1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33
34 #include <dev/drm2/drmP.h>
35 #include <dev/drm2/ttm/ttm_module.h>
36 #include <dev/drm2/ttm/ttm_bo_driver.h>
37 #include <dev/drm2/ttm/ttm_placement.h>
38 #include <vm/vm_pageout.h>
39
40 #define TTM_ASSERT_LOCKED(param)
41 #define TTM_DEBUG(fmt, arg...)
42 #define TTM_BO_HASH_ORDER 13
43
44 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
45 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
46 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
47
48 MALLOC_DEFINE(M_TTM_BO, "ttm_bo", "TTM Buffer Objects");
49
50 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
51 {
52 int i;
53
54 for (i = 0; i <= TTM_PL_PRIV5; i++)
55 if (flags & (1 << i)) {
56 *mem_type = i;
57 return 0;
58 }
59 return -EINVAL;
60 }
61
62 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
63 {
64 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
65
66 printf(" has_type: %d\n", man->has_type);
67 printf(" use_type: %d\n", man->use_type);
68 printf(" flags: 0x%08X\n", man->flags);
69 printf(" gpu_offset: 0x%08lX\n", man->gpu_offset);
70 printf(" size: %ju\n", (uintmax_t)man->size);
71 printf(" available_caching: 0x%08X\n", man->available_caching);
72 printf(" default_caching: 0x%08X\n", man->default_caching);
73 if (mem_type != TTM_PL_SYSTEM)
74 (*man->func->debug)(man, TTM_PFX);
75 }
76
77 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
78 struct ttm_placement *placement)
79 {
80 int i, ret, mem_type;
81
82 printf("No space for %p (%lu pages, %luK, %luM)\n",
83 bo, bo->mem.num_pages, bo->mem.size >> 10,
84 bo->mem.size >> 20);
85 for (i = 0; i < placement->num_placement; i++) {
86 ret = ttm_mem_type_from_flags(placement->placement[i],
87 &mem_type);
88 if (ret)
89 return;
90 printf(" placement[%d]=0x%08X (%d)\n",
91 i, placement->placement[i], mem_type);
92 ttm_mem_type_debug(bo->bdev, mem_type);
93 }
94 }
95
96 #if 0
97 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
98 char *buffer)
99 {
100
101 return snprintf(buffer, PAGE_SIZE, "%lu\n",
102 (unsigned long) atomic_read(&glob->bo_count));
103 }
104 #endif
105
106 static inline uint32_t ttm_bo_type_flags(unsigned type)
107 {
108 return 1 << (type);
109 }
110
111 static void ttm_bo_release_list(struct ttm_buffer_object *bo)
112 {
113 struct ttm_bo_device *bdev = bo->bdev;
114 size_t acc_size = bo->acc_size;
115
116 MPASS(atomic_read(&bo->list_kref) == 0);
117 MPASS(atomic_read(&bo->kref) == 0);
118 MPASS(atomic_read(&bo->cpu_writers) == 0);
119 MPASS(bo->sync_obj == NULL);
120 MPASS(bo->mem.mm_node == NULL);
121 MPASS(list_empty(&bo->lru));
122 MPASS(list_empty(&bo->ddestroy));
123
124 if (bo->ttm)
125 ttm_tt_destroy(bo->ttm);
126 atomic_dec(&bo->glob->bo_count);
127 if (bo->destroy)
128 bo->destroy(bo);
129 else {
130 free(bo, M_TTM_BO);
131 }
132 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
133 }
134
135 static int
136 ttm_bo_wait_unreserved_locked(struct ttm_buffer_object *bo, bool interruptible)
137 {
138 const char *wmsg;
139 int flags, ret;
140
141 ret = 0;
142 if (interruptible) {
143 flags = PCATCH;
144 wmsg = "ttbowi";
145 } else {
146 flags = 0;
147 wmsg = "ttbowu";
148 }
149 while (ttm_bo_is_reserved(bo)) {
150 ret = -msleep(bo, &bo->glob->lru_lock, flags, wmsg, 0);
151 if (ret == -EINTR || ret == -ERESTART)
152 ret = -ERESTARTSYS;
153 if (ret != 0)
154 break;
155 }
156 return (ret);
157 }
158
159 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
160 {
161 struct ttm_bo_device *bdev = bo->bdev;
162 struct ttm_mem_type_manager *man;
163
164 MPASS(ttm_bo_is_reserved(bo));
165
166 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
167
168 MPASS(list_empty(&bo->lru));
169
170 man = &bdev->man[bo->mem.mem_type];
171 list_add_tail(&bo->lru, &man->lru);
172 refcount_acquire(&bo->list_kref);
173
174 if (bo->ttm != NULL) {
175 list_add_tail(&bo->swap, &bo->glob->swap_lru);
176 refcount_acquire(&bo->list_kref);
177 }
178 }
179 }
180
181 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
182 {
183 int put_count = 0;
184
185 if (!list_empty(&bo->swap)) {
186 list_del_init(&bo->swap);
187 ++put_count;
188 }
189 if (!list_empty(&bo->lru)) {
190 list_del_init(&bo->lru);
191 ++put_count;
192 }
193
194 /*
195 * TODO: Add a driver hook to delete from
196 * driver-specific LRU's here.
197 */
198
199 return put_count;
200 }
201
202 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
203 bool interruptible,
204 bool no_wait, bool use_sequence, uint32_t sequence)
205 {
206 int ret;
207
208 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
209 /**
210 * Deadlock avoidance for multi-bo reserving.
211 */
212 if (use_sequence && bo->seq_valid) {
213 /**
214 * We've already reserved this one.
215 */
216 if (unlikely(sequence == bo->val_seq))
217 return -EDEADLK;
218 /**
219 * Already reserved by a thread that will not back
220 * off for us. We need to back off.
221 */
222 if (unlikely(sequence - bo->val_seq < (1U << 31)))
223 return -EAGAIN;
224 }
225
226 if (no_wait)
227 return -EBUSY;
228
229 ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
230
231 if (unlikely(ret))
232 return ret;
233 }
234
235 if (use_sequence) {
236 bool wake_up = false;
237 /**
238 * Wake up waiters that may need to recheck for deadlock,
239 * if we decreased the sequence number.
