The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_80003es2lan.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2 
    3   Copyright (c) 2001-2013, Intel Corporation 
    4   All rights reserved.
    5   
    6   Redistribution and use in source and binary forms, with or without 
    7   modification, are permitted provided that the following conditions are met:
    8   
    9    1. Redistributions of source code must retain the above copyright notice, 
   10       this list of conditions and the following disclaimer.
   11   
   12    2. Redistributions in binary form must reproduce the above copyright 
   13       notice, this list of conditions and the following disclaimer in the 
   14       documentation and/or other materials provided with the distribution.
   15   
   16    3. Neither the name of the Intel Corporation nor the names of its 
   17       contributors may be used to endorse or promote products derived from 
   18       this software without specific prior written permission.
   19   
   20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
   22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
   23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
   24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
   25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
   26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
   27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
   28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
   29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30   POSSIBILITY OF SUCH DAMAGE.
   31 
   32 ******************************************************************************/
   33 /*$FreeBSD$*/
   34 
   35 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   36  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   37  */
   38 
   39 #include "e1000_api.h"
   40 
   41 static s32  e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
   42 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
   43 static s32  e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
   44 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
   45 static s32  e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
   46                                                    u32 offset,
   47                                                    u16 *data);
   48 static s32  e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
   49                                                     u32 offset,
   50                                                     u16 data);
   51 static s32  e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
   52                                         u16 words, u16 *data);
   53 static s32  e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
   54 static s32  e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
   55 static s32  e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
   56 static s32  e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
   57                                                u16 *duplex);
   58 static s32  e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
   59 static s32  e1000_init_hw_80003es2lan(struct e1000_hw *hw);
   60 static s32  e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
   61 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
   62 static s32  e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
   63 static s32  e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
   64 static s32  e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
   65 static s32  e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
   66 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
   67                                             u16 *data);
   68 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
   69                                              u16 data);
   70 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
   71 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
   72 static s32  e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
   73 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
   74 
   75 /* A table for the GG82563 cable length where the range is defined
   76  * with a lower bound at "index" and the upper bound at
   77  * "index + 5".
   78  */
   79 static const u16 e1000_gg82563_cable_length_table[] = {
   80         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
   81 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
   82                 (sizeof(e1000_gg82563_cable_length_table) / \
   83                  sizeof(e1000_gg82563_cable_length_table[0]))
   84 
   85 /**
   86  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
   87  *  @hw: pointer to the HW structure
   88  **/
   89 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
   90 {
   91         struct e1000_phy_info *phy = &hw->phy;
   92         s32 ret_val;
   93 
   94         DEBUGFUNC("e1000_init_phy_params_80003es2lan");
   95 
   96         if (hw->phy.media_type != e1000_media_type_copper) {
   97                 phy->type = e1000_phy_none;
   98                 return E1000_SUCCESS;
   99         } else {
  100                 phy->ops.power_up = e1000_power_up_phy_copper;
  101                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  102         }
  103 
  104         phy->addr               = 1;
  105         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  106         phy->reset_delay_us     = 100;
  107         phy->type               = e1000_phy_gg82563;
  108 
  109         phy->ops.acquire        = e1000_acquire_phy_80003es2lan;
  110         phy->ops.check_polarity = e1000_check_polarity_m88;
  111         phy->ops.check_reset_block = e1000_check_reset_block_generic;
  112         phy->ops.commit         = e1000_phy_sw_reset_generic;
  113         phy->ops.get_cfg_done   = e1000_get_cfg_done_80003es2lan;
  114         phy->ops.get_info       = e1000_get_phy_info_m88;
  115         phy->ops.release        = e1000_release_phy_80003es2lan;
  116         phy->ops.reset          = e1000_phy_hw_reset_generic;
  117         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
  118 
  119         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
  120         phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
  121         phy->ops.read_reg       = e1000_read_phy_reg_gg82563_80003es2lan;
  122         phy->ops.write_reg      = e1000_write_phy_reg_gg82563_80003es2lan;
  123 
  124         phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
  125 
  126         /* This can only be done after all function pointers are setup. */
  127         ret_val = e1000_get_phy_id(hw);
  128 
  129         /* Verify phy id */
  130         if (phy->id != GG82563_E_PHY_ID)
  131                 return -E1000_ERR_PHY;
  132 
  133         return ret_val;
  134 }
  135 
  136 /**
  137  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  138  *  @hw: pointer to the HW structure
  139  **/
  140 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  141 {
  142         struct e1000_nvm_info *nvm = &hw->nvm;
  143         u32 eecd = E1000_READ_REG(hw, E1000_EECD);
  144         u16 size;
  145 
  146         DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
  147 
  148         nvm->opcode_bits = 8;
  149         nvm->delay_usec = 1;
  150         switch (nvm->override) {
  151         case e1000_nvm_override_spi_large:
  152                 nvm->page_size = 32;
  153                 nvm->address_bits = 16;
  154                 break;
  155         case e1000_nvm_override_spi_small:
  156                 nvm->page_size = 8;
  157                 nvm->address_bits = 8;
  158                 break;
  159         default:
  160                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  161                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  162                 break;
  163         }
  164 
  165         nvm->type = e1000_nvm_eeprom_spi;
  166 
  167         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
  168                      E1000_EECD_SIZE_EX_SHIFT);
  169 
  170         /* Added to a constant, "size" becomes the left-shift value
  171          * for setting word_size.
