The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/dc/if_dc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-4-Clause
    3  *
    4  * Copyright (c) 1997, 1998, 1999
    5  *      Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. All advertising materials mentioning features or use of this software
   16  *    must display the following acknowledgement:
   17  *      This product includes software developed by Bill Paul.
   18  * 4. Neither the name of the author nor the names of any co-contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
   26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
   32  * THE POSSIBILITY OF SUCH DAMAGE.
   33  */
   34 
   35 #include <sys/cdefs.h>
   36 __FBSDID("$FreeBSD$");
   37 
   38 /*
   39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
   40  * series chips and several workalikes including the following:
   41  *
   42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
   43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
   44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
   45  * ASIX Electronics AX88140A (www.asix.com.tw)
   46  * ASIX Electronics AX88141 (www.asix.com.tw)
   47  * ADMtek AL981 (www.admtek.com.tw)
   48  * ADMtek AN983 (www.admtek.com.tw)
   49  * ADMtek CardBus AN985 (www.admtek.com.tw)
   50  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
   51  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
   52  * Accton EN1217 (www.accton.com)
   53  * Xircom X3201 (www.xircom.com)
   54  * Abocom FE2500
   55  * Conexant LANfinity (www.conexant.com)
   56  * 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
   57  *
   58  * Datasheets for the 21143 are available at developer.intel.com.
   59  * Datasheets for the clone parts can be found at their respective sites.
   60  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
   61  * The PNIC II is essentially a Macronix 98715A chip; the only difference
   62  * worth noting is that its multicast hash table is only 128 bits wide
   63  * instead of 512.
   64  *
   65  * Written by Bill Paul <wpaul@ee.columbia.edu>
   66  * Electrical Engineering Department
   67  * Columbia University, New York City
   68  */
   69 /*
   70  * The Intel 21143 is the successor to the DEC 21140. It is basically
   71  * the same as the 21140 but with a few new features. The 21143 supports
   72  * three kinds of media attachments:
   73  *
   74  * o MII port, for 10Mbps and 100Mbps support and NWAY
   75  *   autonegotiation provided by an external PHY.
   76  * o SYM port, for symbol mode 100Mbps support.
   77  * o 10baseT port.
   78  * o AUI/BNC port.
   79  *
   80  * The 100Mbps SYM port and 10baseT port can be used together in
   81  * combination with the internal NWAY support to create a 10/100
   82  * autosensing configuration.
   83  *
   84  * Note that not all tulip workalikes are handled in this driver: we only
   85  * deal with those which are relatively well behaved. The Winbond is
   86  * handled separately due to its different register offsets and the
   87  * special handling needed for its various bugs. The PNIC is handled
   88  * here, but I'm not thrilled about it.
   89  *
   90  * All of the workalike chips use some form of MII transceiver support
   91  * with the exception of the Macronix chips, which also have a SYM port.
   92  * The ASIX AX88140A is also documented to have a SYM port, but all
   93  * the cards I've seen use an MII transceiver, probably because the
   94  * AX88140A doesn't support internal NWAY.
   95  */
   96 
   97 #ifdef HAVE_KERNEL_OPTION_HEADERS
   98 #include "opt_device_polling.h"
   99 #endif
  100 
  101 #include <sys/param.h>
  102 #include <sys/endian.h>
  103 #include <sys/systm.h>
  104 #include <sys/sockio.h>
  105 #include <sys/mbuf.h>
  106 #include <sys/malloc.h>
  107 #include <sys/kernel.h>
  108 #include <sys/module.h>
  109 #include <sys/socket.h>
  110 
  111 #include <net/if.h>
  112 #include <net/if_var.h>
  113 #include <net/if_arp.h>
  114 #include <net/ethernet.h>
  115 #include <net/if_dl.h>
  116 #include <net/if_media.h>
  117 #include <net/if_types.h>
  118 #include <net/if_vlan_var.h>
  119 
  120 #include <net/bpf.h>
  121 
  122 #include <machine/bus.h>
  123 #include <machine/resource.h>
  124 #include <sys/bus.h>
  125 #include <sys/rman.h>
  126 
  127 #include <dev/mii/mii.h>
  128 #include <dev/mii/mii_bitbang.h>
  129 #include <dev/mii/miivar.h>
  130 
  131 #include <dev/pci/pcireg.h>
  132 #include <dev/pci/pcivar.h>
  133 
  134 #define DC_USEIOSPACE
  135 
  136 #include <dev/dc/if_dcreg.h>
  137 
  138 MODULE_DEPEND(dc, pci, 1, 1, 1);
  139 MODULE_DEPEND(dc, ether, 1, 1, 1);
  140 MODULE_DEPEND(dc, miibus, 1, 1, 1);
  141 
  142 /*
  143  * "device miibus" is required in kernel config.  See GENERIC if you get
  144  * errors here.
  145  */
  146 #include "miibus_if.h"
  147 
  148 /*
  149  * Various supported device vendors/types and their names.
  150  */
  151 static const struct dc_type dc_devs[] = {
  152         { DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
  153                 "Intel 21143 10/100BaseTX" },
  154         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
  155                 "Davicom DM9009 10/100BaseTX" },
  156         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
  157                 "Davicom DM9100 10/100BaseTX" },
  158         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
  159                 "Davicom DM9102A 10/100BaseTX" },
  160         { DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
  161                 "Davicom DM9102 10/100BaseTX" },
  162         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
  163                 "ADMtek AL981 10/100BaseTX" },
  164         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
  165                 "ADMtek AN983 10/100BaseTX" },
  166         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
  167                 "ADMtek AN985 CardBus 10/100BaseTX or clone" },
  168         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
  169                 "ADMtek ADM9511 10/100BaseTX" },
  170         { DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
  171                 "ADMtek ADM9513 10/100BaseTX" },
  172         { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
  173                 "ASIX AX88141 10/100BaseTX" },
  174         { DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
  175                 "ASIX AX88140A 10/100BaseTX" },
  176         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
  177                 "Macronix 98713A 10/100BaseTX" },
  178         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
  179                 "Macronix 98713 10/100BaseTX" },
  180         { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
  181                 "Compex RL100-TX 10/100BaseTX" },
  182         { DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
  183                 "Compex RL100-TX 10/100BaseTX" },
  184         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
  185                 "Macronix 98725 10/100BaseTX" },
  186         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
  187                 "Macronix 98715AEC-C 10/100BaseTX" },
  188         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
  189                 "Macronix 98715/98715A 10/100BaseTX" },
  190         { DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
  191                 "Macronix 98727/98732 10/100BaseTX" },
  192         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
  193                 "LC82C115 PNIC II 10/100BaseTX" },
  194         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
  195                 "82c169 PNIC 10/100BaseTX" },
  196         { DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
  197                 "82c168 PNIC 10/100BaseTX" },
  198         { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
  199                 "Accton EN1217 10/100BaseTX" },
  200         { DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
  201                 "Accton EN2242 MiniPCI 10/100BaseTX" },
  202         { DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
  203                 "Xircom X3201 10/100BaseTX" },
  204         { DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
  205                 "Neteasy DRP-32TXD Cardbus 10/100" },
  206         { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
  207                 "Abocom FE2500 10/100BaseTX" },
  208         { DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
  209                 "Abocom FE2500MX 10/100BaseTX" },
  210         { DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
  211                 "Conexant LANfinity MiniPCI 10/100BaseTX" },
  212         { DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
  213                 "Hawking CB102 CardBus 10/100" },
  214         { DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
  215                 "PlaneX FNW-3602-T CardBus 10/100" },
  216         { DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
  217                 "3Com OfficeConnect 10/100B" },
  218         { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
  219                 "Microsoft MN-120 CardBus 10/100" },
  220         { DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
  221                 "Microsoft MN-130 10/100" },
  222         { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
  223                 "Linksys PCMPC200 CardBus 10/100" },
  224         { DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
  225                 "Linksys PCMPC200 CardBus 10/100" },
  226         { DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261), 0,
  227                 "ULi M5261 FastEthernet" },
  228         { DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263), 0,
  229                 "ULi M5263 FastEthernet" },
  230         { 0, 0, NULL }
  231 };
  232 
  233 static int dc_probe(device_t);
  234 static int dc_attach(device_t);
  235 static int dc_detach(device_t);
  236 static int dc_suspend(device_t);
  237 static int dc_resume(device_t);
  238 static const struct dc_type *dc_devtype(device_t);
  239 static void dc_discard_rxbuf(struct dc_softc *, int);
  240 static int dc_newbuf(struct dc_softc *, int);
  241 static int dc_encap(struct dc_softc *, struct mbuf **);
  242 static void dc_pnic_rx_bug_war(struct dc_softc *, int);
  243 static int dc_rx_resync(struct dc_softc *);
  244 static int dc_rxeof(struct dc_softc *);
  245 static void dc_txeof(struct dc_softc *);
  246 static void dc_tick(void *);
  247 static void dc_tx_underrun(struct dc_softc *);
  248 static void dc_intr(void *);
  249 static void dc_start(struct ifnet *);
  250 static void dc_start_locked(struct ifnet *);
  251 static int dc_ioctl(struct ifnet *, u_long, caddr_t);
  252 static void dc_init(void *);
  253 static void dc_init_locked(struct dc_softc *);
  254 static void dc_stop(struct dc_softc *);
  255 static void dc_watchdog(void *);
  256 static int dc_shutdown(device_t);
  257 static int dc_ifmedia_upd(struct ifnet *);
  258 static int dc_ifmedia_upd_locked(struct dc_softc *);
  259 static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
  260 
  261 static int dc_dma_alloc(struct dc_softc *);
  262 static void dc_dma_free(struct dc_softc *);
  263 static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
  264 
  265 static void dc_delay(struct dc_softc *);
  266 static void dc_eeprom_idle(struct dc_softc *);
  267 static void dc_eeprom_putbyte(struct dc_softc *, int);
  268 static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
  269 static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
  270 static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
  271 static void dc_eeprom_width(struct dc_softc *);
  272 static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
  273 
  274 static int dc_miibus_readreg(device_t, int, int);
  275 static int dc_miibus_writereg(device_t, int, int, int);
  276 static void dc_miibus_statchg(device_t);
  277 static void dc_miibus_mediainit(device_t);
  278 
  279 static void dc_setcfg(struct dc_softc *, int);
  280 static void dc_netcfg_wait(struct dc_softc *);
  281 static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
  282 static uint32_t dc_mchash_be(const uint8_t *);
  283 static void dc_setfilt_21143(struct dc_softc *);
  284 static void dc_setfilt_asix(struct dc_softc *);
  285 static void dc_setfilt_admtek(struct dc_softc *);
  286 static void dc_setfilt_uli(struct dc_softc *);
  287 static void dc_setfilt_xircom(struct dc_softc *);
  288 
  289 static void dc_setfilt(struct dc_softc *);
  290 
  291 static void dc_reset(struct dc_softc *);
  292 static int dc_list_rx_init(struct dc_softc *);
  293 static int dc_list_tx_init(struct dc_softc *);
  294 
  295 static int dc_read_srom(struct dc_softc *, int);
  296 static int dc_parse_21143_srom(struct dc_softc *);
  297 static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
  298 static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
  299 static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
  300 static void dc_apply_fixup(struct dc_softc *, int);
  301 static int dc_check_multiport(struct dc_softc *);
  302 
  303 /*
  304  * MII bit-bang glue
  305  */
  306 static uint32_t dc_mii_bitbang_read(device_t);
  307 static void dc_mii_bitbang_write(device_t, uint32_t);
  308 
  309 static const struct mii_bitbang_ops dc_mii_bitbang_ops = {
  310         dc_mii_bitbang_read,
  311         dc_mii_bitbang_write,
  312         {
  313                 DC_SIO_MII_DATAOUT,     /* MII_BIT_MDO */
  314                 DC_SIO_MII_DATAIN,      /* MII_BIT_MDI */
  315                 DC_SIO_MII_CLK,         /* MII_BIT_MDC */
  316                 0,                      /* MII_BIT_DIR_HOST_PHY */
  317                 DC_SIO_MII_DIR,         /* MII_BIT_DIR_PHY_HOST */
  318         }
  319 };
  320 
  321 #ifdef DC_USEIOSPACE
  322 #define DC_RES                  SYS_RES_IOPORT
  323 #define DC_RID                  DC_PCI_CFBIO
  324 #else
  325 #define DC_RES                  SYS_RES_MEMORY
  326 #define DC_RID                  DC_PCI_CFBMA
  327 #endif
  328 
  329 static device_method_t dc_methods[] = {
  330         /* Device interface */
  331         DEVMETHOD(device_probe,         dc_probe),
  332         DEVMETHOD(device_attach,        dc_attach),
  333         DEVMETHOD(device_detach,        dc_detach),
  334         DEVMETHOD(device_suspend,       dc_suspend),
  335         DEVMETHOD(device_resume,        dc_resume),
  336         DEVMETHOD(device_shutdown,      dc_shutdown),
  337 
  338         /* MII interface */
  339         DEVMETHOD(miibus_readreg,       dc_miibus_readreg),
  340         DEVMETHOD(miibus_writereg,      dc_miibus_writereg),
  341         DEVMETHOD(miibus_statchg,       dc_miibus_statchg),
  342         DEVMETHOD(miibus_mediainit,     dc_miibus_mediainit),
  343 
  344         DEVMETHOD_END
  345 };
  346 
  347 static driver_t dc_driver = {
  348         "dc",
  349         dc_methods,
  350         sizeof(struct dc_softc)
  351 };
  352 
  353 DRIVER_MODULE_ORDERED(dc, pci, dc_driver, NULL, NULL, SI_ORDER_ANY);
  354 MODULE_PNP_INFO("W32:vendor/device;U8:revision;D:#", pci, dc, dc_devs,
  355     nitems(dc_devs) - 1);
  356 DRIVER_MODULE(miibus, dc, miibus_driver, NULL, NULL);
  357 
  358 #define DC_SETBIT(sc, reg, x)                           \
  359         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
  360 
  361 #define DC_CLRBIT(sc, reg, x)                           \
  362         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
  363 
  364 #define SIO_SET(x)      DC_SETBIT(sc, DC_SIO, (x))
  365 #define SIO_CLR(x)      DC_CLRBIT(sc, DC_SIO, (x))
  366 
  367 static void
  368 dc_delay(struct dc_softc *sc)
  369 {
  370         int idx;
  371 
  372         for (idx = (300 / 33) + 1; idx > 0; idx--)
  373                 CSR_READ_4(sc, DC_BUSCTL);
  374 }
  375 
  376 static void
  377 dc_eeprom_width(struct dc_softc *sc)
  378 {
  379         int i;
  380 
  381         /* Force EEPROM to idle state. */
  382         dc_eeprom_idle(sc);
  383 
  384         /* Enter EEPROM access mode. */
  385         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  386         dc_delay(sc);
  387         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  388         dc_delay(sc);
  389         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  390         dc_delay(sc);
  391         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  392         dc_delay(sc);
  393 
  394         for (i = 3; i--;) {
  395                 if (6 & (1 << i))
  396                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  397                 else
  398                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  399                 dc_delay(sc);
  400                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  401                 dc_delay(sc);
  402                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  403                 dc_delay(sc);
  404         }
  405 
  406         for (i = 1; i <= 12; i++) {
  407                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  408                 dc_delay(sc);
  409                 if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
  410                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  411                         dc_delay(sc);
  412                         break;
  413                 }
  414                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  415                 dc_delay(sc);
  416         }
  417 
  418         /* Turn off EEPROM access mode. */
  419         dc_eeprom_idle(sc);
  420 
  421         if (i < 4 || i > 12)
  422                 sc->dc_romwidth = 6;
  423         else
  424                 sc->dc_romwidth = i;
  425 
  426         /* Enter EEPROM access mode. */
  427         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  428         dc_delay(sc);
  429         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  430         dc_delay(sc);
  431         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  432         dc_delay(sc);
  433         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  434         dc_delay(sc);
  435 
  436         /* Turn off EEPROM access mode. */
  437         dc_eeprom_idle(sc);
  438 }
  439 
  440 static void
  441 dc_eeprom_idle(struct dc_softc *sc)
  442 {
  443         int i;
  444 
  445         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  446         dc_delay(sc);
  447         DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
  448         dc_delay(sc);
  449         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  450         dc_delay(sc);
  451         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  452         dc_delay(sc);
  453 
  454         for (i = 0; i < 25; i++) {
  455                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  456                 dc_delay(sc);
  457                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  458                 dc_delay(sc);
  459         }
  460 
  461         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  462         dc_delay(sc);
  463         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
  464         dc_delay(sc);
  465         CSR_WRITE_4(sc, DC_SIO, 0x00000000);
  466 }
  467 
  468 /*
  469  * Send a read command and address to the EEPROM, check for ACK.
  470  */
  471 static void
  472 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
  473 {
  474         int d, i;
  475 
  476         d = DC_EECMD_READ >> 6;
  477         for (i = 3; i--; ) {
  478                 if (d & (1 << i))
  479                         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  480                 else
  481                         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
  482                 dc_delay(sc);
  483                 DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  484                 dc_delay(sc);
  485                 DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  486                 dc_delay(sc);
  487         }
  488 
  489         /*
  490          * Feed in each bit and strobe the clock.
  491          */
  492         for (i = sc->dc_romwidth; i--;) {
  493                 if (addr & (1 << i)) {
  494                         SIO_SET(DC_SIO_EE_DATAIN);
  495                 } else {
  496                         SIO_CLR(DC_SIO_EE_DATAIN);
  497                 }
  498                 dc_delay(sc);
  499                 SIO_SET(DC_SIO_EE_CLK);
  500                 dc_delay(sc);
  501                 SIO_CLR(DC_SIO_EE_CLK);
  502                 dc_delay(sc);
  503         }
  504 }
  505 
  506 /*
  507  * Read a word of data stored in the EEPROM at address 'addr.'