240 */
241 if (unlikely((bo->val_seq - sequence < (1U << 31))
242 || !bo->seq_valid))
243 wake_up = true;
244
245 /*
246 * In the worst case with memory ordering these values can be
247 * seen in the wrong order. However since we call wake_up_all
248 * in that case, this will hopefully not pose a problem,
249 * and the worst case would only cause someone to accidentally
250 * hit -EAGAIN in ttm_bo_reserve when they see old value of
251 * val_seq. However this would only happen if seq_valid was
252 * written before val_seq was, and just means some slightly
253 * increased cpu usage
254 */
255 bo->val_seq = sequence;
256 bo->seq_valid = true;
257 if (wake_up)
258 wakeup(bo);
259 } else {
260 bo->seq_valid = false;
261 }
262
263 return 0;
264 }
265
266 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
267 bool never_free)
268 {
269 u_int old;
270
271 old = atomic_fetchadd_int(&bo->list_kref, -count);
272 if (old <= count) {
273 if (never_free)
274 panic("ttm_bo_ref_buf");
275 ttm_bo_release_list(bo);
276 }
277 }
278
279 int ttm_bo_reserve(struct ttm_buffer_object *bo,
280 bool interruptible,
281 bool no_wait, bool use_sequence, uint32_t sequence)
282 {
283 struct ttm_bo_global *glob = bo->glob;
284 int put_count = 0;
285 int ret;
286
287 mtx_lock(&bo->glob->lru_lock);
288 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
289 sequence);
290 if (likely(ret == 0)) {
291 put_count = ttm_bo_del_from_lru(bo);
292 mtx_unlock(&glob->lru_lock);
293 ttm_bo_list_ref_sub(bo, put_count, true);
294 } else
295 mtx_unlock(&bo->glob->lru_lock);
296
297 return ret;
298 }
299
300 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
301 bool interruptible, uint32_t sequence)
302 {
303 bool wake_up = false;
304 int ret;
305
306 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
307 if (bo->seq_valid && sequence == bo->val_seq) {
308 DRM_ERROR(
309 "%s: bo->seq_valid && sequence == bo->val_seq",
310 __func__);
311 }
312
313 ret = ttm_bo_wait_unreserved_locked(bo, interruptible);
314
315 if (unlikely(ret))
316 return ret;
317 }
318
319 if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
320 wake_up = true;
321
322 /**
323 * Wake up waiters that may need to recheck for deadlock,
324 * if we decreased the sequence number.
325 */
326 bo->val_seq = sequence;
327 bo->seq_valid = true;
328 if (wake_up)
329 wakeup(bo);
330
331 return 0;
332 }
333
334 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
335 bool interruptible, uint32_t sequence)
336 {
337 struct ttm_bo_global *glob = bo->glob;
338 int put_count, ret;
339
340 mtx_lock(&glob->lru_lock);
341 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
342 if (likely(!ret)) {
343 put_count = ttm_bo_del_from_lru(bo);
344 mtx_unlock(&glob->lru_lock);
345 ttm_bo_list_ref_sub(bo, put_count, true);
346 } else
347 mtx_unlock(&glob->lru_lock);
348 return ret;
349 }
350
351 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
352 {
353 ttm_bo_add_to_lru(bo);
354 atomic_set(&bo->reserved, 0);
355 wakeup(bo);
356 }
357
358 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
359 {
360 struct ttm_bo_global *glob = bo->glob;
361
362 mtx_lock(&glob->lru_lock);
363 ttm_bo_unreserve_locked(bo);
364 mtx_unlock(&glob->lru_lock);
365 }
366
367 /*
368 * Call bo->mutex locked.
369 */
370 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
371 {
372 struct ttm_bo_device *bdev = bo->bdev;
373 struct ttm_bo_global *glob = bo->glob;
374 int ret = 0;
375 uint32_t page_flags = 0;
376
377 TTM_ASSERT_LOCKED(&bo->mutex);
378 bo->ttm = NULL;
379
380 if (bdev->need_dma32)
381 page_flags |= TTM_PAGE_FLAG_DMA32;
382
383 switch (bo->type) {
384 case ttm_bo_type_device:
385 if (zero_alloc)
386 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
387 case ttm_bo_type_kernel:
388 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
389 page_flags, glob->dummy_read_page);
390 if (unlikely(bo->ttm == NULL))
391 ret = -ENOMEM;
392 break;
393 case ttm_bo_type_sg:
394 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
395 page_flags | TTM_PAGE_FLAG_SG,
396 glob->dummy_read_page);
397 if (unlikely(bo->ttm == NULL)) {
398 ret = -ENOMEM;
399 break;
400 }
401 bo->ttm->sg = bo->sg;
402 break;
403 default:
404 printf("[TTM] Illegal buffer object type\n");
405 ret = -EINVAL;
406 break;
407 }
408
409 return ret;
410 }
411
412 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
413 struct ttm_mem_reg *mem,
414 bool evict, bool interruptible,
415 bool no_wait_gpu)
416 {
417 struct ttm_bo_device *bdev = bo->bdev;
418 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
419 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
420 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
421 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
422 int ret = 0;
423
424 if (old_is_pci || new_is_pci ||
425 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
426 ret = ttm_mem_io_lock(old_man, true);
427 if (unlikely(ret != 0))
428 goto out_err;
429 ttm_bo_unmap_virtual_locked(bo);
430 ttm_mem_io_unlock(old_man);
431 }
432
433 /*
434 * Create and bind a ttm if required.
435 */
436
437 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
438 if (bo->ttm == NULL) {
439 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
440 ret = ttm_bo_add_ttm(bo, zero);
441 if (ret)
442 goto out_err;
443 }
444
445 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
446 if (ret)
447 goto out_err;
448
449 if (mem->mem_type != TTM_PL_SYSTEM) {
450 ret = ttm_tt_bind(bo->ttm, mem);
451 if (ret)
452 goto out_err;
453 }
454
455 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
456 if (bdev->driver->move_notify)
457 bdev->driver->move_notify(bo, mem);
458 bo->mem = *mem;
459 mem->mm_node = NULL;
460 goto moved;
461 }
462 }
463
464 if (bdev->driver->move_notify)
465 bdev->driver->move_notify(bo, mem);
466
467 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
468 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
469 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
470 else if (bdev->driver->move)
471 ret = bdev->driver->move(bo, evict, interruptible,
472 no_wait_gpu, mem);
473 else
474 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
475
476 if (ret) {
477 if (bdev->driver->move_notify) {
478 struct ttm_mem_reg tmp_mem = *mem;
479 *mem = bo->mem;
480 bo->mem = tmp_mem;
481 bdev->driver->move_notify(bo, mem);
482 bo->mem = *mem;
483 *mem = tmp_mem;
484 }
485
486 goto out_err;
487 }
488
489 moved:
490 if (bo->evicted) {
491 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
492 if (ret)
493 printf("[TTM] Can not flush read caches\n");
494 bo->evicted = false;
495 }
496
497 if (bo->mem.mm_node) {
498 bo->offset = (bo->mem.start << PAGE_SHIFT) +
499 bdev->man[bo->mem.mem_type].gpu_offset;
500 bo->cur_placement = bo->mem.placement;
501 } else
502 bo->offset = 0;
503
504 return 0;
505
506 out_err:
507 new_man = &bdev->man[bo->mem.mem_type];
508 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
509 ttm_tt_unbind(bo->ttm);
510 ttm_tt_destroy(bo->ttm);
511 bo->ttm = NULL;
512 }
513
514 return ret;
515 }
516
517 /**
518 * Call bo::reserved.
519 * Will release GPU memory type usage on destruction.
520 * This is the place to put in driver specific hooks to release
521 * driver private resources.
522 * Will release the bo::reserved lock.