  172          */
  173         size += NVM_WORD_SIZE_BASE_SHIFT;
  174 
  175         /* EEPROM access above 16k is unsupported */
  176         if (size > 14)
  177                 size = 14;
  178         nvm->word_size = 1 << size;
  179 
  180         /* Function Pointers */
  181         nvm->ops.acquire        = e1000_acquire_nvm_80003es2lan;
  182         nvm->ops.read           = e1000_read_nvm_eerd;
  183         nvm->ops.release        = e1000_release_nvm_80003es2lan;
  184         nvm->ops.update         = e1000_update_nvm_checksum_generic;
  185         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
  186         nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
  187         nvm->ops.write          = e1000_write_nvm_80003es2lan;
  188 
  189         return E1000_SUCCESS;
  190 }
  191 
  192 /**
  193  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
  194  *  @hw: pointer to the HW structure
  195  **/
  196 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
  197 {
  198         struct e1000_mac_info *mac = &hw->mac;
  199 
  200         DEBUGFUNC("e1000_init_mac_params_80003es2lan");
  201 
  202         /* Set media type and media-dependent function pointers */
  203         switch (hw->device_id) {
  204         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
  205                 hw->phy.media_type = e1000_media_type_internal_serdes;
  206                 mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
  207                 mac->ops.setup_physical_interface =
  208                                         e1000_setup_fiber_serdes_link_generic;
  209                 break;
  210         default:
  211                 hw->phy.media_type = e1000_media_type_copper;
  212                 mac->ops.check_for_link = e1000_check_for_copper_link_generic;
  213                 mac->ops.setup_physical_interface =
  214                                         e1000_setup_copper_link_80003es2lan;
  215                 break;
  216         }
  217 
  218         /* Set mta register count */
  219         mac->mta_reg_count = 128;
  220         /* Set rar entry count */
  221         mac->rar_entry_count = E1000_RAR_ENTRIES;
  222         /* Set if part includes ASF firmware */
  223         mac->asf_firmware_present = TRUE;
  224         /* FWSM register */
  225         mac->has_fwsm = TRUE;
  226         /* ARC supported; valid only if manageability features are enabled. */
  227         mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
  228                                       E1000_FWSM_MODE_MASK);
  229         /* Adaptive IFS not supported */
  230         mac->adaptive_ifs = FALSE;
  231 
  232         /* Function pointers */
  233 
  234         /* bus type/speed/width */
  235         mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
  236         /* reset */
  237         mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
  238         /* hw initialization */
  239         mac->ops.init_hw = e1000_init_hw_80003es2lan;
  240         /* link setup */
  241         mac->ops.setup_link = e1000_setup_link_generic;
  242         /* check management mode */
  243         mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
  244         /* multicast address update */
  245         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
  246         /* writing VFTA */
  247         mac->ops.write_vfta = e1000_write_vfta_generic;
  248         /* clearing VFTA */
  249         mac->ops.clear_vfta = e1000_clear_vfta_generic;
  250         /* read mac address */
  251         mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
  252         /* ID LED init */
  253         mac->ops.id_led_init = e1000_id_led_init_generic;
  254         /* blink LED */
  255         mac->ops.blink_led = e1000_blink_led_generic;
  256         /* setup LED */
  257         mac->ops.setup_led = e1000_setup_led_generic;
  258         /* cleanup LED */
  259         mac->ops.cleanup_led = e1000_cleanup_led_generic;
  260         /* turn on/off LED */
  261         mac->ops.led_on = e1000_led_on_generic;
  262         mac->ops.led_off = e1000_led_off_generic;
  263         /* clear hardware counters */
  264         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
  265         /* link info */
  266         mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
  267 
  268         /* set lan id for port to determine which phy lock to use */
  269         hw->mac.ops.set_lan_id(hw);
  270 
  271         return E1000_SUCCESS;
  272 }
  273 
  274 /**
  275  *  e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
  276  *  @hw: pointer to the HW structure
  277  *
  278  *  Called to initialize all function pointers and parameters.
  279  **/
  280 void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
  281 {
  282         DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
  283 
  284         hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
  285         hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
  286         hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
  287 }
  288 
  289 /**
  290  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
  291  *  @hw: pointer to the HW structure
  292  *
  293  *  A wrapper to acquire access rights to the correct PHY.
  294  **/
  295 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
  296 {
  297         u16 mask;
  298 
  299         DEBUGFUNC("e1000_acquire_phy_80003es2lan");
  300 
  301         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
  302         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
  303 }
  304 
  305 /**
  306  *  e1000_release_phy_80003es2lan - Release rights to access PHY
  307  *  @hw: pointer to the HW structure
  308  *
  309  *  A wrapper to release access rights to the correct PHY.
  310  **/
  311 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
  312 {
  313         u16 mask;
  314 
  315         DEBUGFUNC("e1000_release_phy_80003es2lan");
  316 
  317         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
  318         e1000_release_swfw_sync_80003es2lan(hw, mask);
  319 }
  320 
  321 /**
  322  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
  323  *  @hw: pointer to the HW structure
  324  *
  325  *  Acquire the semaphore to access the Kumeran interface.
  326  *
  327  **/
  328 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
  329 {
  330         u16 mask;
  331 
  332         DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
  333 
  334         mask = E1000_SWFW_CSR_SM;
  335 
  336         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
  337 }
  338 
  339 /**
  340  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
  341  *  @hw: pointer to the HW structure
  342  *
  343  *  Release the semaphore used to access the Kumeran interface
  344  **/
  345 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
  346 {
  347         u16 mask;
  348 
  349         DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
  350 
  351         mask = E1000_SWFW_CSR_SM;
  352 
  353         e1000_release_swfw_sync_80003es2lan(hw, mask);
  354 }
  355 
  356 /**
  357  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
  358  *  @hw: pointer to the HW structure
  359  *
  360  *  Acquire the semaphore to access the EEPROM.
