The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/dev/e1000/e1000_82543.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /******************************************************************************
    2   SPDX-License-Identifier: BSD-3-Clause
    3 
    4   Copyright (c) 2001-2020, Intel Corporation
    5   All rights reserved.
    6 
    7   Redistribution and use in source and binary forms, with or without
    8   modification, are permitted provided that the following conditions are met:
    9 
   10    1. Redistributions of source code must retain the above copyright notice,
   11       this list of conditions and the following disclaimer.
   12 
   13    2. Redistributions in binary form must reproduce the above copyright
   14       notice, this list of conditions and the following disclaimer in the
   15       documentation and/or other materials provided with the distribution.
   16 
   17    3. Neither the name of the Intel Corporation nor the names of its
   18       contributors may be used to endorse or promote products derived from
   19       this software without specific prior written permission.
   20 
   21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
   22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
   25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   31   POSSIBILITY OF SUCH DAMAGE.
   32 
   33 ******************************************************************************/
   34 /*$FreeBSD$*/
   35 
   36 /*
   37  * 82543GC Gigabit Ethernet Controller (Fiber)
   38  * 82543GC Gigabit Ethernet Controller (Copper)
   39  * 82544EI Gigabit Ethernet Controller (Copper)
   40  * 82544EI Gigabit Ethernet Controller (Fiber)
   41  * 82544GC Gigabit Ethernet Controller (Copper)
   42  * 82544GC Gigabit Ethernet Controller (LOM)
   43  */
   44 
   45 #include "e1000_api.h"
   46 
   47 static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
   48 static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
   49 static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
   50 static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
   51                                      u16 *data);
   52 static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
   53                                       u16 data);
   54 static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
   55 static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
   56 static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
   57 static s32  e1000_init_hw_82543(struct e1000_hw *hw);
   58 static s32  e1000_setup_link_82543(struct e1000_hw *hw);
   59 static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
   60 static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
   61 static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
   62 static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
   63 static s32  e1000_led_on_82543(struct e1000_hw *hw);
   64 static s32  e1000_led_off_82543(struct e1000_hw *hw);
   65 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
   66                                    u32 value);
   67 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
   68 static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
   69 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
   70 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
   71 static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
   72 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
   73 static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
   74 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
   75                                            u16 count);
   76 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
   77 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
   78 static s32  e1000_read_mac_addr_82543(struct e1000_hw *hw);
   79 
   80 
   81 /**
   82  *  e1000_init_phy_params_82543 - Init PHY func ptrs.
   83  *  @hw: pointer to the HW structure
   84  **/
   85 static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
   86 {
   87         struct e1000_phy_info *phy = &hw->phy;
   88         s32 ret_val = E1000_SUCCESS;
   89 
   90         DEBUGFUNC("e1000_init_phy_params_82543");
   91 
   92         if (hw->phy.media_type != e1000_media_type_copper) {
   93                 phy->type = e1000_phy_none;
   94                 goto out;
   95         } else {
   96                 phy->ops.power_up = e1000_power_up_phy_copper;
   97                 phy->ops.power_down = e1000_power_down_phy_copper;
   98         }
   99 
  100         phy->addr               = 1;
  101         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  102         phy->reset_delay_us     = 10000;
  103         phy->type               = e1000_phy_m88;
  104 
  105         /* Function Pointers */
  106         phy->ops.check_polarity = e1000_check_polarity_m88;
  107         phy->ops.commit         = e1000_phy_sw_reset_generic;
  108         phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543;
  109         phy->ops.get_cable_length = e1000_get_cable_length_m88;
  110         phy->ops.get_cfg_done   = e1000_get_cfg_done_generic;
  111         phy->ops.read_reg       = (hw->mac.type == e1000_82543)
  112                                   ? e1000_read_phy_reg_82543
  113                                   : e1000_read_phy_reg_m88;
  114         phy->ops.reset          = (hw->mac.type == e1000_82543)
  115                                   ? e1000_phy_hw_reset_82543
  116                                   : e1000_phy_hw_reset_generic;
  117         phy->ops.write_reg      = (hw->mac.type == e1000_82543)
  118                                   ? e1000_write_phy_reg_82543
  119                                   : e1000_write_phy_reg_m88;
  120         phy->ops.get_info       = e1000_get_phy_info_m88;
  121 
  122         /*
  123          * The external PHY of the 82543 can be in a funky state.
  124          * Resetting helps us read the PHY registers for acquiring
  125          * the PHY ID.
  126          */
  127         if (!e1000_init_phy_disabled_82543(hw)) {
  128                 ret_val = phy->ops.reset(hw);
  129                 if (ret_val) {
  130                         DEBUGOUT("Resetting PHY during init failed.\n");
  131                         goto out;
  132                 }
  133                 msec_delay(20);
  134         }
  135 
  136         ret_val = e1000_get_phy_id(hw);
  137         if (ret_val)
  138                 goto out;
  139 
  140         /* Verify phy id */
  141         switch (hw->mac.type) {
  142         case e1000_82543:
  143                 if (phy->id != M88E1000_E_PHY_ID) {
  144                         ret_val = -E1000_ERR_PHY;
  145                         goto out;
  146                 }
  147                 break;
  148         case e1000_82544:
  149                 if (phy->id != M88E1000_I_PHY_ID) {
  150                         ret_val = -E1000_ERR_PHY;
  151                         goto out;
  152                 }
  153                 break;
  154         default:
  155                 ret_val = -E1000_ERR_PHY;
  156                 goto out;
  157                 break;
  158         }
  159 
  160 out:
  161         return ret_val;
  162 }
  163 
  164 /**
  165  *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
  166  *  @hw: pointer to the HW structure
  167  **/
  168 static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
  169 {
  170         struct e1000_nvm_info *nvm = &hw->nvm;
  171 
  172         DEBUGFUNC("e1000_init_nvm_params_82543");
  173 
  174         nvm->type               = e1000_nvm_eeprom_microwire;
  175         nvm->word_size          = 64;
  176         nvm->delay_usec         = 50;
  177         nvm->address_bits       =  6;
  178         nvm->opcode_bits        =  3;
  179 
  180         /* Function Pointers */
  181         nvm->ops.read           = e1000_read_nvm_microwire;
  182         nvm->ops.update         = e1000_update_nvm_checksum_generic;
  183         nvm->ops.valid_led_default = e1000_valid_led_default_generic;
  184         nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
  185         nvm->ops.write          = e1000_write_nvm_microwire;
  186 
  187         return E1000_SUCCESS;
  188 }
  189 
  190 /**
  191  *  e1000_init_mac_params_82543 - Init MAC func ptrs.
