
  709         INP_WLOCK_ASSERT(toep->inp);
  710         DDP_ASSERT_LOCKED(toep);
  711 
  712         /* - 1 is to ignore the byte for FIN */
  713         len = be32toh(rcv_nxt) - tp->rcv_nxt - 1;
  714         tp->rcv_nxt += len;
  715 
  716         while (toep->ddp.active_count > 0) {
  717                 MPASS(toep->ddp.active_id != -1);
  718                 db_idx = toep->ddp.active_id;
  719 #ifdef INVARIANTS
  720                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
  721 #endif
  722                 MPASS((toep->ddp.flags & db_flag) != 0);
  723                 db = &toep->ddp.db[db_idx];
  724                 job = db->job;
  725                 copied = job->aio_received;
  726                 placed = len;
  727                 if (placed > job->uaiocb.aio_nbytes - copied)
  728                         placed = job->uaiocb.aio_nbytes - copied;
  729                 if (placed > 0)
  730                         job->msgrcv = 1;
  731                 if (!aio_clear_cancel_function(job)) {
  732                         /*
  733                          * Update the copied length for when
  734                          * t4_aio_cancel_active() completes this
  735                          * request.
  736                          */
  737                         job->aio_received += placed;
  738                 } else {
  739                         CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
  740                             __func__, toep->tid, db_idx, placed);
  741                         aio_complete(job, copied + placed, 0);
  742                 }
  743                 len -= placed;
  744                 complete_ddp_buffer(toep, db, db_idx);
  745         }
  746 
  747         MPASS(len == 0);
  748         ddp_complete_all(toep, 0);
  749 }
  750 
  751 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
  752          F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
  753          F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
  754          F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
  755 
  756 extern cpl_handler_t t4_cpl_handler[];
  757 
  758 static int
  759 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
  760 {
  761         struct adapter *sc = iq->adapter;
  762         const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
  763         unsigned int tid = GET_TID(cpl);
  764         uint32_t vld;
  765         struct toepcb *toep = lookup_tid(sc, tid);
  766 
  767         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
  768         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
  769         KASSERT(!(toep->flags & TPF_SYNQE),
  770             ("%s: toep %p claims to be a synq entry", __func__, toep));
  771 
  772         vld = be32toh(cpl->ddpvld);
  773         if (__predict_false(vld & DDP_ERR)) {
  774                 panic("%s: DDP error 0x%x (tid %d, toep %p)",
  775                     __func__, vld, tid, toep);
  776         }
  777 
  778         if (ulp_mode(toep) == ULP_MODE_ISCSI) {
  779                 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
  780                 return (0);
  781         }
  782 
  783         handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
  784 
  785         return (0);
  786 }
  787 
  788 static int
  789 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
  790     struct mbuf *m)
  791 {
  792         struct adapter *sc = iq->adapter;
  793         const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
  794         unsigned int tid = GET_TID(cpl);
  795         struct toepcb *toep = lookup_tid(sc, tid);
  796 
  797         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
  798         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
  799         KASSERT(!(toep->flags & TPF_SYNQE),
  800             ("%s: toep %p claims to be a synq entry", __func__, toep));
  801 
  802         handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
  803 
  804         return (0);
  805 }
  806 
  807 static void
  808 enable_ddp(struct adapter *sc, struct toepcb *toep)
  809 {
  810 
  811         KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
  812             ("%s: toep %p has bad ddp_flags 0x%x",
  813             __func__, toep, toep->ddp.flags));
  814 
  815         CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
  816             __func__, toep->tid, time_uptime);
  817 
  818         DDP_ASSERT_LOCKED(toep);
  819         toep->ddp.flags |= DDP_SC_REQ;
  820         t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
  821             V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
  822             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
  823             V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
  824             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
  825         t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
  826             V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
  827 }
  828 
  829 static int
  830 calculate_hcf(int n1, int n2)
  831 {
  832         int a, b, t;
  833 
  834         if (n1 <= n2) {
  835                 a = n1;
  836                 b = n2;
  837         } else {
  838                 a = n2;
  839                 b = n1;
  840         }
  841 
  842         while (a != 0) {
  843                 t = a;
  844                 a = b % a;
  845                 b = t;
  846         }
  847 
  848         return (b);
  849 }
  850 
  851 static inline int
  852 pages_to_nppods(int npages, int ddp_page_shift)
  853 {
  854 
  855         MPASS(ddp_page_shift >= PAGE_SHIFT);
  856 
  857         return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
  858 }
  859 
  860 static int
  861 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
  862     struct ppod_reservation *prsv)
  863 {
  864         vmem_addr_t addr;       /* relative to start of region */
  865 
  866         if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
  867             &addr) != 0)
  868                 return (ENOMEM);
  869 
  870 #ifdef VERBOSE_TRACES
  871         CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
  872             __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
  873             nppods, 1 << pr->pr_page_shift[pgsz_idx]);
  874 #endif
  875 
  876         /*
  877          * The hardware tagmask includes an extra invalid bit but the arena was
  878          * seeded with valid values only.  An allocation out of this arena will
  879          * fit inside the tagmask but won't have the invalid bit set.
  880          */
  881         MPASS((addr & pr->pr_tag_mask) == addr);
  882         MPASS((addr & pr->pr_invalid_bit) == 0);
  883 
  884         prsv->prsv_pr = pr;
  885         prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
  886         prsv->prsv_nppods = nppods;
  887 
  888         return (0);
  889 }
  890 
  891 static int
  892 t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages,
  893     int npages, struct ppod_reservation *prsv)
  894 {
  895         int i, hcf, seglen, idx, nppods;
  896 
  897         /*
  898          * The DDP page size is unrelated to the VM page size.  We combine
  899          * contiguous physical pages into larger segments to get the best DDP
  900          * page size possible.  This is the largest of the four sizes in
  901          * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
  902          * the page list.