  508  * The PNIC 82c168/82c169 has its own non-standard way to read
  509  * the EEPROM.
  510  */
  511 static void
  512 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
  513 {
  514         int i;
  515         uint32_t r;
  516 
  517         CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
  518 
  519         for (i = 0; i < DC_TIMEOUT; i++) {
  520                 DELAY(1);
  521                 r = CSR_READ_4(sc, DC_SIO);
  522                 if (!(r & DC_PN_SIOCTL_BUSY)) {
  523                         *dest = (uint16_t)(r & 0xFFFF);
  524                         return;
  525                 }
  526         }
  527 }
  528 
  529 /*
  530  * Read a word of data stored in the EEPROM at address 'addr.'
  531  * The Xircom X3201 has its own non-standard way to read
  532  * the EEPROM, too.
  533  */
  534 static void
  535 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
  536 {
  537 
  538         SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  539 
  540         addr *= 2;
  541         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  542         *dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
  543         addr += 1;
  544         CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
  545         *dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
  546 
  547         SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
  548 }
  549 
  550 /*
  551  * Read a word of data stored in the EEPROM at address 'addr.'
  552  */
  553 static void
  554 dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
  555 {
  556         int i;
  557         uint16_t word = 0;
  558 
  559         /* Force EEPROM to idle state. */
  560         dc_eeprom_idle(sc);
  561 
  562         /* Enter EEPROM access mode. */
  563         CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
  564         dc_delay(sc);
  565         DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
  566         dc_delay(sc);
  567         DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
  568         dc_delay(sc);
  569         DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
  570         dc_delay(sc);
  571 
  572         /*
  573          * Send address of word we want to read.
  574          */
  575         dc_eeprom_putbyte(sc, addr);
  576 
  577         /*
  578          * Start reading bits from EEPROM.
  579          */
  580         for (i = 0x8000; i; i >>= 1) {
  581                 SIO_SET(DC_SIO_EE_CLK);
  582                 dc_delay(sc);
  583                 if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
  584                         word |= i;
  585                 dc_delay(sc);
  586                 SIO_CLR(DC_SIO_EE_CLK);
  587                 dc_delay(sc);
  588         }
  589 
  590         /* Turn off EEPROM access mode. */
  591         dc_eeprom_idle(sc);
  592 
  593         *dest = word;
  594 }
  595 
  596 /*
  597  * Read a sequence of words from the EEPROM.
  598  */
  599 static void
  600 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
  601 {
  602         int i;
  603         uint16_t word = 0, *ptr;
  604 
  605         for (i = 0; i < cnt; i++) {
  606                 if (DC_IS_PNIC(sc))
  607                         dc_eeprom_getword_pnic(sc, off + i, &word);
  608                 else if (DC_IS_XIRCOM(sc))
  609                         dc_eeprom_getword_xircom(sc, off + i, &word);
  610                 else
  611                         dc_eeprom_getword(sc, off + i, &word);
  612                 ptr = (uint16_t *)(dest + (i * 2));
  613                 if (be)
  614                         *ptr = be16toh(word);
  615                 else
  616                         *ptr = le16toh(word);
  617         }
  618 }
  619 
  620 /*
  621  * Write the MII serial port for the MII bit-bang module.
  622  */
  623 static void
  624 dc_mii_bitbang_write(device_t dev, uint32_t val)
  625 {
  626         struct dc_softc *sc;
  627 
  628         sc = device_get_softc(dev);
  629 
  630         CSR_WRITE_4(sc, DC_SIO, val);
  631         CSR_BARRIER_4(sc, DC_SIO,
  632             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  633 }
  634 
  635 /*
  636  * Read the MII serial port for the MII bit-bang module.
  637  */
  638 static uint32_t
  639 dc_mii_bitbang_read(device_t dev)
  640 {
  641         struct dc_softc *sc;
  642         uint32_t val;
  643 
  644         sc = device_get_softc(dev);
  645 
  646         val = CSR_READ_4(sc, DC_SIO);
  647         CSR_BARRIER_4(sc, DC_SIO,
  648             BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
  649 
  650         return (val);
  651 }
  652 
  653 static int
  654 dc_miibus_readreg(device_t dev, int phy, int reg)
  655 {
  656         struct dc_softc *sc;
  657         int i, rval, phy_reg = 0;
  658 
  659         sc = device_get_softc(dev);
  660 
  661         if (sc->dc_pmode != DC_PMODE_MII) {
  662                 if (phy == (MII_NPHY - 1)) {
  663                         switch (reg) {
  664                         case MII_BMSR:
  665                         /*
  666                          * Fake something to make the probe
  667                          * code think there's a PHY here.
  668                          */
  669                                 return (BMSR_MEDIAMASK);
  670                         case MII_PHYIDR1:
  671                                 if (DC_IS_PNIC(sc))
  672                                         return (DC_VENDORID_LO);
  673                                 return (DC_VENDORID_DEC);
  674                         case MII_PHYIDR2:
  675                                 if (DC_IS_PNIC(sc))
  676                                         return (DC_DEVICEID_82C168);
  677                                 return (DC_DEVICEID_21143);
  678                         default:
  679                                 return (0);
  680                         }
  681                 } else
  682                         return (0);
  683         }
  684 
  685         if (DC_IS_PNIC(sc)) {
  686                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
  687                     (phy << 23) | (reg << 18));
  688                 for (i = 0; i < DC_TIMEOUT; i++) {
  689                         DELAY(1);
  690                         rval = CSR_READ_4(sc, DC_PN_MII);
  691                         if (!(rval & DC_PN_MII_BUSY)) {
  692                                 rval &= 0xFFFF;
  693                                 return (rval == 0xFFFF ? 0 : rval);
  694                         }
  695                 }
  696                 return (0);
  697         }
  698 
  699         if (sc->dc_type == DC_TYPE_ULI_M5263) {
  700                 CSR_WRITE_4(sc, DC_ROM,
  701                     ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
  702                     ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
  703                     DC_ULI_PHY_OP_READ);
  704                 for (i = 0; i < DC_TIMEOUT; i++) {
  705                         DELAY(1);
  706                         rval = CSR_READ_4(sc, DC_ROM);
  707                         if ((rval & DC_ULI_PHY_OP_DONE) != 0) {
  708                                 return (rval & DC_ULI_PHY_DATA_MASK);
  709                         }
  710                 }
  711                 if (i == DC_TIMEOUT)
  712                         device_printf(dev, "phy read timed out\n");
  713                 return (0);
  714         }
  715 
  716         if (DC_IS_COMET(sc)) {
  717                 switch (reg) {
  718                 case MII_BMCR:
  719                         phy_reg = DC_AL_BMCR;
  720                         break;
  721                 case MII_BMSR:
  722                         phy_reg = DC_AL_BMSR;
  723                         break;
  724                 case MII_PHYIDR1:
  725                         phy_reg = DC_AL_VENID;
  726                         break;
  727                 case MII_PHYIDR2:
  728                         phy_reg = DC_AL_DEVID;
  729                         break;
  730                 case MII_ANAR:
  731                         phy_reg = DC_AL_ANAR;
  732                         break;
  733                 case MII_ANLPAR:
  734                         phy_reg = DC_AL_LPAR;
  735                         break;
  736                 case MII_ANER:
  737                         phy_reg = DC_AL_ANER;
  738                         break;
  739                 default:
  740                         device_printf(dev, "phy_read: bad phy register %x\n",
  741                             reg);
  742                         return (0);
  743                 }
  744 
  745                 rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
  746                 if (rval == 0xFFFF)
  747                         return (0);
  748                 return (rval);
  749         }
  750 
  751         if (sc->dc_type == DC_TYPE_98713) {
  752                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  753                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  754         }
  755         rval = mii_bitbang_readreg(dev, &dc_mii_bitbang_ops, phy, reg);
  756         if (sc->dc_type == DC_TYPE_98713)
  757                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  758 
  759         return (rval);
  760 }
  761 
  762 static int
  763 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
  764 {
  765         struct dc_softc *sc;
  766         int i, phy_reg = 0;
  767 
  768         sc = device_get_softc(dev);
  769 
  770         if (DC_IS_PNIC(sc)) {
  771                 CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
  772                     (phy << 23) | (reg << 10) | data);
  773                 for (i = 0; i < DC_TIMEOUT; i++) {
  774                         if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
  775                                 break;
  776                 }
  777                 return (0);
  778         }
  779 
  780         if (sc->dc_type == DC_TYPE_ULI_M5263) {
  781                 CSR_WRITE_4(sc, DC_ROM,
  782                     ((phy << DC_ULI_PHY_ADDR_SHIFT) & DC_ULI_PHY_ADDR_MASK) |
  783                     ((reg << DC_ULI_PHY_REG_SHIFT) & DC_ULI_PHY_REG_MASK) |
  784                     ((data << DC_ULI_PHY_DATA_SHIFT) & DC_ULI_PHY_DATA_MASK) |
  785                     DC_ULI_PHY_OP_WRITE);
  786                 DELAY(1);
  787                 return (0);
  788         }
  789 
  790         if (DC_IS_COMET(sc)) {
  791                 switch (reg) {
  792                 case MII_BMCR:
  793                         phy_reg = DC_AL_BMCR;
  794                         break;
  795                 case MII_BMSR:
  796                         phy_reg = DC_AL_BMSR;
  797                         break;
  798                 case MII_PHYIDR1:
  799                         phy_reg = DC_AL_VENID;
  800                         break;
  801                 case MII_PHYIDR2:
  802                         phy_reg = DC_AL_DEVID;
  803                         break;
  804                 case MII_ANAR:
  805                         phy_reg = DC_AL_ANAR;
  806                         break;
  807                 case MII_ANLPAR:
  808                         phy_reg = DC_AL_LPAR;
  809                         break;
  810                 case MII_ANER:
  811                         phy_reg = DC_AL_ANER;
  812                         break;
  813                 default:
  814                         device_printf(dev, "phy_write: bad phy register %x\n",
  815                             reg);
  816                         return (0);
  817                         break;
  818                 }
  819 
  820                 CSR_WRITE_4(sc, phy_reg, data);
  821                 return (0);
  822         }
  823 
  824         if (sc->dc_type == DC_TYPE_98713) {
  825                 phy_reg = CSR_READ_4(sc, DC_NETCFG);
  826                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
  827         }
  828         mii_bitbang_writereg(dev, &dc_mii_bitbang_ops, phy, reg, data);
  829         if (sc->dc_type == DC_TYPE_98713)
  830                 CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
  831 
  832         return (0);
  833 }
  834 
  835 static void
  836 dc_miibus_statchg(device_t dev)
  837 {
  838         struct dc_softc *sc;
  839         struct ifnet *ifp;
  840         struct mii_data *mii;
  841         struct ifmedia *ifm;
  842 
  843         sc = device_get_softc(dev);
  844 
  845         mii = device_get_softc(sc->dc_miibus);
  846         ifp = sc->dc_ifp;
  847         if (mii == NULL || ifp == NULL ||
  848             (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
  849                 return;
  850 
  851         ifm = &mii->mii_media;
  852         if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
  853                 dc_setcfg(sc, ifm->ifm_media);
  854                 return;
  855         } else if (!DC_IS_ADMTEK(sc))
  856                 dc_setcfg(sc, mii->mii_media_active);
  857 
  858         sc->dc_link = 0;
  859         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
  860             (IFM_ACTIVE | IFM_AVALID)) {
  861                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
  862                 case IFM_10_T:
  863                 case IFM_100_TX:
  864                         sc->dc_link = 1;
  865                         break;
  866                 }
  867         }
  868 }
  869 
  870 /*
  871  * Special support for DM9102A cards with HomePNA PHYs. Note:
  872  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
  873  * to be impossible to talk to the management interface of the DM9801
  874  * PHY (its MDIO pin is not connected to anything). Consequently,
  875  * the driver has to just 'know' about the additional mode and deal
  876  * with it itself. *sigh*
  877  */
  878 static void
  879 dc_miibus_mediainit(device_t dev)
  880 {
  881         struct dc_softc *sc;
  882         struct mii_data *mii;
  883         struct ifmedia *ifm;
  884         int rev;
  885 
  886         rev = pci_get_revid(dev);
  887 
  888         sc = device_get_softc(dev);
  889         mii = device_get_softc(sc->dc_miibus);
  890         ifm = &mii->mii_media;
  891 
  892         if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
  893                 ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
  894 }
  895 
  896 #define DC_BITS_512     9
  897 #define DC_BITS_128     7
  898 #define DC_BITS_64      6
  899 
  900 static uint32_t
  901 dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
  902 {
  903         uint32_t crc;
  904 
  905         /* Compute CRC for the address value. */
  906         crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
  907 
  908         /*
  909          * The hash table on the PNIC II and the MX98715AEC-C/D/E
  910          * chips is only 128 bits wide.
  911          */
  912         if (sc->dc_flags & DC_128BIT_HASH)
  913                 return (crc & ((1 << DC_BITS_128) - 1));
  914 
  915         /* The hash table on the MX98715BEC is only 64 bits wide. */
  916         if (sc->dc_flags & DC_64BIT_HASH)
  917                 return (crc & ((1 << DC_BITS_64) - 1));
  918 
  919         /* Xircom's hash filtering table is different (read: weird) */
  920         /* Xircom uses the LEAST significant bits */
  921         if (DC_IS_XIRCOM(sc)) {
  922                 if ((crc & 0x180) == 0x180)
  923                         return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
  924                 else
  925                         return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
  926                             (12 << 4));
  927         }
  928 
  929         return (crc & ((1 << DC_BITS_512) - 1));
  930 }
  931 
  932 /*
  933  * Calculate CRC of a multicast group address, return the lower 6 bits.
  934  */
  935 static uint32_t
  936 dc_mchash_be(const uint8_t *addr)
  937 {
  938         uint32_t crc;
  939 
  940         /* Compute CRC for the address value. */
  941         crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
  942 
  943         /* Return the filter bit position. */
  944         return ((crc >> 26) & 0x0000003F);
  945 }
  946 
  947 /*
  948  * 21143-style RX filter setup routine. Filter programming is done by
  949  * downloading a special setup frame into the TX engine. 21143, Macronix,
  950  * PNIC, PNIC II and Davicom chips are programmed this way.
  951  *
  952  * We always program the chip using 'hash perfect' mode, i.e. one perfect
  953  * address (our node address) and a 512-bit hash filter for multicast
  954  * frames. We also sneak the broadcast address into the hash filter since
  955  * we need that too.
  956  */
  957 static u_int
  958 dc_hash_maddr_21143(void *arg, struct sockaddr_dl *sdl, u_int cnt)
  959 {
  960         struct dc_softc *sc = arg;
  961         uint32_t h;
  962 
  963         h = dc_mchash_le(sc, LLADDR(sdl));
  964         sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
  965 
  966         return (1);
  967 }
  968 
  969 static void
  970 dc_setfilt_21143(struct dc_softc *sc)
  971 {
  972         uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
  973         struct dc_desc *sframe;
  974         uint32_t h, *sp;
  975         struct ifnet *ifp;
  976         int i;
  977 
  978         ifp = sc->dc_ifp;
  979 
  980         i = sc->dc_cdata.dc_tx_prod;
  981         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
  982         sc->dc_cdata.dc_tx_cnt++;
  983         sframe = &sc->dc_ldata.dc_tx_list[i];
  984         sp = sc->dc_cdata.dc_sbuf;
  985         bzero(sp, DC_SFRAME_LEN);
  986 
  987         sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
  988         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
  989             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
  990 
  991         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
  992 
  993         /* If we want promiscuous mode, set the allframes bit. */
  994         if (ifp->if_flags & IFF_PROMISC)
  995                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
  996         else
  997                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
  998 
  999         if (ifp->if_flags & IFF_ALLMULTI)
 1000                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1001         else
 1002                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1003 
 1004         if_foreach_llmaddr(ifp, dc_hash_maddr_21143, sp);
 1005 
 1006         if (ifp->if_flags & IFF_BROADCAST) {
 1007                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1008                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1009         }
 1010 
 1011         /* Set our MAC address. */
 1012         bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
 1013         sp[39] = DC_SP_MAC(eaddr[0]);
 1014         sp[40] = DC_SP_MAC(eaddr[1]);
 1015         sp[41] = DC_SP_MAC(eaddr[2]);
 1016 
 1017         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1018         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
 1019             BUS_DMASYNC_PREWRITE);
 1020         bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
 1021         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1022 
 1023         /*
 1024          * The PNIC takes an exceedingly long time to process its
 1025          * setup frame; wait 10ms after posting the setup frame
 1026          * before proceeding, just so it has time to swallow its
 1027          * medicine.
