1 /******************************************************************************
2 SPDX-License-Identifier: BSD-3-Clause
3
4 Copyright (c) 2001-2020, Intel Corporation
5 All rights reserved.
6
7 Redistribution and use in source and binary forms, with or without
8 modification, are permitted provided that the following conditions are met:
9
10 1. Redistributions of source code must retain the above copyright notice,
11 this list of conditions and the following disclaimer.
12
13 2. Redistributions in binary form must reproduce the above copyright
14 notice, this list of conditions and the following disclaimer in the
15 documentation and/or other materials provided with the distribution.
16
17 3. Neither the name of the Intel Corporation nor the names of its
18 contributors may be used to endorse or promote products derived from
19 this software without specific prior written permission.
20
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 POSSIBILITY OF SUCH DAMAGE.
32
33 ******************************************************************************/
34 /*$FreeBSD$*/
35
36 /*
37 * 82541EI Gigabit Ethernet Controller
38 * 82541ER Gigabit Ethernet Controller
39 * 82541GI Gigabit Ethernet Controller
40 * 82541PI Gigabit Ethernet Controller
41 * 82547EI Gigabit Ethernet Controller
42 * 82547GI Gigabit Ethernet Controller
43 */
44
45 #include "e1000_api.h"
46
47 static s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
48 static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
49 static s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
50 static s32 e1000_reset_hw_82541(struct e1000_hw *hw);
51 static s32 e1000_init_hw_82541(struct e1000_hw *hw);
52 static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
53 u16 *duplex);
54 static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
55 static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
56 static s32 e1000_check_for_link_82541(struct e1000_hw *hw);
57 static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
58 static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
59 bool active);
60 static s32 e1000_setup_led_82541(struct e1000_hw *hw);
61 static s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
62 static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
63 static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw);
64 static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
65 bool link_up);
66 static s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
67 static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
68
69 static const u16 e1000_igp_cable_length_table[] = {
70 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10,
71 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30,
72 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60,
73 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80,
74 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100,
75 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110,
76 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120,
77 120, 120, 120, 120, 120, 120, 120, 120};
78 #define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
79 (sizeof(e1000_igp_cable_length_table) / \
80 sizeof(e1000_igp_cable_length_table[0]))
81
82 /**
83 * e1000_init_phy_params_82541 - Init PHY func ptrs.
84 * @hw: pointer to the HW structure
85 **/
86 static s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
87 {
88 struct e1000_phy_info *phy = &hw->phy;
89 s32 ret_val;
90
91 DEBUGFUNC("e1000_init_phy_params_82541");
92
93 phy->addr = 1;
94 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
95 phy->reset_delay_us = 10000;
96 phy->type = e1000_phy_igp;
97
98 /* Function Pointers */
99 phy->ops.check_polarity = e1000_check_polarity_igp;
100 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
101 phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
102 phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
103 phy->ops.get_info = e1000_get_phy_info_igp;
104 phy->ops.read_reg = e1000_read_phy_reg_igp;
105 phy->ops.reset = e1000_phy_hw_reset_82541;
106 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
107 phy->ops.write_reg = e1000_write_phy_reg_igp;
108 phy->ops.power_up = e1000_power_up_phy_copper;
109 phy->ops.power_down = e1000_power_down_phy_copper_82541;
110
111 ret_val = e1000_get_phy_id(hw);
112 if (ret_val)
113 goto out;
114
115 /* Verify phy id */
116 if (phy->id != IGP01E1000_I_PHY_ID) {
117 ret_val = -E1000_ERR_PHY;
118 goto out;
119 }
120
121 out:
122 return ret_val;
123 }
124
125 /**
126 * e1000_init_nvm_params_82541 - Init NVM func ptrs.
127 * @hw: pointer to the HW structure
128 **/
129 static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
130 {
131 struct e1000_nvm_info *nvm = &hw->nvm;
132 s32 ret_val = E1000_SUCCESS;
133 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
134 u16 size;
135
136 DEBUGFUNC("e1000_init_nvm_params_82541");
137
138 switch (nvm->override) {
139 case e1000_nvm_override_spi_large:
140 nvm->type = e1000_nvm_eeprom_spi;
141 eecd |= E1000_EECD_ADDR_BITS;
142 break;
143 case e1000_nvm_override_spi_small:
144 nvm->type = e1000_nvm_eeprom_spi;
145 eecd &= ~E1000_EECD_ADDR_BITS;
146 break;
147 case e1000_nvm_override_microwire_large:
148 nvm->type = e1000_nvm_eeprom_microwire;
149 eecd |= E1000_EECD_SIZE;
150 break;
151 case e1000_nvm_override_microwire_small:
152 nvm->type = e1000_nvm_eeprom_microwire;
153 eecd &= ~E1000_EECD_SIZE;
154 break;
155 default:
156 nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi
157 : e1000_nvm_eeprom_microwire;
158 break;
159 }
160
161 if (nvm->type == e1000_nvm_eeprom_spi) {
162 nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8;
163 nvm->delay_usec = 1;
164 nvm->opcode_bits = 8;
165 nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8;
166
167 /* Function Pointers */
168 nvm->ops.acquire = e1000_acquire_nvm_generic;
169 nvm->ops.read = e1000_read_nvm_spi;
170 nvm->ops.release = e1000_release_nvm_generic;
171 nvm->ops.update = e1000_update_nvm_checksum_generic;
172 nvm->ops.valid_led_default = e1000_valid_led_default_generic;
173 nvm->ops.validate = e1000_validate_nvm_checksum_generic;
174 nvm->ops.write = e1000_write_nvm_spi;
175
176 /*
177 * nvm->word_size must be discovered after the pointers
178 * are set so we can verify the size from the nvm image
179 * itself. Temporarily set it to a dummy value so the
180 * read will work.