  903          */
  904         hcf = 0;
  905         for (i = 0; i < npages; i++) {
  906                 seglen = PAGE_SIZE;
  907                 while (i < npages - 1 &&
  908                     VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE ==
  909                     VM_PAGE_TO_PHYS(pages[i + 1])) {
  910                         seglen += PAGE_SIZE;
  911                         i++;
  912                 }
  913 
  914                 hcf = calculate_hcf(hcf, seglen);
  915                 if (hcf < (1 << pr->pr_page_shift[1])) {
  916                         idx = 0;
  917                         goto have_pgsz; /* give up, short circuit */
  918                 }
  919         }
  920 
  921 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
  922         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
  923         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
  924                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
  925                         break;
  926         }
  927 #undef PR_PAGE_MASK
  928 
  929 have_pgsz:
  930         MPASS(idx <= M_PPOD_PGSZ);
  931 
  932         nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]);
  933         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
  934                 return (ENOMEM);
  935         MPASS(prsv->prsv_nppods > 0);
  936 
  937         return (0);
  938 }
  939 
  940 int
  941 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
  942 {
  943         struct ppod_reservation *prsv = &ps->prsv;
  944 
  945         KASSERT(prsv->prsv_nppods == 0,
  946             ("%s: page pods already allocated", __func__));
  947 
  948         return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages,
  949             prsv));
  950 }
  951 
  952 int
  953 t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp,
  954     struct ppod_reservation *prsv)
  955 {
  956 
  957         MPASS(bp->bio_flags & BIO_UNMAPPED);
  958 
  959         return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n,
  960             prsv));
  961 }
  962 
  963 int
  964 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
  965     struct ppod_reservation *prsv)
  966 {
  967         int hcf, seglen, idx, npages, nppods;
  968         uintptr_t start_pva, end_pva, pva, p1;
  969 
  970         MPASS(buf > 0);
  971         MPASS(len > 0);
  972 
  973         /*
  974          * The DDP page size is unrelated to the VM page size.  We combine
  975          * contiguous physical pages into larger segments to get the best DDP
  976          * page size possible.  This is the largest of the four sizes in
  977          * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
  978          * in the page list.
  979          */
  980         hcf = 0;
  981         start_pva = trunc_page(buf);
  982         end_pva = trunc_page(buf + len - 1);
  983         pva = start_pva;
  984         while (pva <= end_pva) {
  985                 seglen = PAGE_SIZE;
  986                 p1 = pmap_kextract(pva);
  987                 pva += PAGE_SIZE;
  988                 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
  989                         seglen += PAGE_SIZE;
  990                         pva += PAGE_SIZE;
  991                 }
  992 
  993                 hcf = calculate_hcf(hcf, seglen);
  994                 if (hcf < (1 << pr->pr_page_shift[1])) {
  995                         idx = 0;
  996                         goto have_pgsz; /* give up, short circuit */
  997                 }
  998         }
  999 
 1000 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
 1001         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
 1002         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
 1003                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
 1004                         break;
 1005         }
 1006 #undef PR_PAGE_MASK
 1007 
 1008 have_pgsz:
 1009         MPASS(idx <= M_PPOD_PGSZ);
 1010 
 1011         npages = 1;
 1012         npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
 1013         nppods = howmany(npages, PPOD_PAGES);
 1014         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
 1015                 return (ENOMEM);
 1016         MPASS(prsv->prsv_nppods > 0);
 1017 
 1018         return (0);
 1019 }
 1020 
 1021 int
 1022 t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl,
 1023     int entries, struct ppod_reservation *prsv)
 1024 {
 1025         int hcf, seglen, idx = 0, npages, nppods, i, len;
 1026         uintptr_t start_pva, end_pva, pva, p1 ;
 1027         vm_offset_t buf;
 1028         struct ctl_sg_entry *sge;
 1029 
 1030         MPASS(entries > 0);
 1031         MPASS(sgl);
 1032 
 1033         /*
 1034          * The DDP page size is unrelated to the VM page size.  We combine
 1035          * contiguous physical pages into larger segments to get the best DDP
 1036          * page size possible.  This is the largest of the four sizes in
 1037          * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
 1038          * in the page list.
 1039          */
 1040         hcf = 0;
 1041         for (i = entries - 1; i >= 0; i--) {
 1042                 sge = sgl + i;
 1043                 buf = (vm_offset_t)sge->addr;
 1044                 len = sge->len;
 1045                 start_pva = trunc_page(buf);
 1046                 end_pva = trunc_page(buf + len - 1);
 1047                 pva = start_pva;
 1048                 while (pva <= end_pva) {
 1049                         seglen = PAGE_SIZE;
 1050                         p1 = pmap_kextract(pva);
 1051                         pva += PAGE_SIZE;
 1052                         while (pva <= end_pva && p1 + seglen ==
 1053                             pmap_kextract(pva)) {
 1054                                 seglen += PAGE_SIZE;
 1055                                 pva += PAGE_SIZE;
 1056                         }
 1057 
 1058                         hcf = calculate_hcf(hcf, seglen);
 1059                         if (hcf < (1 << pr->pr_page_shift[1])) {
 1060                                 idx = 0;
 1061                                 goto have_pgsz; /* give up, short circuit */
 1062                         }
 1063                 }
 1064         }
 1065 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
 1066         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
 1067         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
 1068                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
 1069                         break;
 1070         }
 1071 #undef PR_PAGE_MASK
 1072 
 1073 have_pgsz:
 1074         MPASS(idx <= M_PPOD_PGSZ);
 1075 
 1076         npages = 0;
 1077         while (entries--) {
 1078                 npages++;
 1079                 start_pva = trunc_page((vm_offset_t)sgl->addr);
 1080                 end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1);
 1081                 npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
 1082                 sgl = sgl + 1;
 1083         }
 1084         nppods = howmany(npages, PPOD_PAGES);
 1085         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
 1086                 return (ENOMEM);
 1087         MPASS(prsv->prsv_nppods > 0);
 1088         return (0);
 1089 }
 1090 
 1091 void
 1092 t4_free_page_pods(struct ppod_reservation *prsv)
 1093 {
 1094         struct ppod_region *pr = prsv->prsv_pr;
 1095         vmem_addr_t addr;
 1096 
 1097         MPASS(prsv != NULL);
 1098         MPASS(prsv->prsv_nppods != 0);
 1099 
 1100         addr = prsv->prsv_tag & pr->pr_tag_mask;
 1101         MPASS((addr & pr->pr_invalid_bit) == 0);
 1102 
 1103 #ifdef VERBOSE_TRACES
 1104         CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
 1105             pr->pr_arena, addr, prsv->prsv_nppods);
 1106 #endif
 1107 
 1108         vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
 1109         prsv->prsv_nppods = 0;
 1110 }
 1111 
 1112 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
 1113 
 1114 int
 1115 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
 1116     struct pageset *ps)
 1117 {
 1118         struct wrqe *wr;
 1119         struct ulp_mem_io *ulpmc;
 1120         struct ulptx_idata *ulpsc;
 1121         struct pagepod *ppod;
 1122         int i, j, k, n, chunk, len, ddp_pgsz, idx;
 1123         u_int ppod_addr;
 1124         uint32_t cmd;
 1125         struct ppod_reservation *prsv = &ps->prsv;
 1126         struct ppod_region *pr = prsv->prsv_pr;
 1127         vm_paddr_t pa;
 1128 
 1129         KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
 1130             ("%s: page pods already written", __func__));
 1131         MPASS(prsv->prsv_nppods > 0);
 1132 
 1133         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
 1134         if (is_t4(sc))
 1135                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
 1136         else
 1137                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
 1138         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
 1139         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
 1140         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
 1141 
 1142                 /* How many page pods are we writing in this cycle */
 1143                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
 1144                 chunk = PPOD_SZ(n);
 1145                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
 1146 
 1147                 wr = alloc_wrqe(len, wrq);
 1148                 if (wr == NULL)
 1149                         return (ENOMEM);        /* ok to just bail out */
 1150                 ulpmc = wrtod(wr);
 1151 
 1152                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
 1153                 ulpmc->cmd = cmd;
 1154                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
 1155                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