 1028          */
 1029         DELAY(10000);
 1030 
 1031         sc->dc_wdog_timer = 5;
 1032 }
 1033 
 1034 static u_int
 1035 dc_hash_maddr_admtek_be(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 1036 {
 1037         uint32_t *hashes = arg;
 1038         int h = 0;
 1039 
 1040         h = dc_mchash_be(LLADDR(sdl));
 1041         if (h < 32)
 1042                 hashes[0] |= (1 << h);
 1043         else
 1044                 hashes[1] |= (1 << (h - 32));
 1045 
 1046         return (1);
 1047 }
 1048 
 1049 struct dc_hash_maddr_admtek_le_ctx {
 1050         struct dc_softc *sc;
 1051         uint32_t hashes[2];
 1052 };
 1053 
 1054 static u_int
 1055 dc_hash_maddr_admtek_le(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 1056 {
 1057         struct dc_hash_maddr_admtek_le_ctx *ctx = arg;
 1058         int h = 0;
 1059 
 1060         h = dc_mchash_le(ctx->sc, LLADDR(sdl));
 1061         if (h < 32)
 1062                 ctx->hashes[0] |= (1 << h);
 1063         else
 1064                 ctx->hashes[1] |= (1 << (h - 32));
 1065 
 1066         return (1);
 1067 }
 1068 
 1069 static void
 1070 dc_setfilt_admtek(struct dc_softc *sc)
 1071 {
 1072         uint8_t eaddr[ETHER_ADDR_LEN];
 1073         struct ifnet *ifp;
 1074         struct dc_hash_maddr_admtek_le_ctx ctx = { sc, { 0, 0 }};
 1075 
 1076         ifp = sc->dc_ifp;
 1077 
 1078         /* Init our MAC address. */
 1079         bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
 1080         CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
 1081             eaddr[1] << 8 | eaddr[0]);
 1082         CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
 1083 
 1084         /* If we want promiscuous mode, set the allframes bit. */
 1085         if (ifp->if_flags & IFF_PROMISC)
 1086                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1087         else
 1088                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1089 
 1090         if (ifp->if_flags & IFF_ALLMULTI)
 1091                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1092         else
 1093                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1094 
 1095         /* First, zot all the existing hash bits. */
 1096         CSR_WRITE_4(sc, DC_AL_MAR0, 0);
 1097         CSR_WRITE_4(sc, DC_AL_MAR1, 0);
 1098 
 1099         /*
 1100          * If we're already in promisc or allmulti mode, we
 1101          * don't have to bother programming the multicast filter.
 1102          */
 1103         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1104                 return;
 1105 
 1106         /* Now program new ones. */
 1107         if (DC_IS_CENTAUR(sc))
 1108                 if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_le, &ctx);
 1109         else
 1110                 if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, &ctx.hashes);
 1111 
 1112         CSR_WRITE_4(sc, DC_AL_MAR0, ctx.hashes[0]);
 1113         CSR_WRITE_4(sc, DC_AL_MAR1, ctx.hashes[1]);
 1114 }
 1115 
 1116 static void
 1117 dc_setfilt_asix(struct dc_softc *sc)
 1118 {
 1119         uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
 1120         struct ifnet *ifp;
 1121         uint32_t hashes[2] = { 0, 0 };
 1122 
 1123         ifp = sc->dc_ifp;
 1124 
 1125         /* Init our MAC address. */
 1126         bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
 1127         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
 1128         CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
 1129         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
 1130         CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
 1131 
 1132         /* If we want promiscuous mode, set the allframes bit. */
 1133         if (ifp->if_flags & IFF_PROMISC)
 1134                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1135         else
 1136                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1137 
 1138         if (ifp->if_flags & IFF_ALLMULTI)
 1139                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1140         else
 1141                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1142 
 1143         /*
 1144          * The ASIX chip has a special bit to enable reception
 1145          * of broadcast frames.
 1146          */
 1147         if (ifp->if_flags & IFF_BROADCAST)
 1148                 DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1149         else
 1150                 DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
 1151 
 1152         /* first, zot all the existing hash bits */
 1153         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1154         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1155         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1156         CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
 1157 
 1158         /*
 1159          * If we're already in promisc or allmulti mode, we
 1160          * don't have to bother programming the multicast filter.
 1161          */
 1162         if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
 1163                 return;
 1164 
 1165         /* now program new ones */
 1166         if_foreach_llmaddr(ifp, dc_hash_maddr_admtek_be, hashes);
 1167 
 1168         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
 1169         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
 1170         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
 1171         CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
 1172 }
 1173 
 1174 static u_int
 1175 dc_hash_maddr_uli(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
 1176 {
 1177         uint32_t **sp = arg;
 1178         uint8_t *ma;
 1179 
 1180         if (mcnt == DC_ULI_FILTER_NPERF)
 1181                 return (0);
 1182         ma = LLADDR(sdl);
 1183         *(*sp)++ = DC_SP_MAC(ma[1] << 8 | ma[0]);
 1184         *(*sp)++ = DC_SP_MAC(ma[3] << 8 | ma[2]);
 1185         *(*sp)++ = DC_SP_MAC(ma[5] << 8 | ma[4]);
 1186 
 1187         return (1);
 1188 }
 1189 
 1190 static void
 1191 dc_setfilt_uli(struct dc_softc *sc)
 1192 {
 1193         uint8_t eaddr[ETHER_ADDR_LEN];
 1194         struct ifnet *ifp;
 1195         struct dc_desc *sframe;
 1196         uint32_t filter, *sp;
 1197         int i, mcnt;
 1198 
 1199         ifp = sc->dc_ifp;
 1200 
 1201         i = sc->dc_cdata.dc_tx_prod;
 1202         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1203         sc->dc_cdata.dc_tx_cnt++;
 1204         sframe = &sc->dc_ldata.dc_tx_list[i];
 1205         sp = sc->dc_cdata.dc_sbuf;
 1206         bzero(sp, DC_SFRAME_LEN);
 1207 
 1208         sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
 1209         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1210             DC_TXCTL_TLINK | DC_FILTER_PERFECT | DC_TXCTL_FINT);
 1211 
 1212         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1213 
 1214         /* Set station address. */
 1215         bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
 1216         *sp++ = DC_SP_MAC(eaddr[1] << 8 | eaddr[0]);
 1217         *sp++ = DC_SP_MAC(eaddr[3] << 8 | eaddr[2]);
 1218         *sp++ = DC_SP_MAC(eaddr[5] << 8 | eaddr[4]);
 1219 
 1220         /* Set broadcast address. */
 1221         *sp++ = DC_SP_MAC(0xFFFF);
 1222         *sp++ = DC_SP_MAC(0xFFFF);
 1223         *sp++ = DC_SP_MAC(0xFFFF);
 1224 
 1225         /* Extract current filter configuration. */
 1226         filter = CSR_READ_4(sc, DC_NETCFG);
 1227         filter &= ~(DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI);
 1228 
 1229         /* Now build perfect filters. */
 1230         mcnt = if_foreach_llmaddr(ifp, dc_hash_maddr_uli, &sp);
 1231 
 1232         if (mcnt == DC_ULI_FILTER_NPERF)
 1233                 filter |= DC_NETCFG_RX_ALLMULTI;
 1234         else
 1235                 for (; mcnt < DC_ULI_FILTER_NPERF; mcnt++) {
 1236                         *sp++ = DC_SP_MAC(0xFFFF);
 1237                         *sp++ = DC_SP_MAC(0xFFFF);
 1238                         *sp++ = DC_SP_MAC(0xFFFF);
 1239                 }
 1240 
 1241         if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
 1242                 CSR_WRITE_4(sc, DC_NETCFG,
 1243                     filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1244         if (ifp->if_flags & IFF_PROMISC)
 1245                 filter |= DC_NETCFG_RX_PROMISC | DC_NETCFG_RX_ALLMULTI;
 1246         if (ifp->if_flags & IFF_ALLMULTI)
 1247                 filter |= DC_NETCFG_RX_ALLMULTI;
 1248         CSR_WRITE_4(sc, DC_NETCFG,
 1249             filter & ~(DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1250         if (filter & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON))
 1251                 CSR_WRITE_4(sc, DC_NETCFG, filter);
 1252 
 1253         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1254         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
 1255             BUS_DMASYNC_PREWRITE);
 1256         bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
 1257         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1258 
 1259         /*
 1260          * Wait some time...
 1261          */
 1262         DELAY(1000);
 1263 
 1264         sc->dc_wdog_timer = 5;
 1265 }
 1266 
 1267 static u_int
 1268 dc_hash_maddr_xircom(void *arg, struct sockaddr_dl *sdl, u_int cnt)
 1269 {
 1270         struct dc_softc *sc = arg;
 1271         uint32_t h;
 1272 
 1273         h = dc_mchash_le(sc, LLADDR(sdl));
 1274         sc->dc_cdata.dc_sbuf[h >> 4] |= htole32(1 << (h & 0xF));
 1275         return (1);
 1276 }
 1277 
 1278 static void
 1279 dc_setfilt_xircom(struct dc_softc *sc)
 1280 {
 1281         uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
 1282         struct ifnet *ifp;
 1283         struct dc_desc *sframe;
 1284         uint32_t h, *sp;
 1285         int i;
 1286 
 1287         ifp = sc->dc_ifp;
 1288         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1289 
 1290         i = sc->dc_cdata.dc_tx_prod;
 1291         DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
 1292         sc->dc_cdata.dc_tx_cnt++;
 1293         sframe = &sc->dc_ldata.dc_tx_list[i];
 1294         sp = sc->dc_cdata.dc_sbuf;
 1295         bzero(sp, DC_SFRAME_LEN);
 1296 
 1297         sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
 1298         sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
 1299             DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
 1300 
 1301         sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
 1302 
 1303         /* If we want promiscuous mode, set the allframes bit. */
 1304         if (ifp->if_flags & IFF_PROMISC)
 1305                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1306         else
 1307                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
 1308 
 1309         if (ifp->if_flags & IFF_ALLMULTI)
 1310                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1311         else
 1312                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
 1313 
 1314         if_foreach_llmaddr(ifp, dc_hash_maddr_xircom, &sp);
 1315 
 1316         if (ifp->if_flags & IFF_BROADCAST) {
 1317                 h = dc_mchash_le(sc, ifp->if_broadcastaddr);
 1318                 sp[h >> 4] |= htole32(1 << (h & 0xF));
 1319         }
 1320 
 1321         /* Set our MAC address. */
 1322         bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
 1323         sp[0] = DC_SP_MAC(eaddr[0]);
 1324         sp[1] = DC_SP_MAC(eaddr[1]);
 1325         sp[2] = DC_SP_MAC(eaddr[2]);
 1326 
 1327         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 1328         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 1329         sframe->dc_status = htole32(DC_TXSTAT_OWN);
 1330         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_PREREAD |
 1331             BUS_DMASYNC_PREWRITE);
 1332         bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
 1333         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 1334 
 1335         /*
 1336          * Wait some time...
 1337          */
 1338         DELAY(1000);
 1339 
 1340         sc->dc_wdog_timer = 5;
 1341 }
 1342 
 1343 static void
 1344 dc_setfilt(struct dc_softc *sc)
 1345 {
 1346 
 1347         if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
 1348             DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
 1349                 dc_setfilt_21143(sc);
 1350 
 1351         if (DC_IS_ASIX(sc))
 1352                 dc_setfilt_asix(sc);
 1353 
 1354         if (DC_IS_ADMTEK(sc))
 1355                 dc_setfilt_admtek(sc);
 1356 
 1357         if (DC_IS_ULI(sc))
 1358                 dc_setfilt_uli(sc);
 1359 
 1360         if (DC_IS_XIRCOM(sc))
 1361                 dc_setfilt_xircom(sc);
 1362 }
 1363 
 1364 static void
 1365 dc_netcfg_wait(struct dc_softc *sc)
 1366 {
 1367         uint32_t isr;
 1368         int i;
 1369 
 1370         for (i = 0; i < DC_TIMEOUT; i++) {
 1371                 isr = CSR_READ_4(sc, DC_ISR);
 1372                 if (isr & DC_ISR_TX_IDLE &&
 1373                     ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1374                     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
 1375                         break;
 1376                 DELAY(10);
 1377         }
 1378         if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
 1379                 if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
 1380                         device_printf(sc->dc_dev,
 1381                             "%s: failed to force tx to idle state\n", __func__);
 1382                 if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
 1383                     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
 1384                     !DC_HAS_BROKEN_RXSTATE(sc))
 1385                         device_printf(sc->dc_dev,
 1386                             "%s: failed to force rx to idle state\n", __func__);
 1387         }
 1388 }
 1389 
 1390 /*
 1391  * In order to fiddle with the 'full-duplex' and '100Mbps' bits in
 1392  * the netconfig register, we first have to put the transmit and/or
 1393  * receive logic in the idle state.
 1394  */
 1395 static void
 1396 dc_setcfg(struct dc_softc *sc, int media)
 1397 {
 1398         int restart = 0, watchdogreg;
 1399 
 1400         if (IFM_SUBTYPE(media) == IFM_NONE)
 1401                 return;
 1402 
 1403         if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
 1404                 restart = 1;
 1405                 DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
 1406                 dc_netcfg_wait(sc);
 1407         }
 1408 
 1409         if (IFM_SUBTYPE(media) == IFM_100_TX) {
 1410                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1411                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1412                 if (sc->dc_pmode == DC_PMODE_MII) {
 1413                         if (DC_IS_INTEL(sc)) {
 1414                         /* There's a write enable bit here that reads as 1. */
 1415                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1416                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1417                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1418                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1419                         } else {
 1420                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1421                         }
 1422                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1423                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1424                         if (sc->dc_type == DC_TYPE_98713)
 1425                                 DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1426                                     DC_NETCFG_SCRAMBLER));
 1427                         if (!DC_IS_DAVICOM(sc))
 1428                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1429                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1430                 } else {
 1431                         if (DC_IS_PNIC(sc)) {
 1432                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1433                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1434                                 DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1435                         }
 1436                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1437                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1438                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1439                 }
 1440         }
 1441 
 1442         if (IFM_SUBTYPE(media) == IFM_10_T) {
 1443                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
 1444                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
 1445                 if (sc->dc_pmode == DC_PMODE_MII) {
 1446                         /* There's a write enable bit here that reads as 1. */
 1447                         if (DC_IS_INTEL(sc)) {
 1448                                 watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
 1449                                 watchdogreg &= ~DC_WDOG_CTLWREN;
 1450                                 watchdogreg |= DC_WDOG_JABBERDIS;
 1451                                 CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
 1452                         } else {
 1453                                 DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
 1454                         }
 1455                         DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
 1456                             DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
 1457                         if (sc->dc_type == DC_TYPE_98713)
 1458                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1459                         if (!DC_IS_DAVICOM(sc))
 1460                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1461                         DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1462                 } else {
 1463                         if (DC_IS_PNIC(sc)) {
 1464                                 DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
 1465                                 DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
 1466                                 DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
 1467                         }
 1468                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1469                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
 1470                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
 1471                         if (DC_IS_INTEL(sc)) {
 1472                                 DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1473                                 DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
 1474                                 if ((media & IFM_GMASK) == IFM_FDX)
 1475                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
 1476                                 else
 1477                                         DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
 1478                                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1479                                 DC_CLRBIT(sc, DC_10BTCTRL,
 1480                                     DC_TCTL_AUTONEGENBL);
 1481                                 DELAY(20000);
 1482                         }
 1483                 }
 1484         }
 1485 
 1486         /*
 1487          * If this is a Davicom DM9102A card with a DM9801 HomePNA
 1488          * PHY and we want HomePNA mode, set the portsel bit to turn
 1489          * on the external MII port.
 1490          */
 1491         if (DC_IS_DAVICOM(sc)) {
 1492                 if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
 1493                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1494                         sc->dc_link = 1;
 1495                 } else {
 1496                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
 1497                 }
 1498         }
 1499 
 1500         if ((media & IFM_GMASK) == IFM_FDX) {
 1501                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1502                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1503                         DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1504         } else {
 1505                 DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
 1506                 if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
 1507                         DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
 1508         }
 1509 
 1510         if (restart)
 1511                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
 1512 }
 1513 
 1514 static void
 1515 dc_reset(struct dc_softc *sc)
 1516 {
 1517         int i;
 1518 
 1519         DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1520 
 1521         for (i = 0; i < DC_TIMEOUT; i++) {
 1522                 DELAY(10);
 1523                 if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
 1524                         break;
 1525         }
 1526 
 1527         if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
 1528             DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc) || DC_IS_ULI(sc)) {
 1529                 DELAY(10000);
 1530                 DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
 1531                 i = 0;
 1532         }
 1533 
 1534         if (i == DC_TIMEOUT)
 1535                 device_printf(sc->dc_dev, "reset never completed!\n");
 1536 
 1537         /* Wait a little while for the chip to get its brains in order. */
 1538         DELAY(1000);
 1539 
 1540         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 1541         CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
 1542         CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
 1543 
 1544         /*
 1545          * Bring the SIA out of reset. In some cases, it looks
 1546          * like failing to unreset the SIA soon enough gets it
 1547          * into a state where it will never come out of reset
 1548          * until we reset the whole chip again.
 1549          */
 1550         if (DC_IS_INTEL(sc)) {
 1551                 DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
 1552                 CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
 1553                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 1554         }
 1555 }
 1556 
 1557 static const struct dc_type *
 1558 dc_devtype(device_t dev)
 1559 {
 1560         const struct dc_type *t;
 1561         uint32_t devid;
 1562         uint8_t rev;
 1563 
 1564         t = dc_devs;
 1565         devid = pci_get_devid(dev);
 1566         rev = pci_get_revid(dev);
 1567 
 1568         while (t->dc_name != NULL) {
 1569                 if (devid == t->dc_devid && rev >= t->dc_minrev)
 1570                         return (t);
 1571                 t++;
 1572         }
 1573 
 1574         return (NULL);
 1575 }
 1576 
 1577 /*
 1578  * Probe for a 21143 or clone chip. Check the PCI vendor and device
 1579  * IDs against our list and return a device name if we find a match.
 1580  * We do a little bit of extra work to identify the exact type of
 1581  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
 1582  * but different revision IDs. The same is true for 98715/98715A
 1583  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
 1584  * cases, the exact chip revision affects driver behavior.