523 */
524
525 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
526 {
527 if (bo->bdev->driver->move_notify)
528 bo->bdev->driver->move_notify(bo, NULL);
529
530 if (bo->ttm) {
531 ttm_tt_unbind(bo->ttm);
532 ttm_tt_destroy(bo->ttm);
533 bo->ttm = NULL;
534 }
535 ttm_bo_mem_put(bo, &bo->mem);
536
537 atomic_set(&bo->reserved, 0);
538 wakeup(&bo);
539
540 /*
541 * Since the final reference to this bo may not be dropped by
542 * the current task we have to put a memory barrier here to make
543 * sure the changes done in this function are always visible.
544 *
545 * This function only needs protection against the final kref_put.
546 */
547 mb();
548 }
549
550 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
551 {
552 struct ttm_bo_device *bdev = bo->bdev;
553 struct ttm_bo_global *glob = bo->glob;
554 struct ttm_bo_driver *driver = bdev->driver;
555 void *sync_obj = NULL;
556 int put_count;
557 int ret;
558
559 mtx_lock(&glob->lru_lock);
560 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
561
562 mtx_lock(&bdev->fence_lock);
563 (void) ttm_bo_wait(bo, false, false, true);
564 if (!ret && !bo->sync_obj) {
565 mtx_unlock(&bdev->fence_lock);
566 put_count = ttm_bo_del_from_lru(bo);
567
568 mtx_unlock(&glob->lru_lock);
569 ttm_bo_cleanup_memtype_use(bo);
570
571 ttm_bo_list_ref_sub(bo, put_count, true);
572
573 return;
574 }
575 if (bo->sync_obj)
576 sync_obj = driver->sync_obj_ref(bo->sync_obj);
577 mtx_unlock(&bdev->fence_lock);
578
579 if (!ret) {
580 atomic_set(&bo->reserved, 0);
581 wakeup(bo);
582 }
583
584 refcount_acquire(&bo->list_kref);
585 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
586 mtx_unlock(&glob->lru_lock);
587
588 if (sync_obj) {
589 driver->sync_obj_flush(sync_obj);
590 driver->sync_obj_unref(&sync_obj);
591 }
592 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
593 ((hz / 100) < 1) ? 1 : hz / 100);
594 }
595
596 /**
597 * function ttm_bo_cleanup_refs_and_unlock
598 * If bo idle, remove from delayed- and lru lists, and unref.
599 * If not idle, do nothing.
600 *
601 * Must be called with lru_lock and reservation held, this function
602 * will drop both before returning.
603 *
604 * @interruptible Any sleeps should occur interruptibly.
605 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
606 */
607
608 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
609 bool interruptible,
610 bool no_wait_gpu)
611 {
612 struct ttm_bo_device *bdev = bo->bdev;
613 struct ttm_bo_driver *driver = bdev->driver;
614 struct ttm_bo_global *glob = bo->glob;
615 int put_count;
616 int ret;
617
618 mtx_lock(&bdev->fence_lock);
619 ret = ttm_bo_wait(bo, false, false, true);
620
621 if (ret && !no_wait_gpu) {
622 void *sync_obj;
623
624 /*
625 * Take a reference to the fence and unreserve,
626 * at this point the buffer should be dead, so
627 * no new sync objects can be attached.
628 */
629 sync_obj = driver->sync_obj_ref(bo->sync_obj);
630 mtx_unlock(&bdev->fence_lock);
631
632 atomic_set(&bo->reserved, 0);
633 wakeup(bo);
634 mtx_unlock(&glob->lru_lock);
635
636 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
637 driver->sync_obj_unref(&sync_obj);
638 if (ret)
639 return ret;
640
641 /*
642 * remove sync_obj with ttm_bo_wait, the wait should be
643 * finished, and no new wait object should have been added.
644 */
645 mtx_lock(&bdev->fence_lock);
646 ret = ttm_bo_wait(bo, false, false, true);
647 mtx_unlock(&bdev->fence_lock);
648 if (ret)
649 return ret;
650
651 mtx_lock(&glob->lru_lock);
652 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
653
654 /*
655 * We raced, and lost, someone else holds the reservation now,
656 * and is probably busy in ttm_bo_cleanup_memtype_use.
657 *
658 * Even if it's not the case, because we finished waiting any
659 * delayed destruction would succeed, so just return success
660 * here.
661 */
662 if (ret) {
663 mtx_unlock(&glob->lru_lock);
664 return 0;
665 }
666 } else
667 mtx_unlock(&bdev->fence_lock);
668
669 if (ret || unlikely(list_empty(&bo->ddestroy))) {
670 atomic_set(&bo->reserved, 0);
671 wakeup(bo);
672 mtx_unlock(&glob->lru_lock);
673 return ret;
674 }
675
676 put_count = ttm_bo_del_from_lru(bo);
677 list_del_init(&bo->ddestroy);
678 ++put_count;
679
680 mtx_unlock(&glob->lru_lock);
681 ttm_bo_cleanup_memtype_use(bo);
682
683 ttm_bo_list_ref_sub(bo, put_count, true);
684
685 return 0;
686 }
687
688 /**
689 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
690 * encountered buffers.