181 */
182 nvm->word_size = 64;
183 ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
184 if (ret_val)
185 goto out;
186 size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
187 /*
188 * if size != 0, it can be added to a constant and become
189 * the left-shift value to set the word_size. Otherwise,
190 * word_size stays at 64.
191 */
192 if (size) {
193 size += NVM_WORD_SIZE_BASE_SHIFT_82541;
194 nvm->word_size = 1 << size;
195 }
196 } else {
197 nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6;
198 nvm->delay_usec = 50;
199 nvm->opcode_bits = 3;
200 nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64;
201
202 /* Function Pointers */
203 nvm->ops.acquire = e1000_acquire_nvm_generic;
204 nvm->ops.read = e1000_read_nvm_microwire;
205 nvm->ops.release = e1000_release_nvm_generic;
206 nvm->ops.update = e1000_update_nvm_checksum_generic;
207 nvm->ops.valid_led_default = e1000_valid_led_default_generic;
208 nvm->ops.validate = e1000_validate_nvm_checksum_generic;
209 nvm->ops.write = e1000_write_nvm_microwire;
210 }
211
212 out:
213 return ret_val;
214 }
215
216 /**
217 * e1000_init_mac_params_82541 - Init MAC func ptrs.
218 * @hw: pointer to the HW structure
219 **/
220 static s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
221 {
222 struct e1000_mac_info *mac = &hw->mac;
223
224 DEBUGFUNC("e1000_init_mac_params_82541");
225
226 /* Set media type */
227 hw->phy.media_type = e1000_media_type_copper;
228 /* Set mta register count */
229 mac->mta_reg_count = 128;
230 /* Set rar entry count */
231 mac->rar_entry_count = E1000_RAR_ENTRIES;
232 /* Set if part includes ASF firmware */
233 mac->asf_firmware_present = true;
234
235 /* Function Pointers */
236
237 /* bus type/speed/width */
238 mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
239 /* function id */
240 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
241 /* reset */
242 mac->ops.reset_hw = e1000_reset_hw_82541;
243 /* hw initialization */
244 mac->ops.init_hw = e1000_init_hw_82541;
245 /* link setup */
246 mac->ops.setup_link = e1000_setup_link_generic;
247 /* physical interface link setup */
248 mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
249 /* check for link */
250 mac->ops.check_for_link = e1000_check_for_link_82541;
251 /* link info */
252 mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
253 /* multicast address update */
254 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
255 /* writing VFTA */
256 mac->ops.write_vfta = e1000_write_vfta_generic;
257 /* clearing VFTA */
258 mac->ops.clear_vfta = e1000_clear_vfta_generic;
259 /* read mac address */
260 mac->ops.read_mac_addr = e1000_read_mac_addr_82541;
261 /* ID LED init */
262 mac->ops.id_led_init = e1000_id_led_init_generic;
263 /* setup LED */
264 mac->ops.setup_led = e1000_setup_led_82541;
265 /* cleanup LED */
266 mac->ops.cleanup_led = e1000_cleanup_led_82541;
267 /* turn on/off LED */
268 mac->ops.led_on = e1000_led_on_generic;
269 mac->ops.led_off = e1000_led_off_generic;
270 /* clear hardware counters */
271 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
272
273 return E1000_SUCCESS;
274 }
275
276 /**
277 * e1000_init_function_pointers_82541 - Init func ptrs.
278 * @hw: pointer to the HW structure
279 *
280 * Called to initialize all function pointers and parameters.
281 **/
282 void e1000_init_function_pointers_82541(struct e1000_hw *hw)
283 {
284 DEBUGFUNC("e1000_init_function_pointers_82541");
285
286 hw->mac.ops.init_params = e1000_init_mac_params_82541;
287 hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
288 hw->phy.ops.init_params = e1000_init_phy_params_82541;
289 }
290
291 /**
292 * e1000_reset_hw_82541 - Reset hardware
293 * @hw: pointer to the HW structure
294 *
295 * This resets the hardware into a known state.
