1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2012 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_kern_tls.h"
36 #include "opt_ratelimit.h"
37
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/ktr.h>
43 #include <sys/lock.h>
44 #include <sys/limits.h>
45 #include <sys/module.h>
46 #include <sys/protosw.h>
47 #include <sys/domain.h>
48 #include <sys/refcount.h>
49 #include <sys/rmlock.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/taskqueue.h>
54 #include <net/if.h>
55 #include <net/if_var.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 #include <netinet/in.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/ip6.h>
63 #include <netinet6/scope6_var.h>
64 #define TCPSTATES
65 #include <netinet/tcp_fsm.h>
66 #include <netinet/tcp_seq.h>
67 #include <netinet/tcp_timer.h>
68 #include <netinet/tcp_var.h>
69 #include <netinet/toecore.h>
70 #include <netinet/cc/cc.h>
71
72 #ifdef TCP_OFFLOAD
73 #include "common/common.h"
74 #include "common/t4_msg.h"
75 #include "common/t4_regs.h"
76 #include "common/t4_regs_values.h"
77 #include "common/t4_tcb.h"
78 #include "t4_clip.h"
79 #include "tom/t4_tom_l2t.h"
80 #include "tom/t4_tom.h"
81 #include "tom/t4_tls.h"
82
83 static struct protosw toe_protosw;
84 static struct protosw toe6_protosw;
85
86 /* Module ops */
87 static int t4_tom_mod_load(void);
88 static int t4_tom_mod_unload(void);
89 static int t4_tom_modevent(module_t, int, void *);
90
91 /* ULD ops and helpers */
92 static int t4_tom_activate(struct adapter *);
93 static int t4_tom_deactivate(struct adapter *);
94
95 static struct uld_info tom_uld_info = {
96 .uld_id = ULD_TOM,
97 .activate = t4_tom_activate,
98 .deactivate = t4_tom_deactivate,
99 };
100
101 static void release_offload_resources(struct toepcb *);
102 static int alloc_tid_tabs(struct tid_info *);
103 static void free_tid_tabs(struct tid_info *);
104 static void free_tom_data(struct adapter *, struct tom_data *);
105 static void reclaim_wr_resources(void *, int);
106
107 struct toepcb *
108 alloc_toepcb(struct vi_info *vi, int flags)
109 {
110 struct port_info *pi = vi->pi;
111 struct adapter *sc = pi->adapter;
112 struct toepcb *toep;
113 int tx_credits, txsd_total, len;
114
115 /*
116 * The firmware counts tx work request credits in units of 16 bytes
117 * each. Reserve room for an ABORT_REQ so the driver never has to worry
118 * about tx credits if it wants to abort a connection.
119 */
120 tx_credits = sc->params.ofldq_wr_cred;
121 tx_credits -= howmany(sizeof(struct cpl_abort_req), 16);
122
123 /*
124 * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte
125 * immediate payload, and firmware counts tx work request credits in
126 * units of 16 byte. Calculate the maximum work requests possible.
127 */
128 txsd_total = tx_credits /
129 howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16);
130
131 len = offsetof(struct toepcb, txsd) +
132 txsd_total * sizeof(struct ofld_tx_sdesc);
133
134 toep = malloc(len, M_CXGBE, M_ZERO | flags);
135 if (toep == NULL)
136 return (NULL);
137
138 refcount_init(&toep->refcount, 1);
139 toep->td = sc->tom_softc;
140 toep->vi = vi;
141 toep->tid = -1;
142 toep->tx_total = tx_credits;
143 toep->tx_credits = tx_credits;
144 mbufq_init(&toep->ulp_pduq, INT_MAX);
145 mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX);
146 toep->txsd_total = txsd_total;
147 toep->txsd_avail = txsd_total;
148 toep->txsd_pidx = 0;
149 toep->txsd_cidx = 0;
150 aiotx_init_toep(toep);
151
152 return (toep);
153 }
154
155 /*
156 * Initialize a toepcb after its params have been filled out.
157 */
158 int
159 init_toepcb(struct vi_info *vi, struct toepcb *toep)
160 {
161 struct conn_params *cp = &toep->params;
162 struct port_info *pi = vi->pi;
163 struct adapter *sc = pi->adapter;
164 struct tx_cl_rl_params *tc;
165
166 if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) {
167 tc = &pi->sched_params->cl_rl[cp->tc_idx];
168 mtx_lock(&sc->tc_lock);
169 if (tc->state != CS_HW_CONFIGURED) {
170 CH_ERR(vi, "tid %d cannot be bound to traffic class %d "
171 "because it is not configured (its state is %d)\n",
172 toep->tid, cp->tc_idx, tc->state);
173 cp->tc_idx = -1;
174 } else {
175 tc->refcount++;
176 }
177 mtx_unlock(&sc->tc_lock);
178 }
179 toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx];
180 toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx];
181 toep->ctrlq = &sc->sge.ctrlq[pi->port_id];
182
183 tls_init_toep(toep);
184 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
185 ddp_init_toep(toep);
186
187 toep->flags |= TPF_INITIALIZED;
188
189 return (0);
190 }
191
192 struct toepcb *
193 hold_toepcb(struct toepcb *toep)
194 {
195
196 refcount_acquire(&toep->refcount);
197 return (toep);
198 }
199
200 void
201 free_toepcb(struct toepcb *toep)
202 {
203
204 if (refcount_release(&toep->refcount) == 0)
205 return;
206
207 KASSERT(!(toep->flags & TPF_ATTACHED),
208 ("%s: attached to an inpcb", __func__));
209 KASSERT(!(toep->flags & TPF_CPL_PENDING),
210 ("%s: CPL pending", __func__));
211
212 if (toep->flags & TPF_INITIALIZED) {
213 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
214 ddp_uninit_toep(toep);
215 tls_uninit_toep(toep);
216 }
217 free(toep, M_CXGBE);
218 }
219
220 /*
221 * Set up the socket for TCP offload.
222 */
223 void
224 offload_socket(struct socket *so, struct toepcb *toep)
225 {
226 struct tom_data *td = toep->td;
227 struct inpcb *inp = sotoinpcb(so);
228 struct tcpcb *tp = intotcpcb(inp);
229 struct sockbuf *sb;
230
231 INP_WLOCK_ASSERT(inp);
232
233 /* Update socket */
234 sb = &so->so_snd;
235 SOCKBUF_LOCK(sb);
236 sb->sb_flags |= SB_NOCOALESCE;
237 SOCKBUF_UNLOCK(sb);
238 sb = &so->so_rcv;
239 SOCKBUF_LOCK(sb);
240 sb->sb_flags |= SB_NOCOALESCE;
241 if (inp->inp_vflag & INP_IPV6)
242 so->so_proto = &toe6_protosw;
243 else
244 so->so_proto = &toe_protosw;
245 SOCKBUF_UNLOCK(sb);
246
247 /* Update TCP PCB */
248 tp->tod = &td->tod;
249 tp->t_toe = toep;
250 tp->t_flags |= TF_TOE;
251
252 /* Install an extra hold on inp */
253 toep->inp = inp;
254 toep->flags |= TPF_ATTACHED;
255 in_pcbref(inp);
256
257 /* Add the TOE PCB to the active list */
258 mtx_lock(&td->toep_list_lock);
259 TAILQ_INSERT_HEAD(&td->toep_list, toep, link);
260 mtx_unlock(&td->toep_list_lock);
261 }
262
263 void
264 restore_so_proto(struct socket *so, bool v6)
265 {
266 if (v6)
267 so->so_proto = &tcp6_protosw;
268 else
269 so->so_proto = &tcp_protosw;
270 }
271
272 /* This is _not_ the normal way to "unoffload" a socket. */
273 void
274 undo_offload_socket(struct socket *so)
275 {
276 struct inpcb *inp = sotoinpcb(so);
277 struct tcpcb *tp = intotcpcb(inp);
278 struct toepcb *toep = tp->t_toe;
279 struct tom_data *td = toep->td;
280 struct sockbuf *sb;
281
282 INP_WLOCK_ASSERT(inp);
283
284 sb = &so->so_snd;
285 SOCKBUF_LOCK(sb);
286 sb->sb_flags &= ~SB_NOCOALESCE;
287 SOCKBUF_UNLOCK(sb);
288 sb = &so->so_rcv;
289 SOCKBUF_LOCK(sb);
290 sb->sb_flags &= ~SB_NOCOALESCE;
291 restore_so_proto(so, inp->inp_vflag & INP_IPV6);
292 SOCKBUF_UNLOCK(sb);
293
294 tp->tod = NULL;
295 tp->t_toe = NULL;
296 tp->t_flags &= ~TF_TOE;
297
298 toep->inp = NULL;
299 toep->flags &= ~TPF_ATTACHED;
300 if (in_pcbrele_wlocked(inp))
301 panic("%s: inp freed.", __func__);
302
303 mtx_lock(&td->toep_list_lock);
304 TAILQ_REMOVE(&td->toep_list, toep, link);
305 mtx_unlock(&td->toep_list_lock);
306 }
307
308 static void
309 release_offload_resources(struct toepcb *toep)
310 {
311 struct tom_data *td = toep->td;
312 struct adapter *sc = td_adapter(td);
313 int tid = toep->tid;
314
315 KASSERT(!(toep->flags & TPF_CPL_PENDING),
316 ("%s: %p has CPL pending.", __func__, toep));
317 KASSERT(!(toep->flags & TPF_ATTACHED),
318 ("%s: %p is still attached.", __func__, toep));
319
320 CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)",
321 __func__, toep, tid, toep->l2te, toep->ce);
322
323 /*
324 * These queues should have been emptied at approximately the same time
325 * that a normal connection's socket's so_snd would have been purged or
326 * drained. Do _not_ clean up here.