 1156                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
 1157 
 1158                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
 1159                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
 1160                 ulpsc->len = htobe32(chunk);
 1161 
 1162                 ppod = (struct pagepod *)(ulpsc + 1);
 1163                 for (j = 0; j < n; i++, j++, ppod++) {
 1164                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
 1165                             V_PPOD_TID(tid) | prsv->prsv_tag);
 1166                         ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
 1167                             V_PPOD_OFST(ps->offset));
 1168                         ppod->rsvd = 0;
 1169                         idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
 1170                         for (k = 0; k < nitems(ppod->addr); k++) {
 1171                                 if (idx < ps->npages) {
 1172                                         pa = VM_PAGE_TO_PHYS(ps->pages[idx]);
 1173                                         ppod->addr[k] = htobe64(pa);
 1174                                         idx += ddp_pgsz / PAGE_SIZE;
 1175                                 } else
 1176                                         ppod->addr[k] = 0;
 1177 #if 0
 1178                                 CTR5(KTR_CXGBE,
 1179                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
 1180                                     __func__, tid, i, k,
 1181                                     be64toh(ppod->addr[k]));
 1182 #endif
 1183                         }
 1184 
 1185                 }
 1186 
 1187                 t4_wrq_tx(sc, wr);
 1188         }
 1189         ps->flags |= PS_PPODS_WRITTEN;
 1190 
 1191         return (0);
 1192 }
 1193 
 1194 static struct mbuf *
 1195 alloc_raw_wr_mbuf(int len)
 1196 {
 1197         struct mbuf *m;
 1198 
 1199         if (len <= MHLEN)
 1200                 m = m_gethdr(M_NOWAIT, MT_DATA);
 1201         else if (len <= MCLBYTES)
 1202                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1203         else
 1204                 m = NULL;
 1205         if (m == NULL)
 1206                 return (NULL);
 1207         m->m_pkthdr.len = len;
 1208         m->m_len = len;
 1209         set_mbuf_raw_wr(m, true);
 1210         return (m);
 1211 }
 1212 
 1213 int
 1214 t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep,
 1215     struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq)
 1216 {
 1217         struct ulp_mem_io *ulpmc;
 1218         struct ulptx_idata *ulpsc;
 1219         struct pagepod *ppod;
 1220         int i, j, k, n, chunk, len, ddp_pgsz, idx;
 1221         u_int ppod_addr;
 1222         uint32_t cmd;
 1223         struct ppod_region *pr = prsv->prsv_pr;
 1224         vm_paddr_t pa;
 1225         struct mbuf *m;
 1226 
 1227         MPASS(bp->bio_flags & BIO_UNMAPPED);
 1228 
 1229         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
 1230         if (is_t4(sc))
 1231                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
 1232         else
 1233                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
 1234         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
 1235         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
 1236         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
 1237 
 1238                 /* How many page pods are we writing in this cycle */
 1239                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
 1240                 MPASS(n > 0);
 1241                 chunk = PPOD_SZ(n);
 1242                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
 1243 
 1244                 m = alloc_raw_wr_mbuf(len);
 1245                 if (m == NULL)
 1246                         return (ENOMEM);
 1247 
 1248                 ulpmc = mtod(m, struct ulp_mem_io *);
 1249                 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid);
 1250                 ulpmc->cmd = cmd;
 1251                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
 1252                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
 1253                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
 1254 
 1255                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
 1256                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
 1257                 ulpsc->len = htobe32(chunk);
 1258 
 1259                 ppod = (struct pagepod *)(ulpsc + 1);
 1260                 for (j = 0; j < n; i++, j++, ppod++) {
 1261                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
 1262                             V_PPOD_TID(toep->tid) |
 1263                             (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
 1264                         ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) |
 1265                             V_PPOD_OFST(bp->bio_ma_offset));
 1266                         ppod->rsvd = 0;
 1267                         idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
 1268                         for (k = 0; k < nitems(ppod->addr); k++) {
 1269                                 if (idx < bp->bio_ma_n) {
 1270                                         pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]);
 1271                                         ppod->addr[k] = htobe64(pa);
 1272                                         idx += ddp_pgsz / PAGE_SIZE;
 1273                                 } else
 1274                                         ppod->addr[k] = 0;
 1275 #if 0
 1276                                 CTR5(KTR_CXGBE,
 1277                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
 1278                                     __func__, toep->tid, i, k,
 1279                                     be64toh(ppod->addr[k]));
 1280 #endif
 1281                         }
 1282                 }
 1283 
 1284                 mbufq_enqueue(wrq, m);
 1285         }
 1286 
 1287         return (0);
 1288 }
 1289 
 1290 int
 1291 t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep,
 1292     struct ppod_reservation *prsv, vm_offset_t buf, int buflen,
 1293     struct mbufq *wrq)
 1294 {
 1295         struct ulp_mem_io *ulpmc;
 1296         struct ulptx_idata *ulpsc;
 1297         struct pagepod *ppod;
 1298         int i, j, k, n, chunk, len, ddp_pgsz;
 1299         u_int ppod_addr, offset;
 1300         uint32_t cmd;
 1301         struct ppod_region *pr = prsv->prsv_pr;
 1302         uintptr_t end_pva, pva;
 1303         vm_paddr_t pa;
 1304         struct mbuf *m;
 1305 
 1306         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
 1307         if (is_t4(sc))
 1308                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
 1309         else
 1310                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
 1311         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
 1312         offset = buf & PAGE_MASK;
 1313         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
 1314         pva = trunc_page(buf);
 1315         end_pva = trunc_page(buf + buflen - 1);
 1316         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
 1317 
 1318                 /* How many page pods are we writing in this cycle */
 1319                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
 1320                 MPASS(n > 0);
 1321                 chunk = PPOD_SZ(n);
 1322                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
 1323 
 1324                 m = alloc_raw_wr_mbuf(len);
 1325                 if (m == NULL)
 1326                         return (ENOMEM);
 1327                 ulpmc = mtod(m, struct ulp_mem_io *);
 1328 
 1329                 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid);
 1330                 ulpmc->cmd = cmd;
 1331                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
 1332                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
 1333                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
 1334 
 1335                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
 1336                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
 1337                 ulpsc->len = htobe32(chunk);
 1338 
 1339                 ppod = (struct pagepod *)(ulpsc + 1);
 1340                 for (j = 0; j < n; i++, j++, ppod++) {
 1341                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
 1342                             V_PPOD_TID(toep->tid) |
 1343                             (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
 1344                         ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
 1345                             V_PPOD_OFST(offset));
 1346                         ppod->rsvd = 0;
 1347 
 1348                         for (k = 0; k < nitems(ppod->addr); k++) {
 1349                                 if (pva > end_pva)
 1350                                         ppod->addr[k] = 0;
 1351                                 else {
 1352                                         pa = pmap_kextract(pva);
 1353                                         ppod->addr[k] = htobe64(pa);
 1354                                         pva += ddp_pgsz;
 1355                                 }
 1356 #if 0
 1357                                 CTR5(KTR_CXGBE,
 1358                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
 1359                                     __func__, toep->tid, i, k,
 1360                                     be64toh(ppod->addr[k]));
 1361 #endif
 1362                         }
 1363 
 1364                         /*
 1365                          * Walk back 1 segment so that the first address in the
 1366                          * next pod is the same as the last one in the current
 1367                          * pod.