  192  *  @hw: pointer to the HW structure
  193  **/
  194 static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
  195 {
  196         struct e1000_mac_info *mac = &hw->mac;
  197 
  198         DEBUGFUNC("e1000_init_mac_params_82543");
  199 
  200         /* Set media type */
  201         switch (hw->device_id) {
  202         case E1000_DEV_ID_82543GC_FIBER:
  203         case E1000_DEV_ID_82544EI_FIBER:
  204                 hw->phy.media_type = e1000_media_type_fiber;
  205                 break;
  206         default:
  207                 hw->phy.media_type = e1000_media_type_copper;
  208                 break;
  209         }
  210 
  211         /* Set mta register count */
  212         mac->mta_reg_count = 128;
  213         /* Set rar entry count */
  214         mac->rar_entry_count = E1000_RAR_ENTRIES;
  215 
  216         /* Function pointers */
  217 
  218         /* bus type/speed/width */
  219         mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
  220         /* function id */
  221         mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
  222         /* reset */
  223         mac->ops.reset_hw = e1000_reset_hw_82543;
  224         /* hw initialization */
  225         mac->ops.init_hw = e1000_init_hw_82543;
  226         /* link setup */
  227         mac->ops.setup_link = e1000_setup_link_82543;
  228         /* physical interface setup */
  229         mac->ops.setup_physical_interface =
  230                 (hw->phy.media_type == e1000_media_type_copper)
  231                  ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543;
  232         /* check for link */
  233         mac->ops.check_for_link =
  234                 (hw->phy.media_type == e1000_media_type_copper)
  235                  ? e1000_check_for_copper_link_82543
  236                  : e1000_check_for_fiber_link_82543;
  237         /* link info */
  238         mac->ops.get_link_up_info =
  239                 (hw->phy.media_type == e1000_media_type_copper)
  240                  ? e1000_get_speed_and_duplex_copper_generic
  241                  : e1000_get_speed_and_duplex_fiber_serdes_generic;
  242         /* multicast address update */
  243         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
  244         /* writing VFTA */
  245         mac->ops.write_vfta = e1000_write_vfta_82543;
  246         /* clearing VFTA */
  247         mac->ops.clear_vfta = e1000_clear_vfta_generic;
  248         /* read mac address */
  249         mac->ops.read_mac_addr = e1000_read_mac_addr_82543;
  250         /* turn on/off LED */
  251         mac->ops.led_on = e1000_led_on_82543;
  252         mac->ops.led_off = e1000_led_off_82543;
  253         /* clear hardware counters */
  254         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
  255 
  256         /* Set tbi compatibility */
  257         if ((hw->mac.type != e1000_82543) ||
  258             (hw->phy.media_type == e1000_media_type_fiber))
  259                 e1000_set_tbi_compatibility_82543(hw, false);
  260 
  261         return E1000_SUCCESS;
  262 }
  263 
  264 /**
  265  *  e1000_init_function_pointers_82543 - Init func ptrs.
  266  *  @hw: pointer to the HW structure
  267  *
  268  *  Called to initialize all function pointers and parameters.
  269  **/
  270 void e1000_init_function_pointers_82543(struct e1000_hw *hw)
  271 {
  272         DEBUGFUNC("e1000_init_function_pointers_82543");
  273 
  274         hw->mac.ops.init_params = e1000_init_mac_params_82543;
  275         hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
  276         hw->phy.ops.init_params = e1000_init_phy_params_82543;
  277 }
  278 
  279 /**
  280  *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
  281  *  @hw: pointer to the HW structure
  282  *
  283  *  Returns the current status of 10-bit Interface (TBI) compatibility
  284  *  (enabled/disabled).
  285  **/
  286 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
  287 {
  288         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  289         bool state = false;
  290 
  291         DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
  292 
  293         if (hw->mac.type != e1000_82543) {
  294                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  295                 goto out;
  296         }
  297 
  298         state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED);
  299 
  300 out:
  301         return state;
  302 }
  303 
  304 /**
  305  *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
  306  *  @hw: pointer to the HW structure
  307  *  @state: enable/disable TBI compatibility
  308  *
  309  *  Enables or disabled 10-bit Interface (TBI) compatibility.
  310  **/
  311 void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
  312 {
  313         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  314 
  315         DEBUGFUNC("e1000_set_tbi_compatibility_82543");
  316 
  317         if (hw->mac.type != e1000_82543) {
  318                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  319                 goto out;
  320         }
  321 
  322         if (state)
  323                 dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
  324         else
  325                 dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
  326 
  327 out:
  328         return;
  329 }
  330 
  331 /**
  332  *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
  333  *  @hw: pointer to the HW structure
  334  *
  335  *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
  336  *  (enabled/disabled).
  337  **/
  338 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
  339 {
  340         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  341         bool state = false;
  342 
  343         DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
  344 
  345         if (hw->mac.type != e1000_82543) {
  346                 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
  347                 goto out;
  348         }
  349 
  350         state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED);
  351 
  352 out:
  353         return state;
  354 }
  355 
  356 /**
  357  *  e1000_set_tbi_sbp_82543 - Set TBI SBP
  358  *  @hw: pointer to the HW structure
  359  *  @state: enable/disable TBI store bad packet
  360  *
  361  *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
  362  **/
  363 static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
  364 {
  365         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  366 
  367         DEBUGFUNC("e1000_set_tbi_sbp_82543");
  368 
  369         if (state && e1000_tbi_compatibility_enabled_82543(hw))
  370                 dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
  371         else
  372                 dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
  373 
  374         return;
  375 }
  376 
  377 /**
  378  *  e1000_init_phy_disabled_82543 - Returns init PHY status
  379  *  @hw: pointer to the HW structure
  380  *
  381  *  Returns the current status of whether PHY initialization is disabled.
  382  *  True if PHY initialization is disabled else false.
  383  **/
  384 static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
  385 {
  386         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  387         bool ret_val;
  388 
  389         DEBUGFUNC("e1000_init_phy_disabled_82543");
  390 
  391         if (hw->mac.type != e1000_82543) {
  392                 ret_val = false;
  393                 goto out;
  394         }
  395 
  396         ret_val = dev_spec->init_phy_disabled;
  397 
  398 out:
  399         return ret_val;
  400 }
  401 
  402 /**
  403  *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
  404  *  @hw: pointer to the HW structure
  405  *  @stats: Struct containing statistic register values
  406  *  @frame_len: The length of the frame in question
  407  *  @mac_addr: The Ethernet destination address of the frame in question
  408  *  @max_frame_size: The maximum frame size
  409  *
  410  *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
  411  **/
  412 void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
  413                                   struct e1000_hw_stats *stats, u32 frame_len,
  414                                   u8 *mac_addr, u32 max_frame_size)
  415 {
  416         if (!(e1000_tbi_sbp_enabled_82543(hw)))
  417                 goto out;
  418 
  419         /* First adjust the frame length. */
  420         frame_len--;
  421         /*
  422          * We need to adjust the statistics counters, since the hardware
  423          * counters overcount this packet as a CRC error and undercount
  424          * the packet as a good packet
  425          */
  426         /* This packet should not be counted as a CRC error. */
  427         stats->crcerrs--;
  428         /* This packet does count as a Good Packet Received. */
  429         stats->gprc++;
  430 
  431         /* Adjust the Good Octets received counters */
  432         stats->gorc += frame_len;
  433 
  434         /*
  435          * Is this a broadcast or multicast?  Check broadcast first,
  436          * since the test for a multicast frame will test positive on
  437          * a broadcast frame.