  361  **/
  362 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
  363 {
  364         s32 ret_val;
  365 
  366         DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
  367 
  368         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
  369         if (ret_val)
  370                 return ret_val;
  371 
  372         ret_val = e1000_acquire_nvm_generic(hw);
  373 
  374         if (ret_val)
  375                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
  376 
  377         return ret_val;
  378 }
  379 
  380 /**
  381  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
  382  *  @hw: pointer to the HW structure
  383  *
  384  *  Release the semaphore used to access the EEPROM.
  385  **/
  386 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
  387 {
  388         DEBUGFUNC("e1000_release_nvm_80003es2lan");
  389 
  390         e1000_release_nvm_generic(hw);
  391         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
  392 }
  393 
  394 /**
  395  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
  396  *  @hw: pointer to the HW structure
  397  *  @mask: specifies which semaphore to acquire
  398  *
  399  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
  400  *  will also specify which port we're acquiring the lock for.
  401  **/
  402 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
  403 {
  404         u32 swfw_sync;
  405         u32 swmask = mask;
  406         u32 fwmask = mask << 16;
  407         s32 i = 0;
  408         s32 timeout = 50;
  409 
  410         DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
  411 
  412         while (i < timeout) {
  413                 if (e1000_get_hw_semaphore_generic(hw))
  414                         return -E1000_ERR_SWFW_SYNC;
  415 
  416                 swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
  417                 if (!(swfw_sync & (fwmask | swmask)))
  418                         break;
  419 
  420                 /* Firmware currently using resource (fwmask)
  421                  * or other software thread using resource (swmask)
  422                  */
  423                 e1000_put_hw_semaphore_generic(hw);
  424                 msec_delay_irq(5);
  425                 i++;
  426         }
  427 
  428         if (i == timeout) {
  429                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
  430                 return -E1000_ERR_SWFW_SYNC;
  431         }
  432 
  433         swfw_sync |= swmask;
  434         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
  435 
  436         e1000_put_hw_semaphore_generic(hw);
  437 
  438         return E1000_SUCCESS;
  439 }
  440 
  441 /**
  442  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
  443  *  @hw: pointer to the HW structure
  444  *  @mask: specifies which semaphore to acquire
  445  *
  446  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
  447  *  will also specify which port we're releasing the lock for.
  448  **/
  449 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
  450 {
  451         u32 swfw_sync;
  452 
  453         DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
  454 
  455         while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
  456                 ; /* Empty */
  457 
  458         swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
  459         swfw_sync &= ~mask;
  460         E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
  461 
  462         e1000_put_hw_semaphore_generic(hw);
  463 }
  464 
  465 /**
  466  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
  467  *  @hw: pointer to the HW structure
  468  *  @offset: offset of the register to read
  469  *  @data: pointer to the data returned from the operation
  470  *
  471  *  Read the GG82563 PHY register.
  472  **/
  473 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
  474                                                   u32 offset, u16 *data)
  475 {
  476         s32 ret_val;
  477         u32 page_select;
  478         u16 temp;
  479 
  480         DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
  481 
  482         ret_val = e1000_acquire_phy_80003es2lan(hw);
  483         if (ret_val)
  484                 return ret_val;
  485 
  486         /* Select Configuration Page */
  487         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
  488                 page_select = GG82563_PHY_PAGE_SELECT;
  489         } else {
  490                 /* Use Alternative Page Select register to access
  491                  * registers 30 and 31
  492                  */
  493                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
  494         }
  495 
  496         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
  497         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
  498         if (ret_val) {
  499                 e1000_release_phy_80003es2lan(hw);
  500                 return ret_val;
  501         }
  502 
  503         if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
  504                 /* The "ready" bit in the MDIC register may be incorrectly set
  505                  * before the device has completed the "Page Select" MDI
  506                  * transaction.  So we wait 200us after each MDI command...
  507                  */
  508                 usec_delay(200);
  509 
  510                 /* ...and verify the command was successful. */
  511                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
  512 
  513                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
  514                         e1000_release_phy_80003es2lan(hw);
  515                         return -E1000_ERR_PHY;
  516                 }
  517 
  518                 usec_delay(200);
  519 
  520                 ret_val = e1000_read_phy_reg_mdic(hw,
  521                                                   MAX_PHY_REG_ADDRESS & offset,
  522                                                   data);
  523 
  524                 usec_delay(200);
  525         } else {
  526                 ret_val = e1000_read_phy_reg_mdic(hw,
  527                                                   MAX_PHY_REG_ADDRESS & offset,
  528                                                   data);
  529         }
  530 
  531         e1000_release_phy_80003es2lan(hw);
  532 
  533         return ret_val;
  534 }
  535 
  536 /**
  537  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
  538  *  @hw: pointer to the HW structure
  539  *  @offset: offset of the register to read
  540  *  @data: value to write to the register
  541  *
  542  *  Write to the GG82563 PHY register.
  543  **/
  544 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
  545                                                    u32 offset, u16 data)
  546 {
  547         s32 ret_val;
  548         u32 page_select;
  549         u16 temp;
  550 
  551         DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
  552 
  553         ret_val = e1000_acquire_phy_80003es2lan(hw);
  554         if (ret_val)
  555                 return ret_val;
  556 
  557         /* Select Configuration Page */
  558         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
  559                 page_select = GG82563_PHY_PAGE_SELECT;
  560         } else {
  561                 /* Use Alternative Page Select register to access
  562                  * registers 30 and 31
  563                  */
  564                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
  565         }
  566 
  567         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
  568         ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
  569         if (ret_val) {
  570                 e1000_release_phy_80003es2lan(hw);
  571                 return ret_val;
  572         }
  573 
  574         if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
  575                 /* The "ready" bit in the MDIC register may be incorrectly set
  576                  * before the device has completed the "Page Select" MDI
  577                  * transaction.  So we wait 200us after each MDI command...