327 */
328 MPASS(mbufq_len(&toep->ulp_pduq) == 0);
329 MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0);
330 #ifdef INVARIANTS
331 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
332 ddp_assert_empty(toep);
333 #endif
334 MPASS(TAILQ_EMPTY(&toep->aiotx_jobq));
335
336 if (toep->l2te)
337 t4_l2t_release(toep->l2te);
338
339 if (tid >= 0) {
340 remove_tid(sc, tid, toep->ce ? 2 : 1);
341 release_tid(sc, tid, toep->ctrlq);
342 }
343
344 if (toep->ce)
345 t4_release_clip_entry(sc, toep->ce);
346
347 if (toep->params.tc_idx != -1)
348 t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx);
349
350 mtx_lock(&td->toep_list_lock);
351 TAILQ_REMOVE(&td->toep_list, toep, link);
352 mtx_unlock(&td->toep_list_lock);
353
354 free_toepcb(toep);
355 }
356
357 /*
358 * The kernel is done with the TCP PCB and this is our opportunity to unhook the
359 * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no
360 * pending CPL) then it is time to release all resources tied to the toepcb.
361 *
362 * Also gets called when an offloaded active open fails and the TOM wants the
363 * kernel to take the TCP PCB back.
364 */
365 static void
366 t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp)
367 {
368 #if defined(KTR) || defined(INVARIANTS)
369 struct inpcb *inp = tptoinpcb(tp);
370 #endif
371 struct toepcb *toep = tp->t_toe;
372
373 INP_WLOCK_ASSERT(inp);
374
375 KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
376 KASSERT(toep->flags & TPF_ATTACHED,
377 ("%s: not attached", __func__));
378
379 #ifdef KTR
380 if (tp->t_state == TCPS_SYN_SENT) {
381 CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)",
382 __func__, toep->tid, toep, toep->flags, inp,
383 inp->inp_flags);
384 } else {
385 CTR6(KTR_CXGBE,
386 "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)",
387 toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp,
388 inp->inp_flags);
389 }
390 #endif
391
392 tp->tod = NULL;
393 tp->t_toe = NULL;
394 tp->t_flags &= ~TF_TOE;
395 toep->flags &= ~TPF_ATTACHED;
396
397 if (!(toep->flags & TPF_CPL_PENDING))
398 release_offload_resources(toep);
399 }
400
401 /*
402 * setsockopt handler.
403 */
404 static void
405 t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name)
406 {
407 struct adapter *sc = tod->tod_softc;
408 struct toepcb *toep = tp->t_toe;
409
410 if (dir == SOPT_GET)
411 return;
412
413 CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name);
414
415 switch (name) {
416 case TCP_NODELAY:
417 if (tp->t_state != TCPS_ESTABLISHED)
418 break;
419 toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
420 t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
421 V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0);
422 break;
423 default:
424 break;
425 }
426 }
427
428 static inline uint64_t
429 get_tcb_tflags(const uint64_t *tcb)
430 {
431
432 return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32));
433 }
434
435 static inline uint32_t
436 get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift)
437 {
438 #define LAST_WORD ((TCB_SIZE / 4) - 1)
439 uint64_t t1, t2;
440 int flit_idx;
441
442 MPASS(mask != 0);
443 MPASS(word <= LAST_WORD);
444 MPASS(shift < 32);
445
446 flit_idx = (LAST_WORD - word) / 2;
447 if (word & 0x1)
448 shift += 32;
449 t1 = be64toh(tcb[flit_idx]) >> shift;
450 t2 = 0;
451 if (fls(mask) > 64 - shift) {
452 /*
453 * Will spill over into the next logical flit, which is the flit
454 * before this one. The flit_idx before this one must be valid.
455 */
456 MPASS(flit_idx > 0);
457 t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift);
458 }
459 return ((t2 | t1) & mask);
460 #undef LAST_WORD
461 }
462 #define GET_TCB_FIELD(tcb, F) \
463 get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F)
464
465 /*
466 * Issues a CPL_GET_TCB to read the entire TCB for the tid.
467 */
468 static int
469 send_get_tcb(struct adapter *sc, u_int tid)
470 {
471 struct cpl_get_tcb *cpl;
472 struct wrq_cookie cookie;
473
474 MPASS(tid >= sc->tids.tid_base);
475 MPASS(tid - sc->tids.tid_base < sc->tids.ntids);
476
477 cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16),
478 &cookie);
479 if (__predict_false(cpl == NULL))
480 return (ENOMEM);
481 bzero(cpl, sizeof(*cpl));
482 INIT_TP_WR(cpl, tid);
483 OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid));
484 cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) |
485 V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id));
486 cpl->cookie = 0xff;
487 commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie);
488
489 return (0);
490 }
491
492 static struct tcb_histent *
493 alloc_tcb_histent(struct adapter *sc, u_int tid, int flags)
494 {
495 struct tcb_histent *te;
496
497 MPASS(flags == M_NOWAIT || flags == M_WAITOK);
498
499 te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags);
500 if (te == NULL)
501 return (NULL);
502 mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF);
503 callout_init_mtx(&te->te_callout, &te->te_lock, 0);
504 te->te_adapter = sc;
505 te->te_tid = tid;
506
507 return (te);
508 }
509
510 static void
511 free_tcb_histent(struct tcb_histent *te)
512 {
513
514 mtx_destroy(&te->te_lock);
515 free(te, M_CXGBE);
516 }
517
518 /*
519 * Start tracking the tid in the TCB history.