  438          */
  439         if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
  440                 /* Broadcast packet */
  441                 stats->bprc++;
  442         else if (*mac_addr & 0x01)
  443                 /* Multicast packet */
  444                 stats->mprc++;
  445 
  446         /*
  447          * In this case, the hardware has over counted the number of
  448          * oversize frames.
  449          */
  450         if ((frame_len == max_frame_size) && (stats->roc > 0))
  451                 stats->roc--;
  452 
  453         /*
  454          * Adjust the bin counters when the extra byte put the frame in the
  455          * wrong bin. Remember that the frame_len was adjusted above.
  456          */
  457         if (frame_len == 64) {
  458                 stats->prc64++;
  459                 stats->prc127--;
  460         } else if (frame_len == 127) {
  461                 stats->prc127++;
  462                 stats->prc255--;
  463         } else if (frame_len == 255) {
  464                 stats->prc255++;
  465                 stats->prc511--;
  466         } else if (frame_len == 511) {
  467                 stats->prc511++;
  468                 stats->prc1023--;
  469         } else if (frame_len == 1023) {
  470                 stats->prc1023++;
  471                 stats->prc1522--;
  472         } else if (frame_len == 1522) {
  473                 stats->prc1522++;
  474         }
  475 
  476 out:
  477         return;
  478 }
  479 
  480 /**
  481  *  e1000_read_phy_reg_82543 - Read PHY register
  482  *  @hw: pointer to the HW structure
  483  *  @offset: register offset to be read
  484  *  @data: pointer to the read data
  485  *
  486  *  Reads the PHY at offset and stores the information read to data.
  487  **/
  488 static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
  489 {
  490         u32 mdic;
  491         s32 ret_val = E1000_SUCCESS;
  492 
  493         DEBUGFUNC("e1000_read_phy_reg_82543");
  494 
  495         if (offset > MAX_PHY_REG_ADDRESS) {
  496                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
  497                 ret_val = -E1000_ERR_PARAM;
  498                 goto out;
  499         }
  500 
  501         /*
  502          * We must first send a preamble through the MDIO pin to signal the
  503          * beginning of an MII instruction.  This is done by sending 32
  504          * consecutive "1" bits.
  505          */
  506         e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
  507 
  508         /*
  509          * Now combine the next few fields that are required for a read
  510          * operation.  We use this method instead of calling the
  511          * e1000_shift_out_mdi_bits routine five different times.  The format
  512          * of an MII read instruction consists of a shift out of 14 bits and
  513          * is defined as follows:
  514          *         <Preamble><SOF><Op Code><Phy Addr><Offset>
  515          * followed by a shift in of 18 bits.  This first two bits shifted in
  516          * are TurnAround bits used to avoid contention on the MDIO pin when a
  517          * READ operation is performed.  These two bits are thrown away
  518          * followed by a shift in of 16 bits which contains the desired data.
  519          */
  520         mdic = (offset | (hw->phy.addr << 5) |
  521                 (PHY_OP_READ << 10) | (PHY_SOF << 12));
  522 
  523         e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
  524 
  525         /*
  526          * Now that we've shifted out the read command to the MII, we need to
  527          * "shift in" the 16-bit value (18 total bits) of the requested PHY
  528          * register address.
  529          */
  530         *data = e1000_shift_in_mdi_bits_82543(hw);
  531 
  532 out:
  533         return ret_val;
  534 }
  535 
  536 /**
  537  *  e1000_write_phy_reg_82543 - Write PHY register
  538  *  @hw: pointer to the HW structure
  539  *  @offset: register offset to be written
  540  *  @data: pointer to the data to be written at offset
  541  *
  542  *  Writes data to the PHY at offset.
  543  **/
  544 static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
  545 {
  546         u32 mdic;
  547         s32 ret_val = E1000_SUCCESS;
  548 
  549         DEBUGFUNC("e1000_write_phy_reg_82543");
  550 
  551         if (offset > MAX_PHY_REG_ADDRESS) {
  552                 DEBUGOUT1("PHY Address %d is out of range\n", offset);
  553                 ret_val = -E1000_ERR_PARAM;
  554                 goto out;
  555         }
  556 
  557         /*
  558          * We'll need to use the SW defined pins to shift the write command
  559          * out to the PHY. We first send a preamble to the PHY to signal the
  560          * beginning of the MII instruction.  This is done by sending 32
  561          * consecutive "1" bits.
  562          */
  563         e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
  564 
  565         /*
  566          * Now combine the remaining required fields that will indicate a
  567          * write operation. We use this method instead of calling the
  568          * e1000_shift_out_mdi_bits routine for each field in the command. The
  569          * format of a MII write instruction is as follows:
  570          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
  571          */
  572         mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
  573                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
  574         mdic <<= 16;
  575         mdic |= (u32)data;
  576 
  577         e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
  578 
  579 out:
  580         return ret_val;
  581 }
  582 
  583 /**
  584  *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
  585  *  @hw: pointer to the HW structure
  586  *  @ctrl: pointer to the control register
  587  *
  588  *  Raise the management data input clock by setting the MDC bit in the control
  589  *  register.
  590  **/
  591 static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
  592 {
  593         /*
  594          * Raise the clock input to the Management Data Clock (by setting the
  595          * MDC bit), and then delay a sufficient amount of time.
  596          */
  597         E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
  598         E1000_WRITE_FLUSH(hw);
  599         usec_delay(10);
  600 }
  601 
  602 /**
  603  *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
  604  *  @hw: pointer to the HW structure
  605  *  @ctrl: pointer to the control register
  606  *
  607  *  Lower the management data input clock by clearing the MDC bit in the
  608  *  control register.
  609  **/
  610 static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
  611 {
  612         /*
  613          * Lower the clock input to the Management Data Clock (by clearing the
  614          * MDC bit), and then delay a sufficient amount of time.