  578                  */
  579                 usec_delay(200);
  580 
  581                 /* ...and verify the command was successful. */
  582                 ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
  583 
  584                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
  585                         e1000_release_phy_80003es2lan(hw);
  586                         return -E1000_ERR_PHY;
  587                 }
  588 
  589                 usec_delay(200);
  590 
  591                 ret_val = e1000_write_phy_reg_mdic(hw,
  592                                                   MAX_PHY_REG_ADDRESS & offset,
  593                                                   data);
  594 
  595                 usec_delay(200);
  596         } else {
  597                 ret_val = e1000_write_phy_reg_mdic(hw,
  598                                                   MAX_PHY_REG_ADDRESS & offset,
  599                                                   data);
  600         }
  601 
  602         e1000_release_phy_80003es2lan(hw);
  603 
  604         return ret_val;
  605 }
  606 
  607 /**
  608  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
  609  *  @hw: pointer to the HW structure
  610  *  @offset: offset of the register to read
  611  *  @words: number of words to write
  612  *  @data: buffer of data to write to the NVM
  613  *
  614  *  Write "words" of data to the ESB2 NVM.
  615  **/
  616 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
  617                                        u16 words, u16 *data)
  618 {
  619         DEBUGFUNC("e1000_write_nvm_80003es2lan");
  620 
  621         return e1000_write_nvm_spi(hw, offset, words, data);
  622 }
  623 
  624 /**
  625  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
  626  *  @hw: pointer to the HW structure
  627  *
  628  *  Wait a specific amount of time for manageability processes to complete.
  629  *  This is a function pointer entry point called by the phy module.
  630  **/
  631 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
  632 {
  633         s32 timeout = PHY_CFG_TIMEOUT;
  634         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
  635 
  636         DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
  637 
  638         if (hw->bus.func == 1)
  639                 mask = E1000_NVM_CFG_DONE_PORT_1;
  640 
  641         while (timeout) {
  642                 if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
  643                         break;
  644                 msec_delay(1);
  645                 timeout--;
  646         }
  647         if (!timeout) {
  648                 DEBUGOUT("MNG configuration cycle has not completed.\n");
  649                 return -E1000_ERR_RESET;
  650         }
  651 
  652         return E1000_SUCCESS;
  653 }
  654 
  655 /**
  656  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
  657  *  @hw: pointer to the HW structure
  658  *
  659  *  Force the speed and duplex settings onto the PHY.  This is a
  660  *  function pointer entry point called by the phy module.
  661  **/
  662 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
  663 {
  664         s32 ret_val;
  665         u16 phy_data;
  666         bool link;
  667 
  668         DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
  669 
  670         if (!(hw->phy.ops.read_reg))
  671                 return E1000_SUCCESS;
  672 
  673         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
  674          * forced whenever speed and duplex are forced.
  675          */
  676         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  677         if (ret_val)
  678                 return ret_val;
  679 
  680         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
  681         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
  682         if (ret_val)
  683                 return ret_val;
  684 
  685         DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
  686 
  687         ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
  688         if (ret_val)
  689                 return ret_val;
  690 
  691         e1000_phy_force_speed_duplex_setup(hw, &phy_data);
  692 
  693         /* Reset the phy to commit changes. */
  694         phy_data |= MII_CR_RESET;
  695 
  696         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
  697         if (ret_val)
  698                 return ret_val;
  699 
  700         usec_delay(1);
  701 
  702         if (hw->phy.autoneg_wait_to_complete) {
  703                 DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
  704 
  705                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  706                                                      100000, &link);
  707                 if (ret_val)
  708                         return ret_val;
  709 
  710                 if (!link) {
  711                         /* We didn't get link.
  712                          * Reset the DSP and cross our fingers.
  713                          */
  714                         ret_val = e1000_phy_reset_dsp_generic(hw);
  715                         if (ret_val)
  716                                 return ret_val;
  717                 }
  718 
  719                 /* Try once more */
  720                 ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
  721                                                      100000, &link);
  722                 if (ret_val)
  723                         return ret_val;
  724         }
  725 
  726         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
  727                                        &phy_data);
  728         if (ret_val)
  729                 return ret_val;
  730 
  731         /* Resetting the phy means we need to verify the TX_CLK corresponds
  732          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
  733          */
  734         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
  735         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
  736                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
  737         else
  738                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
  739 
  740         /* In addition, we must re-enable CRS on Tx for both half and full
  741          * duplex.
  742          */
  743         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
  744         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
  745                                         phy_data);
  746 
  747         return ret_val;
  748 }
  749 
  750 /**
  751  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
  752  *  @hw: pointer to the HW structure
  753  *
  754  *  Find the approximate cable length as measured by the GG82563 PHY.
  755  *  This is a function pointer entry point called by the phy module.