520 */
521 int
522 add_tid_to_history(struct adapter *sc, u_int tid)
523 {
524 struct tcb_histent *te = NULL;
525 struct tom_data *td = sc->tom_softc;
526 int rc;
527
528 MPASS(tid >= sc->tids.tid_base);
529 MPASS(tid - sc->tids.tid_base < sc->tids.ntids);
530
531 if (td->tcb_history == NULL)
532 return (ENXIO);
533
534 rw_wlock(&td->tcb_history_lock);
535 if (td->tcb_history[tid] != NULL) {
536 rc = EEXIST;
537 goto done;
538 }
539 te = alloc_tcb_histent(sc, tid, M_NOWAIT);
540 if (te == NULL) {
541 rc = ENOMEM;
542 goto done;
543 }
544 mtx_lock(&te->te_lock);
545 rc = send_get_tcb(sc, tid);
546 if (rc == 0) {
547 te->te_flags |= TE_RPL_PENDING;
548 td->tcb_history[tid] = te;
549 } else {
550 free(te, M_CXGBE);
551 }
552 mtx_unlock(&te->te_lock);
553 done:
554 rw_wunlock(&td->tcb_history_lock);
555 return (rc);
556 }
557
558 static void
559 remove_tcb_histent(struct tcb_histent *te)
560 {
561 struct adapter *sc = te->te_adapter;
562 struct tom_data *td = sc->tom_softc;
563
564 rw_assert(&td->tcb_history_lock, RA_WLOCKED);
565 mtx_assert(&te->te_lock, MA_OWNED);
566 MPASS(td->tcb_history[te->te_tid] == te);
567
568 td->tcb_history[te->te_tid] = NULL;
569 free_tcb_histent(te);
570 rw_wunlock(&td->tcb_history_lock);
571 }
572
573 static inline struct tcb_histent *
574 lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem)
575 {
576 struct tcb_histent *te;
577 struct tom_data *td = sc->tom_softc;
578
579 MPASS(tid >= sc->tids.tid_base);
580 MPASS(tid - sc->tids.tid_base < sc->tids.ntids);
581
582 if (td->tcb_history == NULL)
583 return (NULL);
584
585 if (addrem)
586 rw_wlock(&td->tcb_history_lock);
587 else
588 rw_rlock(&td->tcb_history_lock);
589 te = td->tcb_history[tid];
590 if (te != NULL) {
591 mtx_lock(&te->te_lock);
592 return (te); /* with both locks held */
593 }
594 if (addrem)
595 rw_wunlock(&td->tcb_history_lock);
596 else
597 rw_runlock(&td->tcb_history_lock);
598
599 return (te);
600 }
601
602 static inline void
603 release_tcb_histent(struct tcb_histent *te)
604 {
605 struct adapter *sc = te->te_adapter;
606 struct tom_data *td = sc->tom_softc;
607
608 mtx_assert(&te->te_lock, MA_OWNED);
609 mtx_unlock(&te->te_lock);
610 rw_assert(&td->tcb_history_lock, RA_RLOCKED);
611 rw_runlock(&td->tcb_history_lock);
612 }
613
614 static void
615 request_tcb(void *arg)
616 {
617 struct tcb_histent *te = arg;
618
619 mtx_assert(&te->te_lock, MA_OWNED);
620
621 /* Noone else is supposed to update the histent. */
622 MPASS(!(te->te_flags & TE_RPL_PENDING));
623 if (send_get_tcb(te->te_adapter, te->te_tid) == 0)
624 te->te_flags |= TE_RPL_PENDING;
625 else
626 callout_schedule(&te->te_callout, hz / 100);
627 }
628
629 static void
630 update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb)
631 {
632 struct tom_data *td = te->te_adapter->tom_softc;
633 uint64_t tflags = get_tcb_tflags(tcb);
634 uint8_t sample = 0;
635
636 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) {
637 if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0)
638 sample |= TS_RTO;
639 if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0)
640 sample |= TS_DUPACKS;
641 if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold)
642 sample |= TS_FASTREXMT;
643 }
644
645 if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) {
646 uint32_t snd_wnd;
647
648 sample |= TS_SND_BACKLOGGED; /* for whatever reason. */
649
650 snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
651 if (tflags & V_TF_RECV_SCALE(1))
652 snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE);
653 if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd)
654 sample |= TS_CWND_LIMITED; /* maybe due to CWND */
655 }
656
657 if (tflags & V_TF_CCTRL_ECN(1)) {
658
659 /*
660 * CE marker on incoming IP hdr, echoing ECE back in the TCP
661 * hdr. Indicates congestion somewhere on the way from the peer
662 * to this node.
663 */
664 if (tflags & V_TF_CCTRL_ECE(1))
665 sample |= TS_ECN_ECE;
666
667 /*
668 * ECE seen and CWR sent (or about to be sent). Might indicate
669 * congestion on the way to the peer. This node is reducing its
670 * congestion window in response.
671 */
672 if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1)))
673 sample |= TS_ECN_CWR;
674 }
675
676 te->te_sample[te->te_pidx] = sample;
677 if (++te->te_pidx == nitems(te->te_sample))
678 te->te_pidx = 0;
679 memcpy(te->te_tcb, tcb, TCB_SIZE);
680 te->te_flags |= TE_ACTIVE;
681 }
682
683 static int
684 do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
685 {
686 struct adapter *sc = iq->adapter;
687 const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *);
688 const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1);
689 struct tcb_histent *te;
690 const u_int tid = GET_TID(cpl);
691 bool remove;
692
693 remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED;
694 te = lookup_tcb_histent(sc, tid, remove);
695 if (te == NULL) {
696 /* Not in the history. Who issued the GET_TCB for this? */
697 device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, "
698 "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid,
699 (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE),
700 GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE),
701 GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie);
702 goto done;
703 }
704
705 MPASS(te->te_flags & TE_RPL_PENDING);
706 te->te_flags &= ~TE_RPL_PENDING;
707 if (remove) {
708 remove_tcb_histent(te);
709 } else {
710 update_tcb_histent(te, tcb);
711 callout_reset(&te->te_callout, hz / 10, request_tcb, te);
712 release_tcb_histent(te);
713 }
714 done:
715 m_freem(m);
716 return (0);
717 }
718
719 static void
720 fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti)
721 {
722 uint32_t v;
723
724 ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE);
725
726 v = GET_TCB_FIELD(tcb, T_SRTT);
727 ti->tcpi_rtt = tcp_ticks_to_us(sc, v);
728
729 v = GET_TCB_FIELD(tcb, T_RTTVAR);
730 ti->tcpi_rttvar = tcp_ticks_to_us(sc, v);
731
732 ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH);
733 ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND);
734 ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT);
735
736 v = GET_TCB_FIELD(tcb, TX_MAX);
737 ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW);
738
739 /* Receive window being advertised by us. */
740 ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */
741 ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND);
742
743 /* Send window */
744 ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */
745 ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV);
746 if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1))
747 ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale;
748 else
749 ti->tcpi_snd_wscale = 0;
750
751 }
752
753 static void
754 fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te,
755 struct tcp_info *ti)
756 {
757
758 fill_tcp_info_from_tcb(sc, te->te_tcb, ti);
759 }
760
761 /*
762 * Reads the TCB for the given tid using a memory window and copies it to 'buf'
763 * in the same format as CPL_GET_TCB_RPL.
764 */
765 static void
766 read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf)
767 {
768 int i, j, k, rc;
769 uint32_t addr;
770 u_char *tcb, tmp;
771
772 MPASS(tid >= sc->tids.tid_base);
773 MPASS(tid - sc->tids.tid_base < sc->tids.ntids);
774
775 addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE;
776 rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE);
777 if (rc != 0)
778 return;
779
780 tcb = (u_char *)buf;
781 for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) {
782 for (k = 0; k < 16; k++) {
783 tmp = tcb[i + k];
784 tcb[i + k] = tcb[j + k];
785 tcb[j + k] = tmp;
786 }
787 }
788 }
789
790 static void
791 fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti)
792 {
793 uint64_t tcb[TCB_SIZE / sizeof(uint64_t)];
794 struct tcb_histent *te;
795
796 ti->tcpi_toe_tid = tid;
797 te = lookup_tcb_histent(sc, tid, false);
798 if (te != NULL) {
799 fill_tcp_info_from_history(sc, te, ti);
800 release_tcb_histent(te);
801 } else {
802 if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) {
803 /* XXX: tell firmware to flush TCB cache. */
804 }
805 read_tcb_using_memwin(sc, tid, tcb);
806 fill_tcp_info_from_tcb(sc, tcb, ti);
807 }
808 }
809
810 /*
811 * Called by the kernel to allow the TOE driver to "refine" values filled up in
812 * the tcp_info for an offloaded connection.