  615          */
  616         E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
  617         E1000_WRITE_FLUSH(hw);
  618         usec_delay(10);
  619 }
  620 
  621 /**
  622  *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
  623  *  @hw: pointer to the HW structure
  624  *  @data: data to send to the PHY
  625  *  @count: number of bits to shift out
  626  *
  627  *  We need to shift 'count' bits out to the PHY.  So, the value in the
  628  *  "data" parameter will be shifted out to the PHY one bit at a time.
  629  *  In order to do this, "data" must be broken down into bits.
  630  **/
  631 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
  632                                            u16 count)
  633 {
  634         u32 ctrl, mask;
  635 
  636         /*
  637          * We need to shift "count" number of bits out to the PHY.  So, the
  638          * value in the "data" parameter will be shifted out to the PHY one
  639          * bit at a time.  In order to do this, "data" must be broken down
  640          * into bits.
  641          */
  642         mask = 0x01;
  643         mask <<= (count - 1);
  644 
  645         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  646 
  647         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
  648         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
  649 
  650         while (mask) {
  651                 /*
  652                  * A "1" is shifted out to the PHY by setting the MDIO bit to
  653                  * "1" and then raising and lowering the Management Data Clock.
  654                  * A "" is shifted out to the PHY by setting the MDIO bit to
  655                  * "" and then raising and lowering the clock.
  656                  */
  657                 if (data & mask)
  658                         ctrl |= E1000_CTRL_MDIO;
  659                 else
  660                         ctrl &= ~E1000_CTRL_MDIO;
  661 
  662                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
  663                 E1000_WRITE_FLUSH(hw);
  664 
  665                 usec_delay(10);
  666 
  667                 e1000_raise_mdi_clk_82543(hw, &ctrl);
  668                 e1000_lower_mdi_clk_82543(hw, &ctrl);
  669 
  670                 mask >>= 1;
  671         }
  672 }
  673 
  674 /**
  675  *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
  676  *  @hw: pointer to the HW structure
  677  *
  678  *  In order to read a register from the PHY, we need to shift 18 bits
  679  *  in from the PHY.  Bits are "shifted in" by raising the clock input to
  680  *  the PHY (setting the MDC bit), and then reading the value of the data out
  681  *  MDIO bit.
  682  **/
  683 static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
  684 {
  685         u32 ctrl;
  686         u16 data = 0;
  687         u8 i;
  688 
  689         /*
  690          * In order to read a register from the PHY, we need to shift in a
  691          * total of 18 bits from the PHY.  The first two bit (turnaround)
  692          * times are used to avoid contention on the MDIO pin when a read
  693          * operation is performed.  These two bits are ignored by us and
  694          * thrown away.  Bits are "shifted in" by raising the input to the
  695          * Management Data Clock (setting the MDC bit) and then reading the
  696          * value of the MDIO bit.
  697          */
  698         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  699 
  700         /*
  701          * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
  702          * input.
  703          */
  704         ctrl &= ~E1000_CTRL_MDIO_DIR;
  705         ctrl &= ~E1000_CTRL_MDIO;
  706 
  707         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
  708         E1000_WRITE_FLUSH(hw);
  709 
  710         /*
  711          * Raise and lower the clock before reading in the data.  This accounts
  712          * for the turnaround bits.  The first clock occurred when we clocked
  713          * out the last bit of the Register Address.
  714          */
  715         e1000_raise_mdi_clk_82543(hw, &ctrl);
  716         e1000_lower_mdi_clk_82543(hw, &ctrl);
  717 
  718         for (data = 0, i = 0; i < 16; i++) {
  719                 data <<= 1;
  720                 e1000_raise_mdi_clk_82543(hw, &ctrl);
  721                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
  722                 /* Check to see if we shifted in a "1". */
  723                 if (ctrl & E1000_CTRL_MDIO)
  724                         data |= 1;
  725                 e1000_lower_mdi_clk_82543(hw, &ctrl);
  726         }
  727 
  728         e1000_raise_mdi_clk_82543(hw, &ctrl);
  729         e1000_lower_mdi_clk_82543(hw, &ctrl);
  730 
  731         return data;
  732 }
  733 
  734 /**
  735  *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
  736  *  @hw: pointer to the HW structure
  737  *
  738  *  Calls the function to force speed and duplex for the m88 PHY, and
  739  *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
  740  *  then call the function for polarity reversal workaround.
  741  **/
  742 static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
  743 {
  744         s32 ret_val;
  745 
  746         DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
  747 
  748         ret_val = e1000_phy_force_speed_duplex_m88(hw);
  749         if (ret_val)
  750                 goto out;
  751 
  752         if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex &
  753             E1000_ALL_10_SPEED))
  754                 ret_val = e1000_polarity_reversal_workaround_82543(hw);
  755 
  756 out:
  757         return ret_val;
  758 }
  759 
  760 /**
  761  *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
  762  *  @hw: pointer to the HW structure
  763  *
  764  *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
  765  *  inadvertently.  To workaround the issue, we disable the transmitter on
  766  *  the PHY until we have established the link partner's link parameters.
  767  **/
  768 static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
  769 {
  770         s32 ret_val = E1000_SUCCESS;
  771         u16 mii_status_reg;
  772         u16 i;
  773         bool link;
  774 
  775         if (!(hw->phy.ops.write_reg))
  776                 goto out;
  777 
  778         /* Polarity reversal workaround for forced 10F/10H links. */
  779 
  780         /* Disable the transmitter on the PHY */
  781 
  782         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
  783         if (ret_val)
  784                 goto out;
  785         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
  786         if (ret_val)
  787                 goto out;
  788 
  789         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
  790         if (ret_val)
  791                 goto out;
  792 
  793         /*
  794          * This loop will early-out if the NO link condition has been met.
  795          * In other words, DO NOT use e1000_phy_has_link_generic() here.
  796          */
  797         for (i = PHY_FORCE_TIME; i > 0; i--) {
  798                 /*
  799                  * Read the MII Status Register and wait for Link Status bit
  800                  * to be clear.
  801                  */
  802 
  803                 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
  804                 if (ret_val)
  805                         goto out;
  806 
  807                 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
  808                 if (ret_val)
  809                         goto out;
  810 
  811                 if (!(mii_status_reg & ~MII_SR_LINK_STATUS))
  812                         break;
  813                 msec_delay_irq(100);
  814         }
  815 
  816         /* Recommended delay time after link has been lost */
  817         msec_delay_irq(1000);
  818 
  819         /* Now we will re-enable the transmitter on the PHY */
  820 
  821         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
  822         if (ret_val)
  823                 goto out;
  824         msec_delay_irq(50);
  825         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
  826         if (ret_val)
  827                 goto out;
  828         msec_delay_irq(50);
  829         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
  830         if (ret_val)
  831                 goto out;
  832         msec_delay_irq(50);
  833         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
  834         if (ret_val)
  835                 goto out;
  836 
  837         ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
  838         if (ret_val)
  839                 goto out;
  840 
  841         /*
  842          * Read the MII Status Register and wait for Link Status bit
  843          * to be set.