691 */
692
693 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
694 {
695 struct ttm_bo_global *glob = bdev->glob;
696 struct ttm_buffer_object *entry = NULL;
697 int ret = 0;
698
699 mtx_lock(&glob->lru_lock);
700 if (list_empty(&bdev->ddestroy))
701 goto out_unlock;
702
703 entry = list_first_entry(&bdev->ddestroy,
704 struct ttm_buffer_object, ddestroy);
705 refcount_acquire(&entry->list_kref);
706
707 for (;;) {
708 struct ttm_buffer_object *nentry = NULL;
709
710 if (entry->ddestroy.next != &bdev->ddestroy) {
711 nentry = list_first_entry(&entry->ddestroy,
712 struct ttm_buffer_object, ddestroy);
713 refcount_acquire(&nentry->list_kref);
714 }
715
716 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
717 if (remove_all && ret) {
718 ret = ttm_bo_reserve_nolru(entry, false, false,
719 false, 0);
720 }
721
722 if (!ret)
723 ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
724 !remove_all);
725 else
726 mtx_unlock(&glob->lru_lock);
727
728 if (refcount_release(&entry->list_kref))
729 ttm_bo_release_list(entry);
730 entry = nentry;
731
732 if (ret || !entry)
733 goto out;
734
735 mtx_lock(&glob->lru_lock);
736 if (list_empty(&entry->ddestroy))
737 break;
738 }
739
740 out_unlock:
741 mtx_unlock(&glob->lru_lock);
742 out:
743 if (entry && refcount_release(&entry->list_kref))
744 ttm_bo_release_list(entry);
745 return ret;
746 }
747
748 static void ttm_bo_delayed_workqueue(void *arg, int pending __unused)
749 {
750 struct ttm_bo_device *bdev = arg;
751
752 if (ttm_bo_delayed_delete(bdev, false)) {
753 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
754 ((hz / 100) < 1) ? 1 : hz / 100);
755 }
756 }
757
758 static void ttm_bo_release(struct ttm_buffer_object *bo)
759 {
760 struct ttm_bo_device *bdev = bo->bdev;
761 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
762
763 rw_wlock(&bdev->vm_lock);
764 if (likely(bo->vm_node != NULL)) {
765 RB_REMOVE(ttm_bo_device_buffer_objects,
766 &bdev->addr_space_rb, bo);
767 drm_mm_put_block(bo->vm_node);
768 bo->vm_node = NULL;
769 }
770 rw_wunlock(&bdev->vm_lock);
771 ttm_mem_io_lock(man, false);
772 ttm_mem_io_free_vm(bo);
773 ttm_mem_io_unlock(man);
774 ttm_bo_cleanup_refs_or_queue(bo);
775 if (refcount_release(&bo->list_kref))
776 ttm_bo_release_list(bo);
777 }
778
779 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
780 {
781 struct ttm_buffer_object *bo = *p_bo;
782
783 *p_bo = NULL;
784 if (refcount_release(&bo->kref))
785 ttm_bo_release(bo);
786 }
787
788 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
789 {
790 int pending;
791
792 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, &pending))
793 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
794 return (pending);
795 }
796
797 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
798 {
799 if (resched) {
800 taskqueue_enqueue_timeout(taskqueue_thread, &bdev->wq,
801 ((hz / 100) < 1) ? 1 : hz / 100);
802 }
803 }
804
805 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
806 bool no_wait_gpu)
807 {
808 struct ttm_bo_device *bdev = bo->bdev;
809 struct ttm_mem_reg evict_mem;
810 struct ttm_placement placement;
811 int ret = 0;
812
813 mtx_lock(&bdev->fence_lock);
814 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
815 mtx_unlock(&bdev->fence_lock);
816
817 if (unlikely(ret != 0)) {
818 if (ret != -ERESTARTSYS) {
819 printf("[TTM] Failed to expire sync object before buffer eviction\n");
820 }
821 goto out;
822 }
823
824 MPASS(ttm_bo_is_reserved(bo));
825
826 evict_mem = bo->mem;
827 evict_mem.mm_node = NULL;
828 evict_mem.bus.io_reserved_vm = false;
829 evict_mem.bus.io_reserved_count = 0;
830
831 placement.fpfn = 0;
832 placement.lpfn = 0;
833 placement.num_placement = 0;
834 placement.num_busy_placement = 0;
835 bdev->driver->evict_flags(bo, &placement);
836 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
837 no_wait_gpu);
838 if (ret) {
839 if (ret != -ERESTARTSYS) {
840 printf("[TTM] Failed to find memory space for buffer 0x%p eviction\n",
841 bo);
842 ttm_bo_mem_space_debug(bo, &placement);
843 }
844 goto out;
845 }
846
847 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
848 no_wait_gpu);
849 if (ret) {
850 if (ret != -ERESTARTSYS)
851 printf("[TTM] Buffer eviction failed\n");
852 ttm_bo_mem_put(bo, &evict_mem);
853 goto out;
854 }
855 bo->evicted = true;
856 out:
857 return ret;
858 }
859
860 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
861 uint32_t mem_type,
862 bool interruptible,
863 bool no_wait_gpu)
864 {
865 struct ttm_bo_global *glob = bdev->glob;
866 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
867 struct ttm_buffer_object *bo;
868 int ret = -EBUSY, put_count;
869
870 mtx_lock(&glob->lru_lock);
871 list_for_each_entry(bo, &man->lru, lru) {
872 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
873 if (!ret)
874 break;
875 }
876
877 if (ret) {
878 mtx_unlock(&glob->lru_lock);
879 return ret;
880 }
881
882 refcount_acquire(&bo->list_kref);
883
884 if (!list_empty(&bo->ddestroy)) {
885 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
886 no_wait_gpu);
887 if (refcount_release(&bo->list_kref))
888 ttm_bo_release_list(bo);
889 return ret;
890 }
891
892 put_count = ttm_bo_del_from_lru(bo);
893 mtx_unlock(&glob->lru_lock);
894
895 MPASS(ret == 0);
896
897 ttm_bo_list_ref_sub(bo, put_count, true);
898
899 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
900 ttm_bo_unreserve(bo);
901
902 if (refcount_release(&bo->list_kref))
903 ttm_bo_release_list(bo);
904 return ret;
905 }
906
907 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
908 {
909 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
910
911 if (mem->mm_node)
912 (*man->func->put_node)(man, mem);
913 }
914
915 /**
916 * Repeatedly evict memory from the LRU for @mem_type until we create enough
917 * space, or we've evicted everything and there isn't enough space.
918 */
919 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
920 uint32_t mem_type,
921 struct ttm_placement *placement,
922 struct ttm_mem_reg *mem,
923 bool interruptible,
924 bool no_wait_gpu)
925 {
926 struct ttm_bo_device *bdev = bo->bdev;
927 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
928 int ret;
929
930 do {
931 ret = (*man->func->get_node)(man, bo, placement, mem);
932 if (unlikely(ret != 0))
933 return ret;
934 if (mem->mm_node)
935 break;
936 ret = ttm_mem_evict_first(bdev, mem_type,
937 interruptible, no_wait_gpu);
938 if (unlikely(ret != 0))
939 return ret;
940 } while (1);
941 if (mem->mm_node == NULL)
942 return -ENOMEM;
943 mem->mem_type = mem_type;
944 return 0;
945 }
946
947 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
948 uint32_t cur_placement,
949 uint32_t proposed_placement)
950 {
951 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
952 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
953
954 /**
955 * Keep current caching if possible.
956 */
957
958 if ((cur_placement & caching) != 0)
959 result |= (cur_placement & caching);
960 else if ((man->default_caching & caching) != 0)
961 result |= man->default_caching;
962 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
963 result |= TTM_PL_FLAG_CACHED;
964 else if ((TTM_PL_FLAG_WC & caching) != 0)
965 result |= TTM_PL_FLAG_WC;
966 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
967 result |= TTM_PL_FLAG_UNCACHED;
968
969 return result;
970 }
971
972 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
973 uint32_t mem_type,
974 uint32_t proposed_placement,
975 uint32_t *masked_placement)
976 {
977 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
978
979 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
980 return false;
981
982 if ((proposed_placement & man->available_caching) == 0)
983 return false;
984
985 cur_flags |= (proposed_placement & man->available_caching);
986
987 *masked_placement = cur_flags;
988 return true;
989 }
990
991 /**
992 * Creates space for memory region @mem according to its type.
993 *
994 * This function first searches for free space in compatible memory types in
995 * the priority order defined by the driver. If free space isn't found, then
996 * ttm_bo_mem_force_space is attempted in priority order to evict and find
997 * space.