  756  **/
  757 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
  758 {
  759         struct e1000_phy_info *phy = &hw->phy;
  760         s32 ret_val;
  761         u16 phy_data, index;
  762 
  763         DEBUGFUNC("e1000_get_cable_length_80003es2lan");
  764 
  765         if (!(hw->phy.ops.read_reg))
  766                 return E1000_SUCCESS;
  767 
  768         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
  769         if (ret_val)
  770                 return ret_val;
  771 
  772         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
  773 
  774         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
  775                 return -E1000_ERR_PHY;
  776 
  777         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
  778         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
  779 
  780         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
  781 
  782         return E1000_SUCCESS;
  783 }
  784 
  785 /**
  786  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
  787  *  @hw: pointer to the HW structure
  788  *  @speed: pointer to speed buffer
  789  *  @duplex: pointer to duplex buffer
  790  *
  791  *  Retrieve the current speed and duplex configuration.
  792  **/
  793 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
  794                                               u16 *duplex)
  795 {
  796         s32 ret_val;
  797 
  798         DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
  799 
  800         if (hw->phy.media_type == e1000_media_type_copper) {
  801                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
  802                                                                     duplex);
  803                 hw->phy.ops.cfg_on_link_up(hw);
  804         } else {
  805                 ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
  806                                                                   speed,
  807                                                                   duplex);
  808         }
  809 
  810         return ret_val;
  811 }
  812 
  813 /**
  814  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
  815  *  @hw: pointer to the HW structure
  816  *
  817  *  Perform a global reset to the ESB2 controller.
  818  **/
  819 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
  820 {
  821         u32 ctrl;
  822         s32 ret_val;
  823         u16 kum_reg_data;
  824 
  825         DEBUGFUNC("e1000_reset_hw_80003es2lan");
  826 
  827         /* Prevent the PCI-E bus from sticking if there is no TLP connection
  828          * on the last TLP read/write transaction when MAC is reset.
  829          */
  830         ret_val = e1000_disable_pcie_master_generic(hw);
  831         if (ret_val)
  832                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
  833 
  834         DEBUGOUT("Masking off all interrupts\n");
  835         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  836 
  837         E1000_WRITE_REG(hw, E1000_RCTL, 0);
  838         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
  839         E1000_WRITE_FLUSH(hw);
  840 
  841         msec_delay(10);
  842 
  843         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  844 
  845         ret_val = e1000_acquire_phy_80003es2lan(hw);
  846         if (ret_val)
  847                 return ret_val;
  848 
  849         DEBUGOUT("Issuing a global reset to MAC\n");
  850         E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  851         e1000_release_phy_80003es2lan(hw);
  852 
  853         /* Disable IBIST slave mode (far-end loopback) */
  854         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
  855                                         &kum_reg_data);
  856         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
  857         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
  858                                         kum_reg_data);
  859 
  860         ret_val = e1000_get_auto_rd_done_generic(hw);
  861         if (ret_val)
  862                 /* We don't want to continue accessing MAC registers. */
  863                 return ret_val;
  864 
  865         /* Clear any pending interrupt events. */
  866         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  867         E1000_READ_REG(hw, E1000_ICR);
  868 
  869         return e1000_check_alt_mac_addr_generic(hw);
  870 }
  871 
  872 /**
  873  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
  874  *  @hw: pointer to the HW structure
  875  *
  876  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
  877  **/
  878 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
  879 {
  880         struct e1000_mac_info *mac = &hw->mac;
  881         u32 reg_data;
  882         s32 ret_val;
  883         u16 kum_reg_data;
  884         u16 i;
  885 
  886         DEBUGFUNC("e1000_init_hw_80003es2lan");
  887 
  888         e1000_initialize_hw_bits_80003es2lan(hw);
  889 
  890         /* Initialize identification LED */
  891         ret_val = mac->ops.id_led_init(hw);
  892         /* An error is not fatal and we should not stop init due to this */
  893         if (ret_val)
  894                 DEBUGOUT("Error initializing identification LED\n");
  895 
  896         /* Disabling VLAN filtering */
  897         DEBUGOUT("Initializing the IEEE VLAN\n");
  898         mac->ops.clear_vfta(hw);
  899 
  900         /* Setup the receive address. */
  901         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
  902 
  903         /* Zero out the Multicast HASH table */
  904         DEBUGOUT("Zeroing the MTA\n");
  905         for (i = 0; i < mac->mta_reg_count; i++)
  906                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
  907 
  908         /* Setup link and flow control */
  909         ret_val = mac->ops.setup_link(hw);
  910         if (ret_val)
  911                 return ret_val;
  912 
  913         /* Disable IBIST slave mode (far-end loopback) */
  914         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
  915                                         &kum_reg_data);
  916         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
  917         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
  918                                          kum_reg_data);
  919 
  920         /* Set the transmit descriptor write-back policy */
  921         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
  922         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
  923                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
  924         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
  925 
  926         /* ...for both queues. */
  927         reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
  928         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
  929                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
  930         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
  931 
  932         /* Enable retransmit on late collisions */
  933         reg_data = E1000_READ_REG(hw, E1000_TCTL);
  934         reg_data |= E1000_TCTL_RTLC;
  935         E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
  936 
  937         /* Configure Gigabit Carry Extend Padding */
  938         reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
  939         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
  940         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
  941         E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
  942 
  943         /* Configure Transmit Inter-Packet Gap */
  944         reg_data = E1000_READ_REG(hw, E1000_TIPG);
  945         reg_data &= ~E1000_TIPG_IPGT_MASK;
  946         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
  947         E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
  948 
  949         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
  950         reg_data &= ~0x00100000;
  951         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
  952 
  953         /* default to TRUE to enable the MDIC W/A */
  954         hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE;
  955 
  956         ret_val =
  957             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
  958                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
  959         if (!ret_val) {
  960                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
  961                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
  962                         hw->dev_spec._80003es2lan.mdic_wa_enable = FALSE;
  963         }
  964 
  965         /* Clear all of the statistics registers (clear on read).  It is
  966          * important that we do this after we have tried to establish link
  967          * because the symbol error count will increment wildly if there
  968          * is no link.