296 **/
297 static s32 e1000_reset_hw_82541(struct e1000_hw *hw)
298 {
299 u32 ledctl, ctrl, manc;
300
301 DEBUGFUNC("e1000_reset_hw_82541");
302
303 DEBUGOUT("Masking off all interrupts\n");
304 E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
305
306 E1000_WRITE_REG(hw, E1000_RCTL, 0);
307 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
308 E1000_WRITE_FLUSH(hw);
309
310 /*
311 * Delay to allow any outstanding PCI transactions to complete
312 * before resetting the device.
313 */
314 msec_delay(10);
315
316 ctrl = E1000_READ_REG(hw, E1000_CTRL);
317
318 /* Must reset the Phy before resetting the MAC */
319 if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
320 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
321 E1000_WRITE_FLUSH(hw);
322 msec_delay(5);
323 }
324
325 DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
326 switch (hw->mac.type) {
327 case e1000_82541:
328 case e1000_82541_rev_2:
329 /*
330 * These controllers can't ack the 64-bit write when
331 * issuing the reset, so we use IO-mapping as a
332 * workaround to issue the reset.
333 */
334 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
335 break;
336 default:
337 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
338 break;
339 }
340
341 /* Wait for NVM reload */
342 msec_delay(20);
343
344 /* Disable HW ARPs on ASF enabled adapters */
345 manc = E1000_READ_REG(hw, E1000_MANC);
346 manc &= ~E1000_MANC_ARP_EN;
347 E1000_WRITE_REG(hw, E1000_MANC, manc);
348
349 if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
350 e1000_phy_init_script_82541(hw);
351
352 /* Configure activity LED after Phy reset */
353 ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
354 ledctl &= IGP_ACTIVITY_LED_MASK;
355 ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
356 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
357 }
358
359 /* Once again, mask the interrupts */
360 DEBUGOUT("Masking off all interrupts\n");
361 E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
362
363 /* Clear any pending interrupt events. */
364 E1000_READ_REG(hw, E1000_ICR);
365
366 return E1000_SUCCESS;
367 }
368
369 /**
370 * e1000_init_hw_82541 - Initialize hardware
371 * @hw: pointer to the HW structure
372 *
373 * This inits the hardware readying it for operation.
374 **/
375 static s32 e1000_init_hw_82541(struct e1000_hw *hw)
376 {
377 struct e1000_mac_info *mac = &hw->mac;
378 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
379 u32 i, txdctl;
380 s32 ret_val;
381
382 DEBUGFUNC("e1000_init_hw_82541");
383
384 /* Initialize identification LED */
385 ret_val = mac->ops.id_led_init(hw);
386 if (ret_val) {
387 DEBUGOUT("Error initializing identification LED\n");
388 /* This is not fatal and we should not stop init due to this */
389 }
390
391 /* Storing the Speed Power Down value for later use */
392 ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
393 &dev_spec->spd_default);
394 if (ret_val)
395 goto out;
396
397 /* Disabling VLAN filtering */
398 DEBUGOUT("Initializing the IEEE VLAN\n");
399 mac->ops.clear_vfta(hw);
400
401 /* Setup the receive address. */
402 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
403
404 /* Zero out the Multicast HASH table */
405 DEBUGOUT("Zeroing the MTA\n");
406 for (i = 0; i < mac->mta_reg_count; i++) {
407 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
408 /*
409 * Avoid back to back register writes by adding the register
410 * read (flush). This is to protect against some strange
411 * bridge configurations that may issue Memory Write Block
412 * (MWB) to our register space.
413 */
414 E1000_WRITE_FLUSH(hw);
415 }
416
417 /* Setup link and flow control */
418 ret_val = mac->ops.setup_link(hw);
419
420 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
421 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
422 E1000_TXDCTL_FULL_TX_DESC_WB;
423 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
424
425 /*
426 * Clear all of the statistics registers (clear on read). It is
427 * important that we do this after we have tried to establish link
428 * because the symbol error count will increment wildly if there
429 * is no link.
430 */
431 e1000_clear_hw_cntrs_82541(hw);
432
433 out:
434 return ret_val;
435 }
436
437 /**
438 * e1000_get_link_up_info_82541 - Report speed and duplex
439 * @hw: pointer to the HW structure
440 * @speed: pointer to speed buffer
441 * @duplex: pointer to duplex buffer
442 *
443 * Retrieve the current speed and duplex configuration.