998 */
999 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1000 struct ttm_placement *placement,
1001 struct ttm_mem_reg *mem,
1002 bool interruptible,
1003 bool no_wait_gpu)
1004 {
1005 struct ttm_bo_device *bdev = bo->bdev;
1006 struct ttm_mem_type_manager *man;
1007 uint32_t mem_type = TTM_PL_SYSTEM;
1008 uint32_t cur_flags = 0;
1009 bool type_found = false;
1010 bool type_ok = false;
1011 bool has_erestartsys = false;
1012 int i, ret;
1013
1014 mem->mm_node = NULL;
1015 for (i = 0; i < placement->num_placement; ++i) {
1016 ret = ttm_mem_type_from_flags(placement->placement[i],
1017 &mem_type);
1018 if (ret)
1019 return ret;
1020 man = &bdev->man[mem_type];
1021
1022 type_ok = ttm_bo_mt_compatible(man,
1023 mem_type,
1024 placement->placement[i],
1025 &cur_flags);
1026
1027 if (!type_ok)
1028 continue;
1029
1030 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1031 cur_flags);
1032 /*
1033 * Use the access and other non-mapping-related flag bits from
1034 * the memory placement flags to the current flags
1035 */
1036 ttm_flag_masked(&cur_flags, placement->placement[i],
1037 ~TTM_PL_MASK_MEMTYPE);
1038
1039 if (mem_type == TTM_PL_SYSTEM)
1040 break;
1041
1042 if (man->has_type && man->use_type) {
1043 type_found = true;
1044 ret = (*man->func->get_node)(man, bo, placement, mem);
1045 if (unlikely(ret))
1046 return ret;
1047 }
1048 if (mem->mm_node)
1049 break;
1050 }
1051
1052 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1053 mem->mem_type = mem_type;
1054 mem->placement = cur_flags;
1055 return 0;
1056 }
1057
1058 if (!type_found)
1059 return -EINVAL;
1060
1061 for (i = 0; i < placement->num_busy_placement; ++i) {
1062 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1063 &mem_type);
1064 if (ret)
1065 return ret;
1066 man = &bdev->man[mem_type];
1067 if (!man->has_type)
1068 continue;
1069 if (!ttm_bo_mt_compatible(man,
1070 mem_type,
1071 placement->busy_placement[i],
1072 &cur_flags))
1073 continue;
1074
1075 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1076 cur_flags);
1077 /*
1078 * Use the access and other non-mapping-related flag bits from
1079 * the memory placement flags to the current flags
1080 */
1081 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1082 ~TTM_PL_MASK_MEMTYPE);
1083
1084
1085 if (mem_type == TTM_PL_SYSTEM) {
1086 mem->mem_type = mem_type;
1087 mem->placement = cur_flags;
1088 mem->mm_node = NULL;
1089 return 0;
1090 }
1091
1092 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1093 interruptible, no_wait_gpu);
1094 if (ret == 0 && mem->mm_node) {
1095 mem->placement = cur_flags;
1096 return 0;
1097 }
1098 if (ret == -ERESTARTSYS)
1099 has_erestartsys = true;
1100 }
1101 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1102 return ret;
1103 }
1104
1105 static
1106 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1107 struct ttm_placement *placement,
1108 bool interruptible,
1109 bool no_wait_gpu)
1110 {
1111 int ret = 0;
1112 struct ttm_mem_reg mem;
1113 struct ttm_bo_device *bdev = bo->bdev;
1114
1115 MPASS(ttm_bo_is_reserved(bo));
1116
1117 /*
1118 * FIXME: It's possible to pipeline buffer moves.
1119 * Have the driver move function wait for idle when necessary,
1120 * instead of doing it here.
1121 */
1122 mtx_lock(&bdev->fence_lock);
1123 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1124 mtx_unlock(&bdev->fence_lock);
1125 if (ret)
1126 return ret;
1127 mem.num_pages = bo->num_pages;
1128 mem.size = mem.num_pages << PAGE_SHIFT;
1129 mem.page_alignment = bo->mem.page_alignment;
1130 mem.bus.io_reserved_vm = false;
1131 mem.bus.io_reserved_count = 0;
1132 /*
1133 * Determine where to move the buffer.
1134 */
1135 ret = ttm_bo_mem_space(bo, placement, &mem,
1136 interruptible, no_wait_gpu);
1137 if (ret)
1138 goto out_unlock;
1139 ret = ttm_bo_handle_move_mem(bo, &mem, false,
1140 interruptible, no_wait_gpu);
1141 out_unlock:
1142 if (ret && mem.mm_node)
1143 ttm_bo_mem_put(bo, &mem);
1144 return ret;
1145 }
1146
1147 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1148 struct ttm_mem_reg *mem)
1149 {
1150 int i;
1151
1152 if (mem->mm_node && placement->lpfn != 0 &&
1153 (mem->start < placement->fpfn ||
1154 mem->start + mem->num_pages > placement->lpfn))
1155 return -1;
1156
1157 for (i = 0; i < placement->num_placement; i++) {
1158 if ((placement->placement[i] & mem->placement &
1159 TTM_PL_MASK_CACHING) &&
1160 (placement->placement[i] & mem->placement &
1161 TTM_PL_MASK_MEM))
1162 return i;
1163 }
1164 return -1;
1165 }
1166
1167 int ttm_bo_validate(struct ttm_buffer_object *bo,
1168 struct ttm_placement *placement,
1169 bool interruptible,
1170 bool no_wait_gpu)
1171 {
1172 int ret;
1173
1174 MPASS(ttm_bo_is_reserved(bo));
1175 /* Check that range is valid */
1176 if (placement->lpfn || placement->fpfn)
1177 if (placement->fpfn > placement->lpfn ||
1178 (placement->lpfn - placement->fpfn) < bo->num_pages)
1179 return -EINVAL;
1180 /*
1181 * Check whether we need to move buffer.
1182 */
1183 ret = ttm_bo_mem_compat(placement, &bo->mem);
1184 if (ret < 0) {
1185 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1186 no_wait_gpu);
1187 if (ret)
1188 return ret;
1189 } else {
1190 /*
1191 * Use the access and other non-mapping-related flag bits from
1192 * the compatible memory placement flags to the active flags
1193 */
1194 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1195 ~TTM_PL_MASK_MEMTYPE);
1196 }
1197 /*
1198 * We might need to add a TTM.