 1368                          */
 1369                         pva -= ddp_pgsz;
 1370                 }
 1371 
 1372                 mbufq_enqueue(wrq, m);
 1373         }
 1374 
 1375         MPASS(pva <= end_pva);
 1376 
 1377         return (0);
 1378 }
 1379 
 1380 int
 1381 t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep,
 1382     struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries,
 1383     int xferlen, struct mbufq *wrq)
 1384 {
 1385         struct ulp_mem_io *ulpmc;
 1386         struct ulptx_idata *ulpsc;
 1387         struct pagepod *ppod;
 1388         int i, j, k, n, chunk, len, ddp_pgsz;
 1389         u_int ppod_addr, offset, sg_offset = 0;
 1390         uint32_t cmd;
 1391         struct ppod_region *pr = prsv->prsv_pr;
 1392         uintptr_t pva;
 1393         vm_paddr_t pa;
 1394         struct mbuf *m;
 1395 
 1396         MPASS(sgl != NULL);
 1397         MPASS(entries > 0);
 1398         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
 1399         if (is_t4(sc))
 1400                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
 1401         else
 1402                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
 1403         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
 1404         offset = (vm_offset_t)sgl->addr & PAGE_MASK;
 1405         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
 1406         pva = trunc_page((vm_offset_t)sgl->addr);
 1407         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
 1408 
 1409                 /* How many page pods are we writing in this cycle */
 1410                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
 1411                 MPASS(n > 0);
 1412                 chunk = PPOD_SZ(n);
 1413                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
 1414 
 1415                 m = alloc_raw_wr_mbuf(len);
 1416                 if (m == NULL)
 1417                         return (ENOMEM);
 1418                 ulpmc = mtod(m, struct ulp_mem_io *);
 1419 
 1420                 INIT_ULPTX_WR(ulpmc, len, 0, toep->tid);
 1421                 ulpmc->cmd = cmd;
 1422                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
 1423                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
 1424                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
 1425 
 1426                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
 1427                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
 1428                 ulpsc->len = htobe32(chunk);
 1429 
 1430                 ppod = (struct pagepod *)(ulpsc + 1);
 1431                 for (j = 0; j < n; i++, j++, ppod++) {
 1432                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
 1433                             V_PPOD_TID(toep->tid) |
 1434                             (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
 1435                         ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) |
 1436                             V_PPOD_OFST(offset));
 1437                         ppod->rsvd = 0;
 1438 
 1439                         for (k = 0; k < nitems(ppod->addr); k++) {
 1440                                 if (entries != 0) {
 1441                                         pa = pmap_kextract(pva + sg_offset);
 1442                                         ppod->addr[k] = htobe64(pa);
 1443                                 } else
 1444                                         ppod->addr[k] = 0;
 1445 
 1446 #if 0
 1447                                 CTR5(KTR_CXGBE,
 1448                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
 1449                                     __func__, toep->tid, i, k,
 1450                                     be64toh(ppod->addr[k]));
 1451 #endif
 1452 
 1453                                 /*
 1454                                  * If this is the last entry in a pod,
 1455                                  * reuse the same entry for first address
 1456                                  * in the next pod.
 1457                                  */
 1458                                 if (k + 1 == nitems(ppod->addr))
 1459                                         break;
 1460 
 1461                                 /*
 1462                                  * Don't move to the next DDP page if the
 1463                                  * sgl is already finished.
 1464                                  */
 1465                                 if (entries == 0)
 1466                                         continue;
 1467 
 1468                                 sg_offset += ddp_pgsz;
 1469                                 if (sg_offset == sgl->len) {
 1470                                         /*
 1471                                          * This sgl entry is done.  Go
 1472                                          * to the next.
 1473                                          */
 1474                                         entries--;
 1475                                         sgl++;
 1476                                         sg_offset = 0;
 1477                                         if (entries != 0)
 1478                                                 pva = trunc_page(
 1479                                                     (vm_offset_t)sgl->addr);
 1480                                 }
 1481                         }
 1482                 }
 1483 
 1484                 mbufq_enqueue(wrq, m);
 1485         }
 1486 
 1487         return (0);
 1488 }
 1489 
 1490 /*
 1491  * Prepare a pageset for DDP.  This sets up page pods.