 1585  */
 1586 static int
 1587 dc_probe(device_t dev)
 1588 {
 1589         const struct dc_type *t;
 1590 
 1591         t = dc_devtype(dev);
 1592 
 1593         if (t != NULL) {
 1594                 device_set_desc(dev, t->dc_name);
 1595                 return (BUS_PROBE_DEFAULT);
 1596         }
 1597 
 1598         return (ENXIO);
 1599 }
 1600 
 1601 static void
 1602 dc_apply_fixup(struct dc_softc *sc, int media)
 1603 {
 1604         struct dc_mediainfo *m;
 1605         uint8_t *p;
 1606         int i;
 1607         uint32_t reg;
 1608 
 1609         m = sc->dc_mi;
 1610 
 1611         while (m != NULL) {
 1612                 if (m->dc_media == media)
 1613                         break;
 1614                 m = m->dc_next;
 1615         }
 1616 
 1617         if (m == NULL)
 1618                 return;
 1619 
 1620         for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
 1621                 reg = (p[0] | (p[1] << 8)) << 16;
 1622                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1623         }
 1624 
 1625         for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
 1626                 reg = (p[0] | (p[1] << 8)) << 16;
 1627                 CSR_WRITE_4(sc, DC_WATCHDOG, reg);
 1628         }
 1629 }
 1630 
 1631 static int
 1632 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
 1633 {
 1634         struct dc_mediainfo *m;
 1635 
 1636         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1637         if (m == NULL) {
 1638                 device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
 1639                 return (ENOMEM);
 1640         }
 1641         switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
 1642         case DC_SIA_CODE_10BT:
 1643                 m->dc_media = IFM_10_T;
 1644                 break;
 1645         case DC_SIA_CODE_10BT_FDX:
 1646                 m->dc_media = IFM_10_T | IFM_FDX;
 1647                 break;
 1648         case DC_SIA_CODE_10B2:
 1649                 m->dc_media = IFM_10_2;
 1650                 break;
 1651         case DC_SIA_CODE_10B5:
 1652                 m->dc_media = IFM_10_5;
 1653                 break;
 1654         default:
 1655                 break;
 1656         }
 1657 
 1658         /*
 1659          * We need to ignore CSR13, CSR14, CSR15 for SIA mode.
 1660          * Things apparently already work for cards that do
 1661          * supply Media Specific Data.
 1662          */
 1663         if (l->dc_sia_code & DC_SIA_CODE_EXT) {
 1664                 m->dc_gp_len = 2;
 1665                 m->dc_gp_ptr =
 1666                 (uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
 1667         } else {
 1668                 m->dc_gp_len = 2;
 1669                 m->dc_gp_ptr =
 1670                 (uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
 1671         }
 1672 
 1673         m->dc_next = sc->dc_mi;
 1674         sc->dc_mi = m;
 1675 
 1676         sc->dc_pmode = DC_PMODE_SIA;
 1677         return (0);
 1678 }
 1679 
 1680 static int
 1681 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
 1682 {
 1683         struct dc_mediainfo *m;
 1684 
 1685         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1686         if (m == NULL) {
 1687                 device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
 1688                 return (ENOMEM);
 1689         }
 1690         if (l->dc_sym_code == DC_SYM_CODE_100BT)
 1691                 m->dc_media = IFM_100_TX;
 1692 
 1693         if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
 1694                 m->dc_media = IFM_100_TX | IFM_FDX;
 1695 
 1696         m->dc_gp_len = 2;
 1697         m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
 1698 
 1699         m->dc_next = sc->dc_mi;
 1700         sc->dc_mi = m;
 1701 
 1702         sc->dc_pmode = DC_PMODE_SYM;
 1703         return (0);
 1704 }
 1705 
 1706 static int
 1707 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
 1708 {
 1709         struct dc_mediainfo *m;
 1710         uint8_t *p;
 1711 
 1712         m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
 1713         if (m == NULL) {
 1714                 device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
 1715                 return (ENOMEM);
 1716         }
 1717         /* We abuse IFM_AUTO to represent MII. */
 1718         m->dc_media = IFM_AUTO;
 1719         m->dc_gp_len = l->dc_gpr_len;
 1720 
 1721         p = (uint8_t *)l;
 1722         p += sizeof(struct dc_eblock_mii);
 1723         m->dc_gp_ptr = p;
 1724         p += 2 * l->dc_gpr_len;
 1725         m->dc_reset_len = *p;
 1726         p++;
 1727         m->dc_reset_ptr = p;
 1728 
 1729         m->dc_next = sc->dc_mi;
 1730         sc->dc_mi = m;
 1731         return (0);
 1732 }
 1733 
 1734 static int
 1735 dc_read_srom(struct dc_softc *sc, int bits)
 1736 {
 1737         int size;
 1738 
 1739         size = DC_ROM_SIZE(bits);
 1740         sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
 1741         if (sc->dc_srom == NULL) {
 1742                 device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
 1743                 return (ENOMEM);
 1744         }
 1745         dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
 1746         return (0);
 1747 }
 1748 
 1749 static int
 1750 dc_parse_21143_srom(struct dc_softc *sc)
 1751 {
 1752         struct dc_leaf_hdr *lhdr;
 1753         struct dc_eblock_hdr *hdr;
 1754         int error, have_mii, i, loff;
 1755         char *ptr;
 1756 
 1757         have_mii = 0;
 1758         loff = sc->dc_srom[27];
 1759         lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
 1760 
 1761         ptr = (char *)lhdr;
 1762         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1763         /*
 1764          * Look if we got a MII media block.
 1765          */
 1766         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1767                 hdr = (struct dc_eblock_hdr *)ptr;
 1768                 if (hdr->dc_type == DC_EBLOCK_MII)
 1769                     have_mii++;
 1770 
 1771                 ptr += (hdr->dc_len & 0x7F);
 1772                 ptr++;
 1773         }
 1774 
 1775         /*
 1776          * Do the same thing again. Only use SIA and SYM media
 1777          * blocks if no MII media block is available.
 1778          */
 1779         ptr = (char *)lhdr;
 1780         ptr += sizeof(struct dc_leaf_hdr) - 1;
 1781         error = 0;
 1782         for (i = 0; i < lhdr->dc_mcnt; i++) {
 1783                 hdr = (struct dc_eblock_hdr *)ptr;
 1784                 switch (hdr->dc_type) {
 1785                 case DC_EBLOCK_MII:
 1786                         error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
 1787                         break;
 1788                 case DC_EBLOCK_SIA:
 1789                         if (! have_mii)
 1790                                 error = dc_decode_leaf_sia(sc,
 1791                                     (struct dc_eblock_sia *)hdr);
 1792                         break;
 1793                 case DC_EBLOCK_SYM:
 1794                         if (! have_mii)
 1795                                 error = dc_decode_leaf_sym(sc,
 1796                                     (struct dc_eblock_sym *)hdr);
 1797                         break;
 1798                 default:
 1799                         /* Don't care. Yet. */
 1800                         break;
 1801                 }
 1802                 ptr += (hdr->dc_len & 0x7F);
 1803                 ptr++;
 1804         }
 1805         return (error);
 1806 }
 1807 
 1808 static void
 1809 dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 1810 {
 1811         bus_addr_t *paddr;
 1812 
 1813         KASSERT(nseg == 1,
 1814             ("%s: wrong number of segments (%d)", __func__, nseg));
 1815         paddr = arg;
 1816         *paddr = segs->ds_addr;
 1817 }
 1818 
 1819 static int
 1820 dc_dma_alloc(struct dc_softc *sc)
 1821 {
 1822         int error, i;
 1823 
 1824         error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
 1825             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
 1826             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
 1827             NULL, NULL, &sc->dc_ptag);
 1828         if (error) {
 1829                 device_printf(sc->dc_dev,
 1830                     "failed to allocate parent DMA tag\n");
 1831                 goto fail;
 1832         }
 1833 
 1834         /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
 1835         error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
 1836             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
 1837             DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
 1838         if (error) {
 1839                 device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
 1840                 goto fail;
 1841         }
 1842 
 1843         error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
 1844             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
 1845             DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
 1846         if (error) {
 1847                 device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
 1848                 goto fail;
 1849         }
 1850 
 1851         /* RX descriptor list. */
 1852         error = bus_dmamem_alloc(sc->dc_rx_ltag,
 1853             (void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
 1854             BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
 1855         if (error) {
 1856                 device_printf(sc->dc_dev,
 1857                     "failed to allocate DMA'able memory for RX list\n");
 1858                 goto fail;
 1859         }
 1860         error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
 1861             sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
 1862             &sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
 1863         if (error) {
 1864                 device_printf(sc->dc_dev,
 1865                     "failed to load DMA'able memory for RX list\n");
 1866                 goto fail;
 1867         }
 1868         /* TX descriptor list. */
 1869         error = bus_dmamem_alloc(sc->dc_tx_ltag,
 1870             (void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
 1871             BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
 1872         if (error) {
 1873                 device_printf(sc->dc_dev,
 1874                     "failed to allocate DMA'able memory for TX list\n");
 1875                 goto fail;
 1876         }
 1877         error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
 1878             sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
 1879             &sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
 1880         if (error) {
 1881                 device_printf(sc->dc_dev,
 1882                     "cannot load DMA'able memory for TX list\n");
 1883                 goto fail;
 1884         }
 1885 
 1886         /*
 1887          * Allocate a busdma tag and DMA safe memory for the multicast
 1888          * setup frame.
 1889          */
 1890         error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
 1891             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1892             DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
 1893             0, NULL, NULL, &sc->dc_stag);
 1894         if (error) {
 1895                 device_printf(sc->dc_dev,
 1896                     "failed to create DMA tag for setup frame\n");
 1897                 goto fail;
 1898         }
 1899         error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
 1900             BUS_DMA_NOWAIT, &sc->dc_smap);
 1901         if (error) {
 1902                 device_printf(sc->dc_dev,
 1903                     "failed to allocate DMA'able memory for setup frame\n");
 1904                 goto fail;
 1905         }
 1906         error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
 1907             DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
 1908         if (error) {
 1909                 device_printf(sc->dc_dev,
 1910                     "cannot load DMA'able memory for setup frame\n");
 1911                 goto fail;
 1912         }
 1913 
 1914         /* Allocate a busdma tag for RX mbufs. */
 1915         error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
 1916             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1917             MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
 1918         if (error) {
 1919                 device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
 1920                 goto fail;
 1921         }
 1922 
 1923         /* Allocate a busdma tag for TX mbufs. */
 1924         error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
 1925             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
 1926             MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
 1927             0, NULL, NULL, &sc->dc_tx_mtag);
 1928         if (error) {
 1929                 device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
 1930                 goto fail;
 1931         }
 1932 
 1933         /* Create the TX/RX busdma maps. */
 1934         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 1935                 error = bus_dmamap_create(sc->dc_tx_mtag, 0,
 1936                     &sc->dc_cdata.dc_tx_map[i]);
 1937                 if (error) {
 1938                         device_printf(sc->dc_dev,
 1939                             "failed to create TX mbuf dmamap\n");
 1940                         goto fail;
 1941                 }
 1942         }
 1943         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 1944                 error = bus_dmamap_create(sc->dc_rx_mtag, 0,
 1945                     &sc->dc_cdata.dc_rx_map[i]);
 1946                 if (error) {
 1947                         device_printf(sc->dc_dev,
 1948                             "failed to create RX mbuf dmamap\n");
 1949                         goto fail;
 1950                 }
 1951         }
 1952         error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
 1953         if (error) {
 1954                 device_printf(sc->dc_dev,
 1955                     "failed to create spare RX mbuf dmamap\n");
 1956                 goto fail;
 1957         }
 1958 
 1959 fail:
 1960         return (error);
 1961 }
 1962 
 1963 static void
 1964 dc_dma_free(struct dc_softc *sc)
 1965 {
 1966         int i;
 1967 
 1968         /* RX buffers. */
 1969         if (sc->dc_rx_mtag != NULL) {
 1970                 for (i = 0; i < DC_RX_LIST_CNT; i++) {
 1971                         if (sc->dc_cdata.dc_rx_map[i] != NULL)
 1972                                 bus_dmamap_destroy(sc->dc_rx_mtag,
 1973                                     sc->dc_cdata.dc_rx_map[i]);
 1974                 }
 1975                 if (sc->dc_sparemap != NULL)
 1976                         bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
 1977                 bus_dma_tag_destroy(sc->dc_rx_mtag);
 1978         }
 1979 
 1980         /* TX buffers. */
 1981         if (sc->dc_rx_mtag != NULL) {
 1982                 for (i = 0; i < DC_TX_LIST_CNT; i++) {
 1983                         if (sc->dc_cdata.dc_tx_map[i] != NULL)
 1984                                 bus_dmamap_destroy(sc->dc_tx_mtag,
 1985                                     sc->dc_cdata.dc_tx_map[i]);
 1986                 }
 1987                 bus_dma_tag_destroy(sc->dc_tx_mtag);
 1988         }
 1989 
 1990         /* RX descriptor list. */
 1991         if (sc->dc_rx_ltag) {
 1992                 if (sc->dc_ldata.dc_rx_list_paddr != 0)
 1993                         bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
 1994                 if (sc->dc_ldata.dc_rx_list != NULL)
 1995                         bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
 1996                             sc->dc_rx_lmap);
 1997                 bus_dma_tag_destroy(sc->dc_rx_ltag);
 1998         }
 1999 
 2000         /* TX descriptor list. */
 2001         if (sc->dc_tx_ltag) {
 2002                 if (sc->dc_ldata.dc_tx_list_paddr != 0)
 2003                         bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
 2004                 if (sc->dc_ldata.dc_tx_list != NULL)
 2005                         bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
 2006                             sc->dc_tx_lmap);
 2007                 bus_dma_tag_destroy(sc->dc_tx_ltag);
 2008         }
 2009 
 2010         /* multicast setup frame. */
 2011         if (sc->dc_stag) {
 2012                 if (sc->dc_saddr != 0)
 2013                         bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
 2014                 if (sc->dc_cdata.dc_sbuf != NULL)
 2015                         bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
 2016                             sc->dc_smap);
 2017                 bus_dma_tag_destroy(sc->dc_stag);
 2018         }
 2019 }
 2020 
 2021 /*
 2022  * Attach the interface. Allocate softc structures, do ifmedia
 2023  * setup and ethernet/BPF attach.
 2024  */
 2025 static int
 2026 dc_attach(device_t dev)
 2027 {
 2028         uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
 2029         uint32_t command;
 2030         struct dc_softc *sc;
 2031         struct ifnet *ifp;
 2032         struct dc_mediainfo *m;
 2033         uint32_t reg, revision;
 2034         uint16_t *srom;
 2035         int error, mac_offset, n, phy, rid, tmp;
 2036         uint8_t *mac;
 2037 
 2038         sc = device_get_softc(dev);
 2039         sc->dc_dev = dev;
 2040 
 2041         mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
 2042             MTX_DEF);
 2043 
 2044         /*
 2045          * Map control/status registers.
 2046          */
 2047         pci_enable_busmaster(dev);
 2048 
 2049         rid = DC_RID;
 2050         sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
 2051 
 2052         if (sc->dc_res == NULL) {
 2053                 device_printf(dev, "couldn't map ports/memory\n");
 2054                 error = ENXIO;
 2055                 goto fail;
 2056         }
 2057 
 2058         sc->dc_btag = rman_get_bustag(sc->dc_res);
 2059         sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
 2060 
 2061         /* Allocate interrupt. */
 2062         rid = 0;
 2063         sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
 2064             RF_SHAREABLE | RF_ACTIVE);
 2065 
 2066         if (sc->dc_irq == NULL) {
 2067                 device_printf(dev, "couldn't map interrupt\n");
 2068                 error = ENXIO;
 2069                 goto fail;
 2070         }
 2071 
 2072         /* Need this info to decide on a chip type. */
 2073         sc->dc_info = dc_devtype(dev);
 2074         revision = pci_get_revid(dev);
 2075 
 2076         error = 0;
 2077         /* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
 2078         if (sc->dc_info->dc_devid !=
 2079             DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
 2080             sc->dc_info->dc_devid !=
 2081             DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
 2082                 dc_eeprom_width(sc);
 2083 
 2084         switch (sc->dc_info->dc_devid) {
 2085         case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
 2086                 sc->dc_type = DC_TYPE_21143;
 2087                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 2088                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 2089                 /* Save EEPROM contents so we can parse them later. */
 2090                 error = dc_read_srom(sc, sc->dc_romwidth);
 2091                 if (error != 0)
 2092                         goto fail;
 2093                 break;
 2094         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
 2095         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
 2096         case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
 2097                 sc->dc_type = DC_TYPE_DM9102;
 2098                 sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
 2099                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
 2100                 sc->dc_flags |= DC_TX_ALIGN;
 2101                 sc->dc_pmode = DC_PMODE_MII;
 2102 
 2103                 /* Increase the latency timer value. */
 2104                 pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
 2105                 break;
 2106         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
 2107                 sc->dc_type = DC_TYPE_AL981;
 2108                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 2109                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 2110                 sc->dc_pmode = DC_PMODE_MII;
 2111                 error = dc_read_srom(sc, sc->dc_romwidth);
 2112                 if (error != 0)
 2113                         goto fail;
 2114                 break;
 2115         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
 2116         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
 2117         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
 2118         case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
 2119         case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
 2120         case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
 2121         case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
 2122         case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
 2123         case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
 2124         case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
 2125         case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
 2126         case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
 2127         case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
 2128         case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
 2129         case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
 2130                 sc->dc_type = DC_TYPE_AN983;
 2131                 sc->dc_flags |= DC_64BIT_HASH;
 2132                 sc->dc_flags |= DC_TX_USE_TX_INTR;
 2133                 sc->dc_flags |= DC_TX_ADMTEK_WAR;
 2134                 sc->dc_pmode = DC_PMODE_MII;
 2135                 /* Don't read SROM for - auto-loaded on reset */
 2136                 break;
 2137         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
 2138         case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
 2139                 if (revision < DC_REVISION_98713A) {
 2140                         sc->dc_type = DC_TYPE_98713;
 2141                 }
 2142                 if (revision >= DC_REVISION_98713A) {
 2143                         sc->dc_type = DC_TYPE_98713A;
 2144                         sc->dc_flags |= DC_21143_NWAY;
 2145                 }
 2146                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 2147                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 2148                 break;
 2149         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
 2150         case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
 2151                 /*
 2152                  * Macronix MX98715AEC-C/D/E parts have only a
 2153                  * 128-bit hash table. We need to deal with these
 2154                  * in the same manner as the PNIC II so that we
 2155                  * get the right number of bits out of the
 2156                  * CRC routine.