  844          */
  845         ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
  846         if (ret_val)
  847                 goto out;
  848 
  849 out:
  850         return ret_val;
  851 }
  852 
  853 /**
  854  *  e1000_phy_hw_reset_82543 - PHY hardware reset
  855  *  @hw: pointer to the HW structure
  856  *
  857  *  Sets the PHY_RESET_DIR bit in the extended device control register
  858  *  to put the PHY into a reset and waits for completion.  Once the reset
  859  *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
  860  *  of reset.
  861  **/
  862 static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
  863 {
  864         u32 ctrl_ext;
  865         s32 ret_val;
  866 
  867         DEBUGFUNC("e1000_phy_hw_reset_82543");
  868 
  869         /*
  870          * Read the Extended Device Control Register, assert the PHY_RESET_DIR
  871          * bit to put the PHY into reset...
  872          */
  873         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
  874         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
  875         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
  876         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
  877         E1000_WRITE_FLUSH(hw);
  878 
  879         msec_delay(10);
  880 
  881         /* ...then take it out of reset. */
  882         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
  883         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
  884         E1000_WRITE_FLUSH(hw);
  885 
  886         usec_delay(150);
  887 
  888         if (!(hw->phy.ops.get_cfg_done))
  889                 return E1000_SUCCESS;
  890 
  891         ret_val = hw->phy.ops.get_cfg_done(hw);
  892 
  893         return ret_val;
  894 }
  895 
  896 /**
  897  *  e1000_reset_hw_82543 - Reset hardware
  898  *  @hw: pointer to the HW structure
  899  *
  900  *  This resets the hardware into a known state.
  901  **/
  902 static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
  903 {
  904         u32 ctrl;
  905         s32 ret_val = E1000_SUCCESS;
  906 
  907         DEBUGFUNC("e1000_reset_hw_82543");
  908 
  909         DEBUGOUT("Masking off all interrupts\n");
  910         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  911 
  912         E1000_WRITE_REG(hw, E1000_RCTL, 0);
  913         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
  914         E1000_WRITE_FLUSH(hw);
  915 
  916         e1000_set_tbi_sbp_82543(hw, false);
  917 
  918         /*
  919          * Delay to allow any outstanding PCI transactions to complete before
  920          * resetting the device
  921          */
  922         msec_delay(10);
  923 
  924         ctrl = E1000_READ_REG(hw, E1000_CTRL);
  925 
  926         DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
  927         if (hw->mac.type == e1000_82543) {
  928                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  929         } else {
  930                 /*
  931                  * The 82544 can't ACK the 64-bit write when issuing the
  932                  * reset, so use IO-mapping as a workaround.
  933                  */
  934                 E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
  935         }
  936 
  937         /*
  938          * After MAC reset, force reload of NVM to restore power-on
  939          * settings to device.
  940          */
  941         hw->nvm.ops.reload(hw);
  942         msec_delay(2);
  943 
  944         /* Masking off and clearing any pending interrupts */
  945         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
  946         E1000_READ_REG(hw, E1000_ICR);
  947 
  948         return ret_val;
  949 }
  950 
  951 /**
  952  *  e1000_init_hw_82543 - Initialize hardware
  953  *  @hw: pointer to the HW structure
  954  *
  955  *  This inits the hardware readying it for operation.
  956  **/
  957 static s32 e1000_init_hw_82543(struct e1000_hw *hw)
  958 {
  959         struct e1000_mac_info *mac = &hw->mac;
  960         struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
  961         u32 ctrl;
  962         s32 ret_val;
  963         u16 i;
  964 
  965         DEBUGFUNC("e1000_init_hw_82543");
  966 
  967         /* Disabling VLAN filtering */
  968         E1000_WRITE_REG(hw, E1000_VET, 0);
  969         mac->ops.clear_vfta(hw);
  970 
  971         /* Setup the receive address. */
  972         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
  973 
  974         /* Zero out the Multicast HASH table */
  975         DEBUGOUT("Zeroing the MTA\n");
  976         for (i = 0; i < mac->mta_reg_count; i++) {
  977                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
  978                 E1000_WRITE_FLUSH(hw);
  979         }
  980 
  981         /*
  982          * Set the PCI priority bit correctly in the CTRL register.  This
  983          * determines if the adapter gives priority to receives, or if it
  984          * gives equal priority to transmits and receives.
  985          */
  986         if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
  987                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
  988                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
  989         }
  990 
  991         e1000_pcix_mmrbc_workaround_generic(hw);
  992 
  993         /* Setup link and flow control */
  994         ret_val = mac->ops.setup_link(hw);
  995 
  996         /*
  997          * Clear all of the statistics registers (clear on read).  It is
  998          * important that we do this after we have tried to establish link
  999          * because the symbol error count will increment wildly if there
 1000          * is no link.
 1001          */
 1002         e1000_clear_hw_cntrs_82543(hw);
 1003 
 1004         return ret_val;
 1005 }
 1006 
 1007 /**
 1008  *  e1000_setup_link_82543 - Setup flow control and link settings
 1009  *  @hw: pointer to the HW structure
 1010  *
 1011  *  Read the EEPROM to determine the initial polarity value and write the
 1012  *  extended device control register with the information before calling
 1013  *  the generic setup link function, which does the following:
 1014  *  Determines which flow control settings to use, then configures flow
 1015  *  control.  Calls the appropriate media-specific link configuration
 1016  *  function.  Assuming the adapter has a valid link partner, a valid link
 1017  *  should be established.  Assumes the hardware has previously been reset
 1018  *  and the transmitter and receiver are not enabled.
 1019  **/
 1020 static s32 e1000_setup_link_82543(struct e1000_hw *hw)
 1021 {
 1022         u32 ctrl_ext;
 1023         s32  ret_val;
 1024         u16 data;
 1025 
 1026         DEBUGFUNC("e1000_setup_link_82543");
 1027 
 1028         /*
 1029          * Take the 4 bits from NVM word 0xF that determine the initial
 1030          * polarity value for the SW controlled pins, and setup the
 1031          * Extended Device Control reg with that info.
 1032          * This is needed because one of the SW controlled pins is used for
 1033          * signal detection.  So this should be done before phy setup.
 1034          */
 1035         if (hw->mac.type == e1000_82543) {
 1036                 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
 1037                 if (ret_val) {
 1038                         DEBUGOUT("NVM Read Error\n");
 1039                         ret_val = -E1000_ERR_NVM;
 1040                         goto out;
 1041                 }
 1042                 ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
 1043                             NVM_SWDPIO_EXT_SHIFT);
 1044                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
 1045         }
 1046 
 1047         ret_val = e1000_setup_link_generic(hw);
 1048 
 1049 out:
 1050         return ret_val;
 1051 }
 1052 
 1053 /**
 1054  *  e1000_setup_copper_link_82543 - Configure copper link settings
 1055  *  @hw: pointer to the HW structure
 1056  *
 1057  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 1058  *  for link, once link is established calls to configure collision distance
 1059  *  and flow control are called.