813 */
814 static void
815 t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti)
816 {
817 struct adapter *sc = tod->tod_softc;
818 struct toepcb *toep = tp->t_toe;
819
820 INP_WLOCK_ASSERT(tptoinpcb(tp));
821 MPASS(ti != NULL);
822
823 fill_tcp_info(sc, toep->tid, ti);
824 }
825
826 #ifdef KERN_TLS
827 static int
828 t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp,
829 struct ktls_session *tls, int direction)
830 {
831 struct toepcb *toep = tp->t_toe;
832
833 INP_WLOCK_ASSERT(tptoinpcb(tp));
834 MPASS(tls != NULL);
835
836 return (tls_alloc_ktls(toep, tls, direction));
837 }
838 #endif
839
840 /* SET_TCB_FIELD sent as a ULP command looks like this */
841 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
842 sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
843
844 static void *
845 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, uint64_t word, uint64_t mask,
846 uint64_t val, uint32_t tid)
847 {
848 struct ulptx_idata *ulpsc;
849 struct cpl_set_tcb_field_core *req;
850
851 ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
852 ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
853
854 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
855 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
856 ulpsc->len = htobe32(sizeof(*req));
857
858 req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
859 OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
860 req->reply_ctrl = htobe16(V_NO_REPLY(1));
861 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
862 req->mask = htobe64(mask);
863 req->val = htobe64(val);
864
865 ulpsc = (struct ulptx_idata *)(req + 1);
866 if (LEN__SET_TCB_FIELD_ULP % 16) {
867 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
868 ulpsc->len = htobe32(0);
869 return (ulpsc + 1);
870 }
871 return (ulpsc);
872 }
873
874 static void
875 send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep)
876 {
877 struct wrq_cookie cookie;
878 struct fw_flowc_wr *flowc;
879 struct ofld_tx_sdesc *txsd;
880 const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval);
881 const int flowclen16 = howmany(flowclen, 16);
882
883 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) {
884 CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__,
885 toep->tid, toep->tx_credits, toep->txsd_avail);
886 return;
887 }
888
889 flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie);
890 if (__predict_false(flowc == NULL)) {
891 CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid);
892 return;
893 }
894 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
895 V_FW_FLOWC_WR_NPARAMS(1));
896 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) |
897 V_FW_WR_FLOWID(toep->tid));
898 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS;
899 flowc->mnemval[0].val = htobe32(toep->params.emss);
900
901 txsd = &toep->txsd[toep->txsd_pidx];
902 txsd->tx_credits = flowclen16;
903 txsd->plen = 0;
904 toep->tx_credits -= txsd->tx_credits;
905 if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
906 toep->txsd_pidx = 0;
907 toep->txsd_avail--;
908 commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie);
909 }
910
911 static void
912 t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu)
913 {
914 struct work_request_hdr *wrh;
915 struct ulp_txpkt *ulpmc;
916 int idx, len;
917 struct wrq_cookie cookie;
918 struct inpcb *inp = tptoinpcb(tp);
919 struct toepcb *toep = tp->t_toe;
920 struct adapter *sc = td_adapter(toep->td);
921 unsigned short *mtus = &sc->params.mtus[0];
922
923 INP_WLOCK_ASSERT(inp);
924 MPASS(mtu > 0); /* kernel is supposed to provide something usable. */
925
926 /* tp->snd_una and snd_max are in host byte order too. */
927 seq = be32toh(seq);
928
929 CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)",
930 __func__, toep->tid, seq, mtu, toep->params.mtu_idx,
931 mtus[toep->params.mtu_idx]);
932
933 if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */
934 (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) {
935 CTR5(KTR_CXGBE,
936 "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).",
937 __func__, toep->tid, seq, tp->snd_una, tp->snd_max);
938 return;
939 }
940
941 /* Find the best mtu_idx for the suggested MTU. */
942 for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++)
943 continue;
944 if (idx >= toep->params.mtu_idx)
945 return; /* Never increase the PMTU (just like the kernel). */
946
947 /*
948 * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first
949 * one updates the mtu_idx and the second one triggers a retransmit.
950 */
951 len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16);
952 wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie);
953 if (wrh == NULL) {
954 CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n",
955 toep->tid, toep->params.mtu_idx, idx);
956 return;
957 }
958 INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
959 ulpmc = (struct ulp_txpkt *)(wrh + 1);
960 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_T_MAXSEG,
961 V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx), toep->tid);
962 ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_TIMESTAMP,
963 V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0, toep->tid);
964 commit_wrq_wr(toep->ctrlq, wrh, &cookie);
965
966 /* Update the software toepcb and tcpcb. */
967 toep->params.mtu_idx = idx;
968 tp->t_maxseg = mtus[toep->params.mtu_idx];
969 if (inp->inp_inc.inc_flags & INC_ISIPV6)
970 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
971 else
972 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr);
973 toep->params.emss = tp->t_maxseg;
974 if (tp->t_flags & TF_RCVD_TSTMP)
975 toep->params.emss -= TCPOLEN_TSTAMP_APPA;
976
977 /* Update the firmware flowc. */
978 send_mss_flowc_wr(sc, toep);
979
980 /* Update the MTU in the kernel's hostcache. */
981 if (sc->tt.update_hc_on_pmtu_change != 0) {
982 struct in_conninfo inc = {0};
983
984 inc.inc_fibnum = inp->inp_inc.inc_fibnum;
985 if (inp->inp_inc.inc_flags & INC_ISIPV6) {
986 inc.inc_flags |= INC_ISIPV6;
987 inc.inc6_faddr = inp->inp_inc.inc6_faddr;
988 } else {
989 inc.inc_faddr = inp->inp_inc.inc_faddr;
990 }
991 tcp_hc_updatemtu(&inc, mtu);
992 }
993
994 CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u",
995 __func__, toep->tid, toep->params.mtu_idx,
996 mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss);
997 }
998
999 /*
1000 * The TOE driver will not receive any more CPLs for the tid associated with the
1001 * toepcb; release the hold on the inpcb.
1002 */
1003 void
1004 final_cpl_received(struct toepcb *toep)
1005 {
1006 struct inpcb *inp = toep->inp;
1007 bool need_wakeup;
1008
1009 KASSERT(inp != NULL, ("%s: inp is NULL", __func__));
1010 INP_WLOCK_ASSERT(inp);
1011 KASSERT(toep->flags & TPF_CPL_PENDING,
1012 ("%s: CPL not pending already?", __func__));
1013
1014 CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)",
1015 __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags);
1016
1017 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
1018 release_ddp_resources(toep);
1019 toep->inp = NULL;
1020 need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0;
1021 toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL);
1022 mbufq_drain(&toep->ulp_pduq);
1023 mbufq_drain(&toep->ulp_pdu_reclaimq);
1024
1025 if (!(toep->flags & TPF_ATTACHED))
1026 release_offload_resources(toep);
1027
1028 if (!in_pcbrele_wlocked(inp))
1029 INP_WUNLOCK(inp);
1030
1031 if (need_wakeup) {
1032 struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep);
1033
1034 mtx_lock(lock);
1035 wakeup(toep);
1036 mtx_unlock(lock);
1037 }
1038 }
1039
1040 void
1041 insert_tid(struct adapter *sc, int tid, void *ctx, int ntids)
1042 {
1043 struct tid_info *t = &sc->tids;
1044
1045 MPASS(tid >= t->tid_base);
1046 MPASS(tid - t->tid_base < t->ntids);
1047
1048 t->tid_tab[tid - t->tid_base] = ctx;
1049 atomic_add_int(&t->tids_in_use, ntids);
1050 }
1051
1052 void *
1053 lookup_tid(struct adapter *sc, int tid)
1054 {
1055 struct tid_info *t = &sc->tids;
1056
1057 return (t->tid_tab[tid - t->tid_base]);
1058 }
1059
1060 void
1061 update_tid(struct adapter *sc, int tid, void *ctx)
1062 {
1063 struct tid_info *t = &sc->tids;
1064
1065 t->tid_tab[tid - t->tid_base] = ctx;
1066 }
1067
1068 void
1069 remove_tid(struct adapter *sc, int tid, int ntids)
1070 {
1071 struct tid_info *t = &sc->tids;
1072
1073 t->tid_tab[tid - t->tid_base] = NULL;
1074 atomic_subtract_int(&t->tids_in_use, ntids);
1075 }
1076
1077 /*
1078 * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt
1079 * have the MSS that we should advertise in our SYN. Advertised MSS doesn't
1080 * account for any TCP options so the effective MSS (only payload, no headers or
1081 * options) could be different.
1082 */
1083 static int
1084 find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc,
1085 struct offload_settings *s)
1086 {
1087 unsigned short *mtus = &sc->params.mtus[0];
1088 int i, mss, mtu;
1089
1090 MPASS(inc != NULL);
1091
1092 mss = s->mss > 0 ? s->mss : tcp_mssopt(inc);
1093 if (inc->inc_flags & INC_ISIPV6)
1094 mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1095 else
1096 mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr);
1097
1098 for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++)
1099 continue;
1100
1101 return (i);
1102 }
1103
1104 /*
1105 * Determine the receive window size for a socket.