 2157                  */
 2158                 if (revision >= DC_REVISION_98715AEC_C &&
 2159                     revision < DC_REVISION_98725)
 2160                         sc->dc_flags |= DC_128BIT_HASH;
 2161                 sc->dc_type = DC_TYPE_987x5;
 2162                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 2163                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 2164                 break;
 2165         case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
 2166                 sc->dc_type = DC_TYPE_987x5;
 2167                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
 2168                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 2169                 break;
 2170         case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
 2171                 sc->dc_type = DC_TYPE_PNICII;
 2172                 sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
 2173                 sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
 2174                 break;
 2175         case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
 2176                 sc->dc_type = DC_TYPE_PNIC;
 2177                 sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
 2178                 sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
 2179                 sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
 2180                 if (sc->dc_pnic_rx_buf == NULL) {
 2181                         device_printf(sc->dc_dev,
 2182                             "Could not allocate PNIC RX buffer\n");
 2183                         error = ENOMEM;
 2184                         goto fail;
 2185                 }
 2186                 if (revision < DC_REVISION_82C169)
 2187                         sc->dc_pmode = DC_PMODE_SYM;
 2188                 break;
 2189         case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
 2190                 sc->dc_type = DC_TYPE_ASIX;
 2191                 sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
 2192                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 2193                 sc->dc_pmode = DC_PMODE_MII;
 2194                 break;
 2195         case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
 2196                 sc->dc_type = DC_TYPE_XIRCOM;
 2197                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 2198                                 DC_TX_ALIGN;
 2199                 /*
 2200                  * We don't actually need to coalesce, but we're doing
 2201                  * it to obtain a double word aligned buffer.
 2202                  * The DC_TX_COALESCE flag is required.
 2203                  */
 2204                 sc->dc_pmode = DC_PMODE_MII;
 2205                 break;
 2206         case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
 2207                 sc->dc_type = DC_TYPE_CONEXANT;
 2208                 sc->dc_flags |= DC_TX_INTR_ALWAYS;
 2209                 sc->dc_flags |= DC_REDUCED_MII_POLL;
 2210                 sc->dc_pmode = DC_PMODE_MII;
 2211                 error = dc_read_srom(sc, sc->dc_romwidth);
 2212                 if (error != 0)
 2213                         goto fail;
 2214                 break;
 2215         case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261):
 2216         case DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5263):
 2217                 if (sc->dc_info->dc_devid ==
 2218                     DC_DEVID(DC_VENDORID_ULI, DC_DEVICEID_M5261))
 2219                         sc->dc_type = DC_TYPE_ULI_M5261;
 2220                 else
 2221                         sc->dc_type = DC_TYPE_ULI_M5263;
 2222                 /* TX buffers should be aligned on 4 byte boundary. */
 2223                 sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
 2224                     DC_TX_ALIGN;
 2225                 sc->dc_pmode = DC_PMODE_MII;
 2226                 error = dc_read_srom(sc, sc->dc_romwidth);
 2227                 if (error != 0)
 2228                         goto fail;
 2229                 break;
 2230         default:
 2231                 device_printf(dev, "unknown device: %x\n",
 2232                     sc->dc_info->dc_devid);
 2233                 break;
 2234         }
 2235 
 2236         /* Save the cache line size. */
 2237         if (DC_IS_DAVICOM(sc))
 2238                 sc->dc_cachesize = 0;
 2239         else
 2240                 sc->dc_cachesize = pci_get_cachelnsz(dev);
 2241 
 2242         /* Reset the adapter. */
 2243         dc_reset(sc);
 2244 
 2245         /* Take 21143 out of snooze mode */
 2246         if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
 2247                 command = pci_read_config(dev, DC_PCI_CFDD, 4);
 2248                 command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
 2249                 pci_write_config(dev, DC_PCI_CFDD, command, 4);
 2250         }
 2251 
 2252         /*
 2253          * Try to learn something about the supported media.
 2254          * We know that ASIX and ADMtek and Davicom devices
 2255          * will *always* be using MII media, so that's a no-brainer.
 2256          * The tricky ones are the Macronix/PNIC II and the
 2257          * Intel 21143.
 2258          */
 2259         if (DC_IS_INTEL(sc)) {
 2260                 error = dc_parse_21143_srom(sc);
 2261                 if (error != 0)
 2262                         goto fail;
 2263         } else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 2264                 if (sc->dc_type == DC_TYPE_98713)
 2265                         sc->dc_pmode = DC_PMODE_MII;
 2266                 else
 2267                         sc->dc_pmode = DC_PMODE_SYM;
 2268         } else if (!sc->dc_pmode)
 2269                 sc->dc_pmode = DC_PMODE_MII;
 2270 
 2271         /*
 2272          * Get station address from the EEPROM.
 2273          */
 2274         switch(sc->dc_type) {
 2275         case DC_TYPE_98713:
 2276         case DC_TYPE_98713A:
 2277         case DC_TYPE_987x5:
 2278         case DC_TYPE_PNICII:
 2279                 dc_read_eeprom(sc, (caddr_t)&mac_offset,
 2280                     (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
 2281                 dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
 2282                 break;
 2283         case DC_TYPE_PNIC:
 2284                 dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
 2285                 break;
 2286         case DC_TYPE_DM9102:
 2287                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2288                 break;
 2289         case DC_TYPE_21143:
 2290         case DC_TYPE_ASIX:
 2291                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2292                 break;
 2293         case DC_TYPE_AL981:
 2294         case DC_TYPE_AN983:
 2295                 reg = CSR_READ_4(sc, DC_AL_PAR0);
 2296                 mac = (uint8_t *)&eaddr[0];
 2297                 mac[0] = (reg >> 0) & 0xff;
 2298                 mac[1] = (reg >> 8) & 0xff;
 2299                 mac[2] = (reg >> 16) & 0xff;
 2300                 mac[3] = (reg >> 24) & 0xff;
 2301                 reg = CSR_READ_4(sc, DC_AL_PAR1);
 2302                 mac[4] = (reg >> 0) & 0xff;
 2303                 mac[5] = (reg >> 8) & 0xff;
 2304                 break;
 2305         case DC_TYPE_CONEXANT:
 2306                 bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
 2307                     ETHER_ADDR_LEN);
 2308                 break;
 2309         case DC_TYPE_XIRCOM:
 2310                 /* The MAC comes from the CIS. */
 2311                 mac = pci_get_ether(dev);
 2312                 if (!mac) {
 2313                         device_printf(dev, "No station address in CIS!\n");
 2314                         error = ENXIO;
 2315                         goto fail;
 2316                 }
 2317                 bcopy(mac, eaddr, ETHER_ADDR_LEN);
 2318                 break;
 2319         case DC_TYPE_ULI_M5261:
 2320         case DC_TYPE_ULI_M5263:
 2321                 srom = (uint16_t *)sc->dc_srom;
 2322                 if (srom == NULL || *srom == 0xFFFF || *srom == 0) {
 2323                         /*
 2324                          * No valid SROM present, read station address
 2325                          * from ID Table.
 2326                          */
 2327                         device_printf(dev,
 2328                             "Reading station address from ID Table.\n");
 2329                         CSR_WRITE_4(sc, DC_BUSCTL, 0x10000);
 2330                         CSR_WRITE_4(sc, DC_SIARESET, 0x01C0);
 2331                         CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
 2332                         CSR_WRITE_4(sc, DC_10BTCTRL, 0x0010);
 2333                         CSR_WRITE_4(sc, DC_10BTCTRL, 0x0000);
 2334                         CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
 2335                         CSR_WRITE_4(sc, DC_SIARESET, 0x01B0);
 2336                         mac = (uint8_t *)eaddr;
 2337                         for (n = 0; n < ETHER_ADDR_LEN; n++)
 2338                                 mac[n] = (uint8_t)CSR_READ_4(sc, DC_10BTCTRL);
 2339                         CSR_WRITE_4(sc, DC_SIARESET, 0x0000);
 2340                         CSR_WRITE_4(sc, DC_BUSCTL, 0x0000);
 2341                         DELAY(10);
 2342                 } else
 2343                         dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3,
 2344                             0);
 2345                 break;
 2346         default:
 2347                 dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
 2348                 break;
 2349         }
 2350 
 2351         bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
 2352         /*
 2353          * If we still have invalid station address, see whether we can
 2354          * find station address for chip 0.  Some multi-port controllers
 2355          * just store station address for chip 0 if they have a shared
 2356          * SROM.
 2357          */
 2358         if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
 2359             (sc->dc_eaddr[0] == 0xffffffff &&
 2360             (sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
 2361                 error = dc_check_multiport(sc);
 2362                 if (error == 0) {
 2363                         bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
 2364                         /* Extract media information. */
 2365                         if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
 2366                                 while (sc->dc_mi != NULL) {
 2367                                         m = sc->dc_mi->dc_next;
 2368                                         free(sc->dc_mi, M_DEVBUF);
 2369                                         sc->dc_mi = m;
 2370                                 }
 2371                                 error = dc_parse_21143_srom(sc);
 2372                                 if (error != 0)
 2373                                         goto fail;
 2374                         }
 2375                 } else if (error == ENOMEM)
 2376                         goto fail;
 2377                 else
 2378                         error = 0;
 2379         }
 2380 
 2381         if ((error = dc_dma_alloc(sc)) != 0)
 2382                 goto fail;
 2383 
 2384         ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
 2385         if (ifp == NULL) {
 2386                 device_printf(dev, "can not if_alloc()\n");
 2387                 error = ENOSPC;
 2388                 goto fail;
 2389         }
 2390         ifp->if_softc = sc;
 2391         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
 2392         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
 2393         ifp->if_ioctl = dc_ioctl;
 2394         ifp->if_start = dc_start;
 2395         ifp->if_init = dc_init;
 2396         IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
 2397         ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
 2398         IFQ_SET_READY(&ifp->if_snd);
 2399 
 2400         /*
 2401          * Do MII setup. If this is a 21143, check for a PHY on the
 2402          * MII bus after applying any necessary fixups to twiddle the
 2403          * GPIO bits. If we don't end up finding a PHY, restore the
 2404          * old selection (SIA only or SIA/SYM) and attach the dcphy
 2405          * driver instead.
 2406          */
 2407         tmp = 0;
 2408         if (DC_IS_INTEL(sc)) {
 2409                 dc_apply_fixup(sc, IFM_AUTO);
 2410                 tmp = sc->dc_pmode;
 2411                 sc->dc_pmode = DC_PMODE_MII;
 2412         }
 2413 
 2414         /*
 2415          * Setup General Purpose port mode and data so the tulip can talk
 2416          * to the MII.  This needs to be done before mii_attach so that
 2417          * we can actually see them.
 2418          */
 2419         if (DC_IS_XIRCOM(sc)) {
 2420                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 2421                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2422                 DELAY(10);
 2423                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 2424                     DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 2425                 DELAY(10);
 2426         }
 2427 
 2428         phy = MII_PHY_ANY;
 2429         /*
 2430          * Note: both the AL981 and AN983 have internal PHYs, however the
 2431          * AL981 provides direct access to the PHY registers while the AN983
 2432          * uses a serial MII interface. The AN983's MII interface is also
 2433          * buggy in that you can read from any MII address (0 to 31), but
 2434          * only address 1 behaves normally. To deal with both cases, we
 2435          * pretend that the PHY is at MII address 1.
 2436          */
 2437         if (DC_IS_ADMTEK(sc))
 2438                 phy = DC_ADMTEK_PHYADDR;
 2439 
 2440         /*
 2441          * Note: the ukphy probes of the RS7112 report a PHY at MII address
 2442          * 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
 2443          * correct one.
 2444          */
 2445         if (DC_IS_CONEXANT(sc))
 2446                 phy = DC_CONEXANT_PHYADDR;
 2447 
 2448         error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
 2449             dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
 2450 
 2451         if (error && DC_IS_INTEL(sc)) {
 2452                 sc->dc_pmode = tmp;
 2453                 if (sc->dc_pmode != DC_PMODE_SIA)
 2454                         sc->dc_pmode = DC_PMODE_SYM;
 2455                 sc->dc_flags |= DC_21143_NWAY;
 2456                 /*
 2457                  * For non-MII cards, we need to have the 21143
 2458                  * drive the LEDs. Except there are some systems
 2459                  * like the NEC VersaPro NoteBook PC which have no
 2460                  * LEDs, and twiddling these bits has adverse effects
 2461                  * on them. (I.e. you suddenly can't get a link.)
 2462                  */
 2463                 if (!(pci_get_subvendor(dev) == 0x1033 &&
 2464                     pci_get_subdevice(dev) == 0x8028))
 2465                         sc->dc_flags |= DC_TULIP_LEDS;
 2466                 error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
 2467                     dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
 2468                     MII_OFFSET_ANY, 0);
 2469         }
 2470 
 2471         if (error) {
 2472                 device_printf(dev, "attaching PHYs failed\n");
 2473                 goto fail;
 2474         }
 2475 
 2476         if (DC_IS_ADMTEK(sc)) {
 2477                 /*
 2478                  * Set automatic TX underrun recovery for the ADMtek chips
 2479                  */
 2480                 DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
 2481         }
 2482 
 2483         /*
 2484          * Tell the upper layer(s) we support long frames.
 2485          */
 2486         ifp->if_hdrlen = sizeof(struct ether_vlan_header);
 2487         ifp->if_capabilities |= IFCAP_VLAN_MTU;
 2488         ifp->if_capenable = ifp->if_capabilities;
 2489 #ifdef DEVICE_POLLING
 2490         ifp->if_capabilities |= IFCAP_POLLING;
 2491 #endif
 2492 
 2493         callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
 2494         callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
 2495 
 2496         /*
 2497          * Call MI attach routine.
 2498          */
 2499         ether_ifattach(ifp, (caddr_t)eaddr);
 2500 
 2501         /* Hook interrupt last to avoid having to lock softc */
 2502         error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
 2503             NULL, dc_intr, sc, &sc->dc_intrhand);
 2504 
 2505         if (error) {
 2506                 device_printf(dev, "couldn't set up irq\n");
 2507                 ether_ifdetach(ifp);
 2508                 goto fail;
 2509         }
 2510 
 2511 fail:
 2512         if (error)
 2513                 dc_detach(dev);
 2514         return (error);
 2515 }
 2516 
 2517 /*
 2518  * Shutdown hardware and free up resources. This can be called any
 2519  * time after the mutex has been initialized. It is called in both
 2520  * the error case in attach and the normal detach case so it needs
 2521  * to be careful about only freeing resources that have actually been
 2522  * allocated.
 2523  */
 2524 static int
 2525 dc_detach(device_t dev)
 2526 {
 2527         struct dc_softc *sc;
 2528         struct ifnet *ifp;
 2529         struct dc_mediainfo *m;
 2530 
 2531         sc = device_get_softc(dev);
 2532         KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
 2533 
 2534         ifp = sc->dc_ifp;
 2535 
 2536 #ifdef DEVICE_POLLING
 2537         if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
 2538                 ether_poll_deregister(ifp);
 2539 #endif
 2540 
 2541         /* These should only be active if attach succeeded */
 2542         if (device_is_attached(dev)) {
 2543                 DC_LOCK(sc);
 2544                 dc_stop(sc);
 2545                 DC_UNLOCK(sc);
 2546                 callout_drain(&sc->dc_stat_ch);
 2547                 callout_drain(&sc->dc_wdog_ch);
 2548                 ether_ifdetach(ifp);
 2549         }
 2550         if (sc->dc_miibus)
 2551                 device_delete_child(dev, sc->dc_miibus);
 2552         bus_generic_detach(dev);
 2553 
 2554         if (sc->dc_intrhand)
 2555                 bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
 2556         if (sc->dc_irq)
 2557                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
 2558         if (sc->dc_res)
 2559                 bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
 2560 
 2561         if (ifp != NULL)
 2562                 if_free(ifp);
 2563 
 2564         dc_dma_free(sc);
 2565 
 2566         free(sc->dc_pnic_rx_buf, M_DEVBUF);
 2567 
 2568         while (sc->dc_mi != NULL) {
 2569                 m = sc->dc_mi->dc_next;
 2570                 free(sc->dc_mi, M_DEVBUF);
 2571                 sc->dc_mi = m;
 2572         }
 2573         free(sc->dc_srom, M_DEVBUF);
 2574 
 2575         mtx_destroy(&sc->dc_mtx);
 2576 
 2577         return (0);
 2578 }
 2579 
 2580 /*
 2581  * Initialize the transmit descriptors.
 2582  */
 2583 static int
 2584 dc_list_tx_init(struct dc_softc *sc)
 2585 {
 2586         struct dc_chain_data *cd;
 2587         struct dc_list_data *ld;
 2588         int i, nexti;
 2589 
 2590         cd = &sc->dc_cdata;
 2591         ld = &sc->dc_ldata;
 2592         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 2593                 if (i == DC_TX_LIST_CNT - 1)
 2594                         nexti = 0;
 2595                 else
 2596                         nexti = i + 1;
 2597                 ld->dc_tx_list[i].dc_status = 0;
 2598                 ld->dc_tx_list[i].dc_ctl = 0;
 2599                 ld->dc_tx_list[i].dc_data = 0;
 2600                 ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
 2601                 cd->dc_tx_chain[i] = NULL;
 2602         }
 2603 
 2604         cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
 2605         cd->dc_tx_pkts = 0;
 2606         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
 2607             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2608         return (0);
 2609 }
 2610 
 2611 /*
 2612  * Initialize the RX descriptors and allocate mbufs for them. Note that
 2613  * we arrange the descriptors in a closed ring, so that the last descriptor
 2614  * points back to the first.