 1060  **/
 1061 static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
 1062 {
 1063         u32 ctrl;
 1064         s32 ret_val;
 1065         bool link = true;
 1066 
 1067         DEBUGFUNC("e1000_setup_copper_link_82543");
 1068 
 1069         ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
 1070         /*
 1071          * With 82543, we need to force speed and duplex on the MAC
 1072          * equal to what the PHY speed and duplex configuration is.
 1073          * In addition, we need to perform a hardware reset on the
 1074          * PHY to take it out of reset.
 1075          */
 1076         if (hw->mac.type == e1000_82543) {
 1077                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1078                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1079                 ret_val = hw->phy.ops.reset(hw);
 1080                 if (ret_val)
 1081                         goto out;
 1082         } else {
 1083                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1084                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1085         }
 1086 
 1087         /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
 1088         ret_val = e1000_copper_link_setup_m88(hw);
 1089         if (ret_val)
 1090                 goto out;
 1091 
 1092         if (hw->mac.autoneg) {
 1093                 /*
 1094                  * Setup autoneg and flow control advertisement and perform
 1095                  * autonegotiation.
 1096                  */
 1097                 ret_val = e1000_copper_link_autoneg(hw);
 1098                 if (ret_val)
 1099                         goto out;
 1100         } else {
 1101                 /*
 1102                  * PHY will be set to 10H, 10F, 100H or 100F
 1103                  * depending on user settings.
 1104                  */
 1105                 DEBUGOUT("Forcing Speed and Duplex\n");
 1106                 ret_val = e1000_phy_force_speed_duplex_82543(hw);
 1107                 if (ret_val) {
 1108                         DEBUGOUT("Error Forcing Speed and Duplex\n");
 1109                         goto out;
 1110                 }
 1111         }
 1112 
 1113         /*
 1114          * Check link status. Wait up to 100 microseconds for link to become
 1115          * valid.
 1116          */
 1117         ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
 1118                                              &link);
 1119         if (ret_val)
 1120                 goto out;
 1121 
 1122 
 1123         if (link) {
 1124                 DEBUGOUT("Valid link established!!!\n");
 1125                 /* Config the MAC and PHY after link is up */
 1126                 if (hw->mac.type == e1000_82544) {
 1127                         hw->mac.ops.config_collision_dist(hw);
 1128                 } else {
 1129                         ret_val = e1000_config_mac_to_phy_82543(hw);
 1130                         if (ret_val)
 1131                                 goto out;
 1132                 }
 1133                 ret_val = e1000_config_fc_after_link_up_generic(hw);
 1134         } else {
 1135                 DEBUGOUT("Unable to establish link!!!\n");
 1136         }
 1137 
 1138 out:
 1139         return ret_val;
 1140 }
 1141 
 1142 /**
 1143  *  e1000_setup_fiber_link_82543 - Setup link for fiber
 1144  *  @hw: pointer to the HW structure
 1145  *
 1146  *  Configures collision distance and flow control for fiber links.  Upon
 1147  *  successful setup, poll for link.
 1148  **/
 1149 static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
 1150 {
 1151         u32 ctrl;
 1152         s32 ret_val;
 1153 
 1154         DEBUGFUNC("e1000_setup_fiber_link_82543");
 1155 
 1156         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1157 
 1158         /* Take the link out of reset */
 1159         ctrl &= ~E1000_CTRL_LRST;
 1160 
 1161         hw->mac.ops.config_collision_dist(hw);
 1162 
 1163         ret_val = e1000_commit_fc_settings_generic(hw);
 1164         if (ret_val)
 1165                 goto out;
 1166 
 1167         DEBUGOUT("Auto-negotiation enabled\n");
 1168 
 1169         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1170         E1000_WRITE_FLUSH(hw);
 1171         msec_delay(1);
 1172 
 1173         /*
 1174          * For these adapters, the SW definable pin 1 is cleared when the
 1175          * optics detect a signal.  If we have a signal, then poll for a
 1176          * "Link-Up" indication.
 1177          */
 1178         if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1))
 1179                 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 1180         else
 1181                 DEBUGOUT("No signal detected\n");
 1182 
 1183 out:
 1184         return ret_val;
 1185 }
 1186 
 1187 /**
 1188  *  e1000_check_for_copper_link_82543 - Check for link (Copper)
 1189  *  @hw: pointer to the HW structure
 1190  *
 1191  *  Checks the phy for link, if link exists, do the following:
 1192  *   - check for downshift
 1193  *   - do polarity workaround (if necessary)
 1194  *   - configure collision distance
 1195  *   - configure flow control after link up
 1196  *   - configure tbi compatibility
 1197  **/
 1198 static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
 1199 {
 1200         struct e1000_mac_info *mac = &hw->mac;
 1201         u32 icr, rctl;
 1202         s32 ret_val;
 1203         u16 speed, duplex;
 1204         bool link;
 1205 
 1206         DEBUGFUNC("e1000_check_for_copper_link_82543");
 1207 
 1208         if (!mac->get_link_status) {
 1209                 ret_val = E1000_SUCCESS;
 1210                 goto out;
 1211         }
 1212 
 1213         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
 1214         if (ret_val)
 1215                 goto out;
 1216 
 1217         if (!link)
 1218                 goto out; /* No link detected */
 1219 
 1220         mac->get_link_status = false;
 1221 
 1222         e1000_check_downshift_generic(hw);
 1223 
 1224         /*
 1225          * If we are forcing speed/duplex, then we can return since
 1226          * we have already determined whether we have link or not.
 1227          */
 1228         if (!mac->autoneg) {
 1229                 /*
 1230                  * If speed and duplex are forced to 10H or 10F, then we will
 1231                  * implement the polarity reversal workaround.  We disable
 1232                  * interrupts first, and upon returning, place the devices
 1233                  * interrupt state to its previous value except for the link
 1234                  * status change interrupt which will happened due to the
 1235                  * execution of this workaround.
 1236                  */
 1237                 if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
 1238                         E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
 1239                         ret_val = e1000_polarity_reversal_workaround_82543(hw);
 1240                         icr = E1000_READ_REG(hw, E1000_ICR);
 1241                         E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
 1242                         E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
 1243                 }
 1244 
 1245                 ret_val = -E1000_ERR_CONFIG;
 1246                 goto out;
 1247         }
 1248 
 1249         /*
 1250          * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
 1251          * have Si on board that is 82544 or newer, Auto
 1252          * Speed Detection takes care of MAC speed/duplex
 1253          * configuration.  So we only need to configure Collision
 1254          * Distance in the MAC.  Otherwise, we need to force
 1255          * speed/duplex on the MAC to the current PHY speed/duplex
 1256          * settings.