 1492  */
 1493 static int
 1494 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
 1495 {
 1496         struct tom_data *td = sc->tom_softc;
 1497 
 1498         if (ps->prsv.prsv_nppods == 0 &&
 1499             t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) {
 1500                 return (0);
 1501         }
 1502         if (!(ps->flags & PS_PPODS_WRITTEN) &&
 1503             t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
 1504                 return (0);
 1505         }
 1506 
 1507         return (1);
 1508 }
 1509 
 1510 int
 1511 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
 1512     const char *name)
 1513 {
 1514         int i;
 1515 
 1516         MPASS(pr != NULL);
 1517         MPASS(r->size > 0);
 1518 
 1519         pr->pr_start = r->start;
 1520         pr->pr_len = r->size;
 1521         pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
 1522         pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
 1523         pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
 1524         pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
 1525 
 1526         /* The SGL -> page pod algorithm requires the sizes to be in order. */
 1527         for (i = 1; i < nitems(pr->pr_page_shift); i++) {
 1528                 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
 1529                         return (ENXIO);
 1530         }
 1531 
 1532         pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
 1533         pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
 1534         if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
 1535                 return (ENXIO);
 1536         pr->pr_alias_shift = fls(pr->pr_tag_mask);
 1537         pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
 1538 
 1539         pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
 1540             M_FIRSTFIT | M_NOWAIT);
 1541         if (pr->pr_arena == NULL)
 1542                 return (ENOMEM);
 1543 
 1544         return (0);
 1545 }
 1546 
 1547 void
 1548 t4_free_ppod_region(struct ppod_region *pr)
 1549 {
 1550 
 1551         MPASS(pr != NULL);
 1552 
 1553         if (pr->pr_arena)
 1554                 vmem_destroy(pr->pr_arena);
 1555         bzero(pr, sizeof(*pr));
 1556 }
 1557 
 1558 static int
 1559 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
 1560     int pgoff, int len)
 1561 {
 1562 
 1563         if (ps->start != start || ps->npages != npages ||
 1564             ps->offset != pgoff || ps->len != len)
 1565                 return (1);
 1566 
 1567         return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
 1568 }
 1569 
 1570 static int
 1571 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
 1572 {
 1573         struct vmspace *vm;
 1574         vm_map_t map;
 1575         vm_offset_t start, end, pgoff;
 1576         struct pageset *ps;
 1577         int n;
 1578 
 1579         DDP_ASSERT_LOCKED(toep);
 1580 
 1581         /*
 1582          * The AIO subsystem will cancel and drain all requests before
 1583          * permitting a process to exit or exec, so p_vmspace should
 1584          * be stable here.
 1585          */
 1586         vm = job->userproc->p_vmspace;
 1587         map = &vm->vm_map;
 1588         start = (uintptr_t)job->uaiocb.aio_buf;
 1589         pgoff = start & PAGE_MASK;
 1590         end = round_page(start + job->uaiocb.aio_nbytes);
 1591         start = trunc_page(start);
 1592 
 1593         if (end - start > MAX_DDP_BUFFER_SIZE) {
 1594                 /*
 1595                  * Truncate the request to a short read.
 1596                  * Alternatively, we could DDP in chunks to the larger
 1597                  * buffer, but that would be quite a bit more work.
 1598                  *
 1599                  * When truncating, round the request down to avoid
 1600                  * crossing a cache line on the final transaction.
 1601                  */
 1602                 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
 1603 #ifdef VERBOSE_TRACES
 1604                 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
 1605                     __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
 1606                     (unsigned long)(end - (start + pgoff)));
 1607                 job->uaiocb.aio_nbytes = end - (start + pgoff);
 1608 #endif
 1609                 end = round_page(end);
 1610         }
 1611 
 1612         n = atop(end - start);
 1613 
 1614         /*
 1615          * Try to reuse a cached pageset.
 1616          */
 1617         TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
 1618                 if (pscmp(ps, vm, start, n, pgoff,
 1619                     job->uaiocb.aio_nbytes) == 0) {
 1620                         TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
 1621                         toep->ddp.cached_count--;
 1622                         *pps = ps;
 1623                         return (0);
 1624                 }
 1625         }
 1626 
 1627         /*
 1628          * If there are too many cached pagesets to create a new one,
 1629          * free a pageset before creating a new one.
 1630          */
 1631         KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
 1632             nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
 1633         if (toep->ddp.active_count + toep->ddp.cached_count ==
 1634             nitems(toep->ddp.db)) {
 1635                 KASSERT(toep->ddp.cached_count > 0,
 1636                     ("no cached pageset to free"));
 1637                 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
 1638                 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
 1639                 toep->ddp.cached_count--;
 1640                 free_pageset(toep->td, ps);
 1641         }
 1642         DDP_UNLOCK(toep);
 1643 
 1644         /* Create a new pageset. */
 1645         ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
 1646             M_ZERO);
 1647         ps->pages = (vm_page_t *)(ps + 1);
 1648         ps->vm_timestamp = map->timestamp;
 1649         ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
 1650             VM_PROT_WRITE, ps->pages, n);
 1651 
 1652         DDP_LOCK(toep);
 1653         if (ps->npages < 0) {
 1654                 free(ps, M_CXGBE);
 1655                 return (EFAULT);
 1656         }
 1657 
 1658         KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
 1659             ps->npages, n));
 1660 
 1661         ps->offset = pgoff;
 1662         ps->len = job->uaiocb.aio_nbytes;
 1663         refcount_acquire(&vm->vm_refcnt);
 1664         ps->vm = vm;
 1665         ps->start = start;
 1666 
 1667         CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
 1668             __func__, toep->tid, ps, job, ps->npages);
 1669         *pps = ps;
 1670         return (0);
 1671 }
 1672 
 1673 static void
 1674 ddp_complete_all(struct toepcb *toep, int error)
 1675 {
 1676         struct kaiocb *job;
 1677 
 1678         DDP_ASSERT_LOCKED(toep);
 1679         while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
 1680                 job = TAILQ_FIRST(&toep->ddp.aiojobq);
 1681                 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
 1682                 toep->ddp.waiting_count--;
 1683                 if (aio_clear_cancel_function(job))
 1684                         ddp_complete_one(job, error);
 1685         }
 1686 }
 1687 
 1688 static void
 1689 aio_ddp_cancel_one(struct kaiocb *job)
 1690 {
 1691         long copied;
 1692 
 1693         /*
 1694          * If this job had copied data out of the socket buffer before
 1695          * it was cancelled, report it as a short read rather than an
 1696          * error.
 1697          */
 1698         copied = job->aio_received;
 1699         if (copied != 0)
 1700                 aio_complete(job, copied, 0);
 1701         else
 1702                 aio_cancel(job);
 1703 }
 1704 
 1705 /*
 1706  * Called when the main loop wants to requeue a job to retry it later.
 1707  * Deals with the race of the job being cancelled while it was being
 1708  * examined.