444 **/
445 static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
446 u16 *duplex)
447 {
448 struct e1000_phy_info *phy = &hw->phy;
449 s32 ret_val;
450 u16 data;
451
452 DEBUGFUNC("e1000_get_link_up_info_82541");
453
454 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
455 if (ret_val)
456 goto out;
457
458 if (!phy->speed_downgraded)
459 goto out;
460
461 /*
462 * IGP01 PHY may advertise full duplex operation after speed
463 * downgrade even if it is operating at half duplex.
464 * Here we set the duplex settings to match the duplex in the
465 * link partner's capabilities.
466 */
467 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
468 if (ret_val)
469 goto out;
470
471 if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
472 *duplex = HALF_DUPLEX;
473 } else {
474 ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
475 if (ret_val)
476 goto out;
477
478 if (*speed == SPEED_100) {
479 if (!(data & NWAY_LPAR_100TX_FD_CAPS))
480 *duplex = HALF_DUPLEX;
481 } else if (*speed == SPEED_10) {
482 if (!(data & NWAY_LPAR_10T_FD_CAPS))
483 *duplex = HALF_DUPLEX;
484 }
485 }
486
487 out:
488 return ret_val;
489 }
490
491 /**
492 * e1000_phy_hw_reset_82541 - PHY hardware reset
493 * @hw: pointer to the HW structure
494 *
495 * Verify the reset block is not blocking us from resetting. Acquire
496 * semaphore (if necessary) and read/set/write the device control reset
497 * bit in the PHY. Wait the appropriate delay time for the device to
498 * reset and release the semaphore (if necessary).
499 **/
500 static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
501 {
502 s32 ret_val;
503 u32 ledctl;
504
505 DEBUGFUNC("e1000_phy_hw_reset_82541");
506
507 ret_val = e1000_phy_hw_reset_generic(hw);
508 if (ret_val)
509 goto out;
510
511 e1000_phy_init_script_82541(hw);
512
513 if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
514 /* Configure activity LED after PHY reset */
515 ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
516 ledctl &= IGP_ACTIVITY_LED_MASK;
517 ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
518 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
519 }
520
521 out:
522 return ret_val;
523 }
524
525 /**
526 * e1000_setup_copper_link_82541 - Configure copper link settings
527 * @hw: pointer to the HW structure
528 *
529 * Calls the appropriate function to configure the link for auto-neg or forced
530 * speed and duplex. Then we check for link, once link is established calls
531 * to configure collision distance and flow control are called. If link is
532 * not established, we return -E1000_ERR_PHY (-2).
533 **/
534 static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
535 {
536 struct e1000_phy_info *phy = &hw->phy;
537 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
538 s32 ret_val;
539 u32 ctrl, ledctl;
540
541 DEBUGFUNC("e1000_setup_copper_link_82541");
542
543 ctrl = E1000_READ_REG(hw, E1000_CTRL);
544 ctrl |= E1000_CTRL_SLU;
545 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
546 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
547
548
549 /* Earlier revs of the IGP phy require us to force MDI. */
550 if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
551 dev_spec->dsp_config = e1000_dsp_config_disabled;
552 phy->mdix = 1;
553 } else {
554 dev_spec->dsp_config = e1000_dsp_config_enabled;
555 }
556
557 ret_val = e1000_copper_link_setup_igp(hw);
558 if (ret_val)
559 goto out;
560
561 if (hw->mac.autoneg) {
562 if (dev_spec->ffe_config == e1000_ffe_config_active)
563 dev_spec->ffe_config = e1000_ffe_config_enabled;
564 }
565
566 /* Configure activity LED after Phy reset */
567 ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
568 ledctl &= IGP_ACTIVITY_LED_MASK;
569 ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
570 E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
571
572 ret_val = e1000_setup_copper_link_generic(hw);
573
574 out:
575 return ret_val;
576 }
577
578 /**
579 * e1000_check_for_link_82541 - Check/Store link connection
580 * @hw: pointer to the HW structure
581 *
582 * This checks the link condition of the adapter and stores the
583 * results in the hw->mac structure.
584 **/
585 static s32 e1000_check_for_link_82541(struct e1000_hw *hw)
586 {
587 struct e1000_mac_info *mac = &hw->mac;
588 s32 ret_val;
589 bool link;
590
591 DEBUGFUNC("e1000_check_for_link_82541");
592
593 /*
594 * We only want to go out to the PHY registers to see if Auto-Neg
595 * has completed and/or if our link status has changed. The
596 * get_link_status flag is set upon receiving a Link Status
597 * Change or Rx Sequence Error interrupt.
598 */
599 if (!mac->get_link_status) {
600 ret_val = E1000_SUCCESS;
601 goto out;
602 }
603
604 /*
605 * First we want to see if the MII Status Register reports
606 * link. If so, then we want to get the current speed/duplex
607 * of the PHY.