1199 */
1200 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1201 ret = ttm_bo_add_ttm(bo, true);
1202 if (ret)
1203 return ret;
1204 }
1205 return 0;
1206 }
1207
1208 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1209 struct ttm_placement *placement)
1210 {
1211 MPASS(!((placement->fpfn || placement->lpfn) &&
1212 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))));
1213
1214 return 0;
1215 }
1216
1217 int ttm_bo_init(struct ttm_bo_device *bdev,
1218 struct ttm_buffer_object *bo,
1219 unsigned long size,
1220 enum ttm_bo_type type,
1221 struct ttm_placement *placement,
1222 uint32_t page_alignment,
1223 bool interruptible,
1224 struct vm_object *persistent_swap_storage,
1225 size_t acc_size,
1226 struct sg_table *sg,
1227 void (*destroy) (struct ttm_buffer_object *))
1228 {
1229 int ret = 0;
1230 unsigned long num_pages;
1231 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1232
1233 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1234 if (ret) {
1235 printf("[TTM] Out of kernel memory\n");
1236 if (destroy)
1237 (*destroy)(bo);
1238 else
1239 free(bo, M_TTM_BO);
1240 return -ENOMEM;
1241 }
1242
1243 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1244 if (num_pages == 0) {
1245 printf("[TTM] Illegal buffer object size\n");
1246 if (destroy)
1247 (*destroy)(bo);
1248 else
1249 free(bo, M_TTM_BO);
1250 ttm_mem_global_free(mem_glob, acc_size);
1251 return -EINVAL;
1252 }
1253 bo->destroy = destroy;
1254
1255 refcount_init(&bo->kref, 1);
1256 refcount_init(&bo->list_kref, 1);
1257 atomic_set(&bo->cpu_writers, 0);
1258 atomic_set(&bo->reserved, 1);
1259 INIT_LIST_HEAD(&bo->lru);
1260 INIT_LIST_HEAD(&bo->ddestroy);
1261 INIT_LIST_HEAD(&bo->swap);
1262 INIT_LIST_HEAD(&bo->io_reserve_lru);
1263 bo->bdev = bdev;
1264 bo->glob = bdev->glob;
1265 bo->type = type;
1266 bo->num_pages = num_pages;
1267 bo->mem.size = num_pages << PAGE_SHIFT;
1268 bo->mem.mem_type = TTM_PL_SYSTEM;
1269 bo->mem.num_pages = bo->num_pages;
1270 bo->mem.mm_node = NULL;
1271 bo->mem.page_alignment = page_alignment;
1272 bo->mem.bus.io_reserved_vm = false;
1273 bo->mem.bus.io_reserved_count = 0;
1274 bo->priv_flags = 0;
1275 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1276 bo->seq_valid = false;
1277 bo->persistent_swap_storage = persistent_swap_storage;
1278 bo->acc_size = acc_size;
1279 bo->sg = sg;
1280 atomic_inc(&bo->glob->bo_count);
1281
1282 ret = ttm_bo_check_placement(bo, placement);
1283 if (unlikely(ret != 0))
1284 goto out_err;
1285
1286 /*
1287 * For ttm_bo_type_device buffers, allocate
1288 * address space from the device.
1289 */
1290 if (bo->type == ttm_bo_type_device ||
1291 bo->type == ttm_bo_type_sg) {
1292 ret = ttm_bo_setup_vm(bo);
1293 if (ret)
1294 goto out_err;
1295 }
1296
1297 ret = ttm_bo_validate(bo, placement, interruptible, false);
1298 if (ret)
1299 goto out_err;
1300
1301 ttm_bo_unreserve(bo);
1302 return 0;
1303
1304 out_err:
1305 ttm_bo_unreserve(bo);
1306 ttm_bo_unref(&bo);
1307
1308 return ret;
1309 }
1310
1311 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1312 unsigned long bo_size,
1313 unsigned struct_size)
1314 {
1315 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1316 size_t size = 0;
1317
1318 size += ttm_round_pot(struct_size);
1319 size += PAGE_ALIGN(npages * sizeof(void *));
1320 size += ttm_round_pot(sizeof(struct ttm_tt));
1321 return size;
1322 }
1323
1324 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1325 unsigned long bo_size,
1326 unsigned struct_size)
1327 {
1328 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1329 size_t size = 0;
1330
1331 size += ttm_round_pot(struct_size);
1332 size += PAGE_ALIGN(npages * sizeof(void *));
1333 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1334 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1335 return size;
1336 }
1337
1338 int ttm_bo_create(struct ttm_bo_device *bdev,
1339 unsigned long size,
1340 enum ttm_bo_type type,
1341 struct ttm_placement *placement,
1342 uint32_t page_alignment,
1343 bool interruptible,
1344 struct vm_object *persistent_swap_storage,
1345 struct ttm_buffer_object **p_bo)
1346 {
1347 struct ttm_buffer_object *bo;
1348 size_t acc_size;
1349 int ret;
1350
1351 bo = malloc(sizeof(*bo), M_TTM_BO, M_WAITOK | M_ZERO);
1352 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1353 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1354 interruptible, persistent_swap_storage, acc_size,
1355 NULL, NULL);
1356 if (likely(ret == 0))
1357 *p_bo = bo;
1358
1359 return ret;
1360 }
1361
1362 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1363 unsigned mem_type, bool allow_errors)
1364 {
1365 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1366 struct ttm_bo_global *glob = bdev->glob;
1367 int ret;
1368
1369 /*
1370 * Can't use standard list traversal since we're unlocking.
1371 */
1372
1373 mtx_lock(&glob->lru_lock);
1374 while (!list_empty(&man->lru)) {
1375 mtx_unlock(&glob->lru_lock);
1376 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1377 if (ret) {
1378 if (allow_errors) {
1379 return ret;
1380 } else {
1381 printf("[TTM] Cleanup eviction failed\n");
1382 }
1383 }
1384 mtx_lock(&glob->lru_lock);
1385 }
1386 mtx_unlock(&glob->lru_lock);
1387 return 0;
1388 }
1389
1390 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1391 {
1392 struct ttm_mem_type_manager *man;
1393 int ret = -EINVAL;
1394
1395 if (mem_type >= TTM_NUM_MEM_TYPES) {
1396 printf("[TTM] Illegal memory type %d\n", mem_type);
1397 return ret;
1398 }
1399 man = &bdev->man[mem_type];
1400
1401 if (!man->has_type) {
1402 printf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1403 mem_type);
1404 return ret;
1405 }
1406
1407 man->use_type = false;
1408 man->has_type = false;
1409
1410 ret = 0;
1411 if (mem_type > 0) {
1412 ttm_bo_force_list_clean(bdev, mem_type, false);
1413
1414 ret = (*man->func->takedown)(man);
1415 }
1416
1417 return ret;
1418 }
1419
1420 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1421 {
1422 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1423
1424 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1425 printf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1426 return -EINVAL;
1427 }
1428
1429 if (!man->has_type) {
1430 printf("[TTM] Memory type %u has not been initialized\n", mem_type);
1431 return 0;
1432 }
1433
1434 return ttm_bo_force_list_clean(bdev, mem_type, true);
1435 }
1436
1437 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1438 unsigned long p_size)
1439 {
1440 int ret = -EINVAL;
1441 struct ttm_mem_type_manager *man;