 2615  */
 2616 static int
 2617 dc_list_rx_init(struct dc_softc *sc)
 2618 {
 2619         struct dc_chain_data *cd;
 2620         struct dc_list_data *ld;
 2621         int i, nexti;
 2622 
 2623         cd = &sc->dc_cdata;
 2624         ld = &sc->dc_ldata;
 2625 
 2626         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2627                 if (dc_newbuf(sc, i) != 0)
 2628                         return (ENOBUFS);
 2629                 if (i == DC_RX_LIST_CNT - 1)
 2630                         nexti = 0;
 2631                 else
 2632                         nexti = i + 1;
 2633                 ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
 2634         }
 2635 
 2636         cd->dc_rx_prod = 0;
 2637         bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
 2638             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2639         return (0);
 2640 }
 2641 
 2642 /*
 2643  * Initialize an RX descriptor and attach an MBUF cluster.
 2644  */
 2645 static int
 2646 dc_newbuf(struct dc_softc *sc, int i)
 2647 {
 2648         struct mbuf *m;
 2649         bus_dmamap_t map;
 2650         bus_dma_segment_t segs[1];
 2651         int error, nseg;
 2652 
 2653         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 2654         if (m == NULL)
 2655                 return (ENOBUFS);
 2656         m->m_len = m->m_pkthdr.len = MCLBYTES;
 2657         m_adj(m, sizeof(u_int64_t));
 2658 
 2659         /*
 2660          * If this is a PNIC chip, zero the buffer. This is part
 2661          * of the workaround for the receive bug in the 82c168 and
 2662          * 82c169 chips.
 2663          */
 2664         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
 2665                 bzero(mtod(m, char *), m->m_len);
 2666 
 2667         error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
 2668             m, segs, &nseg, 0);
 2669         if (error) {
 2670                 m_freem(m);
 2671                 return (error);
 2672         }
 2673         KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
 2674             nseg));
 2675         if (sc->dc_cdata.dc_rx_chain[i] != NULL)
 2676                 bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
 2677 
 2678         map = sc->dc_cdata.dc_rx_map[i];
 2679         sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
 2680         sc->dc_sparemap = map;
 2681         sc->dc_cdata.dc_rx_chain[i] = m;
 2682         bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
 2683             BUS_DMASYNC_PREREAD);
 2684 
 2685         sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2686         sc->dc_ldata.dc_rx_list[i].dc_data =
 2687             htole32(DC_ADDR_LO(segs[0].ds_addr));
 2688         sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2689         bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
 2690             BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
 2691         return (0);
 2692 }
 2693 
 2694 /*
 2695  * Grrrrr.
 2696  * The PNIC chip has a terrible bug in it that manifests itself during
 2697  * periods of heavy activity. The exact mode of failure if difficult to
 2698  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
 2699  * will happen on slow machines. The bug is that sometimes instead of
 2700  * uploading one complete frame during reception, it uploads what looks
 2701  * like the entire contents of its FIFO memory. The frame we want is at
 2702  * the end of the whole mess, but we never know exactly how much data has
 2703  * been uploaded, so salvaging the frame is hard.
 2704  *
 2705  * There is only one way to do it reliably, and it's disgusting.
 2706  * Here's what we know:
 2707  *
 2708  * - We know there will always be somewhere between one and three extra
 2709  *   descriptors uploaded.
 2710  *
 2711  * - We know the desired received frame will always be at the end of the
 2712  *   total data upload.
 2713  *
 2714  * - We know the size of the desired received frame because it will be
 2715  *   provided in the length field of the status word in the last descriptor.
 2716  *
 2717  * Here's what we do:
 2718  *
 2719  * - When we allocate buffers for the receive ring, we bzero() them.
 2720  *   This means that we know that the buffer contents should be all
 2721  *   zeros, except for data uploaded by the chip.
 2722  *
 2723  * - We also force the PNIC chip to upload frames that include the
 2724  *   ethernet CRC at the end.
 2725  *
 2726  * - We gather all of the bogus frame data into a single buffer.
 2727  *
 2728  * - We then position a pointer at the end of this buffer and scan
 2729  *   backwards until we encounter the first non-zero byte of data.
 2730  *   This is the end of the received frame. We know we will encounter
 2731  *   some data at the end of the frame because the CRC will always be
 2732  *   there, so even if the sender transmits a packet of all zeros,
 2733  *   we won't be fooled.
 2734  *
 2735  * - We know the size of the actual received frame, so we subtract
 2736  *   that value from the current pointer location. This brings us
 2737  *   to the start of the actual received packet.
 2738  *
 2739  * - We copy this into an mbuf and pass it on, along with the actual
 2740  *   frame length.
 2741  *
 2742  * The performance hit is tremendous, but it beats dropping frames all
 2743  * the time.
 2744  */
 2745 
 2746 #define DC_WHOLEFRAME   (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
 2747 static void
 2748 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
 2749 {
 2750         struct dc_desc *cur_rx;
 2751         struct dc_desc *c = NULL;
 2752         struct mbuf *m = NULL;
 2753         unsigned char *ptr;
 2754         int i, total_len;
 2755         uint32_t rxstat = 0;
 2756 
 2757         i = sc->dc_pnic_rx_bug_save;
 2758         cur_rx = &sc->dc_ldata.dc_rx_list[idx];
 2759         ptr = sc->dc_pnic_rx_buf;
 2760         bzero(ptr, DC_RXLEN * 5);
 2761 
 2762         /* Copy all the bytes from the bogus buffers. */
 2763         while (1) {
 2764                 c = &sc->dc_ldata.dc_rx_list[i];
 2765                 rxstat = le32toh(c->dc_status);
 2766                 m = sc->dc_cdata.dc_rx_chain[i];
 2767                 bcopy(mtod(m, char *), ptr, DC_RXLEN);
 2768                 ptr += DC_RXLEN;
 2769                 /* If this is the last buffer, break out. */
 2770                 if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
 2771                         break;
 2772                 dc_discard_rxbuf(sc, i);
 2773                 DC_INC(i, DC_RX_LIST_CNT);
 2774         }
 2775 
 2776         /* Find the length of the actual receive frame. */
 2777         total_len = DC_RXBYTES(rxstat);
 2778 
 2779         /* Scan backwards until we hit a non-zero byte. */
 2780         while (*ptr == 0x00)
 2781                 ptr--;
 2782 
 2783         /* Round off. */
 2784         if ((uintptr_t)(ptr) & 0x3)
 2785                 ptr -= 1;
 2786 
 2787         /* Now find the start of the frame. */
 2788         ptr -= total_len;
 2789         if (ptr < sc->dc_pnic_rx_buf)
 2790                 ptr = sc->dc_pnic_rx_buf;
 2791 
 2792         /*
 2793          * Now copy the salvaged frame to the last mbuf and fake up
 2794          * the status word to make it look like a successful
 2795          * frame reception.
 2796          */
 2797         bcopy(ptr, mtod(m, char *), total_len);
 2798         cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
 2799 }
 2800 
 2801 /*
 2802  * This routine searches the RX ring for dirty descriptors in the
 2803  * event that the rxeof routine falls out of sync with the chip's
 2804  * current descriptor pointer. This may happen sometimes as a result
 2805  * of a "no RX buffer available" condition that happens when the chip
 2806  * consumes all of the RX buffers before the driver has a chance to
 2807  * process the RX ring. This routine may need to be called more than
 2808  * once to bring the driver back in sync with the chip, however we
 2809  * should still be getting RX DONE interrupts to drive the search
 2810  * for new packets in the RX ring, so we should catch up eventually.
 2811  */
 2812 static int
 2813 dc_rx_resync(struct dc_softc *sc)
 2814 {
 2815         struct dc_desc *cur_rx;
 2816         int i, pos;
 2817 
 2818         pos = sc->dc_cdata.dc_rx_prod;
 2819 
 2820         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 2821                 cur_rx = &sc->dc_ldata.dc_rx_list[pos];
 2822                 if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
 2823                         break;
 2824                 DC_INC(pos, DC_RX_LIST_CNT);
 2825         }
 2826 
 2827         /* If the ring really is empty, then just return. */
 2828         if (i == DC_RX_LIST_CNT)
 2829                 return (0);
 2830 
 2831         /* We've fallen behing the chip: catch it. */
 2832         sc->dc_cdata.dc_rx_prod = pos;
 2833 
 2834         return (EAGAIN);
 2835 }
 2836 
 2837 static void
 2838 dc_discard_rxbuf(struct dc_softc *sc, int i)
 2839 {
 2840         struct mbuf *m;
 2841 
 2842         if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2843                 m = sc->dc_cdata.dc_rx_chain[i];
 2844                 bzero(mtod(m, char *), m->m_len);
 2845         }
 2846 
 2847         sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
 2848         sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
 2849         bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
 2850             BUS_DMASYNC_PREWRITE);
 2851 }
 2852 
 2853 /*
 2854  * A frame has been uploaded: pass the resulting mbuf chain up to
 2855  * the higher level protocols.
 2856  */
 2857 static int
 2858 dc_rxeof(struct dc_softc *sc)
 2859 {
 2860         struct mbuf *m;
 2861         struct ifnet *ifp;
 2862         struct dc_desc *cur_rx;
 2863         int i, total_len, rx_npkts;
 2864         uint32_t rxstat;
 2865 
 2866         DC_LOCK_ASSERT(sc);
 2867 
 2868         ifp = sc->dc_ifp;
 2869         rx_npkts = 0;
 2870 
 2871         bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
 2872             BUS_DMASYNC_POSTWRITE);
 2873         for (i = sc->dc_cdata.dc_rx_prod;
 2874             (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
 2875             DC_INC(i, DC_RX_LIST_CNT)) {
 2876 #ifdef DEVICE_POLLING
 2877                 if (ifp->if_capenable & IFCAP_POLLING) {
 2878                         if (sc->rxcycles <= 0)
 2879                                 break;
 2880                         sc->rxcycles--;
 2881                 }
 2882 #endif
 2883                 cur_rx = &sc->dc_ldata.dc_rx_list[i];
 2884                 rxstat = le32toh(cur_rx->dc_status);
 2885                 if ((rxstat & DC_RXSTAT_OWN) != 0)
 2886                         break;
 2887                 m = sc->dc_cdata.dc_rx_chain[i];
 2888                 bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
 2889                     BUS_DMASYNC_POSTREAD);
 2890                 total_len = DC_RXBYTES(rxstat);
 2891                 rx_npkts++;
 2892 
 2893                 if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
 2894                         if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
 2895                                 if (rxstat & DC_RXSTAT_FIRSTFRAG)
 2896                                         sc->dc_pnic_rx_bug_save = i;
 2897                                 if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
 2898                                         continue;
 2899                                 dc_pnic_rx_bug_war(sc, i);
 2900                                 rxstat = le32toh(cur_rx->dc_status);
 2901                                 total_len = DC_RXBYTES(rxstat);
 2902                         }
 2903                 }
 2904 
 2905                 /*
 2906                  * If an error occurs, update stats, clear the
 2907                  * status word and leave the mbuf cluster in place:
 2908                  * it should simply get re-used next time this descriptor
 2909                  * comes up in the ring.  However, don't report long
 2910                  * frames as errors since they could be vlans.
 2911                  */
 2912                 if ((rxstat & DC_RXSTAT_RXERR)) {
 2913                         if (!(rxstat & DC_RXSTAT_GIANT) ||
 2914                             (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
 2915                                        DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
 2916                                        DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
 2917                                 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 2918                                 if (rxstat & DC_RXSTAT_COLLSEEN)
 2919                                         if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 2920                                 dc_discard_rxbuf(sc, i);
 2921                                 if (rxstat & DC_RXSTAT_CRCERR)
 2922                                         continue;
 2923                                 else {
 2924                                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 2925                                         dc_init_locked(sc);
 2926                                         return (rx_npkts);
 2927                                 }
 2928                         }
 2929                 }
 2930 
 2931                 /* No errors; receive the packet. */
 2932                 total_len -= ETHER_CRC_LEN;
 2933 #ifdef __NO_STRICT_ALIGNMENT
 2934                 /*
 2935                  * On architectures without alignment problems we try to
 2936                  * allocate a new buffer for the receive ring, and pass up
 2937                  * the one where the packet is already, saving the expensive
 2938                  * copy done in m_devget().
 2939                  * If we are on an architecture with alignment problems, or
 2940                  * if the allocation fails, then use m_devget and leave the
 2941                  * existing buffer in the receive ring.
 2942                  */
 2943                 if (dc_newbuf(sc, i) != 0) {
 2944                         dc_discard_rxbuf(sc, i);
 2945                         if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2946                         continue;
 2947                 }
 2948                 m->m_pkthdr.rcvif = ifp;
 2949                 m->m_pkthdr.len = m->m_len = total_len;
 2950 #else
 2951                 {
 2952                         struct mbuf *m0;
 2953 
 2954                         m0 = m_devget(mtod(m, char *), total_len,
 2955                                 ETHER_ALIGN, ifp, NULL);
 2956                         dc_discard_rxbuf(sc, i);
 2957                         if (m0 == NULL) {
 2958                                 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
 2959                                 continue;
 2960                         }
 2961                         m = m0;
 2962                 }
 2963 #endif
 2964 
 2965                 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
 2966                 DC_UNLOCK(sc);
 2967                 (*ifp->if_input)(ifp, m);
 2968                 DC_LOCK(sc);
 2969         }
 2970 
 2971         sc->dc_cdata.dc_rx_prod = i;
 2972         return (rx_npkts);
 2973 }
 2974 
 2975 /*
 2976  * A frame was downloaded to the chip. It's safe for us to clean up
 2977  * the list buffers.
 2978  */
 2979 static void
 2980 dc_txeof(struct dc_softc *sc)
 2981 {
 2982         struct dc_desc *cur_tx;
 2983         struct ifnet *ifp;
 2984         int idx, setup;
 2985         uint32_t ctl, txstat;
 2986 
 2987         if (sc->dc_cdata.dc_tx_cnt == 0)
 2988                 return;
 2989 
 2990         ifp = sc->dc_ifp;
 2991 
 2992         /*
 2993          * Go through our tx list and free mbufs for those
 2994          * frames that have been transmitted.
 2995          */
 2996         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
 2997             BUS_DMASYNC_POSTWRITE);
 2998         setup = 0;
 2999         for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
 3000             DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
 3001                 cur_tx = &sc->dc_ldata.dc_tx_list[idx];
 3002                 txstat = le32toh(cur_tx->dc_status);
 3003                 ctl = le32toh(cur_tx->dc_ctl);
 3004 
 3005                 if (txstat & DC_TXSTAT_OWN)
 3006                         break;
 3007 
 3008                 if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
 3009                         continue;
 3010 
 3011                 if (ctl & DC_TXCTL_SETUP) {
 3012                         cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
 3013                         setup++;
 3014                         bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
 3015                             BUS_DMASYNC_POSTWRITE);
 3016                         /*
 3017                          * Yes, the PNIC is so brain damaged
 3018                          * that it will sometimes generate a TX
 3019                          * underrun error while DMAing the RX
 3020                          * filter setup frame. If we detect this,
 3021                          * we have to send the setup frame again,
 3022                          * or else the filter won't be programmed
 3023                          * correctly.
 3024                          */
 3025                         if (DC_IS_PNIC(sc)) {
 3026                                 if (txstat & DC_TXSTAT_ERRSUM)
 3027                                         dc_setfilt(sc);
 3028                         }
 3029                         sc->dc_cdata.dc_tx_chain[idx] = NULL;
 3030                         continue;
 3031                 }
 3032 
 3033                 if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
 3034                         /*
 3035                          * XXX: Why does my Xircom taunt me so?
 3036                          * For some reason it likes setting the CARRLOST flag
 3037                          * even when the carrier is there. wtf?!?
 3038                          * Who knows, but Conexant chips have the
 3039                          * same problem. Maybe they took lessons
 3040                          * from Xircom.
 3041                          */
 3042                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 3043                             sc->dc_pmode == DC_PMODE_MII &&
 3044                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 3045                             DC_TXSTAT_NOCARRIER)))
 3046                                 txstat &= ~DC_TXSTAT_ERRSUM;
 3047                 } else {
 3048                         if (/*sc->dc_type == DC_TYPE_21143 &&*/
 3049                             sc->dc_pmode == DC_PMODE_MII &&
 3050                             ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
 3051                             DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
 3052                                 txstat &= ~DC_TXSTAT_ERRSUM;
 3053                 }
 3054 
 3055                 if (txstat & DC_TXSTAT_ERRSUM) {
 3056                         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 3057                         if (txstat & DC_TXSTAT_EXCESSCOLL)
 3058                                 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 3059                         if (txstat & DC_TXSTAT_LATECOLL)
 3060                                 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
 3061                         if (!(txstat & DC_TXSTAT_UNDERRUN)) {
 3062                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3063                                 dc_init_locked(sc);
 3064                                 return;
 3065                         }
 3066                 } else
 3067                         if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 3068                 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & DC_TXSTAT_COLLCNT) >> 3);
 3069 
 3070                 bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
 3071                     BUS_DMASYNC_POSTWRITE);
 3072                 bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
 3073                 m_freem(sc->dc_cdata.dc_tx_chain[idx]);
 3074                 sc->dc_cdata.dc_tx_chain[idx] = NULL;
 3075         }
 3076         sc->dc_cdata.dc_tx_cons = idx;
 3077 
 3078         if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
 3079                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3080                 if (sc->dc_cdata.dc_tx_cnt == 0)
 3081                         sc->dc_wdog_timer = 0;
 3082         }
 3083         if (setup > 0)
 3084                 bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
 3085                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3086 }
 3087 
 3088 static void
 3089 dc_tick(void *xsc)
 3090 {
 3091         struct dc_softc *sc;
 3092         struct mii_data *mii;
 3093         struct ifnet *ifp;
 3094         uint32_t r;
 3095 
 3096         sc = xsc;
 3097         DC_LOCK_ASSERT(sc);
 3098         ifp = sc->dc_ifp;
 3099         mii = device_get_softc(sc->dc_miibus);
 3100 
 3101         /*
 3102          * Reclaim transmitted frames for controllers that do
 3103          * not generate TX completion interrupt for every frame.