608 */
609 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
610 if (ret_val)
611 goto out;
612
613 if (!link) {
614 ret_val = e1000_config_dsp_after_link_change_82541(hw, false);
615 goto out; /* No link detected */
616 }
617
618 mac->get_link_status = false;
619
620 /*
621 * Check if there was DownShift, must be checked
622 * immediately after link-up
623 */
624 e1000_check_downshift_generic(hw);
625
626 /*
627 * If we are forcing speed/duplex, then we simply return since
628 * we have already determined whether we have link or not.
629 */
630 if (!mac->autoneg) {
631 ret_val = -E1000_ERR_CONFIG;
632 goto out;
633 }
634
635 ret_val = e1000_config_dsp_after_link_change_82541(hw, true);
636
637 /*
638 * Auto-Neg is enabled. Auto Speed Detection takes care
639 * of MAC speed/duplex configuration. So we only need to
640 * configure Collision Distance in the MAC.
641 */
642 mac->ops.config_collision_dist(hw);
643
644 /*
645 * Configure Flow Control now that Auto-Neg has completed.
646 * First, we need to restore the desired flow control
647 * settings because we may have had to re-autoneg with a
648 * different link partner.
649 */
650 ret_val = e1000_config_fc_after_link_up_generic(hw);
651 if (ret_val)
652 DEBUGOUT("Error configuring flow control\n");
653
654 out:
655 return ret_val;
656 }
657
658 /**
659 * e1000_config_dsp_after_link_change_82541 - Config DSP after link
660 * @hw: pointer to the HW structure
661 * @link_up: boolean flag for link up status
662 *
663 * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
664 * at any other case.
665 *
666 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
667 * gigabit link is achieved to improve link quality.
668 **/
669 static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
670 bool link_up)
671 {
672 struct e1000_phy_info *phy = &hw->phy;
673 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
674 s32 ret_val;
675 u32 idle_errs = 0;
676 u16 phy_data, phy_saved_data, speed, duplex, i;
677 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
678 u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
679 IGP01E1000_PHY_AGC_PARAM_A,
680 IGP01E1000_PHY_AGC_PARAM_B,
681 IGP01E1000_PHY_AGC_PARAM_C,
682 IGP01E1000_PHY_AGC_PARAM_D};
683
684 DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
685
686 if (link_up) {
687 ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
688 if (ret_val) {
689 DEBUGOUT("Error getting link speed and duplex\n");
690 goto out;
691 }
692
693 if (speed != SPEED_1000) {
694 ret_val = E1000_SUCCESS;
695 goto out;
696 }
697
698 ret_val = phy->ops.get_cable_length(hw);
699 if (ret_val)
700 goto out;
701
702 if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
703 phy->min_cable_length >= 50) {
704
705 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
706 ret_val = phy->ops.read_reg(hw,
707 dsp_reg_array[i],
708 &phy_data);
709 if (ret_val)
710 goto out;
711
712 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
713
714 ret_val = phy->ops.write_reg(hw,
715 dsp_reg_array[i],
716 phy_data);
717 if (ret_val)
718 goto out;
719 }
720 dev_spec->dsp_config = e1000_dsp_config_activated;
721 }
722
723 if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
724 (phy->min_cable_length >= 50)) {
725 ret_val = E1000_SUCCESS;
726 goto out;
727 }
728
729 /* clear previous idle error counts */
730 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
731 if (ret_val)
732 goto out;
733
734 for (i = 0; i < ffe_idle_err_timeout; i++) {
735 usec_delay(1000);
736 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS,
737 &phy_data);
738 if (ret_val)
739 goto out;
740
741 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
742 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
743 dev_spec->ffe_config = e1000_ffe_config_active;
744
745 ret_val = phy->ops.write_reg(hw,
746 IGP01E1000_PHY_DSP_FFE,
747 IGP01E1000_PHY_DSP_FFE_CM_CP);
748 if (ret_val)
749 goto out;
750 break;
751 }
752
753 if (idle_errs)
754 ffe_idle_err_timeout =
755 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
756 }
757 } else {
758 if (dev_spec->dsp_config == e1000_dsp_config_activated) {
759 /*
760 * Save off the current value of register 0x2F5B
761 * to be restored at the end of the routines.