1106 */
1107 u_long
1108 select_rcv_wnd(struct socket *so)
1109 {
1110 unsigned long wnd;
1111
1112 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1113
1114 wnd = sbspace(&so->so_rcv);
1115 if (wnd < MIN_RCV_WND)
1116 wnd = MIN_RCV_WND;
1117
1118 return min(wnd, MAX_RCV_WND);
1119 }
1120
1121 int
1122 select_rcv_wscale(void)
1123 {
1124 int wscale = 0;
1125 unsigned long space = sb_max;
1126
1127 if (space > MAX_RCV_WND)
1128 space = MAX_RCV_WND;
1129
1130 while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space)
1131 wscale++;
1132
1133 return (wscale);
1134 }
1135
1136 __be64
1137 calc_options0(struct vi_info *vi, struct conn_params *cp)
1138 {
1139 uint64_t opt0 = 0;
1140
1141 opt0 |= F_TCAM_BYPASS;
1142
1143 MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE);
1144 opt0 |= V_WND_SCALE(cp->wscale);
1145
1146 MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS);
1147 opt0 |= V_MSS_IDX(cp->mtu_idx);
1148
1149 MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE);
1150 opt0 |= V_ULP_MODE(cp->ulp_mode);
1151
1152 MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ);
1153 opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize);
1154
1155 MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size);
1156 opt0 |= V_L2T_IDX(cp->l2t_idx);
1157
1158 opt0 |= V_SMAC_SEL(vi->smt_idx);
1159 opt0 |= V_TX_CHAN(vi->pi->tx_chan);
1160
1161 MPASS(cp->keepalive == 0 || cp->keepalive == 1);
1162 opt0 |= V_KEEP_ALIVE(cp->keepalive);
1163
1164 MPASS(cp->nagle == 0 || cp->nagle == 1);
1165 opt0 |= V_NAGLE(cp->nagle);
1166
1167 return (htobe64(opt0));
1168 }
1169
1170 __be32
1171 calc_options2(struct vi_info *vi, struct conn_params *cp)
1172 {
1173 uint32_t opt2 = 0;
1174 struct port_info *pi = vi->pi;
1175 struct adapter *sc = pi->adapter;
1176
1177 /*
1178 * rx flow control, rx coalesce, congestion control, and tx pace are all
1179 * explicitly set by the driver. On T5+ the ISS is also set by the
1180 * driver to the value picked by the kernel.
1181 */
1182 if (is_t4(sc)) {
1183 opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID;
1184 opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID;
1185 } else {
1186 opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */
1187 opt2 |= F_T5_ISS; /* ISS provided in CPL */
1188 }
1189
1190 MPASS(cp->sack == 0 || cp->sack == 1);
1191 opt2 |= V_SACK_EN(cp->sack);
1192
1193 MPASS(cp->tstamp == 0 || cp->tstamp == 1);
1194 opt2 |= V_TSTAMPS_EN(cp->tstamp);
1195
1196 if (cp->wscale > 0)
1197 opt2 |= F_WND_SCALE_EN;
1198
1199 MPASS(cp->ecn == 0 || cp->ecn == 1);
1200 opt2 |= V_CCTRL_ECN(cp->ecn);
1201
1202 /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */
1203
1204 opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]);
1205 opt2 |= V_PACE(0);
1206 opt2 |= F_RSS_QUEUE_VALID;
1207 opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id);
1208
1209 MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL);
1210 opt2 |= V_CONG_CNTRL(cp->cong_algo);
1211
1212 MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1);
1213 if (cp->rx_coalesce == 1)
1214 opt2 |= V_RX_COALESCE(M_RX_COALESCE);
1215
1216 opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0);
1217 #ifdef USE_DDP_RX_FLOW_CONTROL
1218 if (cp->ulp_mode == ULP_MODE_TCPDDP)
1219 opt2 |= F_RX_FC_DDP;
1220 #endif
1221
1222 return (htobe32(opt2));
1223 }
1224
1225 uint64_t
1226 select_ntuple(struct vi_info *vi, struct l2t_entry *e)
1227 {
1228 struct adapter *sc = vi->adapter;
1229 struct tp_params *tp = &sc->params.tp;
1230 uint64_t ntuple = 0;
1231
1232 /*
1233 * Initialize each of the fields which we care about which are present
1234 * in the Compressed Filter Tuple.
1235 */
1236 if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE)
1237 ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift;
1238
1239 if (tp->port_shift >= 0)
1240 ntuple |= (uint64_t)e->lport << tp->port_shift;
1241
1242 if (tp->protocol_shift >= 0)
1243 ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift;
1244
1245 if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) {
1246 ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) |
1247 V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) <<
1248 tp->vnic_shift;
1249 }
1250
1251 if (is_t4(sc))
1252 return (htobe32((uint32_t)ntuple));
1253 else
1254 return (htobe64(V_FILTER_TUPLE(ntuple)));
1255 }
1256
1257 /*
1258 * Initialize various connection parameters.
1259 */
1260 void
1261 init_conn_params(struct vi_info *vi , struct offload_settings *s,
1262 struct in_conninfo *inc, struct socket *so,
1263 const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp)
1264 {
1265 struct port_info *pi = vi->pi;
1266 struct adapter *sc = pi->adapter;
1267 struct tom_tunables *tt = &sc->tt;
1268 struct inpcb *inp = sotoinpcb(so);
1269 struct tcpcb *tp = intotcpcb(inp);
1270 u_long wnd;
1271 u_int q_idx;
1272
1273 MPASS(s->offload != 0);
1274
1275 /* Congestion control algorithm */
1276 if (s->cong_algo >= 0)
1277 cp->cong_algo = s->cong_algo & M_CONG_CNTRL;
1278 else if (sc->tt.cong_algorithm >= 0)
1279 cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL;
1280 else {
1281 struct cc_algo *cc = CC_ALGO(tp);
1282
1283 if (strcasecmp(cc->name, "reno") == 0)
1284 cp->cong_algo = CONG_ALG_RENO;
1285 else if (strcasecmp(cc->name, "tahoe") == 0)
1286 cp->cong_algo = CONG_ALG_TAHOE;
1287 if (strcasecmp(cc->name, "newreno") == 0)
1288 cp->cong_algo = CONG_ALG_NEWRENO;
1289 if (strcasecmp(cc->name, "highspeed") == 0)
1290 cp->cong_algo = CONG_ALG_HIGHSPEED;
1291 else {
1292 /*
1293 * Use newreno in case the algorithm selected by the
1294 * host stack is not supported by the hardware.
1295 */
1296 cp->cong_algo = CONG_ALG_NEWRENO;
1297 }
1298 }
1299
1300 /* Tx traffic scheduling class. */
1301 if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls)
1302 cp->tc_idx = s->sched_class;
1303 else
1304 cp->tc_idx = -1;
1305
1306 /* Nagle's algorithm. */
1307 if (s->nagle >= 0)
1308 cp->nagle = s->nagle > 0 ? 1 : 0;
1309 else
1310 cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1;
1311
1312 /* TCP Keepalive. */
1313 if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE)
1314 cp->keepalive = 1;
1315 else
1316 cp->keepalive = 0;
1317
1318 /* Optimization that's specific to T5 @ 40G. */
1319 if (tt->tx_align >= 0)
1320 cp->tx_align = tt->tx_align > 0 ? 1 : 0;
1321 else if (chip_id(sc) == CHELSIO_T5 &&
1322 (port_top_speed(pi) > 10 || sc->params.nports > 2))
1323 cp->tx_align = 1;
1324 else
1325 cp->tx_align = 0;
1326
1327 /* ULP mode. */
1328 if (s->ddp > 0 ||
1329 (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0))
1330 cp->ulp_mode = ULP_MODE_TCPDDP;
1331 else
1332 cp->ulp_mode = ULP_MODE_NONE;
1333
1334 /* Rx coalescing. */
1335 if (s->rx_coalesce >= 0)
1336 cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0;
1337 else if (tt->rx_coalesce >= 0)
1338 cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0;
1339 else
1340 cp->rx_coalesce = 1; /* default */
1341
1342 /*
1343 * Index in the PMTU table. This controls the MSS that we announce in
1344 * our SYN initially, but after ESTABLISHED it controls the MSS that we
1345 * use to send data.