 1257          */
 1258         if (mac->type == e1000_82544)
 1259                 hw->mac.ops.config_collision_dist(hw);
 1260         else {
 1261                 ret_val = e1000_config_mac_to_phy_82543(hw);
 1262                 if (ret_val) {
 1263                         DEBUGOUT("Error configuring MAC to PHY settings\n");
 1264                         goto out;
 1265                 }
 1266         }
 1267 
 1268         /*
 1269          * Configure Flow Control now that Auto-Neg has completed.
 1270          * First, we need to restore the desired flow control
 1271          * settings because we may have had to re-autoneg with a
 1272          * different link partner.
 1273          */
 1274         ret_val = e1000_config_fc_after_link_up_generic(hw);
 1275         if (ret_val)
 1276                 DEBUGOUT("Error configuring flow control\n");
 1277 
 1278         /*
 1279          * At this point we know that we are on copper and we have
 1280          * auto-negotiated link.  These are conditions for checking the link
 1281          * partner capability register.  We use the link speed to determine if
 1282          * TBI compatibility needs to be turned on or off.  If the link is not
 1283          * at gigabit speed, then TBI compatibility is not needed.  If we are
 1284          * at gigabit speed, we turn on TBI compatibility.
 1285          */
 1286         if (e1000_tbi_compatibility_enabled_82543(hw)) {
 1287                 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
 1288                 if (ret_val) {
 1289                         DEBUGOUT("Error getting link speed and duplex\n");
 1290                         return ret_val;
 1291                 }
 1292                 if (speed != SPEED_1000) {
 1293                         /*
 1294                          * If link speed is not set to gigabit speed,
 1295                          * we do not need to enable TBI compatibility.
 1296                          */
 1297                         if (e1000_tbi_sbp_enabled_82543(hw)) {
 1298                                 /*
 1299                                  * If we previously were in the mode,
 1300                                  * turn it off.
 1301                                  */
 1302                                 e1000_set_tbi_sbp_82543(hw, false);
 1303                                 rctl = E1000_READ_REG(hw, E1000_RCTL);
 1304                                 rctl &= ~E1000_RCTL_SBP;
 1305                                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 1306                         }
 1307                 } else {
 1308                         /*
 1309                          * If TBI compatibility is was previously off,
 1310                          * turn it on. For compatibility with a TBI link
 1311                          * partner, we will store bad packets. Some
 1312                          * frames have an additional byte on the end and
 1313                          * will look like CRC errors to the hardware.
 1314                          */
 1315                         if (!e1000_tbi_sbp_enabled_82543(hw)) {
 1316                                 e1000_set_tbi_sbp_82543(hw, true);
 1317                                 rctl = E1000_READ_REG(hw, E1000_RCTL);
 1318                                 rctl |= E1000_RCTL_SBP;
 1319                                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
 1320                         }
 1321                 }
 1322         }
 1323 out:
 1324         return ret_val;
 1325 }
 1326 
 1327 /**
 1328  *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
 1329  *  @hw: pointer to the HW structure
 1330  *
 1331  *  Checks for link up on the hardware.  If link is not up and we have
 1332  *  a signal, then we need to force link up.
 1333  **/
 1334 static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
 1335 {
 1336         struct e1000_mac_info *mac = &hw->mac;
 1337         u32 rxcw, ctrl, status;
 1338         s32 ret_val = E1000_SUCCESS;
 1339 
 1340         DEBUGFUNC("e1000_check_for_fiber_link_82543");
 1341 
 1342         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1343         status = E1000_READ_REG(hw, E1000_STATUS);
 1344         rxcw = E1000_READ_REG(hw, E1000_RXCW);
 1345 
 1346         /*
 1347          * If we don't have link (auto-negotiation failed or link partner
 1348          * cannot auto-negotiate), the cable is plugged in (we have signal),
 1349          * and our link partner is not trying to auto-negotiate with us (we
 1350          * are receiving idles or data), we need to force link up. We also
 1351          * need to give auto-negotiation time to complete, in case the cable
 1352          * was just plugged in. The autoneg_failed flag does this.
 1353          */
 1354         /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
 1355         if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
 1356             (!(status & E1000_STATUS_LU)) &&
 1357             (!(rxcw & E1000_RXCW_C))) {
 1358                 if (!mac->autoneg_failed) {
 1359                         mac->autoneg_failed = true;
 1360                         ret_val = 0;
 1361                         goto out;
 1362                 }
 1363                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
 1364 
 1365                 /* Disable auto-negotiation in the TXCW register */
 1366                 E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 1367 
 1368                 /* Force link-up and also force full-duplex. */
 1369                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1370                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 1371                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1372 
 1373                 /* Configure Flow Control after forcing link up. */
 1374                 ret_val = e1000_config_fc_after_link_up_generic(hw);
 1375                 if (ret_val) {
 1376                         DEBUGOUT("Error configuring flow control\n");
 1377                         goto out;
 1378                 }
 1379         } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 1380                 /*
 1381                  * If we are forcing link and we are receiving /C/ ordered
 1382                  * sets, re-enable auto-negotiation in the TXCW register
 1383                  * and disable forced link in the Device Control register
 1384                  * in an attempt to auto-negotiate with our link partner.
 1385                  */
 1386                 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
 1387                 E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
 1388                 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
 1389 
 1390                 mac->serdes_has_link = true;
 1391         }
 1392 
 1393 out:
 1394         return ret_val;
 1395 }
 1396 
 1397 /**
 1398  *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
 1399  *  @hw: pointer to the HW structure
 1400  *
 1401  *  For the 82543 silicon, we need to set the MAC to match the settings
 1402  *  of the PHY, even if the PHY is auto-negotiating.
 1403  **/
 1404 static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
 1405 {
 1406         u32 ctrl;
 1407         s32 ret_val = E1000_SUCCESS;
 1408         u16 phy_data;
 1409 
 1410         DEBUGFUNC("e1000_config_mac_to_phy_82543");
 1411 
 1412         if (!(hw->phy.ops.read_reg))
 1413                 goto out;
 1414 
 1415         /* Set the bits to force speed and duplex */
 1416         ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1417         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
 1418         ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
 1419 
 1420         /*
 1421          * Set up duplex in the Device Control and Transmit Control
 1422          * registers depending on negotiated values.