762 */
763 ret_val = phy->ops.read_reg(hw, 0x2F5B,
764 &phy_saved_data);
765 if (ret_val)
766 goto out;
767
768 /* Disable the PHY transmitter */
769 ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
770 if (ret_val)
771 goto out;
772
773 msec_delay_irq(20);
774
775 ret_val = phy->ops.write_reg(hw, 0x0000,
776 IGP01E1000_IEEE_FORCE_GIG);
777 if (ret_val)
778 goto out;
779 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
780 ret_val = phy->ops.read_reg(hw,
781 dsp_reg_array[i],
782 &phy_data);
783 if (ret_val)
784 goto out;
785
786 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
787 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
788
789 ret_val = phy->ops.write_reg(hw,
790 dsp_reg_array[i],
791 phy_data);
792 if (ret_val)
793 goto out;
794 }
795
796 ret_val = phy->ops.write_reg(hw, 0x0000,
797 IGP01E1000_IEEE_RESTART_AUTONEG);
798 if (ret_val)
799 goto out;
800
801 msec_delay_irq(20);
802
803 /* Now enable the transmitter */
804 ret_val = phy->ops.write_reg(hw, 0x2F5B,
805 phy_saved_data);
806 if (ret_val)
807 goto out;
808
809 dev_spec->dsp_config = e1000_dsp_config_enabled;
810 }
811
812 if (dev_spec->ffe_config != e1000_ffe_config_active) {
813 ret_val = E1000_SUCCESS;
814 goto out;
815 }
816
817 /*
818 * Save off the current value of register 0x2F5B
819 * to be restored at the end of the routines.
820 */
821 ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
822 if (ret_val)
823 goto out;
824
825 /* Disable the PHY transmitter */
826 ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
827 if (ret_val)
828 goto out;
829
830 msec_delay_irq(20);
831
832 ret_val = phy->ops.write_reg(hw, 0x0000,
833 IGP01E1000_IEEE_FORCE_GIG);
834 if (ret_val)
835 goto out;
836
837 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE,
838 IGP01E1000_PHY_DSP_FFE_DEFAULT);
839 if (ret_val)
840 goto out;
841
842 ret_val = phy->ops.write_reg(hw, 0x0000,
843 IGP01E1000_IEEE_RESTART_AUTONEG);
844 if (ret_val)
845 goto out;
846
847 msec_delay_irq(20);
848
849 /* Now enable the transmitter */
850 ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
851
852 if (ret_val)
853 goto out;
854
855 dev_spec->ffe_config = e1000_ffe_config_enabled;
856 }
857
858 out:
859 return ret_val;
860 }
861
862 /**
863 * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
864 * @hw: pointer to the HW structure
865 *
866 * The automatic gain control (agc) normalizes the amplitude of the
867 * received signal, adjusting for the attenuation produced by the
868 * cable. By reading the AGC registers, which represent the
869 * combination of coarse and fine gain value, the value can be put
870 * into a lookup table to obtain the approximate cable length
871 * for each channel.
872 **/
873 static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
874 {
875 struct e1000_phy_info *phy = &hw->phy;
876 s32 ret_val = E1000_SUCCESS;
877 u16 i, data;
878 u16 cur_agc_value, agc_value = 0;
879 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
880 u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A,
881 IGP01E1000_PHY_AGC_B,
882 IGP01E1000_PHY_AGC_C,
883 IGP01E1000_PHY_AGC_D};
884
885 DEBUGFUNC("e1000_get_cable_length_igp_82541");
886
887 /* Read the AGC registers for all channels */
888 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
889 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
890 if (ret_val)
891 goto out;
892
893 cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
894
895 /* Bounds checking */
896 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
897 (cur_agc_value == 0)) {
898 ret_val = -E1000_ERR_PHY;
899 goto out;
900 }
901
902 agc_value += cur_agc_value;
903
904 if (min_agc_value > cur_agc_value)
905 min_agc_value = cur_agc_value;
906 }
907
908 /* Remove the minimal AGC result for length < 50m */
909 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
910 agc_value -= min_agc_value;
911 /* Average the three remaining channels for the length. */
912 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
913 } else {
914 /* Average the channels for the length. */
915 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
916 }
917
918 phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
919 IGP01E1000_AGC_RANGE)
920 ? (e1000_igp_cable_length_table[agc_value] -
921 IGP01E1000_AGC_RANGE)
922 : 0;
923 phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
924 IGP01E1000_AGC_RANGE;
925
926 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
927
928 out:
929 return ret_val;
930 }
931
932 /**
933 * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
934 * @hw: pointer to the HW structure
935 * @active: boolean used to enable/disable lplu
936 *
937 * Success returns 0, Failure returns 1
938 *
939 * The low power link up (lplu) state is set to the power management level D3
940 * and SmartSpeed is disabled when active is true, else clear lplu for D3
941 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
942 * is used during Dx states where the power conservation is most important.
943 * During driver activity, SmartSpeed should be enabled so performance is
944 * maintained.
945 **/
946 static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
947 {
948 struct e1000_phy_info *phy = &hw->phy;
949 s32 ret_val;
950 u16 data;
951
952 DEBUGFUNC("e1000_set_d3_lplu_state_82541");
953
954 switch (hw->mac.type) {
955 case e1000_82541_rev_2:
956 case e1000_82547_rev_2:
957 break;
958 default:
959 ret_val = e1000_set_d3_lplu_state_generic(hw, active);
960 goto out;
961 break;
962 }
963
964 ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
965 if (ret_val)
966 goto out;
967
968 if (!active) {
969 data &= ~IGP01E1000_GMII_FLEX_SPD;
970 ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
971 if (ret_val)
972 goto out;
973
974 /*
975 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
976 * during Dx states where the power conservation is most
977 * important. During driver activity we should enable
978 * SmartSpeed, so performance is maintained.