1346 */
1347 cp->mtu_idx = find_best_mtu_idx(sc, inc, s);
1348
1349 /* Tx queue for this connection. */
1350 if (s->txq == QUEUE_RANDOM)
1351 q_idx = arc4random();
1352 else if (s->txq == QUEUE_ROUNDROBIN)
1353 q_idx = atomic_fetchadd_int(&vi->txq_rr, 1);
1354 else
1355 q_idx = s->txq;
1356 cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq;
1357
1358 /* Rx queue for this connection. */
1359 if (s->rxq == QUEUE_RANDOM)
1360 q_idx = arc4random();
1361 else if (s->rxq == QUEUE_ROUNDROBIN)
1362 q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1);
1363 else
1364 q_idx = s->rxq;
1365 cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq;
1366
1367 if (SOLISTENING(so)) {
1368 /* Passive open */
1369 MPASS(tcpopt != NULL);
1370
1371 /* TCP timestamp option */
1372 if (tcpopt->tstamp &&
1373 (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323)))
1374 cp->tstamp = 1;
1375 else
1376 cp->tstamp = 0;
1377
1378 /* SACK */
1379 if (tcpopt->sack &&
1380 (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack)))
1381 cp->sack = 1;
1382 else
1383 cp->sack = 0;
1384
1385 /* Receive window scaling. */
1386 if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323)
1387 cp->wscale = select_rcv_wscale();
1388 else
1389 cp->wscale = 0;
1390
1391 /* ECN */
1392 if (tcpopt->ecn && /* XXX: review. */
1393 (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn)))
1394 cp->ecn = 1;
1395 else
1396 cp->ecn = 0;
1397
1398 wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND);
1399 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
1400
1401 if (tt->sndbuf > 0)
1402 cp->sndbuf = tt->sndbuf;
1403 else if (so->sol_sbsnd_flags & SB_AUTOSIZE &&
1404 V_tcp_do_autosndbuf)
1405 cp->sndbuf = 256 * 1024;
1406 else
1407 cp->sndbuf = so->sol_sbsnd_hiwat;
1408 } else {
1409 /* Active open */
1410
1411 /* TCP timestamp option */
1412 if (s->tstamp > 0 ||
1413 (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP)))
1414 cp->tstamp = 1;
1415 else
1416 cp->tstamp = 0;
1417
1418 /* SACK */
1419 if (s->sack > 0 ||
1420 (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT)))
1421 cp->sack = 1;
1422 else
1423 cp->sack = 0;
1424
1425 /* Receive window scaling */
1426 if (tp->t_flags & TF_REQ_SCALE)
1427 cp->wscale = select_rcv_wscale();
1428 else
1429 cp->wscale = 0;
1430
1431 /* ECN */
1432 if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1))
1433 cp->ecn = 1;
1434 else
1435 cp->ecn = 0;
1436
1437 SOCKBUF_LOCK(&so->so_rcv);
1438 wnd = max(select_rcv_wnd(so), MIN_RCV_WND);
1439 SOCKBUF_UNLOCK(&so->so_rcv);
1440 cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ);
1441
1442 if (tt->sndbuf > 0)
1443 cp->sndbuf = tt->sndbuf;
1444 else {
1445 SOCKBUF_LOCK(&so->so_snd);
1446 if (so->so_snd.sb_flags & SB_AUTOSIZE &&
1447 V_tcp_do_autosndbuf)
1448 cp->sndbuf = 256 * 1024;
1449 else
1450 cp->sndbuf = so->so_snd.sb_hiwat;
1451 SOCKBUF_UNLOCK(&so->so_snd);
1452 }
1453 }
1454
1455 cp->l2t_idx = l2t_idx;
1456
1457 /* This will be initialized on ESTABLISHED. */
1458 cp->emss = 0;
1459 }
1460
1461 int
1462 negative_advice(int status)
1463 {
1464
1465 return (status == CPL_ERR_RTX_NEG_ADVICE ||
1466 status == CPL_ERR_PERSIST_NEG_ADVICE ||
1467 status == CPL_ERR_KEEPALV_NEG_ADVICE);
1468 }
1469
1470 static int
1471 alloc_tid_tab(struct tid_info *t, int flags)
1472 {
1473
1474 MPASS(t->ntids > 0);
1475 MPASS(t->tid_tab == NULL);
1476
1477 t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE,
1478 M_ZERO | flags);
1479 if (t->tid_tab == NULL)
1480 return (ENOMEM);
1481 atomic_store_rel_int(&t->tids_in_use, 0);
1482
1483 return (0);
1484 }
1485
1486 static void
1487 free_tid_tab(struct tid_info *t)
1488 {
1489
1490 KASSERT(t->tids_in_use == 0,
1491 ("%s: %d tids still in use.", __func__, t->tids_in_use));
1492
1493 free(t->tid_tab, M_CXGBE);
1494 t->tid_tab = NULL;
1495 }
1496
1497 static int
1498 alloc_stid_tab(struct tid_info *t, int flags)
1499 {
1500
1501 MPASS(t->nstids > 0);
1502 MPASS(t->stid_tab == NULL);
1503
1504 t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE,
1505 M_ZERO | flags);
1506 if (t->stid_tab == NULL)
1507 return (ENOMEM);
1508 mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF);
1509 t->stids_in_use = 0;
1510 TAILQ_INIT(&t->stids);
1511 t->nstids_free_head = t->nstids;
1512
1513 return (0);
1514 }
1515
1516 static void
1517 free_stid_tab(struct tid_info *t)
1518 {
1519
1520 KASSERT(t->stids_in_use == 0,
1521 ("%s: %d tids still in use.", __func__, t->stids_in_use));
1522
1523 if (mtx_initialized(&t->stid_lock))
1524 mtx_destroy(&t->stid_lock);
1525 free(t->stid_tab, M_CXGBE);
1526 t->stid_tab = NULL;
1527 }
1528
1529 static void
1530 free_tid_tabs(struct tid_info *t)
1531 {
1532
1533 free_tid_tab(t);
1534 free_stid_tab(t);
1535 }
1536
1537 static int
1538 alloc_tid_tabs(struct tid_info *t)
1539 {
1540 int rc;
1541
1542 rc = alloc_tid_tab(t, M_NOWAIT);
1543 if (rc != 0)
1544 goto failed;
1545
1546 rc = alloc_stid_tab(t, M_NOWAIT);
1547 if (rc != 0)
1548 goto failed;
1549
1550 return (0);
1551 failed:
1552 free_tid_tabs(t);
1553 return (rc);
1554 }
1555
1556 static inline void
1557 alloc_tcb_history(struct adapter *sc, struct tom_data *td)
1558 {
1559
1560 if (sc->tids.ntids == 0 || sc->tids.ntids > 1024)
1561 return;
1562 rw_init(&td->tcb_history_lock, "TCB history");
1563 td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history),
1564 M_CXGBE, M_ZERO | M_NOWAIT);
1565 td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0));
1566 }
1567
1568 static inline void
1569 free_tcb_history(struct adapter *sc, struct tom_data *td)
1570 {
1571 #ifdef INVARIANTS
1572 int i;
1573
1574 if (td->tcb_history != NULL) {
1575 for (i = 0; i < sc->tids.ntids; i++) {
1576 MPASS(td->tcb_history[i] == NULL);
1577 }
1578 }
1579 #endif
1580 free(td->tcb_history, M_CXGBE);
1581 if (rw_initialized(&td->tcb_history_lock))
1582 rw_destroy(&td->tcb_history_lock);
1583 }
1584
1585 static void
1586 free_tom_data(struct adapter *sc, struct tom_data *td)
1587 {
1588
1589 ASSERT_SYNCHRONIZED_OP(sc);
1590
1591 KASSERT(TAILQ_EMPTY(&td->toep_list),
1592 ("%s: TOE PCB list is not empty.", __func__));
1593 KASSERT(td->lctx_count == 0,
1594 ("%s: lctx hash table is not empty.", __func__));
1595
1596 t4_free_ppod_region(&td->pr);
1597
1598 if (td->listen_mask != 0)
1599 hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask);
1600
1601 if (mtx_initialized(&td->unsent_wr_lock))
1602 mtx_destroy(&td->unsent_wr_lock);
1603 if (mtx_initialized(&td->lctx_hash_lock))
1604 mtx_destroy(&td->lctx_hash_lock);
1605 if (mtx_initialized(&td->toep_list_lock))