1442
1443 MPASS(type < TTM_NUM_MEM_TYPES);
1444 man = &bdev->man[type];
1445 MPASS(!man->has_type);
1446 man->io_reserve_fastpath = true;
1447 man->use_io_reserve_lru = false;
1448 sx_init(&man->io_reserve_mutex, "ttmman");
1449 INIT_LIST_HEAD(&man->io_reserve_lru);
1450
1451 ret = bdev->driver->init_mem_type(bdev, type, man);
1452 if (ret)
1453 return ret;
1454 man->bdev = bdev;
1455
1456 ret = 0;
1457 if (type != TTM_PL_SYSTEM) {
1458 ret = (*man->func->init)(man, p_size);
1459 if (ret)
1460 return ret;
1461 }
1462 man->has_type = true;
1463 man->use_type = true;
1464 man->size = p_size;
1465
1466 INIT_LIST_HEAD(&man->lru);
1467
1468 return 0;
1469 }
1470
1471 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1472 {
1473
1474 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1475 vm_page_free(glob->dummy_read_page);
1476 }
1477
1478 void ttm_bo_global_release(struct drm_global_reference *ref)
1479 {
1480 struct ttm_bo_global *glob = ref->object;
1481
1482 if (refcount_release(&glob->kobj_ref))
1483 ttm_bo_global_kobj_release(glob);
1484 }
1485
1486 int ttm_bo_global_init(struct drm_global_reference *ref)
1487 {
1488 struct ttm_bo_global_ref *bo_ref =
1489 container_of(ref, struct ttm_bo_global_ref, ref);
1490 struct ttm_bo_global *glob = ref->object;
1491 int ret;
1492 int tries;
1493
1494 sx_init(&glob->device_list_mutex, "ttmdlm");
1495 mtx_init(&glob->lru_lock, "ttmlru", NULL, MTX_DEF);
1496 glob->mem_glob = bo_ref->mem_glob;
1497 tries = 0;
1498 retry:
1499 glob->dummy_read_page = vm_page_alloc_noobj_contig(0, 1, 0,
1500 VM_MAX_ADDRESS, PAGE_SIZE, 0, VM_MEMATTR_UNCACHEABLE);
1501
1502 if (unlikely(glob->dummy_read_page == NULL)) {
1503 if (tries < 1 && vm_page_reclaim_contig(0, 1, 0,
1504 VM_MAX_ADDRESS, PAGE_SIZE, 0)) {
1505 tries++;
1506 goto retry;
1507 }
1508 ret = -ENOMEM;
1509 goto out_no_drp;
1510 }
1511
1512 INIT_LIST_HEAD(&glob->swap_lru);
1513 INIT_LIST_HEAD(&glob->device_list);
1514
1515 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1516 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1517 if (unlikely(ret != 0)) {
1518 printf("[TTM] Could not register buffer object swapout\n");
1519 goto out_no_shrink;
1520 }
1521
1522 atomic_set(&glob->bo_count, 0);
1523
1524 refcount_init(&glob->kobj_ref, 1);
1525 return (0);
1526
1527 out_no_shrink:
1528 vm_page_free(glob->dummy_read_page);
1529 out_no_drp:
1530 free(glob, M_DRM_GLOBAL);
1531 return ret;
1532 }
1533
1534 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1535 {
1536 int ret = 0;
1537 unsigned i = TTM_NUM_MEM_TYPES;
1538 struct ttm_mem_type_manager *man;
1539 struct ttm_bo_global *glob = bdev->glob;
1540
1541 while (i--) {
1542 man = &bdev->man[i];
1543 if (man->has_type) {
1544 man->use_type = false;
1545 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1546 ret = -EBUSY;
1547 printf("[TTM] DRM memory manager type %d is not clean\n",
1548 i);
1549 }
1550 man->has_type = false;
1551 }
1552 }
1553
1554 sx_xlock(&glob->device_list_mutex);
1555 list_del(&bdev->device_list);
1556 sx_xunlock(&glob->device_list_mutex);
1557
1558 if (taskqueue_cancel_timeout(taskqueue_thread, &bdev->wq, NULL))
1559 taskqueue_drain_timeout(taskqueue_thread, &bdev->wq);
1560
1561 while (ttm_bo_delayed_delete(bdev, true))
1562 ;
1563
1564 mtx_lock(&glob->lru_lock);
1565 if (list_empty(&bdev->ddestroy))
1566 TTM_DEBUG("Delayed destroy list was clean\n");
1567
1568 if (list_empty(&bdev->man[0].lru))
1569 TTM_DEBUG("Swap list was clean\n");
1570 mtx_unlock(&glob->lru_lock);
1571
1572 MPASS(drm_mm_clean(&bdev->addr_space_mm));
1573 rw_wlock(&bdev->vm_lock);
1574 drm_mm_takedown(&bdev->addr_space_mm);
1575 rw_wunlock(&bdev->vm_lock);
1576
1577 return ret;
1578 }
1579
1580 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1581 struct ttm_bo_global *glob,
1582 struct ttm_bo_driver *driver,
1583 uint64_t file_page_offset,
1584 bool need_dma32)
1585 {
1586 int ret = -EINVAL;
1587
1588 rw_init(&bdev->vm_lock, "ttmvml");
1589 bdev->driver = driver;
1590
1591 memset(bdev->man, 0, sizeof(bdev->man));
1592
1593 /*
1594 * Initialize the system memory buffer type.
1595 * Other types need to be driver / IOCTL initialized.
1596 */
1597 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1598 if (unlikely(ret != 0))
1599 goto out_no_sys;
1600
1601 RB_INIT(&bdev->addr_space_rb);
1602 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1603 if (unlikely(ret != 0))
1604 goto out_no_addr_mm;
1605
1606 TIMEOUT_TASK_INIT(taskqueue_thread, &bdev->wq, 0,
1607 ttm_bo_delayed_workqueue, bdev);
1608 INIT_LIST_HEAD(&bdev->ddestroy);
1609 bdev->dev_mapping = NULL;
1610 bdev->glob = glob;
1611 bdev->need_dma32 = need_dma32;
1612 bdev->val_seq = 0;
1613 mtx_init(&bdev->fence_lock, "ttmfence", NULL, MTX_DEF);
1614 sx_xlock(&glob->device_list_mutex);
1615 list_add_tail(&bdev->device_list, &glob->device_list);
1616 sx_xunlock(&glob->device_list_mutex);
1617
1618 return 0;
1619 out_no_addr_mm:
1620 ttm_bo_clean_mm(bdev, 0);
1621 out_no_sys:
1622 return ret;
1623 }
1624
1625 /*
1626 * buffer object vm functions.
1627 */
1628
1629 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1630 {
1631 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1632
1633 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1634 if (mem->mem_type == TTM_PL_SYSTEM)
1635 return false;
1636
1637 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1638 return false;
1639
1640 if (mem->placement & TTM_PL_FLAG_CACHED)
1641 return false;
1642 }
1643 return true;
1644 }
1645
1646 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1647 {
1648
1649 ttm_bo_release_mmap(bo);
1650 ttm_mem_io_free_vm(bo);
1651 }
1652
1653 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1654 {
1655 struct ttm_bo_device *bdev = bo->bdev;
1656 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1657
1658 ttm_mem_io_lock(man, false);
1659 ttm_bo_unmap_virtual_locked(bo);
1660 ttm_mem_io_unlock(man);
1661 }
1662
1663 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1664 {
1665 struct ttm_bo_device *bdev = bo->bdev;
1666
1667 /* The caller acquired bdev->vm_lock. */
1668 RB_INSERT(ttm_bo_device_buffer_objects, &bdev->addr_space_rb, bo);
1669 }
1670
1671 /**
1672 * ttm_bo_setup_vm:
1673 *
1674 * @bo: the buffer to allocate address space for
1675 *
1676 * Allocate address space in the drm device so that applications
1677 * can mmap the buffer and access the contents. This only
1678 * applies to ttm_bo_type_device objects as others are not
1679 * placed in the drm device address space.