 1709  */
 1710 static void
 1711 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
 1712 {
 1713 
 1714         DDP_ASSERT_LOCKED(toep);
 1715         if (!(toep->ddp.flags & DDP_DEAD) &&
 1716             aio_set_cancel_function(job, t4_aio_cancel_queued)) {
 1717                 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
 1718                 toep->ddp.waiting_count++;
 1719         } else
 1720                 aio_ddp_cancel_one(job);
 1721 }
 1722 
 1723 static void
 1724 aio_ddp_requeue(struct toepcb *toep)
 1725 {
 1726         struct adapter *sc = td_adapter(toep->td);
 1727         struct socket *so;
 1728         struct sockbuf *sb;
 1729         struct inpcb *inp;
 1730         struct kaiocb *job;
 1731         struct ddp_buffer *db;
 1732         size_t copied, offset, resid;
 1733         struct pageset *ps;
 1734         struct mbuf *m;
 1735         uint64_t ddp_flags, ddp_flags_mask;
 1736         struct wrqe *wr;
 1737         int buf_flag, db_idx, error;
 1738 
 1739         DDP_ASSERT_LOCKED(toep);
 1740 
 1741 restart:
 1742         if (toep->ddp.flags & DDP_DEAD) {
 1743                 MPASS(toep->ddp.waiting_count == 0);
 1744                 MPASS(toep->ddp.active_count == 0);
 1745                 return;
 1746         }
 1747 
 1748         if (toep->ddp.waiting_count == 0 ||
 1749             toep->ddp.active_count == nitems(toep->ddp.db)) {
 1750                 return;
 1751         }
 1752 
 1753         job = TAILQ_FIRST(&toep->ddp.aiojobq);
 1754         so = job->fd_file->f_data;
 1755         sb = &so->so_rcv;
 1756         SOCKBUF_LOCK(sb);
 1757 
 1758         /* We will never get anything unless we are or were connected. */
 1759         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
 1760                 SOCKBUF_UNLOCK(sb);
 1761                 ddp_complete_all(toep, ENOTCONN);
 1762                 return;
 1763         }
 1764 
 1765         KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
 1766             ("%s: pending sockbuf data and DDP is active", __func__));
 1767 
 1768         /* Abort if socket has reported problems. */
 1769         /* XXX: Wait for any queued DDP's to finish and/or flush them? */
 1770         if (so->so_error && sbavail(sb) == 0) {
 1771                 toep->ddp.waiting_count--;
 1772                 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
 1773                 if (!aio_clear_cancel_function(job)) {
 1774                         SOCKBUF_UNLOCK(sb);
 1775                         goto restart;
 1776                 }
 1777 
 1778                 /*
 1779                  * If this job has previously copied some data, report
 1780                  * a short read and leave the error to be reported by
 1781                  * a future request.
 1782                  */
 1783                 copied = job->aio_received;
 1784                 if (copied != 0) {
 1785                         SOCKBUF_UNLOCK(sb);
 1786                         aio_complete(job, copied, 0);
 1787                         goto restart;
 1788                 }
 1789                 error = so->so_error;
 1790                 so->so_error = 0;
 1791                 SOCKBUF_UNLOCK(sb);
 1792                 aio_complete(job, -1, error);
 1793                 goto restart;
 1794         }
 1795 
 1796         /*
 1797          * Door is closed.  If there is pending data in the socket buffer,
 1798          * deliver it.  If there are pending DDP requests, wait for those
 1799          * to complete.  Once they have completed, return EOF reads.
 1800          */
 1801         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
 1802                 SOCKBUF_UNLOCK(sb);
 1803                 if (toep->ddp.active_count != 0)
 1804                         return;
 1805                 ddp_complete_all(toep, 0);
 1806                 return;
 1807         }
 1808 
 1809         /*
 1810          * If DDP is not enabled and there is no pending socket buffer
 1811          * data, try to enable DDP.
 1812          */
 1813         if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
 1814                 SOCKBUF_UNLOCK(sb);
 1815 
 1816                 /*
 1817                  * Wait for the card to ACK that DDP is enabled before
 1818                  * queueing any buffers.  Currently this waits for an
 1819                  * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
 1820                  * message to know that DDP was enabled instead of waiting
 1821                  * for the indicate which would avoid copying the indicate
 1822                  * if no data is pending.
 1823                  *
 1824                  * XXX: Might want to limit the indicate size to the size
 1825                  * of the first queued request.
 1826                  */
 1827                 if ((toep->ddp.flags & DDP_SC_REQ) == 0)
 1828                         enable_ddp(sc, toep);
 1829                 return;
 1830         }
 1831         SOCKBUF_UNLOCK(sb);
 1832 
 1833         /*
 1834          * If another thread is queueing a buffer for DDP, let it
 1835          * drain any work and return.
 1836          */
 1837         if (toep->ddp.queueing != NULL)
 1838                 return;
 1839 
 1840         /* Take the next job to prep it for DDP. */
 1841         toep->ddp.waiting_count--;
 1842         TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
 1843         if (!aio_clear_cancel_function(job))
 1844                 goto restart;
 1845         toep->ddp.queueing = job;
 1846 
 1847         /* NB: This drops DDP_LOCK while it holds the backing VM pages. */
 1848         error = hold_aio(toep, job, &ps);
 1849         if (error != 0) {
 1850                 ddp_complete_one(job, error);
 1851                 toep->ddp.queueing = NULL;
 1852                 goto restart;
 1853         }
 1854 
 1855         SOCKBUF_LOCK(sb);
 1856         if (so->so_error && sbavail(sb) == 0) {
 1857                 copied = job->aio_received;
 1858                 if (copied != 0) {
 1859                         SOCKBUF_UNLOCK(sb);
 1860                         recycle_pageset(toep, ps);
 1861                         aio_complete(job, copied, 0);
 1862                         toep->ddp.queueing = NULL;
 1863                         goto restart;
 1864                 }
 1865 
 1866                 error = so->so_error;
 1867                 so->so_error = 0;
 1868                 SOCKBUF_UNLOCK(sb);
 1869                 recycle_pageset(toep, ps);
 1870                 aio_complete(job, -1, error);
 1871                 toep->ddp.queueing = NULL;
 1872                 goto restart;
 1873         }
 1874 
 1875         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
 1876                 SOCKBUF_UNLOCK(sb);
 1877                 recycle_pageset(toep, ps);
 1878                 if (toep->ddp.active_count != 0) {
 1879                         /*
 1880                          * The door is closed, but there are still pending
 1881                          * DDP buffers.  Requeue.  These jobs will all be
 1882                          * completed once those buffers drain.
 1883                          */
 1884                         aio_ddp_requeue_one(toep, job);
 1885                         toep->ddp.queueing = NULL;
 1886                         return;
 1887                 }
 1888                 ddp_complete_one(job, 0);
 1889                 ddp_complete_all(toep, 0);
 1890                 toep->ddp.queueing = NULL;
 1891                 return;
 1892         }
 1893 
 1894 sbcopy:
 1895         /*
 1896          * If the toep is dead, there shouldn't be any data in the socket
 1897          * buffer, so the above case should have handled this.
 1898          */
 1899         MPASS(!(toep->ddp.flags & DDP_DEAD));
 1900 
 1901         /*
 1902          * If there is pending data in the socket buffer (either
 1903          * from before the requests were queued or a DDP indicate),
 1904          * copy those mbufs out directly.