 3104          */
 3105         if (sc->dc_flags & DC_TX_USE_TX_INTR)
 3106                 dc_txeof(sc);
 3107 
 3108         if (sc->dc_flags & DC_REDUCED_MII_POLL) {
 3109                 if (sc->dc_flags & DC_21143_NWAY) {
 3110                         r = CSR_READ_4(sc, DC_10BTSTAT);
 3111                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 3112                             IFM_100_TX && (r & DC_TSTAT_LS100)) {
 3113                                 sc->dc_link = 0;
 3114                                 mii_mediachg(mii);
 3115                         }
 3116                         if (IFM_SUBTYPE(mii->mii_media_active) ==
 3117                             IFM_10_T && (r & DC_TSTAT_LS10)) {
 3118                                 sc->dc_link = 0;
 3119                                 mii_mediachg(mii);
 3120                         }
 3121                         if (sc->dc_link == 0)
 3122                                 mii_tick(mii);
 3123                 } else {
 3124                         /*
 3125                          * For NICs which never report DC_RXSTATE_WAIT, we
 3126                          * have to bite the bullet...
 3127                          */
 3128                         if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
 3129                             DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
 3130                             sc->dc_cdata.dc_tx_cnt == 0)
 3131                                 mii_tick(mii);
 3132                 }
 3133         } else
 3134                 mii_tick(mii);
 3135 
 3136         /*
 3137          * When the init routine completes, we expect to be able to send
 3138          * packets right away, and in fact the network code will send a
 3139          * gratuitous ARP the moment the init routine marks the interface
 3140          * as running. However, even though the MAC may have been initialized,
 3141          * there may be a delay of a few seconds before the PHY completes
 3142          * autonegotiation and the link is brought up. Any transmissions
 3143          * made during that delay will be lost. Dealing with this is tricky:
 3144          * we can't just pause in the init routine while waiting for the
 3145          * PHY to come ready since that would bring the whole system to
 3146          * a screeching halt for several seconds.
 3147          *
 3148          * What we do here is prevent the TX start routine from sending
 3149          * any packets until a link has been established. After the
 3150          * interface has been initialized, the tick routine will poll
 3151          * the state of the PHY until the IFM_ACTIVE flag is set. Until
 3152          * that time, packets will stay in the send queue, and once the
 3153          * link comes up, they will be flushed out to the wire.
 3154          */
 3155         if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3156                 dc_start_locked(ifp);
 3157 
 3158         if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
 3159                 callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3160         else
 3161                 callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3162 }
 3163 
 3164 /*
 3165  * A transmit underrun has occurred.  Back off the transmit threshold,
 3166  * or switch to store and forward mode if we have to.
 3167  */
 3168 static void
 3169 dc_tx_underrun(struct dc_softc *sc)
 3170 {
 3171         uint32_t netcfg, isr;
 3172         int i, reinit;
 3173 
 3174         reinit = 0;
 3175         netcfg = CSR_READ_4(sc, DC_NETCFG);
 3176         device_printf(sc->dc_dev, "TX underrun -- ");
 3177         if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
 3178                 if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
 3179                         printf("using store and forward mode\n");
 3180                         netcfg |= DC_NETCFG_STORENFWD;
 3181                 } else {
 3182                         printf("increasing TX threshold\n");
 3183                         sc->dc_txthresh += DC_TXTHRESH_INC;
 3184                         netcfg &= ~DC_NETCFG_TX_THRESH;
 3185                         netcfg |= sc->dc_txthresh;
 3186                 }
 3187 
 3188                 if (DC_IS_INTEL(sc)) {
 3189                         /*
 3190                          * The real 21143 requires that the transmitter be idle
 3191                          * in order to change the transmit threshold or store
 3192                          * and forward state.
 3193                          */
 3194                         CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
 3195 
 3196                         for (i = 0; i < DC_TIMEOUT; i++) {
 3197                                 isr = CSR_READ_4(sc, DC_ISR);
 3198                                 if (isr & DC_ISR_TX_IDLE)
 3199                                         break;
 3200                                 DELAY(10);
 3201                         }
 3202                         if (i == DC_TIMEOUT) {
 3203                                 device_printf(sc->dc_dev,
 3204                                     "%s: failed to force tx to idle state\n",
 3205                                     __func__);
 3206                                 reinit++;
 3207                         }
 3208                 }
 3209         } else {
 3210                 printf("resetting\n");
 3211                 reinit++;
 3212         }
 3213 
 3214         if (reinit == 0) {
 3215                 CSR_WRITE_4(sc, DC_NETCFG, netcfg);
 3216                 if (DC_IS_INTEL(sc))
 3217                         CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
 3218         } else {
 3219                 sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3220                 dc_init_locked(sc);
 3221         }
 3222 }
 3223 
 3224 #ifdef DEVICE_POLLING
 3225 static poll_handler_t dc_poll;
 3226 
 3227 static int
 3228 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
 3229 {
 3230         struct dc_softc *sc = ifp->if_softc;
 3231         int rx_npkts = 0;
 3232 
 3233         DC_LOCK(sc);
 3234 
 3235         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
 3236                 DC_UNLOCK(sc);
 3237                 return (rx_npkts);
 3238         }
 3239 
 3240         sc->rxcycles = count;
 3241         rx_npkts = dc_rxeof(sc);
 3242         dc_txeof(sc);
 3243         if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
 3244             !(ifp->if_drv_flags & IFF_DRV_OACTIVE))
 3245                 dc_start_locked(ifp);
 3246 
 3247         if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
 3248                 uint32_t        status;
 3249 
 3250                 status = CSR_READ_4(sc, DC_ISR);
 3251                 status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
 3252                         DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
 3253                         DC_ISR_BUS_ERR);
 3254                 if (!status) {
 3255                         DC_UNLOCK(sc);
 3256                         return (rx_npkts);
 3257                 }
 3258                 /* ack what we have */
 3259                 CSR_WRITE_4(sc, DC_ISR, status);
 3260 
 3261                 if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
 3262                         uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3263                         if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
 3264 
 3265                         if (dc_rx_resync(sc))
 3266                                 dc_rxeof(sc);
 3267                 }
 3268                 /* restart transmit unit if necessary */
 3269                 if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
 3270                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3271 
 3272                 if (status & DC_ISR_TX_UNDERRUN)
 3273                         dc_tx_underrun(sc);
 3274 
 3275                 if (status & DC_ISR_BUS_ERR) {
 3276                         if_printf(ifp, "%s: bus error\n", __func__);
 3277                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3278                         dc_init_locked(sc);
 3279                 }
 3280         }
 3281         DC_UNLOCK(sc);
 3282         return (rx_npkts);
 3283 }
 3284 #endif /* DEVICE_POLLING */
 3285 
 3286 static void
 3287 dc_intr(void *arg)
 3288 {
 3289         struct dc_softc *sc;
 3290         struct ifnet *ifp;
 3291         uint32_t r, status;
 3292         int n;
 3293 
 3294         sc = arg;
 3295 
 3296         if (sc->suspended)
 3297                 return;
 3298 
 3299         DC_LOCK(sc);
 3300         status = CSR_READ_4(sc, DC_ISR);
 3301         if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
 3302                 DC_UNLOCK(sc);
 3303                 return;
 3304         }
 3305         ifp = sc->dc_ifp;
 3306 #ifdef DEVICE_POLLING
 3307         if (ifp->if_capenable & IFCAP_POLLING) {
 3308                 DC_UNLOCK(sc);
 3309                 return;
 3310         }
 3311 #endif
 3312         /* Disable interrupts. */
 3313         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3314 
 3315         for (n = 16; n > 0; n--) {
 3316                 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
 3317                         break;
 3318                 /* Ack interrupts. */
 3319                 CSR_WRITE_4(sc, DC_ISR, status);
 3320 
 3321                 if (status & DC_ISR_RX_OK) {
 3322                         if (dc_rxeof(sc) == 0) {
 3323                                 while (dc_rx_resync(sc))
 3324                                         dc_rxeof(sc);
 3325                         }
 3326                 }
 3327 
 3328                 if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
 3329                         dc_txeof(sc);
 3330 
 3331                 if (status & DC_ISR_TX_IDLE) {
 3332                         dc_txeof(sc);
 3333                         if (sc->dc_cdata.dc_tx_cnt) {
 3334                                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3335                                 CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3336                         }
 3337                 }
 3338 
 3339                 if (status & DC_ISR_TX_UNDERRUN)
 3340                         dc_tx_underrun(sc);
 3341 
 3342                 if ((status & DC_ISR_RX_WATDOGTIMEO)
 3343                     || (status & DC_ISR_RX_NOBUF)) {
 3344                         r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3345                         if_inc_counter(ifp, IFCOUNTER_IERRORS, (r & 0xffff) + ((r >> 17) & 0x7ff));
 3346                         if (dc_rxeof(sc) == 0) {
 3347                                 while (dc_rx_resync(sc))
 3348                                         dc_rxeof(sc);
 3349                         }
 3350                 }
 3351 
 3352                 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3353                         dc_start_locked(ifp);
 3354 
 3355                 if (status & DC_ISR_BUS_ERR) {
 3356                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3357                         dc_init_locked(sc);
 3358                         DC_UNLOCK(sc);
 3359                         return;
 3360                 }
 3361                 status = CSR_READ_4(sc, DC_ISR);
 3362                 if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
 3363                         break;
 3364         }
 3365 
 3366         /* Re-enable interrupts. */
 3367         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3368                 CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3369 
 3370         DC_UNLOCK(sc);
 3371 }
 3372 
 3373 /*
 3374  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 3375  * pointers to the fragment pointers.
 3376  */
 3377 static int
 3378 dc_encap(struct dc_softc *sc, struct mbuf **m_head)
 3379 {
 3380         bus_dma_segment_t segs[DC_MAXFRAGS];
 3381         bus_dmamap_t map;
 3382         struct dc_desc *f;
 3383         struct mbuf *m;
 3384         int cur, defragged, error, first, frag, i, idx, nseg;
 3385 
 3386         m = NULL;
 3387         defragged = 0;
 3388         if (sc->dc_flags & DC_TX_COALESCE &&
 3389             ((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
 3390                 m = m_defrag(*m_head, M_NOWAIT);
 3391                 defragged = 1;
 3392         } else {
 3393                 /*
 3394                  * Count the number of frags in this chain to see if we
 3395                  * need to m_collapse.  Since the descriptor list is shared
 3396                  * by all packets, we'll m_collapse long chains so that they
 3397                  * do not use up the entire list, even if they would fit.
 3398                  */
 3399                 i = 0;
 3400                 for (m = *m_head; m != NULL; m = m->m_next)
 3401                         i++;
 3402                 if (i > DC_TX_LIST_CNT / 4 ||
 3403                     DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
 3404                     DC_TX_LIST_RSVD) {
 3405                         m = m_collapse(*m_head, M_NOWAIT, DC_MAXFRAGS);
 3406                         defragged = 1;
 3407                 }
 3408         }
 3409         if (defragged != 0) {
 3410                 if (m == NULL) {
 3411                         m_freem(*m_head);
 3412                         *m_head = NULL;
 3413                         return (ENOBUFS);
 3414                 }
 3415                 *m_head = m;
 3416         }
 3417 
 3418         idx = sc->dc_cdata.dc_tx_prod;
 3419         error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
 3420             sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
 3421         if (error == EFBIG) {
 3422                 if (defragged != 0 || (m = m_collapse(*m_head, M_NOWAIT,
 3423                     DC_MAXFRAGS)) == NULL) {
 3424                         m_freem(*m_head);
 3425                         *m_head = NULL;
 3426                         return (defragged != 0 ? error : ENOBUFS);
 3427                 }
 3428                 *m_head = m;
 3429                 error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
 3430                     sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
 3431                 if (error != 0) {
 3432                         m_freem(*m_head);
 3433                         *m_head = NULL;
 3434                         return (error);
 3435                 }
 3436         } else if (error != 0)
 3437                 return (error);
 3438         KASSERT(nseg <= DC_MAXFRAGS,
 3439             ("%s: wrong number of segments (%d)", __func__, nseg));
 3440         if (nseg == 0) {
 3441                 m_freem(*m_head);
 3442                 *m_head = NULL;
 3443                 return (EIO);
 3444         }
 3445 
 3446         /* Check descriptor overruns. */
 3447         if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
 3448                 bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
 3449                 return (ENOBUFS);
 3450         }
 3451         bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
 3452             BUS_DMASYNC_PREWRITE);
 3453 
 3454         first = cur = frag = sc->dc_cdata.dc_tx_prod;
 3455         for (i = 0; i < nseg; i++) {
 3456                 if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
 3457                     (frag == (DC_TX_LIST_CNT - 1)) &&
 3458                     (first != sc->dc_cdata.dc_tx_first)) {
 3459                         bus_dmamap_unload(sc->dc_tx_mtag,
 3460                             sc->dc_cdata.dc_tx_map[first]);
 3461                         m_freem(*m_head);
 3462                         *m_head = NULL;
 3463                         return (ENOBUFS);
 3464                 }
 3465 
 3466                 f = &sc->dc_ldata.dc_tx_list[frag];
 3467                 f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
 3468                 if (i == 0) {
 3469                         f->dc_status = 0;
 3470                         f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
 3471                 } else
 3472                         f->dc_status = htole32(DC_TXSTAT_OWN);
 3473                 f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
 3474                 cur = frag;
 3475                 DC_INC(frag, DC_TX_LIST_CNT);
 3476         }
 3477 
 3478         sc->dc_cdata.dc_tx_prod = frag;
 3479         sc->dc_cdata.dc_tx_cnt += nseg;
 3480         sc->dc_cdata.dc_tx_chain[cur] = *m_head;
 3481         sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
 3482         if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
 3483                 sc->dc_ldata.dc_tx_list[first].dc_ctl |=
 3484                     htole32(DC_TXCTL_FINT);
 3485         if (sc->dc_flags & DC_TX_INTR_ALWAYS)
 3486                 sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3487         if (sc->dc_flags & DC_TX_USE_TX_INTR &&
 3488             ++sc->dc_cdata.dc_tx_pkts >= 8) {
 3489                 sc->dc_cdata.dc_tx_pkts = 0;
 3490                 sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
 3491         }
 3492         sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
 3493 
 3494         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
 3495             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 3496 
 3497         /*
 3498          * Swap the last and the first dmamaps to ensure the map for
 3499          * this transmission is placed at the last descriptor.
 3500          */
 3501         map = sc->dc_cdata.dc_tx_map[cur];
 3502         sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
 3503         sc->dc_cdata.dc_tx_map[first] = map;
 3504 
 3505         return (0);
 3506 }
 3507 
 3508 static void
 3509 dc_start(struct ifnet *ifp)
 3510 {
 3511         struct dc_softc *sc;
 3512 
 3513         sc = ifp->if_softc;
 3514         DC_LOCK(sc);
 3515         dc_start_locked(ifp);
 3516         DC_UNLOCK(sc);
 3517 }
 3518 
 3519 /*
 3520  * Main transmit routine
 3521  * To avoid having to do mbuf copies, we put pointers to the mbuf data
 3522  * regions directly in the transmit lists.  We also save a copy of the
 3523  * pointers since the transmit list fragment pointers are physical
 3524  * addresses.
 3525  */
 3526 static void
 3527 dc_start_locked(struct ifnet *ifp)
 3528 {
 3529         struct dc_softc *sc;
 3530         struct mbuf *m_head;
 3531         int queued;
 3532 
 3533         sc = ifp->if_softc;
 3534 
 3535         DC_LOCK_ASSERT(sc);
 3536 
 3537         if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
 3538             IFF_DRV_RUNNING || sc->dc_link == 0)
 3539                 return;
 3540 
 3541         sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
 3542 
 3543         for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
 3544                 /*
 3545                  * If there's no way we can send any packets, return now.
 3546                  */
 3547                 if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
 3548                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3549                         break;
 3550                 }
 3551                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
 3552                 if (m_head == NULL)
 3553                         break;
 3554 
 3555                 if (dc_encap(sc, &m_head)) {
 3556                         if (m_head == NULL)
 3557                                 break;
 3558                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
 3559                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 3560                         break;
 3561                 }
 3562 
 3563                 queued++;
 3564                 /*
 3565                  * If there's a BPF listener, bounce a copy of this frame
 3566                  * to him.
 3567                  */
 3568                 BPF_MTAP(ifp, m_head);
 3569         }
 3570 
 3571         if (queued > 0) {
 3572                 /* Transmit */
 3573                 if (!(sc->dc_flags & DC_TX_POLL))
 3574                         CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
 3575 
 3576                 /*
 3577                  * Set a timeout in case the chip goes out to lunch.
 3578                  */
 3579                 sc->dc_wdog_timer = 5;
 3580         }
 3581 }
 3582 
 3583 static void
 3584 dc_init(void *xsc)
 3585 {
 3586         struct dc_softc *sc = xsc;
 3587 
 3588         DC_LOCK(sc);
 3589         dc_init_locked(sc);
 3590         DC_UNLOCK(sc);
 3591 }
 3592 
 3593 static void
 3594 dc_init_locked(struct dc_softc *sc)
 3595 {
 3596         struct ifnet *ifp = sc->dc_ifp;
 3597         struct mii_data *mii;
 3598         struct ifmedia *ifm;
 3599 
 3600         DC_LOCK_ASSERT(sc);
 3601 
 3602         if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
 3603                 return;
 3604 
 3605         mii = device_get_softc(sc->dc_miibus);
 3606 
 3607         /*
 3608          * Cancel pending I/O and free all RX/TX buffers.