  969          */
  970         e1000_clear_hw_cntrs_80003es2lan(hw);
  971 
  972         return ret_val;
  973 }
  974 
  975 /**
  976  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
  977  *  @hw: pointer to the HW structure
  978  *
  979  *  Initializes required hardware-dependent bits needed for normal operation.
  980  **/
  981 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
  982 {
  983         u32 reg;
  984 
  985         DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
  986 
  987         /* Transmit Descriptor Control 0 */
  988         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
  989         reg |= (1 << 22);
  990         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
  991 
  992         /* Transmit Descriptor Control 1 */
  993         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
  994         reg |= (1 << 22);
  995         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
  996 
  997         /* Transmit Arbitration Control 0 */
  998         reg = E1000_READ_REG(hw, E1000_TARC(0));
  999         reg &= ~(0xF << 27); /* 30:27 */
 1000         if (hw->phy.media_type != e1000_media_type_copper)
 1001                 reg &= ~(1 << 20);
 1002         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
 1003 
 1004         /* Transmit Arbitration Control 1 */
 1005         reg = E1000_READ_REG(hw, E1000_TARC(1));
 1006         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
 1007                 reg &= ~(1 << 28);
 1008         else
 1009                 reg |= (1 << 28);
 1010         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
 1011 
 1012         /* Disable IPv6 extension header parsing because some malformed
 1013          * IPv6 headers can hang the Rx.
 1014          */
 1015         reg = E1000_READ_REG(hw, E1000_RFCTL);
 1016         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 1017         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
 1018 
 1019         return;
 1020 }
 1021 
 1022 /**
 1023  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 1024  *  @hw: pointer to the HW structure
 1025  *
 1026  *  Setup some GG82563 PHY registers for obtaining link
 1027  **/
 1028 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 1029 {
 1030         struct e1000_phy_info *phy = &hw->phy;
 1031         s32 ret_val;
 1032         u32 reg;
 1033         u16 data;
 1034 
 1035         DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
 1036 
 1037         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 1038         if (ret_val)
 1039                 return ret_val;
 1040 
 1041         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 1042         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 1043         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 1044 
 1045         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 1046         if (ret_val)
 1047                 return ret_val;
 1048 
 1049         /* Options:
 1050          *   MDI/MDI-X = 0 (default)
 1051          *   0 - Auto for all speeds
 1052          *   1 - MDI mode
 1053          *   2 - MDI-X mode
 1054          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 1055          */
 1056         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
 1057         if (ret_val)
 1058                 return ret_val;
 1059 
 1060         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 1061 
 1062         switch (phy->mdix) {
 1063         case 1:
 1064                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 1065                 break;
 1066         case 2:
 1067                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 1068                 break;
 1069         case 0:
 1070         default:
 1071                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 1072                 break;
 1073         }
 1074 
 1075         /* Options:
 1076          *   disable_polarity_correction = 0 (default)
 1077          *       Automatic Correction for Reversed Cable Polarity
 1078          *   0 - Disabled
 1079          *   1 - Enabled
 1080          */
 1081         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 1082         if (phy->disable_polarity_correction)
 1083                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 1084 
 1085         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
 1086         if (ret_val)
 1087                 return ret_val;
 1088 
 1089         /* SW Reset the PHY so all changes take effect */
 1090         ret_val = hw->phy.ops.commit(hw);
 1091         if (ret_val) {
 1092                 DEBUGOUT("Error Resetting the PHY\n");
 1093                 return ret_val;
 1094         }
 1095 
 1096         /* Bypass Rx and Tx FIFO's */
 1097         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 1098         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 1099                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 1100         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 1101         if (ret_val)
 1102                 return ret_val;
 1103 
 1104         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 1105         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 1106         if (ret_val)
 1107                 return ret_val;
 1108         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 1109         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 1110         if (ret_val)
 1111                 return ret_val;
 1112 
 1113         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 1114         if (ret_val)
 1115                 return ret_val;
 1116 
 1117         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 1118         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
 1119         if (ret_val)
 1120                 return ret_val;
 1121 
 1122         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
 1123         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 1124         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
 1125 
 1126         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 1127         if (ret_val)
 1128                 return ret_val;
 1129 
 1130         /* Do not init these registers when the HW is in IAMT mode, since the
 1131          * firmware will have already initialized them.  We only initialize
 1132          * them if the HW is not in IAMT mode.
 1133          */
 1134         if (!hw->mac.ops.check_mng_mode(hw)) {
 1135                 /* Enable Electrical Idle on the PHY */
 1136                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 1137                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
 1138                                                 data);
 1139                 if (ret_val)
 1140                         return ret_val;
 1141 
 1142                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
 1143                                                &data);
 1144                 if (ret_val)
 1145                         return ret_val;
 1146 
 1147                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 1148                 ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
 1149                                                 data);
 1150                 if (ret_val)
 1151                         return ret_val;
 1152         }
 1153 
 1154         /* Workaround: Disable padding in Kumeran interface in the MAC
 1155          * and in the PHY to avoid CRC errors.
 1156          */
 1157         ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
 1158         if (ret_val)
 1159                 return ret_val;
 1160 
 1161         data |= GG82563_ICR_DIS_PADDING;
 1162         ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
 1163         if (ret_val)
 1164                 return ret_val;
 1165 
 1166         return E1000_SUCCESS;
 1167 }
 1168 
 1169 /**
 1170  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
 1171  *  @hw: pointer to the HW structure
 1172  *
 1173  *  Essentially a wrapper for setting up all things "copper" related.