 1905          */
 1906         copied = 0;
 1907         offset = ps->offset + job->aio_received;
 1908         MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
 1909         resid = job->uaiocb.aio_nbytes - job->aio_received;
 1910         m = sb->sb_mb;
 1911         KASSERT(m == NULL || toep->ddp.active_count == 0,
 1912             ("%s: sockbuf data with active DDP", __func__));
 1913         while (m != NULL && resid > 0) {
 1914                 struct iovec iov[1];
 1915                 struct uio uio;
 1916 #ifdef INVARIANTS
 1917                 int error;
 1918 #endif
 1919 
 1920                 iov[0].iov_base = mtod(m, void *);
 1921                 iov[0].iov_len = m->m_len;
 1922                 if (iov[0].iov_len > resid)
 1923                         iov[0].iov_len = resid;
 1924                 uio.uio_iov = iov;
 1925                 uio.uio_iovcnt = 1;
 1926                 uio.uio_offset = 0;
 1927                 uio.uio_resid = iov[0].iov_len;
 1928                 uio.uio_segflg = UIO_SYSSPACE;
 1929                 uio.uio_rw = UIO_WRITE;
 1930 #ifdef INVARIANTS
 1931                 error = uiomove_fromphys(ps->pages, offset + copied,
 1932                     uio.uio_resid, &uio);
 1933 #else
 1934                 uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio);
 1935 #endif
 1936                 MPASS(error == 0 && uio.uio_resid == 0);
 1937                 copied += uio.uio_offset;
 1938                 resid -= uio.uio_offset;
 1939                 m = m->m_next;
 1940         }
 1941         if (copied != 0) {
 1942                 sbdrop_locked(sb, copied);
 1943                 job->aio_received += copied;
 1944                 job->msgrcv = 1;
 1945                 copied = job->aio_received;
 1946                 inp = sotoinpcb(so);
 1947                 if (!INP_TRY_WLOCK(inp)) {
 1948                         /*
 1949                          * The reference on the socket file descriptor in
 1950                          * the AIO job should keep 'sb' and 'inp' stable.
 1951                          * Our caller has a reference on the 'toep' that
 1952                          * keeps it stable.
 1953                          */
 1954                         SOCKBUF_UNLOCK(sb);
 1955                         DDP_UNLOCK(toep);
 1956                         INP_WLOCK(inp);
 1957                         DDP_LOCK(toep);
 1958                         SOCKBUF_LOCK(sb);
 1959 
 1960                         /*
 1961                          * If the socket has been closed, we should detect
 1962                          * that and complete this request if needed on
 1963                          * the next trip around the loop.
 1964                          */
 1965                 }
 1966                 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
 1967                 INP_WUNLOCK(inp);
 1968                 if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
 1969                         /*
 1970                          * We filled the entire buffer with socket
 1971                          * data, DDP is not being used, or the socket
 1972                          * is being shut down, so complete the
 1973                          * request.
 1974                          */
 1975                         SOCKBUF_UNLOCK(sb);
 1976                         recycle_pageset(toep, ps);
 1977                         aio_complete(job, copied, 0);
 1978                         toep->ddp.queueing = NULL;
 1979                         goto restart;
 1980                 }
 1981 
 1982                 /*
 1983                  * If DDP is not enabled, requeue this request and restart.
 1984                  * This will either enable DDP or wait for more data to
 1985                  * arrive on the socket buffer.
 1986                  */
 1987                 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
 1988                         SOCKBUF_UNLOCK(sb);
 1989                         recycle_pageset(toep, ps);
 1990                         aio_ddp_requeue_one(toep, job);
 1991                         toep->ddp.queueing = NULL;
 1992                         goto restart;
 1993                 }
 1994 
 1995                 /*
 1996                  * An indicate might have arrived and been added to
 1997                  * the socket buffer while it was unlocked after the
 1998                  * copy to lock the INP.  If so, restart the copy.
 1999                  */
 2000                 if (sbavail(sb) != 0)
 2001                         goto sbcopy;
 2002         }
 2003         SOCKBUF_UNLOCK(sb);
 2004 
 2005         if (prep_pageset(sc, toep, ps) == 0) {
 2006                 recycle_pageset(toep, ps);
 2007                 aio_ddp_requeue_one(toep, job);
 2008                 toep->ddp.queueing = NULL;
 2009 
 2010                 /*
 2011                  * XXX: Need to retry this later.  Mostly need a trigger
 2012                  * when page pods are freed up.
 2013                  */
 2014                 printf("%s: prep_pageset failed\n", __func__);
 2015                 return;
 2016         }
 2017 
 2018         /* Determine which DDP buffer to use. */
 2019         if (toep->ddp.db[0].job == NULL) {
 2020                 db_idx = 0;
 2021         } else {
 2022                 MPASS(toep->ddp.db[1].job == NULL);
 2023                 db_idx = 1;
 2024         }
 2025 
 2026         ddp_flags = 0;
 2027         ddp_flags_mask = 0;
 2028         if (db_idx == 0) {
 2029                 ddp_flags |= V_TF_DDP_BUF0_VALID(1);
 2030                 if (so->so_state & SS_NBIO)
 2031                         ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
 2032                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
 2033                     V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
 2034                     V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
 2035                 buf_flag = DDP_BUF0_ACTIVE;
 2036         } else {
 2037                 ddp_flags |= V_TF_DDP_BUF1_VALID(1);
 2038                 if (so->so_state & SS_NBIO)
 2039                         ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
 2040                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
 2041                     V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
 2042                     V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
 2043                 buf_flag = DDP_BUF1_ACTIVE;
 2044         }
 2045         MPASS((toep->ddp.flags & buf_flag) == 0);
 2046         if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
 2047                 MPASS(db_idx == 0);
 2048                 MPASS(toep->ddp.active_id == -1);
 2049                 MPASS(toep->ddp.active_count == 0);
 2050                 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
 2051         }
 2052 
 2053         /*
 2054          * The TID for this connection should still be valid.  If DDP_DEAD
 2055          * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
 2056          * this far anyway.  Even if the socket is closing on the other
 2057          * end, the AIO job holds a reference on this end of the socket
 2058          * which will keep it open and keep the TCP PCB attached until
 2059          * after the job is completed.
 2060          */
 2061         wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
 2062             ddp_flags, ddp_flags_mask);
 2063         if (wr == NULL) {
 2064                 recycle_pageset(toep, ps);
 2065                 aio_ddp_requeue_one(toep, job);
 2066                 toep->ddp.queueing = NULL;
 2067 
 2068                 /*
 2069                  * XXX: Need a way to kick a retry here.
 2070                  *
 2071                  * XXX: We know the fixed size needed and could
 2072                  * preallocate this using a blocking request at the
 2073                  * start of the task to avoid having to handle this
 2074                  * edge case.