 1423          */
 1424         ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 1425         if (ret_val)
 1426                 goto out;
 1427 
 1428         ctrl &= ~E1000_CTRL_FD;
 1429         if (phy_data & M88E1000_PSSR_DPLX)
 1430                 ctrl |= E1000_CTRL_FD;
 1431 
 1432         hw->mac.ops.config_collision_dist(hw);
 1433 
 1434         /*
 1435          * Set up speed in the Device Control register depending on
 1436          * negotiated values.
 1437          */
 1438         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
 1439                 ctrl |= E1000_CTRL_SPD_1000;
 1440         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
 1441                 ctrl |= E1000_CTRL_SPD_100;
 1442 
 1443         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1444 
 1445 out:
 1446         return ret_val;
 1447 }
 1448 
 1449 /**
 1450  *  e1000_write_vfta_82543 - Write value to VLAN filter table
 1451  *  @hw: pointer to the HW structure
 1452  *  @offset: the 32-bit offset in which to write the value to.
 1453  *  @value: the 32-bit value to write at location offset.
 1454  *
 1455  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
 1456  *  table.
 1457  **/
 1458 static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
 1459 {
 1460         u32 temp;
 1461 
 1462         DEBUGFUNC("e1000_write_vfta_82543");
 1463 
 1464         if ((hw->mac.type == e1000_82544) && (offset & 1)) {
 1465                 temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
 1466                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 1467                 E1000_WRITE_FLUSH(hw);
 1468                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
 1469                 E1000_WRITE_FLUSH(hw);
 1470         } else {
 1471                 e1000_write_vfta_generic(hw, offset, value);
 1472         }
 1473 }
 1474 
 1475 /**
 1476  *  e1000_led_on_82543 - Turn on SW controllable LED
 1477  *  @hw: pointer to the HW structure
 1478  *
 1479  *  Turns the SW defined LED on.
 1480  **/
 1481 static s32 e1000_led_on_82543(struct e1000_hw *hw)
 1482 {
 1483         u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1484 
 1485         DEBUGFUNC("e1000_led_on_82543");
 1486 
 1487         if (hw->mac.type == e1000_82544 &&
 1488             hw->phy.media_type == e1000_media_type_copper) {
 1489                 /* Clear SW-definable Pin 0 to turn on the LED */
 1490                 ctrl &= ~E1000_CTRL_SWDPIN0;
 1491                 ctrl |= E1000_CTRL_SWDPIO0;
 1492         } else {
 1493                 /* Fiber 82544 and all 82543 use this method */
 1494                 ctrl |= E1000_CTRL_SWDPIN0;
 1495                 ctrl |= E1000_CTRL_SWDPIO0;
 1496         }
 1497         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1498 
 1499         return E1000_SUCCESS;
 1500 }
 1501 
 1502 /**
 1503  *  e1000_led_off_82543 - Turn off SW controllable LED
 1504  *  @hw: pointer to the HW structure
 1505  *
 1506  *  Turns the SW defined LED off.
 1507  **/
 1508 static s32 e1000_led_off_82543(struct e1000_hw *hw)
 1509 {
 1510         u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
 1511 
 1512         DEBUGFUNC("e1000_led_off_82543");
 1513 
 1514         if (hw->mac.type == e1000_82544 &&
 1515             hw->phy.media_type == e1000_media_type_copper) {
 1516                 /* Set SW-definable Pin 0 to turn off the LED */
 1517                 ctrl |= E1000_CTRL_SWDPIN0;
 1518                 ctrl |= E1000_CTRL_SWDPIO0;
 1519         } else {
 1520                 ctrl &= ~E1000_CTRL_SWDPIN0;
 1521                 ctrl |= E1000_CTRL_SWDPIO0;
 1522         }
 1523         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
 1524 
 1525         return E1000_SUCCESS;
 1526 }
 1527 
 1528 /**
 1529  *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
 1530  *  @hw: pointer to the HW structure
 1531  *
 1532  *  Clears the hardware counters by reading the counter registers.
 1533  **/
 1534 static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
 1535 {
 1536         DEBUGFUNC("e1000_clear_hw_cntrs_82543");
 1537 
 1538         e1000_clear_hw_cntrs_base_generic(hw);
 1539 
 1540         E1000_READ_REG(hw, E1000_PRC64);
 1541         E1000_READ_REG(hw, E1000_PRC127);
 1542         E1000_READ_REG(hw, E1000_PRC255);
 1543         E1000_READ_REG(hw, E1000_PRC511);
 1544         E1000_READ_REG(hw, E1000_PRC1023);
 1545         E1000_READ_REG(hw, E1000_PRC1522);
 1546         E1000_READ_REG(hw, E1000_PTC64);
 1547         E1000_READ_REG(hw, E1000_PTC127);
 1548         E1000_READ_REG(hw, E1000_PTC255);
 1549         E1000_READ_REG(hw, E1000_PTC511);
 1550         E1000_READ_REG(hw, E1000_PTC1023);
 1551         E1000_READ_REG(hw, E1000_PTC1522);
 1552 
 1553         E1000_READ_REG(hw, E1000_ALGNERRC);
 1554         E1000_READ_REG(hw, E1000_RXERRC);
 1555         E1000_READ_REG(hw, E1000_TNCRS);
 1556         E1000_READ_REG(hw, E1000_CEXTERR);
 1557         E1000_READ_REG(hw, E1000_TSCTC);
 1558         E1000_READ_REG(hw, E1000_TSCTFC);
 1559 }
 1560 
 1561 /**
 1562  *  e1000_read_mac_addr_82543 - Read device MAC address
 1563  *  @hw: pointer to the HW structure
 1564  *
 1565  *  Reads the device MAC address from the EEPROM and stores the value.
 1566  *  Since devices with two ports use the same EEPROM, we increment the
 1567  *  last bit in the MAC address for the second port.
 1568  *
 1569  **/
 1570 s32 e1000_read_mac_addr_82543(struct e1000_hw *hw)
 1571 {
 1572         s32  ret_val = E1000_SUCCESS;
 1573         u16 offset, nvm_data, i;
 1574 
 1575         DEBUGFUNC("e1000_read_mac_addr");
 1576 
 1577         for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
 1578                 offset = i >> 1;
 1579                 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 1580                 if (ret_val) {
 1581                         DEBUGOUT("NVM Read Error\n");
 1582                         goto out;
 1583                 }
 1584                 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
 1585                 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
 1586         }
 1587 
 1588         /* Flip last bit of mac address if we're on second port */
 1589         if (hw->bus.func == E1000_FUNC_1)
 1590                 hw->mac.perm_addr[5] ^= 1;
 1591 
 1592         for (i = 0; i < ETHER_ADDR_LEN; i++)
 1593                 hw->mac.addr[i] = hw->mac.perm_addr[i];
 1594 
 1595 out:
 1596         return ret_val;
 1597 }

Cache object: ca2966af367357ba79176c84957ff68d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.