 1174  *  This is a function pointer entry point called by the mac module.
 1175  **/
 1176 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
 1177 {
 1178         u32 ctrl;
 1179         s32 ret_val;
 1180         u16 reg_data;
 1181 
 1182         DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
 1183 
 1184         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1185         ctrl |= E1000_CTRL_SLU;
 1186         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1187         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1188 
 1189         /* Set the mac to wait the maximum time between each
 1190          * iteration and increase the max iterations when
 1191          * polling the phy; this fixes erroneous timeouts at 10Mbps.
 1192          */
 1193         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
 1194                                                    0xFFFF);
 1195         if (ret_val)
 1196                 return ret_val;
 1197         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
 1198                                                   &reg_data);
 1199         if (ret_val)
 1200                 return ret_val;
 1201         reg_data |= 0x3F;
 1202         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
 1203                                                    reg_data);
 1204         if (ret_val)
 1205                 return ret_val;
 1206         ret_val =
 1207             e1000_read_kmrn_reg_80003es2lan(hw,
 1208                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
 1209                                             &reg_data);
 1210         if (ret_val)
 1211                 return ret_val;
 1212         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
 1213         ret_val =
 1214             e1000_write_kmrn_reg_80003es2lan(hw,
 1215                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
 1216                                              reg_data);
 1217         if (ret_val)
 1218                 return ret_val;
 1219 
 1220         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
 1221         if (ret_val)
 1222                 return ret_val;
 1223 
 1224         return e1000_setup_copper_link_generic(hw);
 1225 }
 1226 
 1227 /**
 1228  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
 1229  *  @hw: pointer to the HW structure
 1230  *  @duplex: current duplex setting
 1231  *
 1232  *  Configure the KMRN interface by applying last minute quirks for
 1233  *  10/100 operation.
 1234  **/
 1235 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
 1236 {
 1237         s32 ret_val = E1000_SUCCESS;
 1238         u16 speed;
 1239         u16 duplex;
 1240 
 1241         DEBUGFUNC("e1000_configure_on_link_up");
 1242 
 1243         if (hw->phy.media_type == e1000_media_type_copper) {
 1244                 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
 1245                                                                     &duplex);
 1246                 if (ret_val)
 1247                         return ret_val;
 1248 
 1249                 if (speed == SPEED_1000)
 1250                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
 1251                 else
 1252                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
 1253         }
 1254 
 1255         return ret_val;
 1256 }
 1257 
 1258 /**
 1259  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
 1260  *  @hw: pointer to the HW structure
 1261  *  @duplex: current duplex setting
 1262  *
 1263  *  Configure the KMRN interface by applying last minute quirks for
 1264  *  10/100 operation.
 1265  **/
 1266 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
 1267 {
 1268         s32 ret_val;
 1269         u32 tipg;
 1270         u32 i = 0;
 1271         u16 reg_data, reg_data2;
 1272 
 1273         DEBUGFUNC("e1000_configure_kmrn_for_10_100");
 1274 
 1275         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
 1276         ret_val =
 1277             e1000_write_kmrn_reg_80003es2lan(hw,
 1278                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
 1279                                              reg_data);
 1280         if (ret_val)
 1281                 return ret_val;
 1282 
 1283         /* Configure Transmit Inter-Packet Gap */
 1284         tipg = E1000_READ_REG(hw, E1000_TIPG);
 1285         tipg &= ~E1000_TIPG_IPGT_MASK;
 1286         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
 1287         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
 1288 
 1289         do {
 1290                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
 1291                                                &reg_data);
 1292                 if (ret_val)
 1293                         return ret_val;
 1294 
 1295                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
 1296                                                &reg_data2);
 1297                 if (ret_val)
 1298                         return ret_val;
 1299                 i++;
 1300         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
 1301 
 1302         if (duplex == HALF_DUPLEX)
 1303                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
 1304         else
 1305                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 1306 
 1307         return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
 1308 }
 1309 
 1310 /**
 1311  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
 1312  *  @hw: pointer to the HW structure
 1313  *
 1314  *  Configure the KMRN interface by applying last minute quirks for
 1315  *  gigabit operation.
 1316  **/
 1317 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
 1318 {
 1319         s32 ret_val;
 1320         u16 reg_data, reg_data2;
 1321         u32 tipg;
 1322         u32 i = 0;
 1323 
 1324         DEBUGFUNC("e1000_configure_kmrn_for_1000");
 1325 
 1326         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
 1327         ret_val =
 1328             e1000_write_kmrn_reg_80003es2lan(hw,
 1329                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
 1330                                              reg_data);
 1331         if (ret_val)
 1332                 return ret_val;
 1333 
 1334         /* Configure Transmit Inter-Packet Gap */
 1335         tipg = E1000_READ_REG(hw, E1000_TIPG);
 1336         tipg &= ~E1000_TIPG_IPGT_MASK;
 1337         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 1338         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
 1339 
 1340         do {
 1341                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
 1342                                                &reg_data);
 1343                 if (ret_val)
 1344                         return ret_val;
 1345 
 1346                 ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
 1347                                                &reg_data2);
 1348                 if (ret_val)
 1349                         return ret_val;
 1350                 i++;
 1351         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
 1352 
 1353         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 1354 
 1355         return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
 1356 }
 1357 
 1358 /**
 1359  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
 1360  *  @hw: pointer to the HW structure
 1361  *  @offset: register offset to be read
 1362  *  @data: pointer to the read data
 1363  *
 1364  *  Acquire semaphore, then read the PHY register at offset
 1365  *  using the kumeran interface.  The information retrieved is stored in data.