1606 mtx_destroy(&td->toep_list_lock);
1607
1608 free_tcb_history(sc, td);
1609 free_tid_tabs(&sc->tids);
1610 free(td, M_CXGBE);
1611 }
1612
1613 static char *
1614 prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen,
1615 int *buflen)
1616 {
1617 char *pkt;
1618 struct tcphdr *th;
1619 int ipv6, len;
1620 const int maxlen =
1621 max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) +
1622 max(sizeof(struct ip), sizeof(struct ip6_hdr)) +
1623 sizeof(struct tcphdr);
1624
1625 MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN);
1626
1627 pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT);
1628 if (pkt == NULL)
1629 return (NULL);
1630
1631 ipv6 = inp->inp_vflag & INP_IPV6;
1632 len = 0;
1633
1634 if (EVL_VLANOFTAG(vtag) == 0xfff) {
1635 struct ether_header *eh = (void *)pkt;
1636
1637 if (ipv6)
1638 eh->ether_type = htons(ETHERTYPE_IPV6);
1639 else
1640 eh->ether_type = htons(ETHERTYPE_IP);
1641
1642 len += sizeof(*eh);
1643 } else {
1644 struct ether_vlan_header *evh = (void *)pkt;
1645
1646 evh->evl_encap_proto = htons(ETHERTYPE_VLAN);
1647 evh->evl_tag = htons(vtag);
1648 if (ipv6)
1649 evh->evl_proto = htons(ETHERTYPE_IPV6);
1650 else
1651 evh->evl_proto = htons(ETHERTYPE_IP);
1652
1653 len += sizeof(*evh);
1654 }
1655
1656 if (ipv6) {
1657 struct ip6_hdr *ip6 = (void *)&pkt[len];
1658
1659 ip6->ip6_vfc = IPV6_VERSION;
1660 ip6->ip6_plen = htons(sizeof(struct tcphdr));
1661 ip6->ip6_nxt = IPPROTO_TCP;
1662 if (open_type == OPEN_TYPE_ACTIVE) {
1663 ip6->ip6_src = inp->in6p_laddr;
1664 ip6->ip6_dst = inp->in6p_faddr;
1665 } else if (open_type == OPEN_TYPE_LISTEN) {
1666 ip6->ip6_src = inp->in6p_laddr;
1667 ip6->ip6_dst = ip6->ip6_src;
1668 }
1669
1670 len += sizeof(*ip6);
1671 } else {
1672 struct ip *ip = (void *)&pkt[len];
1673
1674 ip->ip_v = IPVERSION;
1675 ip->ip_hl = sizeof(*ip) >> 2;
1676 ip->ip_tos = inp->inp_ip_tos;
1677 ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr));
1678 ip->ip_ttl = inp->inp_ip_ttl;
1679 ip->ip_p = IPPROTO_TCP;
1680 if (open_type == OPEN_TYPE_ACTIVE) {
1681 ip->ip_src = inp->inp_laddr;
1682 ip->ip_dst = inp->inp_faddr;
1683 } else if (open_type == OPEN_TYPE_LISTEN) {
1684 ip->ip_src = inp->inp_laddr;
1685 ip->ip_dst = ip->ip_src;
1686 }
1687
1688 len += sizeof(*ip);
1689 }
1690
1691 th = (void *)&pkt[len];
1692 if (open_type == OPEN_TYPE_ACTIVE) {
1693 th->th_sport = inp->inp_lport; /* network byte order already */
1694 th->th_dport = inp->inp_fport; /* ditto */
1695 } else if (open_type == OPEN_TYPE_LISTEN) {
1696 th->th_sport = inp->inp_lport; /* network byte order already */
1697 th->th_dport = th->th_sport;
1698 }
1699 len += sizeof(th);
1700
1701 *pktlen = *buflen = len;
1702 return (pkt);
1703 }
1704
1705 const struct offload_settings *
1706 lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m,
1707 uint16_t vtag, struct inpcb *inp)
1708 {
1709 const struct t4_offload_policy *op;
1710 char *pkt;
1711 struct offload_rule *r;
1712 int i, matched, pktlen, buflen;
1713 static const struct offload_settings allow_offloading_settings = {
1714 .offload = 1,
1715 .rx_coalesce = -1,
1716 .cong_algo = -1,
1717 .sched_class = -1,
1718 .tstamp = -1,
1719 .sack = -1,
1720 .nagle = -1,
1721 .ecn = -1,
1722 .ddp = -1,
1723 .tls = -1,
1724 .txq = QUEUE_RANDOM,
1725 .rxq = QUEUE_RANDOM,
1726 .mss = -1,
1727 };
1728 static const struct offload_settings disallow_offloading_settings = {
1729 .offload = 0,
1730 /* rest is irrelevant when offload is off. */
1731 };
1732
1733 rw_assert(&sc->policy_lock, RA_LOCKED);
1734
1735 /*
1736 * If there's no Connection Offloading Policy attached to the device
1737 * then we need to return a default static policy. If
1738 * "cop_managed_offloading" is true, then we need to disallow
1739 * offloading until a COP is attached to the device. Otherwise we
1740 * allow offloading ...
1741 */
1742 op = sc->policy;
1743 if (op == NULL) {
1744 if (sc->tt.cop_managed_offloading)
1745 return (&disallow_offloading_settings);
1746 else
1747 return (&allow_offloading_settings);
1748 }
1749
1750 switch (open_type) {
1751 case OPEN_TYPE_ACTIVE:
1752 case OPEN_TYPE_LISTEN:
1753 pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen);
1754 break;
1755 case OPEN_TYPE_PASSIVE:
1756 MPASS(m != NULL);
1757 pkt = mtod(m, char *);
1758 MPASS(*pkt == CPL_PASS_ACCEPT_REQ);
1759 pkt += sizeof(struct cpl_pass_accept_req);
1760 pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req);
1761 buflen = m->m_len - sizeof(struct cpl_pass_accept_req);
1762 break;
1763 default:
1764 MPASS(0);
1765 return (&disallow_offloading_settings);
1766 }
1767
1768 if (pkt == NULL || pktlen == 0 || buflen == 0)
1769 return (&disallow_offloading_settings);
1770
1771 matched = 0;
1772 r = &op->rule[0];
1773 for (i = 0; i < op->nrules; i++, r++) {
1774 if (r->open_type != open_type &&
1775 r->open_type != OPEN_TYPE_DONTCARE) {
1776 continue;
1777 }
1778 matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen);
1779 if (matched)
1780 break;
1781 }
1782
1783 if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN)
1784 free(pkt, M_CXGBE);
1785
1786 return (matched ? &r->settings : &disallow_offloading_settings);
1787 }
1788
1789 static void
1790 reclaim_wr_resources(void *arg, int count)
1791 {
1792 struct tom_data *td = arg;
1793 STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list);
1794 struct cpl_act_open_req *cpl;
1795 u_int opcode, atid, tid;
1796 struct wrqe *wr;
1797 struct adapter *sc = td_adapter(td);
1798
1799 mtx_lock(&td->unsent_wr_lock);
1800 STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe);
1801 mtx_unlock(&td->unsent_wr_lock);
1802
1803 while ((wr = STAILQ_FIRST(&twr_list)) != NULL) {
1804 STAILQ_REMOVE_HEAD(&twr_list, link);
1805
1806 cpl = wrtod(wr);
1807 opcode = GET_OPCODE(cpl);
1808
1809 switch (opcode) {
1810 case CPL_ACT_OPEN_REQ:
1811 case CPL_ACT_OPEN_REQ6:
1812 atid = G_TID_TID(be32toh(OPCODE_TID(cpl)));
1813 CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid);
1814 act_open_failure_cleanup(sc, atid, EHOSTUNREACH);
1815 free(wr, M_CXGBE);
1816 break;
1817 case CPL_PASS_ACCEPT_RPL:
1818 tid = GET_TID(cpl);
1819 CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid);
1820 synack_failure_cleanup(sc, tid);
1821 free(wr, M_CXGBE);
1822 break;
1823 default:
1824 log(LOG_ERR, "%s: leaked work request %p, wr_len %d, "
1825 "opcode %x\n", __func__, wr, wr->wr_len, opcode);
1826 /* WR not freed here; go look at it with a debugger. */
1827 }
1828 }
1829 }
1830
1831 /*
1832 * Ground control to Major TOM
1833 * Commencing countdown, engines on