 3609          */
 3610         dc_stop(sc);
 3611         dc_reset(sc);
 3612         if (DC_IS_INTEL(sc)) {
 3613                 ifm = &mii->mii_media;
 3614                 dc_apply_fixup(sc, ifm->ifm_media);
 3615         }
 3616 
 3617         /*
 3618          * Set cache alignment and burst length.
 3619          */
 3620         if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc) || DC_IS_ULI(sc))
 3621                 CSR_WRITE_4(sc, DC_BUSCTL, 0);
 3622         else
 3623                 CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
 3624         /*
 3625          * Evenly share the bus between receive and transmit process.
 3626          */
 3627         if (DC_IS_INTEL(sc))
 3628                 DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
 3629         if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
 3630                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
 3631         } else {
 3632                 DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
 3633         }
 3634         if (sc->dc_flags & DC_TX_POLL)
 3635                 DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
 3636         switch(sc->dc_cachesize) {
 3637         case 32:
 3638                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
 3639                 break;
 3640         case 16:
 3641                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
 3642                 break;
 3643         case 8:
 3644                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
 3645                 break;
 3646         case 0:
 3647         default:
 3648                 DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
 3649                 break;
 3650         }
 3651 
 3652         if (sc->dc_flags & DC_TX_STORENFWD)
 3653                 DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3654         else {
 3655                 if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
 3656                         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3657                 } else {
 3658                         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
 3659                         DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
 3660                 }
 3661         }
 3662 
 3663         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
 3664         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
 3665 
 3666         if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
 3667                 /*
 3668                  * The app notes for the 98713 and 98715A say that
 3669                  * in order to have the chips operate properly, a magic
 3670                  * number must be written to CSR16. Macronix does not
 3671                  * document the meaning of these bits so there's no way
 3672                  * to know exactly what they do. The 98713 has a magic
 3673                  * number all its own; the rest all use a different one.
 3674                  */
 3675                 DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
 3676                 if (sc->dc_type == DC_TYPE_98713)
 3677                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
 3678                 else
 3679                         DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
 3680         }
 3681 
 3682         if (DC_IS_XIRCOM(sc)) {
 3683                 /*
 3684                  * setup General Purpose Port mode and data so the tulip
 3685                  * can talk to the MII.
 3686                  */
 3687                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
 3688                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3689                 DELAY(10);
 3690                 CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
 3691                            DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
 3692                 DELAY(10);
 3693         }
 3694 
 3695         DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
 3696         DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
 3697 
 3698         /* Init circular RX list. */
 3699         if (dc_list_rx_init(sc) == ENOBUFS) {
 3700                 device_printf(sc->dc_dev,
 3701                     "initialization failed: no memory for rx buffers\n");
 3702                 dc_stop(sc);
 3703                 return;
 3704         }
 3705 
 3706         /*
 3707          * Init TX descriptors.
 3708          */
 3709         dc_list_tx_init(sc);
 3710 
 3711         /*
 3712          * Load the address of the RX list.
 3713          */
 3714         CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
 3715         CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
 3716 
 3717         /*
 3718          * Enable interrupts.
 3719          */
 3720 #ifdef DEVICE_POLLING
 3721         /*
 3722          * ... but only if we are not polling, and make sure they are off in
 3723          * the case of polling. Some cards (e.g. fxp) turn interrupts on
 3724          * after a reset.
 3725          */
 3726         if (ifp->if_capenable & IFCAP_POLLING)
 3727                 CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3728         else
 3729 #endif
 3730         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3731         CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
 3732 
 3733         /* Initialize TX jabber and RX watchdog timer. */
 3734         if (DC_IS_ULI(sc))
 3735                 CSR_WRITE_4(sc, DC_WATCHDOG, DC_WDOG_JABBERCLK |
 3736                     DC_WDOG_HOSTUNJAB);
 3737 
 3738         /* Enable transmitter. */
 3739         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
 3740 
 3741         /*
 3742          * If this is an Intel 21143 and we're not using the
 3743          * MII port, program the LED control pins so we get
 3744          * link and activity indications.
 3745          */
 3746         if (sc->dc_flags & DC_TULIP_LEDS) {
 3747                 CSR_WRITE_4(sc, DC_WATCHDOG,
 3748                     DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
 3749                 CSR_WRITE_4(sc, DC_WATCHDOG, 0);
 3750         }
 3751 
 3752         /*
 3753          * Load the RX/multicast filter. We do this sort of late
 3754          * because the filter programming scheme on the 21143 and
 3755          * some clones requires DMAing a setup frame via the TX
 3756          * engine, and we need the transmitter enabled for that.
 3757          */
 3758         dc_setfilt(sc);
 3759 
 3760         /* Enable receiver. */
 3761         DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
 3762         CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
 3763 
 3764         ifp->if_drv_flags |= IFF_DRV_RUNNING;
 3765         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
 3766 
 3767         dc_ifmedia_upd_locked(sc);
 3768 
 3769         /* Clear missed frames and overflow counter. */
 3770         CSR_READ_4(sc, DC_FRAMESDISCARDED);
 3771 
 3772         /* Don't start the ticker if this is a homePNA link. */
 3773         if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
 3774                 sc->dc_link = 1;
 3775         else {
 3776                 if (sc->dc_flags & DC_21143_NWAY)
 3777                         callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
 3778                 else
 3779                         callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
 3780         }
 3781 
 3782         sc->dc_wdog_timer = 0;
 3783         callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
 3784 }
 3785 
 3786 /*
 3787  * Set media options.
 3788  */
 3789 static int
 3790 dc_ifmedia_upd(struct ifnet *ifp)
 3791 {
 3792         struct dc_softc *sc;
 3793         int error;
 3794 
 3795         sc = ifp->if_softc;
 3796         DC_LOCK(sc);
 3797         error = dc_ifmedia_upd_locked(sc);
 3798         DC_UNLOCK(sc);
 3799         return (error);
 3800 }
 3801 
 3802 static int
 3803 dc_ifmedia_upd_locked(struct dc_softc *sc)
 3804 {
 3805         struct mii_data *mii;
 3806         struct ifmedia *ifm;
 3807         int error;
 3808 
 3809         DC_LOCK_ASSERT(sc);
 3810 
 3811         sc->dc_link = 0;
 3812         mii = device_get_softc(sc->dc_miibus);
 3813         error = mii_mediachg(mii);
 3814         if (error == 0) {
 3815                 ifm = &mii->mii_media;
 3816                 if (DC_IS_INTEL(sc))
 3817                         dc_setcfg(sc, ifm->ifm_media);
 3818                 else if (DC_IS_DAVICOM(sc) &&
 3819                     IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
 3820                         dc_setcfg(sc, ifm->ifm_media);
 3821         }
 3822 
 3823         return (error);
 3824 }
 3825 
 3826 /*
 3827  * Report current media status.
 3828  */
 3829 static void
 3830 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
 3831 {
 3832         struct dc_softc *sc;
 3833         struct mii_data *mii;
 3834         struct ifmedia *ifm;
 3835 
 3836         sc = ifp->if_softc;
 3837         mii = device_get_softc(sc->dc_miibus);
 3838         DC_LOCK(sc);
 3839         mii_pollstat(mii);
 3840         ifm = &mii->mii_media;
 3841         if (DC_IS_DAVICOM(sc)) {
 3842                 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
 3843                         ifmr->ifm_active = ifm->ifm_media;
 3844                         ifmr->ifm_status = 0;
 3845                         DC_UNLOCK(sc);
 3846                         return;
 3847                 }
 3848         }
 3849         ifmr->ifm_active = mii->mii_media_active;
 3850         ifmr->ifm_status = mii->mii_media_status;
 3851         DC_UNLOCK(sc);
 3852 }
 3853 
 3854 static int
 3855 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
 3856 {
 3857         struct dc_softc *sc = ifp->if_softc;
 3858         struct ifreq *ifr = (struct ifreq *)data;
 3859         struct mii_data *mii;
 3860         int error = 0;
 3861 
 3862         switch (command) {
 3863         case SIOCSIFFLAGS:
 3864                 DC_LOCK(sc);
 3865                 if (ifp->if_flags & IFF_UP) {
 3866                         int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
 3867                                 (IFF_PROMISC | IFF_ALLMULTI);
 3868 
 3869                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
 3870                                 if (need_setfilt)
 3871                                         dc_setfilt(sc);
 3872                         } else {
 3873                                 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3874                                 dc_init_locked(sc);
 3875                         }
 3876                 } else {
 3877                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3878                                 dc_stop(sc);
 3879                 }
 3880                 sc->dc_if_flags = ifp->if_flags;
 3881                 DC_UNLOCK(sc);
 3882                 break;
 3883         case SIOCADDMULTI:
 3884         case SIOCDELMULTI:
 3885                 DC_LOCK(sc);
 3886                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
 3887                         dc_setfilt(sc);
 3888                 DC_UNLOCK(sc);
 3889                 break;
 3890         case SIOCGIFMEDIA:
 3891         case SIOCSIFMEDIA:
 3892                 mii = device_get_softc(sc->dc_miibus);
 3893                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
 3894                 break;
 3895         case SIOCSIFCAP:
 3896 #ifdef DEVICE_POLLING
 3897                 if (ifr->ifr_reqcap & IFCAP_POLLING &&
 3898                     !(ifp->if_capenable & IFCAP_POLLING)) {
 3899                         error = ether_poll_register(dc_poll, ifp);
 3900                         if (error)
 3901                                 return(error);
 3902                         DC_LOCK(sc);
 3903                         /* Disable interrupts */
 3904                         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3905                         ifp->if_capenable |= IFCAP_POLLING;
 3906                         DC_UNLOCK(sc);
 3907                         return (error);
 3908                 }
 3909                 if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
 3910                     ifp->if_capenable & IFCAP_POLLING) {
 3911                         error = ether_poll_deregister(ifp);
 3912                         /* Enable interrupts. */
 3913                         DC_LOCK(sc);
 3914                         CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
 3915                         ifp->if_capenable &= ~IFCAP_POLLING;
 3916                         DC_UNLOCK(sc);
 3917                         return (error);
 3918                 }
 3919 #endif /* DEVICE_POLLING */
 3920                 break;
 3921         default:
 3922                 error = ether_ioctl(ifp, command, data);
 3923                 break;
 3924         }
 3925 
 3926         return (error);
 3927 }
 3928 
 3929 static void
 3930 dc_watchdog(void *xsc)
 3931 {
 3932         struct dc_softc *sc = xsc;
 3933         struct ifnet *ifp;
 3934 
 3935         DC_LOCK_ASSERT(sc);
 3936 
 3937         if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
 3938                 callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
 3939                 return;
 3940         }
 3941 
 3942         ifp = sc->dc_ifp;
 3943         if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 3944         device_printf(sc->dc_dev, "watchdog timeout\n");
 3945 
 3946         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 3947         dc_init_locked(sc);
 3948 
 3949         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
 3950                 dc_start_locked(ifp);
 3951 }
 3952 
 3953 /*
 3954  * Stop the adapter and free any mbufs allocated to the
 3955  * RX and TX lists.
 3956  */
 3957 static void
 3958 dc_stop(struct dc_softc *sc)
 3959 {
 3960         struct ifnet *ifp;
 3961         struct dc_list_data *ld;
 3962         struct dc_chain_data *cd;
 3963         int i;
 3964         uint32_t ctl, netcfg;
 3965 
 3966         DC_LOCK_ASSERT(sc);
 3967 
 3968         ifp = sc->dc_ifp;
 3969         ld = &sc->dc_ldata;
 3970         cd = &sc->dc_cdata;
 3971 
 3972         callout_stop(&sc->dc_stat_ch);
 3973         callout_stop(&sc->dc_wdog_ch);
 3974         sc->dc_wdog_timer = 0;
 3975         sc->dc_link = 0;
 3976 
 3977         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
 3978 
 3979         netcfg = CSR_READ_4(sc, DC_NETCFG);
 3980         if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
 3981                 CSR_WRITE_4(sc, DC_NETCFG,
 3982                    netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
 3983         CSR_WRITE_4(sc, DC_IMR, 0x00000000);
 3984         /* Wait the completion of TX/RX SM. */
 3985         if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
 3986                 dc_netcfg_wait(sc);
 3987 
 3988         CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
 3989         CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
 3990 
 3991         /*
 3992          * Free data in the RX lists.
 3993          */
 3994         for (i = 0; i < DC_RX_LIST_CNT; i++) {
 3995                 if (cd->dc_rx_chain[i] != NULL) {
 3996                         bus_dmamap_sync(sc->dc_rx_mtag,
 3997                             cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
 3998                         bus_dmamap_unload(sc->dc_rx_mtag,
 3999                             cd->dc_rx_map[i]);
 4000                         m_freem(cd->dc_rx_chain[i]);
 4001                         cd->dc_rx_chain[i] = NULL;
 4002                 }
 4003         }
 4004         bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
 4005         bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
 4006             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4007 
 4008         /*
 4009          * Free the TX list buffers.
 4010          */
 4011         for (i = 0; i < DC_TX_LIST_CNT; i++) {
 4012                 if (cd->dc_tx_chain[i] != NULL) {
 4013                         ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
 4014                         if (ctl & DC_TXCTL_SETUP) {
 4015                                 bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
 4016                                     BUS_DMASYNC_POSTWRITE);
 4017                         } else {
 4018                                 bus_dmamap_sync(sc->dc_tx_mtag,
 4019                                     cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
 4020                                 bus_dmamap_unload(sc->dc_tx_mtag,
 4021                                     cd->dc_tx_map[i]);
 4022                                 m_freem(cd->dc_tx_chain[i]);
 4023                         }
 4024                         cd->dc_tx_chain[i] = NULL;
 4025                 }
 4026         }
 4027         bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
 4028         bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
 4029             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 4030 }
 4031 
 4032 /*
 4033  * Device suspend routine.  Stop the interface and save some PCI
 4034  * settings in case the BIOS doesn't restore them properly on
 4035  * resume.
 4036  */
 4037 static int
 4038 dc_suspend(device_t dev)
 4039 {
 4040         struct dc_softc *sc;
 4041 
 4042         sc = device_get_softc(dev);
 4043         DC_LOCK(sc);
 4044         dc_stop(sc);
 4045         sc->suspended = 1;
 4046         DC_UNLOCK(sc);
 4047 
 4048         return (0);
 4049 }
 4050 
 4051 /*
 4052  * Device resume routine.  Restore some PCI settings in case the BIOS
 4053  * doesn't, re-enable busmastering, and restart the interface if
 4054  * appropriate.
 4055  */
 4056 static int
 4057 dc_resume(device_t dev)
 4058 {
 4059         struct dc_softc *sc;
 4060         struct ifnet *ifp;
 4061 
 4062         sc = device_get_softc(dev);
 4063         ifp = sc->dc_ifp;
 4064 
 4065         /* reinitialize interface if necessary */
 4066         DC_LOCK(sc);
 4067         if (ifp->if_flags & IFF_UP)
 4068                 dc_init_locked(sc);
 4069 
 4070         sc->suspended = 0;
 4071         DC_UNLOCK(sc);
 4072 
 4073         return (0);
 4074 }
 4075 
 4076 /*
 4077  * Stop all chip I/O so that the kernel's probe routines don't
 4078  * get confused by errant DMAs when rebooting.
 4079  */
 4080 static int
 4081 dc_shutdown(device_t dev)
 4082 {
 4083         struct dc_softc *sc;
 4084 
 4085         sc = device_get_softc(dev);
 4086 
 4087         DC_LOCK(sc);
 4088         dc_stop(sc);
 4089         DC_UNLOCK(sc);
 4090 
 4091         return (0);
 4092 }
 4093 
 4094 static int
 4095 dc_check_multiport(struct dc_softc *sc)
 4096 {
 4097         struct dc_softc *dsc;
 4098         devclass_t dc;
 4099         device_t child;
 4100         uint8_t *eaddr;
 4101         int unit;
 4102 
 4103         dc = devclass_find("dc");
 4104         for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 4105                 child = devclass_get_device(dc, unit);
 4106                 if (child == NULL)
 4107                         continue;
 4108                 if (child == sc->dc_dev)
 4109                         continue;
 4110                 if (device_get_parent(child) != device_get_parent(sc->dc_dev))
 4111                         continue;
 4112                 if (unit > device_get_unit(sc->dc_dev))
 4113                         continue;
 4114                 if (device_is_attached(child) == 0)
 4115                         continue;
 4116                 dsc = device_get_softc(child);
 4117                 device_printf(sc->dc_dev,
 4118                     "Using station address of %s as base\n",
 4119                     device_get_nameunit(child));
 4120                 bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
 4121                 eaddr = (uint8_t *)sc->dc_eaddr;
 4122                 eaddr[5]++;
 4123                 /* Prepare SROM to parse again. */
 4124                 if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
 4125                     sc->dc_romwidth != 0) {
 4126                         free(sc->dc_srom, M_DEVBUF);
 4127                         sc->dc_romwidth = dsc->dc_romwidth;
 4128                         sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
 4129                             M_DEVBUF, M_NOWAIT);
 4130                         if (sc->dc_srom == NULL) {
 4131                                 device_printf(sc->dc_dev,
 4132                                     "Could not allocate SROM buffer\n");
 4133                                 return (ENOMEM);
 4134                         }
 4135                         bcopy(dsc->dc_srom, sc->dc_srom,
 4136                             DC_ROM_SIZE(sc->dc_romwidth));
 4137                 }
 4138                 return (0);
 4139         }
 4140         return (ENOENT);
 4141 }

Cache object: 3b324416bff68ebb6c19493a309ee8eb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.