979 */
980 if (phy->smart_speed == e1000_smart_speed_on) {
981 ret_val = phy->ops.read_reg(hw,
982 IGP01E1000_PHY_PORT_CONFIG,
983 &data);
984 if (ret_val)
985 goto out;
986
987 data |= IGP01E1000_PSCFR_SMART_SPEED;
988 ret_val = phy->ops.write_reg(hw,
989 IGP01E1000_PHY_PORT_CONFIG,
990 data);
991 if (ret_val)
992 goto out;
993 } else if (phy->smart_speed == e1000_smart_speed_off) {
994 ret_val = phy->ops.read_reg(hw,
995 IGP01E1000_PHY_PORT_CONFIG,
996 &data);
997 if (ret_val)
998 goto out;
999
1000 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1001 ret_val = phy->ops.write_reg(hw,
1002 IGP01E1000_PHY_PORT_CONFIG,
1003 data);
1004 if (ret_val)
1005 goto out;
1006 }
1007 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1008 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1009 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1010 data |= IGP01E1000_GMII_FLEX_SPD;
1011 ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
1012 if (ret_val)
1013 goto out;
1014
1015 /* When LPLU is enabled, we should disable SmartSpeed */
1016 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1017 &data);
1018 if (ret_val)
1019 goto out;
1020
1021 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1022 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1023 data);
1024 }
1025
1026 out:
1027 return ret_val;
1028 }
1029
1030 /**
1031 * e1000_setup_led_82541 - Configures SW controllable LED
1032 * @hw: pointer to the HW structure
1033 *
1034 * This prepares the SW controllable LED for use and saves the current state
1035 * of the LED so it can be later restored.
1036 **/
1037 static s32 e1000_setup_led_82541(struct e1000_hw *hw)
1038 {
1039 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1040 s32 ret_val;
1041
1042 DEBUGFUNC("e1000_setup_led_82541");
1043
1044 ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO,
1045 &dev_spec->spd_default);
1046 if (ret_val)
1047 goto out;
1048
1049 ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
1050 (u16)(dev_spec->spd_default &
1051 ~IGP01E1000_GMII_SPD));
1052 if (ret_val)
1053 goto out;
1054
1055 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1056
1057 out:
1058 return ret_val;
1059 }
1060
1061 /**
1062 * e1000_cleanup_led_82541 - Set LED config to default operation
1063 * @hw: pointer to the HW structure
1064 *
1065 * Remove the current LED configuration and set the LED configuration
1066 * to the default value, saved from the EEPROM.
1067 **/
1068 static s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
1069 {
1070 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1071 s32 ret_val;
1072
1073 DEBUGFUNC("e1000_cleanup_led_82541");
1074
1075 ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO,
1076 dev_spec->spd_default);
1077 if (ret_val)
1078 goto out;
1079
1080 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1081
1082 out:
1083 return ret_val;
1084 }
1085
1086 /**
1087 * e1000_phy_init_script_82541 - Initialize GbE PHY
1088 * @hw: pointer to the HW structure
1089 *
1090 * Initializes the IGP PHY.
1091 **/
1092 static s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
1093 {
1094 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1095 u32 ret_val;
1096 u16 phy_saved_data;
1097
1098 DEBUGFUNC("e1000_phy_init_script_82541");
1099
1100 if (!dev_spec->phy_init_script) {
1101 ret_val = E1000_SUCCESS;
1102 goto out;
1103 }
1104
1105 /* Delay after phy reset to enable NVM configuration to load */
1106 msec_delay(20);
1107
1108 /*
1109 * Save off the current value of register 0x2F5B to be restored at
1110 * the end of this routine.