1834 */
1835 static int
1836 t4_tom_activate(struct adapter *sc)
1837 {
1838 struct tom_data *td;
1839 struct toedev *tod;
1840 struct vi_info *vi;
1841 int i, rc, v;
1842
1843 ASSERT_SYNCHRONIZED_OP(sc);
1844
1845 /* per-adapter softc for TOM */
1846 td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT);
1847 if (td == NULL)
1848 return (ENOMEM);
1849
1850 /* List of TOE PCBs and associated lock */
1851 mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF);
1852 TAILQ_INIT(&td->toep_list);
1853
1854 /* Listen context */
1855 mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF);
1856 td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE,
1857 &td->listen_mask, HASH_NOWAIT);
1858
1859 /* List of WRs for which L2 resolution failed */
1860 mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF);
1861 STAILQ_INIT(&td->unsent_wr_list);
1862 TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td);
1863
1864 /* TID tables */
1865 rc = alloc_tid_tabs(&sc->tids);
1866 if (rc != 0)
1867 goto done;
1868
1869 rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp,
1870 t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods");
1871 if (rc != 0)
1872 goto done;
1873 t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK,
1874 V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask);
1875
1876 alloc_tcb_history(sc, td);
1877
1878 /* toedev ops */
1879 tod = &td->tod;
1880 init_toedev(tod);
1881 tod->tod_softc = sc;
1882 tod->tod_connect = t4_connect;
1883 tod->tod_listen_start = t4_listen_start;
1884 tod->tod_listen_stop = t4_listen_stop;
1885 tod->tod_rcvd = t4_rcvd;
1886 tod->tod_output = t4_tod_output;
1887 tod->tod_send_rst = t4_send_rst;
1888 tod->tod_send_fin = t4_send_fin;
1889 tod->tod_pcb_detach = t4_pcb_detach;
1890 tod->tod_l2_update = t4_l2_update;
1891 tod->tod_syncache_added = t4_syncache_added;
1892 tod->tod_syncache_removed = t4_syncache_removed;
1893 tod->tod_syncache_respond = t4_syncache_respond;
1894 tod->tod_offload_socket = t4_offload_socket;
1895 tod->tod_ctloutput = t4_ctloutput;
1896 tod->tod_tcp_info = t4_tcp_info;
1897 #ifdef KERN_TLS
1898 tod->tod_alloc_tls_session = t4_alloc_tls_session;
1899 #endif
1900 tod->tod_pmtu_update = t4_pmtu_update;
1901
1902 for_each_port(sc, i) {
1903 for_each_vi(sc->port[i], v, vi) {
1904 TOEDEV(vi->ifp) = &td->tod;
1905 }
1906 }
1907
1908 sc->tom_softc = td;
1909 register_toedev(sc->tom_softc);
1910
1911 done:
1912 if (rc != 0)
1913 free_tom_data(sc, td);
1914 return (rc);
1915 }
1916
1917 static int
1918 t4_tom_deactivate(struct adapter *sc)
1919 {
1920 int rc = 0;
1921 struct tom_data *td = sc->tom_softc;
1922
1923 ASSERT_SYNCHRONIZED_OP(sc);
1924
1925 if (td == NULL)
1926 return (0); /* XXX. KASSERT? */
1927
1928 if (sc->offload_map != 0)
1929 return (EBUSY); /* at least one port has IFCAP_TOE enabled */
1930
1931 if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI))
1932 return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */
1933
1934 mtx_lock(&td->toep_list_lock);
1935 if (!TAILQ_EMPTY(&td->toep_list))
1936 rc = EBUSY;
1937 mtx_unlock(&td->toep_list_lock);
1938
1939 mtx_lock(&td->lctx_hash_lock);
1940 if (td->lctx_count > 0)
1941 rc = EBUSY;
1942 mtx_unlock(&td->lctx_hash_lock);
1943
1944 taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources);
1945 mtx_lock(&td->unsent_wr_lock);
1946 if (!STAILQ_EMPTY(&td->unsent_wr_list))
1947 rc = EBUSY;
1948 mtx_unlock(&td->unsent_wr_lock);
1949
1950 if (rc == 0) {
1951 unregister_toedev(sc->tom_softc);
1952 free_tom_data(sc, td);
1953 sc->tom_softc = NULL;
1954 }
1955
1956 return (rc);
1957 }
1958
1959 static int
1960 t4_aio_queue_tom(struct socket *so, struct kaiocb *job)
1961 {
1962 struct tcpcb *tp = sototcpcb(so);
1963 struct toepcb *toep = tp->t_toe;
1964 int error;
1965
1966 /*
1967 * No lock is needed as TOE sockets never change between
1968 * active and passive.
1969 */
1970 if (SOLISTENING(so))
1971 return (EINVAL);
1972
1973 if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
1974 error = t4_aio_queue_ddp(so, job);
1975 if (error != EOPNOTSUPP)
1976 return (error);
1977 }
1978
1979 return (t4_aio_queue_aiotx(so, job));
1980 }
1981
1982 static int
1983 t4_tom_mod_load(void)
1984 {
1985 /* CPL handlers */
1986 t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl);
1987 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2,
1988 CPL_COOKIE_TOM);
1989 t4_init_connect_cpl_handlers();
1990 t4_init_listen_cpl_handlers();
1991 t4_init_cpl_io_handlers();
1992
1993 t4_ddp_mod_load();
1994 t4_tls_mod_load();
1995
1996 bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw));
1997 toe_protosw.pr_aio_queue = t4_aio_queue_tom;
1998
1999 bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw));
2000 toe6_protosw.pr_aio_queue = t4_aio_queue_tom;
2001
2002 return (t4_register_uld(&tom_uld_info));
2003 }
2004
2005 static void
2006 tom_uninit(struct adapter *sc, void *arg __unused)
2007 {
2008 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun"))
2009 return;
2010
2011 /* Try to free resources (works only if no port has IFCAP_TOE) */
2012 if (uld_active(sc, ULD_TOM))
2013 t4_deactivate_uld(sc, ULD_TOM);
2014
2015 end_synchronized_op(sc, 0);
2016 }
2017
2018 static int
2019 t4_tom_mod_unload(void)
2020 {
2021 t4_iterate(tom_uninit, NULL);
2022
2023 if (t4_unregister_uld(&tom_uld_info) == EBUSY)
2024 return (EBUSY);
2025
2026 t4_tls_mod_unload();
2027 t4_ddp_mod_unload();
2028
2029 t4_uninit_connect_cpl_handlers();
2030 t4_uninit_listen_cpl_handlers();
2031 t4_uninit_cpl_io_handlers();
2032 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM);
2033 t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL);
2034
2035 return (0);
2036 }
2037 #endif /* TCP_OFFLOAD */
2038
2039 static int
2040 t4_tom_modevent(module_t mod, int cmd, void *arg)
2041 {
2042 int rc = 0;
2043
2044 #ifdef TCP_OFFLOAD
2045 switch (cmd) {
2046 case MOD_LOAD:
2047 rc = t4_tom_mod_load();
2048 break;
2049
2050 case MOD_UNLOAD:
2051 rc = t4_tom_mod_unload();
2052 break;
2053
2054 default:
2055 rc = EINVAL;
2056 }
2057 #else
2058 printf("t4_tom: compiled without TCP_OFFLOAD support.\n");
2059 rc = EOPNOTSUPP;
2060 #endif
2061 return (rc);
2062 }
2063
2064 static moduledata_t t4_tom_moddata= {
2065 "t4_tom",
2066 t4_tom_modevent,
2067 0
2068 };
2069
2070 MODULE_VERSION(t4_tom, 1);
2071 MODULE_DEPEND(t4_tom, toecore, 1, 1, 1);
2072 MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1);
2073 DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);
Cache object: 02c3e4409fd48fae0f404f71fcf3c02d
|