 1366  *  Release the semaphore before exiting.
 1367  **/
 1368 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
 1369                                            u16 *data)
 1370 {
 1371         u32 kmrnctrlsta;
 1372         s32 ret_val;
 1373 
 1374         DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
 1375 
 1376         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
 1377         if (ret_val)
 1378                 return ret_val;
 1379 
 1380         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 1381                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 1382         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
 1383         E1000_WRITE_FLUSH(hw);
 1384 
 1385         usec_delay(2);
 1386 
 1387         kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
 1388         *data = (u16)kmrnctrlsta;
 1389 
 1390         e1000_release_mac_csr_80003es2lan(hw);
 1391 
 1392         return ret_val;
 1393 }
 1394 
 1395 /**
 1396  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
 1397  *  @hw: pointer to the HW structure
 1398  *  @offset: register offset to write to
 1399  *  @data: data to write at register offset
 1400  *
 1401  *  Acquire semaphore, then write the data to PHY register
 1402  *  at the offset using the kumeran interface.  Release semaphore
 1403  *  before exiting.
 1404  **/
 1405 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
 1406                                             u16 data)
 1407 {
 1408         u32 kmrnctrlsta;
 1409         s32 ret_val;
 1410 
 1411         DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
 1412 
 1413         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
 1414         if (ret_val)
 1415                 return ret_val;
 1416 
 1417         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 1418                        E1000_KMRNCTRLSTA_OFFSET) | data;
 1419         E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
 1420         E1000_WRITE_FLUSH(hw);
 1421 
 1422         usec_delay(2);
 1423 
 1424         e1000_release_mac_csr_80003es2lan(hw);
 1425 
 1426         return ret_val;
 1427 }
 1428 
 1429 /**
 1430  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
 1431  *  @hw: pointer to the HW structure
 1432  **/
 1433 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
 1434 {
 1435         s32 ret_val;
 1436 
 1437         DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
 1438 
 1439         /* If there's an alternate MAC address place it in RAR0
 1440          * so that it will override the Si installed default perm
 1441          * address.
 1442          */
 1443         ret_val = e1000_check_alt_mac_addr_generic(hw);
 1444         if (ret_val)
 1445                 return ret_val;
 1446 
 1447         return e1000_read_mac_addr_generic(hw);
 1448 }
 1449 
 1450 /**
 1451  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
 1452  * @hw: pointer to the HW structure
 1453  *
 1454  * In the case of a PHY power down to save power, or to turn off link during a
 1455  * driver unload, or wake on lan is not enabled, remove the link.
 1456  **/
 1457 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
 1458 {
 1459         /* If the management interface is not enabled, then power down */
 1460         if (!(hw->mac.ops.check_mng_mode(hw) ||
 1461               hw->phy.ops.check_reset_block(hw)))
 1462                 e1000_power_down_phy_copper(hw);
 1463 
 1464         return;
 1465 }
 1466 
 1467 /**
 1468  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
 1469  *  @hw: pointer to the HW structure
 1470  *
 1471  *  Clears the hardware counters by reading the counter registers.
 1472  **/
 1473 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
 1474 {
 1475         DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
 1476 
 1477         e1000_clear_hw_cntrs_base_generic(hw);
 1478 
 1479         E1000_READ_REG(hw, E1000_PRC64);
 1480         E1000_READ_REG(hw, E1000_PRC127);
 1481         E1000_READ_REG(hw, E1000_PRC255);
 1482         E1000_READ_REG(hw, E1000_PRC511);
 1483         E1000_READ_REG(hw, E1000_PRC1023);
 1484         E1000_READ_REG(hw, E1000_PRC1522);
 1485         E1000_READ_REG(hw, E1000_PTC64);
 1486         E1000_READ_REG(hw, E1000_PTC127);
 1487         E1000_READ_REG(hw, E1000_PTC255);
 1488         E1000_READ_REG(hw, E1000_PTC511);
 1489         E1000_READ_REG(hw, E1000_PTC1023);
 1490         E1000_READ_REG(hw, E1000_PTC1522);
 1491 
 1492         E1000_READ_REG(hw, E1000_ALGNERRC);
 1493         E1000_READ_REG(hw, E1000_RXERRC);
 1494         E1000_READ_REG(hw, E1000_TNCRS);
 1495         E1000_READ_REG(hw, E1000_CEXTERR);
 1496         E1000_READ_REG(hw, E1000_TSCTC);
 1497         E1000_READ_REG(hw, E1000_TSCTFC);
 1498 
 1499         E1000_READ_REG(hw, E1000_MGTPRC);
 1500         E1000_READ_REG(hw, E1000_MGTPDC);
 1501         E1000_READ_REG(hw, E1000_MGTPTC);
 1502 
 1503         E1000_READ_REG(hw, E1000_IAC);
 1504         E1000_READ_REG(hw, E1000_ICRXOC);
 1505 
 1506         E1000_READ_REG(hw, E1000_ICRXPTC);
 1507         E1000_READ_REG(hw, E1000_ICRXATC);
 1508         E1000_READ_REG(hw, E1000_ICTXPTC);
 1509         E1000_READ_REG(hw, E1000_ICTXATC);
 1510         E1000_READ_REG(hw, E1000_ICTXQEC);
 1511         E1000_READ_REG(hw, E1000_ICTXQMTC);
 1512         E1000_READ_REG(hw, E1000_ICRXDMTC);
 1513 }

Cache object: a70dbb0101e6f560848ffdfe08e6fd4d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.