1111 */
1112 ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
1113
1114 /* Disabled the PHY transmitter */
1115 hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
1116
1117 msec_delay(20);
1118
1119 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
1120
1121 msec_delay(5);
1122
1123 switch (hw->mac.type) {
1124 case e1000_82541:
1125 case e1000_82547:
1126 hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
1127
1128 hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
1129
1130 hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
1131
1132 hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
1133
1134 hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
1135
1136 hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
1137
1138 hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
1139
1140 hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
1141
1142 hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
1143 break;
1144 case e1000_82541_rev_2:
1145 case e1000_82547_rev_2:
1146 hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
1147 break;
1148 default:
1149 break;
1150 }
1151
1152 hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
1153
1154 msec_delay(20);
1155
1156 /* Now enable the transmitter */
1157 hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
1158
1159 if (hw->mac.type == e1000_82547) {
1160 u16 fused, fine, coarse;
1161
1162 /* Move to analog registers page */
1163 hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
1164 &fused);
1165
1166 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
1167 hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS,
1168 &fused);
1169
1170 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
1171 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
1172
1173 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
1174 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
1175 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
1176 } else if (coarse ==
1177 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
1178 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
1179
1180 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
1181 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
1182 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
1183
1184 hw->phy.ops.write_reg(hw,
1185 IGP01E1000_ANALOG_FUSE_CONTROL,
1186 fused);
1187 hw->phy.ops.write_reg(hw,
1188 IGP01E1000_ANALOG_FUSE_BYPASS,
1189 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
1190 }
1191 }
1192
1193 out:
1194 return ret_val;
1195 }
1196
1197 /**
1198 * e1000_init_script_state_82541 - Enable/Disable PHY init script
1199 * @hw: pointer to the HW structure
1200 * @state: boolean value used to enable/disable PHY init script
1201 *
1202 * Allows the driver to enable/disable the PHY init script, if the PHY is an
1203 * IGP PHY.
1204 **/
1205 void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
1206 {
1207 struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
1208
1209 DEBUGFUNC("e1000_init_script_state_82541");
1210
1211 if (hw->phy.type != e1000_phy_igp) {
1212 DEBUGOUT("Initialization script not necessary.\n");
1213 goto out;
1214 }
1215
1216 dev_spec->phy_init_script = state;
1217
1218 out:
1219 return;
1220 }
1221
1222 /**
1223 * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
1224 * @hw: pointer to the HW structure
1225 *
1226 * In the case of a PHY power down to save power, or to turn off link during a
1227 * driver unload, or wake on lan is not enabled, remove the link.
1228 **/
1229 static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
1230 {
1231 /* If the management interface is not enabled, then power down */
1232 if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
1233 e1000_power_down_phy_copper(hw);
1234
1235 return;
1236 }
1237
1238 /**
1239 * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
1240 * @hw: pointer to the HW structure
1241 *
1242 * Clears the hardware counters by reading the counter registers.
1243 **/
1244 static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
1245 {
1246 DEBUGFUNC("e1000_clear_hw_cntrs_82541");
1247
1248 e1000_clear_hw_cntrs_base_generic(hw);
1249
1250 E1000_READ_REG(hw, E1000_PRC64);
1251 E1000_READ_REG(hw, E1000_PRC127);
1252 E1000_READ_REG(hw, E1000_PRC255);
1253 E1000_READ_REG(hw, E1000_PRC511);
1254 E1000_READ_REG(hw, E1000_PRC1023);
1255 E1000_READ_REG(hw, E1000_PRC1522);
1256 E1000_READ_REG(hw, E1000_PTC64);
1257 E1000_READ_REG(hw, E1000_PTC127);
1258 E1000_READ_REG(hw, E1000_PTC255);
1259 E1000_READ_REG(hw, E1000_PTC511);
1260 E1000_READ_REG(hw, E1000_PTC1023);
1261 E1000_READ_REG(hw, E1000_PTC1522);
1262
1263 E1000_READ_REG(hw, E1000_ALGNERRC);
1264 E1000_READ_REG(hw, E1000_RXERRC);
1265 E1000_READ_REG(hw, E1000_TNCRS);
1266 E1000_READ_REG(hw, E1000_CEXTERR);
1267 E1000_READ_REG(hw, E1000_TSCTC);
1268 E1000_READ_REG(hw, E1000_TSCTFC);
1269
1270 E1000_READ_REG(hw, E1000_MGTPRC);
1271 E1000_READ_REG(hw, E1000_MGTPDC);
1272 E1000_READ_REG(hw, E1000_MGTPTC);
1273 }
1274
1275 /**
1276 * e1000_read_mac_addr_82541 - Read device MAC address
1277 * @hw: pointer to the HW structure
1278 *
1279 * Reads the device MAC address from the EEPROM and stores the value.
1280 **/
1281 static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw)
1282 {
1283 s32 ret_val = E1000_SUCCESS;
1284 u16 offset, nvm_data, i;
1285
1286 DEBUGFUNC("e1000_read_mac_addr");
1287
1288 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1289 offset = i >> 1;
1290 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
1291 if (ret_val) {
1292 DEBUGOUT("NVM Read Error\n");
1293 goto out;
1294 }
1295 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
1296 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
1297 }
1298
1299 for (i = 0; i < ETHER_ADDR_LEN; i++)
1300 hw->mac.addr[i] = hw->mac.perm_addr[i];
1301
1302 out:
1303 return ret_val;
1304 }
1305
Cache object: 701c859ab62af10194d857cb39c69232
|