1680 */
1681
1682 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1683 {
1684 struct ttm_bo_device *bdev = bo->bdev;
1685 int ret;
1686
1687 retry_pre_get:
1688 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1689 if (unlikely(ret != 0))
1690 return ret;
1691
1692 rw_wlock(&bdev->vm_lock);
1693 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1694 bo->mem.num_pages, 0, 0);
1695
1696 if (unlikely(bo->vm_node == NULL)) {
1697 ret = -ENOMEM;
1698 goto out_unlock;
1699 }
1700
1701 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1702 bo->mem.num_pages, 0);
1703
1704 if (unlikely(bo->vm_node == NULL)) {
1705 rw_wunlock(&bdev->vm_lock);
1706 goto retry_pre_get;
1707 }
1708
1709 ttm_bo_vm_insert_rb(bo);
1710 rw_wunlock(&bdev->vm_lock);
1711 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1712
1713 return 0;
1714 out_unlock:
1715 rw_wunlock(&bdev->vm_lock);
1716 return ret;
1717 }
1718
1719 int ttm_bo_wait(struct ttm_buffer_object *bo,
1720 bool lazy, bool interruptible, bool no_wait)
1721 {
1722 struct ttm_bo_driver *driver = bo->bdev->driver;
1723 struct ttm_bo_device *bdev = bo->bdev;
1724 void *sync_obj;
1725 int ret = 0;
1726
1727 if (likely(bo->sync_obj == NULL))
1728 return 0;
1729
1730 while (bo->sync_obj) {
1731
1732 if (driver->sync_obj_signaled(bo->sync_obj)) {
1733 void *tmp_obj = bo->sync_obj;
1734 bo->sync_obj = NULL;
1735 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1736 mtx_unlock(&bdev->fence_lock);
1737 driver->sync_obj_unref(&tmp_obj);
1738 mtx_lock(&bdev->fence_lock);
1739 continue;
1740 }
1741
1742 if (no_wait)
1743 return -EBUSY;
1744
1745 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1746 mtx_unlock(&bdev->fence_lock);
1747 ret = driver->sync_obj_wait(sync_obj,
1748 lazy, interruptible);
1749 if (unlikely(ret != 0)) {
1750 driver->sync_obj_unref(&sync_obj);
1751 mtx_lock(&bdev->fence_lock);
1752 return ret;
1753 }
1754 mtx_lock(&bdev->fence_lock);
1755 if (likely(bo->sync_obj == sync_obj)) {
1756 void *tmp_obj = bo->sync_obj;
1757 bo->sync_obj = NULL;
1758 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1759 &bo->priv_flags);
1760 mtx_unlock(&bdev->fence_lock);
1761 driver->sync_obj_unref(&sync_obj);
1762 driver->sync_obj_unref(&tmp_obj);
1763 mtx_lock(&bdev->fence_lock);
1764 } else {
1765 mtx_unlock(&bdev->fence_lock);
1766 driver->sync_obj_unref(&sync_obj);
1767 mtx_lock(&bdev->fence_lock);
1768 }
1769 }
1770 return 0;
1771 }
1772
1773 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1774 {
1775 struct ttm_bo_device *bdev = bo->bdev;
1776 int ret = 0;
1777
1778 /*
1779 * Using ttm_bo_reserve makes sure the lru lists are updated.
1780 */
1781
1782 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1783 if (unlikely(ret != 0))
1784 return ret;
1785 mtx_lock(&bdev->fence_lock);
1786 ret = ttm_bo_wait(bo, false, true, no_wait);
1787 mtx_unlock(&bdev->fence_lock);
1788 if (likely(ret == 0))
1789 atomic_inc(&bo->cpu_writers);
1790 ttm_bo_unreserve(bo);
1791 return ret;
1792 }
1793
1794 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1795 {
1796 atomic_dec(&bo->cpu_writers);
1797 }
1798
1799 /**
1800 * A buffer object shrink method that tries to swap out the first
1801 * buffer object on the bo_global::swap_lru list.
1802 */
1803
1804 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1805 {
1806 struct ttm_bo_global *glob =
1807 container_of(shrink, struct ttm_bo_global, shrink);
1808 struct ttm_buffer_object *bo;
1809 int ret = -EBUSY;
1810 int put_count;
1811 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1812
1813 mtx_lock(&glob->lru_lock);
1814 list_for_each_entry(bo, &glob->swap_lru, swap) {
1815 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1816 if (!ret)
1817 break;
1818 }
1819
1820 if (ret) {
1821 mtx_unlock(&glob->lru_lock);
1822 return ret;
1823 }
1824
1825 refcount_acquire(&bo->list_kref);
1826
1827 if (!list_empty(&bo->ddestroy)) {
1828 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1829 if (refcount_release(&bo->list_kref))
1830 ttm_bo_release_list(bo);
1831 return ret;
1832 }
1833
1834 put_count = ttm_bo_del_from_lru(bo);
1835 mtx_unlock(&glob->lru_lock);
1836
1837 ttm_bo_list_ref_sub(bo, put_count, true);
1838
1839 /**
1840 * Wait for GPU, then move to system cached.
1841 */
1842
1843 mtx_lock(&bo->bdev->fence_lock);
1844 ret = ttm_bo_wait(bo, false, false, false);
1845 mtx_unlock(&bo->bdev->fence_lock);
1846
1847 if (unlikely(ret != 0))
1848 goto out;
1849
1850 if ((bo->mem.placement & swap_placement) != swap_placement) {
1851 struct ttm_mem_reg evict_mem;
1852
1853 evict_mem = bo->mem;
1854 evict_mem.mm_node = NULL;
1855 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1856 evict_mem.mem_type = TTM_PL_SYSTEM;
1857
1858 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1859 false, false);
1860 if (unlikely(ret != 0))
1861 goto out;
1862 }
1863
1864 ttm_bo_unmap_virtual(bo);
1865
1866 /**
1867 * Swap out. Buffer will be swapped in again as soon as
1868 * anyone tries to access a ttm page.
1869 */
1870
1871 if (bo->bdev->driver->swap_notify)
1872 bo->bdev->driver->swap_notify(bo);
1873
1874 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1875 out:
1876
1877 /**
1878 *
1879 * Unreserve without putting on LRU to avoid swapping out an
1880 * already swapped buffer.
1881 */
1882
1883 atomic_set(&bo->reserved, 0);
1884 wakeup(bo);
1885 if (refcount_release(&bo->list_kref))
1886 ttm_bo_release_list(bo);
1887 return ret;
1888 }
1889
1890 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1891 {
1892 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1893 ;
1894 }
Cache object: 12531aba9bedf046c1e3c5a2d7dd48d5
|