 2075                  */
 2076                 printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
 2077                 return;
 2078         }
 2079 
 2080         if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
 2081                 free_wrqe(wr);
 2082                 recycle_pageset(toep, ps);
 2083                 aio_ddp_cancel_one(job);
 2084                 toep->ddp.queueing = NULL;
 2085                 goto restart;
 2086         }
 2087 
 2088 #ifdef VERBOSE_TRACES
 2089         CTR6(KTR_CXGBE,
 2090             "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__,
 2091             toep->tid, job, db_idx, ddp_flags, ddp_flags_mask);
 2092 #endif
 2093         /* Give the chip the go-ahead. */
 2094         t4_wrq_tx(sc, wr);
 2095         db = &toep->ddp.db[db_idx];
 2096         db->cancel_pending = 0;
 2097         db->job = job;
 2098         db->ps = ps;
 2099         toep->ddp.queueing = NULL;
 2100         toep->ddp.flags |= buf_flag;
 2101         toep->ddp.active_count++;
 2102         if (toep->ddp.active_count == 1) {
 2103                 MPASS(toep->ddp.active_id == -1);
 2104                 toep->ddp.active_id = db_idx;
 2105                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
 2106                     toep->ddp.active_id);
 2107         }
 2108         goto restart;
 2109 }
 2110 
 2111 void
 2112 ddp_queue_toep(struct toepcb *toep)
 2113 {
 2114 
 2115         DDP_ASSERT_LOCKED(toep);
 2116         if (toep->ddp.flags & DDP_TASK_ACTIVE)
 2117                 return;
 2118         toep->ddp.flags |= DDP_TASK_ACTIVE;
 2119         hold_toepcb(toep);
 2120         soaio_enqueue(&toep->ddp.requeue_task);
 2121 }
 2122 
 2123 static void
 2124 aio_ddp_requeue_task(void *context, int pending)
 2125 {
 2126         struct toepcb *toep = context;
 2127 
 2128         DDP_LOCK(toep);
 2129         aio_ddp_requeue(toep);
 2130         toep->ddp.flags &= ~DDP_TASK_ACTIVE;
 2131         DDP_UNLOCK(toep);
 2132 
 2133         free_toepcb(toep);
 2134 }
 2135 
 2136 static void
 2137 t4_aio_cancel_active(struct kaiocb *job)
 2138 {
 2139         struct socket *so = job->fd_file->f_data;
 2140         struct tcpcb *tp = sototcpcb(so);
 2141         struct toepcb *toep = tp->t_toe;
 2142         struct adapter *sc = td_adapter(toep->td);
 2143         uint64_t valid_flag;
 2144         int i;
 2145 
 2146         DDP_LOCK(toep);
 2147         if (aio_cancel_cleared(job)) {
 2148                 DDP_UNLOCK(toep);
 2149                 aio_ddp_cancel_one(job);
 2150                 return;
 2151         }
 2152 
 2153         for (i = 0; i < nitems(toep->ddp.db); i++) {
 2154                 if (toep->ddp.db[i].job == job) {
 2155                         /* Should only ever get one cancel request for a job. */
 2156                         MPASS(toep->ddp.db[i].cancel_pending == 0);
 2157 
 2158                         /*
 2159                          * Invalidate this buffer.  It will be
 2160                          * cancelled or partially completed once the
 2161                          * card ACKs the invalidate.
 2162                          */
 2163                         valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
 2164                             V_TF_DDP_BUF1_VALID(1);
 2165                         t4_set_tcb_field(sc, toep->ctrlq, toep,
 2166                             W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
 2167                             CPL_COOKIE_DDP0 + i);
 2168                         toep->ddp.db[i].cancel_pending = 1;
 2169                         CTR2(KTR_CXGBE, "%s: request %p marked pending",
 2170                             __func__, job);
 2171                         break;
 2172                 }
 2173         }
 2174         DDP_UNLOCK(toep);
 2175 }
 2176 
 2177 static void
 2178 t4_aio_cancel_queued(struct kaiocb *job)
 2179 {
 2180         struct socket *so = job->fd_file->f_data;
 2181         struct tcpcb *tp = sototcpcb(so);
 2182         struct toepcb *toep = tp->t_toe;
 2183 
 2184         DDP_LOCK(toep);
 2185         if (!aio_cancel_cleared(job)) {
 2186                 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
 2187                 toep->ddp.waiting_count--;
 2188                 if (toep->ddp.waiting_count == 0)
 2189                         ddp_queue_toep(toep);
 2190         }
 2191         CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
 2192         DDP_UNLOCK(toep);
 2193 
 2194         aio_ddp_cancel_one(job);
 2195 }
 2196 
 2197 int
 2198 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
 2199 {
 2200         struct tcpcb *tp = sototcpcb(so);
 2201         struct toepcb *toep = tp->t_toe;
 2202 
 2203 
 2204         /* Ignore writes. */
 2205         if (job->uaiocb.aio_lio_opcode != LIO_READ)
 2206                 return (EOPNOTSUPP);
 2207 
 2208         DDP_LOCK(toep);
 2209 
 2210         /*
 2211          * XXX: Think about possibly returning errors for ENOTCONN,
 2212          * etc.  Perhaps the caller would only queue the request
 2213          * if it failed with EOPNOTSUPP?
 2214          */
 2215 
 2216 #ifdef VERBOSE_TRACES
 2217         CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
 2218 #endif
 2219         if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
 2220                 panic("new job was cancelled");
 2221         TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
 2222         toep->ddp.waiting_count++;
 2223         toep->ddp.flags |= DDP_OK;
 2224 
 2225         /*
 2226          * Try to handle this request synchronously.  If this has
 2227          * to block because the task is running, it will just bail
 2228          * and let the task handle it instead.
 2229          */
 2230         aio_ddp_requeue(toep);
 2231         DDP_UNLOCK(toep);
 2232         return (0);
 2233 }
 2234 
 2235 void
 2236 t4_ddp_mod_load(void)
 2237 {
 2238 
 2239         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
 2240             CPL_COOKIE_DDP0);
 2241         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
 2242             CPL_COOKIE_DDP1);
 2243         t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
 2244         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
 2245         TAILQ_INIT(&ddp_orphan_pagesets);
 2246         mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
 2247         TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
 2248 }
 2249 
 2250 void
 2251 t4_ddp_mod_unload(void)
 2252 {
 2253 
 2254         taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
 2255         MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
 2256         mtx_destroy(&ddp_orphan_pagesets_lock);
 2257         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
 2258         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
 2259         t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
 2260         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
 2261 }
 2262 #endif

Cache object: 7e8fa450cdaa9e88d5cf53dca53f8328


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.